
Client-Side APIs for
InterSystems IRIS Business

Intelligence

Version 2019.4
2020-01-28

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Client-Side APIs for InterSystems IRIS Business Intelligence
InterSystems IRIS Data Platform Version 2019.4 2020-01-28
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

1 Introduction .. 3
1.1 Creating a Web Application .. 3
1.2 Introduction to the Business Intelligence JavaScript API .. 4

1.2.1 Creating a Business Intelligence Connection ... 4
1.2.2 Creating and Using a Business Intelligence Data Controller ... 5

1.3 Introduction to the Business Intelligence REST API ... 6
1.3.1 Use of Slashes in Cube and KPI Names .. 7
1.3.2 Notes on the Response Objects .. 7

1.4 Samples Shown in This Book ... 8

DeepSee.js ... 9
DeepSeeConnector ... 10
DeepSeeDataController .. 11
DeepSeeResultSet .. 14
DeepSeeUtils .. 17

Business Intelligence REST API ... 21
GET /Data/GetDSTIME ... 22
GET /Data/TestConnection .. 23
GET /Info/TestConnection ... 24
POST /Data/KPIExecute .. 25
POST /Data/MDXCancelQuery/:queryID ... 27
POST /Data/MDXDrillthrough .. 28
POST /Data/MDXExecute ... 30
POST /Data/MDXUpdateResults/:queryID ... 33
POST /Data/PivotExecute .. 34
POST /Info/Cubes .. 35
POST /Info/Dashboards ... 36
POST /Info/FilterMembers/:datasource/:filterSpec ... 37
POST /Info/Filters/:datasource ... 39
POST /Info/KPIs .. 40
POST /Info/ListingFields/:cube ... 41
POST /Info/Listings/:cube .. 42
POST /Info/Measures/:cube ... 44
POST /Info/NamedFilters/:cube ... 45
POST /Info/Pivots .. 46
POST /Info/PivotVariableDetails/:cube/:variable ... 47
POST /Info/PivotVariables/:cube ... 48
POST /Info/QualityMeasures/:cube ... 49

Client-Side APIs for InterSystems IRIS Business Intelligence iii

About This Book

This book provides information on the InterSystems IRIS Business Intelligence JavaScript and REST APIs, which you can
use to create web clients for your Business Intelligence applications. This book contains the following sections:

• Introduction and Samples

• Business Intelligence JavaScript API

• Business Intelligence REST API

For a detailed outline, see the table of contents.

The other developer books for Business Intelligence are as follows:

• Introduction to InterSystems Business Intelligence briefly introduces Business Intelligence and the tools that it provides.

• Developer Tutorial for InterSystems Business Intelligence guides developers through the process of creating a sample
that consists of a cube, subject areas, pivot tables, and dashboards.

• Implementing InterSystems Business Intelligence describes how to implement Business Intelligence, apart from creating
the model.

• Defining Models for InterSystems Business Intelligence describes how to define the basic elements used in Business
Intelligence queries: cubes and subject areas. It also describes how to define listing groups.

• Advanced Modeling for InterSystems Business Intelligence describes how to use the more advanced and less common
Business Intelligence modeling features: computed dimensions, unstructured data in cubes, compound cubes, cube
relationships, term lists, quality measures, KPIs, plug-ins, and other special options.

• Using InterSystems MDX introduces MDX and describes how to write MDX queries manually for use with cubes.

Client-Side APIs for InterSystems IRIS Business Intelligence 1

1
Introduction

This chapter introduces the JavaScript and REST APIs for InterSystems IRIS Business Intelligence. These APIs let you
execute MDX queries and retrieve information about Business Intelligence model elements. This chapter discusses the
following:

• How to create a web application that can use these APIs

• Introduction to the Business Intelligence JavaScript API

• Introduction to the Business Intelligence REST API

• How to find the sample cubes shown in this book

1.1 Creating a Web Application
In any scenario (whether you use the JavaScript API or you use the REST services directly), a web application is responsible
for handling the requests. You can use the system-defined web application (/api/deepsee) or you can create and use a dif-
ferent web application. The requirements for this web application are as follows:

• You must place your client file or files within the directory structure served by this web application.

• You must specify the Dispatch Class option, which specifies how this web application handles REST requests. For
Business Intelligence REST requests, use one of the following:

– %Api.DeepSee — Use this class if your client application must be able to connect to different namespaces. In this
case, when you connect to an InterSystems IRIS® server, you must specify the namespace to use.

The system-defined web application (/api/deepsee) uses this dispatch class.

– %DeepSee.REST.v1 — Use this class if the REST requests should be tied to a specific namespace (the namespace
for the web application).

Client-Side APIs for InterSystems IRIS Business Intelligence 3

1.2 Introduction to the Business Intelligence JavaScript
API
The Business Intelligence JavaScript API is provided by the file DeepSee.js, which is in the install-dir/CSP/broker directory.
This JavaScript library enables you to interact with Business Intelligence from a client that is based on JavaScript. The
functions in this library are a wrapper for a REST-based API for Business Intelligence. (You can also use the REST API
directly; it is introduced later in this chapter.)

To use this library:

1. Create a web application as described in the previous section.

Or use the web application /api/deepsee, which is provided as part of the installation.

2. In your JavaScript client code:

a. Include the files DeepSee.js and zenCSLM.js.

b. Create a Business Intelligence connection object. This contains information needed to connect to an InterSystems
IRIS server.

c. Create a Business Intelligence data controller object that uses the connection object.

The data controller object enables you to interact with a Business Intelligence data source, which you specify
either via an MDX query or via the name of a pivot table.

d. Use the runQuery() method of the data controller. If the data source is an MDX query, Business Intelligence
executes that query. If the data source is a pivot table, Business Intelligence executes the query defined by the
pivot table.

e. Invoke other methods of the data controller object to examine the query results, to drill down or drill through, and
so on.

The following subsections give the details.

The library DeepSee.js also provides utility functions that provide information about Business Intelligence model elements.
Use these to obtain lists of available cubes, available measures in a cube, and so on.

1.2.1 Creating a Business Intelligence Connection

To create a Business Intelligence connection object, use code like the following:

 connection = new DeepSeeConnection(username,password,host,application,namespace);

Where:

• username is an InterSystems IRIS username that can access the given host.

• password is the associated password.

• host is the server name for the machine on which InterSystems IRIS is running.

• application is the name of the web application.

• namespace is the name of the namespace to access (if this information is needed). If the web application is tied to a
namespace, this argument is not needed.

4 Client-Side APIs for InterSystems IRIS Business Intelligence

Introduction

1.2.2 Creating and Using a Business Intelligence Data Controller

The data controller object enables you to interact with Business Intelligence data sources. The primary interaction is as
follows:

• In a suitable part of the page logic (such as when the page is loaded or when a button is pressed), create a Business
Intelligence data controller and execute a query.

When you create a data controller, you specify one or two callback functions to be run when data is available;
finalCallback is required, but pendingCallback is optional.

• When pending results are available, Business Intelligence calls the method specified by pendingCallback, if specified.

This method, which you write, uses the results that are available in the data controller object. The method typically
draws page contents.

• When the query has completed, Business Intelligence calls the method specified by finalCallback.

This method, which you write, uses the results that are available in the data controller object. The method typically
draws page contents.

Any method that executes a query uses the system described here; see the subsections for details and examples. Other
methods return data synchronously.

1.2.2.1 Creating a Business Intelligence Data Controller and Executing a Query

In a suitable part of the client code (such as within the page initialization logic), do the following:

1. Create a configuration object that has the following properties:

• connection — Specifies the name of a Business Intelligence data connector object; see the previous section.

• widget — Specifies the id of the HTML element on the page that will use the data controller

• type — Specifies the type of data source; use either 'MDX' or 'PIVOT'

• initialMDX — Specifies an MDX SELECT query; use this if type is 'MDX'

• pivotName — Specifies the logical name of a pivot table; use this if type is 'PIVOT'

• showTotals — Specifies whether to display totals. Specify either true or false

2. Create a data controller object with code like the following:

var dc = new DeepSeeDataController(configuration,finalCallback,pendingCallback);

Where configuration is the configuration object from the previous step, finalCallback is the name of a callback function
on this page, and pendingCallback is the name of another callback function on this page. finalCallback is required,
but pendingCallback is optional.

