
Persisting Java Objects with
InterSystems XEP

Version 2019.4
2020-01-28

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Persisting Java Objects with InterSystems XEP
InterSystems IRIS Data Platform Version 2019.4 2020-01-28
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

1 Introduction .. 3
1.1 Requirements and Configuration ... 3

1.1.1 Requirements ... 3
1.1.2 Installation .. 3
1.1.3 Configuration ... 4

2 Using XEP Event Persistence .. 5
2.1 Introduction to Event Persistence ... 5

2.1.1 The XepSimple Sample Application .. 6
2.2 Creating and Connecting an EventPersister ... 8
2.3 Importing a Schema ... 9
2.4 Storing and Modifying Events ... 10

2.4.1 Creating and Storing Events ... 10
2.4.2 Accessing Stored Events .. 11
2.4.3 Controlling Index Updating ... 12

2.5 Using Queries ... 13
2.5.1 Creating and Executing a Query .. 13
2.5.2 Processing Query Data ... 14
2.5.3 Defining the Fetch Level .. 16

2.6 Schema Customization and Mapping ... 17
2.6.1 Schema Import Models .. 17
2.6.2 Using Annotations .. 18
2.6.3 Using IdKeys .. 21
2.6.4 Implementing an InterfaceResolver ... 22
2.6.5 Schema Mapping Rules ... 23

3 XEP Quick Reference ... 27
3.1 XEP Quick Reference .. 27

3.1.1 List of XEP Methods .. 27
3.1.2 Class PersisterFactory .. 29
3.1.3 Class EventPersister ... 29
3.1.4 Class Event ... 33
3.1.5 Class EventQuery<T> .. 35
3.1.6 Class EventQueryIterator<T> .. 37
3.1.7 Interface InterfaceResolver .. 38
3.1.8 Class XEPException .. 38

Persisting Java Objects with InterSystems XEP iii

About This Book

InterSystems IRIS® provides lightweight Java APIs for easy database access via relational tables (JDBC and SQL), objects,
and multidimensional storage. See Using Java JDBC with InterSystems IRIS for relational table access and Using the Native
API for Java for multidimensional storage access. This book describes the XEP API for object access.

XEP provides high-performance Java persistence technology for simple to medium complexity object hierarchies. XEP
projects the data in Java objects as persistent events (database objects that store a persistent copy of the data fields),
accessing the InterSystems IRIS database. XEP is optimized for transaction processing applications that require extremely
high speed data persistence and retrieval.

The following topics are discussed in this book:

• Introduction — provides an overview of the platform architecture, and describes common installation procedures.

• Using XEP Event Persistence — describes how to use the XEP API.

• Quick Reference for XEP Classes — Provides a quick reference for methods of the XEP API classes.

There is also a detailed Table of Contents.

Related Documents
The following documents contain related material:

• See the XEP API online documentation for the most recent information on XEP classes.

• Using Java JDBC with InterSystems IRIS describes how to connect to InterSystems IRIS from an external application
using the InterSystems JDBC driver, and how to access external JDBC data sources from InterSystems IRIS via SQL.

• Using the Native API for Java describes how to use the Native API to access multidimensional storage (globals).

• “Hibernate Support” in the InterSystems IRIS Implementation Reference for Java Third Party APIs describes the
InterSystems IRIS dialect of Hibernate. This dialect implements support for Java Persistence Architecture (JPA), which
is the recommended persistence technology for large, complex object hierarchies in Java projects.

Persisting Java Objects with InterSystems XEP 1

XEP-API/index.html

1
Introduction

XEP is a lightweight API that provides high-performance Java technology for persisting simple to moderately complex
object hierarchies. XEP projects the data in Java objects as persistent events (database objects that store a persistent copy
of the data fields) in an InterSystems IRIS™ database. XEP is optimized for applications that must acquire and persist data
at the highest possible speed.

InterSystems IRIS provides Java APIs for easy database access via SQL tables and objects. This book discusses the API
for object access. See Using Java with InterSystems Software for SQL table access.

1.1 Requirements and Configuration
This section specifies requirements and provides instructions for installing InterSystems IRIS and configuring your envi-
ronment to use XEP.

1.1.1 Requirements

• A 64–bit Java JDK supported by this release of InterSystems IRIS (see “Supported Java Technologies” in the online
InterSystems Supported Platforms document for this release).

• InterSystems IRIS.

Computers that run your Java client applications do not require InterSystems IRIS, but they must have a connection to the
InterSystems IRIS Server and must be running a supported version of the Java JDK.

1.1.2 Installation

• When installing InterSystems IRIS, select the Development environment:

– In Windows, select the Setup Type: Development option during installation.

– In UNIX® and related operating systems, select the 1) Development - Install InterSystems IRIS
server and all language bindings option during installation (see “Standard InterSystems IRIS Instal-
lation Procedure” in the UNIX® and Linux section of the Installation Guide).

• If InterSystems IRIS has been installed with security level 2, open the Management Portal and go to System Administration

> Security > Services, select %Service_CallIn, and make sure the Service Enabled box is checked.

If you installed InterSystems IRIS with security level 1 (minimal) it should already be checked.

Persisting Java Objects with InterSystems XEP 3

platforms/ISP_technologies.html#ISP_ejb
GCI_unix_install_std
GCI_unix_install_std

1.1.3 Configuration

All XEP applications require JAR files intersystems-jdbc-3.0.0.jar and intersystems-xep-3.0.0.jar (see “The InterSystems
Java Class Packages” in Using Java with InterSystems Software for file location and other details). Your CLASSPATH
environment variable must include the full paths to these files. Alternately, they can be specified in the Java command line
classpath argument.

Note: Additional Configuration for Windows
The default stack size of the Java Virtual Machine on Windows is too small for running XEP applications (running
them with the default stack size causes Java to report EXCEPTION_STACK_OVERFLOW). To optimize performance,
heap size should also be increased. To temporarily modify the stack size and heap size when running an XEP
application, add the following command line arguments:

 -Xss1024k
 -Xms2500m -Xmx2500m

4 Persisting Java Objects with InterSystems XEP

Introduction

2
Using XEP Event Persistence

XEP provides extremely rapid storage and retrieval of Java structured data. It provides ways to control schema generation
for optimal mapping of complex data structures, but schemas for simpler data structures can often be generated and used
without modification.

The following topics are discussed in this chapter:

• Introduction to Event Persistence — introduces persistent event concepts and terminology, and provides a simple
example of code that uses the XEP API.

• Creating and Connecting an EventPersister — describes how to create an instance of the EventPersister class and use
it to open, test, and close a database connection.

• Importing a Schema — describes the methods and annotations used to analyze a Java class and generate a schema for
the corresponding persistent event.

• Storing and Modifying Events — describes methods of the Event class used to store, modify, and delete persistent
events.

• Using Queries — describes methods of the XEP classes that create and process query resultsets.

• Schema Customization and Mapping — provides a detailed description of how Java classes are mapped to database
schemas, and how to generate customized schemas for optimal performance.

Note: Why “Persistent Event”?
The term persistent event originally referred to data acquired from real time events. The current implementation
of XEP is designed for much more than simple event processing, so XEP “persistent events” are actually database
objects that XEP has persisted from any source.

2.1 Introduction to Event Persistence
A persistent event is an InterSystems IRIS database object that holds a persistent copy of the data fields in a Java object.
By default, XEP stores each event as a standard %Persistent object. Storage is automatically configured so that the data
will be accessible to InterSystems IRIS by other means, such as objects, SQL, or direct global access.

Before a persistent event can be created and stored, XEP must analyze the corresponding Java class and import a schema,
which defines how the data structure of a Java object is projected to a persistent object in the database. A schema can use
either of the following two object projection models:

Persisting Java Objects with InterSystems XEP 5

• The default model is the flat schema, where all referenced objects are serialized and stored as part of the imported
class, and all fields inherited from superclasses are stored as if they were native fields of the imported class. This is
the fastest and most efficient model, but does not preserve any information about the original Java class structure.

• If structural information must be preserved, the full schema model may be used. This preserves the full Java inheritance
structure by creating a one-to-one relationship between Java source classes and InterSystems IRIS projected classes,
but may impose a slight performance penalty.

See “Schema Import Models” for a detailed discussion of both models, and “Schema Mapping Rules” for detailed
information about how various datatypes are projected.

When importing a schema, XEP acquires basic information by analyzing the Java class. You can supply additional infor-
mation that allows XEP to generate indexes (see “Using IdKeys”) and override the default rules for importing fields (see
“Using Annotations” and “ Implementing an InterfaceResolver”).

Once a schema has been imported, XEP can be used to store, query, update and delete data at very high rates. Stored events
are immediately available for querying, or for full object or global access. The EventPersister, Event, and EventQuery<T>

classes provide the main features of the XEP API. They are used in the following sequence:

• The EventPersister class provides methods to establish and control a database connection (see “Creating and Connecting
an EventPersister”).

• Once the connection has been established, other EventPersister methods can be used to import a schema (see
“ Importing a Schema”).

• The Event class provides methods to store, update, or delete events, create a query, and control index updating (see
“Storing and Modifying Events”).

• The EventQuery<T> class is used to execute simple SQL queries that retrieve sets of events from the database. It provides
methods to iterate through the resultset and update or delete individual events (see “Using Queries”).

The following section describes a very simple application that demonstrates all of these features.

2.1.1 The XepSimple Sample Application

The following program demonstrates how to work with XEP and InterSystems IRIS. XepSimple is a small program, but
it provides examples for most of the key XEP features and will give you an overview of how the XEP API is used.

