
Advanced Modeling for
InterSystems IRIS Business

Intelligence

Version 2019.4
2020-01-28

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Advanced Modeling for InterSystems IRIS Business Intelligence
InterSystems IRIS Data Platform Version 2019.4 2020-01-28
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1
Accessing the Samples Shown in This Book ... 2

1 Defining Computed Dimensions .. 3
1.1 Defining SQL Computed Dimensions ... 3

1.1.1 Example Computed Dimensions .. 3
1.1.2 Defining a SQL Computed Dimension .. 4
1.1.3 A Closer Look at the Example ... 5
1.1.4 Variations for spec .. 6

1.2 Defining MDX Computed Dimensions .. 7
1.2.1 Defining an MDX Computed Dimension .. 7
1.2.2 %OnGetComputedMembers() ... 8

2 Defining Shared Dimensions and Compound Cubes .. 9
2.1 Overview .. 9

2.1.1 Shared Dimensions .. 9
2.1.2 Compound Cubes ... 10

2.2 Defining a Formally Shared Dimension ... 11
2.3 Defining an Informally Shared Dimension .. 12

2.3.1 Examples .. 13
2.4 Defining Compound Cubes .. 13

2.4.1 Detail Listings for Compound Cubes ... 14
2.4.2 Example Compound Cube ... 14

3 Defining Cube-Cube Relationships ... 17
3.1 Overview of Relationships ... 17

3.1.1 A Look at a One-Way Relationship ... 18
3.1.2 A Look at a Two-Way Relationship ... 19

3.2 Defining a One-Way Relationship ... 21
3.3 Defining a Two-Way Relationship ... 22
3.4 Building Cubes That Have Relationships ... 24

3.4.1 Determining the Build Order for Related Cubes ... 24
3.4.2 Errors If You Build Related Cubes in the Wrong Order ... 25

3.5 Using Model Browser .. 25
3.6 Removing Relationships ... 26

4 Using Text Analytics in Cubes ... 27
4.1 Overview of Integration with Text Analytics ... 27

4.1.1 Terminology ... 28
4.1.2 About NLP (Natural Language Processing) Measures and Dimensions 28
4.1.3 Generated Text Analytics Domains .. 29

4.2 Setting Up the Aviation Events Demo .. 29
4.2.1 Sample Dashboard ... 29
4.2.2 A Closer Look at the Aviation Cubes ... 30

4.3 Defining an NLP measure .. 31
4.3.1 Alternative Technique: Using an Existing Text Analytics Domain 32
4.3.2 Alternative Technique: Retrieving Unstructured Text from Elsewhere 32

4.4 Loading and Updating Dictionaries ... 34
4.4.1 Loading Dictionaries .. 34

Advanced Modeling for InterSystems IRIS Business Intelligence iii

4.4.2 Updating Dictionaries .. 35
4.5 Defining an Entity Dimension .. 35
4.6 Defining a Dictionary Dimension .. 36
4.7 Adding Member Overrides to an Item Level .. 38
4.8 Adding Measures That Use Plug-ins .. 38

4.8.1 Adding Measures to Quantify Entity Occurrences .. 38
4.8.2 Adding Measures to Quantify Matching Results ... 39

4.9 Including Text Analytics Results in Listings .. 39
4.9.1 Including a Text Analytics Summary Field in a Listing ... 39
4.9.2 Including a Link from a Listing to the Full Unstructured Text 40
4.9.3 Creating a Specialized Listing for Use in Content Analysis Plug-in 40

4.10 Text Analytics Domain Management ... 41
4.11 Advanced Topics ... 41

4.11.1 Specifying Text Analytics Domain Parameters for a Measure 41
4.11.2 Loading Black Lists ... 42
4.11.3 Updating Black Lists .. 42

4.12 When the NLP Updates Occur ... 42

5 Defining Term Lists .. 45
5.1 Overview of Term Lists .. 45
5.2 Accessing the Term List Manager .. 46
5.3 Defining a Term List .. 46
5.4 Specifying the Pattern for a Term List ... 47
5.5 Exporting and Importing Term Lists .. 47

5.5.1 Exporting a Term List .. 48
5.5.2 Sample Term List File .. 48
5.5.3 Importing a Term List .. 48

5.6 Deleting a Term List ... 48
5.7 Accessing Term Lists Programmatically .. 49

6 Defining Worksheets ... 51

7 Defining Quality Measures .. 53
7.1 Overview of Quality Measures ... 53
7.2 Introduction to the Quality Measure Manager ... 54
7.3 Creating a Quality Measure .. 55
7.4 Specifying the Expression for a Quality Measure .. 56

7.4.1 Allowed MDX Expressions .. 58
7.4.2 How Groups and Elements Are Combined .. 58

7.5 Editing Other Information for a Quality Measure .. 59
7.6 Defining a Linked Quality Measure (Quality Measure Alias) ... 59
7.7 Checking the Expression for a Quality Measure .. 60
7.8 Deleting a Quality Measure .. 61

8 Defining Basic KPIs .. 63
8.1 Introduction to KPIs ... 63

8.1.1 Ways to Use KPIs ... 63
8.1.2 Comparison to Pivot Tables ... 64
8.1.3 Requirements for KPI Queries ... 64

8.2 Choosing Between MDX and SQL .. 64
8.3 Structure of a KPI Result Set ... 65
8.4 Defining a KPI with a Hardcoded Query ... 65
8.5 Specifying Class Parameters .. 68

iv Advanced Modeling for InterSystems IRIS Business Intelligence

8.6 Specifying Ranges and Thresholds for Speedometers ... 69
8.7 Disabling the %CONTEXT Filter .. 70

9 Defining KPIs with Filters and Listings ... 71
9.1 Introduction to Filters ... 71
9.2 Creating Interoperable Filters ... 72

9.2.1 Filter Syntax for Pivot Tables ... 72
9.2.2 Ways to Create Interoperable Filters .. 73

9.3 Defining Filters in an MDX-Based KPI ... 73
9.3.1 %OnGetFilterMembers() Details ... 74
9.3.2 %GetMembersForFilter() Details .. 75

9.4 Defining Filters in an SQL-Based KPI .. 75
9.5 Other Options for Defining Filter Names and Items .. 76

9.5.1 Specifying the Filter Names at Runtime .. 76
9.5.2 Hardcoding the List of Filter Items via the valueList Attribute 77
9.5.3 Retrieving the List of Filter Items via the sql Attribute ... 77
9.5.4 Using Custom Logic to Build the List of Filter Items at Runtime 77

9.6 Modifying an MDX Query to Use Filter Values .. 78
9.6.1 Accessing Filter Values .. 79
9.6.2 Converting Filter Values to MDX Expressions for Use in %FILTER 80
9.6.3 Example ... 80

9.7 Modifying an SQL Query to Use Filter Values .. 81
9.7.1 %GetSQLForFilter() .. 81
9.7.2 SQL KPI Example 1 .. 82
9.7.3 SQL KPI Example 2 .. 82

9.8 Additional MDX KPI Examples .. 83
9.8.1 DemoMDXAutoFilters KPI ... 83
9.8.2 DemoInteroperability KPI .. 84

9.9 Defining a Listing for a KPI ... 85
9.9.1 Example ... 86

10 Defining Advanced KPIs .. 87
10.1 Defining Manual KPIs ... 87

10.1.1 Available Properties .. 87
10.1.2 Overriding KPI Properties .. 88
10.1.3 Defining a Manual Query .. 88

10.2 Defining Cacheable KPIs ... 89
10.3 Defining Asynchronous KPIs ... 90

11 Defining Plug-ins .. 91
11.1 Introduction .. 91

11.1.1 How Plug-ins Can Be Used .. 92
11.1.2 Available Plug-in Classes ... 92
11.1.3 Samples That Demonstrate Plug-ins .. 92

11.2 Requirements for a Simple Plug-in .. 93
11.3 Implementing %OnCompute() ... 94
11.4 Indicating State of Completion .. 95
11.5 Creating a Plug-in for Multiple Cubes ... 95

11.5.1 Determining the Listing Fields Programmatically ... 96
11.6 Filtering the Listing .. 97

11.6.1 Example ... 97
11.7 Available Error Logging ... 98

Advanced Modeling for InterSystems IRIS Business Intelligence v

11.8 Defining a Calculated Member That Uses a Plug-in .. 98

12 Using Cube Inheritance ... 99
12.1 Introduction to Cube Inheritance .. 99
12.2 Cube Inheritance and the Architect .. 100

12.2.1 Redefining an Inherited Element ... 100
12.2.2 Removing an Override ... 100
12.2.3 Adding a Local Element ... 100

12.3 The %cube Shortcut ... 100
12.4 Hiding or Removing Items ... 101
12.5 Inheritance and Relationships .. 101

13 Defining Intermediate Expressions ... 103
13.1 Defining and Using Intermediate Expressions in Studio ... 103

13.1.1 Example ... 104
13.2 Defining Intermediate Expressions in Architect .. 105

14 Other Options ... 107
14.1 Specifying maxFacts in the Cube Definition ... 107
14.2 Restricting the Records Used in the Cube .. 108

14.2.1 %OnProcessFact() Callback ... 108
14.3 Manually Specifying the Members for a Level .. 109

14.3.1 XML Reserved Characters ... 110
14.4 Adding Custom Indices to the Fact Table ... 110
14.5 Customizing Other Cube Callbacks ... 110

14.5.1 %OnAfterProcessFact() Callback .. 111
14.5.2 %OnGetDefaultListing() Callback ... 111
14.5.3 %OnExecuteListing() Callback ... 111
14.5.4 %OnAfterBuildCube() Callback .. 111

14.6 Filtering a Cube or Subject Area Dynamically .. 112

Appendix A: Reference Information for KPI and Plug-in Classes ... 113
A.1 Basic Requirements ... 113
A.2 Common Attributes in a KPI or Plug-in .. 114
A.3 <kpi> ... 114
A.4 <property> ... 115
A.5 <filter> ... 115
A.6 <action> ... 116

Appendix B: Generating Secondary Cubes for Use with Text Analytics 117
B.1 Entity Occurrence Cube ... 117
B.2 Matching Results Cube .. 118

vi Advanced Modeling for InterSystems IRIS Business Intelligence

About This Book

This book describes, for developers, how to use the more advanced and less common InterSystems IRIS Business Intelligence
modeling features: computed dimensions, unstructured data in cubes, compound cubes, cube relationships, term lists,
quality measures, KPIs, plug-ins, and other advanced options. It includes the following sections:

• Defining Computed Dimensions

• Defining Shared Dimensions and Compound Cubes

• Defining Cube-Cube Relationships

• Using Text Analytics in Cubes

• Defining Term Lists

• Defining Quality Measures

• Defining Basic KPIs

• Defining KPIs with Filters and Listings

• Defining Advanced KPIs

• Defining Plug-ins

• Using Cube Inheritance

• Defining Intermediate Expressions

• Other Options

• Reference Information for KPI and Plug-in Classes

• Generating Secondary Cubes for Use with Text Analytics

For a detailed outline, see the table of contents.

