
Using InterSystems MDX

Version 2019.4
2020-01-28

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using InterSystems MDX
InterSystems IRIS Data Platform Version 2019.4 2020-01-28
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

1 Background ... 3
1.1 Purpose of Business Intelligence .. 3
1.2 Introduction to Pivot Tables ... 3
1.3 Introduction to MDX .. 4

1.3.1 MDX in Business Intelligence Models .. 5
1.4 Accessing the Samples Shown in This Book ... 5

2 Introduction to MDX Queries ... 7
2.1 Contents of the DemoMDX Cube .. 7
2.2 The Simplest Query .. 9
2.3 Members ... 9
2.4 Measures ... 10
2.5 Referring to Members and Measures ... 10
2.6 Simple MDX Queries with %COUNT ... 11

2.6.1 Axis Skipping ... 12
2.7 Sets ... 13

2.7.1 Examples .. 14
2.8 Displaying Measures .. 14
2.9 Including a Simple Filter in the Query ... 15
2.10 Understanding the Contents of the MDX Results .. 16

2.10.1 Notes on Independence of Query Axes .. 17
2.11 Business Intelligence Name Resolution ... 18

2.11.1 Nonexistent Members .. 19
2.11.2 Typographical Errors .. 19

2.12 Conventions Used in Remainder of the Book .. 19

3 Working with Levels ... 21
3.1 Overview of Levels .. 21

3.1.1 Possible Member Overlap .. 21
3.1.2 Null Values and Null Members .. 21
3.1.3 Hierarchies ... 22

3.2 Accessing Single Members of a Level ... 22
3.2.1 Member Names .. 22
3.2.2 Member Keys ... 22

3.3 Accessing Multiple Members of a Level .. 22
3.4 Order of Members in a Level ... 23
3.5 Selecting a Level Member by Relative Position .. 24
3.6 Introduction to Time Levels ... 25
3.7 Special Features for Use with Time Levels .. 26

3.7.1 Selecting a Member Relative to Today (Time Levels) ... 26
3.7.2 Selecting Ranges of Members of a Time Level ... 27

3.8 Accessing Properties .. 27
3.8.1 Properties As String Expressions ... 27
3.8.2 Properties and Attributes .. 28

4 Working with Dimensions and Hierarchies ... 29
4.1 Introduction to Dimensions and Hierarchies .. 29

Using InterSystems MDX iii

4.1.1 The Measures Dimension ... 29
4.1.2 The All Level .. 30
4.1.3 Example ... 30

4.2 Accessing the Members of a Hierarchy .. 31
4.3 Using Parent-Child Relationships .. 32
4.4 Accessing Siblings .. 32
4.5 Accessing Cousins .. 33
4.6 Accessing Descendant Members .. 33
4.7 Accessing the Current Member within an Iteration ... 34

5 Working with Sets ... 35
5.1 Introduction to Sets .. 35
5.2 Creating Set Expressions .. 35
5.3 Creating Named Sets .. 36
5.4 Order of Members in a Set ... 37
5.5 Selecting Subsets .. 37
5.6 Sorting Sets .. 37

5.6.1 Sorting a Set by a Measure Value ... 38
5.6.2 Selecting a Top or Bottom Subset .. 39
5.6.3 Applying Hierarchical Order .. 40

5.7 Combining Sets .. 40
5.8 Filtering a Set by a Measure or Property Value .. 41
5.9 Removing Null Elements from a Set .. 41
5.10 Removing Duplicates ... 42
5.11 Counting the Elements of a Set .. 42

6 Tuples and Cubes .. 45
6.1 Introduction to Tuples .. 45

6.1.1 Creating Tuples .. 45
6.1.2 Fully and Partially Qualified Tuples .. 46
6.1.3 Sets of Tuples ... 46

6.2 Tuple Values ... 47
6.3 Example Tuple Expressions ... 47
6.4 Using Sets of Tuples as Axes of a Query ... 48
6.5 Introduction to Cubes ... 49
6.6 Higher Levels and a Cube Dimension .. 50
6.7 Multiple Hierarchies in a Cube Dimension .. 51

7 Filtering a Query .. 53
7.1 Introduction to the WHERE Clause ... 53

7.1.1 Using a Set in the WHERE Clause .. 54
7.1.2 Using Tuples in the WHERE Clause .. 55

7.2 The %NOT Optimization ... 56
7.3 The %OR Optimization .. 56

8 Adding Summaries ... 57
8.1 Introduction to Summary Functions ... 57
8.2 Adding a Summary Line .. 58

9 Creating Calculated Measures and Members .. 59
9.1 Overview of Calculated Measures and Members ... 59
9.2 Creating a Calculated Member ... 60
9.3 MDX Recipes for Calculated Measures ... 60

iv Using InterSystems MDX

9.3.1 Combinations of Other Measures .. 60
9.3.2 Percentages of Aggregate Values ... 61
9.3.3 Distinct Member Count .. 61
9.3.4 Semi-Additive Measures .. 62
9.3.5 Filtered Measures (Tuple Measures) .. 62
9.3.6 Measures for Another Time Period .. 63
9.3.7 Measures That Refer to Other Cells ... 63

9.4 MDX Recipes for Non-Measure Calculated Members .. 64
9.4.1 Defining Age Members .. 64
9.4.2 Defining a Hardcoded Combination of Members .. 64
9.4.3 Defining a Combination of Members Defined by a Term List 65
9.4.4 Aggregating Ranges of Dates ... 65
9.4.5 Defining a Member as an Intersection of Other Members ... 66

Using InterSystems MDX v

About This Book

This book describes how to use the MDX (MultiDimensional eXpressions) query language with InterSystems IRIS Business
Intelligence. It includes the following sections:

• Background

• Introduction to MDX Queries

• Working with Levels

• Working with Dimensions and Hierarchies

• Working with Sets

• Tuples and Cubes

• Filtering a Query

• Adding Summaries

• Creating Calculated Members

For a detailed outline, see the table of contents.

The other developer books for Business Intelligence are as follows:

• Introduction to InterSystems Business Intelligence briefly introduces Business Intelligence and the tools that it provides.

• Developer Tutorial for InterSystems Business Intelligence guides developers through the process of creating a sample
that consists of a cube, subject areas, pivot tables, and dashboards.

• Implementing InterSystems Business Intelligence describes how to implement Business Intelligence, apart from creating
the model.

• Defining Models for InterSystems Business Intelligence describes how to define the basic elements used in Business
Intelligence queries: cubes and subject areas. It also describes how to define listing groups.

• Advanced Modeling for InterSystems Business Intelligence describes how to use the more advanced and less common
Business Intelligence modeling features: computed dimensions, unstructured data in cubes, compound cubes, cube
relationships, term lists, quality measures, KPIs, plug-ins, and other special options.

• InterSystems MDX Reference provides reference information on MDX as supported by Business Intelligence.

• Client-Side APIs for InterSystems Business Intelligence provides information on the Business Intelligence JavaScript
and REST APIs, which you can use to create web clients for your Business Intelligence applications.

The following books are for both developers and users:

• Using Dashboards and the User Portal describes how to use the Business Intelligence User Portal and dashboards.

• Creating Dashboards describes how to create and modify dashboards in Business Intelligence.

• Using the Analyzer describes how to create and modify pivot tables, as well as use the Analyzer in general.

Also see the article Using PMML Models in InterSystems IRIS®.

Using InterSystems MDX 1

1
Background

This chapter provides an overview of InterSystems IRIS Business Intelligence and explains how Business Intelligence
supports MDX (MultiDimensional eXpressions), which is a query language implemented by many vendors.

Be sure to consult the online InterSystems Supported Platforms document for this release for information on system
requirements for Business Intelligence.

1.1 Purpose of Business Intelligence
The purpose of Business Intelligence is to enable you to embed business intelligence (BI) into your applications so that
your users can ask and answer sophisticated questions of their data. Your application can include dashboards, which can
include pivot tables.

A pivot table is an interactive, drillable display of data, designed for specific user roles or for specific areas of your user
interface.

Each pivot table has an underlying MDX query that is executed at runtime. Instead of directly querying your transactional
tables, the system queries its cubes, which are synchronized with the transactional tables. (For information on defining
cubes, see Defining Models for InterSystems Business Intelligence.)

1.2 Introduction to Pivot Tables
Pivot tables are central to Business Intelligence; they select and aggregate data and display it in an interactive format.

The following figure shows an example pivot table. It shows the number of patients and the average allergy count per
patient, grouped by age and gender.

Using InterSystems MDX 3

platforms/index.html

Because the concepts are interrelated, making it difficult to discuss each concept without reference to the others, it is useful
for us to start with preliminary definitions:

• A level enables you to group records. A level has members. Each member, in turn, corresponds to a specific group of
records in the source data.

For example, the Age Group level has the members 0 to 29, 30 to 59, and 60+. The Age Bucket level has
the members 0-9, 10-19, 20 to 29, and so on. The Gender level has the members Female and Male.

• A measure is a value displayed in the body of the pivot table; it is based on values in the source data, for selected
records. For a given context, a measure aggregates the values for all applicable source records and represents them
with a single value.

For example, the measure Patient Count is the number of patients, and the measure Avg Allergy Count is
the average number of allergies per patient.

1.3 Introduction to MDX
MDX is a standard query language for OLAP (online analytical processing) databases. The MDX language provides syntax
for referring to cube elements. Most of the statements and functions in the language enable you to execute queries against
a cube. The returned data is a result set, which can be displayed as a pivot table.

MDX also provides the capability of extending a cube definition. In particular, you can define new elements based on
existing elements, and then use those new elements in MDX queries.

Business Intelligence supports MDX as follows:

• When you create a pivot table in the Analyzer, the system generates and uses an MDX query, which you can view
directly.

• The Analyzer provides an option for directly running MDX queries.

• You can run MDX queries in the MDX shell and see their results.

• Tbe system provides an API that you can use to run MDX queries.

• Within a Business Intelligence model, you use MDX expressions and queries to define certain elements, as discussed
in the following subsection.

Note that some MDX queries are too complex to create within the current user interface. You can execute such queries in
the shell or via the API, but you cannot create them via drag and drop actions in the Analyzer.

For further information, see the following sources:

4 Using InterSystems MDX

Background

• For information on the Analyzer, see Using the Analyzer.

• For information on the MDX shell, see Introduction to InterSystems Business Intelligence.

• For information on the MDX API, see the Implementing InterSystems Business Intelligence.

Note: The system provides an implementation of MDX. Results may differ from other implementations.

1.3.1 MDX in Business Intelligence Models

In Business Intelligence models, you can use MDX expressions and queries in the following places:

• Within a cube definition:

– You use an MDX member expression to define calculated members.

– You use an MDX set expression to define named sets.

– You use an MDX set expression to filter the cube.

These are all optional.

• Within a subject area definition, you use an MDX set expression to filter the subject area. This is optional; a subject
area does not have to include a filter.

• Within a KPI (key performance indicator) definition, you can use an MDX query to define the KPI. This is optional;
you can use an SQL query instead.

For information, see Defining Models for InterSystems Business Intelligence and the Implementing InterSystems Business
Intelligence.

1.4 Accessing the Samples Shown in This Book
Most of the samples in this book are part of the Samples-BI sample (https://github.com/intersystems/Samples-BI) or the
Samples-Aviation sample (https://github.com/intersystems/Samples-Aviation).

InterSystems recommends that you create a dedicated namespace called SAMPLES (for example) and load samples into
that namespace. For the general process, see Downloading Samples for Use with InterSystems IRIS®.

Using InterSystems MDX 5

Accessing the Samples Shown in This Book

https://github.com/intersystems/Samples-BI
https://github.com/intersystems/Samples-Aviation

2
Introduction to MDX Queries

This chapter introduces MDX queries, and it covers the following topics:

• Contents of the DemoMDX cube

• The simplest query

• Introduction to members

• Introduction to measures

• How to refer to members and measures

• How to write simple MDX queries

• Introduction to sets

• How to display measures

• How to include a filter

• A more formal look at the results of a query

• Name resolution in Business Intelligence

• Conventions used in the rest of this book

Also see “Accessing the Samples Shown in This Book,” in the first chapter.

2.1 Contents of the DemoMDX Cube
When you create SQL queries in an unfamiliar database, you start by becoming acquainted with the tables and their columns.
Similarly, when you create MDX queries, you start by becoming acquainted with the available cubes and their contents.

1. Start the Terminal.

2. Switch to the namespace into which you loaded the samples.

3. To access the MDX shell, enter the following command:

 Do ##class(%DeepSee.Utils).%Shell()

4. To see the available cubes, enter the following command (note that it is not case-sensitive):

CUBE

Using InterSystems MDX 7

The Terminal then displays a list of cubes.

5. To see the available contents of a cube, enter the following command:

CUBE cubename

For example:

CUBE demomdx

The shell ignores the case of the command and of the cube name.

The Terminal displays the following:

Measures
 %COUNT
 Age
 Avg Age
 Allergy Count
 Avg Allergy Count
 Test Score
 Avg Test Score
AgeD
 All Patients
 H1
 All Patients
 Age Group
 Age Bucket
AllerD
 H1
 Allergies
BirthD
 H1
 Year
 Quarter Year
BirthQD
 H1
 Quarter
DiagD
 H1
 Diagnoses
GenD
 H1
 Gender
ColorD
 H1
 Favorite Color
HomeD
 H1
 ZIP
 City
DocD
 H1
 Doctor

The DemoMDX cube represents patients. The contents of this cube are as follows:

• The Measures section lists the available measures: %COUNT, Age, Ave Age, Allergy Count, and so on. These
measures are associated with patients and can be aggregated across patients.

• The Dimensions section contains dimensions. This cube contains the dimension AgeD, AllerD, and so on.

For now, a dimension is the container for one or more hierarchies; for more detail, see the chapter “Working with
Dimensions and Hierarchies.”

• The first element within a dimension is a hierarchy. By convention, in this sample, each dimension contains one hier-
archy named H1.

For now, a hierarchy is the container for one or more levels; for more detail, see the chapter “Working with Dimensions
and Hierarchies.”

• The elements within a hierarchy are levels. This cube includes the levels Age, Age Group, Gender, ZIP, City, and
others. These levels enable you to select different groups of patients.

8 Using InterSystems MDX

Introduction to MDX Queries

In many MDX applications, the same name is used for a dimension, a hierarchy in it, and a level in that hierarchy. This
practice can be confusing for someone who is learning MDX, so this sample cube uses the following arbitrary naming
conventions:

• Dimension names are short and end with the letter D.

• Each dimension contains one hierarchy named H1.

• Level names are meant to be user friendly. (In the Analyzer, users see both dimension and level names but primarily
work with levels.)

As you will see later, in InterSystems MDX, you can omit parts of identifiers. The naming conventions in this sample make
it clear which parts can be omitted.

