InterSystems-

IRIS Data Platform

First Look: InterSystems IRIS
and UIMA

\Version 2019.4
2020-01-28

First Look: InterSystems IRIS and UIMA

InterSystems IRIS Data Platform Version 2019.4 2020-01-28
Copyright © 2020 InterSystems Corporation

All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

First Look: Inter Systems IRIS and UIMA

1 About UIMA ..o
2 How InterSystems IRIS Complements

UIMA L

2.1 Creating and Invoking a UIMA Analysis PIpeline ...

2.2 Annotation Storec.cccceeeenee.
2.3 InterSystems IRIS NLP
3 Tour of UIMA in InterSystems IRIS ...
3.1 Before You Begincccccevvennnene

4 Taking the Tour of a UIMA ANalysis PIPEIINEccceivevieieiiecicese s aneas

4.1 Adding Class File with a UIMA
4.2 Compiling the Table Class
4.3 Browsing the Annotation Store .

Functional INdeXocovveviiiicii e

4.4 Sending New Text Through the Analysis PIpeling ...

5 Learn More About UIMAccceuee..

First Look: InterSystems IRIS and UIMA

First Look: InterSystems IRIS and UIMA

This First Look provides a quick introduction on how InterSystems IRIS® data platform implements and complements the
Unstructured Information Management Architecture (UIMA). After a brief overview of UIMA and how InterSystems IRIS
complements it, you have the opportunity to work through a basic hands-on exercise to see InterSystems IRIS in action.

To browse all of the First Looks, including those that can be performed on a free evaluation instance of InterSystems IRIS,
see InterSystems First Looks.

1 About UIMA

UIMA is a standard that governs the analyzing of unstructured information such as text and video. With unstructured
information, computers usually need a few steps to turn the information into actionable structured data. For example, a
scanned document needs OCR before the text becomes machine-readable, and even then a computer does not work partic-
ularly well with natural language text until additional NLP strategies are applied. Because a process like this includes steps
that are very different in nature, it’s unlikely that a single tool can handle them all. More likely, this process includes indi-
vidual modules, implemented by different parties using different technologies, that need to work together. In UIMA, these
modules are called analysis engines.

Because UIMA-compliant analysis engines all comply with the same standards, they can be combined into a series of
analyzers (a UIMA analysis pipeline), each doing what it does best. The source unstructured data is not altered as it makes
its way through this UIMA analysis pipeline, but rather annotations are generated along the way. The UIMA standard
ensures that the annotations from one analysis engine do not interfere with the annotations from a different analysis engine.
For text, these annotations are based on character position within the text. The interoperability of UIMA allows you to
combine analysis engines from different vendors and technologies into a single pipeline without writing any custom code,
and because the analysis engines refer to character positions in the original source data, their annotations can be combined,
compared, and reasoned with. The UIMA standard includes a framework implementation in Java that runs these analysis
engines.

In addition to providing interoperability, UIMA provides a framework for scaling and deploying these analysis engines.
This allows vendors to focus on developing analysis engines without worrying about scaling and deploying their solutions.
The UIMA standard also provides the framework to invoke these analysis engines in a distributed architecture.

Each UIMA-compliant analysis engine must be accompanied by an XML descriptor file that contains basic identifying
information such as name and vendor of the analysis engine. It also defines the annotation types that categorize the annotations
that the analysis engine produces.

2 How InterSystems IRIS Complements UIMA

InterSystems IRIS complements UIMA in three ways. It:

» Introduces a functional index to create a UIMA analysis pipeline and to automatically feed the pipeline with new text
when a record is inserted or updated in an InterSystems IRIS table.

» Stores annotations generated by the UIMA analysis pipeline in a clear, SQL-accessible Annotation Store on InterSystems
IRIS.

First Look: InterSystems IRIS and UIMA 1

Tour of UIMA in InterSystems IRIS

» Ensures that InterSystems IRIS Natural Language Processing (NLP) complies with the UIMA standard and can be
used as an analysis engine in a UIMA analysis pipeline.

2.1 Creating and Invoking a UIMA Analysis Pipeline

InterSystems IRIS uses a functional index to create a UIMA analysis pipeline using InterSystems IRIS concepts without
needing to worry about implementing Java interfaces. A functional index is a feature of the InterSystems IRIS database
that allows a function to be executed when a record is inserted or updated in a table. In this case, the functional index is
defined on a table column that contains the unstructured data that you want analyzed by the UIMA analysis pipeline. Setting
up the pipeline is as easy as adding the location of the analysis engines’ descriptor files to the functional index definition.

