
First Look: InterSystems
Products in Docker Containers

Version 2019.4
2020-01-28

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

First Look: InterSystems Products in Docker Containers
InterSystems IRIS Data Platform Version 2019.4 2020-01-28
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

First Look: InterSystems Products in Docker Containers... 1

1 Why Containers? ... 1
2 InterSystems IRIS in Docker Containers .. 2
3 Try It! Create Your Own InterSystems IRIS-based Container .. 3

3.1 Select a Platform ... 3
3.2 Install Docker ... 3
3.3 Download the InterSystems IRIS Docker Image .. 4
3.4 Add the License Key to the External Storage Location .. 5
3.5 Run a Container from the InterSystems IRIS Image .. 5
3.6 Change the Instance and Commit the Container as a New Image 6
3.7 Build an InterSystems IRIS-based Image Using a Dockerfile .. 7
3.8 Run and Investigate the InterSystems IRIS-based Container ... 8

4 Learn More About InterSystems IRIS and Docker Containers ... 12

List of Figures
Figure 1: Steps in this Hands-on ... 10

First Look: InterSystems Products in Docker Containers iii

First Look: InterSystems Products in
Docker Containers

This First Look guide introduces you to the fundamentals of using Docker containers with InterSystems IRIS® data platform
by giving you a focused overview and a basic, hands-on example. You will learn the purpose, importance, and benefits of
Docker containers, as well as the specifics of how InterSystems implements them.

For the full documentation on Docker containers and InterSystems IRIS, see Running InterSystems Products in Containers,
as well as the “ ICM Overview” chapter of the InterSystems Cloud Manager Guide. The section Learn More About Inter-
Systems IRIS and Docker Containers provides links to additional sources.

To browse all of the First Looks, including those that can be performed on a free evaluation instance of InterSystems IRIS,
see InterSystems First Looks.

1 Why Containers?
Containers package applications into platform-independent, fully portable runtime solutions, with all dependencies satisfied
and isolated. Docker containers, specifically, are ubiquitous. Because all major public cloud Infrastructure as a Service
(IaaS) providers support Docker, organizations can reduce costs and complexity by using Docker containers and letting
the cloud provider handle the infrastructure.

Containers bring all of the following benefits:

• Containers cleanly partition code and data, providing full separation of concerns and allowing applications to be easily
deployed and upgraded.

• Containers are very efficient; an application within a container is packaged with only the elements needed to run it and
make it accessible to the required connections, services, and interfaces, and the container runs as a single process that
takes no more memory than any other executable.

• Containers support clean movement of an application between environments — for example, from development to test
and then to production — thereby reducing the process and management conflicts typical of departments with different
objectives. Developers can focus on the latest code and libraries, quality developers on testing and defect description,
and operations engineers on the overall solution infrastructure including networking, high availability, data durability,
and so on.

• Containers provide the agility, flexibility, and repeatability needed to revolutionize the way many organizations respond
to business and technology needs. Containers clearly separate the application provisioning process, including the build
phase, from the run process, and allow an organization to adopt a uniform application delivery approach, including a
more agile delivery methodology (DevOps) and architecture (microservices).

These advantages make containers a natural building block for applications, promoting application delivery and deployment
approaches that are simpler, faster, more repeatable, and more robust.

First Look: InterSystems Products in Docker Containers 1

2 InterSystems IRIS in Docker Containers
Because a Docker container packages only the elements needed to run a containerized application and executes the appli-
cation natively, it provides standard, well-understood application configuration, behavior, and access. If you are experienced
with InterSystems IRIS running on Linux, it doesn’t matter what physical, virtual, or cloud systems and OS platforms your
Linux-based InterSystems IRIS containers are running on; you interact with them all in the same way, just as you would
with traditional InterSystems IRIS instances running on Linux systems.

The following describes different aspects of how InterSystems IRIS uses containers.

• InterSystems-provided images — A container image is the executable package, while a container is a runtime instance
of an image — what the image becomes in memory when executed. InterSystems provides Docker images containing
a fully-installed instance of InterSystems IRIS, as well as other associated images. For more information on Docker
images from InterSystems, see InterSystems IRIS Docker Images from InterSystems in Running InterSystems Products
in Containers.

In the hands-on experience in this First Look, you will create and start a container from an InterSystems IRIS image
provided by InterSystems.