Note: A cube can also contain calculated members and named sets. The CUBE command in the MDX shell does not
display these elements, although you can use them in the shell and elsewhere.

2.2 The Simplest Query
In the MDX shell, enter the following MDX query (this is not case-sensitive):

SELECT FROM demomdx

The shell displays the results as follows:

Result: 1,000

This query simply counts patients.

MDX is not case-sensitive except for member keys, which are discussed in the chapter “Working with Levels.”

2.3 Members
A key component of an MDX query is the member. Each level contains one or more members. For example, the City
level contains multiple members, one for each city in the data. A level enables you to select records; specifically, each
member of the level allows you to access a subset of the records.

In the DemoMDX cube, each member of each level in this cube allows you to select some group of patients.

In this section, we execute a simple query to see members of a level in the DemoMDX cube:

1. In the MDX shell, enter the following MDX query (this is not case-sensitive):

SELECT homed.h1.city.MEMBERS ON ROWS FROM demomdx

The shell displays the members of the City level, as follows:

1 Cedar Falls 110
2 Centerville 99
3 Cypress 112
4 Elm Heights 118
5 Juniper 122
6 Magnolia 114
7 Pine 121
8 Redwood 111
9 Spruce 93

Using InterSystems MDX 9

The Simplest Query

For now, let us discuss only the member names, which are shown in the second column.

The City level contains the members Cedar Falls, Centerville, Cypress, and so on. Each member of this level
represents the set of patients with that home city. For example, the Centerville member represents all patients whose
home city is Centerville.

2.4 Measures
Another key component of an MDX query is the measure. All InterSystems IRIS Business Intelligence queries use at least
one measure. If you do not specify a measure, the system uses the default measure defined in the cube. For most cubes, the
default measure is %COUNT, which is a count of the records. Let us examine some of the measures in the sample cube:

1. In the MDX shell, enter the following simple query:

SELECT MEASURES.[%COUNT] ON COLUMNS FROM demomdx

This query returns a result set that contains one column of data — the aggregate value for the %COUNT measure —
across the entire data set that the cube represents. Depending on the data in your sample, the shell displays something
like the following:

 %COUNT
 1,000

In this example, there are 1000 patients.

2. In the MDX shell, enter the following query:

SELECT MEASURES.[avg test score] ON COLUMNS FROM demomdx

This query returns a result set that shows the aggregate value for the Avg Test Score measure across the entire
data set.

Depending on the data in your sample, the shell displays something like the following:

 Avg Test Score
 74.75

This number is the average test score across all patients.

2.5 Referring to Members and Measures
In the preceding sections, you explored the elements of the DemoMDX cube, in particular its measures and levels, and you
should have some sense of the data contained in it. You also wrote simple MDX queries. The next step is to learn the syntax
that you use to refer to members and measures:

• To refer to a member:

[dimension_name].[hierarchy_name].[level_name].[member_name]

• To refer to all members of a level:

[dimension_name].[hierarchy_name].[level_name].MEMBERS

10 Using InterSystems MDX

Introduction to MDX Queries

MEMBERS is the MDX function that returns the members of the level. This book introduces some key MDX functions.
The InterSystems MDX Reference provides reference information for all MDX functions that Business Intelligence
supports.

• To refer to a measure:

[MEASURES].[measure_name]

Note the following variations:

• In any of these names, you can omit the square brackets ([]) if the name consists only of alphanumeric characters.

For a more formal discussion of identifiers, see the section “Identifiers” in the InterSystems MDX Reference.

• When referring to a level or member, you can omit the hierarchy name. If you do, MDX uses the first level with the
given name, as defined in this dimension. (This variation is an InterSystems extension to MDX.)

• When referring to a member, you can omit the level name. If you do, MDX uses the first member with the given name,
as defined within this dimension. (This variation is an InterSystems extension to MDX.)

You cannot omit the dimension name.

The following examples are all equivalent in InterSystems MDX:

[GenD].[H1].[GENDER].Female
[GenD].Female
GenD.H1.GENDER.Female
GenD.H1.Female
GenD.Female

2.6 Simple MDX Queries with %COUNT
This section presents simple forms of MDX queries, which do not refer to a measure and thus use the default measure
defined in the cube (which is usually %COUNT).

• To use the members of a given level as columns, use a query of the following form:

SELECT [dim_name].[hier_name].[lev_name].MEMBERS ON COLUMNS FROM cubename

• To use the members of one level as columns and use members of another level as rows, use a query of the following
form:

SELECT [dim_name].[hier_name].[lev_name].MEMBERS ON COLUMNS,
[dim_name].[hier_name].[lev_name].MEMBERS ON ROWS FROM cubename

Note: Do not include the line break that is shown here. The book includes this line break only for readability
(especially in the printed form of the book). The MDX shell does not permit this line break.

• To use a single member as a column, use a query of the following form:

SELECT [dim_name].[hier_name].[lev_name].[member_name] ON COLUMNS FROM cubename

You can use 0 instead of COLUMNS, and you can use 1 instead of ROWS. (For reasons of space, this book uses 0 and 1 rather
than COLUMNS and ROWS.)

In all cases, the SELECT statement returns a result set, which the MDX shell displays in tabular form.

Let us try queries that use these variations:

1. Enter the following MDX query:

Using InterSystems MDX 11

Simple MDX Queries with %COUNT

SELECT gend.h1.gender.MEMBERS ON 0 FROM demomdx

The shell executes the query and displays the results like the following (yours will be slightly different):

 Female Male
 488 512

Notice the following:

• Because the query did not specify a measure, the numbers shown are values for %COUNT, which counts the patients.

• There are two members shown as columns (or on the column axis of the result set). The Female member refers
to the female patients, and Male refers to the male patients.

2. Try a shorter version of the same query:

SELECT gend.gender.MEMBERS ON 0 FROM demomdx

This query returns the same data as the previous query.

3. Now enter the following variation:

SELECT gend.gender.female ON 0 FROM demomdx

The result might be like the following:

 Female
 488

In this example, the query selected a specific member rather than both members of this dimension.

4. Try this variation (with the member name in a different case):

SELECT gend.gender.FEMALE ON 0 FROM demomdx

This returns the same result as the preceding query.

5. Enter a slightly more complex query:

SELECT gend.h1.gender.MEMBERS ON 0,homed.h1.zip.MEMBERS ON 1 FROM demomdx

The shell executes the query and displays the results like the following:

 Female Male
1 32006 105 110
2 32007 58 53
3 34577 173 174
4 36711 41 58
5 38928 111 117

In this case, the results contain multiple rows, one row for each patient ZIP code. The counts are shown for each ZIP
code, by gender.

If there are multiple rows of results, the MDX shell displays a column that indicates the row numbers of the results.

2.6.1 Axis Skipping

In other implementations of MDX, you cannot omit an axis if you use a higher-numbered axis. That is, you cannot use
ROWS unless you also use COLUMNS.

In InterSystems MDX, however, if you omit COLUMNS, the system uses %COUNT, as follows:

SELECT gend.h1.gender.MEMBERS ON ROWS FROM demomdx

1 Female 488
2 Male 512

12 Using InterSystems MDX

Introduction to MDX Queries

2.7 Sets
In MDX, the columns and the rows are axes of the query and of the result set. The following result set, for example, has
gender on the column axis and home ZIP codes on the row axis:

 Female Male
1 32006 105 110
2 32007 58 53
3 34577 173 174
4 36711 41 58
5 38928 111 117

An axis uses a set. The general syntax for a set expression is as follows:

{expression1, expression2, ...}

This list can include any number of items. In InterSystems MDX, if the list includes only one item, you can omit the curly
braces. Also, a set can be empty, but if so cannot be used on a query axis.

Within the set, each expression can be one of the following:

• A member expression, which is either of the following:

– An explicit reference to a single member by name. For example:

[PatDim].[GENDERH1].[GENDER].[F]

– An expression that uses an MDX function to return a single member. For example:

[PatDim].[GENDERH1].[GENDER].[F].NEXTMEMBER

(NEXTMEMBER is the MDX function that returns the next member of the level. The chapter “Working With
Levels” introduces this and other functions.)

• An expression that uses an MDX function, like MEMBERS, to return a set. For example:

[dimension_name].[hierarchy_name].[level_name].MEMBERS

There are other forms of expressions and other kinds of set elements; see the chapter “Working With Sets” and the Inter-
Systems MDX Reference.

You can use any non-null set expression within a SELECT statement. In general, SELECT has the following basic syntax
for a query that uses one axis:

SELECT set_expression ON COLUMNS FROM cubename

Or:

SELECT set_expression ON 0 FROM cubename

The following form is a query that uses two axes:

SELECT set_expression ON COLUMNS,set_expression ON ROWS FROM cubename

Or:

SELECT set_expression ON 0,set_expression ON 1 FROM cubename

A SELECT statement can use additional axes, but the shell does not display their results in a readable form.

Using InterSystems MDX 13

Sets

2.7.1 Examples

Now try some query variations that use different kinds of sets, as shown in the preceding section.

1. The following example uses a set created by a comma-separated list:

SELECT {gend.h1.gender.MEMBERS,homed.h1.city.MEMBERS} ON 0 FROM demomdx

 Female Male Cedar F Centerv Cypress Elm Hei ...
 488 512 110 99 112 118...

As you can see, the results have too many columns to be shown in full.

2. Try a variation that uses the same set as rows instead of columns:

SELECT {gend.h1.gender.MEMBERS,homed.h1.city.MEMBERS} ON 1 FROM demomdx

 1 Female 488
 2 Male 512
 3 Cedar Falls 110
 4 Centerville 99
 5 Cypress 112
 6 Elm Heights 118
 7 Juniper 122
 8 Magnolia 114
 9 Pine 121
10 Redwood 111
11 Spruce 93

3. Let us expand the preceding by moving gender to the columns and adding home ZIP codes as another set of rows:

SELECT gend.h1.gender.MEMBERS ON 0,{homed.h1.city.MEMBERS,homed.h1.zip.MEMBERS} ON 1 FROM demomdx

 Female Male
 1 Cedar Falls 58 52
 2 Centerville 41 58
 3 Cypress 51 61
 4 Elm Heights 53 65
 5 Juniper 58 64
 6 Magnolia 58 56
 7 Pine 64 57
 8 Redwood 58 53
 9 Spruce 47 46
10 32006 105 110
11 32007 58 53
12 34577 173 174
13 36711 41 58
14 38928 111 117

4. Try using a member multiple times within a set:

SELECT gend.h1.gender.MEMBERS ON 0,{homed.h1.[36711],homed.h1.[36711]} ON 1 FROM demomdx

 Female Male
1 36711 41 58
2 36711 41 58

2.8 Displaying Measures
Any MDX query uses at least one measure. If you do not indicate the measure to use, the system uses the default measure
defined in the cube, usually %COUNT, which is a count of the records. There are multiple ways to display other measures.
This section introduces a couple of them.

To use measures in queries, you can do the following:

• You can display a measure as a column and optionally display a set as rows. For example:

14 Using InterSystems MDX

Introduction to MDX Queries

SELECT MEASURES.[avg allergy count] ON 0,colord.MEMBERS ON 1 FROM demomdx

 Avg Allergy Count
1 None 1.08
2 Blue 1
3 Green 1.05
4 Orange 1.16
5 Purple 1.22
6 Red 1.06
7 Yellow 0.94

• You can display a measure as a row and optionally display a set as columns — the reverse of the preceding. For
example:

SELECT gend.h1.gender.MEMBERS ON 0, MEASURES.[avg test score] ON 1 FROM demomdx

 Female Male
Avg Test Score 73.49 74.42

• You can create a set of multiple measures and use that set as rows or columns. For example:

SELECT {MEASURES.[%COUNT],MEASURES.[avg test score]} ON 0,colord.MEMBERS ON 1 FROM demomdx

 %COUNT Avg Test Score
1 None 239 72.68
2 Blue 124 76.94
3 Green 106 72
4 Orange 148 72.89
5 Purple 135 74.87
6 Red 121 74.92
7 Yellow 127 74.41

• You can use the CROSSJOIN function as follows:

SELECT CROSSJOIN(MEASURES.[%COUNT],gend.h1.gender.MEMBERS) ON 0, diagd.h1.diagnoses.MEMBERS ON 1
FROM demomdx

 Female Male
1 None 399 429
2 asthma 46 44
3 CHD 14 23
4 diabetes 23 22
5 osteoporosis 21 1

(For a more general introduction to this function, see “Combining Sets,” later in this book.)

• You can use the MEMBERS function to display all measures (except for %COUNT), as follows:

SELECT gend.MEMBERS ON 0, MEASURES.MEMBERS ON 1 FROM demomdx

 Female Male
1 Age 18,413 17,491
2 Avg Age 37.73 34.16
3 Allergy Count 326 332
4 Avg Allergy Count 1.08 1.07
5 Test Score 29,542 31,108
6 Avg Test Score 73.49 74.42

2.9 Including a Simple Filter in the Query
An MDX query can also include a filter, which reduces the number of rows of the fact table that the query could potentially
use. To add a filter to a query, add a clause like the following to the end of your SELECT statement:

WHERE filter_details

For filter_details, the simplest form is as follows:

[dim_name].[hier_name].[level_name].[member_name]

Using InterSystems MDX 15

Including a Simple Filter in the Query

You can use the same variations here as described in “Referring to Members and Measures,” earlier in this chapter.

This expression filters the query so that the system accesses only the records associated with this member. For example,
the following query uses only patients who have osteoporosis:

SELECT MEASURES.[%COUNT] ON 0,aged.[age bucket].MEMBERS ON 1 FROM demomdx WHERE diagd.osteoporosis

 %COUNT
1 0 to 9 *
2 10 to 19 *
3 20 to 29 *
4 30 to 39 *
5 40 to 49 *
6 50 to 59 *
7 60 to 69 7
8 70 to 79 7
9 80+ 8

The MDX shell uses an asterisk (*) to indicate that a value is null.

The chapter “Filtering a Query” discusses WHERE in more detail.

2.10 Understanding the Contents of the MDX Results
Now that you have seen a variety of MDX queries and their results, it is time to review the results more formally. The MDX
shell presents the results for an MDX query in the following general form:

The following rules determine the results:

• If the output includes multiple rows of results, the first column contains the row number (nnn, starting with 1 for the
first row) for easy reference. If there is only one row of results, this column is not included.

This column of numbers is shown only in the MDX shell and is not part of the result set.

• The output contains one column of data cells for each member of the set that you use on the column axis.

• In general, each column label corresponds to the name of the corresponding member, which might be a measure or
might be a “regular” member.

• If you do not specify a set for the rows, the output contains one row with no label.

• If you specify a set for the rows, the output contains one row for each member of that set. The label for a given row is
the name of the corresponding member, which might be a measure or might be a “regular” member (that is, a member
that is not a measure).