The other developer books for Business Intelligence are as follows:

• Introduction to InterSystems Business Intelligence briefly introduces Business Intelligence and the tools that it provides.

• Developer Tutorial for InterSystems Business Intelligence guides developers through the process of creating a sample
that consists of a cube, subject areas, pivot tables, and dashboards.

• Defining Models for InterSystems Business Intelligence describes how to define the basic elements used in Business
Intelligence queries: cubes and subject areas. It also describes how to define listing groups.

• Implementing InterSystems Business Intelligence describes how to implement Business Intelligence, apart from creating
the model.

• Using InterSystems MDX introduces MDX and describes how to write MDX queries manually for use with cubes.

• InterSystems MDX Reference provides reference information on MDX as supported by Business Intelligence.

• Client-Side APIs for InterSystems Business Intelligence provides information on the Business Intelligence JavaScript
and REST APIs, which you can use to create web clients for your Business Intelligence applications.

The following books are for both developers and users:

• Using Dashboards and the User Portal describes how to use the Business Intelligence User Portal and dashboards.

Advanced Modeling for InterSystems IRIS Business Intelligence 1

• Creating Dashboards describes how to create and modify dashboards in Business Intelligence.

• Using the Analyzer describes how to create and modify pivot tables, as well as use the Analyzer in general.

Also see the article Using PMML Models in InterSystems IRIS®.

Accessing the Samples Shown in This Book
Most of the samples in this book are part of the Samples-BI sample (https://github.com/intersystems/Samples-BI) or the
Samples-Aviation sample (https://github.com/intersystems/Samples-Aviation).

InterSystems recommends that you create a dedicated namespace called SAMPLES (for example) and load samples into
that namespace. For the general process, see Downloading Samples for Use with InterSystems IRIS.

2 Advanced Modeling for InterSystems IRIS Business Intelligence

About This Book

https://github.com/intersystems/Samples-BI
https://github.com/intersystems/Samples-Aviation

1
Defining Computed Dimensions

Computed dimensions are a powerful but advanced InterSystems IRIS Business Intelligence model option that enable you
to define members at runtime via queries. This chapter describes how to define them. It discusses the following topics:

• How to define SQL computed dimensions

• How to define MDX computed dimensions

For a comparison of computed dimensions with more basic Business Intelligence model elements, see the chapter “Summary
of Model Options” in Defining Models for InterSystems Business Intelligence.

Important: Computed dimensions do not have any association with calculated members. A computed dimension is
specific to Business Intelligence. A calculated member is a standard concept in MDX.

1.1 Defining SQL Computed Dimensions
An SQL computed dimension contains members that are determined at runtime by SQL queries. You specify the query for
each member.

Note: The null replacement option does not have any effect on computed dimensions.

1.1.1 Example Computed Dimensions

The Patients cube includes the ComputedD dimension, which defines two members (member 1 and member 2); each
of these members is defined by an SQL query that retrieves the IDs of specific patients. The following shows these members
as seen in the left area of the Analyzer:

You can use this dimension, the Computed level, and the members in the same way that you use other elements of the
cube.

Similarly, the HoleFoods cube includes the Comments dimension, which defines two members: Complaints and
Compliments. These members are also defined by SQL queries.

Advanced Modeling for InterSystems IRIS Business Intelligence 3

1.1.2 Defining a SQL Computed Dimension

You can use the following procedure to define a SQL computed dimension fairly easily:

1. Use the Architect to add a dimension, hierarchy, and level with the names you want.

It does not matter what type of dimension you choose, because you will change that later.

Do not specify a source property or source expression.

This step creates a shell that you can easily edit in Studio. Also, the Architect initializes the display names to be the
same as the names, which is convenient.

2. In Studio, open the cube class.

3. Modify the <dimension> element that corresponds to the computed dimension. Make the following changes:

• Edit the type attribute to be as follows:

type="computed"

• Add either of the following to the <dimension> element:

dimensionClass="SQL"
dimensionClass="%DeepSee.ComputedDimension.SQL

The dimensionClass attribute refers to a helper class. If you do not specify a full package and class name, the
system assumes that this class is in the package %DeepSee.ComputedDimension. The class
%DeepSee.ComputedDimension.SQL is the helper class for SQL-based computed dimensions. Other types of
computed dimensions are beyond the scope of this documentation.

For example:

<dimension name="New Computed Dimension" displayName="New Computed Dimension"
 disabled="false"
 hasAll="false"
 type="computed"
 dimensionClass="SQL" >

The lines are not broken in this way by default; line breaks are added here to make the example easier to read.

4. Find the section that defines the level:

<level name="New Computed Level" displayName="New Computed Level"
 disabled="false"
 list="false"
 useDisplayValue="true">
</level>

5. Just before the </level> line, add a line like the following:

<member name="" displayName="" spec="" />

Edit this as follows:

4 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining Computed Dimensions

ValueAttribute

Name of this member.name

Optional display name of this member.displayName

Optional text to display as a tooltip in the Analyzer, in the left area.description

SQL SELECT query that returns the IDs of one or more records of the fact table
used by this cube. To refer to the fact table, you can use either the token $$$TABLE
or the full table name. For details on the fact table, see “Details for the Fact and
Dimension Tables ” in Defining Models for InterSystems Business Intelligence. Also
see “Variations for spec, ” later in this chapter.

spec

For example:

member name="example member 1" displayName="member 1"
spec="select ID from BI_Model_PatientsCube.Fact WHERE MxAge<50 AND DxHomeCity->DxHomeCity='Elm
 Heights'" />

In any of these attributes, you cannot use XML reserved characters. For substitutions, see “XML Reserved Characters.”

6. Add other <member> elements as needed.

The order of these elements determines the default sort order of the corresponding members.

7. Save and recompile the class.

As soon as you do so, the new dimension and its members are available for use.

1.1.3 A Closer Look at the Example

In the Patients cube, the ComputedD dimension contains the following members:

• member 1 is defined by the following SQL query:

select ID from BI_Model_PatientsCube.Fact WHERE MxAge<50 AND DxHomeCity->DxHomeCity='Elm Heights'

This query uses the fact table for the cube; for details, see “Details for the Fact and Dimension Tables” in Defining
Models for InterSystems Business Intelligence.

• member 2 is defined by the following SQL query:

select ID from $$$TABLE WHERE MxAge=40 AND DxHomeCity->DxHomeCity='Juniper'

This query uses $$$TABLE, which is replaced by the actual name of the fact table. Unlike the previous query, this
query is not valid in the Management Portal, which does not have information to convert the $$$TABLE token.

The following pivot table shows these members:

For example, in this case member 1 consists of 801 patients whose average age is 24.50 years.

Advanced Modeling for InterSystems IRIS Business Intelligence 5

Defining SQL Computed Dimensions

1.1.4 Variations for spec

The following variations are possible for spec:

• The query can instead refer to the base class of the cube, if that class has indices that are appropriate for the query. The
IDs for that class are identical to the IDs used in the fact table.

This is helpful in cases when you want a dimension to reflect frequently changing groups and you want to avoid
rebuilding or synchronizing the cube.

• As shorthand, you can use a WHERE clause instead of a SELECT statement. In this case, the system generates a
SELECT statement that uses your WHERE clause; this statement selects IDs from the fact table.

For an example, see the members in the By Industry level in the example computed dimension later in this section.

• As shorthand, you can refer to a field in the fact table via the token $$$FACT. To do so, in the level, specify the
factName attribute as the name of that field. For example:

<level name="By Allergy Count" factName="Mx1968652733I" >

Then in the SELECT statement (or the WHERE clause), use $$$FACT to refer to this field. Be sure to include spaces
around this token so that the system parses it appropriately.

For an example, see the members in the By Allergy Count level in the example computed dimension later in this
section.

• Instead of using a SELECT statement or a WHERE clause, you can a CALL statement that calls a stored procedure.
For example:

spec="CALL MyStoredProcedure()"

For the stored procedure, be sure to specify both of the method keywords SqlProc and ReturnResultsets as true. For
example:

ClassMethod GetPatientIsDiabetic() As %Integer [ReturnResultsets, SqlProc]
{
 // Note that %sqlcontext is created when SQLPROC is defined
 Try {
 Set rc = 1

 Set sql = "SELECT f.id id FROM HSAA_PatientCurrentConditionsCube.Fact f, HSAA.Diagnosis d
 "
 _" WHERE d.Patient = f.%sourceid and d.Diagnosisgroup in ('249', '250', '253')"
 Set st = ##class(%SQL.Statement).%New()
 Set sc = st.%Prepare(sql)
 If ($$$ISERR(sc)) {
 Set rc = 0
 Quit
 }
 Set rs = st.%Execute()
 Do %sqlcontext.AddResultSet(rs)
 }
 Catch(ex) {
 Set %sqlcontext.%SQLCODE = ex.AsSQLCODE()
 Set %sqlcontext.%Message = ex.SQLMessageString()
 Set rc = 0
 }

 Quit rc
}

The following computed dimension works with the Patients cube. To use it, copy and paste it into the cube class and then
recompile that class.

<dimension name="Other Groups" displayName="Groups (Computed Dimension)"
 hasAll="false" type="computed" dimensionClass="SQL">
 <hierarchy name="H1">
 <level name="By Industry" >
 <member name="Retail Trade"

6 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining Computed Dimensions

 spec="WHERE DxIndustry->DxIndustry='Retail Trade'">
 </member>
 <member name="Finance and Insurance"
 spec="select ID from $$$TABLE WHERE DxIndustry->DxIndustry='Finance and Insurance'">
 </member>
 </level>
 </hierarchy>
 <hierarchy name="H2">
 <level name="By Allergy Count" factName="Mx1968652733I" >
 <member name="Highly allergic"
 spec="WHERE $$$FACT > 2">
 </member>
 <member name="Not allergic"
 spec="select ID from $$$TABLE WHERE $$$FACT = 0">
 </member>
 </level>
 </hierarchy>
</dimension>

1.2 Defining MDX Computed Dimensions
An MDX computed dimension contains members that are determined at runtime by MDX queries. You specify the query
for each member.

Note: The null replacement option does not have any effect on computed dimensions.

1.2.1 Defining an MDX Computed Dimension

You can use the following procedure to define an MDX computed dimension fairly easily:

1. Use the Architect to add a dimension, hierarchy, and level with the names you want.

It does not matter what type of dimension you choose, because you will change that later.

Do not specify a source property or source expression.