• The iris-main program — The iris-main program enables InterSystems IRIS and other products to satisfy the require-
ments of applications running in Docker containers. The entrypoint application, the main process started when a container
is started, is required to block (that is, wait) until its work is complete, but the command starting InterSystems IRIS
does not run as a blocking process. The iris-main program solves this by starting InterSystems IRIS and then continuing
to run as the blocking entrypoint application. For more information about iris-main, see The iris-main Program in
Running InterSystems Products in Containers.

The program also offers a number of options to help tailor the behavior of InterSystems IRIS within a container; you
will use some iris-main options in the hands-on experience in this First Look.

• The durable %SYS feature — Because a containerized application is isolated from the host environment, it does not
write persistent data; whatever it writes inside the container is lost when the container is removed and replaced by a
new container. Therefore, an important aspect of containerized application deployment is arranging for data to be
stored outside of the container and made available to other and future containers.

The durable %SYS features enables persistent storage of instance-specific data — such as user definitions, audit records,
and the log, journal, and WIJ files — when InterSystems IRIS is run in a container, allowing an instance to span mul-
tiple containers. For example, if you run an InterSystems IRIS container using durable %SYS, you can upgrade the
instance by stopping the original container and running a new one that uses the instance-specific data created by the
old one.

You will explore the durable %SYS feature in the hands-on experience in this First Look. For detailed information on
durable %SYS, see Durable %SYS for Persistent Instance Data in Running InterSystems Products in Containers.

Important: Docker images from InterSystems comply with the OCI support specification, and are supported on Docker
Enterprise Edition and Community Edition, version 18.03 and later. Docker EE only is supported for pro-
duction environments.

Not all combinations of platform and Docker version are supported by Docker; for detailed information
from Docker on compatibility, see the Compatibility Matrix and About Docker CE.

InterSystems Cloud Manager (ICM) provides automated deployment of InterSystems IRIS containers and others on cloud
infrastructure it provisions, as well as existing virtual and physical infrastructure. For more information about using ICM
to deploy containerized InterSystems IRIS instances, see First Look: InterSystems Cloud Manager and the InterSystems
Cloud Manager Guide.

2 First Look: InterSystems Products in Docker Containers

InterSystems IRIS in Docker Containers

https://success.docker.com/article/compatibility-matrix
https://docs.docker.com/install/

3 Try It! Create Your Own InterSystems IRIS-based
Container
Now that you have had an introduction to containers, this section will walk you through a simple, hands-on experience
with InterSystems IRIS containers, in which you will do the following:

• Prepare by installing Docker, locating the InterSystems-provided InterSystems IRIS image, and readying a storage
location with your InterSystems IRIS license key.

• Create and start an InterSystems IRIS container using the docker run command and the InterSystems IRIS image.

• Change the InterSystems IRIS instance running in the container, then use the docker commit command to commit
the container as a second InterSystems IRIS-based image that includes the change you made.

• Create a Dockerfile based on the committed image that installs an application along with InterSystems IRIS, then use
the docker build command to build a third InterSystems IRIS-based image from the Dockerfile.

• Run a container from the image that you built, using the durable %SYS feature to store instance-specific data, and:

– Confirm that the change you made to the InterSystems IRIS instance in the first container before committing it as
a new image is reflected in the new container.

– Change a setting in the InterSystems IRIS instance running inside the new container and see it reflected in the
durable %SYS directory outside the container.

– Confirm that the installed application exists and can be run inside or outside the new container.

These instructions assume you have an InterSystems IRIS license and access to InterSystems software downloads.

Because this example is intended to be brief, it does not go into detail about matters such as settings and security consider-
ations. In production systems, there are many things you will need to do differently. The resources in the last section offer
a more complete picture of using containers with InterSystems IRIS.

Note: Some of the commands included here may require root privileges.

3.1 Select a Platform

The instructions in this hands-on were created for, and are most easily used in, a Linux environment. If you do not have a
Linux system available, InterSystems recommends that you create an account on a public cloud provider such as Google
Cloud Platform (GCP), Amazon Web Services (AWS), or Microsoft Azure and provision a CentOS VM with Docker
installed.

3.2 Install Docker

InterSystems IRIS is provided as a Docker image that includes everything you need. Therefore the only requirements for
the system on which you launch the InterSystems IRIS container are that Docker EE or CE 18.03+ is installed, with the
Docker daemon running, and that the system is connected to the Internet.

