
First Look: InterSystems SQL

Version 2019.4
2020-01-28

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

First Look: InterSystems SQL
InterSystems IRIS Data Platform Version 2019.4 2020-01-28
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

First Look: InterSystems SQL.. 1

1 InterSystems SQL: Features and Performance .. 1
2 Demo: The SQL Shell .. 1

2.1 Before You Begin .. 2
2.2 Creating and Populating a Table With a SQL Script File ... 3
2.3 Running Queries Directly in SQL Shell ... 4

3 Demo: Using Bitmap Indexing To Maximize Query Performance ... 5
4 Learn More About InterSystems SQL ... 8

4.1 Introductory Material .. 8
4.2 SQL Development ... 8
4.3 Query Optimization ... 8
4.4 Sharding and Scalability ... 8
4.5 SQL Search ... 8
4.6 JDBC ... 8

First Look: InterSystems SQL iii

First Look: InterSystems SQL

This First Look will acquaint you with the use of SQL with InterSystems IRIS® data platform: its industry-standard features,
its unique capabilities, and how to get up and running with it quickly.

To browse all of the First Looks, including those that can be performed on a free evaluation instance of InterSystems IRIS,
see InterSystems First Looks.

1 InterSystems SQL: Features and Performance
InterSystems IRIS provides high–performance, full-featured SQL. You can use SQL with InterSystems IRIS at scales from
queries running on a single CPU core, to parallel queries using dozens of cores, to distributed queries across a cluster of
InterSystems IRIS servers.

SQL features available in InterSystems IRIS at every scale include:

• Joins

• Flexible, high-performance indexing

• Aggregate functions and grouping

• Stored procedures written in SQL or InterSystems ObjectScript (referred to below as “ObjectScript”)

• JDBC and ODBC connectivity

• Automatic parallel query execution

• Transparently distributed queries

InterSystems SQL offers powerful tools to achieve optimal SQL query performance. One such tool is compressed bitmap
indexing: using a compact, highly effective structure and vectorized CPU instructions, InterSystems SQL can perform
aggregations and check logical conditions for billions of rows per second with just a single core. You’ll see an example of
bitmap indexing later in this guide.

Want a quick demo of the SQL capabilities of InterSystems IRIS? Check out the SQL QuickStart!

2 Demo:The SQL Shell
You can execute SQL with InterSystems IRIS through a variety of APIs, interactive clients, and standard protocols,
including:

• The InterSystems IRIS SQL Shell for interactive SQL statement execution

• ODBC and JDBC clients, either interactive (for example, SQuirreL SQL or WinSQL) or embedded in an application
via an InterSystems IRIS driver

• The System Explorer in the InterSystems IRIS Management Portal, which offers an interactive web interface for SQL

• Embedded or dynamic SQL in an ObjectScript class

First Look: InterSystems SQL 1

https://learning.intersystems.com/course/view.php?name=SQL%20QS

If, after working through this guide, you would like to explore more about any of these topics, see “Learn More About
InterSystems SQL” below.

This demo shows you how to use the SQL Shell to execute SQL statements interactively or from a file.

2.1 Before You Begin

To use the procedure, you will need a running InterSystems IRIS instance. Your choices include several types of licensed
and free evaluation instances; the instance need not be hosted by the system you are working on (although they must have
network access to each other). For information on how to deploy each type of instance if you do not already have one to
work with, see Deploying InterSystems IRIS in InterSystems IRIS Basics: Connecting an IDE.

You will also need to obtain utility files for this guide from the GitHub repo https://github.com/intersystems/FirstLook-
SQLBasics. You should clone the repository to download the following files:

• stock_table_demo_one.sql, which contains SQL statements to create and load a small (20-row) table of stock data

• stock_table_demo_two.csv, which contains a million rows of stock table data

• Loader.xml, a class file that contains a utility method to load the data from stock_table_demo_two.csv into an InterSystems
IRIS table

Note: To download stock_table_demo_two.csv, which is very large, you first need to install Git Large File Storage.

