
First Look: Globals

Version 2019.4
2020-01-28

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

First Look: Globals
InterSystems IRIS Data Platform Version 2019.4 2020-01-28
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

First Look: Globals... 1

1 What Are Globals? .. 1
2 Why Learn About Globals? ... 1
3 Try It: Accessing Globals Three Ways .. 2

3.1 Before You Begin .. 2
3.2 Importing and Examining the Class Definition .. 2
3.3 Importing the Sample Data and Examining the Globals ... 3
3.4 Accessing Globals Relationally .. 5
3.5 Accessing Globals as Objects ... 6
3.6 Accessing Globals Directly ... 7
3.7 More About Globals .. 8

4 Accessing Globals with InterSystems IRIS APIs .. 9
5 Learn More About Globals .. 10

5.1 Globals and Their Structure .. 10
5.2 Multi-Model Development .. 10
5.3 InterSystems Native API ... 10

First Look: Globals iii

First Look: Globals

This First Look introduces you to the concept of globals, the underlying storage structure for the InterSystems IRIS® data
platform. It will show you how to access globals using a relational model and an object model, as well as how to access
the globals directly.

To browse all of the First Looks, including those that can be performed on a free evaluation instance of InterSystems IRIS,
see InterSystems First Looks.

1 What Are Globals?
One of the hallmarks of the InterSystems IRIS data platform is its ability to store data once and allow you to access it using
multiple paradigms. For example, you can use InterSystems SQL to visualize your data as rows and columns, or you can
use ObjectScript and think of your data in terms of objects that have properties and methods. Your application can even
mix both data models, using whichever model is easiest and more efficient for a given task. But no matter how you access
your data, InterSystems IRIS stores it in underlying data structures known as globals.

Globals can be thought of as persistent multidimensional sparse arrays:

• Persistent — Globals are stored in the database and can be retrieved at any time, by any process that can access that
database.

• Multidimensional — The nodes in a global can have any number of subscripts. These subscripts can be integers, decimal
numbers, or strings.

• Sparse — Node subscripts do not have to be contiguous, meaning that subscripts without a stored value do not use
any storage.

Nodes in a global can store many types of data, including:

• Strings

• Numeric data

• Streams of character or binary data

• Collections of data, such as lists or arrays

• References to other storage locations

Even the server-side code you write is ultimately stored in globals!

2 Why Learn About Globals?
While it is possible to write an application on the InterSystems IRIS platform with little or no knowledge of globals, there
are several reasons why you may want to learn more about them:

• Some operations may be easier or more efficient if you access globals directly.

• You may want to create custom data structures for data that does not conform to relational or object data models.

First Look: Globals 1

• Some system administration tasks are done at the global level, and understanding globals will make these tasks more
meaningful to you.

3 Try It: Accessing Globals Three Ways
In this First Look, you will examine the globals used to store data for objects of a class of U.S. states. Properties of the
class include the name of the state, its two-letter postal abbreviation, its capital, the year it was established, and its area (in
square miles). Then you will access and store objects of this class using relational and object techniques, as well as by
manipulating the globals directly.

3.1 Before You Begin

Before starting the exercises, you must have access to an instance of InterSystems IRIS. If you do not have an instance you
can use, you can deploy one in one of the following ways:

• Deploy a cloud instance — Provision a free cloud instance of InterSystems IRIS Community Edition on the Google
Cloud Platform, Microsoft Azure, or Amazon Web Services public cloud platform. For instructions for deploying and
connecting to the instance, see Connecting to InterSystems IRIS in the Cloud.

• Deploy a web instance — InterSystems Labs lets you easily create your own demo instance on the web.

• Install InterSystems IRIS — If you are an InterSystems customer, you can install and license a development instance
of InterSystems IRIS on your local machine or another on your network; for instructions, see InterSystems IRIS Basics:
Installation. Install with Normal security settings.

You also need to know:

• The URL of the instance’s web-based Management Portal, the system administration user interface for InterSystems
IRIS.

• How to access the Terminal, the InterSystems IRIS command-line tool.

• Your username and password for the instance (not required for a web instance on InterSystems Labs).