You may have to change Docker’s default storage driver. For more information, see Docker Storage Driver in Running
InterSystems Products in Containers.

First Look: InterSystems Products in Docker Containers 3

Try It! Create Your Own InterSystems IRIS-based Container

Note: The instructions in this hands-on are written for a Linux platform, but can be adapted to Windows or MacOS. On
Windows, you can execute the instructions in a Command Prompt or Windows PowerShell window, opened with
Run as administrator; do not use PowerShell ISE. For more information about Docker for Windows, see Using
InterSystems IRIS Containers with Docker for Windows on InterSystems Developer Community and Getting
started with Docker for Windows in the Docker documentation.

3.3 Download the InterSystems IRIS Docker Image

To make the InterSystems IRIS Docker image from InterSystems available for use in this hands-on, you can do one of the
following:

• Download an InterSystems IRIS Community Edition image from the Docker Store’s InterSystems IRIS data platform
page.

InterSystems IRIS Community Edition comes with a free built-in 13-month license (and some functionality restrictions).
For more information, see Deploying InterSystems IRIS Community Edition on Your Own System in Getting Started
with InterSystems IRIS Community Edition.

Note: You can also provision a cloud node hosting a running InterSystems IRIS Community Edition container on
GCP, AWS, or Azure; for more information, see Getting Started with InterSystems IRIS Community Edition.

• Download the archive from InterSystems and load the image. To use this image, you must have an InterSystems IRIS
license.

InterSystems IRIS images are distributed as Docker tar archive files, available in the InterSystems Worldwide Response
Center (WRC) download area. Once you have downloaded the tar file, you can make it available on your system using
the docker load command, as follows:

docker load -i iris-2018.1.1.888.0-docker.tar.gz
c6dba2103a94: Loading layer [==>] 1.217GB/1.217GB
1b229d298c03: Loading layer [==>] 1.479MB/1.479MB
Loaded image: docker.intersystems.com/intersystems/iris:2018.1.1.888.0

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
docker.intersystems.com/intersystems/iris 2018.1.1.888.0 e3cd4844771e 13 days ago 1.39GB
acme/iris stable e3cd4844771e 13 days ago 1.39GB
centos 7.3.1611 262f7381844c 2 weeks ago 192MB
hello-world latest 05a3bd381fc2 7 months ago 1.84kB

You can tag the image if you want a simpler name:

$ docker tag docker.intersystems.com/intersystems/iris:2018.1.1.888.0 acme/iris:stable

• Download the image from your organizations’s Docker repository, if it has already been placed there

If your organization has a Docker repository and the InterSystems IRIS image from InterSystems is already loaded,
obtain the location of the repository and the needed credentials, then log into the repository and list the images, as
follows:

$ docker login docker.acme.com
Username: pmartinez@acme.com
Pasword: **********
$ $ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
acme/iris stable 15627fb5cb76 3 days ago 1.39GB
centos 7.3.1611 262f7381844c 2 weeks ago 192MB
hello-world latest 05a3bd381fc2 7 months ag 1.84kB

For simplicity, these instructions assume you are working with the image acme/iris:stable

4 First Look: InterSystems Products in Docker Containers

Try It! Create Your Own InterSystems IRIS-based Container

https://community.intersystems.com/post/using-intersystems-iris-containers-docker-windows
https://community.intersystems.com/post/using-intersystems-iris-containers-docker-windows
https://docs.docker.com/docker-for-windows/
https://docs.docker.com/docker-for-windows/
https://hub.docker.com/_/intersystems-iris-data-platform
https://hub.docker.com/_/intersystems-iris-data-platform
https://www.intersystems.com/support-learning/support/
https://www.intersystems.com/support-learning/support/

3.4 Add the License Key to the External Storage Location

Like any InterSystems IRIS instance, an instance running in a container requires a license key (typically called iris.key).

The InterSystems IRIS Community Edition image available from the Docker Store (described in the previous section)
comes with a free built-in temporary license. Generally, however, license keys are not and cannot be included in an Inter-
Systems IRIS container image, but instead must be copied into a container after it is started to be activated for the InterSystems
IRIS instance running there. The iris-main program provides an option for this, but it requires you to place the license key
in a storage location to be mounted as an external volume; instructions for using it are provided in the next section. To learn
more about license keys for InterSystems IRIS containers, see License Keys for InterSystems IRIS Containers in Running
InterSystems Products in Containers.