The program is divided into four sections, each of which demonstrates one of the four main XEP classes, EventPersister,
Event, EventQuery, and EventQueryIterator. The imported xep.samples.SingleStringSample class is listed at the end of this
section.

class XepSimple

package xepsimple;
import com.intersystems.xep.*;
import xep.samples.SingleStringSample;

public class XepSimple {
 public static void main(String[] args) throws Exception {
// Generate 12 SingleStringSample objects for use as test data
 SingleStringSample[] sampleArray = SingleStringSample.generateSampleData(12);

// EventPersister
 EventPersister xepPersister = PersisterFactory.createPersister();
 xepPersister.connect("127.0.0.1",51773,"User","_SYSTEM","SYS"); // connect to localhost
 xepPersister.deleteExtent("xep.samples.SingleStringSample"); // remove old test data
 xepPersister.importSchema("xep.samples.SingleStringSample"); // import flat schema

// Event
 Event xepEvent = xepPersister.getEvent("xep.samples.SingleStringSample");
 for (int i=0; i < sampleArray.length; i++) {
 SingleStringSample sample = sampleArray[i]; // array initialized on line 8
 sample.name = "Sample object #" + i;
 xepEvent.store(sample);

6 Persisting Java Objects with InterSystems XEP

Using XEP Event Persistence

 System.out.println("Persisted " + sample.name);
 }

// EventQuery
 String sqlQuery = "SELECT * FROM xep_samples.SingleStringSample WHERE %ID BETWEEN ? AND ?";

 EventQuery<SingleStringSample> xepQuery = xepEvent.createQuery(sqlQuery);
 xepQuery.setParameter(1,3); // assign value 3 to first SQL parameter
 xepQuery.setParameter(2,12); // assign value 12 to second SQL parameter
 xepQuery.execute(); // get resultset for IDs between 3 and 12

// EventQueryIterator
 EventQueryIterator<SingleStringSample> xepIter = xepQuery.getIterator();
 while (xepIter.hasNext()) {
 SingleStringSample newSample = xepIter.next();
 newSample.name = newSample.name + " has been updated";
 xepIter.set(newSample);
 System.out.println(newSample.name);
 }

 xepQuery.close();
 xepEvent.close();
 xepPersister.close();
 } // end main()
} // end class XepSimple

XepSimple performs the following tasks:

• First, some sample objects are generated by calling a method of our sample data class, xep.samples.SingleStringSample.

• EventPersister is the main entry point for XEP, and provides the connection to the database.

It creates an instance named xepPersister, which establishes a JDBC connection to the User namespace in the database
and deletes any existing sample data. It then calls importSchema() to analyze the sample class and send the schema
to the database, thus creating an extent to hold persistent SingleStringSample objects.

• Event encapsulates an interface between a Java object and the corresponding database object.

Once the schema has been generated, xepPersister can create an Event object named xepEvent for the sample class. In
the loop, each instance of SingleStringSample is modified and then persisted to the database. The xepEvent store()
method takes advantage of the connection and schema defined in xepPersister.

• EventQuery is used to prepare and execute SQL queries.

An EventQuery<SingleStringSample> object named xepQuery is created by passing a query string to the xepEvent
object’s createQuery() method. The string defines an SQL query that accepts two parameters (the ? characters). The
parameter values are defined by calls to setParameter(), and a call to execute() fetches the query resultset.

• EventQueryIterator is used to read rows from the resultset and update or delete the corresponding persistent objects.

Now that xepQuery contains the query resultset, an iterator named xepIter can be created for it by calling getIterator().
In the loop, the iterator’s next() method is used to get each row of data and assign it to a SingleStringSample object.
The object is then modified, and the iterator’s set() method updates the corresponding persistent object in the database.

• When processing is done, it cleans up by calling the close() methods for the XEP objects.

Here is a listing of the sample class used in the XepSimple application:

Persisting Java Objects with InterSystems XEP 7

Introduction to Event Persistence

xep.samples.SingleStringSample

 public class SingleStringSample {
 public String name;
 public SingleStringSample() {}
 SingleStringSample(String str) {
 name = str;
 }

 public static SingleStringSample[] generateSampleData(int objectCount) {
 SingleStringSample[] data = new SingleStringSample[objectCount];
 for (int i=0;i<objectCount;i++) {
 data[i] = new SingleStringSample("single string test");
 }
 return data;
 }
 }

2.2 Creating and Connecting an EventPersister
The EventPersister class is the main entry point for the XEP API. It provides the methods for connecting to the database,
importing schemas, handling transactions, and creating instances of Event to access events in the database.

An instance of EventPersister is created and destroyed by the following methods:

• PersisterFactory.createPersister() — returns a new instance of EventPersister.

• EventPersister.close() — closes this EventPersister instance and releases associated resources.

The following method is used to create a connection:

• EventPersister.connect() — takes arguments for host, port, namespace, username, password, and establishes a connection
to the specified InterSystems IRIS namespace.

The following example establishes a connection:

Creating and Connecting an EventPersister: Creating a connection

// Open a connection
 String host = "127.0.0.1";
 int port = 51773;
 String namespace = "USER";
 String username = "_SYSTEM";
 String password = "SYS";
 EventPersister myPersister = PersisterFactory.createPersister();
 myPersister.connect(host, port, namespace,username,password);
 // perform event processing here . . .
 myPersister.close();

The EventPersister.connect() method establishes a connection to the specified port and namespace of the host
machine. If no connection exists in the current process, a new connection is created. If a connection already exists,
the method returns a reference to the existing connection object.

If the server address is 127.0.0.1 or localhost, the connection will default to a local shared memory connec-
tion, which is faster than the standard TCP/IP connection (see “Shared Memory Connections” in Using Java with
the InterSystems JDBC Driver).

Note: Always call close() to release resources
Always call close() on an instance of EventPersister before it goes out of scope to ensure that all locks, licenses,
and other resources associated with the connection are released.

8 Persisting Java Objects with InterSystems XEP

Using XEP Event Persistence

2.3 Importing a Schema
Before an instance of a Java class can be stored as a persistent event, a schema must be imported for the class. The schema
defines the database structure in which the event will be stored. XEP provides two different schema import models: flat
schema and full schema. The main difference between these models is the way in which Java objects are projected to
InterSystems IRIS events. A flat schema is the optimal choice if performance is essential and the event schema is fairly
simple. A full schema offers a richer set of features for more complex schemas, but may have an impact on performance.
See “Schema Customization and Mapping” for a detailed discussion of schema models and related subjects.

The following methods are used to analyze a Java class and import a schema of the desired type:

• EventPersister.importSchema() — imports a flat schema. Takes an argument specifying a .jar file name, a fully qual-
ified class name, or an array of class names, and imports all classes and any dependencies found in the specified locations.
Returns a String array containing the names of all successfully imported classes.

• EventPersister.importSchemaFull() — imports a full schema. Takes the same arguments and returns the same class
list as importSchema(). A class imported by this method must declare a user-generated IdKey (see “Using IdKeys”).

• Event.isEvent() — a static Event method that takes a Java object or class name of any type as an argument, tests to see
if the specified object can be projected as a valid XEP event (see “Requirements for Imported Classes”), and throws
an appropriate error if it is not valid.

The import methods are identical except for the schema model used. The following example imports a simple test class
and its dependent class:

Importing a Schema: Importing a class and its dependencies

The following classes from package test are to be imported:

 public class MainClass {
 public MainClass() {}
 public String myString;
 public test.Address myAddress;
 }

 public class Address {
 public String street;
 public String city;
 public String state;
 }

The following code uses importSchema() to import the main class, test.MainClass, after calling isEvent() to make
sure it can be projected. Dependent class test.Address is also imported automatically when test.MainClass is
imported:

 try {
 Event.isEvent("test.MainClass"); // throw an exception if class is not projectable
 myPersister.importSchema("test.MainClass");
 }
 catch (XEPException e) {System.out.println("Import failed:\n" + e);}

In this example, instances of dependent class test.Address will be serialized and embedded in the same InterSystems IRIS
object as other fields of test.MainClass. If importSchemaFull() had been used instead, stored instances of test.MainClass

would contain references to instances of test.Address stored in a separate InterSystems IRIS class extent.

Persisting Java Objects with InterSystems XEP 9

Importing a Schema

2.4 Storing and Modifying Events
Once the schema for a class has been imported (see “ Importing a Schema”), an instance of Event can be created to store
and access events of that class. The Event class provides methods to store, update, or delete persistent events, create queries
on the class extent, and control index updating. This section discusses the following topics:

• Creating and Storing Events — describes how to create an instance of Event and use it to store persistent events of the
specified class.

• Accessing Stored Events — describes Event methods for fetching, changing, and deleting persistent events of the
specified class.

• Controlling Index Updating — describes Event methods that can increase processing efficiency by controlling when
index entries are updated.

2.4.1 Creating and Storing Events

Instances of the Event class are created and destroyed by the following methods:

• EventPersister.getEvent() — takes a className String argument and returns an instance of Event that can store and
access events of the specified class. Optionally takes an indexMode argument that specifies the default way to update
index entries (see “Controlling Index Updating” for details).

Note: Target Class
An instance of Event can only store, access, or query events of the class specified by the className argument
in the call to getEvent(). In this chapter, class className is referred to as the target class. In the examples,
the target class is always SingleStringSample.

• Event.close() — closes the Event instance and releases the native code resources associated with it.

The following Event method stores Java objects of the target class as persistent events:

• store() — adds one or more instances of the target class to the database. Takes either an event or an array of events as
an argument, and returns a long database ID (or 0 if the database id could not be returned) for each stored event.

Important: When an event is stored, it is not tested in any way, and it will never change or overwrite existing
data. Each event is appended to the extent at the highest possible speed, or silently ignored if an event
with the specified key already exists in the database.

The following example creates an instance of Event with SingleStringSample as the target class, and uses it to project an
array of Java SingleStringSample objects as persistent events. The example assumes that myPersister has already been
created and connected, and that a schema has been imported for the SingleStringSample class (listed earlier in “The Xep-
Simple Sample Application”).

10 Persisting Java Objects with InterSystems XEP

Using XEP Event Persistence

Storing and Modifying Events: Storing an array of objects

 SingleStringSample[] eventItems = SingleStringSample.generateSampleData(12);
 try {
 Event newEvent = myPersister.getEvent("xep.samples.SingleStringSample");
 long[] itemIdList = newEvent.store(eventItems); // store all events
 int itemCount = 0;
 for (int i=0; i < itemIdList.length; i++) {
 if (itemIdList[i]>0) itemCount++;
 }
 System.out.println("Stored " + itemCount + " of " + eventItems.length + " events");
 newEvent.close();
 }
 catch (XEPException e) {System.out.println("Event storage failed:\n" + e);}

• The generateSampleData() method of SingleStringSample generates twelve SingleStringSample objects and
stores them in an array named eventItems.

