
Using DataMove with
InterSystems IRIS

Version 2019.4
2020-01-28

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using DataMove with InterSystems IRIS
InterSystems IRIS Data Platform Version 2019.4 2020-01-28
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

Using DataMove with InterSystems IRIS.. 1

1 Introduction ... 1
2 Limitations .. 1
3 The DataMove Workflow .. 2
4 Use the DataMove APIs .. 2

4.1 Edit Namespace Mappings .. 2
4.2 Generate DataMove ... 3
4.3 Validate DataMove .. 4
4.4 Start DataMove ... 4
4.5 Finish DataMove and Activate Mapping Changes .. 5
4.6 Delete Source Globals and Clean Up DataMove Class .. 5
4.7 Other API Calls ... 6

5 DataMove States .. 7
6 Example ... 7
7 Troubleshooting ... 9

List of Tables
Table 1: List of DataMove States ... 7

Using DataMove with InterSystems IRIS iii

Using DataMove with InterSystems IRIS

This article describes how to use the DataMove process to move existing data associated with an InterSystems IRIS
namespace to a new location. The article covers the following topics:

• Introduction to DataMove

• DataMove limitations

• Overview of the DataMove workflow

• Using the DataMove APIs

• List of DataMove states

• DataMove example

• Troubleshooting DataMove

Important: InterSystems highly recommends that you test DataMove with your specific namespaces and databases in
a test environment before using it on a live system.

1 Introduction
The DataMove process allows you to move existing data associated with an InterSystems IRIS namespace to a different
database, by:

• Creating new mappings for the namespace.

• Analyzing the mapping changes to calculate which globals and global subscripts need to be moved.

• Copying the data to the new database or databases.

• Activating the mapping changes.

For example, DataMove allows you to move a global, or portion of a global, from a namespace’s default globals database
to a different database. You can use the process to move a namespace’s globals to a separate database from its routines, to
split data across multiple databases, or otherwise move data to new locations based upon updated design decisions over
the evolution of an application.

For more information on mappings, see “Add Global, Routine, and Package Mapping to a Namespace” in the System
Administration Guide.

2 Limitations
The DataMove process is subject to the following limitations:

• DataMove operates on the mappings in a single namespace at a time.

• DataMove is designed to move data between databases on the same instance. Extra operational care is required for
connected systems, such as those in mirrors and distributed cache (ECP-based) clusters.

Using DataMove with InterSystems IRIS 1

• The last step of the DataMove process activates the new mappings. The Activation phase should be run while the
application is offline, or when the data that was moved is not being accessed or under the control of a lock.

• InterSystems has currently tested moving no more than 20 GB of data at a time.

• DataMove should not be used on applications that use extended global references. Data integrity cannot be ensured if
the application mixes the use of mappings and extended references.

For more information on extended global references, see “Namespaces” in Using ObjectScript.

3 The DataMove Workflow
The DataMove workflow comprises the following phases:

1. Changes to the namespace mappings are saved in a temporary storage area.

2. A set of data moves is generated from the mappings.

3. The data moves are validated against the specified globals and databases, and sufficient free disk space in the destination
databases is confirmed. If any issues are found, the user can correct them and resume the workflow.

4. A background job copies the existing data to the new location and updates a State property as the copy progresses.

5. When the data has been copied, the new mappings are activated in the namespace.

6. After the namespace changes have been successfully activated, you can delete the old source data that has been copied
to the new locations.

DataMove maintains a log file DataMoveName.log of all operations in the /mgr directory. You can examine the log file to
see the progress of the DataMove or to check for any problems.

4 Use the DataMove APIs
This section details the API calls required for each phase of the DataMove workflow.

Make note of the following guidelines:

• You must provide any needed scripting or user interface, according to your specific requirements.

• To make use of the needed macros, your code should include the files %syDataMove, %syConfig, and %syJrninc.

• Your code should check the status returned by each method before proceeding to the next API call.

• If any destination databases do not exist, they will be created by the DataMove workflow.

• The workflow should be executed in the %SYS namespace.