You will also need to download two sample files from the InterSystems GitHub repo: https://github.com/intersystems/First-
Look-Globals.

• FirstLookGlobals.xml contains the class definition for the State class.

• FirstLookGlobals.gof contains some sample global data for the original 13 U.S. states.

For more information on how to access the Management Portal or Terminal, see “InterSystems IRIS Connection Information”
in InterSystems IRIS Basics: Connecting an IDE. You will not actually need an IDE for these exercises.

3.2 Importing and Examining the Class Definition

Start by importing the State class definition into InterSystems IRIS:

1. From the home page in the Management Portal, select System Explorer > Classes.

2. On the Classes page, look at the left column to make sure you are in the USER namespace. You can think of a namespace
as a work space or a directory.

3. Click Import.

2 First Look: Globals

Try It: Accessing Globals Three Ways

https://learning.intersystems.com/course/view.php?name=Get%20InterSystems%20IRIS
https://learning.intersystems.com/course/view.php?name=Java%20Build
https://github.com/intersystems/FirstLook-Globals
https://github.com/intersystems/FirstLook-Globals

4. In the Import Classes dialog box:

a. If your instance of InterSystems IRIS is running on a remote server, specify whether you downloaded the sample
files to the remote server or to your local machine.

b. Under Import from a File or a Directory, click File.

c. Browse for the file FirstLookGlobals.xml, which you downloaded from GitHub.

d. Select Compile Imported Items.

e. For Compile Flags, specify cuk.

f. Click Next.

g. Click Import.

h. When a message saying that the load finished successfully appears, click Done.

Now, on the Classes page, you should see FirstLook.State.cls in the list of classes. In InterSystems IRIS, the name of the
package containing the class (FirstLook) is appended with the name of the class (State). The extension .cls is used to
denote class files.

Note: If your namespace contains a lot of classes, filter the list by entering F*.cls in the Class Name box in the left
column of the page.

To the right of the FirstLook.State.cls class, click Documentation to view the documentation generated for this class.

The first thing you will notice is that the FirstLook.State class extends the class %Persistent, meaning that the data for this
class will be stored in the database. (System-defined classes and methods often start with %.)

persistent class FirstLook.State extends %Persistent

Extending %Persistent also makes available a number of methods you can use to perform actions on this class. For example,
it allows you to create a new object of this class or access an object from the database and load it into memory.

Looking further down the page, you can see that this class has five properties: Area, Capital, Established, Name, and
PostalAbbr.

property Area as %Integer;
property Capital as %String;
property Established as %Integer;
property Name as %String [Required];
property PostalAbbr as %String;

This class also has two indices, CapitalIndex and PostalAbbrIndex, which speed up SQL queries and allow you to quickly
find states by capital and postal abbreviation.

index (CapitalIndex on Capital) [Unique];
index (PostalAbbrIndex on PostalAbbr) [Unique];

3.3 Importing the Sample Data and Examining the Globals

To get a feel for the globals that store objects of the State class, start by importing some data:

1. From the home page in the Management Portal, select System Explorer > Globals. (Or from the Classes page, click the
Globals button.)

2. On the Globals page, look at the left column to make sure you are in the USER namespace.

3. Click Import.

4. In the Import Globals dialog box:

First Look: Globals 3

Try It: Accessing Globals Three Ways

a. If your instance of InterSystems IRIS is running on a remote server, specify whether you downloaded the sample
files to the remote server or to your local machine.

b. Browse for the file FirstLookGlobals.gof, which you downloaded from GitHub.

c. Click Next.

d. Click Import.

e. When a message saying that the load finished successfully appears, click Done.

Now, on the Globals page, you should see the globals FirstLook.StateD and FirstLook.StateI in the list. By
default, the data for a class is stored in a global with a D appended to the name, and the indices are stored in a global with
an I appended to the name. Most commonly, you will see globals displayed with a caret (^) in front of the name.

Note: If your namespace contains a lot of globals, filter the list by entering F* in the Global Name box in the left column
of the page.

To the right of the FirstLook.StateD global, click View to display a listing of the contents of the global.