The FirstLook-SQLBasics sources must be accessible by the instance. The procedure for downloading the files depends
on the type of instance you are using, as follows:

• If you are using an ICM-deployed instance:

1. Use the icm ssh command with the -machine and -interactive options to open your default shell on the node
hosting the instance, for example:

icm ssh -machine MYIRIS-AM-TEST-0004 -interactive

2. On the Linux command line, use one of the following commands to clone the repo to the data storage volume for
the instance. For a configuration deployed on Azure, for example, the default mount point for the data volume is
/dev/sdd, so you would use commands like the following:

$ git clone https://github.com/intersystems/FirstLook-SQLBasics /dev/sdd/FirstLook-SQLBasics
OR
$ wget -qO- https://github.com/intersystems/FirstLook-SQLBasics/archive/master.tar.gz | tar xvz
 -C /dev/sdd

The files are now available to InterSystems IRIS in /irissys/data/FirstLook-SQLBasics on the container’s file system.

• If you are using a containerized instance (licensed or Community Edition) that you deployed by other means:

1. Open a Linux command line on the host. (If you are using Community Edition on a cloud node, connect to the
node using SSH, as described in Getting Started with InterSystems IRIS Community Edition.)

2. On the Linux command line, use either the git clone or the wget command, as described above, to clone the repo
to a storage location that is mounted as a volume in the container.

– For a Community Edition instance, you can clone to the instance’s durable %SYS directory (where instance-
specific configuration data is stored). On the Linux file system, this directory is /opt/ISC/dur. This makes the
files available to InterSystems IRIS in /ISC/dur/FirstLook-SQLBasics on the container’s file system.

– For a licensed containerized instance, choose any storage location that is mounted as a volume in the container
(including the durable %SYS directory if you use it). For example, if your docker run command included

2 First Look: InterSystems SQL

Demo: The SQL Shell

https://github.com/intersystems/FirstLook-SQLBasics
https://github.com/intersystems/FirstLook-SQLBasics
https://git-lfs.github.com/

the option -v /home/user1:/external, and you clone the repo to /home/user1, the files are available to Inter-
Systems IRIS in /external/FirstLook-SQLBasics on the container’s file system.

• If you are using an InterSystems Learning Labs instance:

1. Open the command-line terminal in the integrated IDE.

2. Change directories to /home/project/shared and use the git clone command to clone the repo:

$ git clone https://github.com/intersystems/FirstLook-SQLBasics

The folder is added to the Explorer panel on the left under Shared, and the directory is available to InterSystems IRIS
in /home/project/shared.

• If you are using an installed instance:

– If the instance’s host is a Windows system with GitHub Desktop and GitHub Large File Storage installed:

1. Go to https://github.com/intersystems/FirstLook-SQLBasics in a web browser on the host.

2. Select Clone or download and then choose Open in Desktop.

The files are available to InterSystems IRIS in your GitHub directory, for example in
C:\Users\User1\Documents\GitHub\FirstLook-SQLBasics.

– If the host is a Linux system, simply use the git clone command or the wget command on the Linux command
line to clone the repo to the location of your choice.

2.2 Creating and Populating a Table With a SQL Script File

For the purposes of this demo, we’ll use a SQL script file, stock_table_demo_one.sql, to create and load a table with a few
rows of sample data.

To create and load the table:

1. Open the InterSystems IRIS Terminal using the procedure described for your instance in InterSystems IRIS Basics:
Connecting an IDE. You will see the following interactive prompt:

USER>

This prompt indicates that you are currently in the USER namespace, which is empty by default and reserved for your
use. From this prompt, you can execute ObjectScript.

2. Open the SQL Shell by entering

DO $SYSTEM.SQL.Shell()

at the prompt. This will display the following output:

SQL Command Line Shell
--
The command prefix is currently set to: <<nothing>>.
Enter q to quit, ? for help.
[SQL]USER>>

3. Set the current SQL dialect to IRIS:

SET DIALECT=IRIS

4. To run the statements in stock_table_demo_one.sql, enter the command

RUN <Path>stock_table_demo_one.sql

First Look: InterSystems SQL 3

Demo: The SQL Shell

https://github.com/intersystems/FirstLook-SQLBasics

where Path is the location in which you placed the file (see Before You Begin). You are prompted to specify names
for log files containing the statements in the file and their output, how to handle errors, and the statement delimiter.
Accept all defaults.

