
First Look: .NET Object
Persistence with XEP

Version 2019.4
2020-01-28

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

First Look: .NET Object Persistence with XEP
InterSystems IRIS Data Platform Version 2019.4 2020-01-28
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

First Look: .NET Object Persistence with XEP.. 1

1 Rapid Object Storage and Retrieval .. 1
2 How Does XEP Work? .. 1
3 Try It! Hands-on with XEP ... 2

3.1 Before You Begin .. 2
3.2 Adding a Sample Class ... 2
3.3 Creating the XEP Demo Program ... 3
3.4 Running the XEPSimple Program .. 4
3.5 Next Steps ... 4

4 Learn More About .NET Support .. 4

First Look: .NET Object Persistence with XEP iii

First Look: .NET Object Persistence with
XEP

This First Look introduces the XEP API, which provides support for extremely fast .NET object storage and retrieval on
InterSystems IRIS® data platform. It gives you a high level overview of the XEP approach to .NET object persistence, and
walks you through a simple scenario that demonstrates the main features of the API.

These activities are designed to use only the default settings and features so that you can acquaint yourself with the funda-
mentals of XEP without having to deal with details that are beyond the scope of this overview. For the full documentation
on XEP, see Persisting .NET Objects with InterSystems XEP.

To browse all of the First Looks, including those that can be performed on a free evaluation instance of InterSystems IRIS,
see InterSystems First Looks.

1 Rapid Object Storage and Retrieval
Object-oriented programming is at the core of the .NET framework, so it is natural for .NET applications to model data as
objects. However, this can cause problems when the application needs to store that data in a database. If you use ADO.NET
to store and retrieve objects, you are faced with the problem of transforming your object data into a set of relational tables,
and then transforming query resultsets back into objects. The usual solution to this problem is to use an object-relational
mapping (ORM) framework such as Entity Framework to automate the process. InterSystems IRIS does offer an Entity
Framework interface, and InterSystems recommends it for large, complex object hierarchies. On the other hand, for appli-
cations that perform tasks such as real-time data acquisition, the main problem is speed rather than data complexity. Although
Entity Framework is by no means slow (if properly optimized), XEP is a better alternative for tasks that require extremely
fast storage and retrieval of simple or moderately complex data. In most cases, it will be considerably faster than either
Entity Framework or ADO.NET.

2 How Does XEP Work?
XEP is a lightweight .NET API that projects .NET object data as persistent events. A persistent event is an instance of an
InterSystems IRIS class (normally a subclass of %Persistent) containing a copy of the data fields in a .NET object. Like
any such instance, it can be retrieved by object access, SQL query, or direct global access.

Before a persistent event can be created and stored, XEP must analyze the corresponding .NET class and import a schema
into the database. A schema defines the structure of the persistent event class that will be used to store the .NET objects.
Importing the schema automatically creates a corresponding ObjectScript schema for the persistent event class if one does
not already exist. The information from the analysis may be all that XEP needs to import a simple schema. For more complex
structures, you can supply additional information that allows XEP to generate indexes and to override the default rules for
importing fields.

After the schema has been created for a class, you can use various XEP methods to store, update, or delete events, run SQL
queries, and iterate through query resultsets.

First Look: .NET Object Persistence with XEP 1

BNETXEP_preface

3 Try It! Hands-on with XEP
Now it’s time for you to try out XEP for yourself. This XepSimple demo is a very small program, but it provides examples
for most of the key XEP features and will give you an overview of how the XEP API is used. (Want to try an online video-
based demo of InterSystems IRIS .NET development and interoperability features? Check out the .NET QuickStart!)

3.1 Before You Begin

To use the procedure, you will need a Windows system to work on, with the .NET framework and Visual Studio installed,
and a running InterSystems IRIS instance to connect to. Your choices for InterSystems IRIS include several types of licensed
and free evaluation instances; the instance need not be hosted by the system you are working on (although they must have
network access to each other). For information on how to deploy each type of instance if you do not already have one to
work with, see Deploying InterSystems IRIS in InterSystems IRIS Basics: Connecting an IDE. Connect Visual Studio to
your InterSystems IRIS instance using the information in InterSystems IRIS Connection Information and .Net IDEs in the
same document.