Copy your InterSystems IRIS license key file, iris.key, to the external storage location.

3.5 Run a Container from the InterSystems IRIS Image

Once you have made the InterSystems IRIS image available on your local machine and have identified the external storage
location and placed your license key on it, you are ready to use the docker run command to create and start a container.
The docker run command actually combines three separate Docker commands, as follows:

• docker pull — Downloads an image if it is not already present locally.

• docker create — Creates a container from the image.

• docker start — Starts the container.

Each of these commands is useful separately, for various purposes in different contexts. For more information, see Docker
run reference in the Docker documentation.

A sample docker run command follows; all of its options are explained in the accompanying text. Note that options to the
docker run command appear on the command line before the image specification, while options to the InterSystems
iris-main program (see InterSystems IRIS in Docker Containers) come after.

docker run --name iris
 --init
 --detach
 --publish 52773:52773
 --volume /nethome/pmartinez/iris_external:/external
 acme/iris:stable
 --key /external/iris.key

• --name container_name

Specifies the name of the container, which you can use to refer to the container in other Docker commands, for
example docker stop container_name when you want to stop the container.

• --init

Indicate that an init process should be used as PID 1 within the container, ensuring that the usual responsibilities of an
init system are performed inside the container.

• --detach

Runs the container in the background (and displays the container’s unique ID).

• --publish host_port:container_port

Publishes a port within the container to a port on the host so that entities outside the container (on the host or on other
machines) can contact a program in the container. For example, an InterSystems IRIS instance’s Management Portal
is reached through the instance’s web server port (52773 by default). If this port inside the container is published to a
port on the host, the instance’s Management Portal can be loaded into a browser using the host’s port.

First Look: InterSystems Products in Docker Containers 5

Try It! Create Your Own InterSystems IRIS-based Container

https://docs.docker.com/engine/reference/run/
https://docs.docker.com/engine/reference/run/

--volume external_storage_path:internal_volume

Mounts an external storage location accessible by the container as a storage volume inside the container. For information
about which storage locations can be mounted in this way and Docker configuration that may be required, see Use
Volumes in the Docker documentation.

Important: InterSystems does not support mounting NFS locations as external volumes in InterSystems IRIS
containers.

• repository/image:tag

Specifies the image to be pulled and used to create a container (see Download the InterSystems IRIS Docker Image).
Use the docker images command to list available images and make sure you are specifying the right one. The
instructions here assume the image is iris:stable.

• --key license_key_path

An iris-main option that identifies the InterSystems IRIS license key to be installed in the instance in the container;
this location must be on a mounted volume.

Use the preceding sample and explanations to construct your own docker run command and execute it on the command
line. When the command has completed, use the docker ps command to see your container in the list with a status of Up.

$ docker run --name iris --init --detach --publish 52773:52773
 --volume /nethome/pmartinez/iris_external:/external
 acme/iris:2018.1.0.583 --key /externaliris.key
426d4a511d6746d89ec2a24cf93b29aa546ea696b479a52210d37da4c6d04883
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
426d4a511d67 acme/iris:stable "/iris-main --key ..." 5 seconds ago Up 3 seconds
 PORTS NAMES
 0.0.0.0:52773->52773/tcp iris

Note: The --key option is not needed with the InterSystems IRIS Community Edition image (see Download the Inter-
Systems IRIS Docker Image), which comes with a free built-in license.

If the image is not yet present locally but is in your organization’s repository (see Download the InterSystems
IRIS Docker Image), Docker pulls (downloads) the image before creating and starting the container.

As shown in the example, after creating the container, Docker outputs the UUID long identifier; the first 12
characters make up the UUID short identifier, which is used to identify the container in other output, for example
from the docker ps command.

3.6 Change the Instance and Commit the Container as a New Image

When you alter the program running inside a container, you can use the docker commit command to create a new image
from the container. This new image is the same as the original image from which you created the container, but includes
the alterations you made to the container. To see how this works, follow these steps:

1. Open the Management Portal for the InterSystems IRIS instance in the container. The URL for an instance’s Management
Portal incorporates both the host identifier and web server port number of the instance.

• The host identifier is the hostname or IP address of the system the container is running on; if your browser is
running on the same system as the container, you can use localhost.

• The web server port number is the host port number to which you published the instance’s web server port number,
which is 52773, when you started the container with docker run. Assuming you included --publish 52773:52773
as provided in the sample command at the end of the previous section, the web server port number is 52773.

