
Using the InterSystems Spark
Connector

Version 2019.4
2020-01-28

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using the InterSystems Spark Connector
InterSystems IRIS Data Platform Version 2019.4 2020-01-28
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

1 Introduction .. 3
1.1 Features .. 3
1.2 Data Source Provider Class Names .. 3
1.3 Requirements and Configuration ... 4

1.3.1 Requirements ... 4
1.3.2 Optional Configuration Settings .. 4

2 Spark Connector Data Source Options .. 7
2.1 Using Spark Connector Generic Options ... 7
2.2 Query Options .. 8
2.3 Standard Save Options ... 8
2.4 InterSystems IRIS Save Options .. 9
2.5 Connection Options .. 11
2.6 Partition Tuning Options .. 11

2.6.1 Implicit Partitioning ... 12
2.6.2 Explicit Partitioning ... 12

3 Using Spark Connector Extension Methods .. 13
3.1 Using Query and Save Extension Methods .. 13

3.1.1 Using the iris() Save Method ... 13
3.1.2 Using the iris() and dataset[T]() Query Methods ... 14
3.1.3 Using the rdd[T]() Query Method .. 14

3.2 Using Extension Methods to Set Data Source Options .. 15
3.2.1 Setting the dbtable Query and Save Options .. 15
3.2.2 Extension Methods for InterSystems IRIS Save Options .. 16
3.2.3 Setting Connection Options with the address() Method .. 17
3.2.4 Setting Partitioning Options with Query Method Parameters .. 17

4 Spark Connector Best Practices .. 19
4.1 Configuration ... 19

4.1.1 Intended topology .. 19
4.1.2 Rationale .. 20
4.1.3 Hardware .. 20

4.2 Queries ... 20
4.3 Loading Data .. 21

5 Spark Connector Internals .. 23
5.1 SQL/Spark Datatype Mapping ... 23
5.2 Predicate Pushdown Operators ... 24
5.3 Logging .. 25
5.4 Known Issues ... 25

5.4.1 Pruning Columns with Synthetic Names ... 25
5.4.2 Java 9 Compatibility ... 26
5.4.3 Handling of TINYINT ... 26
5.4.4 JDBC Isolation Levels ... 26

6 Spark Connector Quick Reference ... 27
6.1 Spark Connector Method Reference .. 28

Using the InterSystems Spark Connector iii

6.1.1 DataFrameReader Extension Methods ... 28
6.1.2 DataFrameWriter Extension Methods ... 28
6.1.3 SparkSession and SparkContext Extension Methods .. 29
6.1.4 ml.PipelineModel Extension Method .. 30

iv Using the InterSystems Spark Connector

About This Book

This book describes the InterSystems Spark Connector, an implementation of the Data Source API for Spark that allows
the Spark data processing engine to make optimal use of InterSystems IRIS® data platform and its distributed data capabil-
ities.

The following topics are discussed in this book:

• Introduction — introduces Apache Spark and the InterSystems Spark Connector, and describes how to configure the
Spark Connector on your system.

• Spark Connector Data Source Options — provides a detailed description of all Spark Connector data source options.

• Using Spark Connector Extension Methods — demonstrates the Spark Connector method interface.

• Spark Connector Best Practices — describes ways to optimize Spark Connector hardware and software

• Spark Connector Internals — useful information not otherwise covered.

• Spark Connector Quick Reference — provides a quick reference to InterSystems-specific Scala extension methods
provided by the Spark Connector API.

There is also a detailed Table of Contents.

Using the InterSystems Spark Connector 1

1
Introduction

The InterSystems IRIS® Spark Connector enables an InterSystems IRIS database to function as an Apache Spark data
source. It implements a plug-compatible replacement for the standard Spark jdbc data source. This allows the results of a
complex SQL query executed within the database to be retrieved by the Spark program as a Spark Dataset, and for a Dataset

to be written back into the database as a SQL table.

1.1 Features
The Spark Connector has an intimate knowledge of —and tight integration with —the underlying database server that
provides several advantages over the standard Spark jdbc data source:

• Predicate Push Down

The Connector recognizes a richer set of operators than the standard jdbc data source, allowing more operations to be
'pushed down' into the underlying database for execution.

• Shard Aware

An InterSystems IRIS database can be sharded, meaning that tables that are transparently partitioned across multiple
servers running on different computers. The Connector allocates compute tasks so that each Spark executor is co-
located with the server from which it draws its data. This not only reduces the movement of data across the network,
but, more importantly, allows the Spark program's performance to scale linearly with the number of shards, and so
size of the data set, on which it operates.

• Implicit Parallelism

The Connector exploits the server's innate ability to automatically parallelize certain queries and so allow large result
sets to be returned quickly to the Spark driver program through multiple concurrent network connections. By contrast,
the standard jdbc data source requires the user to explicitly specify how the result set is to be partitioned, which in
practice is often very difficult to do well.

1.2 Data Source Provider Class Names
Spark data sources are accessed through provider class names. The standard Spark jdbc data source provider class is named
org.apache.spark.sql.execution.datasources.jdbc.JdbcRelationProvider, and can be used by specifying it in a call to format()
as demonstrated in the following example:

Using the InterSystems Spark Connector 3

https://spark.apache.org/docs/latest/sql-programming-guide.html#data-sources
https://spark.apache.org/docs/latest/sql-programming-guide.html#data-sources
https://spark.apache.org/docs/latest/sql-programming-guide.html#jdbc-to-other-databases

 var df = spark.read
 .format("org.apache.spark.sql.execution.datasources.jdbc.JdbcRelationProvider")
 .option("dbtable","mytable").load()

Since the full class name is very awkward to use, it is normally specified with the short alias jdbc:

 var df = spark.read.format("jdbc").option("dbtable","mytable").load()

The InterSystems Spark Connector data source is referenced in exactly the same way, using the full provider class name
com.intersystems.spark or the short alias iris:

 var df = spark.read.format("iris").option("dbtable","mytable").load()

Important: The terms jdbc and iris (lower case, in the same typography as other class names) are used frequently in
this book, and always refer specifically to the data source provider class names, never to Java JDBC or
InterSystems IRIS.

1.3 Requirements and Configuration

1.3.1 Requirements

The Spark Connector requires the following:

• InterSystems IRIS — for more information on configuration, see “Spark Connector Best Practices” later in this book.

• Spark 2.0+ — the Connector has been primarily tested against Spark version 2.1.1 under JVM 1.8 u144, using the
Spark Standalone cluster manager.

• Java 1.8 — InterSystems IRIS does not support earlier versions. Apache Spark does not currently support JVM 1.9.

1.3.2 Optional Configuration Settings

The Connector recognizes a number of configuration settings that parameterize its operation. These are parsed from the
Apache Spark SparkConfconfiguration structure at startup and may be specified by:

• the file spark-defaults.conf associated with the Spark cluster.

• values for the --conf option passed on the command line.

• arguments to the SparkConf() constructor or its set() member functions, called from within the driver application
itself.

The url, user, and password options specify connection string values for a read or write. The default values are automatically
defined using information from the default InterSystems IRIS master instance specified in the SparkConf configuration.
Connection options can be explicitly specified in a read or write operation (see “Connection Options”) to override the
defaults.