3.1.1 Configuring the Visual Studio Project

To begin, open Visual Studio and create a new console app project, selecting the Visual C# and Console App (.NET Framework)

options. For the Name field, enter netxep. (Want to try an online video-based demo of InterSystems IRIS .NET development
and interoperability features? Check out the .NET QuickStart!)

3.1.2 Adding the Assembly Reference

The XEP API is packaged into the InterSystems.Data.XEP.dll library, which must be installed on your local system. You
can obtain it by cloning the repo https://github.com/intersystems/quickstarts-dotnet/tree/master/XEP or downloading the
file from the repo. If InterSystems IRIS is installed on your local machine or another you have access to, you can find the
file in install-dir\dev\dotnet\bin\v4.5, where install-dir is the installation directory for the instance.

To add an assembly reference to InterSystems.Data.XEP.dll to your project:

1. From the Visual Studio main menu, select Project > Add Reference...

2. In the resulting window, click Browse....

3. Browse to the location of the InterSystems.Data.XEP.dll file.

4. Select the file and click Add.

5. Click OK.

In the Visual Studio Solution Explorer, the InterSystems.Data.XEP.dll assembly should now be listed under References.

3.2 Adding a Sample Class

Before creating the program source file, you will add a class that the main program will access to generate sample objects
for storage. In Visual Studio, use Project > Add Class to add a C# class file to the netxep project. Delete the default contents
of the class file, and copy and paste the following code into the file.

using System;

namespace xep.samples
{
 public class SingleStringSample {
 public string name;
 public SingleStringSample() { }
 internal SingleStringSample(string str) {
 name = str;

2 First Look: .NET Object Persistence with XEP

Try It! Hands-on with XEP

https://learning.intersystems.com/course/view.php?name=.NET%20QS
https://learning.intersystems.com/course/view.php?name=.NET%20QS
https://github.com/intersystems/quickstarts-dotnet/tree/master/XEP

 }

 public static SingleStringSample[] generateSampleData(int objectCount) {
 SingleStringSample[] data = new SingleStringSample[objectCount];
 for (int i = 0; i < objectCount; i++)
 {
 data[i] = new SingleStringSample("single string test");
 }
 return data;
 }
 }
}

Because this class is very simple, XEP does not need any annotations to generate an effective schema from it. For more
complex classes in a real-world application, you can use various options to optimize the import.

3.3 Creating the XEP Demo Program

Now you are ready to create the XEPSimple demo program. In Visual Studio, find the default program.cs file that was
created when you created the project. Delete the default contents of the file and paste in the code that follows, substituting
the connection information for your InterSystems IRIS instance for the values of the host, port, irisnamespace,
username, and password variables. You can specify the USER namespace as shown, or you can choose another that you
have created on your installed instance.

using System;
using InterSystems.XEP;
using xep.samples;

namespace XepSimpleNamespace
{
 public class XepSimple
 {
 public static void Main(string[] args)
 {
 // Generate 12 SingleStringSample objects for use as test data
 SingleStringSample[] sampleArray = SingleStringSample.generateSampleData(12);

 // EventPersister
 EventPersister xepPersister = PersisterFactory.CreatePersister();

 String host = "127.0.0.1"; // InterSystems IRIS host
 int port = 51774; // InterSystems IRIS Superserver port
 String irisnamespace = "USER"; // InterSystems IRIS namespace
 String username = "_system"; // Credentials for InterSystems IRIS
 String password = "SYS"; //Credentials for InterSystems IRIS

 xepPersister.Connect(host,port,irisnamespace,username,password); // connect to localhost
 xepPersister.DeleteExtent("xep.samples.SingleStringSample"); // remove old test data
 xepPersister.ImportSchema("xep.samples.SingleStringSample"); // import flat schema

 // Event
 Event xepEvent = xepPersister.GetEvent("xep.samples.SingleStringSample");

 long[] itemIdList = xepEvent.Store(sampleArray);
 int itemCount = 0;
 for (int i = 0; i < itemIdList.Length; i++)
 {
 if (itemIdList[i] > 0) itemCount++;
 }
 Console.WriteLine("Stored " + itemCount + " of " + sampleArray.Length + " events");