For example, on the container host, with web server port 52773, the Management Portal URL would be
http://localhost:52773/csp/sys/%25CSP.Portal.Home.zen.

6 First Look: InterSystems Products in Docker Containers

Try It! Create Your Own InterSystems IRIS-based Container

https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/

Log in using one of the predefined user accounts, for example _SYSTEM, which have the default password SYS (see
Predefined Users Accounts in the “Users” chapter of the Security Administration Guide). For security reasons, you
are immediately prompted to change the password on first login (using the Management Portal or the iris terminal
command) to any predefined account on a containerized InterSystems IRIS instance.

Note: The iris-main --password-file option can be used to change the default password, including in scripts and
other automation; for more information, see The iris-main Program in Running InterSystems Products in
Docker Containers.

2. From the home page, select System Administration > Configuration > System Configuration > Namespaces to display
the Namespaces page, then click the Create New Namespace button to display the New Namespace page.

3. Create a namespace named USER2 by entering USER2 in the Name of the namespace box, selecting USER from the
Copy from dropdown, clearing the Enable namespace for interoperability productions check-box and confirming that,
clicking the Save button, and finally confirming that you want to copy all properties and mappings. Then click Close

on the Copy Namespace Mappings page to return to the Namespaces page, on which the USER2 namespace is now
listed. You have now altered the instance in the container.

4. Next, stop the container and commit it as a new image called iris2, then list the available images.

$ docker stop iris
$ docker commit iris acme/iris2:test
sha256:7b4adb9f7abf1490a39086665ccd3d255c05163c25cb9a3de8e9421f6ca16b40
$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
acme/iris2 test 421f6ca16b40 8 seconds ago 1.40GB
acme/iris stable 15627fb5cb76 3 days ago 1.39GB
centos 7.3.1611 262f7381844c 2 weeks ago 192MB
hello-world latest 05a3bd381fc2 7 months ag 1.84kB

5. Finally, remove the container created from the original iris image.

$ docker rm iris
iris

3.7 Build an InterSystems IRIS-based Image Using a Dockerfile

Committing a running container is a convenient way to save changes for testing purposes or as a minor delta. But the preferred
method for creating a production image is to define the image in a Dockerfile and then build it using the docker build
command, which:

• ensures that the source for each image is directly traceable.

• avoids accidentally committing unwanted changes.

• maintains separation of code and data, a best practice when using containers.

In this section you will create a Dockerfile based on your modified InterSystems IRIS image and use it to build a new image
that installs an application with InterSystems IRIS. In the next section, Run and Investigate the InterSystems IRIS-based
Container, you will run and investigate a container from this image that uses durable %SYS, a feature of InterSystems IRIS
containers that lets you save instance-specific data outside the container.

Each Dockerfile specifies an existing base image which provides (at a minimum) the runtime environment for whatever is
to be executed in the container; if the base image contains installed software, that software is also included in the image
built from the Dockerfile. For example, if you use the InterSystems IRIS image from InterSystems as a base, the resulting
image inherits the Ubuntu 18.04 LTS runtime environment on which the InterSystems image is based and includes an
installed InterSystems IRIS instance. To this you can add specifications for everything needed to add your application —
for example, copying or downloading files, setting environment variables, installing the application, and launching the
application.

First Look: InterSystems Products in Docker Containers 7

Try It! Create Your Own InterSystems IRIS-based Container

Before creating your Dockerfile, choose or create a very simple application to install in the container and identify or create
an installer to be copied into the Dockerfile. To make it easy, you can use the example that follows — a command to create
a file. In the Dockerfile for a production image, you might install your InterSystems IRIS-based application instead.

To build your InterSystems-IRIS image, follow these steps:

1. Using your favorite text editor, create a file named Dockerfile containing the following contents. The image you specify
in the FROM statement should be iris2, the one you created by committing the container you modified in Change the
Instance and Commit the Container as a New Image. If you have a simple application to install, replace the RUN

command shown with one installing that application.