This step creates a shell that you can easily edit in Studio. Also, the Architect initializes the display names to be the
same as the names, which is convenient.

2. In Studio, open the cube class.

3. Modify the <dimension> element that corresponds to the computed dimension. Make the following changes:

• Edit the type attribute to be as follows:

type="computed"

• Add following to the <dimension> element:

dimensionClass="MDX"

The dimensionClass attribute refers to a helper class. If you do not specify a full package and class name, the
system assumes that this class is in the package %DeepSee.ComputedDimension.

For example:

<dimension name="AgeBuckets" type="computed" dimensionClass="MDX">
 <hierarchy name="H1">
 <level name="Years"/>
 </hierarchy>
</dimension>

4. Define members in either of the following ways:

Advanced Modeling for InterSystems IRIS Business Intelligence 7

Defining MDX Computed Dimensions

• As a child of <level>, add <member> elements as in the following example:

<member name="Boston" spec="[OUTLET].[CITY].[BOSTON]"/>

For an example of where to place the <member> element, see “Defining a SQL Computed Dimension.”

• Define the %OnGetComputedMembers() callback of the cube class. See the next subsection.

5. Save and recompile the cube class.

As soon as you do so, the new dimension and its members are available for use.

1.2.2 %OnGetComputedMembers()

The %OnGetComputedMembers() callback has the following signature:

ClassMethod %OnGetComputedMembers(pDimName As %String,
 pHierName As %String,
 pLevelName As %String,
 ByRef pMemberList,
 pRollupKey As %String = "",
 ByRef pRange As %String = "") As %Status

Where pDimName, pHierName, and pLevelName are the dimension, hierarchy, and level name, respectively. The method
should return, by reference, pMemberList. This is a multidimensional an array of the following form:

Array ValueArray Node

A $LISTBUILD list that defines a member of the given
level. This list must contain the following items, in
order:

pMemberList(i) where I is an integer

• The MDX expression that defines the member

• The display name of the member

• The key of the member

The following shows an example:

ClassMethod %OnGetComputedMembers(pDimName As %String, pHierName As %String, pLevelName As %String,
 ByRef pMemberList, pRollupKey As %String = "", ByRef pRange As %String = "") As %Status
{
 If (pDimName="AgeBuckets") {
 If (pLevelName="Years") {
 // $LB(MDX,Name,Key)
 Set pMemberList($I(pMemberList)) =
 $LB("%OR([DateOfSale].[Actual].[DaySold].[NOW-1y-1d]:[NOW])","1 year(s)","1")
 Set pMemberList($I(pMemberList)) =
 $LB("%OR([DateOfSale].[Actual].[DaySold].[NOW-2y-1d]:[NOW-1y])","2 year(s)","2")
 Set pMemberList($I(pMemberList)) =
 $LB("%OR([DateOfSale].[Actual].[DaySold].[NOW-3y-1d]:[NOW-2y])","3 year(s)","3")
 Set pMemberList($I(pMemberList)) =
 $LB("%OR([DateOfSale].[Actual].[DaySold].[NOW-4y-1d]:[NOW-3y])","4 year(s)","4")
 Set pMemberList($I(pMemberList)) =
 $LB("%OR([DateOfSale].[Actual].[DaySold].[NOW-5y-1d]:[NOW-4y])","5 year(s)","5")
 Set pMemberList($I(pMemberList)) =
 $LB("%OR([DateOfSale].[Actual].[DaySold].[NOW-6y-1d]:[NOW-5y])","6 year(s)","6")
 Set pMemberList($I(pMemberList)) =
 $LB("%OR([DateOfSale].[Actual].[DaySold].[NOW-7y-1d]:[NOW-6y])","7 year(s)","7")
 }
 }
 Quit $$$OK
}

8 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining Computed Dimensions

2
Defining Shared Dimensions and
Compound Cubes

This chapter describes how to define shared dimensions and compound cubes. It discusses the following topics:

• Overview

• How to define a formally shared dimension

• How to define an informally shared dimension

• How to define compound cubes

You can define compound cubes in the Architect, but for shared dimensions, you must use Studio.

For background information, see the chapter “Summary of Model Options” in Defining Models for InterSystems Business
Intelligence.

Also see “Accessing the Samples Shown in This Book,” in the preface.

2.1 Overview
This section provides an overview of shared dimensions and compound cubes.

2.1.1 Shared Dimensions

A shared dimension is a dimension that can be used in more than one cube. A shared dimension enables you to do the fol-
lowing:

• Create a dashboard that includes pivot tables from both cubes.

• On the dashboard, include a filter that uses the shared dimension.

This filter affects pivot tables from both dimensions, if the tables are configured as the target of the filter.

• Create a pivot table that uses both cubes (only if you also define a compound cube, as discussed in the next section).

Typically, dimensions based on location and time (see the note below) can be shared, even for unrelated cubes.

Advanced Modeling for InterSystems IRIS Business Intelligence 9

It might be possible to share other dimensions. For example, suppose that one cube represents transactions and another
represents the customers who own the transactions. These two cubes might have common dimensions such as customer
class, broker, and so on.

You can share dimensions in either of the following ways:

• You can share a dimension formally. In this case, the dimension is defined in one cube and is referenced in the other
(or others).

In this case, you can also define a compound cube, which combines two or more cubes, which should have formally
shared dimensions. This enables you to combine elements from different cubes in a single pivot table.

• You can share a dimension informally. In this case, each cube has its own definition of the dimension, and the cubes
are independent of each other.

In this case, you cannot use the cubes together in a compound cube. As noted above, however, you can create a dashboard
that includes pivot tables from both cubes and applies filters to both of them.

Note: Date dimensions are automatically informally shared; that is, a date dimension in one cube automatically can
affect other cubes that define a date dimension that has the same name. No work is necessary in order to share
date dimensions.

2.1.2 Compound Cubes

A compound cube is a subject area that combines multiple cubes (typically two). For these cubes, any dimensions that have
the same name must be formally shared dimensions. This enables you to create pivot tables that contain elements from
multiple cubes.

The following shows a pivot table created from a compound cube:

In this pivot table:

• The Doctor Count measure and the Patients Per Week measure come from the Doctors cube.

The Patients Per Week measure is the number of patients seen per week by the given set of doctors.

• The Avg Patient Allergy Count measure and the Avg Patient Test Score measure come from the
Patients cube.

The CompoundCube subject area defines overrides so that these measures have different names than in that cube.

• The ZIP level is in a shared dimension used by both of these cubes.

In a compound cube, the available dimensions are the dimensions from the first listed cube and all formally shared dimensions.
The available measures include all the measures from all the cubes. The following rules apply:

• For any measure that has the same name in all cubes used in the compound cubes, that measure becomes a common
measure. For this measure, values are aggregated across all the cubes. For example, suppose that one cube is
Employees and another cube is Patients. If both cubes have a Count measure, those counts are aggregated together.

10 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining Shared Dimensions and Compound Cubes

The system provides an option for renaming the Count measure so that you can prevent this from occurring when it is
not appropriate.

• For any measure that exists only in one cube, it is treated as usual.

• For any level that is formally shared, you can use members of that level with any of the cubes to select subsets of their
records. In the example shown previously, the 32006 member corresponds to all doctors that have this ZIP code and
all patients that have this ZIP code.

This fact means that the measures of all the cubes can potentially have different values for members of such a level.
For example, the measure Patients Per Week (which is specific to doctors) and the measure Avg Patient
Allergy Count (which is specific to patients) have different values for each ZIP code.

• For any level that is not formally shared, a member of that level selects a subset of the records from the cube that owns
it, but selects all records from the other cube.

This fact means that measures from the cube that define this level can potentially have different values for members
of such a level, but measures from the other cubes always have the same value. In the following example, the Doctor
Type dimension is not shared:

Note that the Doctor Count and Avg Patients Per Week measures (both of which are specific to doctors) have different
values for each doctor type.

The other measures are specific to patients. They have the same value for each doctor type; this is the value aggregated
across all patients.

2.2 Defining a Formally Shared Dimension
To share a dimension formally:

1. Define the dimension as usual in one cube definition.

When that cube is built, the system determines the initial members of all levels of that dimension, in the usual way.
When the source class receives additional data and the cube is updated, the system adds additional members for any
levels, in the usual way.

2. Open the other cube definition in the Architect and add a shared dimension as follows:

a. Select Add Element.

b. Select Shared Dimension.

Advanced Modeling for InterSystems IRIS Business Intelligence 11

Defining a Formally Shared Dimension

c. In the first drop-down list, select the cube that defines the dimension.

d. In the second drop-down list, select the dimension.

e. Select OK.

For all levels in this dimension, the fact table for this cube points to the dimension tables of the other cube.

3. Optionally, in the second cube, override the source data definition for the levels of the shared dimension.

By default, the shared dimension uses the same source properties or source expressions that are used in the Dependent
Cube. To override these, edit the class in Studio, find the applicable <dimension> element, and add child
<hierarchy> and <level> elements as needed; see “Reference Information for Cube Classes” in Defining Models
for InterSystems Business Intelligence. In this case, the dimension name, hierarchy names, and level names must be
the same as in the other cube.

The following restrictions apply:

• The cube that owns the dimension must be built first. This process creates the tables for the dimensions defined in that
cube. When you build the other cube, as the system processes records, it adds records to the dimension tables of any
shared dimensions.

• Unless you override the source data definitions in the second cube, the same level definitions must be appropriate for
both cubes. That is, the identical source property or source expression must be applicable in both cubes. For example,
if the cube that owns the definition uses the source expression %source.Item.Category, that source expression
must also be appropriate for the other cube.

• For any cubes that share that dimension: the source values (member keys) must be the same for the levels in the shared
dimension.

For example, consider two cubes, each based on a table that includes a city name. For these cubes to share a level that
is based on city name, the city names must be identical, including case, in both of the source tables. (Otherwise, you
will end up with multiple, similar members such as Jonesville and JONESVILLE.)

There is no requirement for both source tables to have the same set of values, however. For example, one source table
could list a city that is not in the other one. The dimension tables contain the entire superset of values.

Also, for any filters that use these levels, the list of members includes all the members, from all cubes that share the
dimension. So, for example, in a given dashboard, a user might see an unfamiliar city name in a filter drop-down, a city
name that does not appear in the data used on that dashboard. The user can select it, but no matching data will be found.

The HoleFoodsBudget and CompoundCube/Doctors cubes both contain examples of shared dimensions. These examples
are not related to each other.

2.3 Defining an Informally Shared Dimension
To define an informally shared dimension, ensure that the logical dimension name, its hierarchy names, its level names,
and its member keys are the same in all relevant cubes. (The underlying details of the source expressions, transformation
options, and so on do not matter. All that matters is that the logical names match and the member keys match.)