4.1 Edit Namespace Mappings

Config.Map.InitializeEdits(Namespace As %String) As %Status
Initializes the temporary storage area for a new set of mapping edits.

Argument:

• Namespace is the namespace on which you want to perform the DataMove.

2 Using DataMove with InterSystems IRIS

The DataMove Workflow

This method must be called before any edits are made and is valid only for the specified namespace.

CAUTION: Calling this method deletes any existing edits in the temporary storage area, which is used for all mapping
changes in all namespaces, including those made by the DataMove API and those made using the Global
Mappings page of the Management Portal. (See Global Mappings in the “Configuring InterSystems IRIS”
chapter of the System Administration Guide.) To prevent concurrent mapping changes from causing failures,
you must ensure that there are no mapping changes for any namespace in progress when you call
Config.Map.InitializeEdits(), and that no other mapping changes are initiated until the DataMove process
is complete.

Config.MapGlobals.Create(Namespace As %String, Name As %String, ByRef Properties As %String, ByRef CPFFile
As %String = "", Flags As %Integer) As %Status
Creates a new global mapping for this namespace in the temporary storage area. You can call this method one or more
times, depending on the number of mappings you plan to include in this DataMove.

Arguments:

• Namespace is the namespace on which you want to perform the DataMove.

• Name is the name of a global to be mapped to a specific database.

• Properties is an array of properties needed for this mapping, in particular, the name of the database used for this
mapping.

• CPFFile is the path and name of the Configuration Parameter File. Leave blank to use the active CPF.

• Flags represents any flags needed for this method call and should be set to $$$CPFSaveMappings, which indicates
that changes are to be saved in the temporary storage area.

Setting the Name argument to "A" specifies that this mapping affects the entire global ^A. Setting this argument to
"A(5):A(10)" specifies that this mapping affects the range of the global with subscripts ^A(5) up to, but not including,
^A(10).

Setting the Properties argument to an array properties where properties("Database") is set to "USER2" specifies
that the global (or range of a global) is to be mapped to the database USER2.

The Config.MapGlobals.Modify() and Config.MapGlobals.Delete() methods can be used to modify or delete mappings.
See the Class Reference for more information.

For more information on defining global ranges, see “Global Mappings” in the System Administration Guide.

4.2 Generate DataMove

DataMove.Data.CreateFromMapEdits(Name As %String, ByRef Properties As %String, ByRef Warnings As %String,
ByRef Errors As %String) As Status
Creates a new DataMove object, based on map edits in the temporary storage area.

Arguments:

• Name is the name of the DataMove object to be created.

• Properties is an array of optional properties to be used to create the DataMove object.

• Warnings is an array returned with conflicts that do not prevent the DataMove from being performed.

• Errors is an array returned with conflicts that do prevent the DataMove from being performed.

If properties is an array passed in as the Properties argument:

• properties("Description") optionally provides a description of the DataMove to be performed.

Using DataMove with InterSystems IRIS 3

Use the DataMove APIs

• properties("Flags") optionally provides any flags describing the DataMove operation, such as:

– $$$BitNoSrcJournal, allow copying of non-journaled databases.

– $$$BitNoWorkerJobs, do not use concurrent worker jobs for the DataMove.

– $$$BitBatchMode, run data copy in batch mode.

– $$$BitCheckActivate, call the user-supplied routine $$CheckActivate^ZDATAMOVE() to check the
application status before activating the mapping changes.

• properties("LogFile") optionally specifies a log file name, if other than the default.

The warnings array contains a list of mappings where the data being moved is also mapped from another namespace.
This array is subscripted by the name of the global or the global range.

The errors array contains a list of mappings where a conflict prevents the data from being moved. This array is subscripted
by the name of the global or the global range.

For more information on database journaling, see “Journaling” in the Data Integrity Guide.

For more information on worker jobs, see Using the Work Queue Manager.

For more information on running a process in batch mode, see “Process Management” in Specialized System Tools and
Utilities.

4.3 Validate DataMove

DataMove.Data.Dispatch(Name As %String , "Validate") As %Status
Validates the DataMove object.

Argument:

• Name is the name of the DataMove object.