Build from the modified IRIS image
FROM acme/iris2:test

create a demo file
RUN echo "This is the file added to the image" > /demo.txt

2. Issue the docker build command, specifying the build context (the location of the Dockerfile) and naming and tagging
the resulting image (you may need to run this command with root privileges):

$ docker build /nethome/pmartinez --tag acme/iris3:test
Sending build context to Docker daemon 478.1MB
Step 1/2 : FROM acme/iris2:test
 ---> 15627fb5cb76
Step 2/2 : RUN echo "This is the file added to the image" > /demo.txt
 ---> Running in 000b94705814
 ---> 64350c828716
Removing intermediate container 000b94705814
Successfully built 64350c828716
Successfully tagged iris3:test

3. When the image has built successfully, list the available images

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
acme/iris3 test 64350c828716 9 seconds ago 1.44
acme/iris2 test 421f6ca16b40 1 hour ago 1.40GB
acme/iris stable 15627fb5cb76 3 days ago 1.39GB
centos 7.3.1611 262f7381844c 2 weeks ago 192MB
hello-world latest 05a3bd381fc2 7 months ag 1.84kB

Note: InterSystems provides a sample Dockerfile and code file that serve as an example of creating an InterSystems
IRIS-based image incorporating your application. For more information, see Creating InterSystems IRIS Docker
Images in Running InterSystems Products in Containers. InterSystems also provides tools to help you build
InterSystems IRIS-based images; see Containerization Tools Provided with InterSystems IRIS in the same docu-
ment.

3.8 Run and Investigate the InterSystems IRIS-based Container

To wrap up this experience, you will use the docker run command to create and start a container from the InterSystems-
IRIS based image you just built, including the durable %SYS feature for persisting instance-specific data. Durable %SYS
is a much more useful way of saving instance-specific data and any changes you have made to it. Because this data is saved
outside the container, it can become the data for a new InterSystems IRIS container, allowing you to upgrade an IRIS
instance by running a container from a later image while retaining the data from the previous container; this is not possible
with internal container changes committed to a new image. (For detailed information on durable %SYS, see Durable %SYS
for Persistent Instance Data in Running InterSystems Products in Containers.)

When you have started the new container, you will do the following:

• Confirm that the namespace you created in the container you committed as a new image (see Change the Instance and
Commit the Container as a New Image) exists in the InterSystems IRIS instance in the new container.

8 First Look: InterSystems Products in Docker Containers

Try It! Create Your Own InterSystems IRIS-based Container

• Change a setting in the InterSystems IRIS instance in the container and see it reflected in the durable %SYS data outside
the container.

• Confirm that the demo file you added exists inside the container.

To do this, follow these steps:

1. Identify an external storage location for this container. You can use the one you chose for the previous container in
Add the License Key to the External Storage Location or select a new one. The license key should still be in place in
the previous location. (If you use a new location, ensure that the license key is in place.)

2. Create a docker run command like the one you executed in Run a Container from the InterSystems IRIS Image, based
on the instructions there but with two changes.

• Add the option --env ISC_DATA_DIRECTORY=pathname

Identifies the durable %SYS directory, that is, the location in which the InterSystem IRIS instance’s persistent
data is written. The durable %SYS directory must be on a mounted volume (see the --volume option and Add the
License Key to the External Storage Location).

• Specify the new image with image:tag

Previously, you created the container from acme/iris:stable, the InterSystems-provided image; this time, you are
using acme/iris3:test, the image you built from your Dockerfile. Remember that acme/iris3:test is based on
acme/iris2:test, the image you created by committing the altered iris container.

Call the container iris3. When the docker run command has completed, use the docker ps command to list the container
and see its status. For example:

$ docker run --name iris3 --init --detach --publish 52773:52773
 --volume /nethome/pmartinez/iris_external:/external
 --env ISC_DATA_DIRECTORY=/external/durable
 iris3:test
 --key /external/iris.key
bdfe214ef76a34290a8308cddce92162aae14df1ba1bc244e692af3c8d911a3e
$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS
af3c8d911a3e acme/iris3:test "/iris-main --key ..." 5 seconds ago Up 3 seconds
 PORTS NAMES
 0.0.0.0:52773->52773/tcp iris3

Note: The --key option is not needed with the InterSystems IRIS Community Edition image (see Download the
InterSystems IRIS Docker Image), which comes with a free built-in license.

Docker Compose, a tool for defining and running multicontainer Docker applications, offers an alternative
to command-line interaction with Docker. To use Compose, you create a docker-compose.yml containing
specifications for the containers you want to create, start, and manage, then use the docker-compose command.
For more information, see Running an InterSystems IRIS Container: Docker Compose Example in Running
InterSystems Products in Containers and Overview of Docker Compose in the Docker documentation.