• spark.iris.master.url

A string of the form "IRIS://host:port/namespace" that specifies the address of the default Spark master server
to connect to if none is.

• spark.iris.master.user

The user account with which to connect to the master server.

• spark.iris.master.password

4 Using the InterSystems Spark Connector

Introduction

https://spark.apache.org/docs/1.5.0/api/java/org/apache/spark/SparkConf.html

The password for the user account with which to connect to the master server.

Default values are also assigned to the following settings:

• spark.iris.master.expires

A positive integral number of seconds after which a connection to an instance is judged to have expired and is automat-
ically closed and garbage collected. Default = 60.

• spark.iris.worker.host

An optional string of the form pattern => rewrite where:

– pattern is a regular expression (which may contain parenthesized groups)

– rewrite is a replacement string (which may contain $ references to those groups)

If specified, this setting describes how to convert the host name of an InterSystems IRIS server into the host name
of the preferred Spark worker that should handle requests to read and write dataset partitions to it.

The most common cluster configuration is to arrange that a Spark worker runs on each machine that hosts an
InterSystems IRIS server, for then records need not travel across the network. It can happen, however, that the
host name by which the master server knows its shard server differs from the host name by which the Spark master
knows its worker, even though they are running on the very same machine. Their host names could be aliased by
a DNS server, for example, or could be running in separate Docker containers.

This setting offers a means of defining at install time a function that maps between the two host names.

For more information, see the Apache Spark documentation on “Spark Configuration” and the org.apache.spark.SparkConf

class.

Using the InterSystems Spark Connector 5

Requirements and Configuration

https://spark.apache.org/docs/latest/configuration.html
https://spark.apache.org/docs/1.5.0/api/java/org/apache/spark/SparkConf.html

2
Spark Connector Data Source Options

The Spark Connector iris data source and the standard Spark jdbc data source both use the generic option interface, which
sets options by passing option keys and values to the option() or options() methods. The iris data source supports the same
set of options as the Spark jdbc data source, and also includes several options implemented specifically for the InterSystems
IRIS® SQL dialect.

The following sections provide detailed information on all supported iris data source options:

• Using Spark Connector Generic Options — provides a brief overview of generic data source option support.

• Query Options — dbtable and fetchsize are standard read options. The iris data source also supports the query key,
which is an optional synonym for dbtable.

• Standard Save Options — mode, batchsize, and isolationlevel are standard write options.

• InterSystems IRIS Save Options — description, publicrowid, shard, and autobalance are write options supported only
by iris.

• Connection Options — url, user, and password are standard options that explicitly specify connection string values
for a read or write.

• Partition Tuning Options — partitionColumn, lowerBound, upperBound, numPartitions, and mfpi are standard options
that specify how a query will be partitioned.

In all of the following examples, spark is an instance of SparkSession, and df is an instance of DataFrame.

Note: In this book, the terms jdbc and iris (lower case, in the same typography as other class names) are always data
source provider class names, not references to Java JDBC or InterSystems IRIS. See “Data Source Provider Class
Names” for details.

2.1 Using Spark Connector Generic Options
Both the iris data source and the jdbc data source provide a generic option interface to set data source options. For example,
the following code uses the generic Spark jdbc data source with the InterSystems JDBC driver to load a table from the
InterSystems IRIS database:

val df = spark.read.format("jdbc")
 .option("driver","com.intersystems.jdbc.IRISDriver")
 .option("dbtable","tablename")
 .option("url","IRIS://localhost:51773/USER")
 .option("user","_system")
 .option("password","SYS")
 .load()

Using the InterSystems Spark Connector 7

Most options supported by the jdbc data source can also be used in exactly the same way with the iris data source . However,
the same table loading code can be much simpler when using the Spark Connector iris data source because most of the
corresponding iris options have defaults (see “Default Configuration Settings” for details). For example:

import com.intersystems.spark._

val df = spark.read.format("iris")
 .option("dbtable","tablename")
 .load()

The most important difference in this example is that the format() call specifies the Spark Connector’s iris data source
provider class, rather than the generic jdbc provider class. We omit the driver option because the Spark Connector always
uses the built-in InterSystems JDBC driver. The url, user, and password options can also be omitted because iris can use
default values obtained from Spark configuration settings (see “Connection Options”).

2.2 Query Options
The Spark jdbc format and the iris format can both use dbtable and fetchsize when loading a table or performing a query.

dbtable (or query)

The Spark jdbc format and the iris format both use dbtable to specify a table name or SQL query. Any string that
would be valid in a FROM clause can be used as a dbtable value. The dbtable key is also a valid write option (see
“Standard Save Options”).

The iris query key is just a synonym for dbtable. This optional key can improve code readability by distinguishing
a SQL query from a table name. For example:

var df = spark.read.format("iris")
 .option("dbtable","mytable") // Load a table
 .load()

var df = spark.read.format("iris")
 .option("query","SELECT * FROM mytable") // Perform a query
 .load()

The Spark Connector also offers several alternative query methods that allow this option to be set as a method
parameter (see “Using Query and Save Extension Methods”).

fetchsize

The Spark jdbc format and the iris format both use fetchsize to specify the number of rows to fetch per server round
trip. Defaults to 1000. This option is applied when loading a table or performing a query, and will be ignored by
write operations.

var df = spark.read.format("iris").option("dbtable","mytable")
 .option("fetchsize",500)
 .load()

2.3 Standard Save Options
The Spark jdbc format and the iris format can both use dbtable, mode, batchsize, and isolationlevel when saving a table.

8 Using the InterSystems Spark Connector

Spark Connector Data Source Options

dbtable

The Spark jdbc format and the iris format both use dbtable to specify a table name when saving. This key is also
a valid read option (see “Query Options”).

spark.write.format("iris")
 .option("dbtable","mytable") // Save a table
 .save()

This option can also be specified as a parameter of the DataFrameReader.iris() extension method (see “Using
Extension Methods to Set Data Source Options”).

mode

Describes how to behave if the target table already exists. Can be one of OVERWRITE, APPEND, IGNORE, or
ERROR, and defaults to ERROR. These settings correspond to the values defined in the SaveMode enum (see
org.apache.spark.sql.SaveMode for more information). This option is applied when saving a table, and will be
ignored by read operations.

df.write.format("iris")
 .option("mode","OVERWRITE") //overwrite any existing table
 .save()

This option can also be set by the standard DataFrameWriter.mode() method.

batchsize

Specifies an integer number of rows to insert per server round trip. Defaults to 1000. This option is applied when
saving a table, and will be ignored by read operations.

df.write.format("iris")
 .option("batchsize",500)
 .save()

isolationlevel

Sets the JDBC transaction isolation level. Can READ_UNCOMMITTED (the default) or NONE. These values correspond
to the transaction isolation levels defined in java.sql.Connection. This option is applied when saving a table, and
will be ignored by read operations.

df.write.format("iris")
 .option("isolationlevel","READ_COMMITTED")
 .save()

2.4 InterSystems IRIS Save Options
The description, publicrowid, shard, and autobalance options are supported only by the iris data source, and are used to
set certain options unique to InterSystems IRIS. These options are applied when saving a table, and will be ignored by read
operations.

description

Specifies an optional description to document the newly created table. Will be ignored when appending to a table
that already exists. Defaults to "".

df.write.format("iris")
 .option("description","This is a table of no importance whatsoever.")
 .save()

See “CREATE TABLE” in the InterSystems SQL Reference for more information on this option.