3. Call the runQuery() method of the data controller. Or run some other method that executes a query, such as
runDrillDown() or runListing().

For example:

function initializePage() {
 ...
 configuration.connection = new DeepSeeConnection(username,password,host,application,namespace);

 dc = new DeepSeeDataController(configuration,drawChart);
 dc.runQuery();
}

Client-Side APIs for InterSystems IRIS Business Intelligence 5

Introduction to the Business Intelligence JavaScript API

1.2.2.2 Using Data Returned by the Data Controller

The page must also implement the callback function or functions referred to in the previous step. These callbacks should
update the page as needed, using data obtained from the data controller object.

In each case, the data controller object is passed to the function as the argument.

The following shows a partial example:

function drawChart(dataController) {

 var resultSet = dataController.getCurrentData();
...
 var chartDataPoint;
 var chartLabel;
 var chartData = [];

 for (var i = 1; i <= resultSet.getRowCount(); ++i) {
 for (var j = 1; j <= resultSet.getColumnCount(); ++j) {
 chartDataPoint = resultSet.getOrdinalValue(i,j);
 chartLabel = resultSet.getOrdinalLabel(2,i);
 chartData[chartData.length] = { "country":chartLabel[0],"revenue":chartDataPoint};

 }
 }
...

The getCurrentData() method of the data controller returns another object, the result set object. That object provides
methods for examining the results of the query. The example here shows some of them.

1.3 Introduction to the Business Intelligence REST API
Internally, the JavaScript API described earlier in this chapter uses the Business Intelligence REST API, which you can
also use directly. To use the Business Intelligence REST API:

1. Create a web application as described in earlier in this chapter.

Or use the web application /api/deepsee, which is provided as part of the installation.

2. In your JavaScript client code, create and send HTTP requests to the desired target REST services.

If you are using the dispatch class %Api.DeepSee, use a target URL of the following form:

/baseURL/api/deepsee/v1/namespace/RESTcallname

Where baseURL specifies the server, namespace is the target namespace, and RESTcallname is the actual rest call (for
example, /Info/Cubes). For example:

/mycompany/api/deepsee/v1/myapplication/Info/Cubes

If you are using the dispatch class %DeepSee.REST.v1, use a target URL of the following form:

/baseURL/api/deepsee/v1/RESTcallname

For example:

/mycompany/api/deepsee/v1/Info/Cubes

Note: The client must accept JSON. The Accept header of the request must either specify application/json
or not declare a format.

3. Examine the response objects and use as applicable.

6 Client-Side APIs for InterSystems IRIS Business Intelligence

Introduction

1.3.1 Use of Slashes in Cube and KPI Names

It is relatively common to use slashes (/) in the logical names of cubes and other items, because the slash character is the
token that separates a folder name from a short item name. For example, a cube might have the logical name
RelatedCubes/Patients

You can directly use these logical names unmodified in URL parameters (as well as in the request bodies). The applicable
Business Intelligence REST services account for logical names that include slashes. The logic, however, requires you to
follow a naming convention (depending on which REST services you plan to use). Specifically, do not have an item with
a logical name that is the same as the name of a folder used by another logical name. For example, if you have an item
called mycubes/test/test1, you should not have an item called mycubes/test.

The reason for this restriction is that when you use a REST service that uses another argument after the logical name, part
of the name is interpreted as another argument if the first part of the name matches an existing item. Consider the following
REST call:

http://localhost:52773/api/deepsee/v1/Info/FilterMembers/:mycubename/:filterspec

Here mycubename is the logical name of a cube and filterspec is the specification for a filter provided by that cube. Now
consider this REST call with mycubes/test/test1 as the name of the cube:

http://localhost:52773/api/deepsee/v1/Info/FilterMembers/:mycubes/test/test1/:filterspec

In order to interpret the slash characters, the system first attempts to find a cube named mycubes and then attempts to find
a cube named mycubes/test, and so on. When the system finds the first item that matches the apparent name, the REST
call uses that item, and the remainder of the string is interpreted as the next argument.

1.3.2 Notes on the Response Objects

For most of the REST calls, the response objects contain the property Info, which contains information about the request
and response. This object contains the property Error, which equals one of the following:

• Null — This indicates that no error occurred.

• An object that contains the properties ErrorCode and ErrorMessage — This object contains details about the error
that you can use to determine whether and how to proceed.

If no error occurred, the response object also contains the property Result, which is an object containing the requested
values.

In general, your client code should first check the Info.Error property and then determine how to proceed.

For example, a response object might look like this (with white space added for readability):

{"Info":
 {"Error":
 {"ErrorCode":"5001","ErrorMessage":"ERROR #5001: Cannot find Subject Area: 'SampleCube'"}
 }
}

In contrast, if no error occurred, the Info.Error property is null and the Result contains the result that you requested.
For example:

Client-Side APIs for InterSystems IRIS Business Intelligence 7

Introduction to the Business Intelligence REST API

{"Info":
 {"Error":"",
 "BaseCube":"DemoMDX",
 "SkipCalculated":0},
 "Result":
 {"Measures":
 [
 {"name":"%COUNT","caption":"%COUNT","type":"integer","hidden":0,"factName":""},
 {"name":"Age","caption":"Age","type":"integer","hidden":0,"factName":"MxAge"}
 ...]
 }
}

1.4 Samples Shown in This Book
Most of the samples shown in this book are part of the Samples-BI sample (https://github.com/intersystems/Samples-BI)
or the Samples-Aviation sample (https://github.com/intersystems/Samples-Aviation).

InterSystems recommends that you create a dedicated namespace called SAMPLES (for example) and load samples into
that namespace. For the general process, see Downloading Samples for Use with InterSystems IRIS.

8 Client-Side APIs for InterSystems IRIS Business Intelligence

Introduction

https://github.com/intersystems/Samples-BI
https://github.com/intersystems/Samples-Aviation

DeepSee.js

This reference section provides information on the JavaScript API for InterSystems IRIS Business Intelligence. This API
is provided by the file DeepSee.js.

Client-Side APIs for InterSystems IRIS Business Intelligence 9

DeepSeeConnector
Enables you to connect to Business Intelligence data sources.

Where This Object Is Available
This object is available in client-side JavaScript code, if that code includes DeepSee.js. See “ Introduction to DeepSee.js.”

Creating This Object
To create a Business Intelligence data connector object, use code like the following:

var connection = new DeepSeeConnection(username,password,host,application,namespace);

Where:

• username is an InterSystems IRIS® username that can access the given host.

• password is the associated password.

• host is the server name for the machine on which InterSystems IRIS is running.

• application is the name of the web application.

• namespace is the name of the namespace to access.

Properties of This Object
This object provides the following properties:

• username is an InterSystems IRIS username that can access the given host.

• password is the associated password.

• path is the base URL for the web services.

Methods of This Object
A data connector object does not provide any methods.

10 Client-Side APIs for InterSystems IRIS Business Intelligence

DeepSee.js

DeepSeeDataController
Enables you to work with a Business Intelligence data source.

Where This Object Is Available
This object is available in client-side JavaScript code, if that code includes DeepSee.js. See “ Introduction to DeepSee.js.”

Creating This Object
To create a Business Intelligence data controller object, use code like the following:

var controller = new DeepSeeDataController(configuration,finalCallback,pendingCallback);

Where:

• configuration is an object that has the following properties:

– connection — Is a Business Intelligence data connector object.

– widget — Specifies the id of the HTML element on the page that will use the data controller

– type — Specifies the type of data source; use either 'MDX' or 'PIVOT' (case-sensitive)

– initialMDX — Specifies an MDX SELECT query; specify this property if type is 'MDX'

– pivotName — Specifies the logical name of a pivot table; specify this property if type is 'PIVOT'

– showTotals — Specifies whether to display totals; specify this property as true or false

• finalCallback is the name of a callback function on this page

For runQuery() and other methods of this object, when the query is completed, the system invokes this function.

• pendingCallback (optional) is the name of another callback function on this page.

For runQuery() and other methods of this object, when pending results are available, the system invokes this function,
if this argument is supplied.

Methods of This Object
The Business Intelligence data controller object provides the following JavaScript methods:

applyFilter()

applyFilter(filterInfo)

Where filterInfo is an object that contains the filterName and filterSpec properties.