Validating the DataMove object involves looking all of the specified mappings, checking the source and destination
databases, and making sure the destination globals do not already exist. Any errors are reported in the status.

DataMove.Data.Dispatch(Name As %String , "ValidateSizes") As %Status
Makes sure sufficient space exists for the data specified by the DataMove object to be copied.

Argument:

• Name is the name of the DataMove object.

Validating sizes for a DataMove object involves determining the amount of data to be copied and ensuring enough space
exists in the destination database. Any errors are reported in the status.

4.4 Start DataMove

DataMove.Data.DispatchJob(Name As %String, "Copy") As %Status
Starts the DataMove copy, which handles the actual moving of data.

Argument:

• Name is the name of the DataMove object.

4 Using DataMove with InterSystems IRIS

Use the DataMove APIs

This method starts the initial DataMove copy as a background job, which, if $$$BitNoWorkerJobs is not set, may create
other worker jobs. Once the initial copy is completed, the job will continue in a loop, applying journal files for each range
to the destination database.

You can verify that the initial copy has completed by calling DataMove.Data.Exists() to instantiate the DataMove.Data
object, and then verifying that the State property is greater than $$$CopyDone.

Also, the DataMove.Data.Display() method displays a brief status of the DataMove object, including the State of the
DataMove.

4.5 Finish DataMove and Activate Mapping Changes

DataMove.Data.Activate(Name As %String, Display as %Boolean,Timeout As %Integer = 120) As %Status
Finishes the DataMove and activates the namespace mapping changes.

Arguments:

• Name is the name of the DataMove object.

• Display should be set to true if you want to see progress messages.

• Timeout is number of seconds to wait for the Copy job to finish running an apply journals operation before proceeding.

This method stops the DataMove background job, finishes processing any journal files, writes the mapping changes to the
CPF, and activates the mapping changes. It momentarily sets switch 10 to prevent other processes from interfering with
the execution.

If $$$BitCheckActivate is set, the method will call a user-supplied routine to check the application status before
continuing. If $$CheckActivate^ZDATAMOVE() does not return 1, the method will quit.

For more information on switch 10, see “Using Switches” in Specialized System Tools and Utilities.

Note: DataMove.Data.Activate() checks the State property of the DataMove object to make sure that the initial copy
is complete before proceeding. It also checks the JRNApplied property to make sure that at least one journal pass
has been completed. If DataMove.Data.Activate() does not run to completion, see the “Troubleshooting” section
of this document.

4.6 Delete Source Globals and Clean Up DataMove Class

DataMove.Data.Dispatch(Name As %String , "DeleteSrcGlobals") As %Status
Deletes the globals that have been copied in the DataMove.

Argument:

• Name is the name of the DataMove object.

This method deletes all globals in the source database that have been copied to a destination database.

If $$$BitNoWorkerJobs is not set, this method creates a worker job for each global to be deleted.

DataMove.Data.Dispatch(Name As %String , "Finish") As %Status
Completes the DataMove process.

Argument:

• Name is the name of the DataMove object.

Using DataMove with InterSystems IRIS 5

Use the DataMove APIs

This method writes a success or failure message to the log file, closes the log file, and sets the State property of the DataMove
object to $$$Done.

DataMove.Data.Dispatch(Name As %String , "Delete") As %Status
Cleans up the DataMove process.

Argument:

• Name is the name of the DataMove object.

This method deletes the DataMove object and cleans up any temporary storage.

4.7 Other API Calls

DataMove.Data.Exists(Name As %String, ByRef Obj As %ObjectHandle, ByRef Status As %Status) As %Boolean
Checks that the DataMove exists and returns the DataMove object.

Arguments:

• Name is the name of the DataMove object.

• Obj is the returned handle to the DataMove object.

• Status is the returned status.

This method returns a DataMove object and lets you access its properties. Useful properties include State (the current state
of the DataMove) and JRNApplied (the number of journal passes applied).

Returns 1 if the DataMove exists and 0 otherwise.

For a complete list of DataMove states, see “DataMove States”.

DataMove.Data.Display(Name As %String) As %Status
Displays a summary of the DataMove object.

Argument:

• Name is the name of the DataMove object.