• For any given data cell, the output displays either a value or an asterisk (*). The asterisk indicates that the value is null.

To determine the value to use, the system finds the intersection of the member used for the column and the member
(if any used) for the row:

16 Using InterSystems MDX

Introduction to MDX Queries

– If one member is a measure and the other is not a measure, the system finds the value of that measure for that
member. For example, if one member is the Ave Age measure, and the other member is the 34577 ZIP code,
then the corresponding data cell contains the average age of patients whose home ZIP code is 34577.

– If neither member is a measure, the system uses the default measure, which is usually %COUNT. For example, if
one member is the gender F, and the other member is the 34577 ZIP code, then the corresponding data cell contains
the count of all female patients whose home ZIP code is 34577.

– If both members are measures, the system uses the measure that is on the Columns axis.

(Note that if both members are calculated measures, the system also considers SOLVE_ORDER. For details, see
“SOLVE_ORDER Clause” in the InterSystems MDX Reference.)

2.10.1 Notes on Independence of Query Axes

The system considers each query axis independently of the others. Sometimes the result is counter-intuitive. This section
shows two examples.

2.10.1.1 Set Order Is Unaffected by Other Sets in the Query

In all cases, it is important to remember that the order of the set returned is independent of any other sets used in the query,
and sometimes the result is counter-intuitive. For example, consider the following query:

SELECT MEASURES.[%COUNT] ON 0,
TOPCOUNT(homed.city.MEMBERS,100,MEASURES.[%COUNT]) ON 1 FROM demomdx

 %COUNT
1 Juniper 122
2 Pine 121
3 Elm Heights 118
4 Magnolia 114
5 Cypress 112
6 Redwood 111
7 Cedar Falls 110
8 Centerville 99
9 Spruce 93

This query shows the sort order that you obtain when you sort cities by patient count. (In this example, the number of
members to select is 100, which is greater than the number of members; therefore all members are shown.)

If you modify the preceding query to return the top three members, you see the following:

SELECT MEASURES.[%COUNT] ON 0, TOPCOUNT(homed.city.MEMBERS,3,MEASURES.[%COUNT]) ON 1 FROM demomdx

 %COUNT
1 Juniper 122
2 Pine 121
3 Elm Heights 118

Now consider the results when you break out the patients by gender:

SELECT CROSSJOIN(MEASURES.[%COUNT],gend.gender.MEMBERS) ON 0,
TOPCOUNT(homed.city.MEMBERS,3,Measures.[%COUNT]) ON 1 FROM demomdx

 Female Male
1 Juniper 58 64
2 Pine 64 57
3 Elm Heights 53 65

The cities are listed in the same order in this query as in the preceding query, which did not specify a breakout for the
columns. In this example, Juniper is the top-rated city by total patient count and so appears first. That is, the sorting is
controlled by the total patient count in a city, not by any of the displayed values.

Using InterSystems MDX 17

Understanding the Contents of the MDX Results

2.10.1.2 Set Membership Is Unaffected by Other Sets in the Query

It is also important to remember that the members of the returned set are independent of any sets used in the query, and
sometimes the result is counter-intuitive. For example, consider the following query:

SELECT MEASURES.[%COUNT] ON 0, TAIL(birthd.year.MEMBERS,10) ON 1 FROM demomdx

 %COUNT
 1 1912 3
 2 1918 1
 3 1919 1
 4 1920 4
 5 1921 2
 6 1922 1
 7 1923 2
 8 1924 1
 9 1925 2
10 1927 5

Now consider the results when we show only a single gender:

SELECT CROSSJOIN(gend.male,MEASURES.[%COUNT]) ON 0, HEAD(birthd.year.MEMBERS,10) ON 1 FROM demomdx

 %COUNT
 1 1912 *
 2 1918 *
 3 1919 *
 4 1920 1
 5 1921 *
 6 1922 *
 7 1923 2
 8 1924 *
 9 1925 1
10 1927 1

The birth years are the same as in the preceding query, which shows data aggregated across genders.

2.11 Business Intelligence Name Resolution
In some cases, it is possible for multiple entities of the same type to have the same name. For example, an MDX cube can
have two levels with the same name, as long as they are in different hierarchies (or possibly different dimensions). Suppose
that the cube command showed the contents of a cube as follows:

...
Dimensions
 Geography
 ShipToHierarchy
 State
 City
 OrderByHierarchy
 State
 City

In Business Intelligence, you can omit the hierarchy name when you refer to a level. If the dimension contains multiple
levels with the same name, the system uses the first level with the given name. To refer to a level unambiguously, include
the hierarchy name as well.

For another example, a level can have multiple members with the same name. Different states could have cities that have
the same name, and those cities are different members. Or if your cube has a fine-grained level such as doctor name, that
level could contain multiple members with the same name. In Business Intelligence, if you refer to the member by name,
you access the first member of that name within the level. To refer to a member unambiguously, use its key. See “Member
Keys” in the next chapter.

18 Using InterSystems MDX

Introduction to MDX Queries

2.11.1 Nonexistent Members

In most cases, for a nonexistent member, the system returns null, which the shell represents as an asterisk (*). For example,
consider the following query:

SELECT colord.h1.color.pink ON 0 FROM demomdx

 No Member
 *

The exception is for measures, which are members of the MEASURES dimension. For a nonexistent measure, the system
returns an error. For example:

SELECT MEASURES.[pat count] ON 0 FROM demomdx

ERROR #5001: Measure not found: pat count

2.11.2 Typographical Errors

In most situations, the system treats typographical errors in the same way that it treats nonexistent members. For example:

SELECT colord.h1.color.MEMBERSSS ON 0 FROM demomdx

 No Member
 *

For another example:

SELECT colord.MEMBERSSS ON 0 FROM demomdx

 No Member
 *

When you refer to a dimension or an element within a dimension, however, the dimension name is required. If you mistype
the dimension name, the system treats that as an error:

SELECT colorddd.h1.color.MEMBERS ON 0 FROM demomdx

ERROR #5001: Dimension not found: colorddd

If you mistype the name of the cube or subject area, the system treats that as an error:

SELECT colord.h1.color.MEMBERS ON 0 FROM demo

ERROR #5001: Cannot find Subject Area: 'DEMO'

2.12 Conventions Used in Remainder of the Book
For reasons of space, the rest of this book uses the following conventions:

• It uses 0 and 1 rather than COLUMNS and ROWS.

• It omits the square brackets in dimension, hierarchy, level, and member names, wherever possible. (See the section
“Identifiers” in the InterSystems MDX Reference.)

• It omits the hierarchy names except where needed. (This is permitted in InterSystems MDX.)

Also, to help you quickly scan query examples:

• MDX statements, keywords, and functions are shown in uppercase.

Using InterSystems MDX 19

Conventions Used in Remainder of the Book

• Cube elements and other user-supplied details are given in lowercase, except in running text.

20 Using InterSystems MDX

Introduction to MDX Queries

3
Working with Levels

This chapter provides more information on levels, as well as an overview of the key MDX functions for working with them.
It discusses the following topics:

• Overview of levels

• How to access single members of a level

• How to access the members of a level

• Order of members in a level

• How to select a member based on its relative position

• An introduction to time levels

• Special features for use with time levels

• How to access properties of members

Also see “Accessing the Samples Shown in This Book,” in the first chapter.

3.1 Overview of Levels
A level enables you to group the data, and a level has members.

A member selects a set of records from the cube. For the City level, the Juniper member selects the patients whose
home city is Juniper. Conversely, a record in the cube belongs to one or more members.

3.1.1 Possible Member Overlap

The members of a level can overlap each other. That is, a given record can belong to more than one member; this occurs
if the level is based on a list. For example, consider the Allergies level, which contains one member for each allergy.
A patient can have multiple allergies and thus can belong to multiple members of this level.

3.1.2 Null Values and Null Members

A level can have a Null member; this member selects the records that have no value for the data used by this level. Typically
the name of this member is None.

Using InterSystems MDX 21

3.1.3 Hierarchies

Levels belong to hierarchies. For information, see the chapter “Working with Dimensions and Hierarchies,” later in this
book.

3.2 Accessing Single Members of a Level
You can select a single member by referring to it directly. The general syntax is as follows:

[dimension_name].[hierarchy_name].[level_name].[member name]

As noted previously, in InterSystems MDX, you can omit the hierarchy name. Similarly, you can omit the level name.

For example:

SELECT MEASURES.[%COUNT] ON 0, allerd.[ant bites] ON 1 FROM demomdx

 %COUNT
ant bites 47

3.2.1 Member Names

In a given level, member names are not required to be unique; that is, when the cube is built, no checking is performed to
ensure that member names are unique in a given level. For example, the Doctor dimension can include multiple members
with the same name.

3.2.2 Member Keys

In a well-defined cube, each member has a unique, case-sensitive key. To refer to a member by its key, use the following
syntax:

[dimension_name].[hierarchy_name].[level_name].&[member_key]

In many cases, member_key is the same as the member name. For a generated Null member, the key is <null>.

For details on how the system generates member keys, see the reference section “Key Values” in the InterSystems MDX
Reference.

MDX provides a function (PROPERTIES), which you can use to access the key (or any other property) of a member; this
function is discussed later in this chapter.

3.3 Accessing Multiple Members of a Level
You can access multiple members of a level in several different ways.

First, you can use the MEMBERS function. In this case, the syntax is as follows:

[dimension_name].[hierarchy_name].[level_name].MEMBERS

For example:

22 Using InterSystems MDX

Working with Levels

SELECT MEASURES.[%COUNT] ON 0, allerd.allergies.MEMBERS ON 1 FROM demomdx

 %COUNT
 1 No Data Available 390
 2 additive/coloring agen 46
 3 animal dander 34
 4 ant bites 47
 5 bee stings 36
 6 dairy products 30
 7 dust mites 35
 8 eggs 32
 9 fish 45
10 mold 51
11 nil known allergies 140
12 peanuts 58
13 pollen 57
14 shellfish 54
15 soy 36
16 tree nuts 45
17 wheat 52

You can also specify a range that selects adjacent members of a level, as follows:

member1:membern

For example:

SELECT MEASURES.[%COUNT] ON 0, {birthd.1942:birthd.1947} ON 1 FROM demomdx

 %COUNT
1 1942 6
2 1943 7
3 1944 6
4 1945 11
5 1946 12
6 1947 9

In this case, you can omit the dimension, hierarchy, and level identifiers for the member that you use for the end of the
range. For example:

SELECT MEASURES.[%COUNT] ON 0, {birthd.1942:1947} ON 1 FROM demomdx

You can select multiple, nonadjacent members. To do so, refer to them directly, and place them in a comma-separated list
surrounded by curly braces:

SELECT MEASURES.[%COUNT] ON 0, {allerd.eggs,allerd.soy,allerd.mold} ON 1 FROM demomdx

 %COUNT
1 eggs 32
2 soy 36
3 mold 51

3.4 Order of Members in a Level
Within a cube definition, a level definition determines the members in that level, as well as their default order, which is as
follows:

• For non-date levels, members are sorted in increasing order alphabetically by name, unless the cube specifies a different
sort order.

• For date levels, members are sorted chronologically, in ascending order or descending order, depending on the definitions
in the cube.

The MEMBERS function returns the members in their default order, as defined by the level. For example:

Using InterSystems MDX 23

Order of Members in a Level

SELECT gend.gender.MEMBERS ON 0,homed.city.MEMBERS ON 1 FROM demomdx

 Female Male
1 Cedar Falls 58 52
2 Centerville 41 58
3 Cypress 51 61
4 Elm Heights 53 65
5 Juniper 58 64
6 Magnolia 58 56
7 Pine 64 57
8 Redwood 58 53
9 Spruce 47 46

If you have a subset of the members of a level and want to return them to the default order, use the HIERARCHIZE function
as in the following example:

SELECT MEASURES.[%COUNT] ON 0, HIERARCHIZE({allerd.eggs,allerd.soy,allerd.mold}) ON 1 FROM demomdx

 %COUNT
1 eggs 32
2 soy 36
3 mold 51

For a more thorough introduction to this function, see the chapter “Working with Sets.”

3.5 Selecting a Level Member by Relative Position
The following MDX functions enable you to select specific members of a level, relative to a given member. These functions
all use the default order of members in the level. Note that the details are different for time dimensions and data dimensions
(as defined in the cube definition):

• NEXTMEMBER returns the next member from a given level. For example:

SELECT MEASURES.[%COUNT] ON 0, birthd.[Q1 1920].NEXTMEMBER ON 1 FROM demomdx

 %COUNT
Q2 1920 *

• PREVMEMBER returns the previous member.

• LEAD counts forward in the level and returns a later member. For example:

SELECT MEASURES.[%COUNT] ON 0, birthd.[Q1 1920].LEAD(3) ON 1 FROM demomdx

 %COUNT
Q4 1920 1

• LAG counts backward in the level and returns an earlier member.

For time dimensions, each of these functions ignores any parent level. For example, the PREVMEMBER function can
return a member that has a different parent. For data dimensions, however, each of these functions does consider the parent
level. For example, the PREVMEMBER function considers only the previous member within the given parent member.
(Note that the terms time dimension and data dimension refer specifically to the dimension type as defined in the cube. See
Defining Models for InterSystems Business Intelligence.) For examples that show these differences, see the InterSystems
MDX Reference.

24 Using InterSystems MDX

Working with Levels

3.6 Introduction to Time Levels
A time level groups records by time; that is, any given member consists of the records associated with a specific date and
time. For example, a level called Transaction Date would group transactions by the date on which they occurred. There are
two general kinds of time levels, and it is important to understand their differences:

• Timeline-based time levels. This kind of time level divides the timeline into adjacent blocks of time. Any given member
of this level consists of a single block of time. Or, more accurately, the member consists of the records associated with
that block of time. For a level called Transaction Quarter Year, the member Q1-2011 would group all the
transactions that occurred in any of the dates that belong to the first quarter of 2011.

This kind of level can have any number of members, depending on the source data.

• Date-part-based time levels. This kind of time level considers only part of the date value and ignores the timeline.
Any given member consists of multiple blocks of time from different parts of the timeline, as shown in the following
figure. Or, more accurately, the member consists of the records associated with those blocks of time. For a level called
Transaction Quarter, the member Q1 would group all the transactions that occurred in any of the dates that
belong to the first quarter of any year.

This kind of level has a fixed number of members.

The following figure compares these kinds of time levels:

You can use these kinds of levels together without concern; MDX will always return the correct set of records for any
combination of members.

However, it is worth noting that some MDX functions are useful for timeline-based levels but not for date-part-based levels.
These functions include PREVMEMBER, NEXTMEMBER, and so on.

