
First Look: InterSystems IRIS
Native API for .NET

Version 2019.4
2020-01-28

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

First Look: InterSystems IRIS Native API for .NET
InterSystems IRIS Data Platform Version 2019.4 2020-01-28
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

First Look: InterSystems IRIS Native API for .NET.. 1

1 Introduction to Globals .. 1
2 Exploring IRIS Native for .NET ... 1

2.1 Before You Begin .. 2
2.2 Using IRIS Native ... 2
2.3 Running the Exercise .. 4
2.4 Confirming the Changes in the Management Portal ... 4

3 Learn More About IRIS Native ... 4

First Look: InterSystems IRIS Native API for .NET iii

First Look: InterSystems IRIS Native API
for .NET

This First Look explains how to access InterSystems IRIS® data platform globals from a .NET application using the
InterSystems IRIS Native functionality. IRIS Native also allows you to run ObjectScript methods, functions, and routines.
In this exploration, you will first connect to InterSystems IRIS. You will then set and retrieve the value of a global node
in InterSystems IRIS and iterate over the nodes of another global. You will also call an InterSystems IRIS class method.
All of these activities will be performed from a .NET application.

To give you a taste of IRIS Native without bogging you down in details, this exploration is intentionally simple. These
activities are designed to only use the default settings and features, so that you can acquaint yourself with the fundamentals
of the feature without having to deal with details that are off-topic or overly complicated. When you bring IRIS Native to
your production systems, there may be things you will need to do differently. Be sure not to confuse this exploration of
IRIS Native with the real thing!

To browse all of the First Looks, including those that can be performed on a free evaluation instance of InterSystems IRIS,
see InterSystems First Looks.

1 Introduction to Globals
InterSystems IRIS provides an easy-to-use way to store data in persistent, multidimensional arrays. A global is a named
multidimensional array that is stored within a physical InterSystems IRIS database. Within an application, the mappings
of globals to physical databases is based on the current namespace — a namespace provides a logical, unified view of one
or more physical databases. As an example, to associate the value “Red” with the key “Color” using a global named ̂ Settings,
open the InterSystems IRIS Terminal using the procedure described for your instance in InterSystems IRIS Basics: Connecting
an IDE, and enter the following code:

 set ^Settings("Color")="Red"

You can take advantage of the multidimensional nature of globals to define a more complex structure:

 set ^Settings("Auto1","Properties","Color") = "Red"
 set ^Settings("Auto1","Properties","Model") = "SUV"
 set ^Settings("Auto2","Owner") = "Mo"
 set ^Settings("Auto2","Properties","Color") = "Green"

For more information on globals, see Using Globals.

2 Exploring IRIS Native for .NET
At this point, you are ready to experiment with IRIS Native. The following brief demo shows you how to work with IRIS
Native in a .NET application. (Want to try an online video-based demo of InterSystems IRIS .NET development and
interoperability features? Check out the .NET QuickStart!)

First Look: InterSystems IRIS Native API for .NET 1

https://learning.intersystems.com/course/view.php?name=.NET%20QS

2.1 Before You Begin

To use the procedure, you will need a Windows system to work on, with the .NET framework and Visual Studio installed,
and a running InterSystems IRIS instance to connect to. Your choices for InterSystems IRIS include several types of licensed
and free evaluation instances; the instance need not be hosted by the system you are working on (although they must have
network access to each other). For information on how to deploy each type of instance if you do not already have one to
work with, see Deploying InterSystems IRIS in InterSystems IRIS Basics: Connecting an IDE. Connect Visual Studio to
your InterSystems IRIS instance using the information in InterSystems IRIS Connection Information and .Net IDEs in the
same document.

2.1.1 Configuring the Visual Studio Project

To begin, open Visual Studio and create a new console app project, selecting the Visual C# and Console App (.NET Framework)

options. For the Name field, enter netnative.

2.1.2 Adding the Assembly Reference

The InterSystems.Data.IRISClient.dll assembly must be present on your local system; you can download it from
https://github.com/intersystems/quickstarts-dotnet/tree/master/EFPlay/bin/Debug. If InterSystems IRIS is installed on your
local machine or another you have access to, you can find the file in install-dir\dev\dotnet\bin\v4.5, where install-dir is the
installation directory for the instance.

To add an assembly reference to InterSystems.Data.IRISClient.dll to a project:

1. From the Visual Studio main menu, select Project > Add Reference...

2. In the resulting window, click Browse....

3. Browse to the location of the InterSystems.Data.IRISClient.dll file.

4. Select the file and click Add.

5. Click OK.

In the Visual Studio Solution Explorer, the InterSystems.Data.IRISClient.dll assembly should now be listed under References.