This method adds the given filter to the filters used by the data controller, reruns the query, and then invokes the
callback functions associated with the data controller object.

This method has no return value.

attachTotals()

attachTotals(rowTotals,columnTotals,reattach)

Where:

• rowTotals is true or false, depending on whether you want to attach totals for the rows.

• columnTotals is true or false, depending on whether you want to attach totals for the columns.

Client-Side APIs for InterSystems IRIS Business Intelligence 11

DeepSeeDataController

• reattach is true or false, depending on whether you want to update the most recently saved state.

If reattach is true, the system updates the most recently saved state. If reattach is false, the system adds
a new state object to the stack.

This method attaches totals to the data controller object and then invokes the callback functions associated with
the data controller object.

This method has no return value.

getCurrentData()

getCurrentData()

Returns a Business Intelligence result set object that contains the results from the query currently defined by the
data controller object. See the reference for the DeepSeeResultSet object.

getCurrentQueryText()

getCurrentQueryText()

Returns the text of the query currently defined by the data controller object.

runDrillDown()

runDrillDown(axis, position)

Where:

• axis is the number of the axis on which you want to perform the drilldown action. Specify 1 for column or 2
for rows.

• position is the position (1–based) on that axis where you want to perform the drilldown action.

This method executes the given drilldown action, and then invokes the callback functions associated with the data
controller object.

This method has no return value.

runListing()

runListing(startRow, startCol, endRow, endCol, listingName)

Where:

• startRow and startCol are the first row and column number of the results for which you want a detail listing.
Specify 1 for the first row or column.

• endRow and endCol are the last row and column number for which you want a detail listing.

• listingName is the logical name of a detail listing.

This method executes the given detail listing for one or more cells of the results, and then invokes the callback
functions associated with the data controller object.

This method has no return value.

runQuery()

runQuery()

12 Client-Side APIs for InterSystems IRIS Business Intelligence

DeepSee.js

Executes the query currently defined by the data controller object. When the query is pending or completed, the
system invokes the callback functions associated with the data controller object.

This method has no return value.

sortResults()

sortResults(axis, position, direction, sortType)

Where:

• axis is the number of the axis you want to sort. Specify 1 for column or 2 for rows.

• position is the position (1–based) on that axis where you want to sort.

For example, to sort by the third column, specify axis as 1 and position as 3.

• direction is the direction in which to sort. Specify 1 for ascending sort or –1 or descending sort.

• sortType specifies how to sort. If this is '' or 'numeric' (case-insensitive), numeric sorting is used. Other-
wise, string sorting is used.

This method sorts the results as requested and then invokes the callback functions associated with the data controller
object.

This method has no return value.

undoLastAction()

undoLastAction()

Undoes the last change and invokes the callback functions associated with the data controller object.

This method has no return value.

Client-Side APIs for InterSystems IRIS Business Intelligence 13

DeepSeeDataController

DeepSeeResultSet
Enables you to work with the results of a Business Intelligence query.

Where This Object Is Available
This object is available in client-side JavaScript code, if that code includes DeepSee.js. See “ Introduction to DeepSee.js.”

Creating This Object
To create a result set, call the getCurrentData() method of the data controller object.

Or use code like the following:

var resultset = new DeepSeeResultSet(connection,widget,wait,timeout);

Where:

• connection — Is a Business Intelligence data connector object.

• widget — Specifies the id of the HTML element on the page that will use the data controller.

• wait — Boolean. If this parameter is false, the server should respond immediately. If this parameter is true, the server
should not respond until the query has completed or timed out.

• timeout — Specifies how long (in seconds) the server should wait before returning final but incomplete query results.

Properties of This Object
The Business Intelligence result set object provides the following properties:

• connection — Is a Business Intelligence data connector object.

• widget — Specifies the id of the HTML element on the page that will use the data controller.

• wait — Boolean. If this property is false, the server should respond immediately. If this property is true, the server
should not respond until the query has completed or timed out.

• timeout — Specifies how long (in seconds) the server should wait before returning final but incomplete query results.

• data — Contains the query results.

• pollInterval — Specifies how long (in milliseconds) to wait before asking the server for updates to pending results.
The default is 1000.

Methods of This Object
The Business Intelligence result set object provides the following JavaScript methods:

getColumnCount()

getColumnCount()

Returns the number of columns in the result set.

getCubeName()

getCubeName()

Returns the name of the cube currently in use.

14 Client-Side APIs for InterSystems IRIS Business Intelligence

DeepSee.js

getErrorMessage()

getErrorMessage()

This method returns the text of the error message contained in the response object, if any.

getOrdinalLabel()

getOrdinalLabel(axis, position)

Where:

• axis is the number of the axis whose labels you want to obtain. Specify 1 for column or 2 for rows.

• position is the position on that axis whose labels you want to obtain. Specify 1 for the first position on the
axis.

Returns an array of strings, corresponding to the labels at the given position on the given axis.

getOrdinalValue()

getOrdinalValue(rowNo,colNo,formatted)

Where:

• rowNo is the row number (1–based)

• colNo is the column number (1–based)

Returns the value in the given cell.

getQueryStatus()

getQueryStatus()

Returns a numeric value indicating whether the query has completed. This number is 100 if the query has completed.
Otherwise, this number is less than 100.

getRowCount()

getRowCount()

Returns the number of rows in the result set.

isError()

isError()

This method returns true if the response object indicates that an error occurred. Returns false otherwise.

runMDXQuery()

runMDXQuery(mdx,finalCallback,pendingCallback,filters)

Where:

• mdx is an MDX SELECT query.

• finalCallback is the name of a callback function on this page.

• pendingCallback (optional) is the name of another callback function on this page.

Client-Side APIs for InterSystems IRIS Business Intelligence 15

DeepSeeResultSet

• filters specifies additional filters to apply to the query.

This method executes the given MDX query. When the query is pending or completed, the system invokes the
given callback functions.

This method has no return value.

runMDXDrillQuery()

runMDXDrillQuery(mdx,finalCallback,pendingCallback,listing,fieldList,filters)

Where:

• mdx is an MDX SELECT query.

• finalCallback is the name of a callback function on this page.

• pendingCallback (optional) is the name of another callback function on this page.

• listing is the name of a detail listing.

• fieldList specifies a list of listing fields. Specify either listing or fieldList.

• filters specifies additional filters to apply to the query.

This method executes the given drillthrough query. When the query is pending or completed, the system invokes
the given callback functions.

This method has no return value.

runPivot()

runPivot(pivot,finalCallback,pendingCallback,filters)

Where:

• pivot is the logical name of pivot table.

• finalCallback is the name of a callback function on this page.

• pendingCallback (optional) is the name of another callback function on this page.

• filters specifies additional filters to apply to the query.

This method executes the MDX query defined by the given pivot table. When the query is pending or completed,
the system invokes the given callback functions.

This method has no return value.

16 Client-Side APIs for InterSystems IRIS Business Intelligence

DeepSee.js

DeepSeeUtils
Provides additional methods for working with Business Intelligence.

Where This Object Is Available
This object is available in client-side JavaScript code, if that code includes DeepSee.js. See “ Introduction to DeepSee.js.”

Creating This Object
When you include DeepSee.js in your client code, the DeepSeeUtils object is automatically available.

Methods of This Object
The DeepSeeUtils object provides the following methods:

getCubeList()

getCubeList(connection,finalFunc)

Where:

• connection — Is a Business Intelligence data connector object.

• finalFunc — Specifies the name of the function to execute when results are available

This method retrieves information about the available cubes. It calls the POST /Info/Cubes REST call, which is
described in the next reference in this book. The response object from that call is available to the function specified
by finalFunc.

getCubeListings()

getCubeListings(connection,finalFunc)

Where:

• connection — Is a Business Intelligence data connector object.

• cubename — Specifies the logical name of a cube.

• finalFunc — Specifies the name of the function to execute when results are available

This method retrieves information about the listings available to the given cube. It calls the POST /Info/Listings/:cube
REST call, which is described in the next reference in this book. The response object from that call is available
to the function specified by finalFunc.

getDashboardList()

getDashboardList(connection,finalFunc)

This method retrieves information about the available dashboards. It calls the POST /Info/Dashboards REST call,
which is described in the next reference in this book. The response object from that call is available to the function
specified by finalFunc.

getErrorMessage()

getErrorMessage(data)

Client-Side APIs for InterSystems IRIS Business Intelligence 17

DeepSeeUtils

Where data is a response object returned by any of the Business Intelligence REST services, which are described
in the next reference in this book.

