
Using the Object Gateway for
.NET

Version 2019.4
2020-01-28

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using the Object Gateway for .NET
InterSystems IRIS Data Platform Version 2019.4 2020-01-28
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

1 Object Gateway Architecture .. 3
1.1 Using Proxy Classes ... 3
1.2 Using Wrapper Classes with .NET APIs .. 4
1.3 Creating and Running an Object Gateway Server .. 5
1.4 Importing Proxy Classes .. 5
1.5 The .NET Object Gateway API .. 6

2 Setting Object Gateway Server Properties .. 7
2.1 Using the New Object Gateway Form .. 7
2.2 Defining Server Properties Programmatically ... 9
2.3 Object Gateway Server Versions .. 10

3 Running an Object Gateway Server ... 11
3.1 Starting the Server .. 11

3.1.1 Starting a Server from the Command Prompt .. 11
3.2 Connecting to a Server Thread ... 12

3.2.1 The Gateway.%Connect() Method ... 12
3.3 Disconnecting and Stopping the Server ... 12
3.4 Monitoring and Debugging the Object Gateway .. 13

3.4.1 Error Checking ... 13
3.4.2 Troubleshooting ... 13

4 Using Dynamic Object Gateways .. 15
4.1 Introducing Dynamic Gateways ... 15
4.2 Creating and Using a Dynamic Object Gateway .. 16
4.3 Array Access ... 17
4.4 Gateway Reentrancy ... 18
4.5 Example Classes ... 19

4.5.1 The .NET Fruit Class ... 19
4.5.2 Creating the NetGate Server Definition ... 20

5 Creating Static Proxy Classes .. 21
5.1 Using the Studio .NET Object Gateway Wizard .. 21
5.2 Generating Proxy Classes Programmatically ... 23

5.2.1 %Import() Method ... 23
5.2.2 %GetAllClasses() Method ... 24
5.2.3 %ExpressImport() Method ... 24

6 Sample Code .. 25
6.1 Compiling and Running the .NET Test Project .. 25

6.1.1 Compiling the .NET Assembly .. 25
6.1.2 Creating and Running the Server ... 25
6.1.3 Generating InterSystems IRIS Proxy Classes .. 25
6.1.4 Running the InterSystems IRIS DotNet.Test Examples .. 26

6.2 Source Code for the Test Class ... 26
6.2.1 Test() Method ... 26
6.2.2 The TestArrays() Method ... 30

7 Mapping Specification .. 33

Using the Object Gateway for .NET iii

7.1 Assembly and Class Names .. 33
7.2 Primitives .. 33
7.3 Properties .. 34
7.4 Methods .. 35

7.4.1 Overloaded Methods .. 35
7.4.2 Method Names ... 35
7.4.3 Static Methods .. 36

7.5 Constructors ... 36
7.6 Constants .. 36
7.7 OUT and REF Parameters .. 36
7.8 .NET Arrays ... 37
7.9 Recasting .. 37
7.10 .NET Standard Output Redirection .. 38
7.11 Restrictions ... 38

8 Using the Object Gateway in a Production .. 39
8.1 Creating a Business Service ... 39

8.1.1 Business Service Settings for the Object Gateway .. 40
8.2 Calling Business Service Methods ... 41

8.2.1 StartGateway() Method .. 41
8.2.2 ConnectGateway() Method .. 41
8.2.3 StopGateway() Method .. 42

8.3 Creating a Business Operation ... 42
8.4 Calling API Methods .. 42

8.4.1 %Connect() Method ... 43
8.4.2 %Disconnect() Method .. 43
8.4.3 %Shutdown() Method .. 43
8.4.4 %Import() Method ... 43
8.4.5 %ExpressImport() Method ... 44
8.4.6 %GetAllClasses()Method .. 44

8.5 Using the Command Prompt .. 44
8.6 Using the .NET Object Gateway Wizard ... 45
8.7 Error Checking ... 45
8.8 Troubleshooting .. 46

iv Using the Object Gateway for .NET

List of Figures

Figure 1–1: .NET Object Gateway Operational Model ... 3
Figure 1–2: Connecting to a .NET Object Gateway Worker Thread ... 5
Figure 1–3: Importing .NET Classes ... 5
Figure 2–1: The Object Gateways Page .. 7
Figure 2–2: The New Object Gateway Form ... 8
Figure 5–1: The .NET Gateway Wizard Studio Template ... 22
Figure 5–2: Selecting Classes to Import .. 23

Using the Object Gateway for .NET v

About This Book

This book explains how to enable easy interoperation between InterSystems IRIS® and Microsoft .NET Framework com-
ponents using the InterSystems IRIS Object Gateway for .NET, which can instantiate an external .NET object and manip-
ulate it as if it were a native object.

This book contains the following chapters:

• Object Gateway Architecture

• Setting Object Gateway Server Properties

• Running an Object Gateway Server

• Using Dynamic Object Gateways

• Creating Static Proxy Classes

• Sample Code

• Mapping Specification

• Using the Object Gateway in a Production

There is also a detailed Table of Contents.

Using the Object Gateway for .NET 1

1
Object Gateway Architecture

The InterSystems IRIS® Object Gateway for .NET (which this book will usually refer to as simply “ the Object Gateway”)
provides an easy way for InterSystems IRIS to interoperate with Microsoft .NET Framework components. The Object
Gateway can instantiate an external .NET object and manipulate it as if it were a native object within InterSystems IRIS.

1.1 Using Proxy Classes
The external .NET object is represented within InterSystems IRIS by a proxy class. A proxy object looks and behaves just
like any other InterSystems IRIS object, but it has the capability to issue method calls out to the .NET Common Language
Runtime (CLR), either locally or remotely over a TCP/IP connection. Any method call on the InterSystems IRIS proxy
object triggers the corresponding method of a .NET object inside the CLR.

The following diagram offers a conceptual view of InterSystems IRIS and the Object Gateway at runtime.

Figure 1–1: .NET Object Gateway Operational Model

Instances of the .NET Object Gateway Server run in the CLR. InterSystems IRIS and the CLR may be running on the same
machine or on different machines. The numbered items in the .NET Object Gateway Operational Model diagram point out
the following relationships:

Using the Object Gateway for .NET 3

1. An InterSystems IRIS namespace accesses an instance of the .NET Object Gateway Server. Access is controlled by
an instance of the InterSystems IRIS %Net.Remote.Service class.

2. Each InterSystems IRIS session is connected to a separate thread within the Object Gateway server. The connection
is controlled by an instance of the InterSystems IRIS %Net.Remote.Gateway class.

3. Each proxy object communicates with a corresponding .NET object.

A call to any InterSystems IRIS proxy method initiates the following sequence of events:

• InterSystems IRIS sends a message over the TCP/IP connection to the Object Gateway worker thread. The message
consists of the method name, parameters, and occasionally some other information.

• The Object Gateway worker thread finds the appropriate method or constructor call and invokes it using .NET reflection.

• The results of the method invocation (if any) are sent back to the InterSystems IRIS proxy object over the same TCP/IP
channel, and the proxy method returns the results to the InterSystems IRIS application.

1.2 Using Wrapper Classes with .NET APIs
In most cases, you will use the Object Gateway by creating proxy classes for your custom .NET components (see the
chapter on “Creating Proxy Classes” for details). However, it is also possible to create proxy mappings for an entire third
party .NET application interface specification.

It may be tempting to create mappings for extremely large APIs (such as ADO, Remoting, or ASP.Net), which could then
be reused in any number of applications, but this is not recommended. Such mappings can create hundreds of proxy classes,
even though your application may only need a few of them. You can specify a list of classes that you do not want the proxy
generator to map, but a very large exclusion list is difficult to create and manage.

When using a third party DLL in your application, the best approach is to build a small wrapper class for it, and then create
a proxy for this wrapper. A wrapper class exposes only the functionality you want, which makes the interface between
InterSystems IRIS and the .NET framework very clean and eliminates many potential issues. Wrapper classes provide the
following advantages:

• Fewer proxy classes — When a large .NET DLL is imported directly, hundreds of proxy classes may be generated.
Your application may actually need only a few of these classes. A significant amount of work may be required to
research and define an exclusion list for the import. Defining a wrapper is a much easier way to minimize the number
of classes imported and managed.

• Fewer problems with dependencies — The imported DLL may depend on external classes for successful compilation.
The files and directories containing these classes can be specified in an inclusion list when you run the proxy generator,
but this will cause even more unwanted proxy classes to be generated. When a wrapper is used, the dependent files
and their classes are hidden from the importer, eliminating the need for inclusion and exclusion lists.

• Better performance — A wrapper may allow you to reduce the number of calls made to a DLL. For example, assume
that an imported DLL has a class with a readByte() method that reads one byte at a time. If you import the class
directly, each call to the method will require a separate call to the DLL. It would be much more efficient to define a
wrapper class with a readManyBytes() method that repeatedly calls the readByte() method internally, within .NET.

4 Using the Object Gateway for .NET

Object Gateway Architecture

1.3 Creating and Running an Object Gateway Server
Before you can use the Object Gateway, you must start an instance of the .NET Object Gateway Server and tell InterSystems
IRIS the name of the host on which the server is running. Once started, a server runs until it is explicitly shut down.

Once the Object Gateway server is running, each InterSystems IRIS session that needs to invoke .NET class methods must
create its own connection to the server, as shown in the following diagram:

Figure 1–2: Connecting to a .NET Object Gateway Worker Thread

1. ObjectScript code sends a connection request.

2. Upon receiving the request, the Object Gateway server starts a worker thread in which the .NET class methods subse-
quently run.

3. The connection between this Object Gateway worker thread and the corresponding InterSystems IRIS session remains
established until it is explicitly disconnected. As long as it remains connected, the assigned port for the connection
stays “ in use” and is unavailable for use in other connections.

See Setting Object Gateway Server Properties for a detailed description of how to create an Object Gateway Server property
definition, and Running an Object Gateway Server for details on how to start, connect, disconnect, and stop a server.

1.4 Importing Proxy Classes
InterSystems IRIS proxy classes are generated by sending a query to the Object Gateway Server, which returns information
about the methods for which proxy classes are required. The imported method information is then used to construct the
proxy classes, as shown in the following diagram:

Figure 1–3: Importing .NET Classes

Using the Object Gateway for .NET 5

Creating and Running an Object Gateway Server

1. The InterSystems IRIS session sends an import request.

2. Upon receiving the request, the Object Gateway worker thread introspects the indicated .NET assemblies and classes.

3. The thread also loads dependent assemblies either from the local directory or from the Global Assembly Cache (GAC).

4. If it finds any .NET classes that are new or changed, or that have no proxy classes on the InterSystems IRIS side, the
Object Gateway worker thread returns the results of the introspection to the InterSystems IRIS session, which uses the
information to generate new proxy classes.

See Creating Proxy Classes for details on how to generate proxy classes.

1.5 The .NET Object Gateway API
The following classes provide most of the functionality used by your InterSystems IRIS Object Gateway applications:

• %Net.Remote.ObjectGateway — an ObjectGateway object contains the property settings required to run and monitor
an instance of the Object Gateway Server. See Defining an Object Gateway Server for a detailed description.

• %Net.Remote.Service — a Service object controls the interface between an InterSystems IRIS namespace and an
instance of the Object Gateway Server. See Running an Object Gateway Server.

• %Net.Remote.Gateway — a Gateway object controls the connection between ab InterSystems IRIS session and a worker
thread within an instance of the Object Gateway Server, and provides methods to generate proxy classes. See Connecting
to a Server and Generating Proxy Classes Programmatically.

• %Net.Remote.ImportHelper — the ImportHelper class provides some extra class methods for inspecting assemblies and
generating proxy classes. See Generating InterSystems IRIS Proxy Classes.