^FirstLook.StateD = 13
^FirstLook.StateD(1) = $lb("","Delaware","DE","Dover",1787,2489)
^FirstLook.StateD(2) = $lb("","Pennsylvania","PA","Harrisburg",1787,46054)
^FirstLook.StateD(3) = $lb("","New Jersey","NJ","Trenton",1787,8723)
^FirstLook.StateD(4) = $lb("","Georgia","GA","Atlanta",1788,59425)
^FirstLook.StateD(5) = $lb("","Connecticut","CT","Hartford",1788,5543)
^FirstLook.StateD(6) = $lb("","Massachusetts","MA","Boston",1788,10554)
^FirstLook.StateD(7) = $lb("","Maryland","MD","Annapolis",1788,12406)
^FirstLook.StateD(8) = $lb("","South Carolina","SC","Columbia",1788,32020)
^FirstLook.StateD(9) = $lb("","New Hampshire","NH","Concord",1788,9349)
^FirstLook.StateD(10) = $lb("","Virginia","VA","Richmond",1788,42775)
^FirstLook.StateD(11) = $lb("","New York","NY","Albany",1788,54555)
^FirstLook.StateD(12) = $lb("","North Carolina","NC","Raleigh",1789,53819)
^FirstLook.StateD(13) = $lb("","Rhode Island","RI","Providence",1790,1545)

You can see that the node for each state is subscripted by an integer called the object ID (or ID, for short), which is generated
by the system when you store a new object of this class. The root node of the global, with no subscript, contains a counter
that is incremented to generate the next ID.

Data for each node is stored as a list of properties, in the order they were specified in the class definition. If you look at
^FirstLook.StateD(3), you can see that the state name is New Jersey, the postal abbreviation is NJ, the capital is
Trenton, the state joined the Union in 1787, and its area is 8,723 square miles.

Click Cancel to return to the list of globals, and then click View next to the global FirstLook.StateI to view the indices
for the State class.

^FirstLook.StateI("CapitalIndex"," ALBANY",11) = ""
^FirstLook.StateI("CapitalIndex"," ANNAPOLIS",7) = ""
^FirstLook.StateI("CapitalIndex"," ATLANTA",4) = ""
^FirstLook.StateI("CapitalIndex"," BOSTON",6) = ""
^FirstLook.StateI("CapitalIndex"," COLUMBIA",8) = ""
^FirstLook.StateI("CapitalIndex"," CONCORD",9) = ""
^FirstLook.StateI("CapitalIndex"," DOVER",1) = ""
^FirstLook.StateI("CapitalIndex"," HARRISBURG",2) = ""
^FirstLook.StateI("CapitalIndex"," HARTFORD",5) = ""
^FirstLook.StateI("CapitalIndex"," PROVIDENCE",13) = ""
^FirstLook.StateI("CapitalIndex"," RALEIGH",12) = ""
^FirstLook.StateI("CapitalIndex"," RICHMOND",10) = ""
^FirstLook.StateI("CapitalIndex"," TRENTON",3) = ""
^FirstLook.StateI("PostalAbbrIndex"," CT",5) = ""
^FirstLook.StateI("PostalAbbrIndex"," DE",1) = ""
^FirstLook.StateI("PostalAbbrIndex"," GA",4) = ""
^FirstLook.StateI("PostalAbbrIndex"," MA",6) = ""
^FirstLook.StateI("PostalAbbrIndex"," MD",7) = ""
^FirstLook.StateI("PostalAbbrIndex"," NC",12) = ""
^FirstLook.StateI("PostalAbbrIndex"," NH",9) = ""
^FirstLook.StateI("PostalAbbrIndex"," NJ",3) = ""
^FirstLook.StateI("PostalAbbrIndex"," NY",11) = ""
^FirstLook.StateI("PostalAbbrIndex"," PA",2) = ""

4 First Look: Globals

Try It: Accessing Globals Three Ways

^FirstLook.StateI("PostalAbbrIndex"," RI",13) = ""
^FirstLook.StateI("PostalAbbrIndex"," SC",8) = ""
^FirstLook.StateI("PostalAbbrIndex"," VA",10) = ""

Take a closer look at the first node in the global ^FirstLook.StateI. Here, the first subscript ("CapitalIndex") is
the name of the index, the second subscript is the value of the property being indexed (" ALBANY"), and the third subscript
is the ID of the state with the capital of Albany (11). If you look back at the data global, you see that
^FirstLook.StateD(11) is the state of New York.