For example, consider the following query, which refers to a date-part based level. When we use PREVMEMBER with
Q2, the engine returns the data for Q1, as expected.

SELECT [BirthQD].[Q2].PREVMEMBER ON 1 FROM patients

Q1 219

However, when we use PREVMEMBER with Q1, which is at the start of the set, the engine returns nothing.

Using InterSystems MDX 25

Introduction to Time Levels

SELECT [BirthQD].[Q1].PREVMEMBER ON 1 FROM patients

 *

This result is correct, because the Q1 member refers to records related to quarter 1 in all years, and it is not meaningful to
access records “earlier” than that.

In contrast, consider the following query, which refers to a timeline-based level:

SELECT [BirthD].[Q1 2011].PREVMEMBER ON 1 FROM patients

Q4 2010 4

In this case, the member refers to records in a specific part of the timeline, and it is meaningful to refer to earlier records.

3.7 Special Features for Use with Time Levels
InterSystems MDX includes extensions for use with time levels. These include the NOW member and the %TIMERANGE
function.

3.7.1 Selecting a Member Relative to Today (Time Levels)

For date/time levels, the system supports a special member called NOW, which uses the current date (runtime) and accesses
the appropriate member of the level.

For example, the following query accesses the current year in the Year dimension:

SELECT birthd.year.NOW ON 1 FROM demomdx

2011 9

For another example:

SELECT birthd.[quarter year].NOW ON 1 FROM demomdx

Q2 2011 5

Business Intelligence also supports variations that indicate members that are offset from NOW. For example, [NOW-1]
finds the member that precedes NOW by one position:

SELECT birthd.[quarter year].[NOW-1] ON 1 FROM demomdx

Q1 2011 1

You can use these variations within ranges of members like the following:

SELECT birthd.[quarter year].[now-1]:birthd.[quarter year].now ON 1 FROM demomdx

1 Q1 2011 1
2 Q2 2011 5

For more details, see “NOW Member for Date/Time Levels” in the InterSystems MDX Reference.

26 Using InterSystems MDX

Working with Levels

3.7.2 Selecting Ranges of Members of a Time Level

The system provides an extension to MDX that enables you to define a range of members, for a time level. This extension
is the %TIMERANGE function, which takes three arguments: a starting member, an ending member, and a keyword (either
the default INCLUSIVE or EXCLUSIVE). You can om.it either but not both ends of the range

The following example uses both ends of the range:

SELECT NON EMPTY DateOfSale.YearSold.MEMBERS ON 1 FROM holefoods
WHERE %TIMERANGE(DateOfSale.YearSold.&[2009],DateOfSale.YearSold.&[2011])

me
1 2009 179
2 2010 203
3 2011 224

The next example shows another open-ended range, this time using the EXCLUSIVE keyword:

SELECT NON EMPTY DateOfSale.YearSold.MEMBERS ON 1 FROM holefoods
WHERE %TIMERANGE(,DateOfSale.YearSold.&[2009],EXCLUSIVE)

1 2007 124
2 2008 156

3.8 Accessing Properties
In MDX, a level can have properties that are specific to the level. Each member of the level can have a different value for
the property. You can access these properties and display them in your query results. There are two kinds of properties:

• User-defined properties. In Business Intelligence, these are defined within the cube definition. For example, in the
DemoMDX cube, the City level has two properties called Population (population of the city) and Principal
Export (the principal export of the city).

• Intrinsic properties, which contain information such as the member name and the member’s key. For a list, see the
reference section “Intrinsic Properties” in the InterSystems MDX Reference.

Names of properties are not case-sensitive.

To access the property of a member, use the PROPERTIES function. For example:

SELECT homed.city.magnolia.PROPERTIES("Principal Export") ON 0 FROM demomdx

 bundt cake

For another example:

SELECT homed.cypress.LEAD(1).PROPERTIES("name") ON 0 FROM demomdx

 name
 Magnolia

3.8.1 Properties As String Expressions

MDX treats property values as strings. MDX also supports string literals (for example, "my label") and a concatenation
operator (+). Therefore, you can create expressions like the following:

"Next after Cypress: " + homed.cypress.LEAD(1).PROPERTIES("name")

And you can use such expressions in MDX queries. For example:

Using InterSystems MDX 27

Accessing Properties

SELECT "Next after Cypress: " + homed.cypress.LEAD(1).PROPERTIES("name") ON 0 FROM demomdx

 Expression
 Next after Cypress: Magnolia

3.8.2 Properties and Attributes

Properties are not the same as attributes, which are often mentioned when MDX is discussed.

In some implementations of MDX, attributes are used to define a cube. No MDX functions, however, directly use attributes.

The system does not use attributes.

28 Using InterSystems MDX

Working with Levels

4
Working with Dimensions and Hierarchies

This chapter discusses hierarchies and dimensions. These elements are containers for levels but also have their own purposes.
This chapter discusses the following topics:

• Introduction to dimensions and hierarchies

• How to access the members of a hierarchy

• Using parent-child relationships

• How to access siblings

• How to access cousins

• How to access descendants

• How to access a member within an iteration

Also see “Accessing the Samples Shown in This Book,” in the first chapter.

4.1 Introduction to Dimensions and Hierarchies
Most MDX functions refer directly to levels or to their members. In MDX, however, levels belong to hierarchies, which
belong to dimensions. Hierarchies and dimensions provide additional features beyond those provided by levels.

Hierarchies are a natural and convenient way to organize data, particularly in space and time. For example, you can group
cities into countries, and countries into regions. In such cases, it is useful to be able to query for the child cities of a given
country, or to query for the parent postal region for a given country. A cube defines the hierarchies among the levels, and
MDX provides functions that enable you to work with the hierarchy, so that you can write such queries.

In MDX, a dimension contains one or more hierarchies that specify how to categorize the records in a similar manner.
There is no formal relationship between two different hierarchies or between the levels of one hierarchy and the levels of
another hierarchy. The purpose of a dimension is to define the default behavior of its hierarchies and levels.

4.1.1 The Measures Dimension

All measures belong to a special dimension called Measures. This dimension implicitly includes a single hierarchy that has
no name. This hierarchy does not include levels. The members of this hierarchy are the measures.

Using InterSystems MDX 29

4.1.2 The All Level

Other than the Measures dimension, each dimension can also define a special, optional level, which appears in all the
hierarchies of that level: the All level. If defined, this level contains one member, the All member, which corresponds to all
records in the cube.

For a given dimension, the actual name of the All member depends upon the cube definition. For example, All Patients
is the All member for the AgeD dimension in the sample.

4.1.3 Example

If we use the cube command in the MDX shell, we see the following elements in the demomdx cube:

Elements of cube 'demomdx':

...
Dimensions
...
 HomeD
 H1
 ZIP
 City
...

The HomeD dimension contains one hierarchy (H1), which contains two levels:

• The ZIP level

• The City level

In a given hierarchy, a level is the parent of the level that is listed after it. This means, for example, that ZIP is the parent
of City. More specifically, each member of ZIP is the parent of one or more members of City. That is, it is shorthand
to say that one level is the parent of another level; the actual relationship is between members, not between levels. This
shorthand is in common use, because it is convenient, even though it is not precise.

The following figure shows the relationships among the members of the HomeD.H1 hierarchy:

30 Using InterSystems MDX

Working with Dimensions and Hierarchies

The distinguishing feature of a hierarchy is that any given child element is unique to its parent. This example is artificial
because in reality there is a many-to-many relationship between ZIP codes and cities.

4.2 Accessing the Members of a Hierarchy
To access the members of a hierarchy (that is, all the members of all its levels), you use the MEMBERS function. In this
case, the syntax is as follows:

[dimension_name].[hierarchy_name].MEMBERS

In InterSystems MDX, if you omit the hierarchy name, the system assumes that you are referring to the first visible hierarchy
in the given dimension.

For example, in the DemoMDX cube, the homed dimension has only one hierarchy. The following query shows the members
of that hierarchy:

SELECT MEASURES.[%COUNT] ON 0, homed.MEMBERS ON 1 FROM demomdx

 %COUNT
 1 32006 215
 2 Juniper 122
 3 Spruce 93
 4 32007 111
 5 Redwood 111
 6 34577 347
 7 Cypress 112
 8 Magnolia 114
 9 Pine 121
10 36711 99
11 Centerville 99
12 38928 228
13 Cedar Falls 110
14 Elm Heights 118

Using InterSystems MDX 31

Accessing the Members of a Hierarchy

When you use the MEMBERS function with a hierarchy, it returns the set of members in hierarchical order. The first
member is the All member, if present. After that, each member is one of the following:

• The first child of the previous member.

• The next sibling of the previous member.

For another example, the following query shows all the measures (apart from %COUNT):

SELECT gend.gender.MEMBERS ON 0, MEASURES.MEMBERS ON 1 FROM demomdx

 Female Male
1 Age 18,413 17,491
2 Avg Age 37.73 34.16
3 Allergy Count 326 332
4 Avg Allergy Count 1.08 1.07
5 Test Score 29,542 31,108
6 Avg Test Score 73.49 74.42

4.3 Using Parent-Child Relationships
The system provides the following MDX functions that directly use parent-child relationships:

• CHILDREN returns the children, if any, of a given member. The returned value is a set of members, in the default
order specified for the level. For example:

SELECT MEASURES.[%COUNT] ON 0, homed.zip.[34577].CHILDREN ON 1 FROM demomdx

 %COUNT
1 Cypress 112
2 Magnolia 114
3 Pine 121

For another example:

SELECT MEASURES.[%COUNT] ON 0, homed.pine.CHILDREN ON 1 FROM demomdx

 %COUNT
 No Result

• PARENT returns the parent, if any, of a given member. For example:

SELECT MEASURES.[%COUNT] ON 0, homed.city.[Elm Heights].PARENT ON 1 FROM demomdx

 %COUNT
38928 228

• FIRSTCHILD returns the first child, if any, of a given member. For example:

SELECT MEASURES.[%COUNT] ON 0, homed.zip.[34577].FIRSTCHILD ON 1 FROM demomdx

 %COUNT
Cypress 112

• LASTCHILD returns the last child, if any.

4.4 Accessing Siblings
The system provides the following MDX functions that access siblings of a member:

• FIRSTSIBLING returns the first sibling, if any, of a given member. For example:

32 Using InterSystems MDX

Working with Dimensions and Hierarchies

SELECT MEASURES.[%COUNT] ON 0, birthd.[Q1 1920].FIRSTSIBLING ON 1 FROM demomdx

 %COUNT
Q1 1920 *

• LASTSIBLING returns the last sibling, if any.

• SIBLINGS returns the given member and all its siblings. For example:

SELECT MEASURES.[%COUNT] ON 0, homed.cypress.SIBLINGS ON 1 FROM demomdx

 %COUNT
1 Cypress 112
2 Magnolia 114
3 Pine 121

4.5 Accessing Cousins
The COUSIN function enables you to access a cousin, given a member at a higher level.

For example, the following query finds the cousin of Q1 1943, within the year 1990:

SELECT MEASURES.[%COUNT] ON 0, COUSIN(birthd.[Q1 1943],birthd.1990) ON1 FROM demomdx

 %COUNT
Q1 1990 5

To determine relative positions, the system uses the default order of the members within the level, as determined by the
cube definition.

4.6 Accessing Descendant Members
You can use the DESCENDANTS function to obtain descendents of a given member, within one or more lower levels. For
example, the following query gets all the descendents of the year 1990, within the [BirthD].[H1].[Period] level:

SELECT DESCENDANTS(birthd.1990,birthd.period) ON 1 FROM demomdx

 1 Jan-1990 *
 2 Feb-1990 2
 3 Mar-1990 1
 4 Apr-1990 1
 5 May-1990 1
 6 Jun-1990 *
 7 Jul-1990 2
 8 Aug-1990 2
 9 Sep-1990 1
10 Oct-1990 3
11 Nov-1990 1
12 Dec-1990 *

The DESCENDANTS function provides many options for accessing descendents within different parts of the hierarchy,
but the preceding usage is the most common scenario.

Using InterSystems MDX 33

Accessing Cousins

4.7 Accessing the Current Member within an Iteration
In a typical query, you iterate through a set of members, perhaps displaying each as a row. Sometimes you want to do
something specific with each member in turn. To do so, you use the CURRENTMEMBER function, which accesses the
member used in the current context.

For example, consider the following query:

SELECT MEASURES.[%COUNT] ON 0, homed.city.MEMBERS ON 1 FROM demomdx

 %COUNT
1 Cedar Falls 110
2 Centerville 99
3 Cypress 112
4 Elm Heights 118
5 Juniper 122
6 Magnolia 114
7 Pine 121
8 Redwood 111
9 Spruce 93

This query has one row for each city. The data shown is the %COUNT measure. Suppose that instead we would like to show
the city’s population, which we access via the PROPERTIES function. This function requires a reference to the member
used in the row; for that, we use the CURRENTMEMBER function, which we can call as follows:

[dimension_name].[hierarchy_name].CURRENTMEMBER

With this function, we can create the following variation of our query:

SELECT homed.h1.CURRENTMEMBER.PROPERTIES("Population") ON 0, homed.city.MEMBERS ON 1 FROM demomdx

 H1
1 Cedar Falls 90,000
2 Centerville 49,000
3 Cypress 3,000
4 Elm Heights 33,194
5 Juniper 10,333
6 Magnolia 4,503
7 Pine 15,060
8 Redwood 29,192
9 Spruce 5,900

For another example, the following query shows the internal keys for the members of Doctor:

SELECT docd.h1.CURRENTMEMBER.PROPERTIES("KEY") ON 0, docd.[doctor].MEMBERS ON 1 FROM demomdx

 KEY
 1 None <null>
 2 Ahmed, Thelma 34
 3 Alton, Chad 35
 4 Black, Ashley 4
..

34 Using InterSystems MDX

Working with Dimensions and Hierarchies

5
Working with Sets

This chapter discusses how to create and use sets. It discusses the following topics:

• Introduction to sets

• How to create set expressions

• How to create named sets

• Order of members in a set

• How to sort a set

• How to select a subset

• How to combine sets

• How to filter a set

• How to remove null elements

• How to remove duplicate elements from sets

• How to count the elements in a set

Also see “Accessing the Samples Shown in This Book,” in the first chapter.

5.1 Introduction to Sets
A set contains zero or more elements, and there are three general kinds of elements: members, scalar values, and tuples
(for information on tuples, see the next chapter, “Tuples and Cubes”).

You use sets on the axes of MDX queries; you also use them to build other sets. Note that although an MDX set can be
empty, you cannot use such an empty set as an axis.

5.2 Creating Set Expressions
The general syntax for a set expression is as follows:

{expression1, expression2, ...}

Using InterSystems MDX 35

This list can include any number of elements. In InterSystems MDX, if the list includes only one element, you can omit
the curly braces.