See the InterSystems IRIS class library documentation for the most complete and up to date information on each of these
classes.

6 Using the Object Gateway for .NET

Object Gateway Architecture

2
Setting Object Gateway Server Properties

Properties of the ObjectGateway class specify the settings used by the Service class (see “Running an Object Gateway
Server”) to access and monitor an instance of the Object Gateway Server. This chapter covers the following topics:

• Using the New Object Gateway Form — The simplest way to define a set of server properties is to use the New Object
Gateway form in the Management Portal, which allows you to create and store a predefined ObjectGateway object.

• Defining Server Properties Programmatically — It is also possible to set the properties of a ObjectGateway object at
runtime.

• Object Gateway Server Versions — Different versions of the .NET Object Gateway Server executable are provided
for .NET 2.0 and 4.0, and for 32-bit and 64-bit systems.

2.1 Using the New Object Gateway Form
While it is possible to specify the settings for an Object Gateway Server session entirely in ObjectScript code, it is usually
simpler to use the New Object Gateway form to create and store a persistent %Net.Remote.ObjectGateway object. The fol-
lowing steps summarize the configuration procedure:

1. In the Management Portal, go to System Administration > Configuration > Connectivity > Object Gateways.

Figure 2–1:The Object Gateways Page

You can use the options on this page to view an Object Gateway's log of recent activity, start or stop an Object Gateway,
and create, edit, or delete an Object Gateway Server definition.

2. On the Object Gateways page, click Create New Gateway. The New Object Gateway form is displayed. Only
the first three fields are required. The following example leaves the default values in place for all fields except Gateway
Name, Port, and Log file (File path is set to the value that would be used if the field were left blank):

Using the Object Gateway for .NET 7

Figure 2–2:The New Object Gateway Form

3. Fill out the form and click Save. The following properties of ObjectGateway can be set:

• Name — Required. A name that you assign to this Object Gateway definition.

• Server — Required. IP address or name of the machine where the Object Gateway server executable is located.
The default is "127.0.0.1".

• Port — Required. TCP port number for communication between the Object Gateway server and the proxy classes
in InterSystems IRIS®. Several methods of class Service (see “Running an Object Gateway Server”) accept the
port number as an optional parameter with a default value of 55000.

• PassPhrase — If this property is checked, the Object Gateway will require a passphrase to connect.

• LogFile — Full pathname of the file used to log Object Gateway messages. These messages include acknowledgment
of opening and closing connections to the server, and any difficulties encountered in mapping .NET classes to
InterSystems IRIS proxy classes. This optional property should only be used when debugging.

• AllowedIPAddresses — IP address of the local network adapter to which the server listens. Specify 0.0.0.0 (the
default) to listen on all IP adapters on the machine (including 127.0.0.1, VPNs, and others) rather than just one
adapter. You may not enter more than one address; you must either specify one local IP address, or listen on all
of them. You must provide a value for this argument if you define the LogFile property.

• FilePath — Specifies the full path of the directory where the Object Gateway server executable is located. This is
used to find the target executable and assemble the command to start the Object Gateway on a local server, and
is required only when you want to use an executable that is not in the default location. If you do not specify this
setting, the form will use the appropriate default executable for your system and your specified .NET Version.

• Exec64 — (applies only to Object Gateways on 64-bit platforms) If this property is checked, the Object Gateway
server will be executed as 64-bit. Defaults to 32-bit execution.

8 Using the Object Gateway for .NET

Setting Object Gateway Server Properties

• DotNetVersion — Specifies the .NET version (2.0 or 4.0) to be used (see “Object Gateway Server Versions”).
Defaults to .NET 2.0.

• Advanced settings (hidden by default)

– HeartbeatInterval — Number of seconds between each communication with the Object Gateway to check
whether it is active. A value of 0 disables this feature. When enabled, valid values are from 1 to 3600 seconds
(1 hour). The default is 10 seconds.

– HeartbeatFailureTimeout — Number of seconds to wait for a heartbeat response before deciding that the Object
Gateway is in failure state. If this value is smaller than the HeartbeatInterval property, the Object Gateway is
in failure state every time the Object Gateway communication check fails. The maximum value is 86400
seconds (1 day). The default is 30 seconds.

– HeartbeatFailureAction — Action to take if the Object Gateway goes into a failure state. Valid values are "R"
(Restart) or "N"(None). The default action is Restart, which causes the Object Gateway to restart.

– HeartbeatFailureRetry — Number of seconds to wait before retrying the HeartbeatFailureAction if the Object
Gateway server goes into failure state, and stays in failure state. A value of 0 disables this feature, meaning
that once there is a failure that cannot be immediately recovered, there are no attempts at automatic recovery.
Valid values when enabled are from 1 to 86400 (24 hours). The default is 300 seconds (5 minutes).

– InitializationTimeout — Number of seconds to wait for a response during initialization of the Object Gateway
server. Valid values are from 2 to 300 (5 minutes). The default is 5 seconds.

– ConnectionTimeout — Number of seconds to wait for a connection to be established with the Object Gateway
server. Valid values are 2 through 300 (5 minutes). The default is 5 seconds.

4. After saving the form, go back to the Object Gateways page. Your new Object Gateway Server definition should now
be listed there.

2.2 Defining Server Properties Programmatically
The ObjectGateway server properties can also be set programmatically.

Note: In addition to the properties defined by the New Object Gateway form (as shown in the previous section), the
Type property must also be set to "2". This defines the server as a .NET Object Gateway (rather than an Object
Gateway for Java).

The following example creates a server definition identical to the one generated by the New Object Gateway form described
in the previous section:

 // Create the object and define it as a .NET Object Gateway
 set gw = ##class(%Net.Remote.ObjectGateway).%New()
 set gw.Type = "2" // an Object Gateway for .NET, not Java

 // Set the properties
 set gw.Name = "GatewayTwo"
 set gw.Server = "127.0.0.1"
 set gw.Port = "55000"
 set gw.PassPhrase = 1
 set gw.LogFile = "C:\Temp\GatewayTwo.log"
 set gw.AllowedIPAddresses = "0.0.0.0"
 set gw.FilePath = "C:\Intersystems\IRIS\dev\dotnet\bin\v2.0.50727"
 set gw.Exec64 = 1
 set gw.DotNetVersion = "2.0"
 set gw.HeartbeatInterval = "10"
 set gw.HeartbeatFailureTimeout = "30"
 set gw.HeartbeatFailureAction = "R"
 set gw.HeartbeatFailureRetry = "300"
 set gw.InitializationTimeout = "5"

Using the Object Gateway for .NET 9

Defining Server Properties Programmatically

 set gw.ConnectionTimeout = "5"

 // Save the object
 set status = gw.%Save()

The call to %Save() is only necessary if you wish to add the object to persistent storage, making it available on the Object
Gateways page of the Management Portal (as described in the previous section).

2.3 Object Gateway Server Versions
Different versions of the Object Gateway Server assembly are provided for .NET 2.0 and 4.0. The following versions are
shipped (where install-dir is the path that $SYSTEM.Util.InstallDirectory() returns on your system).

.NET Version 2.0:

• install-dir\dev\dotnet\bin\v2.0.50727\DotNetGatewaySS.exe

• install-dir\dev\dotnet\bin\v2.0.50727\DotNetGatewaySS64.exe

.NET Version 4.0:

• install-dir\dev\dotnet\bin\v4.0.30319\DotNetGatewaySS.exe

• install-dir\dev\dotnet\bin\v4.0.30319\DotNetGatewaySS64.exe

.NET Version 4.5:

• install-dir\dev\dotnet\bin\v4.5\DotNetGatewaySS.exe

• install-dir\dev\dotnet\bin\v4.5\DotNetGatewaySS64.exe

In some applications, these gateways may be used to load unmanaged code libraries. Since a 64-bit process can only load
64-bit DLLs and a 32-bit process can only load 32-bit DLLs, both 32-bit and 64-bit assemblies are provided for each supported
version of .NET. This makes it possible to create gateway applications for 64-bit Windows that can load 32-bit libraries
into the gateway.

Note: The appropriate version of the .NET Framework must be installed on your system in order to use these assemblies.
The InterSystems IRIS installation procedure does not install or upgrade any version of the .NET Framework.

10 Using the Object Gateway for .NET

Setting Object Gateway Server Properties

3
Running an Object Gateway Server

Each Object Gateway server session consists of the following components:

• an Object Gateway Server instance (see “Object Gateway Server Versions”) running in the .NET CLR

• a %Net.Remote.Service object running in an InterSystems IRIS® namespace

• a unique TCP port over which the two objects communicate

• one or more connections, where each connection links an InterSystems IRIS %Net.Remote.Gateway object to a thread
within the server instance

See “Object Gateway Architecture” for a detailed description and several diagrams showing how these components
interact.

3.1 Starting the Server
These %Net.Remote.Service methods are available to start the server:

• StartGateway() — Start the Object Gateway server specified by an Object Gateway name.

• StartGatewayObject() — Start the Object Gateway server specified by an Object Gateway definition object.

• OpenGateway() — Get the Object Gateway definition object for a given Object Gateway name.

3.1.1 Starting a Server from the Command Prompt

During development or debugging, or when InterSystems IRIS and the Object Gateway server run on different machines,
you may find it useful to start the Object Gateway server from a command prompt.

Note: The Object Gateway server executable will normally be located in a default directory (see “Object Gateway
Server Versions”). If you are using classes in local side-by-side assemblies (assemblies not installed into the
GAC), copy the executable to the same directory as those assemblies and run it from there to resolve their
dependencies.

Run the program as follows:

DotNetGatewaySS port host logfile

For example:

Using the Object Gateway for .NET 11

DotNetGatewaySS 55000 "" ./gatewaySS.log

DescriptionArgument

Port number on which to listen for the incoming requests.port

Optional — Contains the IP address or hostname where the Object Gateway server
listens. Specify "", 0.0.0.0, or default to listen on all IP adapters on the machine
(127.0.0.1, VPNs, etc.) rather than just one adapter.

host

Optional — If specified, the command procedure creates a log file of that name.You
must specify the full pathname in the string.

logfile

3.2 Connecting to a Server Thread
Connecting creates a %Net.Remote.Gateway object.

Once the Object Gateway server is running, each InterSystems IRIS session that needs to invoke .NET class methods must
create its own connection to the Object Gateway server:

• ObjectScript code sends a connection request.

• Upon receiving the request, the Object Gateway server starts a worker thread in which the .NET class methods subse-
quently run.

• The connection between this Object Gateway worker thread and the corresponding InterSystems IRIS session remains
established until it is explicitly disconnected.

3.2.1 The Gateway.%Connect() Method

The %Connect() method establishes a connection with the Object Gateway engine. It accepts the following arguments:

DescriptionArgument

Identifies the machine on which the Object Gateway server is running.host

Port number over which the proxy classes communicate with the .NET classes.port

InterSystems IRIS namespace.namespace

Number of seconds to wait before timing out, the default is 5.timeout

Optional — use this argument to supply additional class paths, such as the
names of additional assembly DLLs that contain the classes you are importing
via the Object Gateway. See the Import Arguments section for details using
this argument.

additionalClassPaths

3.3 Disconnecting and Stopping the Server
ObjectScript code that establishes an Object Gateway worker thread must explicitly disconnect before exiting; otherwise,
the assigned port for the connection stays “ in use” and is unavailable for use in other connections. A worker thread can
be disconnected by calling the %Disconnect() method of the %Net.Remote.Gateway object.

12 Using the Object Gateway for .NET

Running an Object Gateway Server

• The %Disconnect() method closes a connection to the Object Gateway server.