This method returns the text of the error message contained in that object, if any.

getFiltersForDataSource()

getFiltersForDataSource(connection,cubename,finalcallback)

Where:

• connection — Is a Business Intelligence data connector object.

• cubename — Specifies the logical name of a cube.

• finalcallback — Specifies the name of the function to execute when results are available

This method retrieves information about the available filters for the given cube. It calls the POST /Info/Filters/:data-
source REST call, which is described in the next reference in this book. The response object from that call is
available to the function specified by finalFunc.

getMembersForFilter()

getMembersForFilter(connection,cubeName,filterSpec,finalCallback)

Where:

• connection — Is a Business Intelligence data connector object.

• cubename — Specifies the logical name of a cube.

• filterSpec — Specifies the filter whose members you want to retrieve.

• finalcallback — Specifies the name of the function to execute when results are available

This method retrieves information about members of the given filter. It calls the POST /Info/FilterMembers/:data-
source/:filterSpec REST call, which is described in the next reference in this book. The response object from that
call is available to the function specified by finalFunc.

getPivotList()

getPivotList(connection,finalFunc)

Where:

• connection — Is a Business Intelligence data connector object.

• finalFunc — Specifies the name of the function to execute when results are available

This method retrieves information about the available pivot tables. It calls the POST /Info/Pivots REST call, which
is described in the next reference in this book. The response object from that call is available to the function
specified by finalFunc.

getResultsAsArray()

getResultsAsArray(data)

Where data is a response object returned by any of the Business Intelligence REST services, which are described
in the next reference in this book.

This method returns an array of results from that object as follows:

18 Client-Side APIs for InterSystems IRIS Business Intelligence

DeepSee.js

1. If the response object contains an Result.Filters array, the method returns that array.

2. Otherwise, if the response object contains an Result.FilterMembers array, the method returns that array.

3. Otherwise, if the response object contains an Result.Listings array, the method returns that array.

Otherwise the method returns nothing.

isError()

isError(data)

Where data is a response object returned by any of the Business Intelligence REST services, which are described
in the next reference in this book.

This method returns true if the response object indicates that an error occurred. Returns false otherwise.

Client-Side APIs for InterSystems IRIS Business Intelligence 19

DeepSeeUtils

Business Intelligence REST API

This reference section provides information on the REST services for InterSystems IRIS Business Intelligence. These services
are provided by the class %DeepSee.REST.v1. See “Using the Business Intelligence REST API,” earlier in this book.

Client-Side APIs for InterSystems IRIS Business Intelligence 21

GET /Data/GetDSTIME
Retrieves the last ^OBJ.DSTIME timestamp that the server processed for a given cube.

URL Parameters
Required. Full name of the source class of the cube.sourceClass

Request Body Details
This service ignores the request body.

Example Request
• Request Method:

GET

• Request URL:

http://localhost:52773/api/deepsee/v1/Data/GetDSTime/HoleFoods.Transation

For comments on the possible forms of the URL, see “ Introduction to the Business Intelligence REST API” in the
chapter “ Introduction and Samples.”

Example Response
{
 "Status": "OK",
 "DispatchClass": "%DeepSee.REST.v1.InfoServer",
 "NameSpace": "SAMPLES"
}

22 Client-Side APIs for InterSystems IRIS Business Intelligence

Business Intelligence REST API

GET /Data/TestConnection
Tests the connection to the server.

URL Parameters
None.

Request Body Details
This service ignores the request body.

Example Request
• Request Method:

GET

• Request URL:

http://localhost:52773/api/deepsee/v1/Data/TestConnection

For comments on the possible forms of the URL, see “ Introduction to the Business Intelligence REST API” in the
chapter “ Introduction and Samples.”

Example Response
{
 "Status": "OK",
 "DispatchClass": "%DeepSee.REST.v1.DataServer",
 "NameSpace": "SAMPLES"
}

Client-Side APIs for InterSystems IRIS Business Intelligence 23

GET /Data/TestConnection

GET /Info/TestConnection
Tests the connection to the server.

URL Parameters
None.

Request Body Details
This service ignores the request body.

Example Request
• Request Method:

GET

• Request URL:

http://localhost:52773/api/deepsee/v1/Info/TestConnection

For comments on the possible forms of the URL, see “ Introduction to the Business Intelligence REST API” in the
chapter “ Introduction and Samples.”

Example Response
{
 "Status": "OK",
 "DispatchClass": "%DeepSee.REST.v1.InfoServer",
 "NameSpace": "SAMPLES"
}

24 Client-Side APIs for InterSystems IRIS Business Intelligence

Business Intelligence REST API

POST /Data/KPIExecute
Execute the query defined by a KPI.

URL Parameters
None. Note that a request body is required; see the next heading.

Request Body Details
This service uses the following properties of the request body:

Required. Logical name of the KPI.KPI

Optional. Array of filter objects that specify how the KPI is filtered. Each filter object
must provide the following properties:

FILTERS

• name — a filter specification such as [aged].[h1].[age group]

• value — logical name of a member of a filter, such as &[0 to 29]

Example Request
• Request Method:

POST

• Request URL:

http://localhost:52773/api/deepsee/v1/Data/KPIExecute

For comments on the possible forms of the URL, see “ Introduction to the Business Intelligence REST API” in the
chapter “ Introduction and Samples.”

• Request Body:

{
 "KPI": "DemoMDX",
 "FILTERS": [{"name" : "[aged].[h1].[age group]","value" : "&[0 to 29]" }]
}

Example Response
{
 "Info": {"Error": "","KpiName": "DemoMDX"},
 "Result":
 {"Properties":
 [
 {"name": "PatCount","caption": "PatCount","columnNo": 1},
 {"name": "AvgTestScore","caption": "AvgTestScore","columnNo": 2}
],
 "Series":
 [
 {"PatCount": 482,"AvgTestScore": 73.62564102564102564,"seriesName": "Cedar Falls"},
 {"PatCount": 473,"AvgTestScore": 74.54089709762532982,"seriesName": "Centerville"},
 {"PatCount": 454,"AvgTestScore": 73.86532951289398281,"seriesName": "Cypress"},
 {"PatCount": 471,"AvgTestScore": 75.69459459459459459,"seriesName": "Elm Heights"},
 {"PatCount": 468,"AvgTestScore": 74.00806451612903226,"seriesName": "Juniper"},
 {"PatCount": 464,"AvgTestScore": 73.71925133689839572,"seriesName": "Magnolia"},
 {"PatCount": 438,"AvgTestScore": 73.76123595505617978,"seriesName": "Pine"},
 {"PatCount": 464,"AvgTestScore": 75.46537396121883657,"seriesName": "Redwood"},
 {"PatCount": 445,"AvgTestScore": 75.19886363636363636,"seriesName": "Spruce"}
]
 }
}

Client-Side APIs for InterSystems IRIS Business Intelligence 25

POST /Data/KPIExecute

In the response object, the Result property contains the properties Series and Properties. The Series property
contains an array of objects, one for each series (or row) in the KPI. The Properties property contains an array of objects,
one for each row in the KPI.

For information that applies to all response objects, see the discussion at the start of this reference.

26 Client-Side APIs for InterSystems IRIS Business Intelligence

Business Intelligence REST API

POST /Data/MDXCancelQuery/:queryID
Cancels a previously started query, given the ID of the query.

URL Parameters
Required. ID of the query to cancel. If you started the query with the POST
/Data/MDXExecute service, obtain the ID of the query from the Info.QueryID property
of the response object returned by that service. If you started the query with the POST
/Data/PivotExecute service, obtain the ID of the query from the Info.QueryID property
of the response object returned by that service.

queryID

Request Body Details
This service ignores the request body.

Example Request
• Request Method:

POST

• Request URL:

http://localhost:52773/api/deepsee/v1/Data/MDXCancelQuery/:patients||en2515296118

For comments on the possible forms of the URL, see “ Introduction to the Business Intelligence REST API” in the
chapter “ Introduction and Samples.”