Each set element can be one of the following:

• A member expression, which is either of the following:

– An explicit reference to a single member by name.

– An expression that uses an MDX function to return a single member.

• An expression that uses an MDX function, like MEMBERS, to return a set.

• A range of members in the same level, as shown in the chapter “Working With Levels”:

member1:membern

• A scalar value, which is one of the following:

– A reference to a measure. The expression MEASURES.[Avg Test Score] is a scalar value; it returns either a
number or null in all contexts.

– A numeric or string constant such as 37 or "label".

– A numeric expression such as (37+3)/2.

– A percentage literal. For example: 10%

There must be no space between the number and the percent sign.

– An expression that uses an MDX function to return a scalar value.

For example, the PROPERTIES function returns a scalar value; for an introduction to this function, see the chapter
“Working With Levels,” earlier in this book.

For another example, the AVG function and other summary functions return scalar values; see the chapter “Adding
Summaries,” later in this book.

For complete details, see the InterSystems MDX Reference.

5.3 Creating Named Sets
It is often useful to create a set and assign a name to it, so that you can reuse that set in multiple ways. Also, the syntax of
a query is often easier to read when you use named sets.

You can create one or more named sets within a query, as follows:

WITH with_clause1 with_clause2 ... SELECT query_details

Where:

• Each expression with_clause1, with_clause2, and so on has the following syntax:

SET set_name AS 'set_expression'

• query_details is your MDX query.

Then your query can refer the named set by name in all the places where you can use other set expressions.

For example:

36 Using InterSystems MDX

Working with Sets

WITH SET testset AS '{homed.city.members}'
SELECT MEASURES.[%COUNT] ON 0, testset ON 1 FROM demomdx

 %COUNT
1 Cedar Falls 184
2 Centerville 194
3 Cypress 134
4 Elm Heights 146
5 Juniper 176
6 Magnolia 169
7 Pine 118
8 Redwood 182
9 Spruce 197

Note: This named set is a query-scoped named set; its scope is the query. For information on session-scoped named
sets, see “CREATE SET Statement,” in the InterSystems MDX Reference.

Your cubes might contain additional named sets that you can use in all queries; see Defining Models for InterSystems
Business Intelligence.

5.4 Order of Members in a Set
Every set has an inherent order (a first member, a second member, and so on).

When you use an MDX function to return a set, that function determines the order of the members in the set. Wherever
possible, MDX functions use the natural order of members as specified in the cube definition.

For example, the MEMBERS function returns the members of a level in the order specified in the cube definition (typically
in alphabetic order or date order, depending on the level).

When you construct a set as described in the previous section, the order in which you list elements controls the order of
the members in the set. For example, suppose that you specify a set as follows:

{gend.gender.MEMBERS,allerd.allergies.MEMBERS}

This set consists of the members of the Gender dimension, followed by the members of the Allergies dimension.

5.5 Selecting Subsets
SUBSET returns a set of members from a given set, by position. You specify a set, the starting position, and the number
of members to return. The starting position is 0. For example:

SELECT MEASURES.[%COUNT] ON 0,SUBSET(homed.city.MEMBERS,0,3) ON 1 FROM demomdx

 %COUNT
1 Cedar Falls 110
2 Centerville 99
3 Cypress 112

The EXCEPT function provides another way to get a subset; see the next section.

Also see the chapter “Filtering a Query,” later in this book.

5.6 Sorting Sets
This section describes ways to sort sets. It discusses the following topics:

Using InterSystems MDX 37

Order of Members in a Set

• How to sort items by the value of a measure

• How to select a top or bottom subset

• How to apply hierarchical order

5.6.1 Sorting a Set by a Measure Value

It is often useful to sort members by the value of some measure. For example, you might want to sort departments by
response, so that you can look at the departments with the slowest responses. Or you might sort products by their sales
revenues so that you can look at the top-ranked products.

To return a set in the order that you specify, use the ORDER function. This function takes an argument, typically a measure
reference, that specifies the value to use when determining the order of the set members. For example:

SELECT MEASURES.[avg test score] ON 0,
ORDER(homed.city.MEMBERS,MEASURES.[avg test score],BDESC) ON 1 FROM demomdx

 Avg Test Score
1 Juniper 75.08
2 Redwood 75.07
3 Cedar Falls 75.03
4 Elm Heights 74.96
5 Pine 74.76
6 Spruce 74.47
7 Magnolia 74.13
8 Cypress 73.96
9 Centerville 73.79

The optional third argument can be one of the following:

• ASC (the default) — Use this to sort in ascending order, while preserving the hierarchy, if applicable.

• DESC — Use this to sort in descending order, while preserving the hierarchy, if applicable.

• BASC — Use this to break the hierarchy and sort all members in ascending order.

• BDESC — Use this to break the hierarchy and sort all members in descending order.

For example, the following query breaks the hierarchy:

SELECT MEASURES.[avg test score] ON 0,
ORDER(homed.MEMBERS,MEASURES.[avg testscore],BDESC) ON 1 FROM demomdx

 Avg Test Score
 1 Juniper 75.08
 2 Redwood 75.07
 3 32007 75.07
 4 Cedar Falls 75.03
 5 38928 75.00
 6 Elm Heights 74.96
 7 32006 74.78
 8 Pine 74.76
 9 Spruce 74.47
10 34577 74.28
11 Magnolia 74.13
12 Cypress 73.96
13 Centerville 73.79
14 36711 73.79

In contrast, the following preserves the hierarchy:

38 Using InterSystems MDX

Working with Sets

SELECT MEASURES.[avg test score] ON 0,
ORDER(homed.MEMBERS,MEASURES.[avg testscore],DESC) ON 1 FROM demomdx

 Avg Test Score
 1 32007 75.07
 2 Redwood 75.07
 3 38928 75.00
 4 Cedar Falls 75.03
 5 Elm Heights 74.96
 6 32006 74.78
 7 Juniper 75.08
 8 Spruce 74.47
 9 34577 74.28
10 Pine 74.76
11 Magnolia 74.13
12 Cypress 73.96
13 36711 73.79
14 Centerville 73.79

5.6.2 Selecting a Top or Bottom Subset

It is useful to sort items in some way and then choose a subset from the top or bottom, such as the top five. The following
MDX functions enable you to do so.

• HEAD and TAIL return the first part or the last part of the set, respectively, given a member count. For example:

SELECT MEASURES.[%COUNT] ON 0,HEAD(homed.city.MEMBERS,3) ON 1 FROM demomdx

 %COUNT
1 Cedar Falls 110
2 Centerville 99
3 Cypress 112

The members of the returned set have the same order as in the original set.

• TOPCOUNT and BOTTOMCOUNT are similar to HEAD and TAIL, respectively, but also include an optional argument
to specify how to sort the set before extracting the subset.

For example, the following query returns the top-rated cities, by patient count.

SELECT MEASURES.[%COUNT] ON 0,TOPCOUNT(homed.city.MEMBERS,4,MEASURES.[%COUNT]) ON 1 FROM demomdx

 %COUNT
1 Juniper 122
2 Pine 121
3 Elm Heights 118
4 Magnolia 114

For another example:

SELECT MEASURES.[avg test score] ON 0,TOPCOUNT(homed.city.MEMBERS,5,MEASURES.[avg test score]) ON
 1 FROM demomdx

 Avg Test Score
1 Juniper 75.08
2 Redwood 75.07
3 Cedar Falls 75.03
4 Elm Heights 74.96
5 Pine 74.76

• TOPSUM and BOTTOMSUM are similar to TOPCOUNT and BOTTOMCOUNT, respectively. Instead of specifying
the number of members to return, however, you specify a cutoff value that is applied to a total across the members.
For example, you could retrieve the products that account for the top $5 million in sales.

• TOPPERCENT and BOTTOMPERCENT are similar to TOPCOUNT and BOTTOMCOUNT, respectively. Instead
of specifying the number of members to return, however, you specify a cutoff percentage that is applied to a total across
the members. For example, you could retrieve the products that account for the top 10% of sales.

Using InterSystems MDX 39

Sorting Sets

5.6.3 Applying Hierarchical Order

The HIERARCHIZE function accepts a set of members from the same dimension and returns a set containing those members
in hierarchical order, that is, the order specified by the hierarchy. For example:

SELECT MEASURES.[%COUNT] ON 0,
HIERARCHIZE({homed.36711,homed.38928,homed.[elm heights],homed.Spruce}) ON 1 FROM demomdx

 %COUNT
1 36711 99
2 Spruce 93
3 38928 228
4 Elm Heights 118

If the members belong to different hierarchies in the dimension, the different hierarchies are returned in an arbitrary order.

5.7 Combining Sets
Sets are the building blocks of MDX queries. When you write an MDX query, you must specify a set to use on each axis.
The system supports the following MDX functions that you can use to combine sets:

• UNION combines two sets (optionally discarding any duplicate members) and returns a set that contains all the members
of these sets. For example:

WITH SET set1 AS '{allerd.eggs,allerd.soy,allerd.wheat}'
SET set2 AS '{allerd.[dairy products],allerd.pollen,allerd.soy,allerd.wheat}'
SELECT MEASURES.[%COUNT] ON 0, UNION(set1,set2) ON 1 FROM demomdx

 %COUNT
1 eggs 32
2 soy 36
3 wheat 52

Because the query does not use UNION with the ALL keyword, duplicates are removed.

• INTERSECT examines two sets and returns a set that contains all the members that are in both sets, optionally retaining
duplicates. For example:

WITH SET set1 AS 'TOPCOUNT(homed.city.members,5,MEASURES.[avg allergy count])'
SET set2 AS 'TOPCOUNT(homed.city.members,5,MEASURES.[avg age])'
SELECT MEASURES.[%COUNT] ON 0, INTERSECT(set1,set2) ON 1 FROM demomdx

 %COUNT
1 Magnolia 114
2 Redwood 111
3 Cypress 112
4 Cedar Falls 110

• EXCEPT examines two sets and removes the members in the first set that also exist in the second set, optionally
retaining duplicates. For example:

WITH SET set1 AS '{allerd.eggs,allerd.eggs,allerd.soy,allerd.wheat}'
SET set2 AS '{allerd.[diary products],allerd.pollen,allerd.wheat}'
SELECT MEASURES.[%COUNT] ON 0, EXCEPT(set1,set2) ON 1 FROM demomdx

 %COUNT
1 eggs 32
2 soy 36

Also see “The %NOT Optimization,” later in this book.

• CROSSJOIN returns a set that consists of the cross-product of two sets. Both sets can consist of members. Or one set
can consist of members and the other set can consist of measures. If both sets contain measures, the analytics engine
issues the error Two measures cannot be crossjoined. For example:

40 Using InterSystems MDX

Working with Sets

SELECT MEASURES.[%COUNT] ON 0, CROSSJOIN(diagd.diagnoses.MEMBERS,
aged.[age group].MEMBERS) ON 1 FROM demomdx

 %COUNT
 1 None->0 to 29 389
 2 None->30 to 59 333
 3 None->60+ 106
 4 asthma->0 to 29 40
 5 asthma->30 to 59 39
 6 asthma->60+ 11
 7 CHD->0 to 29 *
 8 CHD->30 to 59 12
 9 CHD->60+ 25
10 diabetes->0 to 29 1
11 diabetes->30 to 59 20
12 diabetes->60+ 24
13 osteoporosis->0 to 29 *
14 osteoporosis->30 to 59 *
15 osteoporosis->60+ 22

Note that the MDX shell displays a null value as an asterisk (*). For information on suppressing null values, see
“Removing Null Elements from a Set,” later in this chapter.

Also see the NONEMPTYCROSSJOIN function.

Also note that unlike the previous functions, which return sets of members, CROSSJOIN returns a set of tuples (as
does NONEMPTYCROSSJOIN). Tuples are discussed later in this book.

5.8 Filtering a Set by a Measure or Property Value
You can also examine measure values for the members in a set and use those values to filter the set. To do so, you use the
FILTER function.

The FILTER function uses a set and a logical expression. It examines a set and returns the subset in which the given logical
expression is true for each member. The logical expression typically compares a measure value to a constant or to another
measure value. For example:

SELECT MEASURES.[%COUNT] ON 0, FILTER(homed.city.MEMBERS,MEASURES.[%COUNT]>115) ON 1 FROM demomdx

 %COUNT
1 Elm Heights 118
2 Juniper 122
3 Pine 121

It is important to understand that this filtering occurs at an aggregate level: The measure value is computed for each possible
member in the query. The FILTER function considers those aggregate values and removes members as appropriate.

You can use the same function with member properties as follows:

SELECT homed.h1.CURRENTMEMBER.PROPERTIES("Population") ON 0,
FILTER(homed.city.MEMBERS,homed.h1.CURRENTMEMBER.PROPERTIES("Population")>20000) ON 1 FROM demomdx

 ZIP
1 Cedar Falls 90,000
2 Centerville 49,000
3 Elm Heights 33,194
4 Redwood 29,192

5.9 Removing Null Elements from a Set
In some cases, a set might contain null elements. For example, the CROSSJOIN function could potentially return null elements
(as is shown in the preceding section).

Using InterSystems MDX 41

Filtering a Set by a Measure or Property Value

If you precede the set expression with the keyword NON EMPTY, the system suppresses the null elements. For example:

SELECT MEASURES.[%COUNT] ON 0,NON EMPTY CROSSJOIN(diagd.diagnoses.MEMBERS,
aged.[age group].MEMBERS) ON 1 FROM demomdx

 %COUNT
 1 None->0 to 29 389
 2 None->30 to 59 333
 3 None->60+ 106
 4 asthma->0 to 29 40
 5 asthma->30 to 59 39
 6 asthma->60+ 11
 7 CHD->30 to 59 12
 8 CHD->60+ 25
 9 diabetes->0 to 29 1
10 diabetes->30 to 59 20
11 diabetes->60+ 24
12 osteoporosis->60+ 22

5.10 Removing Duplicates
When you combine sets, you may want to remove duplicates. This is true especially when you have created and combined
sets in multiple steps. To be certain that the resulting set has no duplicates, you use the DISTINCT function.

For example, suppose that the query must return a specific city as reference, which is needed for comparison to the other
cities. Consider the following query, which displays a reference city, followed by a set of cities with a given patient count:

WITH SET refcity AS '{homed.juniper}' SELECT MEASURES.[%COUNT] ON 0,
{refcity,FILTER(homed.city.MEMBERS,MEASURES.[%COUNT]>115)} ON 1 FROM demomdx

 %COUNT
1 Juniper 122
2 Elm Heights 118
3 Juniper 122
4 Pine 121

Compare to the following query, which removes the duplicate reference city:

WITH SET refcity AS '{homed.juniper}' SELECT MEASURES.[%COUNT] ON 0,
DISTINCT({refcity,FILTER(homed.city.MEMBERS,MEASURES.[%COUNT]>115)}) ON 1 FROM demomdx

 %COUNT
1 Juniper 122
2 Elm Heights 118
3 Pine 121

5.11 Counting the Elements of a Set
To count the elements of a set, use the COUNT function. For example:

SELECT COUNT(docd.doctor.MEMBERS) ON 0 FROM demomdx

 COUNT
 41

By default, COUNT considers any empty elements and counts them along with the non-empty elements. If you use the
EXCLUDEEMPTY keyword as the second argument, this function returns the number of non-empty elements.