2.2 Using IRIS Native

At this point, you are ready to experiment with IRIS Native. Open the file that was created when you created the Visual
Studio project (for example, Program.cs). Delete the default content of the file and paste in the following code, substituting
the connection information for your InterSystems IRIS instance for the values in conn.ConnectionString. (The value
of logfile must be a writable path on the local system). You can specify the USER namespace as shown, or you can
choose another that you have created on your instance.

using System;
using InterSystems.Data.IRISClient;
using InterSystems.Data.IRISClient.ADO;

public class IRISNative
{

 public static void Main(String[] args)
 {
 try
 {
 // open connection to InterSystems IRIS instance using connection string
 IRISConnection conn = new IRISConnection();

 // edit this ConnectionString to match your environment
 conn.ConnectionString = "Server=localhost; Port=51773; Namespace=User; Password=SYS; User
 ID=_system; \
 logfile=c:\\sandbox\\dbnative.log";
 conn.Open();

2 First Look: InterSystems IRIS Native API for .NET

Exploring IRIS Native for .NET

https://github.com/intersystems/quickstarts-dotnet/tree/master/EFPlay/bin/Debug

 // create IRIS Native object
 IRIS iris = IRIS.CreateIRIS(conn);

 Console.WriteLine("[1. Setting and getting a global]");

 // setting and getting a global
 // ObjectScript equivalent: set ^testglobal("1") = 8888
 iris.Set(8888, "^testglobal", "1");

 // ObjectScript equivalent: set globalValue = $get(^testglobal("1"))
 Int16? globalValue = iris.GetInt16("^testglobal", "1");

 Console.WriteLine("The value of ^testglobal(1) is " + globalValue);
 Console.WriteLine();

 Console.WriteLine("[2. Iterating over a global]");

 // modify global to iterate over
 // ObjectScript equivalent: set ^testglobal("1") = 8888
 // ObjectScript equivalent: set ^testglobal("2") = 9999
 iris.Set(8888, "^testglobal", "1");
 iris.Set(9999, "^testglobal", "2");

 // iterate over all nodes forwards
 Console.WriteLine("walk forwards");
 IRISIterator subscriptIter = iris.GetIRISIterator("^testglobal");
 foreach (var node in subscriptIter)
 {
 Console.WriteLine("subscript=" + subscriptIter.CurrentSubscript + ", value=" + node);
 }
 Console.WriteLine();

 Console.WriteLine("[3. Calling a class method]");

 // calling a class method
 // ObjectScript equivalent: set returnValue = ##class(%Library.Utility).Date(5)
 String returnValue = iris.ClassMethodString("%Library.Utility", "Date", 5);
 Console.WriteLine(returnValue);

 Console.WriteLine();

 // close IRIS object and connection
 iris.Close();
 conn.Close();

 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
 }

}

The example code is split into three sections:

1. The first section shows how you set the value of a global and later retrieve it. The commands executed in this section
are equivalent to the ObjectScript commands SET and GET.

2. The second section shows how to iterate through the subnodes of a global, similar to the $ORDER ObjectScript
function.

3. The third section shows how you call an ObjectScript class method from your .NET application using IRIS Native.

If you are using a locally installed instance and the connection therefore uses localhost as the server address, the program
may use a local shared memory connection, which is even faster than the standard TCP/IP connection.

Note: Globals in ObjectScript begin with the caret character (^). This is not a requirement in your .NET applications
that use the InterSystems IRIS Native API.

First Look: InterSystems IRIS Native API for .NET 3

Exploring IRIS Native for .NET

2.3 Running the Exercise

You are now ready to run the demo application by pressing Ctrl+F5. If the example executes successfully, you should
see printed output with the results of the sample code:

[1. Setting and getting a global]
The value of ^testglobal(1) is 8888

[2. Iterating over a global]
walk forwards
subscript=1, value=8888
subscript=2, value=9999

[3. Calling a class method]
Oct 30, 2018

2.4 Confirming the Changes in the Management Portal

Next, confirm your results in the Management Portal, using the following procedure:

1. Open the Management Portal for your instance in your browser, using the URL described for your instance in InterSys-
tems IRIS Basics: Connecting an IDE.

2. If you are not in the namespace you specified in the code, switch to it.

3. Navigate to the Globals page (System Explorer > Globals). You should see the testglobal global created in the example
code. Click View to see its contents. You should see the two nodes of the global: ^testglobal(1) = 8888 and
^testglobal(2) = 9999.

3 Learn More About IRIS Native
For more information on IRIS Native, globals, and InterSystems IRIS, see:

Using the Native API for .NET

First Look: InterSystems IRIS Native API for Java

Using Globals

Using the InterSystems Managed Provider for .NET

4 First Look: InterSystems IRIS Native API for .NET

Learn More About IRIS Native

	Table of Contents
	1 Introduction to Globals
	2 Exploring IRIS Native for .NET
	2.1 Before You Begin
	2.2 Using IRIS Native
	2.3 Running the Exercise
	2.4 Confirming the Changes in the Management Portal

	3 Learn More About IRIS Native