The following %Net.Remote.Service methods are available to stop the Object Gateway server:

• StopGateway() — Stop the Object Gateway server specified by the Object Gateway name passed to this method.

• StopGatewayObject() — Stop the Object Gateway server specified by the Object Gateway definition object passed
to this method.

• ShutdownGateway() — Shutdown the Object Gateway server.

3.4 Monitoring and Debugging the Object Gateway
The following %Net.Remote.Service methods are available to monitor an Object Gateway server:

• CheckMonitor() — Check if Object Gateway is being monitored and return the monitor job number.

• GatewayMonitor() — The Object Gateway server is monitored with PING requests, according to the time interval
specified by the HeartbeatInterval property of the Object Gateway server. Hourly, a record of type "Info" is logged.

• StartMonitor() — If the Object Gateway server has the HeartbeatInterval property set to a value greater than 0, then
job off a background process to monitor the Object Gateway server.

• StopMonitor() — Terminate process currently monitoring an Object Gateway server.

• PingGateway() — "Ping" the Object Gateway server to check if it's alive.

3.4.1 Error Checking

The Object Gateway provides error checking as follows:

• When an error occurs while executing InterSystems IRIS proxy methods, the error is, in most cases, a .NET exception,
coming either from the original .NET method itself, or from the Object Gateway engine. When this happens, an error
is trapped.

• The Object Gateway API methods like %Import() or %Connect() return a typical InterSystems IRIS %Status variable.

In both cases, InterSystems IRIS records the last error value returned from a .NET class (which in many cases is the actual
.NET exception thrown) in the local variable %objlasterror.

You can retrieve the complete text of the error message by calling $system.OBJ.DisplayError, as follows:

 Do $system.OBJ.DisplayError(%objlasterror)

Note that %objlasterror should be used as a debug resource only (for example, in development code that does not yet report
errors properly), so that the underlying problem can be diagnosed and the offending code's error reporting can be corrected.
It is appropriate for such code to kill %objlasterror whenever it uses an error status that is an expected condition and not
a reportable error.

3.4.2 Troubleshooting

The following suggestions may help in certain situations:

• Activate logging

Using the Object Gateway for .NET 13

Monitoring and Debugging the Object Gateway

Should you encounter problems while using the Object Gateway it is always a good idea to turn logging on. This will
also aid InterSystems staff in helping you troubleshoot problems. To activate logging, just define the logfile argument
for the Object Gateway definition you are using (see the chapter on “Setting Object Gateway Server Properties ”)
when you start the Object Gateway.

• Terminal session problems

Sometimes, while using the Object Gateway in a debugging or test situation, you may encounter problems with a
Terminal session becoming unusable, or with write errors in the Terminal window. It is possible that a Object Gateway
connection terminated without properly disconnecting. In this case, the port used for that connection may be left open.

If you suspect this is the case, to close the port, type the following command at the Terminal prompt:

 Close "|TCP|port"

Where port is the port number to close.

• Connection timeout errors

When writing a query, a .NET application may encounter an <ALARM> error due to a connection timeout error. The
default timeout parameter can be overridden with the following command (assuming you have a command CMD):

CMD.CommandTimeout=/NewTimeoutValue/

• Out of Memory errors

Handling large amounts of data over the Object Gateway may cause System.OutOfMemoryException errors. In
this situation, raising the numbers of GDI Handles may help. You can raise the number of handles by changing the
following registry entry:

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows\GDIProcessHandleQuota

The default is 10000 (2710 in Hex). It may help to set it to 20000 (4E20 in Hex). Larger Values like 25000 or 30000
are also possible.

See the following Microsoft MDSN article for more information on this subject:

http://social.msdn.microsoft.com/forums/en-US/wpf/thread/8ebf824a-5585-4b24-8e89-61f8be25d5c4/

14 Using the Object Gateway for .NET

Running an Object Gateway Server

http://social.msdn.microsoft.com/forums/en-US/wpf/thread/8ebf824a-5585-4b24-8e89-61f8be25d5c4/

4
Using Dynamic Object Gateways

This chapter describes how to implement Object Gateways using dynamic proxy objects. In previous releases, static proxies
had to be generated separately, compiled, and stored in the class library just like any other class (see Importing Java Classes
in the previous chapter). Dynamic proxy objects do not require a separate import process before the business operation can
start. The business operation simply creates and uses them as needed during runtime.

• Introducing Dynamic Gateways — provides an overview of dynamic proxies.

• Creating and Using a Dynamic Object Gateway — describes how to use dynamic proxies and gives specific usage
examples.

• Array Access — describes how .NET arrays are implemented as dynamic proxies.

• Gateway Reentrancy — describes how to ObjectScript and .NET code can run safely using the same connection and
context.

• Example Classes — contains detailed information on the classes used as examples in this chapter.

4.1 Introducing Dynamic Gateways
All versions of the Object Gateway can instantiate an external .NET object and manipulate it as if it were a native InterSystems
IRIS object. This is accomplished by creating a proxy object that provides all of the same methods and properties as the
corresponding .NET object. Any call on the proxy object triggers the corresponding method or property of the .NET object.
There are currently two kinds of proxy objects:

• Static proxies are standard ObjectScript classes, which must be individually generated and compiled before they can
be used. If a new version of the .NET class changes the interface in any way, the corresponding proxy class must be
regenerated and recompiled to match it.

• Dynamic proxies are created at runtime by introspecting the current version of the .NET class. All dynamic proxies
are instances of %Net.Remote.Object. Although each Object instance appears to have the same methods and properties
as the corresponding .NET object, it actually uses an internal map of the interface to simulate these features.

In use, static and dynamic proxies are identical except for the way they are instantiated. For example:

// Static proxy: just call %New() on a pregenerated class
 set newFruit = ##class(Fruit).%New()

// Dynamic proxy: create an Object instance and specify the class to introspect
 set newFruit = ##class(%Net.Remote.Object).%New(gateway,"Fruit")

Using the Object Gateway for .NET 15

4.2 Creating and Using a Dynamic Object Gateway
This section describes the complete procedure for creating and running an Object Gateway that uses dynamic proxies:

• Start the Object Gateway server — dynamic proxies can’t be created without querying the server at runtime.

• Get the server definition and test the server — the server definition is required for methods that monitor and control
the server.

• Define the location of your .NET classes and create a Gateway connection — connection information must include
the path to each DLL you intend to use.

• Create a proxy and call some methods — after they’ve been created, static and dynamic proxies work the same way.

• Disconnect and shut down — the server will continue to run until you explicitly stop it.

Start the Object Gateway server

Since dynamic proxies are created at runtime, you need access to a server that can introspect .NET classes and
return the information needed to generate the proxies.

To start the gateway, open the Management Portal and go to the Object Gateways Page, System Administration >

Configuration > Connectivity > Object Gateways. This page displays all ObjectGateway descriptions that have been
persisted to the database, and provides a convenient way to control, monitor, and modify the servers they describe.
The following example displays information on the NetGate server, and indicates that an instance of that server
is currently running:

The examples in this chapter will assume that the server named NetGate has been defined (see “Creating the
NetGate Server Definition” for details).

Get the server definition and make sure the server is running

The Service class provides methods to start, stop, and test the server. Most of these methods require the server
definition contained in an ObjectGateway object. In the following example, Service.OpenGateway() returns an
ObjectGateway instance defining the server named NetGate. Service.IsGatewayRunning() uses the information
to test the current state of the server, and Service.StartGateway() can start it if necessary.

try {
// Get a ObjectGateway instance that defines the NetGate server
 set st = ##class(%Net.Remote.Service).OpenGateway("NetGate",.OG)
 write !, "Using "_OG.Name_" server definition"

// Test to make sure the server is running. If not, start it
 if ('##class(%Net.Remote.Service).IsGatewayRunning(OG.Server,OG.Port,,.status)) {
 // Instantiate the server on the host machine
 set status = ##class(%Net.Remote.Service).StartGateway(OG.Name)
 }
}
catch ex {
 write !,$system.OBJ.DisplayError(ex.AsStatus())
}

Note: Exception Handling
Your ObjectScript code should always use try/catch for Object Gateway error handling. When the class running
on the host machine encounters an exception, the dynamic proxy will throw %Net.Remote.Exception. In addition
to standard status details, the Exception object contains call stack information, which is returned by calling method
Exception.StackAsArray(.array). The information may be different between Java and .NET.

16 Using the Object Gateway for .NET

Using Dynamic Object Gateways

Define the location of your .NET classes and create a Gateway connection

Each dynamic proxy will access the corresponding .NET object through a Gateway object connected to the server.
The Gateway object needs a path to each DLL containing a class you want to use. In this example, the location of
the DLL containing class Fruit is specified in the last argument to Gateway.%Connect().

// define the location of the file containing the Fruit class
set fruitPath = ##class(%ListOfDataTypes).%New()
do fruitPath.Insert("C:\Dev\Fruit.dll")

// Connect a Gateway instance to server NetGate on the host machine
set GW = ##class(%Net.Remote.Gateway).%New()
set st = GW.%Connect(OG.Server, OG.Port, "USER",,fruitPath)

This example only adds one path, but you can insert a separate path for each DLL you want to use.

Create a dynamic proxy for .NET class Fruit and call some methods

In this example, an new instance of Object is created, specifying Fruit as the .NET class to introspect. The resulting
dynamic proxy will communicate with the .NET object through Gateway instance GW (created in the previous
example). Once the dynamic proxy is instantiated, it works just like a static proxy.

// Use GW connection to create a proxy for the Fruit class
set proxyFruit = ##class(%Net.Remote.Object).%New(GW,"Fruit")

write !,proxyFruit.id()
write !,"Current fruit preference: ",!," "_proxyFruit.getFruit()
do proxyFruit.setFruit("Jujube")
write !,"Fruit preference has been reset: ",!," "_proxyFruit.getFruit()

Prints:

This .NET class displays your favorite fruit.
Current fruit preference: UglyFruit
Fruit preference has been reset: Jujube

Disconnect and shut down the server

The connection remains open and the server continues to run until you explicitly disconnect and shut down. In
this example, the Gateway.%Disconnect() method breaks the connection, but the server won’t release the port it
uses until the call to Service.StopGatewayObject() stops it.

// Disconnect from the server
 set st = GW.%Disconnect()

// Stop the server
 set st = ##class(%Net.Remote.Service).StopGatewayObject(OG)

4.3 Array Access
When a property is declared as an array, it is projected to the proxy as an instance of %Net.Remote.Object. To create a new
array, call the Object.%New() method and use array class name syntax in place of the regular class name. Arguments are
used as the initial values for the array. Here are some examples:

Array initialization

Array can be initialized by rank or elements:

// by rank
 set newArray = ##class(%Net.Remote.Object).%New(gateway,"String[2]")

// by elements
 set newArray = ##class(%Net.Remote.Object).%New(gateway,"String[]","A","B","C")

Using the Object Gateway for .NET 17

Array Access

When rank and elements are both specified, rank must match element count.

// both rank and elements specified
 set newArray = ##class(%Net.Remote.Object).%New(gateway,"int[3]",11,22,33)

.NET multidimensional arrays are supported. They can only be initialized by rank:

// Create a two dimensional array by rank
 set newArray = ##class(%Net.Remote.Object).%New(gateway,"String[2,3]")

Getting and setting array elements

Besides supporting all the normal properties and methods available on an array object, Dynamic Gateway supports
two special methods for accessing array elements:

• %get(index) — object.%get(index)is translated to object[index]

• %set(index,value) — object.%set(index,value) is translated to object[index] = value.