• The EventPersister.getEvent() method creates an Event instance named newEvent with SingleStringSample

as the target class.

• The Event.store() method is called to project each object in the eventItems array as a persistent event in the
database.

The method returns an array named itemIdList, which contains a long object ID for each successfully stored
event, or 0 for an object that could not be stored. Variable itemCount is incremented once for each ID greater
than 0 in itemIdList, and the total is printed.

• When the loop terminates, the Event.close() method is called to release associated resources.

Note: Always call close() to release resources
Always call close() on an instance of EventPersister before it goes out of scope to ensure that all locks, licenses,
and other resources associated with the connection are released.

2.4.2 Accessing Stored Events

Once a persistent event has been stored, an Event instance of that target class provides the following methods for reading,
updating, deleting the event:

• deleteObject() — takes a database object ID or IdKey as an argument and deletes the specified event from the database.

• getObject() — takes a database object ID or IdKey as an argument and returns the specified event.

• updateObject() — takes a database object ID or IdKey and an Object of the target class as arguments, and updates
the specified event.

If the target class uses a standard object ID, it is specified as a long value (as returned by the store() method described in
the previous section). If the target class uses an IdKey, it is specified as an array of Object where each item in the array is
a value for one of the fields that make up the IdKey (see “Using IdKeys”).

In the following example, array itemIdList contains a list of object ID values for some previously stored SingleStringSample

events. The example arbitrarily updates the first six persistent events in the list and deletes the rest.

Note: See “Creating and Storing Events” for the example that created the itemIdList array. This example also assumes
that an EventPersister instance named myPersister has already been created and connected to the database.

See “The XepSimple Sample Application” for a listing of the SingleStringSample class.

Persisting Java Objects with InterSystems XEP 11

Storing and Modifying Events

Storing and Modifying Events: Fetching, updating, and deleting events

// itemIdList is a previously created array of SingleStringSample event IDs
 try {
 Event newEvent = myPersister.getEvent("xep.samples.SingleStringSample");
 int itemCount = 0;
 for (int i=0; i < itemIdList.length; i++) {
 try { // arbitrarily update events for first 6 IDs and delete the rest
 SingleStringSample eventObject = (SingleStringSample)newEvent.getObject(itemIdList[i]);

 if (i<6) {
 eventObject.name = eventObject.name + " (id=" + itemIdList[i] + ")" + " updated!";
 newEvent.updateObject(itemIdList[i], eventObject);
 itemCount++;
 } else {
 newEvent.deleteObject(itemIdList[i]);
 }
 }
 catch (XEPException e) {System.out.println("Failed to process event:\n" + e);}
 }
 System.out.println("Updated " + itemCount + " of " + itemIdList.length + " events");
 newEvent.close();
 }
 catch (XEPException e) {System.out.println("Event processing failed:\n" + e);}

• The EventPersister.getEvent() method creates an Event instance named newEvent with SingleStringSample

as the target class.

• Array itemIdList contains a list of object ID values for some previously stored SingleStringSample events (see
“Creating and Storing Events” for the example that created itemIdList).

In the loop, each item in itemIdList is processed. The first six items are changed and updated, and the rest of
the items are deleted. The following operations are performed:

– The Event.getObject() method fetches the SingleStringSample object with the object ID specified in
itemIdList[i], and assigns it to variable eventObject.

– The value of the eventObject name field is changed.

– If the eventObject is one of the first six items in the list, Event.updateObject() is called to update it in
the database. Otherwise, Event.deleteObject() is called to delete the object from the database.

• After all of the IDs in itemIdList have been processed, the loop terminates and a message displays the number
of events updated.

• The Event.close() method is called to release associated resources.

See “Using Queries” for a description of how to access and modify persistent events fetched by a simple SQL query.

Deleting Test Data
When initializing a test database, it is frequently convenient to delete an entire class, or delete all events in a specified
extent. The following EventPersister methods delete classes and extents from the InterSystems IRIS database:

• deleteClass() — takes a className string as an argument and deletes the specified InterSystems IRIS class.

• deleteExtent() — takes a className string as an argument and deletes all events in the extent of the specified class.

These methods are intended primarily for testing, and should be avoided in production code. See “Classes and Extents”
in the Orientation Guide for Server-Side Programming for a detailed definition of these terms.

2.4.3 Controlling Index Updating

By default, indexes are not updated when a call is made to one of the Event methods that act on an event in the database
(see “Accessing Stored Events”). Indexes are updated asynchronously, and updating is only performed after all transactions
have been completed and the Event instance is closed. No uniqueness check is performed for unique indexes.

12 Persisting Java Objects with InterSystems XEP

Using XEP Event Persistence

GORIENT_persistence_sql_projection_extents

Note: This section only applies to classes that use standard object IDs or generated IdKeys (see “Using IdKeys”).
Classes with user-assigned IdKeys can only be updated synchronously.

There are a number of ways to change this default indexing behavior. When an Event instance is created by
EventPersister.getEvent() (see “Creating and Storing Events”), the optional indexMode parameter can be set to specify a
default indexing behavior. The following options are available:

• Event.INDEX_MODE_ASYNC_ON — enables asynchronous indexing. This is the default when the indexMode parameter
is not specified.

• Event.INDEX_MODE_ASYNC_OFF — no indexing will be performed unless the startIndexing() method is called.

• Event.INDEX_MODE_SYNC — indexing will be performed each time the extent is changed, which can be inefficient
for large numbers of transactions. This index mode must be specified if the class has a user-assigned IdKey.

The following Event methods can be used to control asynchronous index updating for the extent of the target class:

• startIndexing() — starts asynchronous index building for the extent of the target class. Throws an exception if the
index mode is Event.INDEX_MODE_SYNC.

• stopIndexing() — stops asynchronous index building for the extent. If you do not want the index to be updated when
the Event instance is closed, call this method before calling Event.close().

• waitForIndexing() — takes an int timeout value as an argument and waits for asynchronous indexing to be completed.
The timeout value specifies the number of seconds to wait (wait forever if -1, return immediately if 0). It returns true
if indexing has been completed, or false if the wait timed out before indexing was completed. Throws an exception
if the index mode is Event.INDEX_MODE_SYNC.

2.5 Using Queries
The Event class provides a way to create an instance of EventQuery<T>, which can execute a limited SQL query on the
extent of the target class. EventQuery<T> methods are used to execute the SQL query, and to retrieve, update, or delete
individual items in the query resultset.

The following topics are discussed:

• Creating and Executing a Query — describes how use methods of the EventQuery<T> class to execute queries.

• Processing Query Data — describes how to access and modify items in an EventQuery<T> resultset.

• Defining the Fetch Level — describes how to control the amount of data returned by a query.

Note: The examples in this section assume that EventPersister object myPersister has already been created and connected,
and that a schema has been imported for the SingleStringSample class. See “The XepSimple Sample Application”
for an example of how this is done and a listing of SingleStringSample.

2.5.1 Creating and Executing a Query

The following methods create and destroy an instance of EventQuery<T>:

• Event.createQuery() — takes a String argument containing the text of the SQL query and returns an instance of
EventQuery<T>, where parameter T is the target class of the parent Event.

• EventQuery<T>.close() — closes this EventQuery<T> instance and releases the native code resources associated with
it.

Persisting Java Objects with InterSystems XEP 13

Using Queries

Queries submitted by an instance of EventQuery<T> will return Java objects of the specified generic type T (the target class
of the Event instance that created the query object). Queries supported by the EventQuery<T> class are a subset of SQL
select statements, as follows:

• Queries must consist of a SELECT clause, a FROM clause, and (optionally) standard SQL clauses such as WHERE and
ORDER BY.

• The SELECT and FROM clauses must be syntactically legal, but they are actually ignored during query execution. All
fields that have been mapped are always fetched from the extent of target class T.

• SQL expressions may not refer to arrays of any type, nor to embedded objects or fields of embedded objects.

• The InterSystems IRIS system-generated object ID may be referred to as %ID. Due to the leading %, this will not
conflict with any field called id in a Java class.

The following EventQuery<T> methods define and execute the query:

• setParameter() — binds a parameter for the SQL query associated with this EventQuery<T>. Takes int index and Object

value as arguments, where index specifies the parameter to be set, and value is the value to bind to the specified
parameter.

• execute() — executes the SQL query associated with this EventQuery<T>. If the query is successful, this EventQuery<T>

will contain a resultset that can be accessed by the methods described later (see “Processing Query Data”).

The following example executes a simple query on events in the xep.samples.SingleStringSample extent.

Using Queries: Creating and executing a query

 Event newEvent = myPersister.getEvent("xep.samples.SingleStringSample");
 EventQuery<SingleStringSample> myQuery = null;
 String sql =
 "SELECT * FROM xep_samples.SingleStringSample WHERE %ID BETWEEN ? AND ?";

 myQuery = newEvent.createQuery(sql);
 myQuery.setParameter(1,3); // assign value 3 to first SQL parameter
 myQuery.setParameter(2,12); // assign value 12 to second SQL parameter
 myQuery.execute(); // get resultset for IDs between 3 and 12

The EventPersister.getEvent() method creates an Event instance named newEvent with SingleStringSample as the
target class.

The Event.createQuery() method creates an instance of EventQuery<T> named myQuery, which will execute the
SQL query and hold the resultset. The sql variable contains an SQL statement that selects all events in the target
class with IDs between two parameter values.

The EventQuery<T>.setParameter() method is called twice to assign values to the two parameters.

When the EventQuery<T>.execute() method is called, the specified query is executed for the extent of the target
class, and the resultset is stored in myQuery.

By default, all data is fetched for each object in the resultset, and each object is fully initialized. See “Defining the Fetch
Level” for options that limit the amount and type of data fetched with each object.

2.5.2 Processing Query Data

After a query has been executed, the methods described here can be used to access items in the query resultset, and update
or delete the corresponding persistent events in the database. The EventQueryIterator<T> class implements java.util.Iterator<T>

(where T is the target class of the parent EventQuery<T> instance). The following EventQuery<T> method creates an instance
of EventQueryIterator<T>:

• getIterator() — returns an EventQueryIterator<T> iterator for the current resultset.

