InterSystems-

IRIS Data Platform

Using the Work Queue
M anager

Version 2019.4
2020-01-28

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using the Work Queue Manager

InterSystems IRIS Data Platform Version 2019.4 2020-01-28
Copyright © 2020 InterSystems Corporation

All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

1.2 REQUITEIMENES ...oviieieietesie ettt b b e e bt se e st e e e e aeeae e st ebesbesbesbesbeseeseens
2 Including Callbacks fOr WOrK TTEIMScc.oiiii et
3 Using Callbacks to Determing COMPIELIONc..cereerieerieerieesee st
4 Controlling Output tO the CUIMTENt DEVICEcccoueirieerieeriereee e
5 Pausing and Resuming @ WOrk QUEUEc.ccceeerererenereseseseseeseeste e sesseeesseesessessessessessessessens
6 Stopping a Work Queue and Removing WOTK [TEMSccceoeeererieveseseseesesesee e ses e ssessessesnens
7 Specifying Setup and TeardoWN PrOCESSINGcoveovereereeererenertesiesiessesieseeseesseseeseeeesesessessessessens
8 NOLES 0N the WOIKEN JODSc.eeiviiiiiisiesie ettt st sae b b sa bt e

Using the Work Queue Manager

Using the Work Queue Manager

Thework gqueue manager enables you to distribute work to multiple concurrent processesin order to improve performance.
I nterSystems code uses the work queue manager internally in several places, and you can useit for your own needs aswell.
This article discusses the following topics:

Basics of using the work queue manager

How to specify callbacks for work items

How to use callbacks to determine completion
How to control output to the current device
How to pause and resume awork queue

How to stop awork queue and clear it

How to specify setup and teardown processing

Notes on the worker jobs

Also see the class reference for the %SYSTEM.WorkMgr class.

1 Basics

In order to use this feature, you need to divide the work into units that can be processed independently. Once you have
identified such units of work, there are three basic steps:

1

Initialize the worker jobs. To do this, call the Initialize() method of %SYSTEM.WorkMgr, which returns awork queue
— an instance of %SYSTEM.WorkMgr.

You can specify the number of parallel jobs to use, or you can use the default, which depends on the machine and
operating system.

Add work queueitems. To do this, call the Queue() method of the work queue. As arguments, pass the name of aclass
method (or aroutine), aswell as any arguments.

When you add awork gqueue item, the work queue immediately begins work on that item, if possible. If the number
of work itemsis larger than the number of jobs for awork queue, the work queue divides the work items into groups,
and processesthe groups one at atime. For example, if there are 100 work itemsand four jobs, the work queue processes
the work items four at atime.

When the work item is run, it uses the security context of the caller.
Wait for the work to be completed. To do this, call the WaitFor Complete() method of the work queue.

Continue processing as appropriate for your application.

The following example shows the steps:

Using the Work Queue Manager 1

Basics

Set queue=##cl ass(¥BYSTEM WorkMgr) . I nitiali ze(, . sc)
If $$$I SERR(sc) {
Return sc
}
For i = 1:1:filelist.Count() {
Set sc=queue. Queue("..Load",filelist.GetAt(i))

If $$3$1 SERR(sc) {
Return sc
}

}
Set sc=queue. Wi t For Conpl et e()
I f $$31 SERR(sc) {
Return sc
}

In this example, the code initializes the work queue manager and then iterates through alist of files. For each file, the code
adds awork queueitem that loadsthefile. After adding all thework queueitems, the code waitsfor the work to be compl eted.

1.1 Details on the Basic Methods

Thissection provides reference information on the basic methods shown in the previous section. These methods are available
in %SYSTEM.WorkMgr.
Initialize()

classnmethod Initialize(gspec As ¥string = "", ByRef sc As %Status, nunberjobs As % nteger) as
Wor kMgr

Creates, initializes, and returnsawork queue, that is, an instance of %SYSTEM.WorkMgr that you can useto perform
parallel processing. The arguments are as follows:

e gspecisastring of compiler flags and qualifiers that affect code running within this work queue. See
“Viewing Class Compiler Flags and Qualifiers” in the chapter “Defining and Compiling Classes” in
Defining and Using Classes.

* sc, whichisreturned by reference, is a %Status value that indicates whether the system was successful when
it created and initialized this work queue.

* numberjobs isthe number of parallel workers to use within this work queue. The default depends on the
characteristics of the machine and operating system.
You can also specify the number of parallel workers by includingthe/ mul t i conpi | e=numqualifier within the

gspec string, with the following exceptions:

e If/mul ticonpil e=1, thework queue uses the default number of parallel workers, which depends on the
machine and operating system.

e If/multiconpil e=-1, thework queue uses only one worker.
If you specify / mul ti conpi | e=numand you specify numberjobs, numberjobs takes precedence.

Queue()

nmet hod Queue(work As ¥%Btring, args... As %Btring) as %btatus

Adds awork unit to awork queue. The arguments are as follows:

» work specifies the code to execute. The code should return a %Status value to indicate success or failure. In
this case:

— Tocal aclass method, use the syntax ##cl ass(d assnane) . d assMet hod where Classnameis
the fully qualified name of the class and ClassMethod is the name of the method. If the method isin the
same class, you can use the syntax . . G assMet hod as shown in the example.