For example:

// Create a two dimensional array and populate it
 set arr = ##class(%Net.Remote.Object).%New(gateway,"String[2,3]")
 for x=0:1:1 {for y=0:1:2 {set i=x*3+y do arr.%set(x,y,$CHAR(65+i)) }}

 write !,"Array length is" _arr.Length_" and rank is "_arr.Rank
 for x=0:1:1 {for y=0:1:2 {write "("_x_","_y_")="_arr.%get(x,y)_" " }}

Prints:

Array length is 6 and rank is 2
(0,0)=A (0,1)=B (0,2)=C (1,0)=D (1,1)=E (1,2)=F

4.4 Gateway Reentrancy
Reentrancy means that when InterSystems IRIS code sends a request to .NET, the .NET code can respond with a request
of its own using the same physical connection and context as the original request. The following is a typical call sequence:

• Starting from the InterSystems IRIS side, a connection is made to .NET using a %Net.Remote.Gateway object, allowing
us to create proxy objects that can make calls to .NET methods.

• From a proxy, the .NET Gateway.GatewayContext.getIRIS() method can be called to create an instance of ADO.IRIS.
The IRIS object uses the same connection and context as the proxy, and provides access to all the methods for invoking
Native API calls (see “Using the InterSystems Native API for .NET”).

• The IRIS object can call back into InterSystems IRIS, where it can get and set global values or call classmethods and
functions. Making one of these calls puts us back in InterSystems IRIS code again.

• From here, we can make another inner call back to .NET using the same Gateway connection. Method
##class(%Net.Remote.Gateway).%GetContextGateway() returns the Gateway object for the current context.

• Calls back and forth between InterSystems IRIS and .NET can go on indefinitely, always using the same connection
and context.

Getting an .ADO.IRIS object from GatewayContext()

The following example gets an ADO.IRIS object in .NET, and uses it to read a global value from the InterSystems
database:

18 Using the Object Gateway for .NET

Using Dynamic Object Gateways

IRIS native = GatewayContext.getIRIS();
// Read the value of global ^GlobalName("value2")
if (native != null) {
 String globalVal = native.GetString("GlobalName","value2");
}

If the code is not invoked inside a valid Gateway context, the getIRIS() method will return a null object.

Getting a Gateway context object from within Native API calls

This example gets a %Net.Remote.Gateway object for the current context, and uses it to create a proxy for a .NET
object in the same context:

set gateway = ##class(%Net.Remote.Gateway).%GetContextGateway()
if gateway'=$$$NULLOREF {
 set objFruit = ##class(%Net.Remote.Object).%New(gateway,"Fruit")
}

If the context is not valid, the Gateway object will be $$$NULLOREF.

Note: In general, reentrancy support is not compatible with prior versions of the Object Gateway .

4.5 Example Classes
This section provides detailed descriptions of the two sample classes used in this chapter:

• The .NET Fruit Class is the trivial .NET class from which the proxy objects are projected.

• Creating the NetGate Server Definition is an instance of ObjectGateway that defines the Object Gateway server named
NetGate.

4.5.1 The .NET Fruit Class

This section lists the Fruit class used by most of the examples in this chapter. This trivial .NET class has all the features
needed to demonstrate a simple proxy object: static class method id(), and property accessors getFruit() and setFruit().

The Fruit class

using System;
namespace demo {
 public class Fruit {
 public static String id() {
 return "This .NET class displays your favorite fruit.";
 }
 public String fruit;
 public Fruit () {
 fruit = "Uglyfruit";
 }
 public void setFruit(String newFruit) {
 fruit = newFruit;
 }
 public String getFruit() {
 return "My favorite fruit is "+fruit;
 }
 public static void main(String []args) {
 System.out.println("\nGenerating output from .NET class Fruit: ");
 Fruit myFruit = new Fruit ();
 System.out.println(myFruit.getFruit());
 }
 }
}

Using the Object Gateway for .NET 19

Example Classes

4.5.2 Creating the NetGate Server Definition

This section demonstrates how to create the NetGate Object Gateway server definition used by most of the examples in
this chapter.

The Management Portal provides convenient interactive tools for creating and controlling Object Gateway servers (as
mentioned earlier in this chapter), but this example will demonstrate what those tools are actually doing in the background.
You can create and run a server with a few lines of ObjectScript code, specifying exactly the same information you would
enter in the Management Portal.

The properties of an Object Gateway server are defined in an instance of %Net.Remote.ObjectGateway. The following code
specifies properties for a .NET-based server named NetGate, persists the server definition in the InterSystems IRIS database,
and then starts an instance of the server on the host machine.

Define server properties in an instance of ObjectGateway

This server will run on the same machine as InterSystems IRIS (since the Server property specifies localhost
as the host machine), but this is not a requirement. The host machine only needs a copy of the server executable.

 set OG = ##class(%Net.Remote.ObjectGateway).%New()

// Properties used in all server definitions
 set OG.Type = "2" // Defines a .NET server
 set OG.Name = "NetGate"
 set OG.Server = "127.0.0.1"
 set OG.Port = "55602" // port number must be unique

// .NET-only properties
 set OG.AllowedIPAddresses = "127.0.0.1""
 set OG.FilePath = "C:\InterSystems\IRIS\dev\dotnet\bin\v4.5\"
 // keep Exec64 default value
 set OG.DotNetVersion = "4.5"

The Object Gateway needs the FilePath and DotNetVersion paths to execute the command that will instantiate
the server on the host machine. They are optional in this example (where localhost is the host machine), since
they just specify the default paths to a version of the DotNetGatewaySS64.exe executable (installed with InterSystems
IRIS) and the corresponding version of .NET.

Save the server definition and run the server

Calling ObjectGateway.%Save() adds this definition to the list stored in the InterSystems IRIS database. When
the server definition is persisted in the database, it will be listed on the Object Gateway Page in the Management
Portal.

 write "Saving "_OG.Name
 set status = OG.%Save()

The definition can now be used to construct and run the command that will start an instance of the server on the
host machine. You can start the server either by clicking Start on the Object Gateway Page, or by calling the
%Net.Remote.Service.StartGateway() method as demonstrated below.

// Instantiate the server on the host machine
 set status = ##class(%Net.Remote.Service).StartGateway(OG.Name)

20 Using the Object Gateway for .NET

Using Dynamic Object Gateways

5
Creating Static Proxy Classes

This chapter discusses how to generate static proxy objects, which are precompiled and stored in the class library just like
any other class. See the previous chapter, Using Dynamic Object Gateways, for information about dynamic proxies, which
are created at runtime. The following topics are covered here:

• Using the Studio .NET Gateway Wizard — The simplest way to generate proxy classes for a .NET assembly is to use
the .NET Object Gateway Wizard plug-in supplied with Studio.

• Generating Proxy Classes Programmatically — You can also generate proxy classes from within an ObjectScript program.
The %Net.Remote.Gateway class contains the methods used to import class definitions from .NET assemblies and
generate Object Gateway proxy classes.

See Using Wrapper Classes with .NET APIs for a description of the preferred method for importing third-party DLLs. See
the Mapping Specification chapter for a detailed description of how .NET classes are mapped to InterSystems IRIS® proxy
classes.

Note: The Object Gateway cannot generate proxy classes for .NET generic classes. It similarly cannot import .NET
classes with generic subclasses or subinterfaces.

5.1 Using the Studio .NET Object Gateway Wizard
The following steps summarize the procedure:

1. Start a .NET Object Gateway server. The server must be running before the Wizard can be used.

2. In Studio, select Tools > Add-ins > Add-ins... to display the list of available add-ins.

3. Select .Net Gateway Wizard from the Add-ins dialog and click OK. The .Net Gateway Wizard Studio
template is displayed:

Using the Object Gateway for .NET 21

Figure 5–1:The .NET Gateway Wizard Studio Template

4. Fill out the form. The following items can be defined:

• Enter the path and name of a DLL assembly file: — Required. DLL name.

• .NET Gateway server name / IP address: — Required. IP address or name of the machine where the
.NET Object Gateway server executable is located. The default is "127.0.0.1".

• .NET Gateway server port: — Required. Server port.

• Additional paths\assemblies to be used in finding dependent classes: — Optional.
Specify a list of assembly .dll files or directories, separated by semicolons.

• Exclude dependent classes matching the following prefixes: — Optional. Specify a list of
namespaces and class name prefixes, separated by semicolons.

5. The Wizard displays a list of available classes:

22 Using the Object Gateway for .NET

Creating Static Proxy Classes

Figure 5–2: Selecting Classes to Import

Check the classes that you want to use, then click Finish.

5.2 Generating Proxy Classes Programmatically
This section discusses the following methods of the %Net.Remote.Gateway class:

• %Import() — imports .NET classes or assemblies from the .NET side and generates all the necessary proxy classes
for the InterSystems IRIS side.

• %GetAllClasses() — returns a list of all public classes available in the specified assembly DLL.

• %ExpressImport() — combines calls to %Connect(), %Import(), and %Disconnect().

See the %Net.Remote.Gateway InterSystems IRIS class documentation for a complete listing of all Object Gateway methods.

The %Import() method of the Gateway class sets off the following chain of sequential events:

1. The InterSystems IRIS session sends an import request.

2. Upon receiving the request, the Object Gateway worker thread introspects the indicated .NET assemblies and classes.

3. The thread also loads dependent assemblies either from the local directory or from the Global Assembly Cache (GAC).

4. If it finds any .NET classes that are new or changed, or that have no proxy classes on the InterSystems IRIS side, the
Object Gateway worker thread generates new proxy classes for them.

5.2.1 %Import() Method

The %Import() method imports the given class and all its dependencies by creating and compiling all the necessary proxy
classes. The %Import() method returns (in the ByRef argument imported) a list of generated InterSystems IRIS proxy
classes. For details of how .NET class definitions are mapped to InterSystems IRIS proxy classes, see the “Mapping
Specification” chapter in this guide.

%Import() is a onetime, startup operation. It only needs to be called the first time you wish to generate the InterSystems
IRIS proxy classes. It is necessary again only if you recompile your .NET code and wish to regenerate the proxies.

Using the Object Gateway for .NET 23

Generating Proxy Classes Programmatically

Import Arguments
Before you invoke %Import(), prepare the additionalClassPaths and exclusions arguments. That is, for each argument,
create a new %ListOfDataTypes object and call its Insert() method to fill the list. The optional additionalClassPaths argument
can be used to supply additional path arguments, such as the names of additional assembly DLLs that contain the classes
you are importing via the Object Gateway. List elements should correspond to individual additional assembly DLL entries,
which require the following format:

" rootdir\...\mydll.dll "

You can try to load an assembly from a directory outside of where DotNetGatewaySS.exe is running, but you might expe-
rience a load error for your assembly when you try to use a class in the assembly. InterSystems recommends that you put
all local assemblies in the same directory as DotNetGatewaySS.exe. You can also specify assemblies in the GAC by using
partial names for them, System.Data, for example.

Import Dependencies and Exclusions
While mapping a .NET class into an InterSystems IRIS proxy class and importing it into InterSystems IRIS, the Object
Gateway loops over all class dependencies discovered in the given .NET class, including all classes referenced as properties
and in argument lists. In other words, the Object Gateway collects a list of all class dependencies needed for a successful
import of the given class, then walks that dependency list and generates all necessary proxy classes.

You can control this process by specifying a list of assembly and class name prefixes to exclude from this process. While
this situation would be rare, it does give you some flexibility to control what classes get imported. The Object Gateway
automatically excludes a small subset of assemblies such as Microsoft.* assemblies.

5.2.2 %GetAllClasses() Method

This method returns, in the ByRef argument allClasses, a list of all public classes available in the assembly DLL specified
by the first argument, jarFileOrDirectoryName.