The statements create a table and insert 20 rows. The first few lines of the file are:

CREATE TABLE FirstLook.StockTableDemoOne (ClientID INTEGER, BrokerID INTEGER,
 Symbol VARCHAR(10), TransactionType VARCHAR(4), TransactionDate TIMESTAMP,
 Quantity INTEGER, Price DECIMAL(15,2), CommmissionRate DECIMAL(15,2))
GO
INSERT INTO FirstLook.StockTableDemoOne (ClientID, BrokerID, Symbol,
 TransactionType, TransactionDate, Quantity, Price, CommmissionRate)
 VALUES (29834783, 3103, 'RTYU', 'SELL', '2016-01-03', 342, 5.05, 3.25)
GO

As the script runs, you’ll see output after each SQL statement is processed:

1. INSERT INTO FirstLook.StockTableDemoOne (ClientID, BrokerID, Symbol,
2. TransactionType, TransactionDate, Quantity,
3. Price, CommissionRate)
4. VALUES (92609349, 3103, 'HWVT', 'BUY', '2017-10-25', 1500, 451.09, 3.25)
1 Row Affected

After all statements are processed, the SQL Shell lists the number of statements compiled as well as errors and warnings
reported, and reports the elapsed time:

Statements
.................compiled: 21
.....with errors reported: 0
...with warnings reported: 0

 Elapsed time: .125181 seconds

2.3 Running Queries Directly in SQL Shell

Now that you have a populated table, you can run queries against it. You can use single-line or multiline mode to do this,
but may find the latter more convenient.

1. To enter multiline mode, press Enter at the prompt. You’ll see confirmation that you’re in multiline mode.

2. Enter the following SQL syntax, line by line. The keyword GO instructs the shell to execute the query and exit multiline
mode:

SELECT BrokerID, TO_CHAR((Quantity * Price),'9,999,999.99') as SubTotal,
 TransactionDate FROM FirstLook.StockTableDemoOne
WHERE TransactionType='SELL'
ORDER BY SubTotal DESC
GO

The statement you entered will be echoed to the SQL Shell, and query results will follow.

2. SELECT BrokerID, TO_CHAR((Quantity * Price), '9,999,999.99') as SubTotal,
 TransactionDate FROM FirstLook.StockTableDemoOne
 WHERE TransactionType='SELL'
 ORDER BY SubTotal DESC

BrokerID SubTotal TransactionDate
5001 302,780.00 2017-11-06 09:51:24.735
5002 92,350.00 2018-01-15 22:21:17.638
3103 57,645.00 2017-09-24 19:36:43.079
3103 45,015.00 2016-10-31 19:21:08.913
5001 23,180.50 2017-07-31 23:05:49.83
5001 13,113.60 2015-11-13 22:13:49.457
5001 12,636.00 2015-10-13 05:50:23.209
3103 1,727.10 2016-01-03 13:59:01.098
1009 1,693.50 2016-01-15 18:18:15.346

After the query results, you’ll see information on how long it took to prepare and execute the statements:

4 First Look: InterSystems SQL

Demo: The SQL Shell

9 Rows(s) Affected
statement prepare time(s)/globals/cmds/disk: 0.0625s/47683/263292/0ms
execute time(s)/globals/cmds/disk: 0.0006s/64/2903/0ms
cached query class: %sqlcq.USER.cls47

The preparation step includes the generation of executable code from the syntax of a SQL statement. This code is
cached for re-use, so a statement is typically prepared fully only once. Subsequent preparations need only locate the
cached code using a hash of the statement’s text.

The execution step includes executing the code that was generated for a query and returning its results.

Within each step’s listing are the following metrics:

• The time each step took.

• The count of globals, which is the number of references that were made to InterSystems IRIS storage to prepare
or execute the SQL statement. For more information on globals, see the “Introduction to Globals” chapter of the
Orientation Guide for Server-Side Programming.

• The count of ObjectScript commands that were executed to prepare or execute the SQL statement.

At the end of the display is the cached query class, which is the ObjectScript class that caches the code generated when
the statement is first prepared.

3. Aggregate functions and GROUP BY are also available. Note that you can order by the alias used for the aggregate
function:

SELECT BrokerID, TO_CHAR(SUM(Quantity * Price), '9,999,999.99') as SubTotal
 FROM FirstLook.StockTableDemoOne
 GROUP BY BrokerID
 ORDER BY SubTotal DESC
 GO

2. SELECT BrokerID, TO_CHAR(SUM(Quantity * Price), '9,999,999.99') as SubTotal
 FROM FirstLook.StockTableDemoOne
 GROUP BY BrokerID
 ORDER BY SubTotal DESC

BrokerID SubTotal
3103 868,993.60
1009 808,453.50
5001 593,242.82
5002 187,560.00

4 Rows(s) Affected
statement prepare time(s)/globals/cmds/disk: 0.1665s/45832/237712/77ms
 execute time(s)/globals/cmds/disk: 0.0025s/122/2434/2ms
 cached query class: %sqlcq.USER.cls9

3 Demo: Using Bitmap Indexing To Maximize Query
Performance
If you are working with large data sets, you will need ways to tune query performance. Bitmap indexing is one of several
methods available to you.