Using the InterSystems Spark Connector 9

InterSystems IRIS Save Options

https://docs.oracle.com/javase/8/docs/api/java/sql/Connection.html

This option can also be set with the DataFrameReader.description() extension method (see “Setting Save Options
with Extension Methods”).

publicrowid

Specifies whether the master row ID column for the newly created table is to be made publicly visible. Will be
ignored when appending to a table that already exists. Defaults to "false".

df.write.format("iris")
 .option("publicrowid","false")
 .save()

See “CREATE TABLE” in the InterSystems SQL Reference for more information on this option.

This option can also be set with the DataFrameReader.publicRowID() extension method (see “Setting Save
Options with Extension Methods”).

shard

Determines sharding for the newly created table. Will be ignored when appending to a table that already exists.
The value can be either a boolean indicating whether the newly created table is to be sharded, or a sequence of
field name strings (possibly empty) to be used as the user defined shard key.

• A boolean value of "true" indicates that the records of the table are to be distributed across the cluster using
a system assigned sharding key. Boolean "false" (the default) indicates that records should be stored locally
on the shard master itself.

df.write.format("iris")
 .option("shard","false") // store locally
 .save()

• A field name or sequence of names indicates that the records of the table are to be distributed across the
cluster using the given sequence of fields to compute the shard key:

df.write.format("iris")
 .option("shard","columnA")
 .save()

df.write.format("iris")
 .option("shard",Seq("columnA","columnX"))
 .save()

• If the sequence is empty then the table will be sharded on the system assigned key:

df.write.format("iris")
 .option("shard","")
 .save()

This option can also be set with the DataFrameReader.shard() extension method (see “Setting Save Options with
Extension Methods”).

autobalance

When writing a dataset to a table that is sharded on a system assigned shard key, an autobalance value of "true"
(the default) specifies that the inserted records are to be evenly distributed amongst the available shards. Value
"false" specifies that every dataset partition should attempt to write its records directly into the shard on which
its Spark executor also runs.

df.write.format("iris")
 .option("autobalance","false") // disable autobalancing)
 .save()

10 Using the InterSystems Spark Connector

Spark Connector Data Source Options

In a properly configured cluster, a Spark slave runs on each shard server. Writing a dataset with the autobalance
option disabled can be faster, since records no longer need to travel across the network to reach their destination
shard. However, it now becomes the Spark application's responsibility to ensure that roughly the same number of
records is written to each shard.

Will be ignored when writing to a table that is not sharded, or when writing to a table sharded on a user defined
shard key.

This option can also be set with the DataFrameReader.autobalance() extension method (see “Setting Save Options
with Extension Methods”).

2.5 Connection Options
The url, user, and password options explicitly specify connection string values for a read or write. If these options are not
set, they will be automatically defined using information from the default InterSystems IRIS master instance specified in
the SparkConf configuration (see “Default Configuration Settings”). When set, these options override the default for the
duration of the current read or write operation.

url, user, and password

The value of url is a string of the form "IRIS://[host]:[port]/[namespace]" that names the master
InterSystems IRIS instance with which the data is to be loaded or saved. The values of user and password are
strings containing the account and password required to make the connection to url.

For example, the following call specifies the connection required to read a table named mytable in the USER
namespace:

var df = spark.read.format("iris").option("dbtable","mytable")
 .options(Map("url" -> "IRIS://localhost:51773/USER",
 "user" -> "_system",
 "password" -> "SYS"))
 .load()

For more information on constructing a URL string, see “Defining a JDBC Connection URL” in Using InterSystems
IRIS with JDBC.

These options can also be set with the DataFrameReader.address() extension method (see “Setting Connection Options
with the address() Method”).

Note: The standard Spark jdbc format also offers the driver option, which specifies the class name of the JDBC driver
to use. The Spark Connector iris format ignores this option (if specified) because it always uses the InterSystems
JDBC driver, which is embedded within the Connector itself.

2.6 Partition Tuning Options
These options determine how a read operation will be partitioned. When reading data, the Connector attempts to negotiate
with the server as to how best to partition the resulting Dataset. Depending on how the cluster is configured, each partition
can potentially run in parallel within its own Spark executor and establish its own independent connection into the shard
from which it draws its data.

Partitioning requests can be either implicit or explicit:

Using the InterSystems Spark Connector 11

Connection Options

• Implicit Partitioning — mfpi specifies the maximum number of partitions to create, and the Connector automatically
sets other partitioning parameters.

• Explicit Partitioning — partitionColumn, lowerBound, upperBound, and numPartitions provide the Connector with
detailed instructions for partitioning.

The Spark Connector also offers several extension methods that allow these options to be set as method parameters (see
“Setting Partitioning Options with Query Method Parameters”).

2.6.1 Implicit Partitioning

The mfpi option (maximum number of partitions per instance) specifies an upper limit to the number of partitions that the
server will create per queried instance in any implicit query factorization. The default is "1".

This option is applied when reading, and will be ignored by write operations. It is also ignored if a value has been specified
for numPartitions, which takes precedence over mfpi (see “Explicit partitioning”).

Implicit partitioning with "mfpi"

Using the mfpi option, you could execute a query with the following statement:

var df = spark.read.format("iris").option("dbtable","SELECT * FROM mytable")
 .option("mfpi", 2)
 .load()

2.6.2 Explicit Partitioning

The following options provide an explicit description of how to partition the queries sent to each distinct instance:

• partitionColumn — String name of integer valued column in the result set to be used for partitioning.

• lowerBound — Long minimum value of partitionColumn.

• upperBound — Long maximum value of partitionColumn.

• numPartitions — Int number of partitions per instance to create.

These options correspond exactly to the similarly named arguments for the Apache Spark DataFrameReader.jdbc() method.
See the documentation on that method for more information.

Explicit partitioning options take precedence over the mfpi option (described in the previous section). They are applied
when reading, and will be ignored by write operations.

Explicit partitioning with partitionColumn, lowerBound, upperBound, and numPartitions

Using these options, you could execute a query by calling:

var df = spark.read.format("iris").option("dbtable","SELECT * FROM mytable")
 .option("partitionColumn", "columnA")
 .option("lowerBound", 0)
 .option("upperBound", 10000)
 .option("numPartitions", 2)
 .load()

12 Using the InterSystems Spark Connector

Spark Connector Data Source Options

https://spark.apache.org/docs/2.0.2/api/java/org/apache/spark/sql/DataFrameReader.html#jdbc%28java.lang.String,%20java.lang.String,%20java.lang.String,%20long,%20long,%20int,%20java.util.Properties%29

3
Using Spark Connector Extension
Methods

This chapter discusses a set of InterSystems-specific Scala extension methods provided by the Spark Connector. These
methods extend the generic Spark interface with implicit Scala classes and types that provide more convenience and better
type safety.