Once the functional index is defined, InterSystems IRIS automatically feeds unstructured data into the UIMA analysis
pipeline whenever new data is inserted or updated in the indexed table column. For example, if the functional index is
defined on a column that contains reports, then a new report would be analyzed as soon as it is added to the table. Without
this special functionality in InterSystems IRIS, you would need to send unstructured data through the pipeline programmat-
ically in Java every time you wanted to analyze the data.

2.2 Annotation Store

By default, the results of a UIMA analysis pipeline are captured in verbose and cumbersome XML files. Because the UIMA
standard does not provide a more sophisticated method of storing the annotations, InterSystems IRIS extends an UIMA
analysis pipeline by using flexible, SQL-based storage to put the annotations in uniform, persistent tables for later retrieval.
This storage system is called the Annotation Sore.

This Annotation Store is created automatically the first time you compile the class that contains the functional index you
defined to create the UIMA analysis pipeline. It is linked directly to the column in the original table that contains the
unstructured data.

Architecturally, the Annotation Store is produced by adding a special analysis engine as the last component of a UIMA
analysis pipeline. This happens automatically when you add a UIMA functional index to an InterSystems IRIS class. It’s
also possible for a UIMA analysis pipeline developed outside of InterSystems IRIS to add this special analysis engine to
the end of the pipeline to create an Annotation Store. Such an implementation is beyond the scope of this First Look.

You can also customize the Annotation Store using an XData block in the class that contains the functional index. For
example, you can define additional columns and indices per table. You can also filter annotation types to keep them out of
the Annotation Store.

2.3 InterSystems IRIS NLP

InterSystems IRIS Natural Language Processing (NLP) is embedded into InterSystems IRIS® data platform and allows
you to perform text analysis on unstructured text without any upfront knowledge of the subject matter. It does this by
applying language-specific rules that identify semantic entities. Because these rules are specific to the language, not the
content, InterSystems IRIS NLP can provide insight into the contents of texts without using a dictionary or ontology.

You can use InterSystems IRIS NLP as a UIMA analysis engine, generating UIMA annotations for NLP concepts and
contexts. These annotations are fully compatible with UIMA annotations supplied by other UIMA analysis engines.

3Tour of UIMA in InterSystems IRIS

Now that you have some basic information about UIMA,, it’s time to take a hands-on tour to see how it works in InterSystems
IRIS. You will need to setup the environment before taking the tour.

2 First Look: InterSystems IRIS and UIMA

Tour of UIMA in InterSystems IRIS

3.1 Before You Begin

To get started, perform the following preliminary setup tasks:
1. Install the Java Runtime Environment.

2. Install InterSystems IRIS.

3. Create a new InterSystems IRIS namespace.

4. Add InterSystems libraries to your environment variables.
5

Start the Java Gateway.

3.1.1 Installing the Java Runtime Environment

InterSystems IRIS’ implementation of a UIMA analysis pipeline requires that the Java Runtime Environment (JRE) be
installed. It also requires an environment variable that points to the location of the JRE installation.

1. If you do not already have the JRE installed on your machine, download and install the latest version from Oracle®.

2. Create an environment variable called JAVA_HOME that points to the location of the JRE installation. For example, on
Windows®, use the Control Panel to create the JAVA_HOME environment variable and define its path to the location
of the JRE installation.

3.1.2 Installing InterSystems IRIS
To run the demo of the UIMA analysis pipeline, you’ll need a running, licensed instance of InterSystems IRIS.

For instructions on how to install and license a development instance of InterSystems IRIS, see InterSystems IRIS Basics:
Installation.

3.1.3 Creating a New Namespace

As part of the tour in this First Look, you will add a new class file to a namespace in InterSystems IRIS. To keep this
sample data separate from the pre-defined namespaces, create a new namespace called SAMPLES to hold the code and
data associated with this First Look. To create a new namespace:

1. Open the Management Portal in your browser using the URL for your instance, as described in InterSystems IRIS
Connection Information in Inter Systems IRISBasics. Connecting an IDE.

Select System Administration > Configuration > System Configuration > Namespaces.
On the Namespaces page, select Create New Namespace.

On the New Namespace page, enter SAMPLES as the name for the new namespace.

a M DN

Next to the Select an existing database for Globals drop-down menu, click Create New Database. This displays the
Database Wizard.

6. On the first page of the Database Wizard, in the Enter the name of your database field, enter the name of the database
you are creating, such as Samplesdb.