To see this, first consider the following query:

42 Using InterSystems MDX

Working with Sets

SELECT aged.[age group].MEMBERS ON 0, diagd.diagnoses.MEMBERS ON 1 FROM demomdx WHERE MEASURES.[%COUNT]

 0 to 29 30 to 59 60+
1 None 389 333 106
2 asthma 40 39 11
3 CHD * 12 25
4 diabetes 1 20 24
5 osteoporosis * * 22

The following query counts the number of members of the Diagnoses level and uses the WHERE clause to get only
patients in the age group 0 to 29:

WITH SET myset AS 'diagd.diagnoses.MEMBERS' SELECT COUNT(myset) ON 0 FROM demomdx WHERE aged.[0 to 29]

 COUNT
 5

In this query, COUNT returns 5 because it considers empty members. In contrast:

WITH SET myset AS 'diagd.diagnoses.MEMBERS' SELECT COUNT(myset,EXCLUDEEMPTY) ON 0 FROM demomdx WHERE
aged.[0 to 29]

 COUNT
 3

Using InterSystems MDX 43

Counting the Elements of a Set

6
Tuples and Cubes

This chapter discusses two additional key concepts in MDX: tuples and cubes. It discusses the following topics:

• Introduction to tuples

• How Business Intelligence determines the value of a tuple

• Examples of tuple expressions

• How to use tuples as axes of a query

• Introduction to cubes

• Relationship of higher levels to a cube dimension

• Relationship of multiple hierarchies to a cube dimension

Also see “Accessing the Samples Shown in This Book,” in the first chapter.

6.1 Introduction to Tuples
A tuple is a combination of members from different dimensions. Each tuple has a single value (possibly null).

Every data cell in a result set is a tuple. For example, consider the following query:

SELECT MEASURES.[%COUNT] ON 0, homed.city.members ON 1 FROM demomdx

 %COUNT
1 Cedar Falls 110
2 Centerville 99
3 Cypress 112
4 Elm Heights 118
5 Juniper 122
6 Magnolia 114
7 Pine 121
8 Redwood 111
9 Spruce 93

This query returns a set of nine tuples. For example, the first tuple is a combination of Cedar Falls (from the City
dimension) and %COUNT (from the Measures dimension).

6.1.1 Creating Tuples

You can create a tuple directly, via the following syntax:

(member_expr1, member_expr2, member_expr3, ...)

Using InterSystems MDX 45

Where member_expr1, member_expr2, member_expr3, and so on are member expressions.

In other implementations of MDX, each of these member expressions must be associated with a different dimension. This
means that a tuple cannot include more than one member from the same dimension.

In InterSystems MDX, a tuple expression can include more than one member expression from the same dimension. In most
cases, the result is null, because in most cases, a record belongs to only one member. However, in InterSystems IRIS
Business Intelligence, a level can be based on a list value, which means that a given record can belong to multiple members.
For example, the tuple (allerd.soy,allerd.wheat) represents all patients who are allergic to both soy and wheat.

6.1.2 Fully and Partially Qualified Tuples

A tuple is either fully qualified or partially qualified:

• If the tuple expression refers to each dimension in the cube, the tuple is fully qualified. A fully qualified tuple refers
to a very small number of records and is too granular to be commonly used.

• If the tuple expression does not refer to each dimension in the cube, the tuple is partially qualified. A partially qualified
tuple can be very useful, especially when used to filter the data used by the query.

If a tuple refers to only one member, the tuple is equivalent to that member. For example, the following expressions
both access the same data:

(colord.red)
colord.red

The expression (colord.red) is a tuple expression uses the Red member of the ColorD dimension.

The expression colord.red is a member expression that refers to the Red member of the ColorD dimension.

Each expression accesses only the patients whose favorite color is red.

6.1.3 Sets of Tuples

You can create sets of tuples, by enclosing a comma-separated list of tuple expressions within curly braces:

{tuple_expression1, tuple_expression2, ...}

(Note that in other implementations of MDX, for any tuple in a set, you must construct each tuple in the same way. For
example, if the first tuple uses dimension A in its first list item, all the other tuples must do so as well. InterSystems MDX
does not have this restriction.)

You can also create sets of tuples by using the CROSSJOIN or NONEMPTYCROSSJOIN functions. For example:

SELECT MEASURES.[%COUNT] ON 0, CROSSJOIN(gend.gender.MEMBERS,homed.city.members) ON 1 FROM demomdx

 %COUNT
 1 Female->Cedar Falls 58
 2 Female->Centerville 41
 3 Female->Cypress 51
 4 Female->Elm Heights 53
 5 Female->Juniper 58
 6 Female->Magnolia 58
 7 Female->Pine 64
 8 Female->Redwood 58
 9 Female->Spruce 47
10 Male->Cedar Falls 52
11 Male->Centerville 58
12 Male->Cypress 61
13 Male->Elm Heights 65
14 Male->Juniper 64
15 Male->Magnolia 56
16 Male->Pine 57
17 Male->Redwood 53
18 Male->Spruce 46

46 Using InterSystems MDX

Tuples and Cubes

You can use these set expressions in all the places where set expressions are permitted:

• As axes of a query

• In the WITH clause

• As an argument to an MDX function that uses a set

6.2 Tuple Values
Every tuple has a value (which might be null).

The value of a tuple is determined as follows:

1. The system finds the rows in the fact table that correspond to all the non-measure members used in the tuple expression.

2. The system then finds values for those rows as follows:

• If the tuple expression includes a specific measure, the system finds the value of that measure for each relevant
row of the fact table.

• If the tuple expression does not include a specific measure, the system uses the default measure (typically, %COUNT).

3. The system aggregates those values together, using the aggregation function specified for the measure.

For example, consider the following tuple:

(homed.32006,colord.red,allerd.[dairy products],MEASURES.[avg test score])

To determine the value of this tuple, the system finds all the patients in the fact table that belong to the 32006 ZIP code,
and whose favorite color is red, and who are allergic to dairy products. The system then accesses the values for the Test
Score measure for those patients and averages those values.

For another example, consider the following tuple (permitted in InterSystems MDX):

(allerd.soy,allerd.wheat)

To determine the value of this tuple, the system counts the patients who are allergic to both soy and to wheat.

Finally, consider the following tuple:

(homed.juniper,homed.centerville)

To determine the value of this tuple, the system counts the patients whose home city is Juniper and whose home city is
Centerville. The value of this tuple is null, because each patient has one home city.

6.3 Example Tuple Expressions
A tuple expression can refer to a member at any level in any hierarchy of a dimension. Consider the following dimension
(from the Patients cube) which includes one hierarchy with four levels:

Using InterSystems MDX 47

Tuple Values

You can create tuples that use members of any of these levels. For example, you can use any of the following tuple
expressions:

(aged.[all patients])
(aged.[0 to 29])
(aged.5)

For another example, let us create variations of the preceding expressions. In this case, let us include members of other
dimensions in the tuple expressions:

(aged.[all patients],gend.male)
(aged.[0 to 29],diagd.asthma)
(aged.5,allerd.soy,colord.red)

6.4 Using Sets of Tuples as Axes of a Query
You can use sets of tuples as axes of a query. The following example shows the simplest case, a set that consists of one
tuple:

SELECT MEASURES.[%COUNT] ON 0, (homed.juniper,allerd.wheat,aged.[20 to 29]) ON 1 FROM demomdx

 %COUNT
Juniper->wheat->20 to 29 1

The following example shows a set of tuples used as a query axis:

WITH SET myset AS
'{(homed.[cedar falls],allerd.soy,colord.red),(homed.magnolia,allerd.soy,colord.green),
(homed.34577,allerd.eggs,colord.green)}'
SELECT MEASURES.[%COUNT] ON 0, myset ON 1 FROM demomdx

 %COUNT
1 Cedar Falls->soy->Red *
2 Magnolia->soy->Green 1
3 34577->eggs->Green *

48 Using InterSystems MDX

Tuples and Cubes

For another example, the following is a valid query in InterSystems MDX:

WITH SET myset AS
'{(homed.[cedar falls],allerd.soy,colord.green),(colord.red,allerd.soy,homed.pine,gend.male)}'
SELECT MEASURES.[%COUNT] ON 0, myset ON 1 FROM demomdx

 %COUNT
1 Cedar Falls->soy->Green *
2 Red->soy->Pine->Male *

Finally, the following example uses tuples that refer multiple times to a single dimension:

SELECT MEASURES.[%COUNT] ON 0,
{(allerd.soy,allerd.wheat),(homed.juniper,homed.centerville)} ON 1 FROM demomdx

 %COUNT
1 soy->wheat 4
2 Juniper->Centerville *

There are 4 patients who are allergic to both soy and wheat.

There are no patients with two home cities.

6.5 Introduction to Cubes
A cube is an n-dimensional structure that contains one axis (or edge) for each dimension. The cells of this cube are tuples.
An MDX query retrieves specific tuples from the cube.

It is useful to visualize this cube, at least in simple cases. The DemoMDX cube has 10 dimensions (including the Measures
dimension). For the sake of simplicity, the following figure shows three of those dimensions (HomeD, GenD, and Measures).
Note that only three measures are actually shown.

Using InterSystems MDX 49

Introduction to Cubes

Each axis of the cube is divided into segments, with one segment for each of the lowest-level members of the corresponding
dimension. For the HomeD axis, these segments are the members of the City level.

Each cell in the cube is a fully qualified tuple. Each tuple has a value, as shown in the figure.

An MDX query is a request for a set of tuples, each of which has a value. Consider the following query:

SELECT CROSSJOIN(MEASURES.[%COUNT],gend.gender.MEMBERS) ON 0, homed.city.MEMBERS ON 1 FROM demomdx

 Female Male
1 Cedar Falls 569 571
2 Centerville 625 560
3 Cypress 575 543
4 Elm Heights 545 560
5 Juniper 570 546
6 Magnolia 566 503
7 Pine 562 563
8 Redwood 536 540
9 Spruce 550 516

For this query, the system finds the relevant tuples in the cube and obtains their values. For example, the first tuple is
(homed.[cedar falls],gend.female,measures.[%COUNT]). The value of this tuple is 569.

Each measure that is aggregated by addition (such as Age) is contained directly in the cube. For other measures, MDX uses
values from the cube and aggregates them as specified in the measure definition.

For example, the Avg Age measure is not contained directly in the cube, but the Age measure is; the Age measure contains
the cumulative age of all the patients represented in a tuple. To calculate the Avg Age measure, MDX divides Age by
%COUNT. Consider the following query:

SELECT CROSSJOIN(MEASURES.[avg age],gend.gender.MEMBERS) ON 0, homed.city.members ON 1 FROM demomdx

 Female Male
1 Cedar Falls 36.90 34.56
2 Centerville 35.98 34.68
3 Cypress 37.02 33.55
4 Elm Heights 36.87 34.05
5 Juniper 38.09 34.26
6 Magnolia 35.64 35.03
7 Pine 36.64 33.38
8 Redwood 36.70 36.52
9 Spruce 37.90 32.93

In this example, the second tuple is (homed.[cedar falls],gend.male,measures.[avg age]). To obtain this
value, MDX divides the value of (homed.[cedar falls],gend.male,measures.[age]) by the value of
(homed.[cedar falls],gend.male,measures.[%COUNT]) — 19734 divided by 571 is 34.56, as shown in the
preceding results.

6.6 Higher Levels and a Cube Dimension
For now, we consider only dimensions that contain a single hierarchy.

For any dimension, only the lowest level is represented directly on the corresponding cube axis.

For example, the following figure shows all the levels of the HomeD dimension:

50 Using InterSystems MDX

Tuples and Cubes

Notice that the HomeD axis includes only the leaf members of this dimension — that is, only the members of its lowest
level. The higher levels consist of combinations of lower members. For example, each member of the ZIP level consists
of one or more members of the City dimension.

Now consider the following query:

SELECT CROSSJOIN(MEASURES.[%COUNT],gend.gender.MEMBERS) ON 0, homed.zip.members ON 1 FROM demomdx

 Female Male
1 32006 1,120 1,062
2 32007 536 540
3 34577 1,703 1,609
4 36711 625 560
5 38928 1,114 1,131

For this query, the system finds the relevant tuples of the cube and obtains their values.

For example, the first tuple is (homed.[32006],gend.female,measures.[%COUNT]). The member 32006 consists
of the cities Juniper and Spruce. This means that the tuple (homed.[32006],gend.female,measures.[%COUNT])
consists of the combination of the following tuples:

• (homed.[juniper],gend.female,measures.[%COUNT])

• (homed.[spruce],gend.female,measures.[%COUNT])

These tuples have the values 570 and 550, respectively. The %COUNT measure is aggregated by adding, so the value for
(homed.[32006],gend.female,measures.[%COUNT]) is 1120.

6.7 Multiple Hierarchies in a Cube Dimension
A dimension can have multiple hierarchies. For a dimension that includes multiple hierarchies, the corresponding axis of
the cube contains one segment for each member of the lowest level in each hierarchy.

Using InterSystems MDX 51

Multiple Hierarchies in a Cube Dimension

Consider the following theoretical cube:

Members of cube 'theoretical':

...
Dimensions
...
 Sales Date
 H1
 Sales Year
 Sales Period
 Sales Date
 H2
 Sales Quarter
...

The Sales Date dimension contains two hierarchies. The H1 hierarchy has three levels:

• The Sales Year level. For example, a members of this level is 1990.

• The Sales Period level. For example, a members of this level is Jan–1990.

• The Sales Date level. For example, a members of this level is Jan 3 1990.

The other hierarchy contains only one level.

In this case, the Sales Date axis contains one segment for each member of Sales Date and one segment for each
member of Sales Quarter. For example:

(For reasons of space, the picture of the cube is not divided into tuples.)

When a query uses, for example, the Sales Quarter level, the system uses the appropriate part of this axis and accesses
the requested tuples.

52 Using InterSystems MDX

Tuples and Cubes

7
Filtering a Query

This chapter describes ways to filter data in MDX queries. It discusses the following topics:

• How to use the WHERE clause

• How to use the %NOT optimization

• How to use the %OR optimization

Also see “Accessing the Samples Shown in This Book,” in the first chapter.