When you do this, you can define pivot tables in each of these cubes and then place those pivot tables on the same dashboard.
If you include a filter widget that uses one of the shared dimensions, it can affect all the pivot tables.

12 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining Shared Dimensions and Compound Cubes

2.3.1 Examples

The Patients cube (in the class BI.Model.PatientsCube) includes the HomeD dimension. This dimension includes an H1
hierarchy, which includes the ZIP and City levels.

The CityRainfall cube (in the class BI.Model.RainfallCube) also contains the HomeD dimension, which differs from the one
in the Patients cube only as follows:

• The HomeD dimension has the display name CityD (rather than being the same as the internal name).

• The HomeD dimension has an All member.

• The City level uses the City.Name source property (rather than HomeCity.Name).

• The ZIP level uses the City.PostalCode source property (rather than HomeCity.PostalCode).

These definitions mean that you can use these cubes in different pivot tables on the same dashboard, and have them respond
in the same way to any filters that use the HomeD dimension. The dashboard Dashboards/Demo Two Subject Areas
Together demonstrates this. It has a pivot table that uses the Patients cube and another pivot table that uses the
CityRainfall cube. The dashboard includes filter controls that affect both pivot tables.

Similarly, the Cities cube (in the class BI.Model.CityCube) contains a dimension named HomeD, which includes an H1
hierarchy, which includes the ZIP and City levels. The display name for HomeD is CityD, so that the dimension appears
to have a different name in this cube. As before, the source properties used by the levels are different in the Cities cube
than in the Patients cube.

2.4 Defining Compound Cubes
To create compound cubes, you must use Studio. To create a compound cube, do all the following:

• Create a subject area with the Base cube option equal to a comma-separated list of cubes. For example, for the sample
subject area CompoundCube/CompoundCube, Base cube is as follows:

CompoundCube/Patients,CompoundCube/Doctors,CompoundCube/CityRainfall

Also edit the Depends On option in the Details Area on the right. For the value, specify the full package and class name
of all the cube classes.

Any subject area class should always be compiled after the cube class or classes on which it is based. The Depends

On setting helps control this.

• In the cubes that the compound cube uses, optionally redefine the Count measure. To do so, specify the
countMeasureName and (optionally) countMeasureCaption attributes in the definitions of the cubes. For
example:

<cube xmlns="http://www.intersystems.com/deepsee"
name="Doctors"
displayName="Doctors"
sourceClass="BI.Study.Doctor"
countMeasureName="DoctorCount"
countMeasureCaption="Doctor Count">
...

This change does not require rebuilding these cubes.

• In the compound cube, optionally change the display names of measures names to be more specific, for use in the
compound cube. For example:

Advanced Modeling for InterSystems IRIS Business Intelligence 13

Defining Compound Cubes

<subjectArea xmlns="http://www.intersystems.com/deepsee/subjectarea"
name="CompoundCube" displayName="CompoundCube"
baseCube="Doctors,Patients">

<measure name="Allergy Count" displayName="Patient Allergy Count"/>
<measure name="Avg Allergy Count" displayName="Patient Avg Allergy Count"/>
<measure name="Age" displayName="Patient Age"/>
<measure name="Avg Age" displayName="Patient Avg Age"/>
<measure name="Test Score" displayName="Patient Test Score"/>
<measure name="Avg Test Score" displayName="Patient Avg Test Score"/>
<measure name="Encounter Count" displayName="Patient Encounter Count"/>
<measure name="Avg Enc Count" displayName="Patient Avg Enc Count"/>

</subjectArea>

Recompile any cube definitions that you change. Recompile the compound cube last.

In a compound cube, the available dimensions are the dimensions from the first listed cube and all formally shared dimensions.
The available measures include all the measures from all the cubes.

Note: Any dimensions that have the same name in both cubes must be formally shared. Any measures that have the
same name in both cubes are aggregated together.

2.4.1 Detail Listings for Compound Cubes

To define detail listings for a compound cube, define identical detail listings in all the participating cubes. The system
generates an SQL UNION of these listings.

Note that the listings must be directly based on SQL; detail listings via data connectors will not work for compound cubes.

2.4.2 Example Compound Cube

To see an example of a compound cube, see the class BI.Model.CompoundCube.CompoundCube. This class is defined as
follows:

Class BI.Model.CompoundCube.CompoundCube Extends %DeepSee.SubjectArea
[DependsOn = (BI.Model.CompoundCube.Patients, BI.Model.CompoundCube.Doctors,
BI.Model.CompoundCube.CityRainfall)]
{

/// This XData definition defines the SubjectArea.
XData SubjectArea [XMLNamespace = "http://www.intersystems.com/deepsee/subjectarea"]
{
<subjectArea name="CompoundCube/CompoundCube" displayName="CompoundCube/CompoundCube"
 baseCube="CompoundCube/Patients,CompoundCube/Doctors,CompoundCube/CityRainfall" >
</subjectArea>
}

}

The cube CompoundCube/Patients, which is defined in BI.Model.CompoundCube.Patients defines all the dimensions.

The other cubes (CompoundCube/Doctors and CompoundCube/CityRainfall) define dimensions that are shared
from the CompoundCube/Patients. Notice that not all the dimensions are defined in all the cubes. The following table
shows the dimensions available in each cube:

14 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining Shared Dimensions and Compound Cubes

CompoundCube/CityRainfall

cube
CompoundCube/Doctors

cube
CompoundCube/Patients

cube
Dimension

BirthD

DocD

DocTypeD

HomeD

The HomeD dimension is defined in all three cubes, so this dimension affects the measures of all three cubes. For example,
the dashboard Demo Compound Cube includes this pivot table:

The Patient Count measure is defined in CompoundCube/Patients, Doctor Count measure is defined in
CompoundCube/Doctors, and Avg Monthly Rainfall Inches measure is defined in
CompoundCube/CityRainfall. Notice that the values are different for each measure for each city.

The same dashboard also includes a pivot table that use BirthD for rows:

Because CompoundCube/Doctors does not define the BirthD dimension, the measure Doctor Count cannot be
broken out by birth decade. Notice that the Doctor Count column shows the same number in all cells; this is the total
doctor count across birth decades for all patients.

Finally the Demo Compound Cube dashboard also includes a pivot table that use DoctTypeD for rows:

Advanced Modeling for InterSystems IRIS Business Intelligence 15

Defining Compound Cubes

Because CompoundCube/CityRainfall does not define the DocTypeD dimension, the measure Avg Monthly
Rainfall Inches cannot be broken out by doctor type. This measure is aggregated across all patients (by averaging,
as defined in the measure).

16 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining Shared Dimensions and Compound Cubes

3
Defining Cube-Cube Relationships

This chapter describes how to define relationships between cubes. It discusses the following topics:

• Overview

• How to define a one-way relationship

• How to define a two-way relationship

• How to build cubes that have relationships

• How to use the Model Browser

• How to remove a relationship

For background information, see the chapter “Summary of Model Options” in Defining Models for InterSystems Business
Intelligence.

Also see “Accessing the Samples Shown in This Book,” in the preface.

3.1 Overview of Relationships
You can define relationships between cubes as follows:

• One-to-many relationships. Then you can use levels of either cube in both cubes.

In one cube (the “one” side), the relationship behaves much like a list-based level.

• One-way one-to-many relationships. In one cube, the relationship behaves much like a list-based level. In the other
cube, the relationship is not visible.

If you define relationships, you can define a level once rather than multiple times, which minimizes the sizes of fact tables
and their indices.

The Patients sample provides five related cubes, in a folder named RelatedCubes. The following figure summarizes
how these cubes are related:

Advanced Modeling for InterSystems IRIS Business Intelligence 17

The one-way arrows represent one-way relationships; the cube that has the arrow pointing away can see the levels of the
other cube. The two-way arrows represent two-way relationships.

3.1.1 A Look at a One-Way Relationship

In this section, we examine a working one-way relationship.

The RelatedCubes/Patients cube has a one-way relationship to the RCities cube. If you open the
RelatedCubes/Patients cube in the Analyzer, you see the following cube contents:

The Cities folder is a relationship to the RelatedCubes/Cities cube. If you expand it, you see the levels defined in
that cube:

18 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining Cube-Cube Relationships

When you work with the RelatedCubes/Patients cube, you can use all these levels in the same way that you use the
levels that are defined directly in this cube. For example, you could drag and drop ZIP to Rows.

The Doctors folder within Cities is a relationship from the RelatedCubes/Cities cube to the
RelatedCubes/Doctors cube; it is not recommended that you use relationships of relationships, because the result
quickly becomes confusing.

3.1.2 A Look at a Two-Way Relationship

There is a two-way relationship between the RelatedCubes/Cities cube and the RelatedCubes/Doctors cube.
If you open the RelatedCubes/Cities cube, you see the following cube contents:

Advanced Modeling for InterSystems IRIS Business Intelligence 19

Overview of Relationships

Similarly, if you open the RelatedCubes/Doctors cube, you see the following cube contents:

20 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining Cube-Cube Relationships

3.2 Defining a One-Way Relationship
To define a one-way relationship from one cube to another cube, you define a single relationship in the first cube. To do
so, make the following changes in the first cube:

1. Select Add Element.

The system displays a dialog box.

2. For Enter New Item Name, type a relationship name. This determines the logical name of the relationship. It is convenient
for this to be the same as the logical name of the other cube.

3. Select Relationship.

4. Select OK.

5. In the Details Area on the right, specify the following values:

PurposeAttribute

Display name for this relationship. It is useful for this to be the same as the display
name of the other cube.

Display Name

Specify one of these. The value must be the ID of a record in the base class
used by the other cube.

Property

Expression

oneCardinality

Logical name of the other cube.Related cube

(Optional) Specifies the string (for example, None) to use as the member name
if the source data for a relationship is null.
There is no default null replacement for relationships.

Null replacement string

Do not specify Inverse.

6. Select the cube definition in the Architect to select it. Then edit the Depends On option in the Details Area on the right.
This option specifies the class or classes that must be runnable before this class can be compiled.

By default, the system sets the DependsOn keyword equal to the name of the source class for the cube when a new
cube is created.

To specify this option, specify a comma-separated list of classes and specify the full package and class name for each
class in the list. Your list should include the source class for the cube and the cube class on which this cube depends.
For example:

[DependsOn = (MyApp.CubeBaseClass, MyApp.OtherCubeClass)]

7. Optionally edit the cube class in Studio to define a dependency of this relationship to some other relationship defined
in the same cube.

In some cases, there is a virtual dependency between two relationships. For example, you might have a cube with a
Country relationship and a Product relationship. These relationships are logically independent from each other; theo-
retically any product could be sold in any country. But if specific products are sold only in specific countries, there is
a virtual dependency between these relationships. When a user selects a country, it is desirable to show only the products
appropriate for that country.