Bitmap indexing is especially advantageous if a table has one or more fields whose set of possible values is small.

For in-depth information on how bitmap indexing works, see the “Bitmap Indices” chapter of the InterSystems SQL
Optimization Guide.

First Look: InterSystems SQL 5

Demo: Using Bitmap Indexing To Maximize Query Performance

In this demo, you’ll see the effects of targeted bitmap index creation on a million–row table of stock transaction data. You’ll
be using a couple of simple ObjectScript commands along the way; it’s easy to access the ObjectScript library seamlessly
from within the SQL Shell.

To run the demo:

1. Start a SQL Shell in Terminal as described in “Creating and Populating a Table With a SQL Script File” .

2. Create the table:

CREATE TABLE FirstLook.StockTableDemoTwo (ClientID INTEGER, BrokerID INTEGER,
 Symbol VARCHAR(10), TransactionType VARCHAR(4),
 TransactionDate TIMESTAMP, Quantity INTEGER,
 Price DECIMAL(15,2), CommissionRate DECIMAL(15,2))

1. CREATE TABLE FirstLook.StockTableDemoTwo (ClientID INTEGER, BrokerID INTEGER,
 Symbol VARCHAR(10), TransactionType VARCHAR(4),
 TransactionDate TIMESTAMP, Quantity INTEGER,
 Price DECIMAL(15,2), CommissionRate DECIMAL(15,2))

0 Rows Affected
statement prepare time(s)/globals/cmds/disk: 0.0063s/1811/22260/0ms
 execute time(s)/globals/cmds/disk: 0.2138s/76495/655985/76ms
 cached query class: %sqlcq.USER.cls1

3. Import the Loader class (the Loader.xml file). The OBJ prefix instructs the SQL Shell to handle the command that
follows as ObjectScript.; the "c" flag instructs InterSystems IRIS to compile the code, and the "k" flag ensures that
the source code is stored in the active namespace.

OBJ DO $system.OBJ.Load("<Path>Loader.xml", "ck")

where Path is the location in which you placed the file (see Before You Begin). You should see output like the following:

Load started on 04/19/2018 15:17:53
Loading file C:\Users\user\repos\FirstLook-SQLBasics\Loader.xml as xml
Imported class: FirstLook.Loader
Compiling class FirstLook.Loader
Compiling routine FirstLook.Loader.1
Load finished successfully.

4. To load the data in stock_table_demo_two.csv into the table, run the following command in Terminal:

OBJ WRITE ##class(FirstLook.Loader).LoadStockTableCSV("<Path>stock_table_demo_two.csv")

where Path is the location in which you placed the file. The output of this command, 1000000, indicates simply that
1,000,000 rows were loaded.

5. Run the following query:

SELECT DISTINCT BrokerID FROM FirstLook.StockTableDemoTwo

The output shows that the number of possible broker IDs is very small, making this field a good candidate for bitmap
indexing.

2. SELECT DISTINCT BrokerID FROM FirstLook.StockTableDemoTwo

BrokerID
115
107
101
114
119
104
109
108
102
116
110
120
112
106
111
113

6 First Look: InterSystems SQL

Demo: Using Bitmap Indexing To Maximize Query Performance

105
118
103
117

20 Rows(s) Affected
statement prepare time(s)/globals/cmds/disk: 0.0645s/43430/197693/9ms
 execute time(s)/globals/cmds/disk: 1.2569s/2000039/9001314/0ms
 cached query class: %sqlcq.USER.cls10

6. To see the performance of a COUNT query involving the BrokerID field before you add a bitmap index, run the fol-
lowing query:

SELECT BrokerID, COUNT(*) As Transactions FROM FirstLook.StockTableDemoTwo
 GROUP BY BrokerId ORDER BY Transactions DESC

3. SELECT BrokerID, COUNT(*) As Transactions FROM FirstLook.StockTableDemoTwo
 GROUP BY BrokerId ORDER BY Transactions DESC

BrokerId Transactions
103 50386
118 50304
107 50247
112 50207
101 50174
109 50088
115 50088
104 50048
111 50031
105 50008
113 49996
119 49942
114 49919
116 49894
110 49888
108 49882
102 49843
120 49768
106 49742
117 49545