 // EventQuery
 EventQuery<SingleStringSample> xepQuery = null;
 String sqlQuery = "SELECT * FROM xep_samples.SingleStringSample WHERE %ID BETWEEN ? AND
?";
 xepQuery = xepEvent.CreateQuery<SingleStringSample>(sqlQuery);
 xepQuery.AddParameter(3); // assign value 3 to first SQL parameter
 xepQuery.AddParameter(12); // assign value 12 to second SQL parameter
 xepQuery.Execute(); // get resultset for IDs between 3 and 12

 xepQuery.Close();
 xepEvent.Close();
 xepPersister.Close();
 } // end main()
 } // end class xepSimple
}

First Look: .NET Object Persistence with XEP 3

Try It! Hands-on with XEP

The demo program is divided into three sections, each of which demonstrates one of the three main XEP classes,
EventPersister, Event, and EventQuery. When run, the XepSimple demo program performs the following tasks:

• First, some sample objects are generated by calling a method of your sample data class, xep.samples.SingleStringSample.

• EventPersister is the main entry point for XEP, and provides the connection to the database.

It creates an instance named xepPersister, which establishes a TCP/IP connection to the User namespace in the database
and deletes any existing sample data. It then calls ImportSchema() to analyze the sample class and send the schema
to the database, thus creating an the corresponding ObjectScript schema to hold persistent SingleStringSample objects.

• Event encapsulates an interface between a .NET object and the corresponding database object.

Once the schema has been generated, xepPersister can create an Event object named xepEvent for the sample class.
The Store() method stores the array of .NET objects as persistent events.

• EventQuery is used to prepare and execute a limited subset of SQL queries.

An EventQuery<SingleStringSample> object named xepQuery is created by passing a query string to the xepEvent
object’s CreateQuery() method. The string defines an SQL query that accepts two parameters (the ? characters). The
parameter values are defined by calls to AddParameter(), and a call to Execute() fetches the query resultset.

• When processing is done, it cleans up by calling the close() methods for the XEP objects.

3.4 Running the XEPSimple Program

You are now ready to build and run the XEPSimple demo program. Press Ctrl + F5 to run the program so the command
prompt stays open when the program ends.

3.5 Next Steps

The XepSimple demo is designed to give you a taste of XEP without bogging you down in details, and is not a model for
real production code — it didn’t even bother with exception checking. The most important simplification was in the sample
data. You persisted a few tiny .NET objects from a class that doesn’t require annotation or other mechanisms to aid in
schema generation and optimization. Though you usually need annotations and other options in a real world application,
these options are straightforward and easy to use. The APIs are similarly simple and easy to use.

For a comprehensive description of all XEP features, see Persisting .NET Objects with InterSystems XEP.

4 Learn More About .NET Support
InterSystems IRIS provides .NET APIs for easy database access via SQL tables, objects, and multidimensional storage.
See the following books for detailed information on each type of access:

• Using the Native API for .NET for accessing InterSystems IRIS globals from a .NET application.

• Using ADO.NET Managed Provider Classes for SQL table access. Allows your .NET projects to access InterSystems
IRIS databases with fully compliant versions of generic ADO.NET Managed Provider classes.

• Using the InterSystems ODBC Driver for SQL table access. The InterSystems ODBC driver allows InterSystems IRIS
to establish ODBC connections to external applications, and provides access to external data sources via SQL.

• Persisting .NET Objects with InterSystems XEP for object access. XEP is optimized for transaction processing appli-
cations that work with simple to medium complexity object hierarchies and require extremely high speed object data
persistence and retrieval.

4 First Look: .NET Object Persistence with XEP

Learn More About .NET Support

BNETXEP_preface
BNETODBC_preface
BNETXEP_preface

• Using the Entity Framework Provider for object—relational mapping. Provides information about accessing an Inter-
Systems IRIS database using Entity Framework technology.

First Look: .NET Object Persistence with XEP 5

Learn More About .NET Support

	Table of Contents
	1 Rapid Object Storage and Retrieval
	2 How Does XEP Work?
	3 Try It! Hands-on with XEP
	3.1 Before You Begin
	3.2 Adding a Sample Class
	3.3 Creating the XEP Demo Program
	3.4 Running the XEPSimple Program
	3.5 Next Steps

	4 Learn More About .NET Support