In such a case, you can add a dependency between the relationships. To do so, specify the Depends on option as
described in “Defining Dimensions, Hierarchies, and Levels” in Defining Models for InterSystems Business Intelligence.

Advanced Modeling for InterSystems IRIS Business Intelligence 21

Defining a One-Way Relationship

For the value, specify the logical name of another relationship defined in the same cube. (Or, if the relationship depends
upon a level, specify the MDX identifier of that level.)

Note that the Depends on attribute is completely unrelated to the DependsOn compiler keyword.

3.3 Defining a Two-Way Relationship
To define a two-way relationship between cubes, you define two complementary <relationship> elements, one in each
cube. One of these cubes is the dependent cube and the other is the independent cube.

Let us consider cube A (which based on the records of source class A) and cube B (which is based on the records of source
class B). To define a two-way relationship between these cubes, use the following procedure:

1. Evaluate the relationship between the source classes. Use this to determine which cube is the dependent cube, as follows:

• Does one record in class A correspond to multiple records in class B?

If so, cube B is the dependent cube.

• Does one record in class B correspond to multiple records in class A?

If so, cube A is the dependent cube.

• Is there a one-to-one relationship between the classes?

If so, either cube can be the dependent cube.

2. In the Architect, make the following changes to the dependent cube:

a. Select Add Element.

The system displays a dialog box.

b. For Enter New Item Name, type a relationship name. This determines the logical name of the relationship. It is
convenient for this to be the same as the logical name of the other cube (IndependentCubeName, for example).

c. Select Relationship.

d. Select OK.

e. In the Details Area on the right, specify the following values:

ExamplePurposeAttribute

Independent Cube

Display Name

Display name for this relationship. It is useful
for this to be the same as the display name
of the other cube.

Display Name

Specify one of these. The value must be the
ID of a record in the base class used by the
other cube.

Property

Expression

oneCardinality

DependentCubeNameValue of the inverse relationship in the other
cube. It is useful for the name of a relationship
to be the same as the logical name of the
cube to which it points, so use the logical
name of the cube.

Inverse

22 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining Cube-Cube Relationships

ExamplePurposeAttribute

IndependentCubeNameLogical name of the other cube.Related cube

None(Optional) Specifies the string to use as the
member name if the source data for a
relationship is null.
There is no default null replacement for rela-
tionships.

Null replacement

string

3. Select the cube definition in the Architect; that is, select the top line in the middle area. Then edit the Depends On

option in the Details Area on the right. This option specifies the class or classes that must be runnable before this class
can be compiled.

By default, the system sets the DependsOn keyword equal to the name of the source class for the cube when a new
cube is created.

To specify this option, specify a comma-separated list of classes and specify the full package and class name for each
class in the list. Your list should include the source class for the cube and the cube class on which this cube depends.
For example:

[DependsOn = (MyApp.CubeBaseClass, MyApp.OtherCubeClass)]

4. In the Architect, make the following changes to the independent cube::

a. Select Add Element.

The system displays a dialog box.

b. For Enter New Item Name, type a relationship name. This determines the logical name of the relationship. It is
convenient for this to be the same as the logical name of the other cube (DependentCubeName, for example).

c. Select Relationship.

d. Select OK.

e. In the Details Area on the right, specify the following values:

ExamplePurposeAttribute

Dependent Cube

Display Name

Display name for this relationship. It is useful
for this to be the same as the display name
of the other cube.

Display Name

manyCardinality

IndependentCubeNameValue of the inverse relationship in the other
cube. It is useful for the name of a relationship
to be the same as the logical name of the
cube to which it points, so use the logical
name of the cube.

Inverse

DependentCubeNameLogical name of the other cube.Related cube

f. Optionally edit the cube class in Studio to define a dependency of this relationship to some other relationship
defined in the same cube.

In some cases, there is a virtual dependency between two relationships. For example, you might have a cube with
a Country relationship and a Product relationship. These relationships are logically independent from each other;
theoretically any product could be sold in any country. But if specific products are sold only in specific countries,

Advanced Modeling for InterSystems IRIS Business Intelligence 23

Defining a Two-Way Relationship

there is a virtual dependency between these relationships. When a user selects a country, it is desirable to show
only the products appropriate for that country.

In such a case, you can add a dependency between the relationships. To do so, specify the Depends on option as
described in “Defining Dimensions, Hierarchies, and Levels” in Defining Models for InterSystems Business
Intelligence. For the value, specify the logical name of another relationship defined in the same cube. (Or, if the
relationship depends upon a level, specify the MDX identifier of that level.)

Note that the Depends on option is completely unrelated to the DependsOn compiler keyword.

3.4 Building Cubes That Have Relationships
When you build cubes that have relationships, first build the independent cube, which is the one that does not define a
source property or source expression for the relationship. More generally, whenever you rebuild the independent cube, you
must next rebuild the dependent cube. The suggested best practice is to write a utility method or routine that builds your
cubes in the appropriate order.

For a production system, InterSystems recommends that you use the Cube Manager, which creates automated tasks that
build or synchronize cubes according to your specifications. For details, see the Implementing InterSystems Business
Intelligence.

3.4.1 Determining the Build Order for Related Cubes

If you are not using the Cube Manager, it is necessary for you to determine the correct build order. To do so, use the rules
described previously or use the GetCubeGroups() method of %DeepSee.CubeManager.Utils. The first argument, returned
by reference, is an array that indicates the natural grouping of the cubes in the given namespace. For example:

SAMPLES>d ##class(%DeepSee.CubeManager.Utils).GetCubeGroups(.groups)

SAMPLES>zw groups
groups=11
groups(1,"CITIES")=1
groups(2,"CITYRAINFALL")=1
groups(3,"COMPOUNDCUBE/CITYRAINFALL")=1
groups(4,"COMPOUNDCUBE/DOCTORS")=1
groups(5,"COMPOUNDCUBE/PATIENTS")=1
groups(6,"CONNECTORCUBE")=1
groups(7,"HOLEFOODS")=1
groups(8,"HOLEFOODSBUDGET")=1
groups(9,"PATIENTS")=1
groups(10,"PATIENTSQUERYCUBE")=1
groups(11,"RELATEDCUBES/ALLERGIES")=5
groups(11,"RELATEDCUBES/CITIES")=1
groups(11,"RELATEDCUBES/CITYRAINFALL")=2
groups(11,"RELATEDCUBES/DOCTORS")=3
groups(11,"RELATEDCUBES/PATIENTS")=4

For this array:

• The first subscript identifies a unique group of cubes in this namespace. The first one is numbered 1, the second is
numbered 2, and so on. The numbers are arbitrary.

• The second subscript identifies a cube in this namespace. This cube is in the group identified by the first subscript.

• The value of this node is the build order of the given cube, within this group.

In this example, one group consists of the cubes RELATEDCUBES/ALLERGIES, RELATEDCUBES/CITIES, and
RELATEDCUBES/CITYTRAINFALL, RELATEDCUBES/DOCTORS, and RELATEDCUBES/PATIENTS. In this group,
RELATEDCUBES/CITIES should be built first, then RELATEDCUBES/CITYTRAINFALL, then RELATEDCUBES/DOCTORS,
then RELATEDCUBES/PATIENTS, and last RELATEDCUBES/ALLERGIES//.

24 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining Cube-Cube Relationships

3.4.2 Errors If You Build Related Cubes in the Wrong Order

If you build related cubes in the wrong error, %BuildCube() generates an error like the following:

ERROR #5001: Missing relationship reference in RelatedCubes/Patients: source ID 1 missing reference to
 RxHomeCity 4

For general information on build errors and where you can see them, see “Build Errors” in Defining Models for InterSystems
Business Intelligence.

3.5 Using Model Browser
The system provides a supplemental tool (the Model Browser) that you can use to view cube definitions. The Model Browser
is particularly useful for cubes that have relationships because it enables you to view and navigate the cube relationships.

To access this tool, select Analytics, then Tools, and then select Model Browser.

Once you access the Model Browser, use the drop-down list on the right and select the name of a cube. The Model Browser
then displays a diagram like the following:

The yellow circle at the center represents the cube that you selected. The label on the top of the diagram gives the name of
this cube (in this case, AviationEvents), followed by the number of related cubes (1) in parentheses. Each of the circles
around the central circle represents one cube that is related to the selected cube. For these circles, the label indicates the
cube name and the number of related cubes. For example, the circle labeled AviationAircraft represents the Aviation-
Aircraft cube. There are two cubes that are related to Referrals.

When you select any circle, the diagram changes so that the center shows the newly selected cube, and the rest of the diagram
is refreshed accordingly.

The right side of the page displays details for the selected cube. This area displays the contents of the cube in exactly the
same way as the left area of the Analyzer.

Advanced Modeling for InterSystems IRIS Business Intelligence 25

Using Model Browser

3.6 Removing Relationships
If you later decide to remove a relationship, do so as follows:

1. Remove the relationship from both cube definitions.

2. Recompile both cube definitions.

3. Rebuild all modified cubes in the correct order.

26 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining Cube-Cube Relationships

4
Using Text Analytics in Cubes

This chapter describes how to include text analytics within cubes — analytics that examine text data (called unstructured
data in this chapter). It discusses the following topics:

• Overview

• How to set up the Aviation demo

• How to define an NLP measure

• How to load or update a dictionary

• How to define an entity dimension

• How to define an dictionary dimension

• How to add item overrides to an item level

• How to add measures that use plug-ins

• How to include text analytics results in a listing

• How the Analytics engine manages text analytics domains

• Advanced topics

• Summary of when the Analytics Engine makes automatic updates

Also see the appendix “Generating Secondary Cubes for Use with Text Analytics.”

Also see “Accessing the Samples Shown in This Book,” in the preface.

4.1 Overview of Integration with Text Analytics
The Analytics engine includes the ability to analyze text data (unstructured data), which is written as text in a human language
such as English or French. For a general introduction of this ability, see “Conceptual Overview,” in Using InterSystems
IRIS Natural Language Processing (NLP).

You can use unstructured data within cubes, if the source table for a cube includes a property that contains unstructured
data (for example, a string field that contains text). Then you can define pivot tables that use NLP (natural language pro-
cessing) dimensions, and you can use these pivot tables on dashboards as usual.

For example, the source table for a cube might contain both structured and unstructured data. The Aviation demo, discussed
later in this chapter, is such an example. For this demo, the source table consists of records of aviation events. For each

Advanced Modeling for InterSystems IRIS Business Intelligence 27

aviation event, there is a set of short string fields that indicate the incident location, aircraft type, and so on. A longer text
field contains the full report of the event.

(You can define also KPIs that expose text analytics queries via the InterSystems IRIS Business Intelligence KPI mechanism.
See “KPIs and Dashboards” in Using InterSystems IRIS Natural Language Processing (NLP).)