The following topics are discussed:

• Using Query and Save Extension Methods — describes extension methods that simplify reading and writing a DataFrame,
Dataset, or RDD.

• Using Extension Methods to Set Data Source Options — describes extension methods and method parameters that
provide alternate ways to set data source options.

All of the examples in this chapter assume that spark is an instance of SparkSession and df is an instance of DataFrame.

Note: In this book, the terms jdbc and iris (lower case, in the same typography as other class names) are always data
source provider class names, not references to Java JDBC or InterSystems IRIS®. See “Data Source Provider
Class Names” for details.

3.1 Using Query and Save Extension Methods
The following topics are discussed:

• Using the iris() Save Method — describes an extension method that simplifies saving a DataFrame.

• Using the iris() and dataset[T]() Query Methods — describes extension methods that return query results as a DataFrame

or Dataset.

• Using the rdd[T]() Query Method — describes an extension method that returns query results as an RDD.

3.1.1 Using the iris() Save Method

The following example demonstrates a standard way to save an existing DataFrame df to a table named Owls:

df.write.format("iris").option("dbtable","Owls").save()

Using the InterSystems Spark Connector 13

The Spark connector provides the DataFrameWriter.iris() extension method, which performs the same task in a much simpler
manner. The following code is functionally identical to the previous example:

df.write.iris("Owls")

In this example, the dbtable option is replaced by an argument, the format is automatically set to iris, and the call to save()
is made internally.

3.1.2 Using the iris() and dataset[T]() Query Methods

The following example demonstrates a standard way to save an existing DataFrame df to a table named Owls, and then
query the database to read the table back into new DataFrame df2:

val df2 = spark.read.format("iris").option("dbtable","SELECT * FROM Owls").load()

The Spark connector provides the DataFrameWriter.iris() method to perform the same task in a much simpler manner. The
following code is functionally identical to the previous example:

val df2 = spark.read.iris("SELECT * FROM Owls")

In this example, the dbtable option is replaced by an argument, the format is automatically set to iris, and the call to load()
is made internally.

Similarly, the SparkSession.dataset[T]() executes a query or loads a table and returns results as a Dataset of the specified
type.

3.1.3 Using the rdd[T]() Query Method

SparkContext.rdd[T]() executes a query or loads a table, formats each row of the result set with the provided function, and
returns an RDD[T] containing the formatted rows.

Defining a Type Format[T] function

The SparkContext.rdd[T]() method executes a query on the cluster and returns an RDD where each element has
been formatted as an instance of the specified type T. Formatting is performed by a user-defined function of type
Format[T]. For example, the following code specifies a function pair, which extracts a pair of strings from the first
two columns of the current row of a result set:

val pair: Format[(String,String)] = r => (r.getString(1),r.getString(2))

This function constructs an RDD[(String,String)] from the results of any query of the cluster that includes
at least two strings per record.

Using SparkContext.rdd[T]()

The following example calls rdd[T]() using the previously defined Format[T] function:

val asPair: Format[(Int,Double)] = r => (r.getInt(1),r.getDouble(2))
val newRDD = spark.sparkContext
 .rdd("myTable",1,asPair)

Note: Format functions will be invoked for each and every record requested by the client, and therefore should normally
restrict themselves to calling only pure (that is, non side effecting) member functions of the result set (getInt,
getDouble, getDate and the like).

14 Using the InterSystems Spark Connector

Using Spark Connector Extension Methods

3.2 Using Extension Methods to Set Data Source Options
In addition to generic option support (see “Spark Connector Data Source Options”), the Spark Connector also provides a
number of methods that allow many of these options to be specified as method arguments. These methods can simplify
code and improve type safety by providing alternatives to the generic option interface.

The standard way to set data source options is with the generic option interface (see “Using Spark Connector Generic
Options”), but most data source options can also be set with Spark Connector extension methods or method parameters.

• Setting the dbtable Query and Save Options — setting dbtable with query methods and the iris() save method.

• Extension Methods for InterSystems IRIS Save Options — setting the description, publicrowid, shard, and autobalance
options.

• Setting Connection Options with the address() Method — setting the url, user, and password options

• Setting Partitioning Options with Query Method Parameters — setting the mpfi, partitionColumn, lowerBound,
upperBound, and numPartitions with optional query method parameters.

Note: This chapter does not discuss these options in detail. For complete information on data source option settings, see
the descriptions in the previous chapter (“Spark Connector Data Source Options”).

3.2.1 Setting the dbtable Query and Save Options

The dbtable option is specified as the first argument of all query and save extension methods (see “Using Query and Save
Extension Methods” earlier in this chapter), as demonstrated in the following examples

Setting the dbtable query option with query methods

All of the query extension methods (DataFrameReader.iris(), SparkContext.rdd[T](), and SparkSession.dataset[T]())
accept the dbtable (alias query) option as the first argument. For example, the following code fragments specify
dbtable as either a table name or an SQL query, and use the DataFrameReader.iris() method to set the format, set
the dbtable option, and call load():

 var df = spark.read.iris("mytable") // Load a table

 var df = spark.read.iris("SELECT * FROM mytable") // Perform a query

rather than:

var df = spark.read.format("iris").option("dbtable","mytable").load() // Load a table

var df = spark.read.format("iris").option("query","SELECT * FROM mytable").load() // Perform
 a query

See “Using the iris() and dataset[T]() Query Methods” and “Using the rdd[T]() Query Method” earlier in this
chapter for detailed information about the query methods. For more on the dbtable query option, see the dbtable
entry under Standard Save Options in the previous chapter.

Setting the dbtable save option with DataFrameWriter.iris()

When saving with the DataFrameWriter.iris() extension method, the dbtable option is specified as the method
parameter. For example, the following code uses DataFrameWriter.iris() to set the format, set the dbtable option,
and call save():

spark.write.iris("mytable")

rather than:

Using the InterSystems Spark Connector 15

Using Extension Methods to Set Data Source Options

spark.write.format("iris")
 .option("dbtable","mytable") // Save a table
 .save()

See “Using the iris() Save Method” earlier in this chapter for detailed information about this extension method.
For more on the dbtable save option, see the dbtable (or query) entry under Query Options in the previous chapter.

3.2.2 Extension Methods for InterSystems IRIS Save Options

The save options (description, publicrowid, shard, and autobalance) can also be set with DataFrameWriter extension
methods. See “ InterSystems IRIS Save Options” in the previous chapter for detailed information on these options.

description()

The DataFrameWriter.description() extension method is an alternate way to set the description option. For
example, you can use the following code:

spark.write.description("This is a table.")

rather than:

df.write.format("iris").option("description","This is a table.").save()

See description in the previous chapter for more information on this option.

publicRowID()

The DataFrameWriter.publicRowID() extension method is an alternate way to set the publicrowid option. For
example, you can use the following code:

spark.write.publicRowID("false")

rather than:

df.write.format("iris").option("publicrowid","false").save()

See publicrowid in the previous chapter for more information on this option.

shard()

The DataFrameWriter.shard() extension method is an alternate way to set the shard option. For example, you can
use the following code:

spark.write.shard("columnA","columnX")

rather than:

df.write.format("iris") .option("shard",Seq("columnA","columnX")).save()

Notice that this method call automatically interprets the arguments as a Seq.