14 Persisting Java Objects with InterSystems XEP

Using XEP Event Persistence

EventQueryIterator<T> implements java.util.Iterator<T> methods hasNext(), next(), and remove(), plus the following method:

• set() — takes an object of the target class and uses it to update the persistent event most recently fetched by next().

The following example creates an instance of EventQueryIterator<T> and uses it to update each item in the resultset:

Using Queries: Iteration with EventQueryIterator<T>

 myQuery.execute(); // get resultset
 EventQueryIterator<xep.samples.SingleStringSample> myIter = myQuery.getIterator();
 while (myIter.hasNext()) {
 currentEvent = myIter.next();
 currentEvent.name = "in process: " + currentEvent.name;
 myIter.set(currentEvent);
 }

The call to EventQuery<T>.execute() runs the query described in the previous example (see “Creating and Exe-
cuting a Query”), and the resultset is stored in myQuery. Each item in the resultset is a SingleStringSample object.

The call to getIterator() creates iterator myIter for the resultset currently stored in myQuery.

In the while loop, hasNext() returns true until all items in the resultset have been processed:

• The call to next() returns the next SingleStringSample object from the resultset and assigns it to currentEvent.

• The currentEvent.name property is changed.

• The set() method is called, storing the updated currentEvent object in the database.

See “The XepSimple Sample Application” for a listing of the SingleStringSample class.

2.5.2.1 Alternate Query Iteration Methods

The EventQuery<T> class also provides methods that can be used to process a resultset without using EventQueryIterator<T>.
(This is an alternative for developers who prefer iteration methods similar to those provided by ObjectScript). After a query
has been executed, the following EventQuery<T> methods can be used to access items in the query resultset, and update or
delete the corresponding persistent events in the database:

• getNext() — returns the next object of the target class from the resultset. Returns null if there are no more items in
the resultset. It requires null or an object of the target class as an argument. (In this release, the argument is a placeholder
that has no effect on the query).

• updateCurrent() — takes an object of the target class as an argument and uses it to update the persistent event most
recently returned by getNext().

• deleteCurrent() — deletes the persistent event most recently returned by getNext() from the database.

• getAll() — uses getNext() to get all items from the resultset, and returns them in a List. Cannot be used for updating
or deleting. getAll() and getNext() cannot access the same resultset — once either method has been called, the other
method cannot be used until execute() is called again.

See “Accessing Stored Events” for a description of how to access and modify persistent events identified by Id or IdKey.

Important: Never use EventQuery<T> and EventQueryIterator<T> iteration methods together
Although query results can be accessed either by direct calls to EventQuery<T> methods or by getting an
instance of EventQueryIterator<T> and using its methods, these access methods must never be used at the
same time. Getting an iterator and calling its methods while also making direct calls to the EventQuery<T>

methods can lead to unpredictable results.

Persisting Java Objects with InterSystems XEP 15

Using Queries

Using Queries: Updating and Deleting Query Data

 myQuery.execute(); // get resultset
 SingleStringSample currentEvent = myQuery.getNext(null);
 while (currentEvent != null) {
 if (currentEvent.name.startsWith("finished")) {
 myQuery.deleteCurrent(); // Delete if already processed
 } else {
 currentEvent.name = "in process: " + currentEvent.name;
 myQuery.updateCurrent(currentEvent); // Update if unprocessed
 }
 currentEvent = myQuery.getNext(currentEvent);
 }
 myQuery.close();

In this example, the call to EventQuery<T>.execute() is assumed to execute the query described in the previous
example (see “Creating and Executing a Query”), and the resultset is stored in myQuery. Each item in the
resultset is a SingleStringSample object.

The first call to getNext() gets the first item from the resultset and assigns it to currentEvent.

In the while loop, the following process is applied to each item in the resultset:

• If currentEvent.name starts with the string "finished", deleteCurrent() deletes the corresponding persistent
event from the database.

• Otherwise, the value of currentEvent.name is changed, and updateCurrent() is called. It takes currentEvent
as its argument and uses it to update the persistent event in the database.

• The call to getNext() returns the next SingleStringSample object from the resultset and assigns it to currentEvent.

After the loop terminates, close() is called to release the native code resources associated with myQuery.

Note: Always call close() to release resources
Always call close() on an instance of EventPersister before it goes out of scope to ensure that all locks, licenses,
and other resources associated with the connection are released.

2.5.3 Defining the Fetch Level

The fetch level is an Event property that can be used to control the amount of data returned when running a query. This is
particularly useful when the underlying event is complex and only a small subset of event data is required.

The following EventQuery<T> methods set and return the current fetch level:

• getFetchLevel() — returns an int indicating the current fetch level of the Event.

• setFetchLevel() — takes one of the values in the Event fetch level enumeration as an argument and sets the fetch level
for the Event.

The following fetch level values are supported:

• Event.OPTION_FETCH_LEVEL_ALL — This is the default. All data is fetched, and the returned event is fully initialized.

• Event.OPTION_FETCH_LEVEL_DATATYPES_ONLY — Only datatype fields are fetched. This includes all primitive
types, all primitive wrappers, java.lang.String, java.math.BigDecimal, java.util.Date, java.sql.Date, java.sql.Time,
java.sql.Timestamp and enum types. All other fields are set to null.

• Event.OPTION_FETCH_LEVEL_NO_ARRAY_TYPES — All types are fetched except arrays. All fields of array types,
regardless of dimension, are set to null. All datatypes, object types (including serialized types) and collections are
fetched.

• Event.OPTION_FETCH_LEVEL_NO_COLLECTIONS — All types are fetched except implementations of java.util.List,
java.util.Map, and java.util.Set.

16 Persisting Java Objects with InterSystems XEP

Using XEP Event Persistence

• Event.OPTION_FETCH_LEVEL_NO_OBJECT_TYPES — All types are fetched except object types. Serialized types
are also considered object types and are not fetched. All datatypes, array types and collections are fetched.

2.6 Schema Customization and Mapping
This section provides details about how a Java class is mapped to an InterSystems IRIS event schema, and how a schema
can be customized for optimal performance. In many cases, a schema can be imported for a simple class without providing
any meta-information. In other cases, it may be necessary or desirable to customize the way in which the schema is imported.
The following sections provide information on customized schemas and how to generate them:

• Schema Import Models — describes the two schema import models supported by XEP.

• Using Annotations — XEP annotations can be added to a Java class to specify the indexes that should be created. They
can also be added to optimize performance by specifying fields that should not be imported or fields that should be
serialized.

• Using IdKeys — Annotations can be used to specify IdKeys (index values used in place of the default object ID),
which are required when importing a full schema.

• Implementing an InterfaceResolver — By default, a flat schema does not import fields declared as interfaces. Imple-
mentations of the InterfaceResolver interface can be used to during schema import to specify the actual class of a field
declared as an interface.

• Schema Mapping Rules — provides a detailed description of how Java classes are mapped to InterSystems IRIS event
schemas.

2.6.1 Schema Import Models

XEP provides two different schema import models: flat schema and full schema. The main difference between these models
is the way in which Java objects are projected to InterSystems IRIS events.

• The Embedded Object Projection Model (Flat Schema) — imports a flat schema where all objects referenced by the
imported class are serialized and embedded, and all fields declared in all ancestor classes are collected and projected
as if they were declared in the imported class itself. All data for an instance of the class is stored as a single InterSystems
IRIS %Library.Persistent object, and information about the original Java class structure is not preserved.

• The Full Object Projection Model (Full Schema) — imports a full schema where all objects referenced by the imported
class are projected as separate InterSystems IRIS %Persistent objects. Inherited fields are projected as references to
fields in the ancestor classes, which are also imported as InterSystems IRIS %Persistent classes. There is a one-to-one
correspondence between Java source classes and InterSystems IRIS projected classes, so the Java class inheritance
structure is preserved.

Full object projection preserves the inheritance structure of the original Java classes, but may have an impact on performance.
Flat object projection is the optimal choice if performance is essential and the event schema is fairly simple. Full object
projection can be used for a richer set of features and more complex schemas if the performance penalty is acceptable.

2.6.1.1 The Embedded Object Projection Model (Flat Schema)

By default, XEP imports a schema that projects referenced objects by flattening. In other words, all objects referenced by
the imported class are serialized and embedded, and all fields declared in all ancestor classes are collected and projected
as if they were declared in the imported class itself. The corresponding InterSystems IRIS event extends %Library.Persistent,
and contains embedded serialized objects where the original Java object contained references to external objects.

Persisting Java Objects with InterSystems XEP 17

Schema Customization and Mapping

This means that a flat schema does not preserve inheritance in the strict sense on the InterSystems IRIS side. For example,
consider these three Java classes:

class A {
 String a;
}
class B extends class A {
 String b;
}
class C extends class B {
 String c;
}

Importing class C results in the following InterSystems IRIS class:

Class C Extends %Persistent ... {
 Property a As %String;
 Property b As %String;
 Property c As %String;
}

No corresponding InterSystems IRIS events will be generated for the A or B classes unless they are specifically imported.
Event C on the InterSystems IRIS side does not extend either A or B. If imported, A and B would have the following structures:

Class A Extends %Persistent ... {
 Property a As %String;
}
Class B Extends %Persistent ... {
 Property a As %String;
 Property b As %String;
}

All operations will be performed only on the corresponding InterSystems IRIS event. For example, calling store() on objects
of type C will only store the corresponding C InterSystems IRIS events.

If a Java child class hides a field of the same name that is also declared in its superclass, the XEP engine always uses the
value of the child field.

2.6.1.2 The Full Object Projection Model (Full Schema)

The full object model imports a schema that preserves the Java inheritance model by creating a matching inheritance
structure in InterSystems IRIS. Rather than serializing all object fields and storing all data in a single InterSystems IRIS
object, the schema establishes a one-to-one relationship between the Java source classes and InterSystems IRIS projected
classes. The full object projection model stores each referenced class separately, and projects fields of a specified class as
references to objects of the corresponding InterSystems IRIS class.