7. Enter a directory for the database, such as C:\InterSystems\IRI1S\mgr\Samplesdb.
8. Click Next.
9. Click Finish.

10. Back on the New Namespace page, in the Select an existing database for Routines drop-down menu, select the database
you just created.

First Look: InterSystems IRIS and UIMA 3

Taking the Tour of a UIMA Analysis Pipeline

11. Click save near the top of the page and then click Close at the end of the resulting log.

3.1.4 Adding InterSystems Libraries to Your Path

Because the UIMA integration requires certain system libraries to be available when invoked through its Java framework,
you must add the bin directory of the InterSystems IRIS installation to your path before running the Java Gateway (for

example, C:\InterSystems\IRIS\bin). On Windows, add the bin directory to the PATH environment variable. For UNIX® and
Linux platforms, add the bin directory to both the PATH and LD_LIBRARY_PATH environment variables.

3.1.5 Running the Java Gateway

The Java Gateway can instantiate an external Java object and manipulate it as if it were a native object within InterSystems
IRIS. InterSystems IRIS’ UIMA strategy uses the Java Gateway, which can be started from the command line. For example,
on Windows:

1. Open the Run dialog.
2. Enter the following command:

% JAVA_HOM E% \bin\java -classpath
" C:\Inter Sygems Rl SdeAj avallibDK 18%; C:\Inter Sygemsil RI Sdejavalib) acksont*; C:\I nter Sygems Rl SdeAj avallib\uimal**
com.inter systems.gateway.JavaGateway 5555

Where:

* JAVA_HOME is an environment variable that points to the location of the installation directory for the Java Runtime
Environment (JRE).

* C:\InterSystems\IRIS is the directory where you installed InterSystems IRIS.

e JDK18 corresponds to your version of the JRE.

If you are running on UNIX®, remember that the syntax for -classpath uses a colon for the separator.

4 Taking the Tour of a UIMA Analysis Pipeline

Now that you’ve taken care of the preliminaries, you are ready to see a UIMA analysis pipeline in action. In this tour, you
will:

* Add a class file that contains a UIMA functional index
e Compile the class that contains the functional index.

» Look at the Annotation Store’s tables.

* Add unstructured data to the sample database.

» Browse the Annotation Store for new data generated by the analysis pipeline.

4.1 Adding Class File with a UIMA Functional Index

You add an analysis engine to the UIMA analysis pipeline by defining a functional index for the table that contains the
unstructured text. In this tour, you are adding the InterSystems IRIS NLP analysis engine to the pipeline.

4 First Look: InterSystems IRIS and UIMA

Taking the Tour of a UIMA Analysis Pipeline

In this part of the tour, you are creating a new class file. You can create the class file in your favorite text editor if you do
not have the Atelier IDE set up.

1. Create a new file in Atelier or a text editor.
2. Copy and paste the following into the class file:

Class Sample.MyData Extends %Persistent

Property MyText As %String;

Index Mylndex On (MyText) As %UIMA.Index(AEDESCRIPTOR =
""classpath:/con/intersystems/uima/annotator/iKnowEngine.xml');

where:

* MyText is the column of the Sample.MyData table that contains the unstructured text.
* MylIndex is the UIMA functional index.

* iKnowEngine.xml is the descriptor file for the InterSystems IRIS NLP analysis engine.

3. Save the file as sample.cls.

4.2 Compiling the Table Class
To automatically generate the Annotation Store, you simply compile the class that contains the functional index. If you
created sample.cls in Atelier, simply compile the file.

If you made the changes in a text editor, use the InterSystems Terminal to load and compile the class.

Tip: When working with the InterSystems Terminal, you can paste the contents of your clipboard to the Terminal
command prompt using Shift+Insert. This is useful for copying commands from this guide and pasting them
in the Terminal to reduce errors.

To load and compile the class:

1. Open the InterSystems Terminal. For information about opening Terminal for your instance, see InterSystems IRIS
Connection Information in Inter Systems IRIS Basics: Connecting an IDE.

2. Switch to the namespace that you created for this demo. For example:
set $namespace=" samples’
3. Enter the following command to load the class file into the namespace:
do $system.OBJ.L oad(" <sample-dir >\sample.cls")
where <sample-dir> is the location where you saved the samples.cls class file.
4. Enter the following command to compile the Sample.MyData class that you pasted into sample.cls:

do $system.OBJ.Compile(" SampleMyData")

4.3 Browsing the Annotation Store
Now that you have compiled the class with the UIMA functional index, you can browse the Annotation Store that was
created to preserve the annotations generated by InterSystems IRIS NLP.