4.1.1 Terminology

When analyzing unstructured data, the InterSystems IRIS Analytics engine identifies the entities in it, identifying the words
that belong together and their roles in the sentence. An entity is a minimal logical unit of text — a word or a group of words.
Example entities are clear skies and clear sky (note that these are distinct entities, because the engine does not
perform stemming). The language model identifies two kinds of entities:

• A relation is a word or group of words that join two concepts by specifying a relationship between them. A relation is
commonly but not always a verb.

• A concept is a word or group of words that is associated by a relation. A concept is commonly but not always a noun
or noun phrase.

The engine transforms each sentence into a logical sequence of concepts and relationships, thereby identifying the words
that belong together (as entities) and their roles within the sentence. This is a much more structured form of data and serves
the basis for analysis, including relevance metrics, automated summarizing and categorization, and matching against
existing taxonomies or ontologies.

For its core activities of identifying concepts and relationships (as well as measuring the relevance of these entities), the
engine does not require information about the topics discussed in the text. Therefore, the engine is a true bottom-up tech-
nology that works well with any domain or topic, because it is based on an understanding of the language rather than of
the topic.

However, if you have some knowledge about the topics discussed in the text, you can let the engine find any matches for
these known terms, called dictionary terms. Because the engine understands the role and extent of entities, it can also judge
whether an entity (or sequence of entities) encountered in the text is a good or a poor match with a known term and come
up with a match score. For example, for the dictionary term runway, the entity runway (occurring in the text) is a full
match, but runway asphalt is only a partial match and therefore gets a lower score.

Dictionary terms are grouped in dictionary items, which represent the unique things you wish to identify. For example
runway and landing strip might be two terms for a generic dictionary item that covers any mentions of runways.

For a broader discussion of dictionaries, see “Smart Matching: Creating a Dictionary” and “Smart Matching: Using a
Dictionary” in Using InterSystems IRIS Natural Language Processing (NLP).

4.1.2 About NLP (Natural Language Processing) Measures and Dimensions

Unlike other kinds of measures, an NLP measure is not shown in the Analyzer, and you do not directly use it in pivot tables.
You define an NLP measure for each property that you want the engine to process as text data. Then you can use the measure
as the basis of an NLP dimension.

An NLP dimension is like other dimensions; it includes one or more levels, which contain members. Any member consists
of a set of records in the source class of the cube.

There are two kinds of NLP dimensions:

• Entity dimensions. An entity dimension contains a single level. Each member of that level corresponds to an entity
that the engine found in the unstructured data.

The members of this level are sorted in decreasing order by spread (number of records that include this entity). When
you expand this level in the left area of the Analyzer, it displays the 100 most common entities. When you use this
level as a filter, however, you can search to access any entity.

28 Advanced Modeling for InterSystems IRIS Business Intelligence

Using Text Analytics in Cubes

• Dictionary dimensions. A dictionary dimension typically contains two levels as follows:

– The upper level, the dictionary level, contains one member for each dictionary. That member consists of all records
that match any item of the given dictionary.

For example, the weather conditions member consists of all records that match any item in the dictionary
weather conditions. This includes items such as winter, rain, clouds sky, and so on.

– The optional lower level, the item level, contains one member for each dictionary item. That member consists of
all records that match any term of the given dictionary item.

For example, the winter member consists of each record that matches any of its terms, including snow, icy,
and ice-covered.

Note that because the source text typically includes multiple entities, any given source record is likely to belong to multiple
members of a level.

4.1.3 Generated Text Analytics Domains

When you use the features described in this chapter, the system creates one or more text analytics domains. Each cube level
and each measure is available as a pseudo metadata field, which you can use in text analytics queries. For a level, the equal
and not equal operator are supported. For a measure, all operators are supported. For information on text analytics queries,
see Using InterSystems IRIS Natural Language Processing (NLP).

Also see “Text Analytics Domain Management,” later in this chapter.

4.2 Setting Up the Aviation Events Demo
This article uses the Samples-Aviation sample (https://github.com/intersystems/Samples-Aviation). InterSystems recommends
that you create a dedicated namespace named SAMPLES and then load samples into that namespace. For the general process,
see Downloading Samples for Use with InterSystems IRIS®.

The Aviation demo, which includes several cube definitions, example term lists, and a dashboard.

For this demo, the primary cube (Aviation Events) is based on the table Aviation.Event, which consists of records of aviation
events. For each aviation event, there is a set of short string fields that indicate the incident location, aircraft type, and so
on. A longer text field contains the full report of the event.

4.2.1 Sample Dashboard

To see the sample dashboard:

1. In the Management Portal, access the namespace into which you loaded this sample.

2. Select Home,Analytics,User Portal and then select View.

The system then displays the User Portal, which lists any existing public dashboards and pivot tables in this namespace.

3. Select the Aviation event reports dashboard.

The Aviation event reports dashboard includes this pivot table:

Advanced Modeling for InterSystems IRIS Business Intelligence 29

Setting Up the Aviation Events Demo

https://github.com/intersystems/Samples-Aviation

This pivot table is defined as follows:

• The measure is Count (count of events).

• Except for the last row, each row represents an entity that was found by the Analytics engine and matched to an item
in a Text Analytics dictionary.

• The last row represents all records matched to items in dictionaries.

• The columns display members of the Highest Injury level, which is a level in a standard data dimension that is
based on a direct classification provided for the reports.

This means that the rows display groupings as determined by the unstructured data (found by the Analytics engine in the
textual report), and the columns display groupings as determined by the structured data (the direct classifications). You
can use a pivot table like this to find any discrepancies between the unstructured data and structured data.

Consider, for example, the None column, which provides information on reports that are officially classified with None
as the highest injury level. Of this set, the cells in this column provide the following information:

• The iKnow —> none cell indicates that in 377 reports, the Analytics engine found an entity that matches the none
item of the Injuries dictionary. This is reasonable.

• The iKnow —> minor cell indicates that in four reports, the Analytics engine found an entity that matches the minor
item of the Injuries dictionary. That is, in four reports, the unstructured data suggests that there were minor injuries
(despite the fact that these reports are classified with None as the highest injury level).

The value in this cell represents a discrepancy between the unstructured data and structured data. For this cell, it would
be useful to investigate further and read the complete reports.

• The iKnow —> serious and iKnow —> fatal cells are empty. These cells indicate that there are no records
where the Analytics engine found injury entities named serious or fatal. This is reasonable.

If we display a detail listing for the cell iKnow —> minor in the column None and then view the reports (via the
icon) for these incidents, we find that these reports were misclassified and there were minor injuries in all of them. For
example, the first report includes the sentence “The private pilot reported minor injuries.”

Similarly, in the Minor column, the cells iKnow —> serious and iKnow —> fatal indicate other discrepancies. For
the Serious column, the cell iKnow —> fatal indicates other discrepancies.

4.2.2 A Closer Look at the Aviation Cubes

For a closer look at these demo cubes, use the Architect and the Analyzer. The Aviation Events cube contains the following
elements:

• The Count measure, which is a count of event reports.

30 Advanced Modeling for InterSystems IRIS Business Intelligence

Using Text Analytics in Cubes

• The InjuriesTotal measure, which is a sum of injuries.

• The Report measure, which is an NLP measure that uses the unstructured data. This measure is not listed in the
Analyzer, because it is meant for use only by NLP dimensions.

• The Event Date, Location, Sky Condition, Mid-Air, and Injuries dimensions, which are standard
dimensions that use the structured data.

• The Entities dimension, which is an entity dimension.

• The Dictionaries dimension, which is an dictionary dimension.

• The Aircraft dimension, which is a relationship to the Aircraft cube.

The Aircraft cube provides dimensions that you can use to group records by attributes of the aircraft, such as its type
and model. The Aircraft cube also includes a relationship to the Crew cube, which provides levels associated with the
personnel on the aircraft.

4.3 Defining an NLP measure
To add an NLP measure:

1. Select Add Element.

The system displays a dialog box.

2. For Enter New Item Name, type a measure name.

3. Select Measure.

4. Select OK.

5. Select the measure in the middle area of the Architect.

6. Specify the following options:

• Property or Expression — Specifies a source value that contains unstructured data.

Or specify a value that contains the full path of a plain text file, where the file contains the text to be processed.

• Type — Select iKnow.

• iKnow Source — Specify the type of the source value. Select string, stream, or file. For example, if the
selected source property is of type %Stream.GlobalCharacter, select stream. Or if the value is the path to a file,
select file.

This option indicates, to the Analytics engine, how to process the values specified in Property or Expression.

The value domain is for advanced use; see “Alternative Technique: Using an Existing Text Analytics Domain.”

As an example, the Aviation cube is based on the Aviation.Event class. The NLP measure Report is based on
the NarrativeFull property of that class. For this measure, iKnow Source is string.

Note that the Aggregate option has no effect on NLP measures.

7. Save the cube definition in the Architect.

8. If you plan to define one or more dictionary levels that use this measure, also specify the Dictionaries option as follows:

a. Select the button below Dictionaries.

The system displays a dialog box.

Advanced Modeling for InterSystems IRIS Business Intelligence 31

Defining an NLP measure

b. Select the appropriate dictionary in the Available Dictionaries list and then select > to move that dictionary to the
Selected Dictionaries list.

If Available Dictionaries does not list the dictionaries that you need, see “Loading and Updating a Dictionary,”
later in this chapter.

c. Repeat as needed.

d. Select OK.

Each dictionary is actually a term list. If you follow the steps described here, the Analytics Engine automatically finds
the given term lists, loads them as dictionaries, and performs matching. (If you do not add this attribute, you can instead
invoke a method to perform these tasks.)

Note that NLP measures are not stored in the fact table for the cube and are not displayed in the Analyzer. The primary
purpose of an NLP measure is to define an Text Analytics domain and to serve as the basis of an NLP dimension. See the
next sections.

Also note that you can override the default parameters for the measure. See “Specifying Text Analytics Domain Parameters
for a Measure,” later in this chapter; this option is for advanced use.

4.3.1 Alternative Technique: Using an Existing Text Analytics Domain

If you have an existing Text Analytics domain, you can reuse that. Use the preceding instructions with the following
changes:

• Specify iKnow Source as domain.

• When you specify the source expression or source property, make sure that it evaluates to the external ID of the source
that corresponds to that record in the fact table.

• In Studio, add the iKnowDomain attribute to the measure definition. Its value should be the name of an existing Text
Analytics domain.

• Skip step 8. That is, do not specify the Dictionaries option.