Globals are automatically stored in sorted order, using the array subscripts.

3.4 Accessing Globals Relationally

Now, take a look at the table InterSystems IRIS generated for the State class:

1. From the home page in the Management Portal, select System Explorer > SQL.

2. On the SQL page, look at the top of the page to make sure you are in the USER namespace. If you are not, click Switch

to change namespaces.

3. In the left column, expand the Tables section to view the tables in the namespace.

4. Under Tables, click the FirstLook.State table.

5. On the Catalog Details tab, click Fields, and you’ll see a field generated for each property of the State class, plus an
extra field called ID (sometimes referred to as a RowID). This field is analogous to the object ID you saw in the globals
for the class.

Note: If your namespace contains a lot of tables, filter the list by entering F* in the Filter box in the left column of
the page.

6. Click the Execute Query tab to open a text area where you can write queries to run against the FirstLook.State table.

7. Type the following query:

SELECT * FROM FirstLook.State WHERE ID = 6

and click Execute. The query returns the row you requested, for the state of Massachusetts.

8. Type the following query:

INSERT INTO FirstLook.State(Area, Capital, Established, Name, PostalAbbr)
VALUES (9616, 'Montpelier', 1791, 'Vermont', 'VT')

and click Execute to insert a row into the table for Vermont, the 14th state.

To see the effects of inserting a row into the FirstLook.State table, go back to the Globals page for the namespace USER

and view the globals again.

1. From the home page in the Management Portal, select System Explorer > Globals.

2. On the Globals page, look at the left column to make sure you are in the USER namespace.

Looking at the data global, ^FirstLook.StateD, you see that the ID counter has been incremented:

^FirstLook.StateD = 14

And a new node has been added to the global:

^FirstLook.StateD(14) = $lb("","Vermont","VT","Montpelier",1791,9616)

Looking at the index global, ^FirstLook.StateI, you see that the indices have been updated with two new nodes:

First Look: Globals 5

Try It: Accessing Globals Three Ways

^FirstLook.StateI("CapitalIndex"," MONTPELIER",14) = ""

and

^FirstLook.StateI("PostalAbbrIndex"," VT",14) = ""

3.5 Accessing Globals as Objects

Remember that, when you created the State class, you extended the class %Persistent, which gives you access to some
helpful methods that let you store data in the globals for the class and retrieve it again. Next, test some of these methods,
by writing some ObjectScript in the InterSystems IRIS Terminal. (If you have not used the Terminal before, see “InterSystems
IRIS Connection Information” in InterSystems IRIS Basics: Connecting an IDE.)

After you launch a Terminal session, you should see a prompt that indicates which namespace you are in. If you are not in
the USER namespace, execute the following command:

set $namespace = "USER"

Start by loading the data for the state of Vermont, which you just added with your SQL query, into memory. Call the
%OpenId() method of the FirstLook.State class and assign the return value to the variable vt. %OpenId() returns a
“handle” to the object, more formally known as an object reference, or OREF.

USER>set vt = ##class(FirstLook.State).%OpenId(14)

You can look at the name of the state you just loaded by accessing the Name property of the object:

USER>write vt.Name
Vermont

You can get a summary of the all of the object’s properties by using the zwrite command. The other information provided
by the command is beyond the scope of this First Look.

USER>zwrite vt
vt=2@FirstLook.State ; <OREF>
+----------------- general information ---------------
| oref value: 2
| class name: FirstLook.State
| %%OID: $lb("14","FirstLook.State")
| reference count: 2
+----------------- attribute values ------------------
| %Concurrency = 1 <Set>
| Area = 9616
| Capital = "Montpelier"
| Established = 1791
| Name = "Vermont"
| PostalAbbr = "VT"
+---

To create a new State object, use the %New() method, which returns an OREF to the new object.

USER>set newstate = ##class(FirstLook.State).%New()

Now, set the properties for the 15th state, Kentucky.