Client-Side APIs for InterSystems IRIS Business Intelligence 27

POST /Data/MDXCancelQuery/:queryID

POST /Data/MDXDrillthrough
Executes a detail listing.

URL Parameters
None. Note that a request body is required; see the next heading.

Request Body Details
This service uses the following properties of the request body:

Required. MDX SELECT QUERY, preceded by either DRILLTHROUGH or DRILLFACTS.
Use DRILLTHROUGH to use a named detail listing or to retrieve fields from the source
class of the cube. Use DRILLFACTS to retrieve fields from the fact table.

If the base SELECT query returns more than one cell, only the top left cell is used for
the detail listing.

MDX

Optional. Logical name of the detail listing to use.You must specify either LISTING or
RETURN, but not both.

LISTING

Optional. Specify 0 or 1 (the default). If this property is 0, the server sends partial
results. If this property is 1, the server assumes the client wishes to wait for complete
results before sending a response.

WAIT

Optional. List of fields in the applicable table, depending on the value in MDX. If you
specify this, the listing consists of these fields.

RETURN

Example Request
• Request Method:

POST

• Request URL:

http://localhost:52773/api/deepsee/v1/Data/MDXDrillthrough

For comments on the possible forms of the URL, see “ Introduction to the Business Intelligence REST API” in the
chapter “ Introduction and Samples.”

• Request Body:

{
 "MDX" : "DRILLTHROUGH SELECT FROM patients WHERE AGED.60",
 "LISTING" : "Patient details"
}

For another example:

{
 "MDX" : "DRILLTHROUGH SELECT FROM patients WHERE AGED.60",
 "RETURN":"Age,BirthDate"
}

For another example:

{
 "MDX" : "DRILLFACTS SELECT FROM patients WHERE AGED.60",
 "RETURN":"MxAge,MxTestScore"
}

28 Client-Side APIs for InterSystems IRIS Business Intelligence

Business Intelligence REST API

Example Response
{
 "Info":
 {"Error":"",
 "MDXText":"DRILLTHROUGH SELECT FROM [PATIENTS] WHERE [AGED].[60]",
 "QueryKey":"en2156087935","CubeKey":"PATIENTS",
 "QueryID":"PATIENTS||en2156087935","Cube":"patients",
 "ResultsComplete":1,"Pivot":"","QueryType":"DRILLTHROUGH","ListingSource":"source",
 "ColCount":5,"RowCount":0,"Error":"","TimeStamp":"2016-08-14 15:43:04"},
 "AxesInfo":
 [{"%ID":"SlicerInfo","Text":"[AGED].[60]"},
 {"%ID":"AxisInfo_1","Text":"[%SEARCH]"},
 {"%ID":"AxisInfo_2","Text":"[%SEARCH]"}],
 "Result":
 {"children":
 [
 {"PatientID":"SUBJ_100508","Age":60,"Gender":"Female","Home City":"Elm Heights","Test Score":81},

 {"PatientID":"SUBJ_100539","Age":60,"Gender":"Female","Home City":"Elm Heights","Test Score":90},

 {"PatientID":"SUBJ_100701","Age":60,"Gender":"Female","Home City":"Redwood","Test Score":61},
 {"PatientID":"SUBJ_100829","Age":60,"Gender":"Female","Home City":"Juniper","Test Score":98},
 ...]}
}

For information that applies to all response objects, see the discussion at the start of this reference.

Client-Side APIs for InterSystems IRIS Business Intelligence 29

POST /Data/MDXDrillthrough

POST /Data/MDXExecute
Executes an MDX query and obtains the results.

URL Parameters
None. Note that a request body is required; see the next heading.

Request Body Details
This service uses the following properties of the request body:

Required. MDX SELECT QUERY.MDX

Optional. Any additional filters to add to the query. If specified, this property must be
an array of strings, each of which specifies a filter value.

FILTERS

Optional. Specify 0 or 1 (the default). If this property is 0, the server sends partial
results. If this property is 1, the server assumes the client wishes to wait for complete
results before sending a response.

WAIT

Optional. Timeout for waiting for query results, in seconds. The default timeout for this
wait is 2 seconds less than the session’s timeout setting.

TIMEOUT

Example Request
• Request Method:

POST

• Request URL:

http://localhost:52773/api/deepsee/v1/Data/MDXExecute

For comments on the possible forms of the URL, see “ Introduction to the Business Intelligence REST API” in the
chapter “ Introduction and Samples.”

• Request Body:

{"MDX": "SELECT aged.[age group].MEMBERS ON 0 FROM PATIENTS"}

For another example:

{"MDX": "SELECT FROM PATIENTS"}

For another example:

{"MDX": "SELECT birthd.date.members on 0 FROM PATIENTS", "WAIT":1, "TIMEOUT":30}

For another example:

{
 "MDX": "SELECT FROM PATIENTS",
 "FILTERS": ["[HomeD].[H1].[ZIP].&[32006]","[HomeD].[H1].[ZIP].&[32007]"],
 "WAIT":1,
 "TIMEOUT":30
}

30 Client-Side APIs for InterSystems IRIS Business Intelligence

Business Intelligence REST API

Example Response

Response for MDX Query

Note that POST /Data/PivotExecute and POST /Data/MDXUpdateResults return the same response body.

The Info.QueryID property contains the query ID, which you need as input for the POST /Data/MDXCancelQuery and
POST /Data/MDXUpdateResults services. An Info.ResultsComplete property with a value of 1 indicates that the
MDX query has completed. Note that if the Info.PendingResults property has a value of 1, plugins are still computing,
although the rest of the query may have completed. An Info.PendingResults property with a value of 0 indicates that
any plugins have finished computing.

For information that applies to all response objects, see the discussion at the start of this reference.

{
 "Info":{
 "Error":"",
 "MDXText":"SELECT [AGED].[AGE GROUP].MEMBERS ON 0 FROM [PATIENTS]",
 "QueryKey":"en2772997983",
 "CubeKey":"PATIENTS",
 "QueryID":"PATIENTS||en2772997983",
 "Cube":"PATIENTS",
 "ResultsComplete":1,
 "Pivot":"",
 "QueryType":"SELECT",
 "ListingSource":"",
 "ColCount":3,
 "RowCount":0,
 "TimeStamp":"2016-08-14 16:05:16"}
 ,"AxesInfo":[
 {"%ID":"SlicerInfo","Text":""},
 {"%ID":"AxisInfo_1","Text":"[AGED].[AGE GROUP].MEMBERS"},
 {"%ID":"AxisInfo_2","Text":"[%SEARCH]"}
],
 "Result":
 {"Axes":[
 {"%ID":"Axis_1","Tuples":
 [{"%ID":"Tuple_1",
 "Members":[{"%ID":"Member_1",
 "Name":"0 to 29"}],
 "MemberInfo":
 [{"%ID":"MemberInfo_1",
 "nodeNo":3,"text":"0 to 29",
 "dimName":"AgeD",
 "hierName":"H1",
 "levelName":"Age Group",
 "memberKey":"0 to 29",
 "dimNo":2,
 "hierNo":1,
 "levelNo":2,
 "aggregate":"",
 "orSpec":""}]},
 {"%ID":"Tuple_2",...},
 {"%ID":"Tuple_3",...}],
 "TupleInfo":[
 {"%ID":"TupleInfo_1","childSpec":"[AgeD].[H1].[Age Group].&[0 to 29].children"},
 {"%ID":"TupleInfo_2","childSpec":"[AgeD].[H1].[Age Group].&[30 to 59].children"}
 ...],
 "CellData":[
 {"%ID":"Cell_1","ValueLogical":418,"Format":"","ValueFormatted":"418"},
 {"%ID":"Cell_2","ValueLogical":421,"Format":"","ValueFormatted":"421"},
 ...]}
}

If the response is incomplete, it includes cell data objects like the following:

{"%ID":"Cell_9","ValueLogical":"@Computing 0.00%","Format":"","ValueFormatted":"@Computing 0.00%"}

Response for MDX DRILLTHROUGH Query

{
 "Info": {
 "Error": "",
 "TimeStamp": "2017-09-26 15:31:23",
 "ResultsComplete": 1,
 "MDXText": "DRILLTHROUGH SELECT [AGED].[AGE GROUP].[0 TO 29] ON 0 FROM [PATIENTS]",