5.2.3 %ExpressImport() Method

%ExpressImport() is a one-step convenience class method that combines calls to %Connect(), %Import(), and
%Disconnect(). It returns a list of generated proxies. It also logs that list, if the silent argument is set to 0. The name
argument is a semicolon-delimited list of classes or assembly DLLs.

24 Using the Object Gateway for .NET

Creating Static Proxy Classes

6
Sample Code

The standard InterSystems IRIS® installation includes a sample ObjectScript project that demonstrates how to generate
and use InterSystems IRIS proxy classes with .NET code. This chapter describes how to compile and run the project, and
provides a convenient copy of the ObjectScript source code.

6.1 Compiling and Running the .NET Test Project
The project code consists of two parts:

• The RemoteTest .NET project located in <install-root>\dev\dotnet\samples\remote\test\

• The %Net.Remote.DotNet.Test class, which is part of the InterSystems IRIS class library.

The following sections describe how to compile and run the project.

6.1.1 Compiling the .NET Assembly

Open the RemoteTest project file (RemoteTest.csproj) in Visual Studio and compile it. The DotNetGatewaySamples.dll file
will be created in ..remote\test\obj\Debug. This is the assembly that will be imported into InterSystems IRIS.

6.1.2 Creating and Running the Server

1. Create an Object Gateway server description, as described in Defining an Object Gateway Server.

2. Start the server, as described in Running an Object Gateway Server.

6.1.3 Generating InterSystems IRIS Proxy Classes

To import the sample .NET classes, start a Terminal session and use the following syntax to run the ExpressImport()
method of the %Net.Remote.ImportHelper class:

 do ##class(%Net.Remote.ImportHelper).ExpressImport(gatewaySamplesDll,port)

where gatewaySamplesDll is a fully qualified path to DotNetGatewaySamples.dll (which you generated in step 1), and port
is the port number of the Object Gateway server over which the proxy classes communicate with the .NET classes (which
you started in step 3).

For example:

Using the Object Gateway for .NET 25

 do ##class(%Net.Remote.ImportHelper).ExpressImport(
 "C:\InterSystems\IRIS\dev\dotnet\samples\remote\test\obj\Debug\DotNetGatewaySamples.dll",
 "55000")

The imported classes will be located in the remote/test package in the %SYS namespace.

This step should be repeated whenever you have modified or recompiled your .NET classes.

6.1.4 Running the InterSystems IRIS DotNet.Test Examples

The %Net.Remote.DotNet.Test class includes two ObjectScript test methods, Test() and TestArrays(). For both methods,
the port argument is the number of the port over which the proxy classes communicate with the .NET classes (as described
in the previous section), and the host argument identifies the machine on which the server is running. The port argument
is required; the host argument is optional and defaults to 127.0.0.1 (the local machine).

Test()
The Test() method shows how to use the sample classes delivered with InterSystems IRIS. Use the following statement to
run it at the Terminal:

 do ##class(%Net.Remote.DotNet.Test).Test(port,host)

See The Test() Method for a listing of the ObjectScript code.

TestArrays()
The TestArrays() method demonstrates the use of .NET arrays. Use the following statement to run it at the Terminal:

 do ##class(%Net.Remote.DotNet.Test).TestArrays(port,host)

See The TestArrays() Method for a listing of the ObjectScript code.

6.2 Source Code for the Test Class
This section provides a convenient copy of the code found in the %Net.Remote.DotNet.Test class, which includes two
ObjectScript test methods, Test() and TestArrays().

Class %Net.Remote.DotNet.Test Extends %RegisteredObject [Abstract, ProcedureBlock]
 {
 ClassMethod Test(port As %Integer, host As %String = "127.0.0.1") [Final]
 { ///...
 }
 ClassMethod TestArrays(port As %Integer, host As %String = "127.0.0.1") [Final]
 { ///...
 }
 }

Note: Using the %objlasterror error status variable
The Test class includes references to %objlasterror, which should be used as a debug resource only (for example,
in development code that does not yet report errors properly), so that the underlying problem can be diagnosed
and the offending code's error reporting can be corrected. It is appropriate for such code to kill %objlasterror
whenever it uses an error status that is an expected condition and not a reportable error.

6.2.1 Test() Method

The Test() method demonstrates how to interact with the DotNetGatewaySamples.dll assembly.

26 Using the Object Gateway for .NET

Sample Code

ClassMethod Test(port As %Integer, host As %String = "127.0.0.1") [Final]
 { ///...
 }

The ObjectScript method code is listed here under the following section headings:

• part 1 — connect to current namespace

• part 2 — create and populate a Student object

• part 3 — hashtable example

• part 4 — modify the hashtable

• part 5 — ArrayList and List examples

• part 6 — create and populate an Address object

• part 7 — change an Address

• part 8 — get an array of Strings

• part 9 — disconnect and catch errors

The original source code for the %Net.Remote.DotNet.Test class is available in the InterSystems IRIS class library under
in the %SYS namespace.

Test() method (part 1) — connect.

 Set %objlasterror="",$ZT="Error"
 // connect to current namespace, use 2 second timeout
 Set namespace=$Namespace,timeout=2
 Set classPath=##class(%ListOfDataTypes).%New()
 Set sampleDLL="dev/dotnet/bin/DotNetGatewaySamples.dll"
 Set samplePath=$SYSTEM.Util.InstallDirectory()_sampleDLL
 Do classPath.Insert(samplePath)

 // get a connection handle and connect
 Set gateway=##class(%Net.Remote.Gateway).%New()
 Set status=gateway.%Connect(host,port,namespace,timeout,classPath)
 If 'status Goto Error

Test() method (part 2) — create and populate a Student object.

 Set student=##class(remote.test.Student).%New(gateway,29,"976-01-6712")

 // get, set Date
 Write !,"setNextClass returned: "
 Write student.setNextClass($zd($h,3),$zt($h),"White Hall",3.0,0)
 Write !,"Next class on: ",$E(student.myGetNextClassDate(),1,10)
 Write $E(student.getNextClassTime(),11,*),!,!
 // set a String
 Do student.mySetName("John","Smith")
 // set an int

 Do student.mySetID(27)
 Write "Name: ",student.myGetName(),!
 Write "ID: ",student.myGetID(),!
 Write "SSN: ",student.getSSN(),!,!
 Write "Static method execute: "
 Write ##class(remote.test.Person).myStaticMethod(gateway),!,!
 Do ##class(remote.test.Person).setstaticProperty(gateway,89)
 Write "Static set/get: "
 Write ##class(remote.test.Person).getstaticProperty(gateway),!!

Using the Object Gateway for .NET 27

Source Code for the Test Class

Test() method (part 3) — hashtable example

 Set grades=##class(System.Collections.Hashtable).%New(gateway)
 Do grades.Add("Biology",3.8)
 Do grades.Add("French",3.75)
 Do grades.Add("Spanish",2.75)
 Do student.mySetGrades(grades)
 Set grades=student.myGetGrades()

 Write "Student has completed the following "
 Write grades.getuCount()," classes:",!
 Set keys=grades.getuKeys().GetEnumerator()
 Set values=grades.getuValues().GetEnumerator()
 while (keys.MoveNext())
 {
 If (values.MoveNext())
 Write " ",keys.getuCurrent()," ",values.getuCurrent(),!
 }
 Write !,"Highest grade: ",student.myGetHighestGrade()

Test() method (part 4) — modify the hashtable.

 Write !,"Now taking: Calculus, Chemistry, English Comp",!,!
 Do student.setGrade("Calculus",3.5)
 Do student.setGrade("Chemistry",3.92)
 Do student.setGrade("English Comp",2.5)
 Write "English Comp Grade: ",student.getGrade("English Comp"),!
 Set grades=student.myGetGrades()
 Write !,"Student has completed the following "
 Write grades.getuCount()," classes:",!
 Set keys=grades.getuKeys().GetEnumerator()
 Set values=grades.getuValues().GetEnumerator()
 while (keys.MoveNext())
 {
 If (values.MoveNext())
 Write " ",keys.getuCurrent()," ",values.getuCurrent(),!
 }
 Write !,"Highest grade now: "
 Write student.myGetHighestGrade()

Test() method (part 5) — ArrayList and List examples.

 Set sports=##class(System.Collections.ArrayList).%New(gateway)
 // Example of using Type.GetType; to use it, replace the above line with the
 // following two lines: (also make sure to import System.Activator)
 // Set arrayListClass=
 // ##class(System.Type).GetType(gateway,"System.Collections.ArrayList")
 // Set sports=##class(System.Activator).CreateInstance(gateway,arrayListClass)
 Do sports.Add("Basketball")
 Do sports.Add("Tennis")
 Do sports.Add("Running")
 Do sports.Add("Swiming")
 Do student.mySetFavoriteSports(sports)

 // set/get a list of Strings
 Set list=student.myGetFavoriteSports()
 Write !,"Student's favorite sports are: ",!
 For i=0:1:list.getuCount()-1 {
 Write " "_list.getuItem(i),!
 }

28 Using the Object Gateway for .NET

Sample Code

Test() method (part 6) — create and populate an Address object.

 // set an object
 Set home=##class(remote.test.Address).%New(gateway)
 Set street=##class(remote.test.Street).%New(gateway)
 Do street.setname("Memorial Drive")
 Do street.setnumber("One")
 Do home.mySetCity("San Diego")
 Do home.mySetStreet(street)
 Do home.mySetState("CA")
 Do home.mySetZip("20098")
 Do student.sethome(home)

 // get an object
 Write !,"Student's address: ",!
 Set home2=student.gethome()
 Write " "_student.gethome().getstreet().getname(),!
 Write " "_home2.myGetCity()_", "_home2.myGetState()_" "_home2.myGetZip(),!,!

Test() method (part 7) — change an Address.

 Write "Change address",!
 Set newHome=##class(remote.test.Address).%New(gateway)
 Set newStreet=##class(remote.test.Street).%New(gateway)
 Do newStreet.setnumber("456")
 Do newStreet.setname("Del Monte")
 Do newHome.mySetCity("Boston")
 Do newHome.mySetState("MA")
 Do newHome.mySetStreet(newStreet)
 Do newHome.mySetZip("40480")
 Set tempAddress=##class(remote.test.Address).%New(gateway)
 Do student.getAddressAsReference(.tempAddress)
 Write "City, before address change: "_tempAddress.myGetCity(),!
 Do student.changeAddress(home,newHome)
 Do student.getAddressAsReference(.tempAddress)
 Write "City, after address change: "_tempAddress.myGetCity(),!

Test() method (part 8) — get an array of Strings.

 Set list=student.getAddressAsCollection()
 Write !,"Student's new address is: ",!
 Write " "_list.GetAt(4),!
 Write " "_list.GetAt(1)_", "_list.GetAt(2)_" "_list.GetAt(3),!
 Write !,"Old addresses:",!
 Set oldAddresses=##class(%ListOfObjects).%New(gateway)
 Set newAdd=##class(remote.test.Address).%New(gateway)
 Set add2=student.getOldAddresses(home,.oldAddresses,.newAdd)
 For i=1:1:oldAddresses.Count() {
 Set oldAddress=oldAddresses.GetAt(i)
 Write !,"Address "_i_":",!
 Write oldAddress.getstreet().getnumber()
 Write " "_oldAddress.getstreet().getname(),!
 Write oldAddress.getcity()
 Write ", "_oldAddress.getstate()
 Write " "_oldAddress.getzip(),!
 }
 Write !,"Most recent Address:",!
 Write add2.getstreet().getnumber()_" "_add2.getstreet().getname(),!
 Write add2.getcity()
 Write ", "_add2.getstate()
 Write " "_add2.getzip(),!
 Write !,"Least Recent Address: ",!
 Write newAdd.getstreet().getnumber()_" "_newAdd.getstreet().getname(),!
 Write newAdd.getcity()
 Write ", "_newAdd.getstate()
 Write " "_newAdd.getzip(),!