USER>set newstate.Name = "Kentucky"

USER>set newstate.PostalAbbr = "KY"

USER>set newstate.Capital = "Frankfort"

USER>set newstate.Established = 1792

USER>set newstate.Area = 40408

Inspect all of the properties.

6 First Look: Globals

Try It: Accessing Globals Three Ways

USER>zwrite newstate
newstate=4@FirstLook.State ; <OREF>
+----------------- general information ---------------
| oref value: 4
| class name: FirstLook.State
| reference count: 2
+----------------- attribute values ------------------
| %Concurrency = 1 <Set>
| Area = 40408
| Capital = "Frankfort"
| Established = 1792
| Name = "Kentucky"
| PostalAbbr = "KY"
+---

If you are happy with the way everything looks, save the object to disk by calling the %Save() method of the new object.
The %Save() method returns a status, which has the value 1 on a successful save.

USER>set status = newstate.%Save()

USER>write status
1

Once again, check your work by going to the Globals page in the Management Portal. Looking at the data global,
^FirstLook.StateD, you see that the ID counter has been incremented once more:

^FirstLook.StateD = 15

And a new node has been added to the global:

^FirstLook.StateD(15) = $lb("","Kentucky","KY","Frankfort",1792,40408)

Looking at the index global, ^FirstLook.StateI, you see that the indices have been updated with two new nodes:

^FirstLook.StateI("CapitalIndex"," FRANKFORT",15) = ""

and

^FirstLook.StateI("PostalAbbrIndex"," KY",15) = ""

3.6 Accessing Globals Directly

Though data in InterSystems IRIS is most commonly accessed from either SQL or using the object layer, you can also
directly access globals for classes that extend %Persistent. This method is trickier because you need to know the structure
of the global.

First, find the name of the state with the ID 15.

From Terminal, assign the variable ky to the node in the data global with subscript 15.

USER>set ky = ^FirstLook.StateD(15)

You can use zwrite to examine the value stored at this node:

USER>zwrite ky
ky=$lb("","Kentucky","KY","Frankfort",1792,40408)

Next, use the $list() function to get the second item in the list:

USER>write $list(ky, 2)
Kentucky

Based upon what you learned from examining the globals after adding a state using SQL or object methods, write some
code to add a new state.

First, prepare the data, putting each property (thinking in terms of objects) or field (thinking in terms of SQL) into a different
variable.

First Look: Globals 7

Try It: Accessing Globals Three Ways

USER>set name = "Tennessee"

USER>set postalabbr = "TN"

USER>set capital = "Nashville"

USER>set established = 1796

USER>set area = 42144

Then use the $listbuild() function to build a list of properties that can be stored.

USER>set properties = $listbuild("", name, postalabbr, capital, established, area)

USER>zwrite properties
properties=$lb("","Tennessee","TN","Nashville",1796,42144)

With a single ObjectScript statement, increment the ID counter of the ^FirstLook.StateD global and assign the new
value to the variable id.

USER>set id = $increment(^FirstLook.StateD)

USER>write ^FirstLook.StateD
16
USER>write id
16

Now, store the data in the data global.

USER>set ^FirstLook.StateD(id) = properties

USER>zwrite ^FirstLook.StateD(id)
^FirstLook.StateD(16)=$lb("","Tennessee","TN","Nashville",1796,42144)

Now we need to manually update the indices, or an SQL query with a WHERE clause on Capital or PostalAbbr will not
include the state of Tennessee. This process is a bit more involved than storing the data.

For indices on string values, InterSystems IRIS converts the strings to uppercase and prepends a space character, to allow
for easier sorting. Concatenate a space to the front of the capital using the _ operator and then convert it to uppercase with
the $zconvert() function. Then do the same for the postal abbreviation.

USER>set capital = $zconvert(" "_capital, "U")

USER>set postalabbr = $zconvert(" "_postalabbr, "U")

Finally, store the index entries in the index global.

USER>set ^FirstLook.StateI("CapitalIndex", capital, id) = ""

USER>set ^FirstLook.StateI("PostalAbbrIndex", postalabbr, id) = ""

To make sure you’ve done your work correctly, go to the Globals page in the Management Portal and view the
^FirstLook.StateD and ^FirstLook.StateI globals. You can also use zwrite ^FirstLook.StateD and
zwrite ^FirstLook.StateI from Terminal to display the complete contents of each global.