20 Rows(s) Affected

Observe the query performance statistics that are displayed after the query returns results: the total time elapsed
(including both preparation and execution time) is approximately 0.65 seconds.

statement prepare time(s)/globals/cmds/disk: 0.0695s/45048/225490/13ms
 execute time(s)/globals/cmds/disk: 0.5878s/1000250/11002218/0ms
 cached query class: %sqlcq.USER.cls7

7. Add a bitmap index on BrokerID:

CREATE BITMAP INDEX BrokerIDIdx ON TABLE FirstLook.StockTableDemoTwo (BrokerID)

4. CREATE BITMAP INDEX BrokerIDIdx ON TABLE FirstLook.StockTableDemoTwo (BrokerID)

0 Rows Affected
statement prepare time(s)/globals/cmds/disk: 0.0056s/1723/15958/0ms
 execute time(s)/globals/cmds/disk: 0.9805s/2071557/18505697/1ms
 cached query class: %sqlcq.USER.cls11

8. Run the same SELECT query as you did above. Note the improvement in performance: in the example below, the query
took approximately 0.35 seconds total, a decrease of nearly 50 percent.

SELECT BrokerID, COUNT(*) As Transactions FROM FirstLook.StockTableDemoTwo
 GROUP BY BrokerId ORDER BY Transactions DESC

...

statement prepare time(s)/globals/cmds/disk: 0.0573s/45585/231374/0ms
 execute time(s)/globals/cmds/disk: 0.2926s/622/15004397/0ms
 cached query class: %sqlcq.USER.cls1

First Look: InterSystems SQL 7

Demo: Using Bitmap Indexing To Maximize Query Performance

4 Learn More About InterSystems SQL
To learn more about SQL and InterSystems IRIS, see:

4.1 Introductory Material

• Using InterSystems SQL

• InterSystems SQL Reference

• InterSystems SQL Overview

4.2 SQL Development

• SQL – Things You Should Know

• Learn InterSystems SQL: Design and Execution

• Developing with InterSystems Objects and SQL

4.3 Query Optimization

• First Look: Optimizing SQL Performance with InterSystems IRIS

• InterSystems SQL Optimization Guide

• Academy – Optimizing SQL Performance

• Optimizing SQL Queries

• Learn InterSystems SQL: Performance

4.4 Sharding and Scalability

• First Look: Scaling for Data Volume with Sharding

• Scalability Guide

4.5 SQL Search

• First Look: SQL Search with InterSystems IRIS

• Using InterSystems SQL Search

• Creating iFind Indices for Searching Text Fields

4.6 JDBC

• First Look: JDBC and InterSystems IRIS

• Using Java JDBC with InterSystems IRIS (documentation)

• Java Overview

8 First Look: InterSystems SQL

Learn More About InterSystems SQL

https://learning.intersystems.com/course/view.php?name=Cach%C3%A9%20SQL%20Overview
https://learning.intersystems.com/course/view.php?name=SQL%20%E2%80%93%20Things%20You%20Should%20Know
https://learning.intersystems.com/course/view.php?name=Learn%20Cach%C3%A9%20SQL:%20Design%20and%20Execution
https://learning.intersystems.com/course/view.php?name=Cach%C3%A9%20Foundations
https://learning.intersystems.com/course/view.php?name=Cach%C3%A9%20Foundations
https://learning.intersystems.com/course/view.php?name=Academy%20SQL
https://learning.intersystems.com/course/view.php?name=Optimizing%20SQL%20Queries
https://learning.intersystems.com/course/view.php?name=Learn%20Cach%C3%A9%20SQL:%20Performance
https://learning.intersystems.com/course/view.php?name=iFind%20Indices
https://learning.intersystems.com/course/view.php?name=Java%20Overview

• Using JDBC with InterSystems IRIS (online learning)

First Look: InterSystems SQL 9

Learn More About InterSystems SQL

https://learning.intersystems.com/course/view.php?name=JDBC%20and%20InterSystems%20IRIS

	Table of Contents
	1 InterSystems SQL: Features and Performance
	2 Demo: The SQL Shell
	2.1 Before You Begin
	2.2 Creating and Populating a Table With a SQL Script File
	2.3 Running Queries Directly in SQL Shell

	3 Demo: Using Bitmap Indexing To Maximize Query Performance
	4 Learn More About InterSystems SQL
	4.1 Introductory Material
	4.2 SQL Development
	4.3 Query Optimization
	4.4 Sharding and Scalability
	4.5 SQL Search
	4.6 JDBC