Test() method (part 9) — disconnect and catch errors.

 // Disconnect
 Do gateway.%Disconnect()
 Write !,"Test Successfully Completed"
 Quit
Error ; an error occurred
 Use 0
 If %objlasterror'=""
 { Write $system.OBJ.DisplayError(%objlasterror) }
 Else { Write $ze }

Using the Object Gateway for .NET 29

Source Code for the Test Class

6.2.2 The TestArrays() Method

The TestArrays() method demonstrates the use of .NET arrays.

ClassMethod TestArrays(port As %Integer, host As %String = "127.0.0.1") [Final]
 { ///...
 }

The ObjectScript method code is listed here under the following section headings:

• part 1 — connect.

• part 2 — create test Person object and test string arrays.

• part 3 — create and populate Address objects.

• part 4 — insert array of Address objects.

• part 5 — use a binary stream.

• part 6 — disconnect and catch errors.

The original source code for the %Net.Remote.DotNet.Test class is available in the InterSystems IRIS class library under
in the %SYS namespace.

TestArrays() method (part 1) — connect.

 Set %objlasterror="",$ZT="Error",namespace=$Namespace,timeout=2
 Set classPath=##class(%ListOfDataTypes).%New()
 Set sampleDLL="dev/dotnet/bin/DotNetGatewaySamples.dll"
 Set samplePath=$SYSTEM.Util.InstallDirectory()_sampleDLL
 Do classPath.Insert(samplePath)
 Set gateway=##class(%Net.Remote.Gateway).%New()
 Set status=gateway.%Connect(host,port,namespace,timeout,classPath)
 If 'status Goto Error

TestArrays() method (part 2) — create test Person object and test string arrays.

 Set test=##class(remote.test.Person).%New(gateway)

 // test simple string arrays
 Set stringArray=##class(%ListOfDataTypes).%New()
 Do stringArray.Insert("test string one")
 Do stringArray.Insert("test string two")
 Do stringArray.Insert("test string three")
 Do stringArray.Insert("test string four")

 // test simple string arrays
 Do test.setStringArray(stringArray)
 Set outStringArray=test.getStringArray()

 For i=1:1:outStringArray.Count() {
 Write "String "_i_" : "_outStringArray.GetAt(i),!
 }

30 Using the Object Gateway for .NET

Sample Code

TestArrays() method (part 3) — create and populate Address objects.

 // test array of objects
 Set home=##class(remote.test.Address).%New(gateway)
 Set street=##class(remote.test.Street).%New(gateway)
 Do street.setname("Memorial Drive")
 Do street.setnumber("One")
 Do home.mySetCity("Cambridge")
 Do home.mySetStreet(street)
 Do home.mySetState("MA")
 Do home.mySetZip("02142")

 Set home2=##class(remote.test.Address).%New(gateway)
 Set street2=##class(remote.test.Street).%New(gateway)
 Do street2.setname("Santa Cruz Ave")
 Do street2.setnumber("4555")
 Do home2.mySetCity("San Diego")
 Do home2.mySetStreet(street2)
 Do home2.mySetState("CA")
 Do home2.mySetZip("92109")

TestArrays() method (part 4) — insert array of Address objects.

 Set addressArray=##class(%ListOfObjects).%New()
 Do addressArray.Insert(home)
 Do addressArray.Insert(home2)

 Do test.setAddressArray(addressArray)
 Set addressArray=test.getAddressArray()
 For i=1:1:addressArray.Count() {
 Set home=addressArray.GetAt(i)
 Write !,"Address "_i_":",!
 Write home.getstreet().getnumber()_" "_home.getstreet().getname(),!
 Write home.getcity()
 Write ", "_home.getstate()
 Write " "_home.getzip(),!
 }

TestArrays() method (part 5) — use a binary stream.

 // byte[] is mapped as %GlobalBinaryStream
 Write !,"Byte array test:",!
 Set byteStream=##class(%GlobalBinaryStream).%New()
 Do byteStream.Write("Global binary stream")

 // Note that byteStream is passed in by value, so any changes on the DotNet
 // side will be ignored. The next example will pass the stream by reference
 // meaning changes on the DotNet side will be reflected here as well
 Do test.setByteArray(byteStream)

 Set result=test.getByteArray()
 Write result.Read(result.SizeGet()),!

 Set readStream=##class(%GlobalBinaryStream).%New()
 // we need to 'reserve' a number of bytes since we are passing the stream
 // by reference (DotNet's equivalent is byte[] ba = new byte[max];)
 For i=1:1:50 Do readStream.Write("0")

 Set bytesRead=test.read(.readStream,50)
 Write readStream.Read(bytesRead),!

TestArrays() method (part 6) — disconnect and catch errors.

 Do gateway.%Disconnect()
 Write !,"Test Successfully Completed"
 Quit
Error
 Use 0
 If %objlasterror'=""
 { Write $system.OBJ.DisplayError(%objlasterror) }
 Else { Write $ze }
 // end of method TestArrays()

Using the Object Gateway for .NET 31

Source Code for the Test Class

7
Mapping Specification

This chapter describes the mapping between .NET objects and the InterSystems IRIS® proxy classes that represent the
.NET objects.

Important: Only classes, methods, and fields marked as public are imported.

This chapter describes mappings of the following types:

• Assembly and Class Names

• Primitives

• Properties

• Methods

• Constructors

• Constants

• OUT and REF Parameters

• .NET Arrays

• Recasting

• .NET Standard Output Redirection

• Restrictions

7.1 Assembly and Class Names
Assembly and class names are preserved when imported, except that each underscore (_) in an original .NET class name
is replaced with the character u and each dollar sign ($) is replaced with the character d in the InterSystems IRIS proxy
class name. Both the u and the d are case-sensitive (lowercase).

7.2 Primitives
Primitive types and primitive wrappers map from .NET to InterSystems IRIS as shown in the following table.

Using the Object Gateway for .NET 33

InterSystems IRIS.NET

%Library.Booleanbool

%Library.Integerbyte

%Library.Stringchar

%Library.Numericdouble

%Library.Doublefloat

%Library.Integerint

%Library.Integerlong

%Library.Integersbyte

%Library.SmallIntshort

%Library.Stringstring

%Library.BooleanSystem.Boolean

%Library.IntegerSystem.Byte

%Library.StringSystem.Char

%Library.TimeStampSystem.DateTime

%Library.NumericSystem.Double

%Library.SmallIntSystem.Int16

%Library.IntegerSystem.Int32

%Library.IntegerSystem.Int64

%Library.IntegerSystem.SByte

%Library.DoubleSystem.Single

%Library.StringSystem.String

%Library.SmallIntSystem.UInt16

%Library.IntegerSystem.UInt32

%Library.IntegerSystem.UInt64

%Library.Integeruint

%Library.Integerulong

%Library.SmallIntushort

7.3 Properties
The result of importing a .NET class is an ObjectScript abstract class. For each .NET property that does not already have
corresponding getter and setter methods (imported as is), the Object Gateway engine generates corresponding Object Script
getter and setter methods. It generates Setters as setXXX, and getters as getXXX, where XXX is the property name. For

34 Using the Object Gateway for .NET

Mapping Specification

example, importing a .NET String property called Name results in a getter method getName() and a setter method
setName(%Library.String). The Object Gateway also generates set and get class methods for all static members.

7.4 Methods
After you perform the Object Gateway import operation, all methods in the resulting InterSystems IRIS proxy class have
the same name as their .NET counterparts, subject to the limitations described in the Method Names section. They also
have the same number of arguments. The type for all the InterSystems IRIS proxy methods is %Library.ObjectHandle(). The
Object Gateway engine resolves types at runtime.

For example, the .NET method test:

public boolean checkAddress(Person person, Address address)

is imported as:

Method checkAddress(p0 As %Library.ObjectHandle,
 p1 As %Library.ObjectHandle) As %Library.ObjectHandle

7.4.1 Overloaded Methods

While ObjectScript does not support overloading, you can still map overloaded .NET methods to InterSystems IRIS proxy
classes. This is supported through a combination of largest method cardinality and default arguments. For example, if you
are importing an overloaded .NET method whose different versions take two, four, and five arguments, there is only one
corresponding method on the InterSystems IRIS side; that method takes five arguments, all of %ObjectHandle type. You
can then invoke the method on the InterSystems IRIS side with two, four, or five arguments. The Object Gateway engine
then tries to dispatch to the right version of the corresponding .NET method.

While this scheme works reasonably well, avoid using overloaded methods with the same number of arguments of similar
types. For example, the Object Gateway has no problems resolving the following methods:

test(int i, string s, float f)
test(Person p)
test(Person p, string s, float f)
test(int i)

However, avoid the following:

test(int i)
test(float f)
test(boolean b)
test(object o)

Tip: For better results using the Object Gateway, use overloaded .NET methods only when absolutely necessary.

7.4.2 Method Names

InterSystems IRIS has a limit of 31 characters for method names. Ensure your .NET method names are not longer than 31
characters. If the name length is over the limit, the corresponding InterSystems IRIS proxy method name contains only the
first 31 characters of your .NET method name. For example, if you have the following methods in .NET:

thisDotNetMethodHasAVeryLongName(int i) // 32 characters long
thisDotNetMethodHasAVeryLongNameLength(int i) // 38 characters long

InterSystems IRIS imports only one method with the following name:

thisDotNetMethodHasAVeryLongNam // 31 characters long

Using the Object Gateway for .NET 35

Methods

The .NET reflection engine imports the first one it encounters. To find out which method is imported, you can check the
InterSystems IRIS proxy class code. Better yet, ensure that logging is turned on before the import operation. The Object
Gateway log file contains warnings of all method names that were truncated or not imported for any reason.

Each underscore (_) in an original method name is replaced with the character u and each dollar sign ($) is replaced with
the character d. Both the u and the d are case-sensitive (lowercase). If these conventions cause an unintended overlap with
another method name that already exists on the InterSystems IRIS side, the method is not imported.

Finally, InterSystems IRIS class code is not case-sensitive. So, if two .NET method names differ only in case, InterSystems
IRIS only imports one of the methods and writes the appropriate warnings in the log file.

7.4.3 Static Methods

InterSystems IRIS projects .NET static methods as class methods in the InterSystems IRIS proxy classes. To invoke them
from ObjectScript, use the following syntax:

 // calls static .NET method staticMethodName(par1,par2,...)
 Do ##class(className).staticMethodName(gateway,par1,par2,...)

7.5 Constructors
You invoke .NET constructors by calling %New(). The signature of %New() is exactly the same as the signature of the
corresponding .NET constructor, with the addition of one argument in position one: an instance of the Object Gateway.
The first thing %New() does is to associate the proxy instance with the provided Object Gateway instance. It then calls the
corresponding .NET constructor. For example:

// calls Student(int id, String name) .NET constructor
Set Student=##class(gateway.Student).%New(Gateway,29,"John Doe")

7.6 Constants
The Object Gateway projects and imports .NET static final variables (constants) as Final Parameters. It preserves the names
when imported, except that it replaces each underscore (_) with the character u and each dollar sign ($) with the character
d. Both the u and the d are case-sensitive (lowercase).