2 Using the Work Queue Manager

Basics

— Tocall asubroutine, use the syntax $$ent r y~r t n where entry is the name of the subroutine and rtnis
the name of the routine.
If the code does not return a %Status value, then:

— Tocdl aclassmethod, usethe syntax =##cl ass(d assnane) . C assMet hod (or=. . assMet hod
if the method isin the same class)

— Tocall asubroutine, use the syntax ent ry~rt n

Also see the *“Requirements” subsection.

e argsisacomma-separated list of arguments for the class method or subroutine. To pass a multidimensional
array as an argument, precede that argument with a period as usual so that it is passe/d by reference.

Note that the size of the data passed in these arguments should be kept relatively small. If thereisalarge
amount of information that needs to be provided, then use a global instead of passing arguments.

The security context of the caller isrecorded, and each work item runs within that security context.

WaitForComplete()

nmet hod Wi t For Conpl et e(qgspec As %Btring, errorlog As %Btring) as %tatus

Waits for the work queue to complete al the items and then returns a %Status value to indicate success or failure.
The %Status value contains information from all %Status values returned by the work items. The arguments for
WorkFor Complete() are as follows:

» qspecisastring of compiler flags and qualifiers. See “Viewing Class Compiler Flags and Qualifiers” in the
chapter “Defining and Compiling Classes” in Defining and Using Classes.

« errorlog, which isreturned as output, is astring of error information (if any).

1.2 Requirements

The following requirements apply to the units of work that you pass into awork queue:

As noted previously, by default, al units of work are expected to return a %Status value to indicate success or failure
so that the WaitFor Complete() method can return a %Status value to indicate overall success or failure. A unit of
work can also throw an exception; in this case, the exception istrapped and converted to a %Status value to be returned
in the master process.

All the units of work must be totally independent and must not rely on each other. You cannot rely on the order in
which the units of work are processed. For example, one unit of work cannot rely on output from another unit of work.

If the units of work change the same global, be sure to add locking to ensure one worker cannot change the global
while another worker is reading it.

The units of work should not use exclusive news, kills or unlocks, because these will interfere with the framework.

If you use process-private global s to store data during the processing, note that because multiplejobswill be processing
each chunk, you cannot rely on accessing these process-private globals from the master process (or even from another
chunk).

The size of each unit of work should be on the order of thousands of lines of ObjectScript code to ensure the overhead
of the framework is not asignificant factor. Also, rather than ahaving than afew very large units of work (for example,
4) it is better to have afairly large number (for example, 100) of units of work, because this permits scaling up when

there are more CPU cores.

Using the Work Queue Manager 3

Including Callbacks for Work Items

2 Including Callbacks for Work Items

You can specify callbacks for work items — code that the work queue manager should execute after completing the work
item. To do this, instead of calling the Queue() method, call the QueueCallback() method:

met hod QueueCal | back(work As %String, callback As %Btring, args... As ¥%Btring) as %&tatus

The work and args methods are the same as for the Queug() method.

The callback argument specifies the callback code to execute. For this argument:

» Tocal aclass method, use the syntax ##cl ass(Cl assnane) . d assMet hod

» Tocal asubroutine, usethe syntax $$ent r yr t n.

The class method or subroutine must accept the same arguments, in the same order, as the main work item. The master
process passes the same arguments to the main work item and to the callback code.

The callback code can use the following public variables:

* %job, which containsthe job ID of the process that actually did the work.

* Ystatus, which contains the %Status value returned by the work unit.

* %workqueue, which is the OREF of the work queue instance.

These public variables are available within the callbacks but not within the work items.

3 Using Callbacks to Determine Completion

The basic technique uses the WaitFor Complete() method to wait until al work items are complete. You can instead use
callbacks to indicate that work is complete. To do this:

» Instead of using Queue() to add work items, use QueueCallback().
» Inthe callback code, when the work is complete for all work items, set the public variable %exit to 1.

e Instead of using WaitFor Complete(), use Wait().
The Wait() method is as follows:
met hod WAit(gspec As %Btring, byRef AtEnd As 9%Bool ean) as %t atus

This method waits for asignal from a callback to exit back to the caller. Specifically, it waits for the callback code to set
the public variable %exit equal to 1. This method returns AtEnd by reference. If AtEnd is 1, all the work is complete. If
AtEnd is O, there are work items that did not get done.

4 Controlling Output to the Current Device

By default, if work items generate output (WRI TE statements) to the current device, the work queue saves the output in a
buffer until the end of WaitFor Complete() or Wait(). If you want awork item to generate output earlier, have that work
item call the Flush() class method of %SYSTEM.WorkMgr.

4 Using the Work Queue Manager

Pausing and Resuming a Work Queue

Cl assMethod Flush() as %&tatus

When the work item calls this method, that causes the parent work queue to write all saved output for the work item.

Also, as usual, you can use the - d flag to suppress all output to the current device. In this case, the Flush() method does
nothing, because there is no output.