Referenced classes must include an annotation that creates a user-defined IdKey (either @Id or @Index — see “Using
IdKeys”). When an object is stored, all referenced objects are stored first, and the resulting IdKeys are stored in the parent
object. As with the rest of XEP, there are no uniqueness checks, and no attempts to change or overwrite existing data. The
data is simply appended at the highest possible speed. If an IdKey value references an event that already exists, it will
simply be skipped, without any attempt to overwrite the existing event.

The @Embedded class level annotation can be used to optimize a full schema by embedding instances of the annotated
class as serialized objects rather than storing them separately.

2.6.2 Using Annotations

The XEP engine infers XEP event metadata by examining a Java class. Additional information can be specified in the Java
class via annotations, which can be found in the com.intersystems.xep.annotations package. As long a Java object conforms
to the definition of an XEP persistent event (see “Requirements for Imported Classes”), it is projected as an InterSystems
IRIS event, and there is no need to customize it.

Some annotations are applied to individual fields in the class to be projected, while others are applied to the entire class:

18 Persisting Java Objects with InterSystems XEP

Using XEP Event Persistence

• Field Annotations — are applied to a field in the class to be imported:

– @Id — specifies that the field will act as an IdKey.

– @Serialized — indicates that the field should be stored and retrieved in its serialized form.

– @Transient — indicates that the field should be excluded from import.

• Class Annotations — are applied to the entire class to be imported:

– @Embedded — indicates that a field of this class in a full schema should be embedded (as in a flat schema) rather
than referenced.

– @Index — declares an index for the class.

– @Indices — declares multiple indexes for the same class.

@Id (field level annotation)

The value of a field marked with @Id will be used as an IdKey that replaces the standard object ID (see “Using
IdKeys”). Only one field per class can use this annotation, and the field must be a String, int, or long (double is
permitted but not recommended). To create a compound IdKey, use the @Index annotation instead. A class marked
with @Id cannot also declare a compound primary key with @Index. An exception will be thrown if both anno-
tations are used on the same class.

The following parameter must be specified:

• generated — a boolean specifying whether or not XEP should generate key values.

– generated = true — (the default setting) key value will be generated by InterSystems IRIS and the
field marked as @Id must beLong. This field is expected to be null prior to insert/store and will be filled
automatically by XEP upon completion of such an operation.

– generated=false — the user-assigned value of the marked field will be used as the IdKey value.
Fields can be String, int, Integer, long or Long.

In the following example, the user-assigned value of the ssn field will be used as the object ID:

import com.intersystems.xep.annotations.Id;
public class Person {
 @Id(generated=false)
 Public String ssn;
 public String name;
 Public String dob;
}

@Serialized (field level annotation)

The @Serialized annotation indicates that the field should be stored and retrieved in its serialized form.

This annotation optimizes storage of fields that implement the java.io.Serializable interface (including arrays, which
are implicitly serializable). The XEP engine will call the relevant read or write method for the serial object, rather
than using the default mechanism for storing or retrieving data. An exception will be thrown if the marked field
is not serializable. See “Type Mapping” for more details on the projection of serialized fields.

Example:

Persisting Java Objects with InterSystems XEP 19

Schema Customization and Mapping

import com.intersystems.xep.annotations.Serialized;
public class MyClass {
 @Serialized
 public xep.samples.Serialized serialized;
 @Serialized
 public int[][][][] quadIntArray;
 @Serialized
 public String[][] doubleStringArray;
}

// xep.samples.Serialized:
public class Serialized implements java.io.Serializable {
 public String name;
 public int value;
}

@Transient (field level annotation)

The @Transient annotation indicates that the field should be excluded from import. The annotated field will
not be projected to InterSystems IRIS, and will be ignored when events are stored or loaded.

Example:

import com.intersystems.xep.annotations.Transient;
public class MyClass {
 // this field will NOT be projected:
 @Transient
 public String transientField;

 // this field WILL be projected:
 public String projectedField;
}

@Embedded (class level annotation)

The @Embedded annotation can be used when a full schema is to be generated (see “Schema Import Models”).
It indicates that a field of this class should be serialized and embedded (as in a flat schema) rather than referenced
when projected to InterSystems IRIS.

Examples:

import com.intersystems.xep.annotations.Embedded;
@Embedded
public class Address {
 String street;
 String city;
 String zip;
 String state;
}

import com.intersystems.xep.annotations.Embedded;
public class MyOuterClass {
 @Embedded
 public static class MyInnerClass {
 public String innerField;
 }
}

@Index (class level annotation)

The @Index annotation can be used to declare an index.

Arguments must be specified for the following parameters:

• name — a String containing the name of the composite index

• fields — an array of String containing the names of the fields that comprise the composite index

• type — the index type. The xep.annotations.IndexType enumeration includes the following possible types:

– IndexType.none — default value, indicating that there are no indexes.

– IndexType.bitmap — a bitmap index (see “Bitmap Indices” in Using InterSystems SQL).

20 Persisting Java Objects with InterSystems XEP

Using XEP Event Persistence

GSQLOPT_indices_bitmap

– IndexType.bitslice — a bitslice index (see “Overview” in Using InterSystems SQL).

– IndexType.simple — a standard index on one or more fields.

– IndexType.idkey — an index that will be used in place of the standard ID (see “Using IdKeys”).

Example:

import com.intersystems.xep.annotations.Index;
import com.intersystems.xep.annotations.IndexType;

@Index(name="indexOne",fields={"ssn","dob"},type=IndexType.idkey)
public class Person {
 public String name;
 public Date dob;
 public String ssn;
}

@Indices (class level annotation)

The @Indices annotation allows you to specify an array of different indexes for one class. Each element in the
array is an @Index tag.

Example:

import com.intersystems.xep.annotations.Index;
import com.intersystems.xep.annotations.IndexType;
import com.intersystems.xep.annotations.Indices;

@Indices({
 @Index(name="indexOne",fields={"myInt","myString"},type=IndexType.simple),
 @Index(name="indexTwo",fields={"myShort","myByte","myInt"},type=IndexType.simple)
})
public class MyTwoIndices {
 public int myInt;
 public Byte myByte;
 public short myShort;
 public String myString;
}

2.6.3 Using IdKeys

IdKeys are index values that are used in place of the default object ID. Both simple and composite IdKeys are supported
by XEP, and a user-generated IdKey is required for a Java class that is imported with a full schema (see “ Importing a
Schema”). IdKeys on a single field can be created with the @Id annotation. To create a composite IdKey, add an @Index
annotation with IndexType idkey. For example, given the following class:

 class Person {
 String name;
 Integer id;
 Date dob;
 }

the default storage structure uses the standard object ID as a subscript:

^PersonD(1)=$LB("John",12,"1976-11-11")

The following annotation uses the name and id fields to create a composite IdKey named newIdKey that will replace the
standard object ID:

 @Index(name="newIdKey",fields={"name","id"},type=IndexType.idkey)

This would result in the following global structure:

^PersonD("John",12)=$LB("1976-11-11")

Persisting Java Objects with InterSystems XEP 21

Schema Customization and Mapping

GSQLOPT_indices_overview

XEP will also honor IdKeys added by other means, such as SQL commands (see “Using the Unique, PrimaryKey, and
IDKey Keywords with Indices” in Using InterSystems SQL). The XEP engine will automatically determine whether the
underlying class contains an IdKey, and generate the appropriate global structure.

There are a number of limitations on IdKey usage:

• An IdKey value must be unique. If the IdKey is user-generated, uniqueness is the responsibility of the calling application,
and is not enforced by XEP. If the application attempts to add an event with a key value that already exists in the
database, the attempt will be silently ignored and the existing event will not be changed.

• A class that declares an IdKey cannot be indexed asynchronously if it also declares other indexes.

• There is no limit of the number of fields in a composite IdKey, but the fields must be String, int, Integer, long or Long.
Although double can also be used, it is not recommended.

• There may be a performance penalty in certain rare situations requiring extremely high and sustained insert rates.

See “Accessing Stored Events” for a discussion of Event methods that allow retrieval, updating and deletion of events
based on their IdKeys.

See “SQL and Object Use of Multidimensional Storage” in Using Globals for information on IdKeys and the standard
InterSystems IRIS storage model. See “Defining and Building Indices” in Using InterSystems SQL for information on
IdKeys in SQL.

2.6.4 Implementing an InterfaceResolver

When a flat schema is imported, information on the inheritance hierarchy is not preserved (see “Schema Import Models”).
This creates a problem when processing fields whose types are declared as interfaces, since the XEP engine must know
the actual class of the field. By default, such fields are not imported into a flat schema. This behavior can be changed by
creating implementations of com.intersystems.xep.InterfaceResolver to resolve specific interface types during processing.

Note: InterfaceResolver is only relevant for the flat schema import model, which does not preserve the Java class
inheritance structure. The full schema import model establishes a one-to-one relationship between Java and
InterSystems IRIS classes, thus preserving the information needed to resolve an interface.

An implementation of InterfaceResolver is passed to EventPersister before calling the flat schema import method,
importSchema() (see “ Importing a Schema”). This provides the XEP engine with a way to resolve interface types during
processing. The following EventPersister method specifies the implementation that will be used:

• EventPersister.setInterfaceResolver() — takes an instance of InterfaceResolver as an argument. When importSchema()
is called, it will use the specified instance to resolve fields declared as interfaces.

The following example imports two different classes, calling a different, customized implementation of InterfaceResolver

for each class:

Schema Customization: Applying an InterfaceResolver

 try {
 myPersister.setInterfaceResolver(new test.MyFirstInterfaceResolver());
 myPersister.importSchema("test.MyMainClass");

 myPersister.setInterfaceResolver(new test.MyOtherInterfaceResolver());
 myPersister.importSchema("test.MyOtherClass");
 }
 catch (XEPException e) {System.out.println("Import failed:\n" + e);}

The first call to setInterfaceResolver() sets a new instance of MyFirstInterfaceResolver (described in the next
example) as the implementation to be used during calls to the import methods. This implementation will be used
in all calls to importSchema() until setInterfaceResolver() is called again to specify a different implementation.