See shard in the previous chapter for more information on this option.

autobalance()

The DataFrameWriter.autobalance() extension method is an alternate way to set the autobalance option. For
example, you can use the following code:

spark.write.autobalance("false")

rather than:

16 Using the InterSystems Spark Connector

Using Spark Connector Extension Methods

df.write.format("iris").option("autobalance","false").save()

See autobalance in the previous chapter for more information on this option.

3.2.3 Setting Connection Options with the address() Method

The url, user, and password options explicitly specify connection string values for a query or save (see “Connection
Options” in the previous chapter for detailed information and examples). These connection options can also be set as
parameters of the DataFrameReader.address() and DataFrameWriter.address() extension methods, as demonstrated in the
following examples.

Querying with DataFrameReader.address()

The following code uses the DataFrameReader.address() method to set the url, user, and password options, and
then uses the DataFrameReader.iris() method to set the format, set the dbtable option, and call load():

var df = spark.read.address("IRIS://localhost:51773/USER", "_system", "SYS").iris("mytable")

rather than:

var df = spark.read.format("iris")
 .option("dbtable","mytable")
 .option("url", "IRIS://localhost:51773/USER")
 .option("user", "_system")
 .option"password", "SYS")
 .load()

Saving with DataFrameWriter.address()

The following code uses the DataFrameWriter.address() method to set the url, user, and password options, and
then uses the DataFrameWriter.iris() method to set the format, set the dbtable option, and call save():

df.write.address("IRIS://localhost:51773/USER", "_system", "SYS").iris("mytable")

rather than:

df.write.format("iris")
 .option("dbtable","mytable")
 .option("url", "IRIS://localhost:51773/USER")
 .option("user", "_system")
 .option"password", "SYS")
 .save()

3.2.4 Setting Partitioning Options with Query Method Parameters

All of the query extension methods (DataFrameReader.iris(), SparkContext.rdd[T](), and SparkSession.dataset[T]())
accept optional arguments that specify how to partition a query. See “Using Query and Save Extension Methods” earlier
in this chapter for a discussion of query methods. The following examples use the iris() method, but all three methods
accept the same set of arguments.

Implicit partitioning with the mfpi parameter

The mfpi option can be specified as a argument when reading with any of the query extension methods. For
example, the following call to DataFrameReader.iris() specifies the first argument as the value for dbtable and
the second argument as the value for mfpi:

var df = spark.read.iris("SELECT * FROM table",2)

This call is exactly equivalent to the following example:

Using the InterSystems Spark Connector 17

Using Extension Methods to Set Data Source Options

var df = spark.read.format("iris")
 .option("dbtable","SELECT * FROM mytable")
 .option("mfpi", 2)
 .load()

See “ Implicit Partitioning” in the previous chapter for more information on this option.

Explicit partitioning with the partitionColumn, lowerBound, upperBound, and numPartitions parameters

These options can be specified as arguments when reading with any of the query extension methods. For example,
the following call to DataFrameReader.iris() specifies the first argument as the value for dbtable and the remaining
arguments as the values for partitionColumn, lowerBound, upperBound, and numPartitions:

var df = spark.read.iris("SELECT * FROM mytable","column",0,10000,2)

This call is exactly equivalent to the following example:

var df = spark.read.format("iris")
 .option("dbtable","SELECT * FROM mytable")
 .option("partitionColumn", "columnA")
 .option("lowerBound", 0)
 .option("upperBound", 10000)
 .option("numPartitions", 2)
 .load()

See “Explicit Partitioning” in the previous chapter for more information on these options.

18 Using the InterSystems Spark Connector

Using Spark Connector Extension Methods

4
Spark Connector Best Practices

This chapter describes the preferred way to set up a Spark cluster on InterSystems IRIS® data platform. The following
topics are discussed:

• Configuration — describes and explains the preferred Spark cluster topology.

• Queries — provides examples that demonstrate how to optimize query performance.

• Loading Data — discusses how to optimize loading of large datasets into sharded clusters.

Note: Pre-installed Spark in Containers
The InterSystems Cloud Manager (ICM) provides you with a simple, intuitive way to provision cloud infrastructure
and deploy services on it. See the “Using ICM” chapter of the InterSystems Cloud Manager Guide for instructions
on how to configure and deploy containers in a topology similar to the one described in this chapter. The “Deploy
and Manage Services” section provides specific instructions for using images that include pre-installed instances
of Spark.

4.1 Configuration

4.1.1 Intended topology

1. The InterSystems IRIS shard master I0 and Spark master S0 both run on host machine H0.

2. A Spark slave s0 also runs on host machine H0.

3. Furthermore, for each additional distinct host machine H1 ... Hn hosting an InterSystems IRIS shard server instance
I1 ... In , exactly one Spark slave si also runs on Hi

4. Optionally, for each additional distinct host machine H1 ... Hn hosting an InterSystems IRIS shard server instance I1
... In , exactly one HDFS data node di also runs on Hi

5. The Spark cluster runs in what the Spark documentation refers to as Standalone Mode.

Using the InterSystems Spark Connector 19

HDFSSparkIRISHost

D0S0I0H0

d0s0

dis1I1H1

............

dnsnInHn

4.1.2 Rationale

While other topologies are certainly possible and will work (in the sense that Spark programs will save and restore data
correctly and compute correct results), this specific topology will generally perform best because:

1. Each Spark slave is collocated with exactly one InterSystems IRIS shard server, and the connector is able to exploit
this fact by requesting that a dataset partition requiring data from shard server Ii be scheduled for execution on host
machine Hi. In other words, the process is executed on the same machine as the data on which it depends. Thus
movement of data across the network connecting the machines Hi is greatly reduced.

2. Each Spark slave creates Spark worker processes that are multithreaded. The Spark master is aware of the number of
processing cores available to each worker, and distributes tasks amongst them accordingly (subject to 1. above). Thus
there is no advantage in running more than one Spark slave on each host machine.

3. Not all tables are sharded. Un-sharded tables are stored on the InterSystems IRIS shard master I0. (The partitions of)
datasets reading or writing such tables are best scheduled for execution on a Spark slave that is collocated with this
instance, hence there should also be a Spark slave s0 running on H0 to service these requests.

4. When loading large data sets into a cluster, there are significant advantages to installing HDFS on the nodes of the
cluster (see below).

4.1.3 Hardware

While more cores, RAM, and disk storage are obviously merrier than less, one generally has a choice between a few pow-
erful host machines, or more, less powerful hosts. A sweet spot exists, however, when the largest tables in the database fit
comfortably within the collective RAM of all the shard servers in the cluster, for then the cluster effectively behaves as a
scalable cache. This is especially true for large scale analytics of predominantly static or infrequently changing 'data lakes'.