1. Open the Management Portal in your browser using the URL for your instance, as described in InterSystems IRIS
Connection Information in Inter Systems IRIS Basics: Connecting an IDE.

2. Switch to the Samples hamespace using the link in the header.

First Look: InterSystems IRIS and UIMA 5

Taking the Tour of a UIMA Analysis Pipeline

3.
4,

InterSystems- Management Portal

IRIS Data Platform

Server USET7480kdawn Namespace %S‘r‘ser S¥STEM Licensed
Welcome, _SYSTEM vw{]]]

‘2] Home Welcome to the Man

Go to System Explorer > SQL.
Expand the Tables list in the left-hand pane.

You can see the three tables of the Annotation Store. The haming convention of these tables corresponds to the table
(Sample.MyData) that contains the unstructured text that was analyzed.

» Sample_MyData.Type — Contains an overview of the Annotation Types used in this store.

» Sample_MyData.Sofa — Contains sofas, which are the text objects that were analyzed by the UIMA analysis
engine.

» Sample_MyData.Annotation — Contains the annotations generated by the analysis engine.

You can modify the functional index definition to create multiple annotation tables, and then channel the output into
the right table based on the annotation type.

4.4 Sending New Text Through the Analysis Pipeline

The power of the UIMA analysis pipeline in InterSystems IRIS is that new unstructured text is automatically sent through
the pipeline for analysis and the results added to the Annotation Store. Now that you’ve created the Annotation Store, you
can see how new records added to the Sample.MyData table results in new entries being added to the Annotation Store.

4.4.1 Adding a Record to the Aviation.Event Table

In this step, you will use SQL to add some unstructured text to the Sample.MyData table in the sample database. Remember
that this is the table that contains the MyText column on which you defined the functional index. As you will see, annotations
are generated automatically when you make this insertion.

1. On the System Explorer > SQL page, expand the Tables list in the left-hand pane.
2. Select sample.MyData, which is the table that contains the unstructured text that gets sent through the analysis pipeline.
3. In the right-hand pane, click the Execute Query tab.
4. Toinsert a new entry into the sample database, enter the following query into the text box:
INSERT INTO Sample.MyData (MyText) VALUES ("First Look unstructured text®)
5. Click Execute.
This puts the phrase “First Look unstructured text” into the MyText column of the Sample.MyData table.
6 First Look: InterSystems IRIS and UIMA

Learn More About UIMA

4.4.2Viewing New Entries in the Annotation Store

Now that you have added new unstructured text into the samples database, you can look at the Annotation Store to see how
this text was automatically sent through the analysis pipeline. You can see that both the new unstructured text and the
annotations from InterSystems IRIS NLP were added to the Annotation Store.

1. On the System Explorer > SQL page, expand the Tables list in the left-hand pane.
2. Select the Sample_MyData.Sofa table.

3. Inthe right-hand pane, click Open Table.

Wizards » Actions » Open Table Tools » Documentation =

———

[Catalug Detailsl Execute Que rj,.rl Browse] SQL Stateme nts}

Table: Sample_MyData.Sofa ® Table Info Fields Maps/Indices Triggers Constraint

Table Type TABLE
Owner _SYSTEM
Last Compiled 2019-04-19 12:09:13

You can see the new record that was added to the Annotation Store. The sofaString is the piece of unstructured text
that was processed by the analysis pipeline.

4. Click Close Window.
5. Inthe left-hand pane, select the Sample_MyData.Annotation table.
6. Click open Table.

In the coveredText column, you can see the annotations that were generated by the InterSystems IRIS NLP analysis
engine.

5 Learn More About UIMA

To learn more about how InterSystems IRIS implements and complements UIMA, see Using InterSystems UIMA.

For a detailed overview of the frameworks, infrastructure, and components of the UIMA standard, see the Apache UIMA
home page.

First Look: InterSystems IRIS and UIMA 7

https://uima.apache.org/index.html
https://uima.apache.org/index.html

	Table of Contents
	1 About UIMA
	2 How InterSystems IRIS Complements UIMA
	2.1 Creating and Invoking a UIMA Analysis Pipeline
	2.2 Annotation Store
	2.3 InterSystems IRIS NLP

	3 Tour of UIMA in InterSystems IRIS
	3.1 Before You Begin

	4 Taking the Tour of a UIMA Analysis Pipeline
	4.1 Adding Class File with a UIMA Functional Index
	4.2 Compiling the Table Class
	4.3 Browsing the Annotation Store
	4.4 Sending New Text Through the Analysis Pipeline

	5 Learn More About UIMA