3.7 More About Globals

3.7.1 Creating Globals Using SQL

In this First Look, the globals you looked at were created by storing objects of a class specified using a class definition.
You could have created globals with a very similar structure by creating a table and indices on the table using SQL. Inter-
Systems IRIS would then have generated a class for you, based on the table you created.

As an exercise, go to the SQL page in the Management Portal for the USER namespace and execute each of the following
statements using the Execute Query tab.

8 First Look: Globals

Try It: Accessing Globals Three Ways

CREATE TABLE FirstLook.SQL (%CLASSPARAMETER USEEXTENTSET 0, %CLASSPARAMETER DEFAULTGLOBAL =
'^FirstLook.SQL',
Name CHAR(30) NOT NULL, PostalAbbr CHAR(2), Capital CHAR(30), Established INT, Area INT)
CREATE UNIQUE INDEX CapitalIndex ON FirstLook.SQL (Capital)
CREATE UNIQUE INDEX PostalAbbrIndex ON FirstLook.SQL (PostalAbbr)
INSERT INTO FirstLook.SQL (Name, PostalAbbr, Capital, Established, Area)
VALUES ('Maine', 'ME', 'Augusta', 1820, 35380)

In the left column of the SQL page, you should now see the table FirstLook.SQL.

Go to the Classes page, find the class FirstLook.SQL.cls and view its documentation. Do you notice any difference? The
class has an additional index, called a Bitmap Extent Index. Then go to the Globals page and find the ^FirstLook.SQLD
and ^FirstLook.SQLI globals. Take a look at ^FirstLook.SQLI and see if you can find the additional index.

3.7.2 Creating Custom Globals

So far, you’ve looked at the globals that are created when you extend the %Persistent class. However, globals can be used
to store schema-less data that may not lend itself to a class or relational paradigm. For example, using Terminal or the
Management Portal, switch to the %SYS namespace, and examine the ̂ CONFIG global, which stores some of the InterSystems
IRIS configuration settings. A portion of a sample ^CONFIG global is shown below:

^CONFIG("Cluster","CommIPAddress") = ""
^CONFIG("Cluster","JoinCluster") = 0
^CONFIG("ConfigFile","Version") = "2018.20"
^CONFIG("Conversions","LastConvertTime") = "2019-03-13 08:39:45"
^CONFIG("Databases","ENSLIB") = "/usr/irissys/mgr/enslib/"
^CONFIG("Databases","IRISAUDIT") = "/usr/irissys/mgr/irisaudit/"
^CONFIG("Databases","IRISLIB") = "/usr/irissys/mgr/irislib/"
^CONFIG("Databases","IRISLOCALDATA") = "/usr/irissys/mgr/irislocaldata/"
^CONFIG("Databases","IRISSYS") = "/usr/irissys/mgr/"
^CONFIG("Databases","IRISTEMP") = "/usr/irissys/mgr/iristemp/"
^CONFIG("Databases","USER") = "/usr/irissys/mgr/user/"

If you want to create and store your own custom data structures, you can easily do so using ObjectScript. Using the example
below, you can write a few lines of code to define a directed graph to store the airfare between airports:

USER>set ^Fares("BOS", "ORD") = 87

USER>set ^Fares("ORD", "BOS") = 63

USER>set ^Fares("BOS", "LAX") = 143

USER>set ^Fares("LAX", "BOS") = 143

USER>set ^Fares("ORD", "LAX") = 57

USER>set ^Fares("LAX", "ORD") = 94

USER>zwrite ^Fares
^Fares("BOS","LAX")=143
^Fares("BOS","ORD")=87
^Fares("LAX","BOS")=143
^Fares("LAX","ORD")=94
^Fares("ORD","BOS")=63
^Fares("ORD","LAX")=57

4 Accessing Globals with InterSystems IRIS APIs
If you are writing an application in Java, .NET, Node.js, or Python, InterSystems IRIS provides APIs that allow you to
manipulate your database using the three models discussed in this First Look:

• Relational access through JDBC, ADO.NET, or PyODBC API

• Object access through the InterSystems XEP API

• Direct access to globals through the InterSystems Native API

First Look: Globals 9

Accessing Globals with InterSystems IRIS APIs

Now you know that, no matter how you decide to store or access your data, what you’re doing is using globals.