3.8.1 Confirm the Change You Committed from the Altered InterSystems Container

In Change the Instance and Commit the Container as a New Image, you added a namespace to the InterSystems IRIS
instance in the container you created from the InterSystems-provided image intersystems/iris:stable and then committed
that container as a new image, acme/iris2:test. In Build an InterSystems IRIS-based Image Using a Dockerfile, you created
a Dockerfile based on acme/iris2:test and used it to build the image acme/iris3:test. The namespace you added should
therefore exist in the InterSystems IRIS instance running inside the iris3 container, which was created from acme/iris3:test.
These steps are illustrated in the following list and illustration:

1. Run a Container from the InterSystems IRIS Image

2. Change the Instance and Commit the Container as a New Image

First Look: InterSystems Products in Docker Containers 9

Try It! Create Your Own InterSystems IRIS-based Container

https://docs.docker.com/compose/overview/

3. Build an InterSystems IRIS-based Image Using a Dockerfile

4. Run and Investigate the InterSystems IRIS-based Container

Figure 1: Steps in this Hands-on

To confirm this, do the following:

1. Open the Management Portal and log in, as described in Change the Instance and Commit the Container as a New
Image.

2. From the home page, select System Administration > Configuration > System Configuration > Namespaces to display
the Namespaces page; the USER2 namespace you created in the iris container is listed.

3.8.2 Explore and Alter the Durable %SYS Directory

To explore the durable %SYS feature of InterSystems IRIS containers, do the following:

1. To see the instance-specific data written outside the container by InterSystems IRIS because you included the durable
%SYS environment variable in your docker run command, display the contents of the directory you specified in that
variable in the storage location you specified using the --volume option as the external volume to be mounted. For
example, if that directory was specified as /nethome/pmartinez/iris_external/durable, as shown in the sample docker
run, you’d do the following

$ cd /nethome/pmartinez/iris_external
$ ls
durable iris.key
$ ls durable
csp dist httpd iris.cpf iris.cpf_20180417 _LastGood_.cpf mgr
$ ls durable/mgr
alerts.log irisaudit iris.ids irislocaldata iristemp IRIS.WIJ journal.log
startup.last SystemMonitor.log user ilock IRIS.DAT iris.lck iris.shid
iris.use journal messages.log stream Temp

2. Return the Management Portal for the InterSystems IRIS instance in the container and select System Administration

> Configuration > System Configuration > Journal Settings to display the Journal Settings page. Change the Secondary

journal directory setting from /external/durable/mgr/journal/ to /external/durable/mgr/journal2/ and click Save.

3. Return to the command line and list the mgr subdirectory of the durable %SYS directory again:

$ ls /nethome/pmartinez/iris_external/durable/mgr
alerts.log irisaudit iris.ids iris.lck iris.shid iris.use journal
journal.log messages.log stream Temp ilock IRIS.DAT iris.key
irislocaldata iristemp IRIS.WIJ journal2 licmanager.port startup.last
SystemMonitor.log user

10 First Look: InterSystems Products in Docker Containers

Try It! Create Your Own InterSystems IRIS-based Container

The journal2 subdirectory has been added outside of the container because of the change you made to the InterSystems
IRIS instance inside the container.

This example shows how durable %SYS enables you to upgrade a containerized InterSystems IRIS instance by creating a
container from a new image. All persistent changes you make to the instance are stored outside the container in the durable
%SYS directory; if you create and start a new container from any InterSystems IRIS image using the needed options —
that is, the --volume option mounting the external storage location for durable %SYS and the --env
ISC_DATA_DIRECTORY option specifying the durable %SYS location on that mounted volume, which must exist and
contain a /mgr subdirectory — those changes are inherited by the instance because it uses the same data as the instance in
the previous container.

