
Try-Catch FAQ

Version 2019.4
2020-01-28

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Try-Catch FAQ
InterSystems IRIS Data Platform Version 2019.4 2020-01-28
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

Try-Catch FAQ... 1

General Questions .. 1
Try-Catch and Older Error-Handling Mechanisms .. 5

Try-Catch FAQ iii

Try-Catch FAQ

General Questions

What is Try-Catch?

Try-Catch is a language construct in ObjectScript that allows applications to handle exceptional conditions, called exceptions.
Try defines a block of code for which exceptions are handled by a paired Catch block. Exceptions include all ObjectScript
system errors such as <DIVIDE> and <UNDEFINED>, which are thrown implicitly when the language encounters an
error; they also encapsulate other types of exceptional conditions, which can be thrown explicitly by the application with
the Throw command. If an exception is thrown in the Try block, control is transferred to the Catch block, and execution
resumes there.

Exceptions can be thrown from code that is not in a defined Try block. When that happens, the next exception handler on
the stack catches the exception, unwinding the stack as necessary. The exception handler that catches the exception may
be a Catch, but it may alternatively be a $ZTRAP handler (more on this below).

An exception, when thrown, causes the application to deviate from the normal flow of control and resume execution at the
first available exception handler on the stack (the deepest stack level), unwinding the stack if necessary until one is found.
When using Try-Catch, typically the first available exception handler would be a Catch block. The exception object is
available to the Catch block, and can be inspected to recover information about the exception.

What is the difference between an exception and an error?

The term “error” can have multiple meanings, so this article avoids using it as a technical term. An exception is an object
that is a subclass of the %Exception.AbstractException class. Several types of exceptions are modeled as subclasses of
%Exception.AbstractException.

ObjectScript system errors, such as <DIVIDE> and <UNDEFINED> are exceptions of the class %Exception.SystemException.
Exceptions of this form are automatically instantiated and thrown by the system when such errors occur. There are other
classes of exceptions that can be instantiated by the application and thrown using the Throw command.
%Exception.StatusException is an exception class to model %Status errors, and %Exception.SQL models SQLCODE errors.
You can also create your own exception class by extending these exception classes.

I called a method that returned an error %Status value. How do I throw it as an exception?

%Exception.StatusException has a method, CreateFromStatus, to create an exception object that can then be thrown with
the Throw command. For example, if the variable sc contains a %Status value, the following code will throw it as an
exception:

if $$$ISERR(sc) {
 throw ##class(%Exception.StatusException).CreateFromStatus(sc)
}

Note: This functionality is also accessible from the macros $$$ThrowStatus and $$$THROWONERROR.

Try-Catch FAQ 1

How do I throw an exception from an error SQLCODE?

The %Exception.SQL class has a method, CreateFromSQLCODE, to create an exception object that can then be thrown
with the Throw command. For example, if the variable SQLCODE contains an SQLCODE value and %msg its message,
the following code throws it as an exception:

if SQLCODE<0 {
 throw ##class(%Exception.SQL).CreateFromSQLCODE(SQLCODE,%msg)
}

What happens if an exception occurs inside my Catch block?

Exceptions that are thrown inside a Catch block are just like exceptions that occur anywhere else outside of the Try block
– the next available exception handler on the stack handles them. You can nest another Try-Catch within the Catch block
itself in order to catch additional exceptions within your exception handling code.

Can I convert from an exception to a %Status or SQLCODE

Yes, exception objects have methods AsStatus and AsSQLCODE that do just that.

What can I do with an exception when I catch it?

The Catch block is a fully functioning ObjectScript environment and you can use any commands you need. There are some
things that you may typically want to do in order to process the exception, which are described here. These actions need
not be entirely contained within the Catch block; they can be done in code following the Catch block if desired.

First, because Catch handles multiple kinds of exceptions, your application may want to distinguish among different
exceptions in order to determine what to do. You can use the $classname function or the %IsA method (inherited from the
InterSystems IRIS® %Library.Base class) to determine the class or superclass of the exception object. You can inspect the
Name and Code properties of the exception object to determine the type of error.

You often want to undo work that has been done prior to the exception, release a lock or other resource, and/or roll back a
transaction.