Special consideration should be given to the machine H0 that hosts the InterSystems IRIS shard master. Complex queries,
particularly those with aggregates, ORDER BY, TOP, or DISTINCT clauses and the like, generally require a non-trivial
reduction of the intermediate results returned by the individual shard servers, and this computation is staged in temporary
tables on the shard master. For a query that returns a large result set that must be sorted, for example, the reduction step on
the shard master (the sort) can easily dominate the rest of the computation.

4.2 Queries
When designing an application to run in this environment, one frequently has a choice as to where the aggregation will
take place. Consider the following Spark queries:

20 Using the InterSystems Spark Connector

Spark Connector Best Practices

Example 1

> val q1 = Spark.read.iris("SELECT max(i) FROM A")
res1: org.apache.Spark.sql.DataFrame = [max(i): int]

Example 2

> val q2 = Spark.read.iris("A").selectExpr("MAX(i)")
res2: org.apache.Spark.sql.DataFrame = [max(i): int]
> Spark.read.iris("A").createOrReplaceTempTable("A")

Example 3

> val q3 = Spark.sql("SELECT max(i) FROM B")
res3: org.apache.Spark.sql.DataFrame = [max(i): int]

where A is a sharded table with a numeric column named i. All three queries compute the same single value, namely the
maximum value of column i, but they each accomplish this task in rather different ways:

Example 2 fetches the entire column i of table A (though, thanks to the connector's ability to automatically prune columns,
only column i and not all of A) into the Spark slaves, each of which then computes the maximum value of its portion of the
data. These local maximum are then sent to the Spark master, which picks the single greatest value amongst them and
returns it to the driver program in a DataFrame.

To see what's going on, it can be helpful to take a look at the output of the DataFrame's explain operator:

> q2.explain
== Physical Plan ==
*HashAggregate(keys=[], functions=[max(i#106)])
+- Exchange SinglePartition
 +- *HashAggregate(keys=[], functions=[partial_max(i#106)])
 +- *Scan Relation(SELECT * FROM (A)) [i#106] ReadSchema: struct<i:int>

Notice:

• the Scan, which corresponds to the parallelized fetch of the data in each of the slaves,

• the inner HashAggregate, which corresponds to the work that each slave will perform in parallel in locating its local
maximum, and

• the Exchange and subsequent HashAggregate, which corresponds to the transmission of the local maxima back
to the master and subsequent selection of the global maximum.

Example 3 demonstrates the use of Spark's own built-in SQL interpreter. For more complex queries, especially those that
are federated across multiple databases or other disparate sources of data, this can be provide a powerful and flexible way
of treating the various sources like a single giant database.

In the case, however, beneath the covers exactly the same work is performed as in Example 2, as can be seen with the
explain operator.

Example 1 on the other hand, demonstrates the power of using Spark with InterSystems IRIS: now the entire query is per-
formed within the InterSystems IRIS database, and is thus amenable to the InterSystems IRIS query optimization, the use
if indexes, and so on:

> q1.explain
== Physical Plan ==
*Scan Relation(select max(i) from B) [Aggregate_1#215] ReadSchema: struct<Aggregate_1:int>

4.3 Loading Data
Spark is particularly useful for loading large datasets into sharded InterSystems IRIS clusters.

Using the InterSystems Spark Connector 21

Loading Data

For best performance and maximum parallelism, you will want to install HDFS on the nodes of the cluster too. In this
scenario, each host Hi should also acts as a data node di.

Example: loading a large CSV file into a sharded table.

~> hadoop fs -put x.csv /x.csv
 # Copy file "X.csv" into HDFS as /x.csv

And now from within Spark:

scala> val df = Spark.read.options(...)
 .csv("hdfs:///host:port/x.csv") // Read local partitions
scala> df.write.shard(true).options(...)
 .autobalance(false).iris("X") // Write to local shards

In this example, each Spark slave reads its own locally available portion of the original file, which was split and distributed
to the nodes of the cluster automatically by HDFS in step 1, and writes the parsed records to its own co-located shard: thus
no data moves across the network once the source file has been moved into HDFS.

22 Using the InterSystems Spark Connector

Spark Connector Best Practices

5
Spark Connector Internals

This chapter covers datatype mapping, predicate pushdown operators, and other useful information not otherwise available.

• SQL/Spark Datatype Mapping — a table of SQL datatypes and their corresponding Spark datatypes.

• Predicate Pushdown Operators — a list of Spark operators that the Spark Connector recognizes as having direct
counterparts within the underlying database.

• Logging — the Spark connector, like the Spark system itself, uses Log4J to log events of interest.

• Known Issues — problems to be aware of.

5.1 SQL/Spark Datatype Mapping
Internally, the Connector uses the InterSystems JDBC driver to read and write values to and from servers. This constrains
the data types that can be serialized in and out of database tables via Spark. The JDBC driver exposes the JDBC data types
in the following tables as available projections for InterSystems IRIS® data types, and converts them to and from the listed
Spark Catalyst types (members of the org.apache.spark.sql.types package).

This mapping between Spark Catalyst and JDBC data types differs subtly from that used by the standard Spark jdbc data
source, as noted in the following sections.

JDBC / Spark Value Type Conversions
The following JDBC value types are exposed, and are converted directly to and from the listed Spark Catalyst types:

Spark TypeJDBC Value Type

BooleanTypeBIT

ByteTypeTINYINT

LongTypeBIGINT

IntegerTypeINTEGER

ShortTypeSMALLINT

DoubleTypeDOUBLE

FloatTypeDOUBLE

Using the InterSystems Spark Connector 23

Note: • Value types are all qualified as being NOT NULL when saved to a table.

• Spark Catalyst distinguishes between the different sizes of integer TINYINT, SMALLINT, INTEGER, BIGINT,
whereas the Spark jdbc data source does not.

JDBC / Spark Object Type Conversions
The following JDBC object types are exposed, and are represented by the listed Spark Catalyst types. Bidirectional conversion
is not supported for LONGVARCHAR, GUID, LONGVARBINARY, and TIME because these JDBC types do not correspond
to unique Spark Catalyst types:

Spark Catalyst to JDBC projectionsJDBC to Spark Catalyst projections

JDBC Object TypeSpark TypeSpark TypeJDBC Object Type

VARCHARStringTypeStringTypeVARCHAR, GUID, and
LONGVARCHAR

VARBINARYBinaryTypeBinaryTypeVARBINARY and
LONGVARBINARY

NUMERIC(p,s)DecimalType(p,s)DecimalType(p,s)NUMERIC(p,s)

DATEDateTypeDateTypeDATE

TIMESTAMPTimestampTypeTimestampTypeTIMESTAMP and TIME

Note: • In NUMERIC and DecimalType the positive integers p and s respectively denote the precision and scale of the
numeric representation.

• There is no Spark SQL encoder currently available for type java.sql.Time, so JDBC TIME is represented as
Spark TimestampType.

• Spark Catalyst (unlike the Spark jdbc data source) recognizes the UNIQUEIDENTIFIER data type, which is
not widely supported by all JDBC vendors

• JDBC type GUID is the JDBC representation of Intersystems SQL datatype UNIQUEIDENTIFIER.