Client-Side APIs for InterSystems IRIS Business Intelligence 31

POST /Data/MDXExecute

 "QueryKey": "en2983351588",
 "CubeKey": "PATIENTS",
 "QueryID": "PATIENTS||en2983351588",
 "Cube": "PATIENTS",
 "Pivot": "",
 "QueryType": "DRILLTHROUGH",
 "ListingSource": "source",
 "ColCount": 5,
 "RowCount": 0
 },
 "AxesInfo": [
 {
 "%ID": "SlicerInfo",
 "Text": ""
 },
 {
 "%ID": "AxisInfo_1",
 "Text": "[AGED].[AGE GROUP].[0 TO 29]"
 },
 {
 "%ID": "AxisInfo_2",
 "Text": "[%SEARCH]"
 }
],
 "Result": {
 "children": [
 {
 "PatientID": "SUBJ_100786",
 "Age": 0,
 "Gender": "Female",
 "Home City": "Centerville",
 "Test Score": 77
 },
 {
 "PatientID": "SUBJ_100960",
 "Age": 0,
 "Gender": "Female",
 "Home City": "Elm Heights",
 "Test Score": 62
 },
 {
 "PatientID": "SUBJ_100977",
 "Age": 0,
 "Gender": "Female",
 "Home City": "Elm Heights",
 "Test Score": 54
 },
 ...]}
}

32 Client-Side APIs for InterSystems IRIS Business Intelligence

Business Intelligence REST API

POST /Data/MDXUpdateResults/:queryID
Retrieves updated results for a given query that was previously incomplete.

URL Parameters
Required. ID of the query. If you started the query with the POST /Data/MDXExecute
service, obtain the ID of the query from the Info.QueryID property of the response
object returned by that service. If you started the query with the POST
/Data/PivotExecute service, obtain the ID of the query from the Info.QueryID property
of the response object returned by that service.

queryID

Request Body Details
This service ignores the request body.

Example Request
• Request Method:

POST

• Request URL:

http://localhost:52773/api/deepsee/v1/Data/MDXCancelQuery/:patients||en2515296118

For comments on the possible forms of the URL, see “ Introduction to the Business Intelligence REST API” in the
chapter “ Introduction and Samples.”

Example Response
This service returns the same response object as POST /Data/MDXExecute.

Client-Side APIs for InterSystems IRIS Business Intelligence 33

POST /Data/MDXUpdateResults/:queryID

POST /Data/PivotExecute
Executes the MDX query defined by a pivot table and obtains the results.

URL Parameters
None. Note that a request body is required; see the next heading.

Request Body Details
This service uses the following properties of the request body:

Required. Full logical name of the pivot table, including the name of the folder that
contains it.

PIVOT

Optional. Specifies any additional filters to add to the query. If specified, this property
must be an array of strings, each of which specifies a filter value.

FILTERS

Optional. Specify 0 or 1 (the default). If this property is 0, the server sends partial
results. If this property is 1, the server assumes the client wishes to wait for complete
results before sending a response.

WAIT

Optional. Timeout for waiting for query results, in seconds. The default timeout for this
wait is 2 seconds less than the session’s timeout setting.

TIMEOUT

Optional. Specifies the values for any pivot variables used in the pivot table. Specify
this as an array of objects. Each object must specify the name and value properties.

VARIABLES

Example Request
• Request Method:

POST

• Request URL:

http://localhost:52773/api/deepsee/v1/Data/PivotExecute

For comments on the possible forms of the URL, see “ Introduction to the Business Intelligence REST API” in the
chapter “ Introduction and Samples.”

• Request Body:

{ "PIVOT":"Use in Dashboards/Product Info" }

For another example:

{ "PIVOT":"Pivot Variables/Commission Calculator",
 "VARIABLES": [{"name":"commissionpercentage", "value":15}]
}

Example Response
This service returns the same response object as POST /Data/MDXExecute.

34 Client-Side APIs for InterSystems IRIS Business Intelligence

Business Intelligence REST API

POST /Info/Cubes
Returns information about the cubes and subject areas available in the InterSystems IRIS® namespace that you access via
this REST call.

URL Parameters
None.

Request Body Details
This service uses the following properties of the request body:

Optional.This property can be cubes or subjectareas. If this property is cubes, the
server sends information only about cubes. If this property is subjectareas, the
server sends information only about subject areas. If this property is not specified, the
server sends information about both cubes and subject areas.

TYPE

Optional. If specified, this property should equal the logical name of a cube. In this
case, the server sends information only about cubes and subject areas based on this
cube.

BASECUBE

Example Request
• Request Method:

POST

• Request URL:

http://localhost:52773/api/deepsee/v1/Info/Cubes

For comments on the possible forms of the URL, see “ Introduction to the Business Intelligence REST API” in the
chapter “ Introduction and Samples.”

• Request Body:

{"BASECUBE":"patients"}

Example Response
{
 "Info":
 {"Error":"","Type":"all","BaseCube":"patients"},
 "Result":
 {"Cubes":[
 {"name":"AsthmaPatients","displayName":"AsthmaPatients","modTime":"2016-11-14
20:49:14","type":"subjectArea"},
 {"name":"DemoMDX","displayName":"DemoMDX","modTime":"2016-11-14 20:49:14","type":"subjectArea"},

 {"name":"YoungPatients","displayName":"YoungPatients","modTime":"2016-11-14
20:49:14","type":"subjectArea"}
]
 }
}

In the response object, the Result property contains a property called Cubes, which contains an array of objects, one for
each cube or subject area. In these objects, the type property indicates whether the item is a cube or a subject area.

For information that applies to all response objects, see the discussion at the start of this reference.

Client-Side APIs for InterSystems IRIS Business Intelligence 35

POST /Info/Cubes

POST /Info/Dashboards
Returns information about the dashboards available in the InterSystems IRIS namespace that you access via this REST
call.

URL Parameters
None.

Request Body Details
This service ignores the request body.

Example Request
• Request Method:

POST

• Request URL:

http://localhost:52773/api/deepsee/v1/Info/Dashboards

For comments on the possible forms of the URL, see “ Introduction to the Business Intelligence REST API” in the
chapter “ Introduction and Samples.”

Example Response
{
 "Info":
 {"Error":""},
 "Result":
 {"Dashboards":
 [
 {"fullName":"Basic Dashboard Demo",
 "name":"Basic Dashboard Demo",
 "lastModified":"2016-11-14 19:39:14",
 "itemType":"dashboard"},
 {"fullName":"Custom Drilldown Spec",
 "name":"Custom Drilldown Spec",
 "lastModified":"2016-11-14 19:39:14",
 "itemType":"dashboard"}
 ...]
 }
}

In the response object, the Result property contains a property called Dashboards, which contains an array of objects,
one for each dashboard.

For information that applies to all response objects, see the discussion at the start of this reference.

36 Client-Side APIs for InterSystems IRIS Business Intelligence

Business Intelligence REST API

POST /Info/FilterMembers/:datasource/:filterSpec
Returns information about the members of the given filter, as defined by the given data source (which is either a cube or a
KPI).

URL Parameters
Required. Name of the data source. This is one of the following:datasource

• cubename — a logical cube name

• cubename.cube — a logical cube name, followed by .cube

• kpiname.kpi — a logical KPI name, followed by .kpi

This name can include slashes; see “Use of Slashes in Cube and KPI Names, ” earlier
in this book.

Required. Filter specification.filterSpec

Request Body Details
This service uses the following properties of the request body. These properties both specify filters that are applied to the
data source, thus limiting the list of members returned by the service.

Optional. If specified, this property is an array of objects, each of which contains the
spec property (a filter specification) and the value property (value of that filter). A
value property should be an MDX set expression and should use member keys.

RELATED

Optional.SEARCHKEY

Example Request
• Request Method:

POST

• Request URL:

http://localhost:52773/api/deepsee/v1/Info/FilterMembers/:demomdx.kpi/:homed.h1.zip

For comments on the possible forms of the URL, see “ Introduction to the Business Intelligence REST API” in the
chapter “ Introduction and Samples.”