22 Persisting Java Objects with InterSystems XEP

Using XEP Event Persistence

GSQLOPT_indices_std_unique
GSQLOPT_indices_std_unique
GGBL_sqlobj
GSQLOPT_indices

The first call to importSchema() imports class test.MyMainClass, which contains a field declared as interface
test.MyFirstInterface. The instance of MyFirstInterfaceResolver will be used by the import method to resolve the
actual class of this field.

The second call to setInterfaceResolver() sets an instance of a different InterfaceResolver class as the new
implementation to be used when importSchema() is called again.

All implementations of InterfaceResolver must define the following method:

• InterfaceResolver.getImplementationClass() returns the actual type of a field declared as an interface. This method
has the following parameters:

– interfaceClass — the interface to be resolved.

– declaringClass — class that contains a field declared as interfaceClass.

– fieldName — string containing the name of the field in declaringClass that has been declared as an interface.

The following example defines an interface, an implementation of that interface, and an implementation of InterfaceResolver

that resolves instances of the interface.

Schema Customization: Implementing an InterfaceResolver

In this example, the interface to be resolved is test.MyFirstInterface:

package test;
public interface MyFirstInterface{ }

The test.MyFirstImpl class is the implementation of test.MyFirstInterface that should be returned by the
InterfaceResolver:

package test;
public class MyFirstImpl implements MyFirstInterface {
 public MyFirstImpl() {};
 public MyFirstImpl(String s) { fieldOne = s; };
 public String fieldOne;
}

The following implementation of InterfaceResolver returns class test.MyFirstImpl if the interface is
test.MyFirstInterface, or null otherwise:

package test;
import com.intersystems.xep.*;
public class MyFirstInterfaceResolver implements InterfaceResolver {
 public MyFirstInterfaceResolver() {}
 public Class<?> getImplementationClass(Class declaringClass,
 String fieldName, Class<?> interfaceClass) {
 if (interfaceClass == xepdemo.MyFirstInterface.class) {
 return xepdemo.MyFirstImpl.class;
 }
 return null;
 }
}

When an instance of MyFirstInterfaceResolver is specified by setInterfaceResolver(), subsequent calls to
importSchema() will automatically use that instance to resolve any field declared as test.MyFirstInterface. For
such each field, the getImplementationClass() method will be called with parameter declaringClass set to the
class that contains the field, fieldName set to the name of the field, and interfaceClass set to test.MyFirstInterface.
The method will resolve the interface and return either test.MyFirstImpl or null.

2.6.5 Schema Mapping Rules

This section provides details about how an XEP schema is structured. The following topics are discussed:

Persisting Java Objects with InterSystems XEP 23

Schema Customization and Mapping

• Requirements for Imported Classes — describes the structural rules that a Java class must satisfy to produce objects
that can be projected as persistent events.

• Naming Conventions — describes how Java class and field names are translated to conform to InterSystems IRIS
naming rules.

• Type Mapping — lists the Java data types that can be used, and describes how they are mapped to corresponding
InterSystems IRIS types.

2.6.5.1 Requirements for Imported Classes

The XEP schema import methods cannot produce a valid schema for a Java class unless it satisfies the following requirements:

• If the imported InterSystems IRIS class or any derived class will be used to execute queries and access stored events,
the Java source class must explicitly declare an argumentless public constructor.

• The Java source class cannot contain fields declared as java.lang.Object, or arrays, lists, sets or maps that use
java.lang.Object as part of their declaration. An exception will be thrown if the XEP engine encounters such fields. Use
the @Transient annotation (see “Using Annotations”) to prevent them from being imported.

The Event.isEvent() method can be used to analyze a Java class or object and determine if it can produce a valid event in
the XEP sense. In addition to the conditions described above, this method throws an XEPException if any of the following
conditions are detected:

• a circular dependency

• an untyped List or Map

• a Map key value that is not a String, primitive, or primitive wrapper

Fields of a persistent event can be primitives and their wrappers, temporal types, objects (projected as embedded/serial
objects), enumerations, and types derived from java.util.List, java.util.Set and java.util.Map. These types can also be contained
in arrays, nested collections, and collections of arrays.

By default, projected fields may not retain all features of the Java class. Certain fields are changed in the following ways:

• Although the Java class may contain static fields, they are excluded from the projection by default. There will be no
corresponding InterSystems IRIS properties. Additional fields can be excluded by using the @Transient annotation
(see “Using Annotations”).

• In a flat schema (see “Schema Import Models”), all object types, including inner (nested) Java classes, are projected
as %SerialObject classes in InterSystems IRIS. The fields within the objects are not projected as separate InterSystems
IRIS properties, and the objects are opaque from the viewpoint of ObjectScript.

• A flat schema projects all inherited fields as if they were declared in the child class.

See “Type Mapping” for more details on how various datatypes are projected.

2.6.5.2 Naming Conventions

Corresponding InterSystems IRIS class and property names are identical to those in Java, with the exception of two special
characters allowed in Java but not InterSystems IRIS:

• $ (dollar sign) is projected as a single "d" character on the InterSystems IRIS side.

• _ (underscore) is projected as a single "u" character on the InterSystems IRIS side.

Class names are limited to 255 characters, which should be sufficient for most applications. However, the corresponding
global names have a limit of 31 characters. Since this is typically not sufficient for a one-to-one mapping, the XEP engine

24 Persisting Java Objects with InterSystems XEP

Using XEP Event Persistence

transparently generates unique global names for class names longer than 31 characters. Although the generated global
names are not identical to the originals, they should still be easy to recognize. For example, the
xep.samples.SingleStringSample class (listed in “The XepSimple Sample Application”) will receive global name
xep.samples.SingleStrinA5BFD.

2.6.5.3 Type Mapping

Fields of a persistent event can be any of the following types:

• primitive types, primitive wrappers and java.lang.String

• temporal types (java.sql.Time, java.sql.Date, java.sql.Timestamp and java.util.Date)

• object types (projected as embedded/serial objects in a flat schema)

• Java enum types

• any types derived from java.util.List, java.util.Set and java.util.Map.

• nested collections (for example, a list of maps), and collections of arrays

• arrays of any of the above

The following sections list the currently supported Java types, and their corresponding InterSystems IRIS types:

Primitives and Primitive Wrappers

The following Java primitives and wrappers are mapped as InterSystems IRIS %String:

• char, java.lang.Character, java.lang.String

The following Java primitives and wrappers are mapped as InterSystems IRIS %Integer:

• boolean, java.lang.Boolean

• byte, java.lang.Byte

• int, java.lang.Integer

• long, java.lang.Long

• short, java.lang.Short

The following Java primitives and wrappers are mapped as InterSystems IRIS %Double:

• double, java.lang.Double

• float, java.lang.Float

Temporal Types

The following Java temporal types are mapped as InterSystems IRIS %String

• java.sql.Date

• java.sql.Time

• java.sql.Timestamp

• java.util.Date

Persisting Java Objects with InterSystems XEP 25

Schema Customization and Mapping

Object Types

Imported Java classes (the target classes specified in calls to importSchema() or importFullSchema()) are projected
as InterSystems IRIS %Persistent classes. Necessary information is also imported from superclasses and dependent
classes, but the schema import model (see “Schema Import Models”) determines how InterSystems IRIS stores
this information:

• In a flat schema, a class that appears as a field type in the imported class is projected as a %SerialObject

InterSystems IRIS class, and is embedded in the parent %Persistent class. Superclasses of the imported class
are not projected. Instead, all fields inherited from superclasses are projected as if they were native fields of
the imported class.

• In a full schema, superclasses and dependent classes are projected as separate %Persistent InterSystems IRIS
classes, and the imported class will contain references to those classes.

The java.lang.Object class is not a supported type. An exception will be thrown if the XEP engine encounters fields
declared as java.lang.Object, or arrays, lists, sets or maps that use it.

Seralized

All fields marked with the @Serialized annotation (see “Using Annotations”) will be projected in their serialized
form as %Binary.

Arrays

The following rules apply to arrays:

• With the exception of byte and character arrays, all one-dimensional arrays of primitives, primitive wrappers
and temporal types are mapped as a list of the underlying base type.

• One-dimensional byte arrays (byte[] and java.lang.Byte[]) are mapped as %Binary.

• One-dimensional character arrays (char[] and java.lang.Character[]) are mapped as %String.

• One-dimensional arrays of objects are mapped as lists of objects.

• All multi-dimensional arrays are mapped as %Binary and are opaque from the viewpoint of ObjectScript.

• Arrays are implicitly serializable, and can be annotated with @Serialized.

Enumerations

Java enum types are projected as InterSystems IRIS %String, and only the names are stored. When retrieved from
InterSystems IRIS, an entire Java enum object will be reconstituted. Arrays, Lists, and other collections of enums
are also supported.

Collections

Classes derived from java.util.List and java.util.Set are projected as InterSystems IRIS lists. Classes derived from
java.util.Map are projected as InterSystems IRIS arrays. Untyped Java lists, sets and maps are not supported (type
parameters must be used). Nested lists, sets and maps, lists, sets and maps of arrays, as well as arrays of lists, sets
or maps are all projected as %Binary and are considered opaque as far as InterSystems IRIS is concerned.

26 Persisting Java Objects with InterSystems XEP

Using XEP Event Persistence

3
XEP Quick Reference

This chapter is a quick reference for the com.intersystems.xep package, which contains the public API described in this
book.

Note: This chapter is intended as a convenience for readers of this book, but it is not the definitive reference for XEP.
For the most complete and up-to-date information on these classes, see the XEP API online documentation.

3.1 XEP Quick Reference
This section is a reference for the XEP API (namespace com.intersystems.xep). See Using XEP Event Persistence for a
details on how to use the API. It contains the following classes and interfaces:

• Class PersisterFactory — provides a factory method to create EventPersister objects.

• Class EventPersister — encapsulates an XEP database connection. It provides methods that set XEP options, establish
a connection or get an existing connection object, import schema, produce XEP Event objects, and control transactions.

• Class Event — encapsulates a reference to an XEP persistent event. It provides methods to store or delete events, create
a query, and start or stop index creation.

• Class EventQuery<T> — encapsulates a query that retrieves individual events of a specific type from the database for
update or deletion.

• Class EventQueryIterator<T> — provides an alternative to EventQuery<T> for retrieving, updating and deleting XEP
events, using methods similar to those in Java Iterator.