See “ InterSystems SQL Data Types” for details on how values are represented within InterSystems IRIS, and “DDL Data
Types Exposed by InterSystems ODBC / JDBC” for specific information on how they are projected to JDBC.

5.2 Predicate Pushdown Operators
The Spark Connector currently recognizes the following Spark operators as having direct counterparts within the underlying
database (see “Overview of Predicates” in the SQL Reference):

AndIsNullStringStartsWithLessThanOrEqualEqualTo

NotIsNotNullStringEndsWithGreaterThanOrEqualLessThan

OrInStringContainsGreaterThan

24 Using the InterSystems Spark Connector

Spark Connector Internals

RSQL_datatype
RSQL_datatype_odbc
RSQL_datatype_odbc
RSQL_predicates

5.3 Logging
The connector logs various events of interest using the same infrastructure as the Spark system itself uses, namely Log4J.

The content, format, and destination of the system as a whole is configured by the file ${SPARK_HOME}/conf/log4j-defaults.
The connector is implemented in classes that reside in a package named com.intersystems.spark and so can easily be con-
figured by specifying keys of the form:

 log4j.logger.com.intersystems.spark = INFO
 log4j.logger.com.intersystems.spark.core = DEBUG
 log4j.logger.com.intersystems.spark.core.IRISDataSource = ALL
 ...

5.4 Known Issues
We hope to address the following issues in a subsequent release:

• Pruning Columns with Synthetic Names

• Java 9 Compatibility

• Handling of TINYINT

• JDBC Isolation Levels

5.4.1 Pruning Columns with Synthetic Names

Consider the following query Spark session:

scala> spark.read.iris("select a, min(a) from A")

where A is some table that presumably has a column named a.

Notice that no alias is provided for the selection expression min(a). The server synthesizes names for such columns, and
in this case might describe the schema for the resulting dataframe as having two columns, named 'a' and 'Aggregate_2'
respectively.

No actual field named 'Aggregate_2' exists in the table however, so an attempt to reference it in an enclosing selection
would fail:

scala> val df = spark.read.iris("select Aggregate_2 from (select a, min(a) from A)")
> SQL ERROR: No such field SQLUSER.A.Aggregate_2

This is to be expected in a standard SQL implementation.

The connector uses just such enclosing projection expressions as these however when attempting to prune the columns of
a dataframe to those that are actually referenced in subsequent code:

scala> spark.read.iris("select a, min(a) from A").select("a")...

internally generates the query select a from(select a, min(a) from A) to be executed on the server in order
to minimize the motion of data into the spark cluster.

As a result, the connector cannot efficiently prune columns with synthetic names and instead resorts to fetching the entire
result set:

scala> spark.read.iris("select a, min(a) from A").select("Aggregate_2")

Using the InterSystems Spark Connector 25

Logging

https://logging.apache.org/log4j/1.2/download.html

internally generates the query select * from(select a, min(a) from A).

For this reason, you should consider modifying the original query by attaching aliases to columns that would otherwise
receive server synthesized names.

We hope to address this issue in a subsequent release.

5.4.2 Java 9 Compatibility

Java 9, and the JVM 1.9 on which it runs, became available for general release in September 2017. Neither Apache Spark
nor the InterSystems Spark Connector currently run on this version of the JVM. We hope to address this issue in a subsequent
release.

5.4.3 Handling of TINYINT

The mapping between Spark Catalyst and JDBC datatypes (see “SQL/Spark Datatype Mapping” earlier in this chapter)
differs subtly from that used by the Spark jdbc data source. The Connector achieves this mapping by automatically installing
its own subclass of class org.apache.spark.sql.jdbc.JdbcDialect but this also has the side effect of changing the mapping
used by Spark JDBC itself.

By and large this is a good thing, but one problem that has been identified recently is that due to a bug in Spark 2.1.1, which
neglects to implement a low level reader function for the ByteType, attempting to read an InterSystems IRIS table with a
column of type TINYINT using the Spark jdbc data source will fail once the Connector has been loaded.

For now, it is probably best to avoid reading and writing DataFrames using the Spark jdbc data source directly once the
Connector has been loaded. We hope to address this issue in a subsequent release.

5.4.4 JDBC Isolation Levels

The InterSystems IRIS server does not currently support the writing of a dataset to a SQL table using JDBC isolation levels
other than NONE and READ_UNCOMITTED. We hope to address this issue in a subsequent release.

26 Using the InterSystems Spark Connector

Spark Connector Internals

6
Spark Connector Quick Reference

This chapter is a quick reference to the InterSystems Spark Connector API methods, which define a custom Scala interface
for the Spark Connector. It extends the generic Spark interface with a set of implicit Scala classes and types that provide
more convenience and better type safety.

Note: This is not a definitive reference for this API. It is intended as a “cheat sheet” containing only short descriptions
of members and parameters, plus links to detailed documentation and examples.

For the most complete and up-to-date information, see the Spark Connector online documentation.

The Spark Connector API provides the following extension methods to Spark Scala classes:

• DataFrameReader Extension Methods:

– iris() — executes a query or loads a table, tunes partitioning, and returns results in a DataFrame.

– address() — specifies the connection details of the cluster to read from

• DataFrameWriter Extension Methods:

– iris() — saves a DataFrame to the given table on the cluster.

– address() — specifies the connection details of the cluster to write to.

– description() — specifies an arbitrary description for the newly created table.

– publicRowID() — specifies whether the master RowID field of the newly created table should be publicly visible.

– shard() — specifies the shard key for the newly created table.

– autobalance() — specifies how to distribute records saved to a table using a system assigned shard key.

• SparkSession and SparkContext Extension Methods:

– rdd[T]() — executes a query or loads a table, tunes partitioning, formats each row of the result set with a specified
function, and returns an RDD containing the formatted data.

– dataset[T]() — executes a query or loads a table, tunes partitioning, and returns results in a Dataset with elements
of type T.

• ml.Pipeline Extension Method:

– iscSave() — saves a model to an InterSystems IRIS PMML definition class.

Using the InterSystems Spark Connector 27

Spark-Connector/index.html#package

6.1 Spark Connector Method Reference
Each entry in this section provides a brief method overview including signatures and parameter descriptions. Most entries
also include links to examples and more detailed information.

6.1.1 DataFrameReader Extension Methods

iris()

DataFrameReader.iris() executes a query on the cluster or loads the specified table, tunes partitioning, and returns
results in a DataFrame. See “Using the iris() Read and Write Methods” for more information and examples.

def iris(text: String,mfpi: N = 1): DataFrame

def iris(text: String,column: String,lo: Long,hi: Long,partitions: N): DataFrame

• text — text of a query to be executed, or name of a table to load.

• column, lo, hi, partitions— allow you to explicitly specify partitioning parameters.

• mfpi — allows the server to determine partitioning parameters within certain limits.

See “Partition Tuning Options” for detailed information and examples concerning partitioning parameters (column,
lo, hi, partitions, and mfpi).

address()

DataFrameReader.address() specifies the connection details of the cluster to read from. Overrides the default
instance specified in the Spark configuration for the duration of this read operation.

def address(url: String,user: String = "",password: String = ""): DataFrameReader

• url, user, password — String values used to define a JDBC connection to the master server.