• Request Body:

{
 "RELATED":[{"spec":"gend.h1.gender","value":"&[female]"}],
 "SEARCHKEY":"Jan"
}

Client-Side APIs for InterSystems IRIS Business Intelligence 37

POST /Info/FilterMembers/:datasource/:filterSpec

Example Response
{
 "Info":

{"Error":"","DataSource":"demomdx.cube","DataSourceType":"cube","Default":"","Filter":"[HomeD].[H1].[ZIP]"},

 "Result":
 {"FilterMembers":
 [
 {"text":"32006","value":"&[32006]","description":""},
 {"text":"32007","value":"&[32007]","description":""},
 {"text":"34577","value":"&[34577]","description":""},
 {"text":"36711","value":"&[36711]","description":""},
 {"text":"38928","value":"&[38928]","description":""}
]
 }
}

In the response object, the Result property contains a property called FilterMembers, which contains an array of
objects, one for each filter member. The object for a given filter member contains the following properties:

• description contains the text description of the member, if any

• text contains the display text for the member

• value contains the logical value of the member (typically the MDX key)

For information that applies to all response objects, see the discussion at the start of this reference.

38 Client-Side APIs for InterSystems IRIS Business Intelligence

Business Intelligence REST API

POST /Info/Filters/:datasource
Returns information about the filters available for the given data source (which is either a cube or a KPI).

URL Parameters
Required. Name of the data source. This is one of the following:datasource

• cubename — a logical cube name

• cubename.cube — a logical cube name, followed by .cube

• kpiname.kpi — a logical KPI name, followed by .kpi

This name can include slashes; see “Use of Slashes in Cube and KPI Names, ” earlier
in this book.

Request Body Details
This service ignores the request body.

Example Request
• Request Method:

POST

• Request URL:

http://localhost:52773/api/deepsee/v1/Info/Filters/:aviationevents

For comments on the possible forms of the URL, see “ Introduction to the Business Intelligence REST API” in the
chapter “ Introduction and Samples.”

Example Response
{
 "Info":
 {"Error":"","DataSource":"aviationevents.cube","DataSourceType":"cube"},
 "Result":
 {"Filters":
 [
 {"caption":"Year","value":"[EventDateD].[H1].[Year]","type":"year"},
 {"caption":"Month","value":"[EventDateD].[H1].[Month]","type":""},
 {"caption":"Day","value":"[EventDateD].[H1].[Day]","type":""}
 ...]
 }
}

In the response object, the Result property contains a property called Filters, which contains an array of objects, one
for each filter. Each object has the following properties:

• caption contains the display value for the filter.

• type contains the filter type, if it exists. This can be "calc" or can be the name of a time function. In other cases it
is empty.

• value contains the filter specification, which is the logical identifier for the filter. For information on the filter speci-
fication, see POST /Info/FilterMembers/:datasource/:filterSpec.

For information that applies to all response objects, see the discussion at the start of this reference.

Client-Side APIs for InterSystems IRIS Business Intelligence 39

POST /Info/Filters/:datasource

POST /Info/KPIs
Returns information about the KPIs available in the InterSystems IRIS namespace that you access via this REST call.

URL Parameters
None.

Request Body Details
This service ignores the request body.

Example Request
• Request Method:

POST

• Request URL:

http://localhost:52773/api/deepsee/v1/Info/KPIs

For comments on the possible forms of the URL, see “ Introduction to the Business Intelligence REST API” in the
chapter “ Introduction and Samples.”

Example Response
{ "Info":
 {"Error":""},
 "Result":
 {"KPIs":
 [
 {"name":"Aviation Actions","caption":"Aviation Actions",
 "moddate":"2016-11-14 11:22:08","type":"kpi"},
 {"name":"AviationTopConcepts","caption":"AviationTopConcepts",
 "moddate":"2016-11-14 11:22:08","type":"kpi"},
 {"name":"BPDiastolic","caption":"BPDiastolic",
 "moddate":"2016-11-14 11:22:08","type":"kpi"}
 ...]
 }
}

In the response object, the Result property contains a property called KPIs, which contains an array of objects, one for
each KPI.

For information that applies to all response objects, see the discussion at the start of this reference.

40 Client-Side APIs for InterSystems IRIS Business Intelligence

Business Intelligence REST API

POST /Info/ListingFields/:cube
Returns information about the <listingField> elements available in the InterSystems IRIS namespace that you access via
this REST call.

URL Parameters
Required. Logical name of the cube. This name can include slashes; see “Use of
Slashes in Cube and KPI Names, ” earlier in this book.

cube

Request Body Details
This service ignores the request body.

Example Request
• Request Method:

POST

• Request URL:

http://localhost:52773/api/deepsee/v1/Info/ListingFields/:holefoods

For comments on the possible forms of the URL, see “ Introduction to the Business Intelligence REST API” in the
chapter “ Introduction and Samples.”

Example Response
{
 "Info":
 {"Error":"","BaseCube":"holefoods"},
 "Result":
 {"ListingFields":
 [
 {"caption":"Channel","expression":"%EXTERNAL(Channel) Channel"},
 {"caption":"City","expression":"Outlet->City"},
 {"caption":"Comment","expression":"Comment"},
 ...]
 }
}

In the response object, the Result property contains a property called ListingFields, which contains an array of
objects, one for each <listingField> element.

For information that applies to all response objects, see the discussion at the start of this reference.

Client-Side APIs for InterSystems IRIS Business Intelligence 41

POST /Info/ListingFields/:cube

POST /Info/Listings/:cube
Returns information about the detail listings available for the given cube.

URL Parameters
Required. Logical name of the cube. This name can include slashes; see “Use of
Slashes in Cube and KPI Names, ” earlier in this book.

cube

Request Body Details
This service uses the following property of the request body:

Optional. This property can be map or table. If this property is map, the server sends
information only about map listings. If this property is table, the server sends information
only about non-map listings. If this property is not specified, the server sends information
about all kinds of listings.

TYPE

Example Request
• Request Method:

POST

• Request URL:

http://localhost:52773/api/deepsee/v1/Info/Listings/:holefoods

For comments on the possible forms of the URL, see “ Introduction to the Business Intelligence REST API” in the
chapter “ Introduction and Samples.”

• Request Body:

{"TYPE":"map"}

Example Response
For another example:

{
 "Info":
 {"Error":"","DataSource":"holefoods","Type":"all"},
 "Result":
 {"Listings":
 [
 {"name":"Custom Listing"},
 {"name":"Another Sample Listing by Date",
 "fields":"%ID As \"ID #\",DateOfSale As \"Sale Date\"",
 "order":"DateOfSale,%ID",
 "type":"table",
 "source":"listingGroup",
 "edit":1},
 {"name":"Another Sample Listing with Customer Info",
 "fields":"%ID,Outlet->City \"Store Location\",Outlet->Country->Name Country,Product->Name
Product,
 ZipCode \"Customer ZipCode\",Latitude,Longitude","order":"",
 "type":"map",
 "source":"listingGroup",
 "edit":1},
 {"name":"Customer Info",
 "fields":"%ID,Outlet->City \"Store Location\",Outlet->Country->Name Country,Product->Name
Product,
 ZipCode \"Customer ZipCode\",Latitude,Longitude","order":"",
 "type":"map",
 "source":"cube",

42 Client-Side APIs for InterSystems IRIS Business Intelligence

Business Intelligence REST API

 "edit":0},
 ...]
 }
}

In the response object, the Result property contains a property called Listings, which contains an array of objects, one
for each detail listing.

For information that applies to all response objects, see the discussion at the start of this reference.

Client-Side APIs for InterSystems IRIS Business Intelligence 43

POST /Info/Listings/:cube

POST /Info/Measures/:cube
Returns information about the measures available to the given cube.

URL Parameters
Required. Logical name of the cube. This name can include slashes; see “Use of
Slashes in Cube and KPI Names, ” earlier in this book.

cube

Request Body Details
This service uses the following property of the request body:

Optional.SKIPCALCULATED

Example Request
• Request Method:

POST

• Request URL:

http://localhost:52773/api/deepsee/v1/Info/Measures/:demomdx

For comments on the possible forms of the URL, see “ Introduction to the Business Intelligence REST API” in the
chapter “ Introduction and Samples.”