Important: In this case, the Text Analytics domain is managed separately from the process of compiling, building,
and synchronizing cubes. At build time, the Analytics Engine does not drop or load any text analytics
records. Your custom code must ensure that all data represented and identified by the External ID prop-
erty/expression at the fact level is properly loaded. At runtime (and only at runtime), the Analytics Engine
uses the Text Analytics logic. Also note that the Analytics Engine does not load automatically data during
the process of compiling, building, and synchronizing cubes. To load data, specify parameters, or otherwise
manage this domain, use the domain APIs directly as described in Using InterSystems IRIS Natural Language
Processing (NLP).

4.3.2 Alternative Technique: Retrieving Unstructured Text from Elsewhere

In some scenarios, you may need to retrieve the unstructured text from a web page. For example, you might have a table
of structured information, with a field that contains the URL where additional information (such as a news article) can be
found. In such a case, the easiest way to use that text as an NLP measure is as follows:

• Write a utility method to retrieve the text from the URL.

• Refer to that utility method in a source expression for the NLP measure.

32 Advanced Modeling for InterSystems IRIS Business Intelligence

Using Text Analytics in Cubes

For an example, suppose that we are basing a cube on a class that has summary information about news articles. Each
record in the class contains the name of the news agency, the date, the headline, and a property named Link, which contains
the URL of the full news story. We want to create an NLP measure that uses the news stories at those URLs.

To do this, we could define a method, GetArticleText(), in the cube class as follows:

ClassMethod GetArticleText(pLink As %String) As %String
{
 set tSC = $$$OK, tStringValue = ""
 try {

 set tRawText = ..GetRawTextFromLink(pLink, .tSC)
 quit:$$$ISERR(tSC)

 set tStringValue = ..StripHTML(tRawText, .tSC)
 quit:$$$ISERR(tSC)

 } catch (ex) {
 set tSC = ex.AsStatus()
 }
 if $$$ISERR(tSC) {
 set tLogFile = "UpdateNEWSARCHIVE"
 set tMsg = $system.Status.GetOneErrorText(tSC)
 do ##class(%DeepSee.Utils).%WriteToLog("UPDATE", tMsg, tLogFile)
 }
 quit tStringValue
}

The GetRawTextFromLink() method would retrieve the raw text, as follows:

ClassMethod GetRawTextFromLink(pLink As %String, Output pSC As %Status) As %String
{
 set pSC = $$$OK, tRawText = ""
 try {
 // derive server and path from pLink
 set pLink = $zstrip(pLink,"<>W")
 set pLink = $e(pLink,$find(pLink,"://"),*)
 set tFirstSlash = $find(pLink,"/")
 set tServer = $e(pLink,1,tFirstSlash-2)
 set tPath = $e(pLink,tFirstSlash-1,*)

 // send the HTTP request for the article
 set tRequest = ##class(%Net.HttpRequest).%New()
 set tRequest.Server = tServer
 set tSC = tRequest.Get(tPath)
 quit:$$$ISERR(tSC)

 set len = 32000
 while len>0 {
 set tString = tRequest.HttpResponse.Data.Read(.len, .pSC)
 quit:$$$ISERR(pSC)
 set tRawText = tRawText _ tString
 }

 } catch (ex) {
 set pSC = ex.AsStatus()
 }
 quit tRawText
}

The StripHTML() method would remove the HTML formatting, as follows:

ClassMethod StripHTML(pRawText As %String, Output pSC As %Status) As %String
{
 set pSC = $$$OK, tCleanText = ""
 try {
 for tTag = "b","i","span","u","a","font","em","strong","img","label","small","sup","sub" {
 set tReplaceTag(tTag) = " "
 }

 set tLowerText = $$$LOWER(pRawText)
 set tStartPos = $find(tLowerText,"<body")-5, tEndTag = ""
 set pRawText = $e(pRawText,tStartPos,*), tLowerText = $e(tLowerText,tStartPos,*)
 for {
 set tPos = $find(tLowerText,"<")
 quit:'tPos // no tag start found

 set tNextSpace = $f(tLowerText," ",tPos), tNextEnd = $f(tLowerText,">",tPos)
 set tTag = $e(tLowerText,tPos,$s(tNextSpace&&(tNextSpace<tNextEnd):tNextSpace, 1:tNextEnd)-2)

Advanced Modeling for InterSystems IRIS Business Intelligence 33

Defining an NLP measure

 if (tTag="script") || (tTag="style") {
 set tPosEnd = $find(tLowerText,">",$find(tLowerText,"</"_tTag,tPos))
 } else {
 set tPosEnd = tNextEnd
 }
 if 'tPosEnd { //
 set tEndTag = $e(pRawText,tPos-1,*)
 set pRawText = $e(pRawText,1,tPos-2)
 quit
 }

 set tReplace = $s(tTag="":"", 1:$g(tReplaceTag(tTag),$c(13,10,13,10)))
 set pRawText = $e(pRawText,1,tPos-2) _ tReplace _ $e(pRawText,tPosEnd,*)
 set tLowerText = $e(tLowerText,1,tPos-2) _ tReplace _ $e(tLowerText,tPosEnd,*)
 }
 set tCleanText = $zstrip($zconvert(pRawText, "I", "HTML"),"<>=W")

 } catch (ex) {
 set pSC = ex.AsStatus()
 }
 quit tCleanText
}

Finally, we would create an NLP measure and base it on the following source expression:
%cube.GetArticleText(%source.Link).

4.4 Loading and Updating Dictionaries
This section describes how to load and update dictionaries for use with NLP measures and dimensions.

4.4.1 Loading Dictionaries

To load an dictionary into InterSystems IRIS:

1. Access the Term List Manager, as described in the next chapter.

2. Define a new term list to contain the dictionary items and terms. For this term list:

• Use a convenient name for the term list. The dictionary name is based on the term list name, with an added prefix.

• Optionally add the custom fields URI and language; see the following step for details on how these fields would
be used.

Every term list has the fields key and value, so your term list will have these fields as well.

For general information on creating term lists, see the next chapter, “Defining Term Lists.”

3. Add terms to the term list. For each term list item, specify values as follows:

• key (required) is a unique term that could be found in the text.

• value (required) is the corresponding dictionary item.

• URI (optional) is a unique identifier for the dictionary item (the value column of the term list), which you can then
use as a member key in MDX queries, if you need to refer to a specific dictionary item. This identifier must be
unique for each combination of dictionary name and dictionary item.

If you omit this field, the system generates a URI of the following form:

:dictionary_name:dictionary_item

Where dictionary_name is the name of the dictionary to define or update, and dictionary_item is the value in the
value field.

• language (optional) is a all-lowercase language tag (such as en or es).

34 Advanced Modeling for InterSystems IRIS Business Intelligence

Using Text Analytics in Cubes

The following shows an example (omitting the language field):

4. Save the term list.

5. Specify the Dictionaries option for each NLP measure that should use this term list as a dictionary. See “Defining an
NLP measure,” earlier in this chapter.

The Dictionaries option specifies the term lists to load as dictionaries for this NLP measure. The system automatically loads
these term lists at cube build time.

4.4.2 Updating Dictionaries

If you create or change a term list that is used as a dictionary, you must update the dictionary. To do so, use the
UpdateDictionary() method of %iKnow.DeepSee.CubeUtils:

classmethod UpdateDictionary(pTermList As %String,
 pCube As %String = "",
 pMeasure As %String = "",
 pClearFirst As %Boolean = 0) as %Status

Where:

• pTermList is the name of term list.

• pCube is the name of the cube. If you omit this argument, this method is invoked for all cubes in this namespace.

• pMeasure is the name of NLP measure. If you omit this argument, this method is invoked for all NLP measures in the
given cube (or all cubes, depending on pCube).

• pClearFirst controls whether to drop the existing dictionary before reloading it from the term list. Leave pClearFirst
as 0 if you only appended to the term list, or use 1 if you changed or removed any existing terms.

If pClearFirst is 0, this method can run significantly faster.

Note that when you build a cube, the system refreshes all dictionaries used by this cube by appending any new term lists.
Deleted and renamed items are not affected. See “When Text Analytics Updates Occur,” later in this chapter.

4.5 Defining an Entity Dimension
To add a entity dimension:

Advanced Modeling for InterSystems IRIS Business Intelligence 35

Defining an Entity Dimension

1. Create an NLP measure for this dimension to use, as described earlier in this chapter.

You can also do this after defining the dimension; if so, edit the dimension later so that it refers to this measure.

2. Select Add Element.

The system displays a dialog box.

3. For Enter New Item Name, type a dimension name.

4. Select iKnow Dimension and select OK.

5. Select the dimension in the middle area of the Architect.

6. Make the following changes to the dimension, if needed:

• iKnow type — Select entity.

• NLP measure — Select the NLP measure for this dimension to use.

7. Select the level in the middle area of the Architect and optionally modify Name and Display Name.

8. Optionally, to specify the members of this level manually, use Studio and define <member> elements within the level.

By default, the level consists of all entities, in decreasing order by spread. If you use <member> to specify the members
manually, that specifies the members of this level and their order. Note that for an entity dimension, the number of
members displayed in the Analyzer is fixed at 100.

See “Manually Specifying the Members for a Level,” in the chapter “Using Advanced Features of Cubes and Subject
Areas.”

Note that it is not necessary to specify anything for Source Values, either for the dimension or for the level. For an NLP
dimension, the associated NLP measure specifies the source values.

4.6 Defining a Dictionary Dimension
To add a dictionary dimension:

1. Load a dictionary into InterSystems IRIS. See “Loading Dictionaries,” earlier in this chapter.

You can also do this after defining the dimension.

2. Create an NLP measure for this dimension to use.

You can also do this after defining the dimension; if so, edit the dimension later so that it refers to this measure.

3. Select Add Element.

The system displays a dialog box.

4. For Enter New Item Name, type a dimension name.

5. Select iKnow Dimension and select OK.

6. Select the dimension in the middle area of the Architect.

7. Make the following changes if needed:

• iKnow type — Select dictionary.

• NLP measure — Select the NLP measure for this dimension to use.

8. Optionally add another level to the same hierarchy in this dimension.

36 Advanced Modeling for InterSystems IRIS Business Intelligence

Using Text Analytics in Cubes

If the dimension has only one level, that level provides access to dictionary items. If the dimension has two levels, the
lower level provides access to entities that match dictionary items.