• Interface InterfaceResolver — resolves the actual type of a field during flat schema importation if the field was declared
as an interface.

• Class XEPException — is the exception thrown by most XEP methods.

3.1.1 List of XEP Methods

The following classes and methods of the XEP API are described in this reference:

PersisterFactory

• createPersister() — creates a new EventPersister object.

Persisting Java Objects with InterSystems XEP 27

XEP-API/index.html

EventPersister

• close() — releases all resources held by this instance.

• commit() — commits one level of transaction.

• connect() — connects to InterSystems IRIS® via TCP/IP using the arguments specified.

• deleteClass() — deletes an InterSystems IRIS class.

• deleteExtent() — deletes all objects in the given extent.

• getEvent() — returns an event object that corresponds to the class name supplied.

• getInterfaceResolver() — returns the currently specified instance of InterfaceResolver.

• getTransactionLevel() — returns the current transaction level (or 0 if not in a transaction).

• importSchema() — imports a flat schema.

• importSchemaFull() — imports a full schema.

• rollback() — rolls back the specified number of transaction levels, or all levels if no level is specified.

• setInterfaceResolver() — specifies the InterfaceResolver object to be used.

Event

• close() — releases all resources held by this instance.

• createQuery() — creates a EventQuery<T> instance.

• deleteObject() — deletes an event given its database Id or IdKey.

• getObject() — returns an event given its database Id or IdKey.

• isEvent() — checks whether an object (or class) is an event in the XEP sense.

• startIndexing() — starts index building for the underlying class.

• stopIndexing() — stops index building for the underlying class.

• store() — stores the specified object or array of objects.

• updateObject() — updates an event given its database Id or IdKey.

• waitForIndexing() — waits for asynchronous indexing to be completed for this class.

EventQuery<T>

• close() — releases all resources held by this instance.

• deleteCurrent() — deletes the event most recently fetched by getNext().

• execute() — executes this XEP query.

• getAll() — fetches all events in the resultset as an array.

• getFetchLevel() — returns the current fetch level.

• getIterator() — returns an EventQueryIterator<T> that can be used to iterate over query results.

• getNext() — fetches the next event in the resultset.

• setFetchLevel() — controls the amount of data returned.

• setParameter() — binds a parameter for this query.

• updateCurrent() — updates the event most recently fetched by getNext()

28 Persisting Java Objects with InterSystems XEP

XEP Quick Reference

EventQueryIterator<T>

• hasNext() — returns true if the query resultset has more items.

• next() — fetches the next event in the resultset.

• remove() — deletes the event most recently fetched by next().

• set() — assigns a new value to the event most recently fetched by next().

InterfaceResolver

• getImplementationClass() — if a field was declared as an interface, an implementation of this method can
be used to resolve the actual field type during schema importation.

3.1.2 Class PersisterFactory

Class com.intersystems.xep.PersisterFactory creates a new EventPersister object.

PersisterFactory() Constructor

Creates a new instance of PersisterFactory.

PersisterFactory()

createPersister()

PersisterFactory.createPersister() returns an instance of EventPersister.

static EventPersister createPersister() [inline, static]

see also:

Creating and Connecting an EventPersister

3.1.3 Class EventPersister

Class com.intersystems.xep.EventPersister is the main entry point for the XEP module. It provides methods that can be
used to control XEP options, establish a connection, import schema, and produce XEP Event objects. It also provides
methods to control transactions and perform other tasks.

In most applications, instances of EventPersister should be created by PersisterFactory.createPersister(). The constructor
should only be used to extend the class.

EventPersister() Constructor

Creates a new instance of EventPersister.

EventPersister()

close()

EventPersister.close() releases all resources held by this instance. Always call close() on the EventPersister object
before it goes out of scope to ensure that all locks, licenses, and other resources associated with the connection
are released.

void close()

Persisting Java Objects with InterSystems XEP 29

XEP Quick Reference

commit()

EventPersister.commit() commits one level of transaction

void commit()

connect()

EventPersister.connect() establishes a connection to the specified InterSystems IRIS namespace.

void connect(String host, int port, String namespace, String username, String password)

parameters:

• host — host address for TCP/IP connection.

• port — port number for TCP/IP connection.

• namespace — namespace to be accessed.

• username — username for this connection.

• password — password for this connection.

If the host address is 127.0.0.1 or localhost, the connection will default to a shared memory connection,
which is faster than the standard TCP/IP connection (see “Shared Memory Connections” in Using Java with the
InterSystems JDBC Driver).

see also:

Creating and Connecting an EventPersister

deleteClass()

EventPersister.deleteClass() deletes an InterSystems IRIS class definition. It does not delete objects associated
with the extent (since objects can belong to more than one extent), and does not delete any dependencies (for
example, inner or embedded classes).

void deleteClass(String className)

parameter:

• className — name of the class to be deleted.

If the specified class does not exist, the call silently fails (no error is thrown).

see also:

“Deleting Test Data” in Accessing Stored Events

deleteExtent()

EventPersister.deleteExtent() deletes the extent definition associated with a Java event, but does not destroy
associated data (since objects can belong to more than one extent). See “Extents” in Defining and Using Classes
for more information on managing extents.

void deleteExtent(String className)

• className — name of the extent.

Do not confuse this method with the deprecated Event.deleteExtent(), which destroys all extent data as well as
with the extent definition.

see also:

30 Persisting Java Objects with InterSystems XEP

XEP Quick Reference

GOBJ_model_inheritance_extents

“Deleting Test Data” in Accessing Stored Events

getEvent()

EventPersister.getEvent() returns an Event object that corresponds to the class name supplied, and optionally
specifies the indexing mode to be used.

Event getEvent(String className)
Event getEvent(String className, int indexMode)

parameter:

• className — class name of the object to be returned.

• indexMode — indexing mode to be used.

The following indexMode options are available:

• Event.INDEX_MODE_ASYNC_ON — enables asynchronous indexing. This is the default when the indexMode
parameter is not specified.

• Event.INDEX_MODE_ASYNC_OFF — no indexing will be performed unless the startIndexing() method is
called.

• Event.INDEX_MODE_SYNC — indexing will be performed each time the extent is changed, which can be
inefficient for large numbers of transactions. This index mode must be specified if the class has a user-assigned
IdKey.

The same instance of Event can be used to store or retrieve all instances of a class, so a process should only call
the getEvent() method once per class. Avoid instantiating multiple Event objects for a single class, since this can
affect performance and may cause memory leaks.

see also:

Creating Event Instances and Storing Persistent Events, Controlling Index Updating

getInterfaceResolver()

EventPersister.getInterfaceResolver() — returns the currently set instance of InterfaceResolver that will be used
by importSchema() (see “ Implementing an InterfaceResolver”). Returns null if no instance has been set.

InterfaceResolver getInterfaceResolver()

see also:

setInterfaceResolver(), importSchema()

getTransactionLevel()

EventPersister.getTransactionLevel() returns the current transaction level (0 if not in a transaction)

int getTransactionLevel()

importSchema()

EventPersister.importSchema() produces a flat schema (see “Schema Import Models”) that embeds all referenced
objects as serialized objects. The method imports the schema of each event declared in the class or a .jar file
specified (including dependencies), and returns an array of class names for the imported events.

String[] importSchema(String classOrJarFileName)
String[] importSchema(String[] classes)

parameters:

Persisting Java Objects with InterSystems XEP 31

XEP Quick Reference

• classes — an array containing the names of the classes to be imported.

• classOrJarFileName — a class name or the name of a .jar file containing the classes to be imported. If
a .jar file is specified, all classes in the file will be imported.

If the argument is a class name, the corresponding class and any dependencies will be imported. If the argument
is a .jar file, all classes in the file and any dependencies will be imported. If such schema already exists, and it
appears to be in sync with the Java schema, import will be skipped. Should a schema already exist, but it appears
different, a check will be performed to see if there is any data. If there is no data, a new schema will be generated.
If there is existing data, an exception will be thrown.

see also:

Importing a Schema

importSchemaFull()

EventPersister.importSchemaFull() — produces a full schema (see “Schema Import Models”) that preserves
the object hierarchy of the source classes. The method imports the schema of each event declared in the class or
.jar file specified (including dependencies), and returns an array of class names for the imported events.

String[] importSchemaFull(String classOrJarFileName)
String[] importSchemaFull(String[] classes)

parameters:

• classes — an array containing the names of the classes to be imported.

• classOrJarFileName — a class name or the name of a .jar file containing the classes to be imported. If
a .jar file is specified, all classes in the file will be imported.

If the argument is a class name, the corresponding class and any dependencies will be imported. If the argument
is a .jar file, all classes in the file and any dependencies will be imported. If such schema already exists, and it
appears to be in sync with the Java schema, import will be skipped. Should a schema already exist, but it appears
different, a check will be performed to see if there is any data. If there is no data, a new schema will be generated.
If there is existing data, an exception will be thrown.

see also:

Importing a Schema

rollback()

EventPersister.rollback() rolls back the specified number of levels of transaction, where level is a positive integer,
or roll back all levels of transaction if no level is specified.

void rollback()
void rollback(int level)

parameter:

• level — optional number of levels to roll back.

This method does nothing if level is less than 0, and stops rolling back once the transaction level reaches 0 if level
is greater than the initial transaction level.

setInterfaceResolver()

EventPersister.setInterfaceResolver() — sets the instance of InterfaceResolver to be used by importSchema()
(see “ Implementing an InterfaceResolver”). All instances of Event created by this EventPersiser will share the
specified InterfaceResolver (which defaults to null if this method is not called).

32 Persisting Java Objects with InterSystems XEP

XEP Quick Reference

void setInterfaceResolver(InterfaceResolver interfaceResolver)

parameters:

• interfaceResolver — an implementation of InterfaceResolver that will be used by importSchema() to
determine the actual type of fields declared as interfaces. This argument can be null.

see also:

getInterfaceResolver(), importSchema()

3.1.4 Class Event

Class com.intersystems.xep.Event provides methods that operate on XEP events (storing events, creating a query, indexing
etc.). It is created by the EventPersister.getEvent() method.

close()

Event.close() releases all resources held by this instance. Always call close() on the Event object before it goes
out of scope to ensure that all locks, licenses, and other resources associated with the connection are released.

void close()

createQuery()

Event.createQuery() takes a String argument containing the text of the SQL query and returns an instance of
EventQuery<T>, where parameter T is the target class of the parent Event.