Example Response
{
 "Info":
 {"Error":"",
 "BaseCube":"DemoMDX",
 "SkipCalculated":0},
 "Result":
 {"Measures":
 [
 {"name":"%COUNT","caption":"%COUNT","type":"integer","hidden":0,"factName":""},
 {"name":"Age","caption":"Age","type":"integer","hidden":0,"factName":"MxAge"}
 ...]
 }
}

In the response object, the Result property contains a property called Measures, which contains an array of objects, one
for each measure.

For information that applies to all response objects, see the discussion at the start of this reference.

44 Client-Side APIs for InterSystems IRIS Business Intelligence

Business Intelligence REST API

POST /Info/NamedFilters/:cube
Returns information about the named filters available to the given cube.

URL Parameters
Required. Logical name of the cube. This name can include slashes; see “Use of
Slashes in Cube and KPI Names, ” earlier in this book.

cube

Request Body Details
This service ignores the request body.

Example Request
• Request Method:

POST

• Request URL:

http://localhost:52773/api/deepsee/v1/Info/NamedFilters/:holefoods

For comments on the possible forms of the URL, see “ Introduction to the Business Intelligence REST API” in the
chapter “ Introduction and Samples.”

Example Response
{
 "Info":
 {"Error":"","BaseCube":"holefoods"},
 "Result":
 {"NamedFilters":
 [
 {"name":"Sample Named Filter",
 "description":"",
 "spec":"[Product].[P1].[Product Category].&[Seafood]","cube":"HOLEFOODS"}
]
 }
}

In the response object, the Result property contains a property called NamedFilters, which contains an array of objects,
one for each named filter.

For information that applies to all response objects, see the discussion at the start of this reference.

Client-Side APIs for InterSystems IRIS Business Intelligence 45

POST /Info/NamedFilters/:cube

POST /Info/Pivots
Returns information about the pivot tables available in the InterSystems IRIS namespace that you access via this REST
call.

URL Parameters
None.

Request Body Details
This service uses the following property of the request body:

Optional. If specified, this property should equal the logical name of a cube. In this
case, the server sends information only about pivot tables based on this cube.

BASECUBE

Example Request
• Request Method:

POST

• Request URL:

http://localhost:52773/api/deepsee/v1/Info/Pivots

For comments on the possible forms of the URL, see “ Introduction to the Business Intelligence REST API” in the
chapter “ Introduction and Samples.”

• Request Body:

{"BASECUBE":"PATIENTS"}

Example Response
{
 "Info":
 {"Error":"","BaseCube":""},
 "Result":
 {"Pivots":
 [
 {"fullName":"Calculated Members\/Alternative Avg Allergy Count",
 "name":"Alternative Avg Allergy Count",
 "lastModified":"2016-11-14 11:22:08",
 "itemType":"pivot"},
 {"fullName":"Calculated Members\/Average Patient Count per Decade",
 "name":"Average Patient Count per Decade",
 "lastModified":"2016-11-14 11:22:08",
 "itemType":"pivot"}
 ...]
 }
}

In the response object, the Result property contains a property called Pivots, which contains an array of objects, one
for each pivot table.

For information that applies to all response objects, see the discussion at the start of this reference.

46 Client-Side APIs for InterSystems IRIS Business Intelligence

Business Intelligence REST API

POST /Info/PivotVariableDetails/:cube/:variable
Returns detailed information about the given pivot variable.

URL Parameters
Required. Logical name of a cube that has access to the given pivot variable. This
name can include slashes; see “Use of Slashes in Cube and KPI Names, ” earlier
in this book.

cube

Required. Logical name of the pivot variable.variable

Request Body Details
This service ignores the request body.

Example Request
• Request Method:

POST

• Request URL:

http://localhost:52773/api/deepsee/v1/Info/PivotVariableDetails/:holefoods/:Year

For comments on the possible forms of the URL, see “ Introduction to the Business Intelligence REST API” in the
chapter “ Introduction and Samples.”

Example Response
{
 "Info":
 {"Error":"","BaseCube":"holefoods","Variable":"Year"},
 "Result":
 {"Details":
 {"context":"literal","defaultValue":"NOW","description":"","displayList":"","displayName":"Year",

"name":"Year","sourceName":"HoleFoodsYears.kpi","sourceType":"kpi","type":"string","valueList":""}
 }
}

In the response object, the Result property contains a property called Details, which contains the details for the pivot
variable.

For information that applies to all response objects, see the discussion at the start of this reference.

Client-Side APIs for InterSystems IRIS Business Intelligence 47

POST /Info/PivotVariableDetails/:cube/:variable

POST /Info/PivotVariables/:cube
Returns information about the pivot variables available to the given cube.

URL Parameters
Required. Logical name of the cube. This name can include slashes; see “Use of
Slashes in Cube and KPI Names, ” earlier in this book.

cube

Request Body Details
This service ignores the request body.

Example Request
• Request Method:

POST

• Request URL:

http://localhost:52773/api/deepsee/v1/Info/PivotVariables/:holefoods

For comments on the possible forms of the URL, see “ Introduction to the Business Intelligence REST API” in the
chapter “ Introduction and Samples.”

Example Response
{
 "Info":
 {"Error":"","BaseCube":"holefoods"},
 "Result":
 {"PivotVariables":
 [
 {"name":"CommissionPercentage","caption":"Commission Percentage","defValue":"0",
 "context":"literal","desc":""},
 {"name":"Year","caption":"Year","defValue":"NOW",
 "context":"literal","desc":""}
]
 }
}

In the response object, the Result property contains a property called PivotVariables, which contains an array of
objects, one for each pivot variable.

For information that applies to all response objects, see the discussion at the start of this reference.

48 Client-Side APIs for InterSystems IRIS Business Intelligence

Business Intelligence REST API

POST /Info/QualityMeasures/:cube
Returns information about the quality measures available to the given cube.

URL Parameters
Required. Logical name of the cube. This name can include slashes; see “Use of
Slashes in Cube and KPI Names, ” earlier in this book.

cube

Request Body Details
This service ignores the request body.

Example Request
• Request Method:

POST

• Request URL:

http://localhost:52773/api/deepsee/v1/Info/QualityMeasures/:holefoods

For comments on the possible forms of the URL, see “ Introduction to the Business Intelligence REST API” in the
chapter “ Introduction and Samples.”

Example Response
{
 "Info":
 {"Error":"","BaseCube":"holefoods"},
 "Result":
 {"QualityMeasures":
 [
 {"name":"TestCatalog\/TestSet\/TestQM","caption":"Sample Quality Measure","description":""}]}
}

In the response object, the Result property contains a property called QualityMeasures, which contains an array of
objects, one for each quality measure.

For information that applies to all response objects, see the discussion at the start of this reference.

Client-Side APIs for InterSystems IRIS Business Intelligence 49

POST /Info/QualityMeasures/:cube

	Table of Contents
	About This Book
	1 Introduction
	1.1 Creating a Web Application
	1.2 Introduction to the Business Intelligence JavaScript API
	1.2.1 Creating a Business Intelligence Connection
	1.2.2 Creating and Using a Business Intelligence Data Controller

	1.3 Introduction to the Business Intelligence REST API
	1.3.1 Use of Slashes in Cube and KPI Names
	1.3.2 Notes on the Response Objects

	1.4 Samples Shown in This Book

	DeepSee.js
	DeepSeeConnector
	DeepSeeDataController
	DeepSeeResultSet
	DeepSeeUtils

	Business Intelligence REST API
	GET /Data/GetDSTIME
	GET /Data/TestConnection
	GET /Info/TestConnection
	POST /Data/KPIExecute
	POST /Data/MDXCancelQuery/:queryID
	POST /Data/MDXDrillthrough
	POST /Data/MDXExecute
	POST /Data/MDXUpdateResults/:queryID
	POST /Data/PivotExecute
	POST /Info/Cubes
	POST /Info/Dashboards
	POST /Info/FilterMembers/:datasource/:filterSpec
	POST /Info/Filters/:datasource
	POST /Info/KPIs
	POST /Info/ListingFields/:cube
	POST /Info/Listings/:cube
	POST /Info/Measures/:cube
	POST /Info/NamedFilters/:cube
	POST /Info/Pivots
	POST /Info/PivotVariableDetails/:cube/:variable
	POST /Info/PivotVariables/:cube
	POST /Info/QualityMeasures/:cube