7.1 Introduction to the WHERE Clause
As noted in the section “Including a Simple Filter in a Query,” earlier in this book, an MDX query itself can also include
a filter (the WHERE clause). The WHERE clause of an MDX query is commonly referred to as the slicer axis. If the
WHERE clause contains only one member, the system accesses only a slice of the cube.

For example, consider the following query:

SELECT {MEASURES.[%COUNT],MEASURES.[avg age]} ON 0, gend.gender.MEMBERS ON 1 FROM demomdx WHERE
homed.redwood

 Patient Count Avg Age
1 Female 536 36.70
2 Male 540 36.52

This query accesses only one slice of the cube, the slice of patients whose home city is Redwood. For example:

Using InterSystems MDX 53

In this case, the Redwood slice is the only part of the cube that the query considers.

If the WHERE clause uses a set or a tuple, however, the phrase slicer axis is less useful, because in these cases, the cube
is not truly being sliced.

7.1.1 Using a Set in the WHERE Clause

More generally, the WHERE clause can contain a set expression instead of a single member expression. In this case MDX
combines the records with logical AND. For example, the following query uses only patients whose favorite color is red
and patients who are male:

SELECT MEASURES.[%COUNT] ON 0, homed.city.MEMBERS ON 1 FROM demomdx WHERE{colord.red,gend.male}

 %COUNT
1 Cedar Falls 66
2 Centerville 72
3 Cypress 76
4 Elm Heights 81
5 Juniper 74
6 Magnolia 63
7 Pine 71
8 Redwood 72
9 Spruce 58

54 Using InterSystems MDX

Filtering a Query

In this case, the query uses the set {colord.red,gend.male}, which consists of two members. When the system
accesses the fact table, it finds the records associated with colord.red and the records associated with gend.male and
it uses all those records.

Important: Each set element is used as a separate slicer axis, and the results of all the slicer axes (of all %FILTER
clauses) are aggregated together. This is the process of axis folding (a filter is considered to be a query
axis). Axis folding means that if a given source record has a non-null result for each slicer axis, that record
is counted multiple times.

In axis folding, values are combined according to the aggregation method for that measure, as specified
in the cube definition. (In the examples here, %COUNT is added.)

For more details, see “Axis Folding” in the appendix “How the Business Intelligence Query Engine
Works” in Implementing InterSystems Business Intelligence.

The next section discusses how to filter queries in yet another way.

7.1.2 Using Tuples in the WHERE Clause

In the WHERE clause, you can instead specify a single tuple or a set of tuples. For example:

SELECT MEASURES.[%COUNT] ON 0, NON EMPTY homed.city.MEMBERS ON 1 FROM demomdx
WHERE (aged.[age group].[60 +],gend.male)

 %COUNT
1 Cedar Falls 7
2 Centerville 9
3 Cypress
 12
4 Elm Heights 14
5 Juniper 8
6 Magnolia 9
7 Pine 7
8 Redwood 6
9 Spruce 2

For another example:

WITH SET myset as '{(aged.[age group].[60 +],diagd.chd),(aged.[age group].[60+],diagd.asthma)}'
SELECT MEASURES.[%COUNT] ON 0, NON EMPTY homed.city.MEMBERS ON 1 FROM demomdx WHERE myset

 %COUNT
1 Cedar Falls 5
2 Centerville 5
3 Cypress 8
4 Elm Heights 3
5 Juniper 3
6 Magnolia 5
7 Pine 2
8 Redwood 5

When you filter the query itself, it is often useful to use the NON EMPTY keyword, so that the query returns only the non-
null values. Include this keyword at the start of any set expression that might return a null value. For example:

SELECT MEASURES.[%COUNT] ON 0, NON EMPTY homed.city.MEMBERS ON 1 FROM demomdx
WHERE (aged.[age bucket].[30 to 39],diagd.chd)

 %COUNT
1 Elm Heights 1
2 Magnolia 1

In contrast, if we did not use NON EMPTY, the result would be as follows:

Using InterSystems MDX 55

Introduction to the WHERE Clause

SELECT MEASURES.[%COUNT] ON 0, homed.city.MEMBERS ON 1 FROM demomdx
WHERE (aged.[age bucket].[30 to 39],diagd.chd)

 %COUNT
1 Cedar Falls *
2 Centerville *
3 Cypress *
4 Elm Heights 1
5 Juniper *
6 Magnolia 1
7 Pine *
8 Redwood *
9 Spruce *

7.2 The %NOT Optimization
It is often necessary to exclude a single member of a level. To do this easily, you can use the %NOT function, which is an
InterSystems extension:

SELECT aged.[age bucket].MEMBERS ON 1 FROM patients WHERE aged.[age group].[0 to 29].%NOT

 1 0 to 9 *
2 10 to 19 *
3 20 to 29 *
4 30 to 39 166
5 40 to 49 139
6 50 to 59 106
7 60 to 69 86
8 70 to 79 62
9 80+ 41

Queries that use the %NOT function run more quickly than equivalent queries that use EXCEPT.

7.3 The %OR Optimization
Often it is necessary for the WHERE clause to refer to multiple members. For example:

SELECT gend.MEMBERS ON 1 FROM patients WHERE {allerd.[ant bites],allerd.soy,allerd.wheat}

1 Female 56
2 Male 59

This query construction, however, means that the system evaluates the query results multiple times (once for each item in
the WHERE clause) and then combines them. This can be undesirably slow and can double-count items. (In this example,
a given patient can be counted as many as three times, once for each allergy in the WHERE clause.)

With the %OR function, you can rewrite the query as follows:

SELECT gend.MEMBERS ON 1 FROM patients WHERE %OR({allerd.[ant bites],allerd.soy,allerd.wheat})

1 Female 55
2 Male 57

Note the numbers are lower, because this query does not double-count any patients. Also, this query is faster than the pre-
ceding.

You can use %OR with a set that contains members of different levels (or even that contains tuples). For example:

SELECT NON EMPTY [Measures].[%COUNT] ON 0 FROM [Patients]
WHERE %OR({[AgeD].[H1].[Age Bucket].&[80+],[DiagD].[H1].[Diagnoses].&[CHD]})

 Patient Count
 71

56 Using InterSystems MDX

Filtering a Query

8
Adding Summaries

This chapter describes how to add summaries (such as averages and totalsxt) to your MDX queries. It discusses the following
topics:

• Introduction to the main functions you use to add summaries

• How to add a summary line to your query

Also see “Accessing the Samples Shown in This Book,” in the first chapter.

8.1 Introduction to Summary Functions
MDX includes functions that summarize a given value, across a given set. For each function, the arguments are a set and
an optional numeric expression (such as a reference to a measure). The system evaluates the expression for each member
of the set and then returns a single value. If no numeric expression is given, the system instead evaluates the measure used
in the query (possibly %COUNT).

The functions are as follows:

• SUM, which returns the sum of the values.

• AVG, which returns the average value. This function ignores members for which the expression is null.

• MAX, which returns the maximum value.

• MIN, which returns the minimum value.

• MEDIAN, which returns the value from the set that is closest to the median value.

• STDDEV, which returns the standard deviation of the values.

• STDDEVP, which returns the population standard deviation of the values.

• VAR, which returns the variance of the values.

• VARP, which returns the population variance of the values.

For example:

SELECT MAX(diagd.diagnoses.MEMBERS,MEASURES.[%COUNT]) ON 0 FROM demomdx

 MAX
 828

This query shows the maximum value of the %COUNT measure for the members of the Diagnoses level.

Using InterSystems MDX 57

For another example, use the same function without specifying its second argument. In this case, the query displays the
%COUNT measure as a column:

SELECT MEASURES.[%COUNT] ON 0, MAX(diagd.diagnoses.MEMBERS) ON 1 FROM demomdx

 %COUNT
MAX 828

For another example, use the same function without specifying any measure in the query at all:

SELECT MAX(diagd.diagnoses.MEMBERS) ON 0 FROM demomdx

 MAX
 828

In this case, the system uses %COUNT.

8.2 Adding a Summary Line
More typically, rather than displaying the summary value by itself, you include it in a query that shows all the values of
the set. This process is analogous to adding a summary line (as a row or column) in a spreadsheet.

The following example shows the %COUNT measure for each diagnosis, followed by the maximum value for this measure
across this set:

SELECT MEASURES.[%COUNT] ON 0,
{diagd.diagnoses.MEMBERS, MAX(diagd.diagnoses.MEMBERS,MEASURES.[%COUNT])} ON 1 FROM demomdx

 %COUNT
1 None 828
2 asthma 90
3 CHD 37
4 diabetes 45
5 osteoporosis 22
6 MAX 828

Notice that the system first computes the %COUNT measure for each member using the aggregation method defined for that
measure. In this case, the patients are counted. The asthma member, for example, has a total %COUNT value of 90. The
MAX function then obtains the largest value for this measure, across the set of diagnoses.

For another example:

SELECT {gend.gender.MEMBERS, AVG(gend.gender.MEMBERS,MEASURES.[%COUNT])} ON 0,
MEASURES.[%COUNT] ON 1 FROM demomdx

 Female Male AVG
%COUNT 488 512 500

When using the summary functions, you might find it convenient to use named sets, as described in the chapter “Working
with Sets.” For example, the following query is equivalent to the preceding one:

WITH SET genders AS 'gend.gender.MEMBERS'
SELECT {genders, AVG(genders,MEASURES.[%COUNT])} ON 0, MEASURES.[%COUNT] ON 1 FROM demomdx

Another way to add a summary line is to define a summary member that combines the displayed members. See “Adding
a Summary Member,” in the chapter “Creating and Using Calculated Measures and Members.”

58 Using InterSystems MDX

Adding Summaries

9
Creating Calculated Measures and
Members

This chapter describes how to create and use calculated measures and members. It discusses the following topics:

• Overview

• How to create calculated members within a query

• MDX recipes for commonly needed calculated measures

• MDX recipes for commonly needed non-measure members

Note: Your cubes might contain additional calculated members that you can use in all queries; see Defining Models for
InterSystems Business Intelligence.

Also see “Accessing the Samples Shown in This Book,” in the first chapter.

9.1 Overview of Calculated Measures and Members
In MDX, you can create a calculated member, which is a member based on other members. You can define two kinds of
calculated members: ones that are measures and ones that are not. (Remember that a measure is considered to be a member
of the MEASURES dimension.)

• A calculated measure is based on other measures. For example, one measure might be defined as a second measure
divided by a third measure.

The phrase calculated measure is not a standard MDX phrase. This book uses the phrase for brevity.

• A non-measure calculated member typically aggregates together other non-measure members. Like other non-measure
members, this calculated member is a group of records in the fact table.

For example, suppose member A refers to 150 records in the fact table, and member B refers to 300 records in the fact
table. Suppose that you create a member C that aggregates A and B together. Then member C refers to the relevant
450 records in the fact table.

Using InterSystems MDX 59

9.2 Creating a Calculated Member
To create one or more calculated members within a query, use syntax as follows:

WITH with_clause1 with_clause2 ... SELECT query_details

Tip: Notice that you do not include commas between the clauses.

Where:

• Each expression with_clause1, with_clause2, and so on has the following syntax:

MEMBER MEASURES.[new_measure_name] AS 'value_expression'

Later sections of this chapter discuss value_expression.

• query_details is your MDX query.

Then your query can refer the calculated member by name in all the places where you can use other members.

For example:

WITH MEMBER MEASURES.avgage AS 'MEASURES.[age]/MEASURES.[%COUNT]'
SELECT MEASURES.avgage ON 0, diagd.diagnoses.members ON 1 FROM demomdx

 avgage
1 None 33.24
2 asthma 34.79
3 CHD 67.49
4 diabetes 57.24
5 osteoporosis 79.46

Note: This calculated member is a query-scoped calculated member; its scope is the query. For information on session-
scoped calculated members, see “CREATE MEMBER Statement,” in the InterSystems MDX Reference.

9.3 MDX Recipes for Calculated Measures
This section describes how to create MDX expressions for some commonly needed calculated measures:

• General combinations of other measures

• Percentages of aggregate values

• Count of distinct members

• Semi-additive measures

• Filtered measures

• Measures that refer to other time periods

• Measures that refer to other cells in a pivot table

9.3.1 Combinations of Other Measures

For a calculated measure, the value expression often has the form of a mathematical formula that combines measure
expressions. For example:

60 Using InterSystems MDX

Creating Calculated Measures and Members

(MEASURES.[measure A] + MEASURES.[measure B]) * 100

Or:

(MEASURES.[measure A] + MEASURES.[measure B])/MEASURES.[measure C]

More formally, in this expression, you can use the following elements:

• References to measures.

• Numeric literals. For example: 37

• Percentage literals. For example: 10%

There must be no space between the number and the percent sign.

• Mathematical operators. InterSystems IRIS Business Intelligence supports the standard mathematical operators: +
(addition), - (subtraction), / (division), and * (multiplication). It also supports the standard unary operators: + (positive)
and - (negative).

You can also use parentheses to control precedence.

For example: MEASURES.[%COUNT] / 100

• MDX functions that return numeric values, such as AVG, MAX, COUNT, and others.

In addition to the functions already discussed, Business Intelligence supports several scalar functions: SQRT, LOG,
and POWER.

Tip: The MDX function IIF is often useful in such expressions. It evaluates a condition and returns one of two values,
depending on the condition. You can use this to avoid dividing by zero, for example.

9.3.2 Percentages of Aggregate Values

It is often necessary to calculate percentages of the total record count or percentages of other aggregate values. In such
cases, you can use the %MDX function, which is an InterSystems extension. This function executes an MDX query, which
should return a single value, and returns that value, which is unaffected by the context in which you execute the function.
This means that you can calculate percentages with measures defined by value expressions like this:

100 * MEASURES.[measure A] / %MDX("SELECT FROM mycube")

For example:

WITH MEMBER MEASURES.PercentOfAll AS '100 * MEASURES.[%COUNT]/%MDX("SELECT FROM demomdx")'
SELECT MEASURES.PercentOfAll ON 0, diagd.MEMBERS ON 1 FROM demomdx

 PercentOfAll
1 None 84.56
2 asthma 6.85
3 CHD 3.18
4 diabetes 4.89
5 osteoporosis 2.21

9.3.3 Distinct Member Count

In some cases, for a given cell, you want to count the number of distinct members of some particular level. For example,
the DocD dimension includes the level Doctor. We could count the number of unique doctors who are primary care
physicians for any given set of patients. To do so, we define a calculated measure that uses the following value_expression:

COUNT([docd].[h1].[doctor].MEMBERS,EXCLUDEEMPTY)

We can use this measure in a query as follows:

Using InterSystems MDX 61

MDX Recipes for Calculated Measures

WITH MEMBER MEASURES.[distinct doctor count] AS 'COUNT(docd.doctor.MEMBERS,EXCLUDEEMPTY)'
SELECT MEASURES.[distinct doctor count] ON 0, aged.[age bucket].MEMBERS ON 1 FROM demomdx

 distinct doctor co
1 0 to 9 38
2 10 to 19 38
3 20 to 29 38
4 30 to 39 40
5 40 to 49 41
6 50 to 59 40
7 60 to 69 33
8 70 to 79 31
9 80+ 28

9.3.4 Semi-Additive Measures

A semi-additive measure is a measure that is aggregated across most but not all dimensions. For example, customers’ bank
balances cannot be added across time, because a bank balance is a snapshot in time. To create such measures, you can use
the %LAST function, an InterSystems extension to MDX.