5 Pausing and Resuming aWork Queue

The %SYSTEM.WorkMgr class provides methods you can use to pause and resume work within awork queue. These
methods do not affect the work items that are currently in progress, but instead affect items that have not yet been started.
(For information on halting work completely, including work in progress, see the next section.)

Pause()

met hod Pause() as %t at us

Prevents the work queue processes from accepting additional items from this specific work queue. Any work
items currently in progress are completed as usual.
Resume

met hod Resune() as %t atus

Resumes work in thiswork queue, if it had previously been paused via Pause(). Specifically, this method enables
the work queue processes to accept and start additional itemsin the work queue, if any.

6 Stopping aWork Queue and Removing Work Items

You can stop awork queue, interrupting any work itemsin progress and removing any queued work items. To do this, call
the Clear () method of the work queue.

met hod Cl ear(timeout As YW nteger = 5) as %status

Given the timeout period timeout (in seconds), this method waits for the worker jobs to finish their current tasks, and kills
thejobs. The system removes and then recreates the work queue, with no attached work items. Processing isnow considered
done, so the system returns immediately from Wait() or WaitFor Complete().

7 Specifying Setup and Teardown Processing

Each work queue typically has multiple worker jobs. If there are more work items than worker jobs, then aworker job will
perform multiple work items, one at atime. It is useful to identify any setup steps needed before these work items start,
and invoke all such logic before adding the work items to the queue.

The %SYSTEM.WorkMgr class provides methods, Setup() and Tear Down(), that you can use to define the setup activity
and the cleanup activity for the worker jobs. For example, use Setup() to set public variables for use within the worker job,
and use Tear Down() to kill those variables. You can aso use Setup() to take out locks and to set process-private globals,
and you would use Tear Down() to release those locks and remove those globals.

Using the Work Queue Manager 5

Notes on the Worker Jobs

In either case, you must call Setup(), Tear Down(), or both before calling Queue or QueueCallback. The Setup() and
Tear Down() methods save information in internal globals used only by the work queue manager. When any worker job
startsits first work item from this queue, that worker job first checks the work manager queue globalsto seeif thereis any
setup logic. If so, the worker job executes that |ogic and then starts the work item. The worker job does not execute the
setup logic again. Similarly, after any worker job finishes its last work item from the queue, that worker job checks to see
if thereis any teardown logic. If so, the worker job executes that logic.

The following provides details for these methods:

Setup()

met hod Setup(work As %String, args... As %String) as %Status

Specifies the code for aworker process to call before processing its first item from the queue. If you use this
method, call it before calling Queue or QueueCallback.

The arguments are as follows:
» work specifies the setup code to execute. See the comments for Queue(), described earlier.

e argsisacomma-separated list of arguments for this code. To pass a multidimensional array as an argument,
precede that argument with a period as usual so that it is passed by reference.

Note that the size of the data passed in these arguments should be kept relatively small. If thereisalarge
amount of information that needs to be provided, then use a global instead of passing arguments.

TearDown

nmet hod Tear Down(work As %Btring, args... As %Btring) as %tatus

Specifies the code for aworker process to call to restore the processto its previous state, after processing its last
item from aqueue. If you use this method, call it before calling Queue or QueueCallback.

The arguments are the same as for Setup(), except that work specifies the teardown code to execute.

8 Notes on the Worker Jobs

The worker jobs are separate processes and can viewed, managed, and monitored like other processes. Note the following
points:

* Whenyou call WaitFor Complete() or Wait(), for a given queue, that queue is moved to the top of the priority list so
the background workers will process work from this queue before any other existing queue.

« Whenaqueueisdeleted or cleared, if thereis aworker job actively processing something for this queue, the system
waits (by default) up to 5 seconds for the job to finish. If the job has not finished in that period of time, the system
forcesthisjob to exit and then start up additional worker jobsto replaceit.

» After aworker jobisno longer used, it remains available — for a span of time — for use by other work manager
gueues. After along enough period of inactivity, the job is removed. Thistimeout period is subject to changeand is
deliberately not documented.

e The superserver starts the worker jobs, which means that they run under the name of the operating system user used
by the superserver process. This username may be different from the currently logged-in operating system user.

If you need to need to know whether agiven processis aworker job, call $system.Wor kM gr.I sWor ker Job() from within
that process (call the IsWorker Job() method of the class %SYSTEM.WorkMgr).

6 Using the Work Queue Manager

Notes on the Worker Jobs

Thework queue (instance of %SYSTEM.WorkMgr) providesthe properties Numworkers (the number of worker jobs assigned
to this queue) and NumActiveWorkers (number of currently active worker jobs).

Using the Work Queue Manager 7

	Table of Contents
	1 Basics
	1.1 Details on the Basic Methods
	1.2 Requirements

	2 Including Callbacks for Work Items
	3 Using Callbacks to Determine Completion
	4 Controlling Output to the Current Device
	5 Pausing and Resuming a Work Queue
	6 Stopping a Work Queue and Removing Work Items
	7 Specifying Setup and Teardown Processing
	8 Notes on the Worker Jobs
	Index