This method displays the current State of the DataMove and the moves created from the defined mappings. If the current
state is $$$JRNApply or $$$JRNApplyDone, the number of journal passes completed is displayed after the State, in
parentheses.

For a complete list of DataMove states, see “DataMove States”.

DataMove.Data.StopCopy(Name As %String) As %Status
Stops the DataMove copy job.

Argument:

• Name is the name of the DataMove object.

This method stops the DataMove copy background job, allowing you to gracefully stop the copy after it is in process. You
can then do a rollback with DataMove.Data.Dispatch(Name, "Rollback").

DataMove.Data.Dispatch(Name As %String , "Rollback") As %Status
Rolls back the DataMove.

Argument:

• Name is the name of the DataMove object.

6 Using DataMove with InterSystems IRIS

Use the DataMove APIs

This method deletes any globals that have been copied to destination databases by the DataMove copy job. This method
can be used to abort the DataMove or recover from an error in the copy process.

DataMove.Data.StopCopy() must be run before calling this method.

After doing the rollback, you can start over or delete the DataMove with DataMove.Data.Dispatch(Name, "Delete").

5 DataMove States
The DataMove object keeps track of its progress through the workflow by means of the State property. You can inspect
this property to monitor its progress, or to troubleshoot any issues that arise, by calling the methods DataMove.Data.Exists()
or DataMove.Data.Display().

Table 1: List of DataMove States

Integer ValueState

1$$$Done

2$$$NotStarted

3$$$Started

4$$$Size

5$$$SizeDone

6$$$Copy

7$$$CopyDone

8$$$JrnApply

9$$$JrnApplyDone

11$$$CPFUpdate

12$$$CPFUpdateDone

13$$$NSPActivate

14$$$NSPActivateDone

15$$$Delete

16$$$DeleteDone

17$$$Cleanup

18$$$CleanupDone

6 Example
This ObjectScript class moves global range ^A(5) up to ^A(10) in namespace USER to database USER3 and the
remainder of the ^A global to database USER2, using a DataMove object named DMTEST.

For demonstration purposes, this example does not include comprehensive error checking. Check the returned status after
each API call.

Using DataMove with InterSystems IRIS 7

DataMove States

Include (%syDataMove, %syConfig, %syJrninc)

/// Sample class to illustrate using DataMove to move globals.
/// Run MapEdit(), Activate(), and CleanUp() in order.
Class DataMove.Sample Extends %RegisteredObject
{

/// Edit a global mapping, generate the DataMove, and start Copy JOB
ClassMethod MapEdit(Datamove As %String = "DMTEST") As %Status
{
 set namespace="USER" // namespace that contains ^A global

 // Initialize temporary storage area to hold mapping edits
 set status = ##class(Config.Map).InitializeEdits(namespace)

 // Create mapping for global ^A to database USER2 in temporary storage area
 kill properties
 set properties("Database") = "USER2"
 set status = ##class(Config.MapGlobals).Create(namespace, "H", .properties, , $$$CPFMappingEdit)
 if $$$ISERR(status) quit // should check status after every API call

 // Create mapping for global range ^A(5) up to ^A(10) to database USER3 in temporary storage area
 set properties("Database") = "USER3"
 set status = ##class(Config.MapGlobals).Create(namespace, "H(5):(10)", .properties, ,
$$$CPFMappingEdit)

 // Create new DataMove object, based on map edits in the temporary storage area
 kill properties, warnings, errors
 set properties("Description") = "DataMove test"
 // Flags could also include $$$BitCheckActivate if we want to call $$CheckActivate^ZDATAMOVE()
 set properties("Flags")=$$$BitNoWorkerJobs+$$$BitNoSrcJournal+$$$BitBatchMode+$$$BitCheckActivate
 set status = ##class(DataMove.Data).CreateFromMapEdits(Datamove, .properties, .warnings, .errors)
 if $data(warnings) write ! zwrite warnings
 if $data(errors) write ! zwrite errors

 // Validate DataMove object
 set status = ##class(DataMove.Data).Dispatch(Datamove, "Validate")