3.8.3 Confirm the File in the Container

In Build an InterSystems IRIS-based Image Using a Dockerfile, you created a Dockerfile that added a demo file to an
InterSystems IRIS-based image (acme/iris2:test) and used it to build the image acme/iris3:test. To verify that the file was
created, use the docker exec command to display the file in the iris3 container from outside the container, as follows:

$ docker exec iris3 cat /demo.txt
This is the file added to the image

$

You could also do this interactively by using the docker exec command to open a Bash shell inside the container, as follows:

$ docker exec -it iris3 bash
root@af3c8d911a3e:/# ls
bin dev external iris-main.log media proc sbin tmp waitISC.log
boot durable home lib mnt root srv usr
demo.txt etc iris-main lib64 opt run sys var
root@af3c8d911a3e:/# cat /demo.txt
This is the file added to the image
root@af3c8d911a3e:/#

While in the Bash shell, list the durable %SYS directory, which you listed from outside the container in Explore and Alter
the Durable %SYS Directory, from inside the container instead:

root@af3c8d911a3e:/# ls /external/durable/mgr
alerts.log irisaudit iris.ids iris.lck iris.shid iris.use journal
journal.log messages.log stream Temp ilock IRIS.DAT iris.key
irislocaldata iristemp IRIS.WIJ journal2 licmanager.port startup.last
SystemMonitor.log user

Another way to confirm the demo.txt file is to add the iris-main --create option, which executes the specified shell command
before any other iris-main arguments are processed, to the docker run command you executed in Run and Investigate the
InterSystems IRIS-based Container and displaying the log after the container has started, as follows:

$ docker run --name iris3 --init --detach --publish 52773:52773
 --volume /nethome/pmartinez/iris_external:/external
 --env ISC_DATA_DIRECTORY=/external/durable
 --create "cat demo.txt" --key /external/iris.key
bdfe214ef76a34290a8308cddce92162aae14df1ba1bc244e692af3c8d911a3e
$ docker logs -f iris3
[INFO] Executing command cat demo.txt...
[INFO] This is the file added to the image

[INFO] ...executed command cat demo.txt
[INFO] .
Waited 0 seconds for InterSystems IRIS to start
This copy of InterSystems IRIS has been licensed for use exclusively by:
License missing or unreadable.
Copyright (c) 1986-2018 by InterSystems Corporation
Any other use is a violation of your license agreement

[INFO] Copying InterSystems IRIS license key from /external/iris.key to /usr/irissys/mgr...
[INFO] ...copied key
[INFO] Starting InterSystems IRIS instance IRIS...
[INFO] This copy of InterSystems IRIS has been licensed for use exclusively by:
Acme Corp.

First Look: InterSystems Products in Docker Containers 11

Try It! Create Your Own InterSystems IRIS-based Container

Copyright (c) 1986-2018 by InterSystems Corporation
Any other use is a violation of your license agreement
Starting IRIS

4 Learn More About InterSystems IRIS and Docker
Containers
At this point, you are ready to continue exploring what Docker has to offer. Use the documentation and resources below
to dive deeper into containers and InterSystems IRIS.

• Docker Containers and InterSystems IRIS (video)

• Running InterSystems Products in Containers

• Articles from the InterSystems Developer Community:

– What is a Container?

– What is a Container Image?

– Using InterSystems IRIS Containers with Docker for Windows

• Docker Documentation

• InterSystems Cloud Manager Guide — Use InterSystems Cloud Manager (ICM) to easily and intuitively provision
infrastructure and deploy containers on it in a variety of ways. ICM brings the benefits of Infrastructure as Code (IaC),nd
containerized deployment to InterSystems IRIS without requiring major investments in new technology, training,
configuration, and management. This guide contains documentation on both ICM and using InterSystems IRIS with
Docker containers.

• First Look: InterSystems Cloud Manager

12 First Look: InterSystems Products in Docker Containers

Learn More About InterSystems IRIS and Docker Containers

https://learning.intersystems.com/course/view.php?name=Why%20Use%20Docker
https://community.intersystems.com/post/container-what-container
https://community.intersystems.com/post/container-what-container-image
https://community.intersystems.com/post/using-intersystems-iris-containers-docker-windows
https://docs.docker.com/get-started/

	Table of Contents
	1 Why Containers?
	2 InterSystems IRIS in Docker Containers
	3 Try It! Create Your Own InterSystems IRIS-based Container
	3.1 Select a Platform
	3.2 Install Docker
	3.3 Download the InterSystems IRIS Docker Image
	3.4 Add the License Key to the External Storage Location
	3.5 Run a Container from the InterSystems IRIS Image
	3.6 Change the Instance and Commit the Container as a New Image
	3.7 Build an InterSystems IRIS-based Image Using a Dockerfile
	3.8 Run and Investigate the InterSystems IRIS-based Container

	4 Learn More About InterSystems IRIS and Docker Containers