<T> EventQuery<T> createQuery (String sqlText)

parameter:

• sqlText — text of the SQL query.

see also:

Creating and Executing a Query

deleteObject()

Event.deleteObject() deletes an event identified by its database object ID or IdKey.

void deleteObject(long id)
void deleteObject(Object[] idkeys)

parameter:

• id — database object ID

• idkeys — an array of objects that make up the IdKey (see “Using IdKeys”). An XEPException will be
thrown if the underlying class has no IdKeys or if any of the keys supplied is equal to null or of an invalid
type.

see also:

Accessing Stored Events

getObject()

Event.getObject() fetches an event identified by its database object ID or IdKey. Returns null if the specified
object does not exist.

Persisting Java Objects with InterSystems XEP 33

XEP Quick Reference

Object getObject(long id)
Object getObject(Object[] idkeys)

parameter:

• id — database object ID

• idkeys — an array of objects that make up the IdKey (see “Using IdKeys”). An XEPException will be
thrown if the underlying class has no IdKeys or if any of the keys supplied is equal to null or of an invalid
type.

see also:

Accessing Stored Events

isEvent()

Event.isEvent() throws an XEPException if the object (or class) is not an event in the XEP sense (see “Requirements
for Imported Classes”). The exception message will explain why the object is not an XEP event.

static void isEvent(Object objectOrClass)

parameter:

• objectOrClass — the object to be tested.

startIndexing()

Event.startIndexing() starts asynchronous index building for the extent of the target class. Throws an exception
if the index mode is Event.INDEX_MODE_SYNC (see “Controlling Index Updating”).

void startIndexing()

stopIndexing()

Event.stopIndexing() stops asynchronous index building for the extent. If you do not want the index to be updated
when the Event instance is closed, call this method before calling Event.close().

void stopIndexing()

see also:

Controlling Index Updating

store()

Event.store() stores a Java object or array of objects as persistent events. Returns a long database ID for each newly
inserted object, or 0 if the ID could not be returned or the event uses an IdKey.

long store(Object object)
long[] store(Object[] objects)

parameters:

• object — Java object to be added to the database.

• objects — array of Java objects to be added to the database. All objects must be of the same type.

updateObject()

Event.updateObject() updates an event identified by its database ID or IdKey.

34 Persisting Java Objects with InterSystems XEP

XEP Quick Reference

void updateObject(long id, Object object)
void updateObject(Object[] idkeys, Object object)

parameter:

• id — database object ID

• idkeys — an array of objects that make up the IdKey (see “Using IdKeys”). An XEPException will be
thrown if the underlying class has no IdKeys or if any of the keys supplied is equal to null or of an invalid
type.

• object — new object that will replace the specified event.

see also:

Accessing Stored Events

waitForIndexing()

Event.waitForIndexing() waits for asynchronous indexing to be completed, returning true if indexing has been
completed, or false if the wait timed out before indexing was completed. Throws an exception if the index mode
is Event.INDEX_MODE_SYNC.

boolean waitForIndexing(int timeout)

parameter:

• timeout — number of seconds to wait before timing out (wait forever if -1, return immediately if 0).

see also:

Controlling Index Updating

3.1.5 Class EventQuery<T>

Class com.intersystems.xep.EventQuery<T> can be used to retrieve, update and delete individual events from the database.

close()

EventQuery<T>.close() releases all resources held by this instance. Always call close() before the EventQuery<T>

object goes out of scope to ensure that all locks, licenses, and other resources associated with the connection are
released.

void close()

deleteCurrent()

EventQuery<T>.deleteCurrent() deletes the event most recently fetched by getNext().

void deleteCurrent()

see also:

Processing Query Data

execute()

EventQuery<T>.execute() executes the SQL query associated with this EventQuery<T>. If the query is successful,
this EventQuery<T> will contain a resultset that can be accessed by other EventQuery<T> or EventQueryIterator<T>

methods.

void execute()

Persisting Java Objects with InterSystems XEP 35

XEP Quick Reference

see also:

Creating and Executing a Query

getAll()

EventQuery<T>.getAll() returns objects of target class T from all rows in the resultset as a single list.

java.util.List<T> getAll()

Uses getNext() to get all target class T objects in the resultset, and returns them in a List. The list cannot be used
for updating or deleting (although Event methods updateObject() and deleteObject() can be used if you have
some way of obtaining the Id or IdKey of each object). getAll() and getNext() cannot access the same resultset
— once either method has been called, the other method cannot be used until execute() is called again.

see also:

Processing Query Data, Event.updateObject(), Event.deleteObject()

getFetchLevel()

EventQuery<T>.getFetchLevel() returns the current fetch level (see “Defining the Fetch Level”).

int getFetchLevel()

getIterator()

EventQuery<T>.getIterator() returns an EventQueryIterator<T> that can be used to iterate over query results (see
“Processing Query Data”).

EventQueryIterator<T> getIterator()

getNext()

EventQuery<T>.getNext() returns an object of target class T from the resultset. It returns the first item in the
resultset if the argument is null, or takes the object returned by the previous call to getNext() as an argument
and returns the next item in the resultset. Returns null if there are no more items in the resultset.

E getNext(E obj)

parameter:

• obj — the object returned by the previous call to getNext() (or null to return the first item in the resultset).

see also:

Processing Query Data

setFetchLevel()

EventQuery<T>.setFetchLevel() controls the amount of data returned by setting a fetch level (see “Defining the
Fetch Level”).

For example, by setting the fetch level to Event.FETCH_LEVEL_DATATYPES_ONLY, objects returned by this
query will only have their datatype fields set, and any object type, array, or collection fields will not get populated.
Using this option can dramatically improve query performance.

void setFetchLevel(int level)

parameter:

• level — fetch level constant (defined in the Event class).

36 Persisting Java Objects with InterSystems XEP

XEP Quick Reference

Supported fetch levels are:

• Event.FETCH_LEVEL_ALL —default, all fields populated

• Event.FETCH_LEVEL_DATATYPES_ONLY —only datatype fields filled in

• Event.FETCH_LEVEL_NO_ARRAY_TYPES —all arrays will be skipped

• Event.FETCH_LEVEL_NO_OBJECT_TYPES —all object types will be skipped

• Event.FETCH_LEVEL_NO_COLLECTIONS —all collections will be skipped

setParameter()

EventQuery<T>.setParameter() binds a parameter for the SQL query associated with this EventQuery<T>.

void setParameter(int index, java.lang.Object value)

parameters:

• index — the index of this parameter within the query statement.

• value — the value to be used for this query.

see also:

Creating and Executing a Query

updateCurrent()

EventQuery<T>.updateCurrent() updates the event most recently fetched by getNext().

void updateCurrent(E obj)

parameter:

• obj — the Java object that will replace the current event.

see also:

Processing Query Data

3.1.6 Class EventQueryIterator<T>

Class com.intersystems.xep.EventQueryIterator<T> is the primary way to retrieve, update and delete XEP events (the same
task can be also achieved by direct use of EventQuery<T> methods).

hasNext()

EventQueryIterator<T>.hasNext() returns true if the query resultset has more items.

boolean hasNext()

next()

EventQueryIterator<T>.next() fetches the next event in the query resultset.

E next()

remove()

EventQueryIterator<T>.remove() deletes the last event fetched by next().

void remove()

Persisting Java Objects with InterSystems XEP 37

XEP Quick Reference

set()

EventQueryIterator<T>.set() replaces the last event fetched by next().

void set(E obj)

parameter:

• obj — an object of the target class that will replace the last event fetched by next(). .

3.1.7 Interface InterfaceResolver

By default, fields declared as interfaces are ignored during schema generation. To change this behavior, an implementation
of InterfaceResolver can be passed to the importSchema() method, providing it with information that allows it to replace
an interface type with the correct concrete type.

getImplementationClass()

InterfaceResolver.getImplementationClass() returns the actual type of a field declared as an interface. See
“ Implementing an InterfaceResolver” for details.

Class<?> getImplementationClass (Class declaringClass, String fieldName, Class<?> interfaceClass)

parameters:

• declaringClass — class where fieldName is declared as interfaceClass.

• fieldName — name of the field in declaringClass that has been declared as an interface.

• interfaceClass — the interface to be resolved.

3.1.8 Class XEPException

Class com.intersystems.xep.XEPException implements the exception thrown by most methods of Event, EventPersister, and
EventQuery<T>. This class inherits from java.lang.RuntimeException.

Constructors
 XEPException (String message)
 XEPException (Throwable x, String message)
 XEPException (Throwable x)

38 Persisting Java Objects with InterSystems XEP

XEP Quick Reference

	Table of Contents
	About This Book
	1 Introduction
	1.1 Requirements and Configuration
	1.1.1 Requirements
	1.1.2 Installation
	1.1.3 Configuration

	2 Using XEP Event Persistence
	2.1 Introduction to Event Persistence
	2.1.1 The XepSimple Sample Application

	2.2 Creating and Connecting an EventPersister
	2.3 Importing a Schema
	2.4 Storing and Modifying Events
	2.4.1 Creating and Storing Events
	2.4.2 Accessing Stored Events
	2.4.3 Controlling Index Updating

	2.5 Using Queries
	2.5.1 Creating and Executing a Query
	2.5.2 Processing Query Data
	2.5.3 Defining the Fetch Level

	2.6 Schema Customization and Mapping
	2.6.1 Schema Import Models
	2.6.2 Using Annotations
	2.6.3 Using IdKeys
	2.6.4 Implementing an InterfaceResolver
	2.6.5 Schema Mapping Rules

	3 XEP Quick Reference
	3.1 XEP Quick Reference
	3.1.1 List of XEP Methods
	3.1.2 Class PersisterFactory
	3.1.3 Class EventPersister
	3.1.4 Class Event
	3.1.5 Class EventQuery<T>
	3.1.6 Class EventQueryIterator<T>
	3.1.7 Interface InterfaceResolver
	3.1.8 Class XEPException