Note: Not all forms of access are supported for all languages.

5 Learn More About Globals
Use the resources listed below to learn more about globals and how to access them.

5.1 Globals and Their Structure

• Globals QuickStart — Provides a visual look at global structures and gives an example of storing data in a custom
global structure.

• Using Globals — Discusses the structure of globals, how to manage them, and how to access them using SQL or
ObjectScript.

• Globals — This section in Defining and Using Classes explains the naming conventions for globals created for classes
that extend the %Persistent class.

5.2 Multi-Model Development

• Multi-Model QuickStart — Describes how InterSystems IRIS allows you to use the data models of your choice with
a variety of different languages, including Java, .NET, and ObjectScript.

• Java QuickStart — Shows you how to use the Java APIs for relational, object, and direct access to InterSystems IRIS
databases.

• .NET QuickStart — Shows you how to use the .NET APIs for relational, object, and direct access to InterSystems IRIS
databases.

• Python QuickStart — Shows you how to use the Python APIs for relational and direct access to InterSystems IRIS
databases.

5.3 InterSystems Native API

• Using the Native API for Java (interactive course) — Shows you how to use the Native API for Java to access globals
and call class methods and routines.

• Using the Native API for Java (book) — Shows you how to use the Native API for Java to access globals and call class
methods and routines.

• First Look: InterSystems IRIS Native API for Java — Demonstrates how to access InterSystems IRIS globals from a
Java application.

• Using the Native API for .NET (interactive course) — Shows you how to use the Native API for .NET to access
globals and call class methods and routines.

• Using the InterSystems Native API for .NET (book) — Shows you how to use the Native API for .NET to access
globals and call class methods and routines.

• First Look: InterSystems IRIS Native API for .NET — Demonstrates how to access InterSystems IRIS globals from
a .NET application.

10 First Look: Globals

Learn More About Globals

https://learning.intersystems.com/course/view.php?name=Globals
https://learning.intersystems.com/course/view.php?name=Multimodel
https://learning.intersystems.com/course/view.php?name=Java%20QS
https://learning.intersystems.com/course/view.php?name=.NET%20QS
https://learning.intersystems.com/course/view.php?name=Python%20QS
https://learning.intersystems.com/course/view.php?name=Using%20the%20Native%20API
https://learning.intersystems.com/course/view.php?name=Native%20API%20for%20.NET

• Node.js QuickStart — Shows you how to use the Native API for Node.js to access globals and call class methods and
routines.

• Using the Native API for Node.js — Shows you how to use the Native API for Python to access globals and call class
methods and routines.

• First Look: InterSystems IRIS Native API for Node.js — Demonstrates how to access InterSystems IRIS globals from
a Node.js application.

• Using the Native API for Python (interactive course) — Shows you how to use the Native API for Python to access
globals and call class methods and routines.

• Using the Native API for Python (book) — Shows you how to use the Native API for Python to access globals and
call class methods and routines.

• First Look: InterSystems IRIS Native API for Python — Demonstrates how to access InterSystems IRIS globals from
a Python application.

First Look: Globals 11

Learn More About Globals

https://learning.intersystems.com/course/view.php?name=Node.js%20QS
https://learning.intersystems.com/course/view.php?name=Native%20API%20for%20Python

	Table of Contents
	1 What Are Globals?
	2 Why Learn About Globals?
	3 Try It: Accessing Globals Three Ways
	3.1 Before You Begin
	3.2 Importing and Examining the Class Definition
	3.3 Importing the Sample Data and Examining the Globals
	3.4 Accessing Globals Relationally
	3.5 Accessing Globals as Objects
	3.6 Accessing Globals Directly
	3.7 More About Globals

	4 Accessing Globals with InterSystems IRIS APIs
	5 Learn More About Globals
	5.1 Globals and Their Structure
	5.2 Multi-Model Development
	5.3 InterSystems Native API