For example, the following static final variable:

public const int DOTNET_CONSTANT = 1;

is mapped in ObjectScript as:

Parameter DOTNETuCONSTANT As INTEGER = 1;

From ObjectScript, access the parameter as:

##class(MyDotNetClass).%GetParameter("DOTNETuCONSTANT"))

7.7 OUT and REF Parameters
The Object Gateway supports passing parameters by reference, by supporting the .NET OUT and REF parameters. Only
objects may be used as OUT and REF parameters; scalar values are not supported. For this convention to work, you must

36 Using the Object Gateway for .NET

Mapping Specification

preallocate a temporary object of the corresponding type. Then call the method and pass that object by reference. The fol-
lowing are some examples:

 public void getAddressAsReference(out Address address)

To call this method from ObjectScript, create a temporary object; there is no need to set its value. Then call the method
and pass the OUT parameter by reference, as follows:

 Set tempAddress=##class(remote.test.Address).%New(gateway)
 Do student.getAddressAsReference(.tempAddress)

The following example returns an array of Address objects as an OUT parameter:

 void getOldAddresses(out Address[] address)

To call the previous method from ObjectScript, use the following code:

 Set oldAddresses=##class(%ListOfObjects).%New(gateway)
 Do person.getOldAddresses(.oldAddresses)

7.8 .NET Arrays
Arrays of primitive types and wrappers are mapped as %Library.ListOfDataTypes. Arrays of object types are mapped as
%Library.ListOfObjects. Only one level of subscripts is supported.

The Object Gateway projects .NET byte arrays (byte[]) as %Library.GlobalBinaryStream. Similarly, it projects .NET char
arrays (char[]) as %Library.GlobalCharacterStream. This allows for a more efficient handling of byte and character arrays.

You can pass byte and stream arrays either by value or by reference. Passing by reference allows changes to the byte or
character stream on the .NET side visible on the InterSystems IRIS side as well. For example, using the following:

System.Net.Sockets.Stream.Read(byte[] buffer, int offset, int size)

in .NET:

byte[] buffer = new byte[maxLen];
int bytesRead = inputStream.Read(buffer,offset,maxLen);

The equivalent code in ObjectScript:

 Set readStream=##class(%GlobalBinaryStream).%New()
 // we need to 'reserve' a number of bytes since we are passing the stream
 // by reference (DotNet's equivalent is byte[] ba = new byte[max];)
 For i=1:1:50 Do readStream.Write("0")
 Set bytesRead=test.read(.readStream,50)
 Write readStream.Read(bytesRead)

The following example passes a character stream by value, meaning that any changes to the corresponding .NET char[] is
not reflected on the InterSystems IRIS side:

 Set charStream=##class(%GlobalCharacterStream).%New()
 Do charStream.Write("Global character stream")
 Do test.setCharArray(charStream)

7.9 Recasting
ObjectScript has limited support for recasting; namely, you can recast only at a point of a method invocation. However,
since all InterSystems IRIS proxies are abstract classes, this should be sufficient.

Using the Object Gateway for .NET 37

.NET Arrays

7.10 .NET Standard Output Redirection
The Object Gateway automatically redirects any standard .NET output in the corresponding .NET code to the calling
InterSystems IRIS session. It collects any calls to System.out in your .NET method calls and sends them to InterSystems
IRIS to display in the same format as you would expect to see if you ran your code from .NET. To disable this behavior
and direct your output to the standard output device as designated by your .NET code (in most cases that would be the
console), set the following global reference in the namespace where the session is running:

 Set ^%SYS("Gateway","Remote","DisableOutputRedirect") = 1

7.11 Restrictions
Important: Rather than aborting import, the Object Gateway engine silently skips over all the members it is unable to

generate. If you repeat the import step with logging turned on, InterSystems IRIS records all skipped
members (along with the reason why they were skipped) in the WARNING section of the log file.

The Object Gateway engine always makes an attempt to preserve assembly and method names, parameter types, etc. That
way, calling an InterSystems IRIS proxy method is almost identical to calling the corresponding method in .NET. It is
therefore important to keep in mind ObjectScript restrictions and limits while writing your .NET code. In a vast majority
of cases, there should be no issues at all. You might run into some ObjectScript limits. For example:

• .NET method names should not be longer than 30 characters.

• You should not have 100 or more arguments.

• You should not try to pass String objects longer than 32K.

• Do not rely on the fact that .NET is case-sensitive when you choose your method names.

• Do not try to import a static method that overrides an instance method.

• The Object Gateway cannot generate proxy classes for .NET generic classes. It similarly cannot import .NET classes
with generic subclasses or subinterfaces.

• .NET Events are not supported — InterSystems IRIS code cannot be called from delegate notifications.

For details on ObjectScript naming conventions, see Variables in Using ObjectScript, Naming Conventions in Defining
and Using Classes, and Rules and Guidelines for Identifiers in the Orientation Guide for Server-Side Programming.

38 Using the Object Gateway for .NET

Mapping Specification

8
Using the Object Gateway in a Production

This chapter describes how to use the Object Gateway within a production.

There are different ways to invoke the basic Object Gateway Start, Connect, Import, Disconnect, and Stop commands.
Practical approaches to this functionality include:

• Creating a Business Service

• Calling Business Service Methods

• Creating a Business Operation

• Calling API Methods

• Using the Command Prompt

• Using the Object Gateway Wizard

This chapter describes each approach and explains how to work with it. Related topics include:

• Error Checking

• Troubleshooting

8.1 Creating a Business Service
While it is possible to start the Object Gateway server from the command prompt, the simplest way to use the Object
Gateway with a production is to configure the EnsLib.DotNetGateway.Service class as a business service within the production.
You can only do this if the Object Gateway server is on the local machine where you are running the production.

Otherwise, you need to start the Object Gateway server from the command prompt. For details, see the Using the Command
Prompt section.

To configure the EnsLib.DotNetGateway.Service class as a business service:

1. From the Management Portal main menu, choose Productions.

2. Find your production in the list and click Configure beside its name.

3. Click Add Service to start the Business Service Wizard.

4. Click Other and in the ServiceClass list, click EnsLib.DotNetGateway.Service.

Using the Object Gateway for .NET 39

5. Click OK to display the updated production diagram that now contains the Object Gateway business service. Click the
EnsLib.DotNetGateway.Service box to configure it.

The wizard fills in the associated Object Gateway adapter class. The Business Service Settings for the Object Gateway
section lists the configurable settings.

8.1.1 Business Service Settings for the Object Gateway

Dot Net Server

IP address or name of the machine where the Object Gateway server executable is located.

Port

TCP port number for communication between the Object Gateway server and the proxy classes in the production.
The default is 55000.

File Path

Location of the Object Gateway server executable. It is used to find the target executable and assemble the command
to start the Object Gateway on a local server. If you do not specify this setting, the service uses the default directory
...\Dev\dotnet\bin\ under the installation directory.

Allowed IP Addresses

IP addresses allowed to connect to the Object Gateway server. If this setting is 0.0.0.0 (default) or "", any
system (local or remote) may connect; otherwise any listed IP addresses are allowed to connect.

Exec64

If you select this check box, the business service uses the 64–bit version of the Object Gateway executable. Oth-
erwise, it uses the 32–bit version of the executable. This setting is available only on Windows 64-bit platforms.

.NET Version

Select the .NET version to use: 2.0 or 4.0.

Log File

Full pathname of the file where the Object Gateway logs messages. These messages include acknowledgment of
opening and closing connections to the server, and any difficulties encountered in mapping .NET classes to proxy
classes.

Heartbeat Interval

Number of seconds between each communication with the Object Gateway to check whether it is active. When
enabled, the minimum value is 5 seconds and the maximum value is 3600 seconds (1 hour). The default is 10
seconds. A value of 0 disables this feature.

Heartbeat Failure Timeout

Number of seconds without responding to the heartbeat, to consider that the Object Gateway is in failure state. If
this value is smaller than the HeartbeatInterval property, the gateway is in failure state every time the Object
Gateway communication check fails. The maximum value is 86400 seconds (1 day). The default is 30 seconds.

40 Using the Object Gateway for .NET

Using the Object Gateway in a Production

Heartbeat Failure Action

Action to take if the Object Gateway goes into a failure state. Setting it to Restart (default) causes the Object
Gateway to restart. Setting it to Alert generates an alert entry in the Event Log. This is independent of the Alert

on Error setting.

Heartbeat Failure Retry

Time to wait before retrying the HeartbeatFailureAction if the Object Gateway server goes into failure state, and
stays in failure state. The default is 300 seconds (5 minutes). A value of 0 disables this feature, meaning that once
there is a failure that cannot be immediately recovered, there are no attempts at automatic recovery.

Once you have added and configured the Object Gateway business service, it automatically manages the Object Gateway
as follows:

• When the production starts, the Object Gateway business service starts an instance of the Object Gateway server, using
the settings that you specify on the configuration page.

• When the production receives a signal to stop, the Object Gateway business service attaches to the Object Gateway
server and instructs it to stop, as well.

For more information, see the EnsLib.DotNetGateway.Service entry in the Class Reference.

8.2 Calling Business Service Methods
The Object Gateway business service provides methods that you can use to start, connect to, and stop the Object Gateway
engine. You can call the following methods from the production code after you have configured the Object Gateway business
service as a member of the production:

• StartGateway()

• ConnectGateway()

• StopGateway()

See the EnsLib.DotNetGateway.Service entry in the Class Reference for details on these methods.

8.2.1 StartGateway() Method
EnsLib.DotNetGateway.Service:StartGateway(pFilePath As %String,
 pPort As %String,
 pAllowedIPAddresses As %String,
 pLogfile As %String = "",
 ByRef pDevice As %String = "",
 pServer As %String = "127.0.0.1",
 pCmdLine As %String = "")

This class method starts the Object Gateway server using the specified arguments. If pLogFile specifies a valid file name,
then messages regarding gateway activities are written to this file. These messages include acknowledgment of opening
and closing connections to the server, and difficulties encountered (if any) in mapping .NET classes to the production proxy
classes.

8.2.2 ConnectGateway() Method
EnsLib.DotNetGateway.Service:ConnectGateway(pEndpoint As %String,
 ByRef pGateway As %Net.Remote.Gateway,
 pTimeout As %Integer = 5,
 pAdditionalPaths As %String = "")

Using the Object Gateway for .NET 41

Calling Business Service Methods

This class method connects to the Object Gateway server at the specified pEndpoint (hostname:port:namespace).

8.2.3 StopGateway() Method
EnsLib.DotNetGateway.Service:StopGateway(pPort As %String,
 pServer As %String = "127.0.0.1",
 pTimeout As %Integer = 5)

This class method connects to the Object Gateway server and shuts it down.

8.3 Creating a Business Operation
An abstract business operation is available as a base for building Object Gateway oriented business operations for productions.
You can simply subclass the abstract class EnsLib.DotNetGateway.AbstractOperation and implement the appropriate message
handlers.

Call the GetConnection() method to verify there is a valid Object Gateway connection. For example:

 Set tSC = ..GetConnection(.tGateway)
 If $$$ISOK(tSC) {
 // Start using the Object Gateway connection object tGateway
 ...
 }

This method returns a private gateway connection object to be used with the proxy classes.

You can configure the Object Gateway IP address and port in the business operation settings when you add the business
operation to the production. Note that the connection to the Object Gateway instance is made during OnInit() and closed
in OnTearDown(). You must override these methods in the business operation class to implement your own setup and tear
down procedures.

See the EnsLib.DotNetGateway.AbstractOperation entry in the Class Reference for details on these methods and also the
AdditionalPaths, ConnectTimeout, DotNetServer, and Port properties.

8.4 Calling API Methods
In addition to using connect, disconnect, and stop from the business service, the following methods are also available in
the %Net.Remote.Gateway class. You can use them when the business service model is not appropriate for your situation:

The %Net.Remote.Gateway class provides the following types of methods:

• API methods that let you %Connect to the Object Gateway server, %Disconnect from it, and %Shutdown the Object
Gateway server.