You may want to log it to the standard application error log by calling LOG^%ETN. If the exception is not a
%Exception.SystemException, set $ZERROR to a meaningful value prior to calling LOG^%ETN; this value will be used
as the Error Message field in the log entry. (The application error log is visible in the Management Portal’s Application

Error Log page.) Additionally, you can get a summary of the exception to display to the user using the DisplayString
method of the exception object.

Upon completion of all the above you would typically do one of several things:

• Continue processing or return from the current procedure

• Re-throw the exception to the next exception handler on the stack

• Throw a new exception

• Halt the process

Here’s an example that illustrates some of these concepts:

func(id) public {
 Try {
 ; Flag indicates if we locked the global
 Set locked=0
 ; If we cannot get the lock, throw a user-created
 ; exception with the information we need
 Lock +^mygbl(id):0 If '$test {
 Throw ##class(Exception.MyException).%New("Unable to

2 Try-Catch FAQ

General Questions

 lock",$name(^mygbl(id)))
 }
 Set locked=1
 Set sc=$system.OBJ.Compile("MyClass")
 If $$$ISERR(sc) {
 Throw ##class(%Exception.StatusException).CreateFromStatus(sc)
 }
 ; Some further processing which may throw exceptions
 ; ...

 If locked { Lock -^mygbl(id) }
 }

Catch exception {
 ; Release the lock resource before doing anything else
 If locked { Lock -^mygbl(id) }
 ; First determine what sort of exception this is
 If exception.%IsA("%Exception.SystemException") {
 ; Log error in error log
 Do BACK^%ETN
 ; Throw my exception class rather than the system exception
 Throw ##class(Exception.MyException).CreateFromSystemException(exception)
 } ElseIf $classname(exception)="Exception.MyException" {
 ; Ignore this sort of exception and just return to code
 ; after the catch block
 } Else {
 ; We will just throw these to outer error handler
 Throw exception
 }
 }
}

I use Try-Catch in an outer-level procedure that will call other procedures, which in turn call other procedures.
At some deep stack level, an exception occurs that gets caught in my outer-level Catch. How do I recover the call
stack where the exception occurred?

For exceptions of the class %Exception.SystemException (such as the <UNDEFINED> ObjectScript system error), you can
use the $stack function to inspect the error stack. For other exception classes, the code that throws the exception needs to
be modified to allow the exception handler to recover the stack.

The following example shows how to use the $stack function for system exceptions and one way to capture the stack for
other classes of exception. It comes in two parts: a custom exception class to extend %Exception.StatusException with stack
information, and an example routine that both logs and displays the captured information, for both system exceptions and
other types of exceptions.

The exception class:

Class MyException.Status Extends %Exception.StatusException
{

 Property Stack [MultiDimensional];

 /// Convert a %Status into an exception
 ClassMethod CreateFromStatus(pSC As %Status)
 As %Exception.AbstractException
 {
 // You could choose to override %OnNew and put this code that
 // captures the stack there instead of here in CreateFromStatus.
 // We put it here because we only need to capture the stack in
 // the outer exception, and it is more simply insulated from
 // future changes in the superclasses.

 // First, call CreateFromStatus in the superclass to instantiate
 // the object and fill in the standard exception information.
 set exc=##super(pSC)

 // Clear $ecode so that $stack() refers to the current stack,
 // not the error stack.
 set $ecode=""

 // Subtract one level because we don't need
 // to see this method itself in the stack.
 set exc.Stack=$stack-1

 for i=1:1:exc.Stack {
 set exc.Stack(i)=$stack(i)_

Try-Catch FAQ 3

General Questions

 " "_$stack(i,"PLACE")_" "_$stack(i,"MCODE")
 }
 quit exc
 }
}

The example routine that both logs and displays the exception information:

#include %occInclude
testexc(throwsystemexception) {
 try {
 do sub1($g(throwsystemexception))
 } catch exc {
 if exc.%IsA("%Exception.SystemException") {
 set stack=$stack(-1)
 // For System Exceptions, get the stack from the
 // built-in error stack using $stack().
 for i=1:1:stack {
 set stack(i)=$stack(i)_
 " "_$stack(i,"PLACE")_" "_$stack(i,"MCODE")
 }
 } else {
 if $extract($classname(exc),1,12)="MyException." {
 // Exceptions from package MyException will carry the
 // stack of the exception in the multidimensional
 // Stack property.
 merge stack=exc.Stack
 }
 // Set $ze explicitly because it's needed by BACK^%ETN
 // and only SystemExceptions set it implicitly.
 set $ze=exc.DisplayString()
 }
 do BACK^%ETN
 write !,"Exception occurred: ",exc.DisplayString()
 write !," class: ",$classname(exc)
 write !," name: ",exc.Name
 write !," code: ",exc.Code
 if $data(stack) {
 write !," stack:"
 for i=1:1:stack {
 write !," ",stack(i)
 }
 }
 write !
 }
}
sub1(throwsystemexception) {
 if throwsystemexception {
 do systemexception
 } else {
 do myexception
 }
}
myexception() PUBLIC {
 set sc=$$$ERROR($$$GeneralError,"this is my status code")
 throw ##class(MyException.Status).CreateFromStatus(sc)
}
systemexception() PUBLIC {
 // get a <DIVIDE> error
 set x=1\0
}

The output from the test routine:

USER>do ^testexc(1)

Exception occurred: <DIVIDE> 18 systemexception+2^testexc
 class: %Exception.SystemException
 name: <DIVIDE>
 code: 18
 stack:
 DO +3^testexc +1 do sub1($g(throwsystemexception))
 DO +40^testexc +1 do systemexception
 DO systemexception+2^testexc +1 set x=1\0

USER>do ^testexc(0)

Exception occurred: ERROR #5001: this is my status code
 class: MyException.Status
 name: 5001
 code: 5001
 stack:
 DO +3^testexc +1 do sub1($g(throwsystemexception))

4 Try-Catch FAQ

General Questions

 DO +42^testexc +1 do myexception
 DO myexception+2^testexc +1 throw ##class(MyException.Status).CreateFromStatus(sc)

USER>do ^%ERN

For Date: T 16 Feb 2012 2 Errors

Error: ?L

 1. <DIVIDE>systemexception+2^testexc at 1:25 pm. $I=/dev/ttys001 ($X=0 $Y=299)
 $J=8225 $ZA=0 $ZB=$c(13) $ZS=16384 ($S=16504448)
 set x=1\0

 2. ERROR #5001: this is my status code at 1:25 pm. $I=/dev/ttys001 ($X=0 $Y=310)
 $J=8225 $ZA=0 $ZB=$c(13) $ZS=16384 ($S=16504336)

Try-Catch and Older Error-Handling Mechanisms

InterSystems IRIS supports other mechanisms for handling exceptions, such as $ZTRAP. Which should I use?

Use Try-Catch. It’s the recommended exception handling mechanism in InterSystems IRIS for several reasons:

1. In most cases, Try-Catch allows you to create more readable and elegant code, which makes it easier to maintain your
application.

2. It has no runtime performance cost for activities that succeed (that is, where there is no exception). This generally leads
to a performance benefit.

3. Because it’s easier to use, Try-Catch code is less prone to error. (For example, it helps avoid the construction with
$ZTRAP that can create an infinite loop.)

4. For existing applications, it can provide a path to a consistent exception handling interface by encapsulating code with
other InterSystems mechanisms to handle exceptions.

5. Try-Catch gives you access to the exception object and therefore allows you to recover all information about the
exception that was thrown, regardless of what type of exception occurs.

How do Try-Catch and exceptions interact with the older ObjectScript error handlers?

If an exception is thrown, and an older error handler is the first available exception handler on the stack, control is passed
to that error handler in the normal way. The exception object, however, will not be available. If the exception thrown was
a system exception (%Exception.SystemException), the $ZERROR value will be set as expected; for other exception classes
caught by $ZTRAP, the $ZERROR value will be set to <NOCATCH>. In either case, the flow of control is the same.

If code in a Try block calls a procedure, method, or subroutine that sets $ZTRAP and then an exception occurs inside that
procedure, the $ZTRAP catches the exception because it’s at a deeper stack level. If code is using $ZTRAP and calls a
procedure, method, or subroutine that uses Try-Catch and an exception occurs within the Try, then the Catch catches it
(again, because it’s at the deeper stack level). In short, exception handling uses whatever is at the deepest stack level.

Try-Catch FAQ 5

Try-Catch and Older Error-Handling Mechanisms

	Table of Contents