See “Connection Options” for more information and examples.

6.1.2 DataFrameWriter Extension Methods

iris()

DataFrameWriter.iris() saves a DataFrame to the specified table on the cluster. See “Using the iris() Read and
Write Methods” for detailed information and examples.

def iris(table: String): Unit

• table — a String containing the name of the table to write to.

See “CREATE TABLE” in the InterSystems SQL Reference for more information on table creation options.

address()

DataFrameWriter.address() specifies the connection details of the cluster to write to. Overrides the default instance
specified in the Spark configuration for the duration of this write operation.

def address(url: String,user: String = "",password: String = ""): DataFrameWriter[T]

• url, user, password — String values used to define a JDBC connection to the master server.

28 Using the InterSystems Spark Connector

Spark Connector Quick Reference

See “Connection Options” for more information and examples.

description()

DataFrameWriter.description() specifies a description to document the newly created table.

def description(value: String): DataFrameWriter[T]

• value — a String containing an arbitrary description for the table.

See “ InterSystems IRIS Save Options” for more information and examples.

publicRowID()

DataFrameWriter.publicRowID() specifies whether the master RowID field of the newly created table should be
publicly visible.

def publicRowID(value: Boolean): DataFrameWriter[T]

• value — a Boolean indicating whether the table should be publicly visible.

See “ InterSystems IRIS Save Options” for more information and examples.

shard()

DataFrameWriter.shard() specifies the user defined shard key for the newly created table, or specifies whether the
newly created table is to be sharded. Has no effect if the table already exists and the save mode is anything other
than OVERWRITE.

def shard(fields: String*): DataFrameWriter[T]
def shard(value: Boolean): DataFrameWriter[T]

• fields — A String sequence of field names (possibly empty) to be used as the user defined shard key. If the
sequence is empty then the table will be sharded on the system assigned key.

• value — Boolean value indicating whether the newly created table is to be sharded

See “ InterSystems IRIS Save Options” for more information and examples.

autobalance()

Specifies whether or not inserted records should be evenly distributed among the available shards of the cluster
when saving to a table that is sharded on a system assigned shard key. Has no effect if the table is not sharded, or
is sharded using a custom shard key.

def autobalance(value: Boolean): DataFrameWriter[T]

• value — Boolean true to evenly distribute records amongst the available shards of the cluster, or false to
save records into shards that are 'closest' to where the partitions of the dataset reside.

See “ InterSystems IRIS Save Options” for more information and examples.

6.1.3 SparkSession and SparkContext Extension Methods

dataset[T]()

SparkSession.dataset[T]() executes a query on the cluster or loads the specified table, optionally tunes partitioning,
and returns results in a Dataset[T]s. See “Using the dataset[T]() and rdd[T]() Methods” for more information and
examples.

Using the InterSystems Spark Connector 29

Spark Connector Method Reference

def dataset[T](text: String, mfpi: N = 1)(implicit arg0: Encoder[T]): Dataset[T]

def dataset[T](text: String, column: String, lo: Long, hi: Long, partitions: N)(implicit arg0:
 Encoder[T]): Dataset[T]

• text — text of a query to be executed, or name of a table to load.

• column, lo, hi, partitions— allow you to explicitly specify partitioning parameters.

• mfpi — allows the server to determine partitioning parameters within certain limits.

See “Partition Tuning Options” for detailed information and examples concerning partitioning options.

rdd[T]()

SparkContext.rdd[T]() executes a query on the cluster or loads the specified table, optionally tunes partitioning,
and computes a suitably partitioned RDD whose elements are formatted by the provided formatting function (an
instance of Format[T]). See “Using the dataset[T]() and rdd[T]() Methods” for more information and examples.

def rdd[T](text: String, mfpi: N, format: Format[T])(implicit arg0: ClassTag[T]): RDD[T]

def rdd[T](text: String, column: String, lo: Long, hi: Long, partitions: N, format:
Format[T])(implicit arg0: ClassTag[T]): RDD[T]

• text — text of a query to be executed, or name of a table to load.

• column, lo, hi, partitions— allow you to explicitly specify partitioning parameters.

• mfpi — allows the server to determine partitioning parameters within certain limits.

• format — an instance of Format[T] containing the function used to encode each row of the result set.

See “Partition Tuning Options” for concerning partitioning parameters (column, lo, hi, partitions, and mfpi).

See “Format[T]” for more information on creating and using an instance of Format[T].

6.1.4 ml.PipelineModel Extension Method

iscSave()

ml.PipelineModel.iscSave() saves the PMML definition for the given model as a Class Definition on the master
instance identified by address for subsequent execution on the cluster. See “Using PMML Models with InterSystems
Products” for more information and examples.

def iscSave(klass: String,schema: StructType,address: Address = Address()): Unit

• klass — name of the class definition to create. If this class already exists it will be overwritten.

• schema — The schema of the model’s source Dataset, on which the PMML file's data dictionary will be
based.

• address — The master instance to which the class will be written.

30 Using the InterSystems Spark Connector

Spark Connector Quick Reference

APMML
APMML

	Table of Contents
	About This Book
	1 Introduction
	1.1 Features
	1.2 Data Source Provider Class Names
	1.3 Requirements and Configuration
	1.3.1 Requirements
	1.3.2 Optional Configuration Settings

	2 Spark Connector Data Source Options
	2.1 Using Spark Connector Generic Options
	2.2 Query Options
	2.3 Standard Save Options
	2.4 InterSystems IRIS Save Options
	2.5 Connection Options
	2.6 Partition Tuning Options
	2.6.1 Implicit Partitioning
	2.6.2 Explicit Partitioning

	3 Using Spark Connector Extension Methods
	3.1 Using Query and Save Extension Methods
	3.1.1 Using the iris() Save Method
	3.1.2 Using the iris() and dataset[T]() Query Methods
	3.1.3 Using the rdd[T]() Query Method

	3.2 Using Extension Methods to Set Data Source Options
	3.2.1 Setting the dbtable Query and Save Options
	3.2.2 Extension Methods for InterSystems IRIS Save Options
	3.2.3 Setting Connection Options with the address() Method
	3.2.4 Setting Partitioning Options with Query Method Parameters

	4 Spark Connector Best Practices
	4.1 Configuration
	4.1.1 Intended topology
	4.1.2 Rationale
	4.1.3 Hardware

	4.2 Queries
	4.3 Loading Data

	5 Spark Connector Internals
	5.1 SQL/Spark Datatype Mapping
	5.2 Predicate Pushdown Operators
	5.3 Logging
	5.4 Known Issues
	5.4.1 Pruning Columns with Synthetic Names
	5.4.2 Java 9 Compatibility
	5.4.3 Handling of TINYINT
	5.4.4 JDBC Isolation Levels

	6 Spark Connector Quick Reference
	6.1 Spark Connector Method Reference
	6.1.1 DataFrameReader Extension Methods
	6.1.2 DataFrameWriter Extension Methods
	6.1.3 SparkSession and SparkContext Extension Methods
	6.1.4 ml.PipelineModel Extension Method