• The %Import method, which imports .NET classes or assemblies from the .NET and generates all the necessary proxy
classes for the InterSystems IRIS® side.

• The %ExpressImport method, which combines calls to %Connect, %Import, and %Disconnect.

• The utility method %GetAllClasses.

42 Using the Object Gateway for .NET

Using the Object Gateway in a Production

8.4.1 %Connect() Method
Method %Connect(host As %String,
 port As %Integer,
 namespace As %String,
 timeout As %Numeric = 5,
 additionalClassPaths As %ListOfDataTypes = "")
 As %Status [Final]

The %Connect() method establishes a connection with the Object Gateway engine. It accepts the following arguments:

DescriptionArgument

Identifies the machine on which the Object Gateway server is running.host

Port number over which the proxy classes communicate with the .NET classes.port

interoperability-enabled namespace.namespace

Number of seconds to wait before timing out, the default is 5.timeout

Optional — use this argument to supply additional class paths, such as the
names of additional assembly DLLs that contain the classes you are importing
via the Object Gateway. See the Import Arguments section for details using
this argument.

additionalClassPaths

8.4.2 %Disconnect() Method
Method %Disconnect() As %Status [Final]

The %Disconnect() method closes a connection to the Object Gateway engine.

8.4.3 %Shutdown() Method
Method %Shutdown() As %Status [Final]

The %Shutdown() method shuts down the Object Gateway engine.

8.4.4 %Import() Method
Method %Import(class As %String,
 ByRef imported As %ListOfDataTypes,
 additionalClassPaths As %ListOfDataTypes = "",
 exclusions As %ListOfDataTypes = "")
 As %Status [Final]

The %Import() method imports the given class and all its dependencies by creating and compiling all the necessary proxy
classes. The %Import() method returns, by reference, a list (in imported) of generated proxy classes. For details of how
.NET class definitions are mapped to proxy classes, see the “Mapping Specification” chapter.

%Import() is a onetime, startup operation. It only needs to be called the first time you wish to generate the proxy classes.
It is necessary again only if you recompile your .NET code and wish to regenerate the proxies. The following sections
provide further details about the %Import() method:

• Import Arguments

• Import Dependencies and Exclusions

Using the Object Gateway for .NET 43

Calling API Methods

8.4.4.1 Import Arguments

Before you invoke %Import(), prepare the additionalClassPaths and exclusions arguments. That is, for each argument,
create a new %ListOfDataTypes object and call its Insert() method to fill the list. The optional additionalClassPaths argument
can be used to supply additional path arguments, such as the names of additional assembly DLLs that contain the classes
you are importing via the Object Gateway. List elements should correspond to individual additional assembly DLL entries,
which require the following format:

" rootdir\...\mydll.dll "

You can try to load an assembly from a directory outside of where DotNetGatewaySS.exe is running, but you might expe-
rience a load error for your assembly when you try to use a class in the assembly. InterSystems recommends that you put
all local assemblies in the same directory as DotNetGatewaySS.exe. You can also specify assemblies in the GAC by using
partial names for them, System.Data, for example.

8.4.4.2 Import Dependencies and Exclusions

While mapping a .NET class into a proxy class and importing it into InterSystems IRIS, the Object Gateway loops over all
class dependencies discovered in the given .NET class, including all classes referenced as properties and in argument lists.
In other words, the Object Gateway collects a list of all class dependencies needed for a successful import of the given
class, then walks that dependency list and generates all necessary proxy classes.

You can control this process by specifying a list of assembly and class name prefixes to exclude from this process. While
this situation would be rare, it does give you some flexibility to control what classes get imported. The Object Gateway
automatically excludes a small subset of assemblies such as Microsoft.* assemblies.

8.4.5 %ExpressImport() Method
ClassMethod %ExpressImport(name As %String,
 port As %Integer,
 host As %String = "127.0.0.1",
 silent As %Boolean = 0,
 additionalClassPaths As %ListOfDataTypes = "",
 exclusions As %ListOfDataTypes = "")
 As %Status [Final]

%ExpressImport() is a one-step convenience class method that combines calls to %Connect(), %Import(), and
%Disconnect(). It returns a list of generated proxies. It also logs that list, if the silent argument is set to 0. The name
argument is a semicolon-delimited list of classes or assembly DLLs.

8.4.6 %GetAllClasses()Method
 %GetAllClasses(jarFileOrDirectoryName As %String,
 ByRef allClasses As %ListOfDataTypes)
 As %Status

This method returns, in the ByRef argument allClasses, a list of all public classes available in the assembly DLL specified
by the first argument, jarFileOrDirectoryName.

8.5 Using the Command Prompt
Usually you start and stop the Object Gateway server automatically, by configuring the EnsLib.DotNetGateway.Service

business service as a member of the production. Once this is done, the Object Gateway server starts and stops automatically
with the production. The StartGateway() class method is also available to manually start the Object Gateway server.

44 Using the Object Gateway for .NET

Using the Object Gateway in a Production

However, during development or debugging, or when InterSystems IRIS and the Object Gateway server run on different
machines, you may find it useful to start the gateway server from a command prompt. Copy the file DotNetGatewaySS.exe

to the directory where you load an assembly. By default, DotNetGatewaySS.exe is shipped in the directory
install-dir\dev\dotnet\bin. Run DotNetGatewaySS.exe from install-dir\dev\dotnet\bin as follows:

DotNetGatewaySS port listener logfile

DescriptionArgument

Port number on which to listen for the incoming requests.port

Optional — Contains the local IP address on the local machine where the gateway listens.
Specify null, "", or 0.0.0.0 (the default) to listen on all IP addresses local to the machine
(127.0.0.1, VPN address, etc.) You can restrict the listener to one existing local IP address
or listen on all of them; you cannot enter a list of acceptable addresses.You must provide
a value for this argument if you are specifying a logfile.

listener

Optional — If specified, the command procedure creates a log file of this name; you must
specify the full pathname in the string. The listener argument is required if you enter a
value for logfile.

logfile

For example:

DotNetGatewaySS 55000 "" ./gatewaySS.log

Note: When using classes in local side-by-side assemblies (assemblies are not installed into the GAC), run
DotNetGatewaySS.exe from the same directory as those assemblies to resolve their dependencies.

8.6 Using the .NET Object Gateway Wizard
You can import a DLL assembly file from .NET and create a set of corresponding classes using the .NET Object Gateway
wizard built into Studio. To start the wizard:

1. Start Studio.

2. From the Tools menu, point to and click Add-Ins.

3. Click .NET Gateway Wizard to start the .NET Object Gateway Wizard dialog.

4. Enter the path and name of a DLL assembly file; or click Browse to help navigate to one.

5. Enter the .NET Gateway server name / IP address and .NET Gateway server port for the Object Gateway server.

6. You can also enter Additional paths\assemblies to be used in finding dependent classes and Exclude dependent classes

matching the following prefixes as instructed in the dialog.

7. Click Next to generate proxy classes. The wizard displays the class name as it generates each proxy class.

8. When the import operation is complete, click Finish to exit the wizard.

8.7 Error Checking
The Object Gateway provides error checking as follows:

Using the Object Gateway for .NET 45

Using the .NET Object Gateway Wizard

• When an error occurs while executing proxy methods, the error is, in most cases, a .NET exception, coming either
from the original .NET method itself, or from the Object Gateway engine. When this happens, an error is trapped.

• The Object Gateway API methods like %Import() or %Connect() return a typical %Status variable.

In both cases, InterSystems IRIS records the last error value returned from a .NET class (which in many cases is the actual
.NET exception thrown) in the local variable %objlasterror.

You can retrieve the complete text of the error message by calling $system.OBJ.DisplayError(), as follows:

 Do $system.OBJ.DisplayError(%objlasterror)

8.8 Troubleshooting
Should you encounter problems while using the Object Gateway it is always a good idea to turn logging on. That might be
necessary for InterSystems staff to help you troubleshoot problems. To activate logging, simply identify a log file when
you start the Object Gateway. You can do this whether you start from the command line or use the StartGateway() API
method.

Sometimes, while using the Object Gateway in a debugging or test situation, you may encounter problems with a Terminal
session becoming unusable, or with write errors in the Terminal window. It is possible that a Object Gateway connection
terminated without properly disconnecting. In this case, the port used for that connection may be left open.

If you suspect this is the case, to close the port, type the following command at the Terminal prompt:

 Close "|TCP|port"

Where port is the port number to close.

46 Using the Object Gateway for .NET

Using the Object Gateway in a Production

	Table of Contents
	About This Book
	1 Object Gateway Architecture
	1.1 Using Proxy Classes
	1.2 Using Wrapper Classes with .NET APIs
	1.3 Creating and Running an Object Gateway Server
	1.4 Importing Proxy Classes
	1.5 The .NET Object Gateway API

	2 Setting Object Gateway Server Properties
	2.1 Using the New Object Gateway Form
	2.2 Defining Server Properties Programmatically
	2.3 Object Gateway Server Versions

	3 Running an Object Gateway Server
	3.1 Starting the Server
	3.1.1 Starting a Server from the Command Prompt

	3.2 Connecting to a Server Thread
	3.2.1 The Gateway.%Connect() Method

	3.3 Disconnecting and Stopping the Server
	3.4 Monitoring and Debugging the Object Gateway
	3.4.1 Error Checking
	3.4.2 Troubleshooting

	4 Using Dynamic Object Gateways
	4.1 Introducing Dynamic Gateways
	4.2 Creating and Using a Dynamic Object Gateway
	4.3 Array Access
	4.4 Gateway Reentrancy
	4.5 Example Classes
	4.5.1 The .NET Fruit Class
	4.5.2 Creating the NetGate Server Definition

	5 Creating Static Proxy Classes
	5.1 Using the Studio .NET Object Gateway Wizard
	5.2 Generating Proxy Classes Programmatically
	5.2.1 %Import() Method
	5.2.2 %GetAllClasses() Method
	5.2.3 %ExpressImport() Method

	6 Sample Code
	6.1 Compiling and Running the .NET Test Project
	6.1.1 Compiling the .NET Assembly
	6.1.2 Creating and Running the Server
	6.1.3 Generating InterSystems IRIS Proxy Classes
	6.1.4 Running the InterSystems IRIS DotNet.Test Examples

	6.2 Source Code for the Test Class
	6.2.1 Test() Method
	6.2.2 The TestArrays() Method

	7 Mapping Specification
	7.1 Assembly and Class Names
	7.2 Primitives
	7.3 Properties
	7.4 Methods
	7.4.1 Overloaded Methods
	7.4.2 Method Names
	7.4.3 Static Methods

	7.5 Constructors
	7.6 Constants
	7.7 OUT and REF Parameters
	7.8 .NET Arrays
	7.9 Recasting
	7.10 .NET Standard Output Redirection
	7.11 Restrictions

	8 Using the Object Gateway in a Production
	8.1 Creating a Business Service
	8.1.1 Business Service Settings for the Object Gateway

	8.2 Calling Business Service Methods
	8.2.1 StartGateway() Method
	8.2.2 ConnectGateway() Method
	8.2.3 StopGateway() Method

	8.3 Creating a Business Operation
	8.4 Calling API Methods
	8.4.1 %Connect() Method
	8.4.2 %Disconnect() Method
	8.4.3 %Shutdown() Method
	8.4.4 %Import() Method
	8.4.5 %ExpressImport() Method
	8.4.6 %GetAllClasses()Method

	8.5 Using the Command Prompt
	8.6 Using the .NET Object Gateway Wizard
	8.7 Error Checking
	8.8 Troubleshooting