Consider the following measures:

• Balance is based on the source property CurrentBalance and is aggregated by summing.

You would avoid aggregating this measure over time, because it would give incorrect results; that is, you should use
this measure only in pivot tables that include a time level for rows or columns.

• Transactions is based on the source property TxCount and is aggregated by summing.

You can define a calculated measure called LastBalance and use the following value_expression:

%LAST(Date.Day.Members,Measures.Balance)

The %LAST function returns the last non-missing value for a measure evaluated for each member of the given set. In this
case, it finds the last day that has a value and returns that value.

9.3.5 Filtered Measures (Tuple Measures)

A normal measure considers all records in the fact table for which the source value is not null. In some cases, you may
want to define a filtered measure, which has the following behavior:

• The measure is null for certain records.

• For the other records, the measure has a value.

For a filtered measure (also informally called a tuple measure), use a value_expression like the following:

([MEASURES].[my measure],[DIMD].[HIER].[LEVEL].[member name])

In this case, value_expression is a tuple expression where:

• [MEASURES].[my measure] is the measure to use as a basis.

• [DIMD].[HIER].[LEVEL].[member name] is the member for which the measure value should be non-null.

For example, the Avg Test Score measure is the average test score considering all patients who have a non-null value
for the test. Suppose that in addition to the Avg Test Score measure, your customers would like to see another column
that just shows the average test scores for patients with coronary heart disease (the CHD diagnosis). That is, the customers
would like to have the measure Avg Test Score - CHD. In this case, you can create a calculated measure that has the
following value_expression:

(MEASURES.[avg test score],diagd.h1.diagnoses.chd)

62 Using InterSystems MDX

Creating Calculated Measures and Members

For example:

WITH MEMBER MEASURES.[avg test score - chd] AS
'(MEASURES.[avg test score],diagd.h1.diagnoses.chd)'
SELECT MEASURES.[avg test score - chd] ON 0, aged.[age bucket].MEMBERS ON 1 FROM demomdx

 avg test score - c
1 0 to 9 *
2 10 to 19 *
3 20 to 29 *
4 30 to 39 *
5 40 to 49 78.00
6 50 to 59 75.75
7 60 to 69 80.71
8 70 to 79 83.33
9 80+ 55.25

9.3.6 Measures for Another Time Period

It is often useful to view the value of a given measure for an earlier time period, while viewing a later time period. As an
example, you can define a calculated measure called UnitsSoldPreviousPeriod and use the following value_expression:

([DateOfsale].[Actual].CurrentMember.PrevMember ,MEASURES.[units sold])

Because of how this measure is defined, it is meaningful only if you use the DateOfSale dimension on the other axis of the
query. For example:

WITH MEMBER [MEASURES].[UnitsSoldPreviousPeriod] AS
'([DateOfsale].[Actual].CurrentMember.PrevMember ,MEASURES.[units sold])'
SELECT {[Measures].[Units Sold],[MEASURES].[UNITSSOLDPREVIOUSPERIOD]} ON 0,
[DateOfSale].[Actual].[MonthSold].Members ON 1 FROM [HoleFoods]

 Units Sold DateOfSale
 1 Jan-2009 15 *
 2 Feb-2009 10 15
 3 Mar-2009 13 10
 4 Apr-2009 15 13
 5 May-2009 22 15
...

Notice that the caption of the second column is based on the dimension used within the value expression, rather than the
name of the calculated member that we defined. We can use the %LABEL function to provide a more suitable caption. For
example:

WITH MEMBER [MEASURES].[UnitsSoldPreviousPeriod] AS
'([DateOfsale].[Actual].CurrentMember.PrevMember ,MEASURES.[units sold])'
SELECT {[Measures].[Units Sold],%LABEL([MEASURES].[UNITSSOLDPREVIOUSPERIOD],"Units (Prv Pd)","")} ON
0,
[DateOfSale].[Actual].[MonthSold].Members ON 1 FROM [HoleFoods]

 Units Sold Units (Prv Pd)
 1 Jan-2009 15 *
 2 Feb-2009 10 15
 3 Mar-2009 13 10
 4 Apr-2009 15 13
 5 May-2009 22 15
 6 Jun-2009 17 22
 7 Jul-2009 24 17
 8 Aug-2009 30 24
...

These examples use a time-based level, because this kind of analysis is common for time levels. You can, however, use
the same technique for data levels.

9.3.7 Measures That Refer to Other Cells

It is often useful to refer to the value in a different cell of the pivot table. To do so, you can use the %CELL and %CELLZERO
functions. Each of these functions returns the value of another cell of the pivot table, by position. If the given call has no
value, %CELL returns null; in contrast, %CELLZERO returns zero.

Using InterSystems MDX 63

MDX Recipes for Calculated Measures

These functions have many uses. For one example, you can use %CELL to calculate a running total (in this case, the
cumulative inches of rainfall):

SELECT {MEASURES.[Rainfall Inches],%CELL(-1,0)+%CELL(0,-1)} ON 0, {dated.year.1960:1970} ON 1 FROM
cityrainfall

 Rainfall Inches Expression
 1 1960 177.83 177.83
 2 1961 173.42 351.25
 3 1962 168.11 519.36
 4 1963 188.30 707.66
 5 1964 167.58 875.24
 6 1965 175.23 1,050.47
 7 1966 182.50 1,232.97
 8 1967 154.44 1,387.41
 9 1968 163.97 1,551.38
10 1969 184.84 1,736.22
11 1970 178.31 1,914.53

9.4 MDX Recipes for Non-Measure Calculated Members
This section provides recipes for non-measure calculated members for some common scenarios:

• Age members

• Members that combine a hardcoded set of members

• Members that combine members specified in a term list

• Members that combine ranges of dates

• Members that intersect other members

9.4.1 Defining Age Members

It is often useful to have members that group records by age. To define such members, use an existing time level and the
special NOW member. For example, consider the MonthSold level in the HoleFoods sample. You could define a calculated
member named 3 Months Ago with the following value_expression:

[dateofsale].[actual].[monthsold].[now-3]

For example:

WITH MEMBER CalcD.[3 months ago] as '[dateofsale].[actual].[monthsold].[now-3]'
SELECT calcd.[3 months ago] ON 0, {MEASURES.[units sold], MEASURES.target} ON1 FROM holefoods

 3 months ago
1 Units Sold 37
2 Target 254.00

9.4.2 Defining a Hardcoded Combination of Members

In many cases, it is useful to define a coarser grouping that combines multiple members of the same level. To do so, create
a non-measure calculated member that has a value_expression of the following form:

%OR({member_expression, member_expression,...})

For example:

%OR({colord.red,colord.blue,colord.yellow})

64 Using InterSystems MDX

Creating Calculated Measures and Members

Each non-measure member refers to a set of records. When you create a member that uses the %OR function, you create
a new member that refers to all the records that its component members use.

For example:

WITH MEMBER CalcD.[primary colors] as '%OR({colord.red,colord.blue,colord.yellow})'
SELECT calcd.[primary colors] ON 0,
{MEASURES.[%COUNT], MEASURES.[avg test score]} ON 1 FROM demomdx

9.4.3 Defining a Combination of Members Defined by a Term List

Term lists provide a way to customize a Business Intelligence model without programming. A term list is a simple (but
extendable) list of key and value pairs. You can use term lists in the multiple ways; one is to build a set of members, typically
for use in a filter.

In this case, you use the %TERMLIST function and the %OR function; create a non-measure calculated member that has
a value_expression of the following form:

%OR(%TERMLIST(term_list_name))

Where term_list_name is a string that evaluates to the name of a term list.

For example:

%OR(%TERMLIST("My Term List"))

This expression refers to all records that belong to any of the members indicated by the term list (recall that %OR combines
the members into a single member).

The %TERMLIST function has an optional second argument; if you specify "EXCLUDE" for this argument, the function
returns the set of all members of the level that are not in the term list.

9.4.4 Aggregating Ranges of Dates

Another useful form uses a range of members aggregated by %OR:

%OR(member_expression_1:member_expression_n)

The expression member_expression_1:member_expression_n returns all members from member_expression_1
to member_expression_n, inclusive. This form is particularly useful with time levels, because you can use it to express
a range of dates in a compact form.

For time levels, you can also use the special NOW member. The following expression aggregates sales records from 90
days ago through today:

%OR(DateOfSale.DaySold.[NOW-90]:DateOfSale.DaySold.[NOW])

Or use the following equivalent form:

%OR(DateOfSale.DaySold.[NOW-90]:[NOW])

You can also use the PERIODSTODATE function to get a range of dates. For example, the following expression gets the
range of days from the start of the current year to today and aggregates these days together:

%OR(PERIODSTODATE(DateOfSale.YearSold,DateOfSale.DaySold.[NOW]))

Using InterSystems MDX 65

MDX Recipes for Non-Measure Calculated Members

9.4.5 Defining a Member as an Intersection of Other Members

In some cases, typically when you define a filter, it is useful to define a member that is an intersection of members. Suppose
that you need a filter like the following (which does not show literal syntax):

Status = "discharged" and ERvisit = "yes" and PatientClass="infant"

Also suppose that you need to use this filter in many places.

Rather than defining the filter expression repeatedly, you could define and use a calculated member. For this calculated
member, specify Expression as follows:

%OR({member_expression,member_expression,...}

For example:

%OR({birthd.year.NOW,allersevd.[003 LIFE-THREATENING]}

The expression (birthd.year.NOW,allersevd.[003 LIFE-THREATENING]) is a tuple expression, which is the
intersection of the member birthd.year.NOW and the member allersevd.[003 LIFE-THREATENING] — that is,
all patients who were born in the current year and who have a life-threatening allergy.

66 Using InterSystems MDX

Creating Calculated Measures and Members

	Table of Contents
	About This Book
	1 Background
	1.1 Purpose of Business Intelligence
	1.2 Introduction to Pivot Tables
	1.3 Introduction to MDX
	1.3.1 MDX in Business Intelligence Models

	1.4 Accessing the Samples Shown in This Book

	2 Introduction to MDX Queries
	2.1 Contents of the DemoMDX Cube
	2.2 The Simplest Query
	2.3 Members
	2.4 Measures
	2.5 Referring to Members and Measures
	2.6 Simple MDX Queries with %COUNT
	2.6.1 Axis Skipping

	2.7 Sets
	2.7.1 Examples

	2.8 Displaying Measures
	2.9 Including a Simple Filter in the Query
	2.10 Understanding the Contents of the MDX Results
	2.10.1 Notes on Independence of Query Axes

	2.11 Business Intelligence Name Resolution
	2.11.1 Nonexistent Members
	2.11.2 Typographical Errors

	2.12 Conventions Used in Remainder of the Book

	3 Working with Levels
	3.1 Overview of Levels
	3.1.1 Possible Member Overlap
	3.1.2 Null Values and Null Members
	3.1.3 Hierarchies

	3.2 Accessing Single Members of a Level
	3.2.1 Member Names
	3.2.2 Member Keys

	3.3 Accessing Multiple Members of a Level
	3.4 Order of Members in a Level
	3.5 Selecting a Level Member by Relative Position
	3.6 Introduction to Time Levels
	3.7 Special Features for Use with Time Levels
	3.7.1 Selecting a Member Relative to Today (Time Levels)
	3.7.2 Selecting Ranges of Members of a Time Level

	3.8 Accessing Properties
	3.8.1 Properties As String Expressions
	3.8.2 Properties and Attributes

	4 Working with Dimensions and Hierarchies
	4.1 Introduction to Dimensions and Hierarchies
	4.1.1 The Measures Dimension
	4.1.2 The All Level
	4.1.3 Example

	4.2 Accessing the Members of a Hierarchy
	4.3 Using Parent-Child Relationships
	4.4 Accessing Siblings
	4.5 Accessing Cousins
	4.6 Accessing Descendant Members
	4.7 Accessing the Current Member within an Iteration

	5 Working with Sets
	5.1 Introduction to Sets
	5.2 Creating Set Expressions
	5.3 Creating Named Sets
	5.4 Order of Members in a Set
	5.5 Selecting Subsets
	5.6 Sorting Sets
	5.6.1 Sorting a Set by a Measure Value
	5.6.2 Selecting a Top or Bottom Subset
	5.6.3 Applying Hierarchical Order

	5.7 Combining Sets
	5.8 Filtering a Set by a Measure or Property Value
	5.9 Removing Null Elements from a Set
	5.10 Removing Duplicates
	5.11 Counting the Elements of a Set

	6 Tuples and Cubes
	6.1 Introduction to Tuples
	6.1.1 Creating Tuples
	6.1.2 Fully and Partially Qualified Tuples
	6.1.3 Sets of Tuples

	6.2 Tuple Values
	6.3 Example Tuple Expressions
	6.4 Using Sets of Tuples as Axes of a Query
	6.5 Introduction to Cubes
	6.6 Higher Levels and a Cube Dimension
	6.7 Multiple Hierarchies in a Cube Dimension

	7 Filtering a Query
	7.1 Introduction to the WHERE Clause
	7.1.1 Using a Set in the WHERE Clause
	7.1.2 Using Tuples in the WHERE Clause

	7.2 The %NOT Optimization
	7.3 The %OR Optimization

	8 Adding Summaries
	8.1 Introduction to Summary Functions
	8.2 Adding a Summary Line

	9 Creating Calculated Measures and Members
	9.1 Overview of Calculated Measures and Members
	9.2 Creating a Calculated Member
	9.3 MDX Recipes for Calculated Measures
	9.3.1 Combinations of Other Measures
	9.3.2 Percentages of Aggregate Values
	9.3.3 Distinct Member Count
	9.3.4 Semi-Additive Measures
	9.3.5 Filtered Measures (Tuple Measures)
	9.3.6 Measures for Another Time Period
	9.3.7 Measures That Refer to Other Cells

	9.4 MDX Recipes for Non-Measure Calculated Members
	9.4.1 Defining Age Members
	9.4.2 Defining a Hardcoded Combination of Members
	9.4.3 Defining a Combination of Members Defined by a Term List
	9.4.4 Aggregating Ranges of Dates
	9.4.5 Defining a Member as an Intersection of Other Members

	Index