 // Make sure enough space exists to copy globals
 set status = ##class(DataMove.Data).Dispatch(Datamove, "ValidateSizes")

 // Display the status of the DataMove and the moves created from the defined mappings
 write ! do ##class(DataMove.Data).Display(Datamove)

 // Start the DataMove copy job
 set status = ##class(DataMove.Data).DispatchJob(Datamove,"Copy")

 quit status

}

/// Finish DataMove and activate Namespace change
ClassMethod Activate(Datamove As %String = "DMTEST") As %Status
{
 // Check that DataMove exists and return the DataMove object
 if '##class(DataMove.Data).Exists(Datamove, .dmObject, .status) {
 write !,"No such DataMove "_Datamove
 quit status
 }

 // Check state of DataMove before doing final activation
 if (dmObject.State < $$$CopyDone) || (dmObject.State > $$$NSPActivate) {
 write !,"Wrong State for DataMove "_Datamove
 quit $$$ERROR($$$MGBLStateWrong, "Activate()", dmObject.State)
 }

 // Finish the DataMove and activate the namespace mapping changes
 set status = ##class(DataMove.Data).Activate(Datamove)

 quit status

}

/// Delete copied globals, do DataMove clean up and delete object
ClassMethod CleanUp(Datamove As %String = "DMTEST") As %Status
{
 // Delete the source globals that have been copied in the DataMove
 set status=##class(DataMove.Data).Dispatch(Datamove, "DeleteSrcGlobals")

 // Complete the DataMove process
 set status=##class(DataMove.Data).Dispatch(Datamove, "Finish")

 // Delete the DataMove object and clean up any temporary storage
 set status=##class(DataMove.Data).Dispatch(Datamove, "Delete")

8 Using DataMove with InterSystems IRIS

Example

 quit status
}

/// Stop DataMove copy job, rollback changes, delete DataMove
ClassMethod Stop(Datamove As %String = "DMTEST") As %Status
{
 // Stop DataMove copy job
 set status = ##class(DataMove.Data).StopCopy(Datamove)

 // Roll back the DataMove
 set status = ##class(DataMove.Data).Dispatch(Datamove, "Rollback")

 // Delete the DataMove object and clean up any temporary storage
 set status = ##class(DataMove.Data).Dispatch(Datamove, "Delete")

 quit status
}

}

7 Troubleshooting
The DataMove background job should be restartable by calling DataMove.Data.DispatchJob(Name, "Copy"), if it
encounters an error or if the system stops for some reason. The DataMove object keeps track of which globals have been
copied, whether the initial copy has completed, and how many journal passes have been applied.

If DataMove.Data.Activate() detects an error, or if the system crashes while it is running, check the State property of the
DataMove object or examine the log file.

• If DataMove.Data.Activate() stops before the namespace configuration is updated (State < $$$CPFUpdateDone),
resume the DataMove workflow from the “Start DataMove” section of this document.

• If DataMove.Data.Activate() detects an error before the namespace activation (State < $$$NSPActivateDone),
it should back out the CPF changes and leave the system running with the original namespace mappings. Resume the
DataMove workflow from the “Start DataMove” section of this document.

• If DataMove.Data.Activate() stops after the namespace configuration is updated, then the system will likely start with
the new CPF and activate the new mappings. After verifying that the new mappings are activated, resume the DataMove
workflow from the “Delete Source Globals and Clean Up DataMove Class” section of this document.

• If DataMove.Data.Activate() stops while updating the CPF, verify the contents of the CPF and that the namespace
mappings are activated. It is possible, but unlikely, to have a partially written (corrupt) CPF.

Using DataMove with InterSystems IRIS 9

Troubleshooting

	Table of Contents
	1 Introduction
	2 Limitations
	3 The DataMove Workflow
	4 Use the DataMove APIs
	4.1 Edit Namespace Mappings
	4.2 Generate DataMove
	4.3 Validate DataMove
	4.4 Start DataMove
	4.5 Finish DataMove and Activate Mapping Changes
	4.6 Delete Source Globals and Clean Up DataMove Class
	4.7 Other API Calls

	5 DataMove States
	6 Example
	7 Troubleshooting