9. Select each level in the middle area of the Architect and optionally modify Name and Display Name.

10. Save the cube definition in the Architect.

11. Open the cube class in Studio and find the definition of this dimension. For example, if the dimension has one level,
it might look like this (this example shows added line breaks):

<dimension name="MyDictionaryDimension" disabled="false"
 ` hasAll="false" allCaption="MyDictionaryDimension" allDisplayName="MyDict"
 type="iKnow" iKnowType="dictionary" nlpMeasure="Report"
 hidden="false" showHierarchies="default">
 <hierarchy name="H1" disabled="false">
 <level name="Dictionary" disabled="false" list="false" useDisplayValue="true">
 </level>
 </hierarchy>
</dimension>

Or, if the dimension has two levels:

<dimension name="MyDictionaryDimension" disabled="false"
 hasAll="false" allCaption="MyDictionaryDimension" allDisplayName="MyDict"
 type="iKnow" iKnowType="dictionary" nlpMeasure="Report"
 hidden="false" showHierarchies="default">
 <hierarchy name="H1" disabled="false">
 <level name="Dictionary" disabled="false" list="false" useDisplayValue="true">
 </level>
 <level name="Items" disabled="false" list="false" useDisplayValue="true">
 </level>
 </hierarchy>
</dimension>

12. In the dictionary level, optionally specify the dictionary or dictionaries for this level to use. If there are two levels, the
dictionary level is the higher of the two levels. If there is one level, that level is the dictionary level.

If you do not specify any dictionaries, all dictionaries are used.

For each dictionary to use, add the following between the <level> element and the </level>:

 <member name="dictionary name" />

Where dictionary name is the name of a dictionary.

For example, with a single dictionary:

<dimension name="MyDictionaryDimension" disabled="false"
 hasAll="false" allCaption="MyDictionaryDimension" allDisplayName="MyDict"
 type="iKnow" iKnowType="dictionary" nlpMeasure="Report"
 hidden="false" showHierarchies="default">
 <hierarchy name="H1" disabled="false">
 <level name="Dictionary" disabled="false" list="false" useDisplayValue="true">
 <member name="my dictionary" />
 </level>
 <level name="Items" disabled="false" list="false" useDisplayValue="true">
 </level>
 </hierarchy>
</dimension>

13. Save the cube definition in Studio.

Note that it is not necessary to specify anything for Source Values, either for the dimension or for the level. For an NLP
dimension, the associated NLP measure specifies the source values.

Advanced Modeling for InterSystems IRIS Business Intelligence 37

Defining a Dictionary Dimension

4.7 Adding Member Overrides to an Item Level
Within a two-level dictionary dimension, by default, the dictionary level determines the members of the lower item level.
In the item level, you can add <member> elements that override the definitions determined by the parent.

This is useful, for example, if you want to see only a subset of the dictionary.

If you create these overrides, each <member> element should have the following form:

 <member name="itemURI" displayName="displayName" />

Where itemURI is the unique URI of a dictionary item, and displayName is the display name for the dictionary item. See
“Loading Dictionaries,” earlier in this chapter.

List the <member> elements in the desired sort order. For example:

 <level name="ReportDictInjuriesDimItem" displayName="Injuries" >
 <member name=":injuries:none" displayName="not injured" />
 <member name=":injuries:minor" displayName="minor injuries" />
 <member name=":injuries:serious" displayName="serious injuries" />
 <member name=":injuries:fatal" displayName="killed" />
 </level>

These overrides work as follows:

• If at least one <member> element can be matched to the given dictionary item, this level contains only the members
listed by these <member> elements.

• If none of the <member> elements can be matched to dictionary items, these overrides are all ignored.

4.8 Adding Measures That Use Plug-ins
A plug-in is essentially a query, and the system provides plug-ins that perform specialized text analytics queries. You can
use these plug-ins to add calculated measures that provide information on entity occurrences and on matching results. The
following sections give the details.

4.8.1 Adding Measures to Quantify Entity Occurrences

You can easily add measures that provide information on entity occurrences (indicate the total number, average number
per record, and so on). For an example, see the calculated measure Distinct Entity Count in the Aviation Events cube.

To add your own measures, follow the steps in “Defining a Calculated Measure,” in Defining Models for InterSystems
Business Intelligence. For Expression, use the following expression:

%KPI("%DeepSee.iKnow","Result",1,"aggregate","total","%CONTEXT")

This expression returns the total number of distinct entities, in any given context.

Instead of "total", you can use any of the following:

• "sum" — In this case, the expression returns the total number of entities (as opposed to distinct entities), in the given
context. That is, entities might be counted more than once.

• "average" — In this case, the expression returns the average number of entities per record, in the given context.

• "max" — In this case, the expression returns the maximum number of entities in any given record, in the given context.

38 Advanced Modeling for InterSystems IRIS Business Intelligence

Using Text Analytics in Cubes

• "min" — In this case, the expression returns the minimum number of entities in any given record, in the given context.

This expression uses the %KPI MDX function and the plug-in class %DeepSee.PlugIn.iKnow. For details on the function,
see the InterSystems MDX Reference. For details on the class, see the class reference.

Important: If you omit the "%CONTEXT", then in all cases, your calculated measures ignore any context and return
results for your entire data set.

4.8.2 Adding Measures to Quantify Matching Results

You can easily add measures that provide information on dictionary matching results (indicate the total number, average
matching score per record, and so on). For examples, see the calculated measures Dictionary Match Count and Total Dic-
tionary Score in the Aviation Events cube.

To add your own measures, follow the steps in “Defining a Calculated Measure,” in Defining Models for InterSystems
Business Intelligence. For Expression, use one of the following expressions:

• To get counts of matching results (results that match dictionary items):

%KPI("%DeepSee.iKnowDictionary","MatchCount",1,"aggregate","sum","%CONTEXT")

This expression returns the total number of matching results, in any given context.

Instead of "sum", you can use the alternative aggregation types listed in the previous section.

• To get scores for matching results:

%KPI("%DeepSee.iKnowDictionary","MatchScore",1,"aggregate","sum","%CONTEXT")

This expression returns the total score for matching results, in any given context.

Instead of "sum", you can use the alternative aggregation types listed in the previous section.

These expressions use the %KPI MDX function and the plug-in class %DeepSee.PlugIn.iKnowDictionary. For details on the
function, see the InterSystems MDX Reference. For details on the class, see the class reference.

Important: If you omit the "%CONTEXT", then in all cases, your calculated measures ignore any context and return
results for your entire data set.

4.9 Including Text Analytics Results in Listings
You can include Text Analytics results in listings as follows:

• You can include a summary field in a listing

• You can add a link from the listing to the complete unstructured text

• You can define a specialized listing for use in the Content Analysis plug-in

4.9.1 Including a Text Analytics Summary Field in a Listing

It can be useful for your listings to include a summary of the unstructured text. To include such a summary, use the
$$$IKSUMMARY token within the listing field definition. This token takes two arguments (in square brackets):

$$$IKSUMMARY[nlpMeasure,summarylength] As Report

Advanced Modeling for InterSystems IRIS Business Intelligence 39

Including Text Analytics Results in Listings

Where nlpMeasure is the name of the NLP measure to summarize and summary_length is the number of sentences to
include in the summary (the default is five). You can omit nlpMeasure if there is only one NLP measure in the cube.

The As clause specifies the title of the column; in this case, the title is Report.

The $$$IKSUMMARY token returns the most relevant sentences of the source, concatenated into a string that is no longer
than 32000 characters.

For example:

<listing name="Default" disabled="false" listingType="table"
 fieldList="%ID,EventId,Year,AirportName,$$$IKSUMMARY[Report] As Report">
</listing>

Internally $$$IKSUMMARY uses the GetSummary() method of %iKnow.Queries.SourceAPI.

You can also use the $$$IKSUMMARY token to refer to an NLP measure in a related cube, if there is a many-to-one rela-
tionship between the listing cube and the related cube. In this case, use relationshipname.nlpMeasure instead of nlpMeasure
as the first argument to $$$IKSUMMARY. For example, suppose that the Observations cube has a relationship called
Patient, which points to the Patients cube. Also suppose that the Patients cube has an NLP measure named
History. Within the Observations cube, you can define a listing that includes $$$IKSUMMARY[Patient.History].

You can refer to a relationship of a relationship in the same way. For example:
$$$IKSUMMARY[Relationship.Relationship.Measure].

4.9.2 Including a Link from a Listing to the Full Unstructured Text

Your listings can also include a link to a page that displays the full unstructured text. To include such a link, use the
$$$IKLINK token within the listing field definition. This token takes one argument (in square brackets):

$$$IKLINK[nlpMeasure]

Where nlpMeasure is the name of the NLP measure to display. You can omit nlpMeasure if there is only one NLP measure
in the cube.

You can also use the $$$IKLINK token to refer to an NLP measure in a related cube, if there is a many-to-one relationship
between the listing cube and the related cube. In this case, use relationshipname.nlpMeasure instead of nlpMeasure as the
first argument to $$$IKLINK. You can refer to a relationship of a relationship in the same way. For example:
$$$IKLINK[Relationship.Relationship.Measure].

See the examples in the previous subsection.

4.9.3 Creating a Specialized Listing for Use in Content Analysis Plug-in

The Analyzer provides advanced analysis options, which include the Content Analysis plug-in. This option uses a detail
listing to display the five most typical and five least typical records. By default, the plug-in uses the default listing of the
cube.

You might want to create a listing specifically for use here, for reasons of space. If you define a listing named
ShortListing, the plug-in uses that listing instead.

In either case, the plug-in adds a Score column to the right of the columns defined in the listing.

For details on this analysis option, see “Text Analytics Content Analysis” in Using Dashboards and the User Portal.

40 Advanced Modeling for InterSystems IRIS Business Intelligence

Using Text Analytics in Cubes

4.10 Text Analytics Domain Management
When you use the features described in this chapter, the system creates one or more Text Analytics domains. These Text
Analytics domains are managed by Business Intelligence (unlike Text Analytics domains that you create directly as described
in Using InterSystems IRIS Natural Language Processing (NLP)). To modify them, you should use only the APIs described
in this chapter.

InterSystems IRIS manages these domains in a way that requires little or no intervention. If you are familiar with Text
Analytics domains, however, you might be interested in the details.

The system creates one Text Analytics domain for each NLP measure that you add to a cube. The name of the domain is
DeepSee@cubename@measurename where cubename is the logical name of the cube and measurename is the logical name
of the NLP measure.

InterSystems IRIS manages these domains as follows:

• When you compile the cube for the first time, the system creates the needed domains.

• When you build the cube, the Analytics engine processes the text in the NLP measures and stores the results.

• When you compile the cube again, the system checks to see if the needed domains exist. If so, it reuses them. If not,
it creates them.

When it checks whether a given domain can be reused, the system considers the source value or source expression of
each NLP measure (rather than considering the logical name of the NLP measure). Therefore, when you rename an
NLP measure, the system reuses the existing Text Analytics domain.

• When you remove an NLP measure and recompile the cube, the system deletes the corresponding Text Analytics
domain and all associated engine results.

• When you delete the cube, the system deletes the Text Analytics domains and removes all associated engine results.

4.11 Advanced Topics
This section discusses the following advanced topics:

• How to override the default Text Analytics domain parameters

• How to load black lists for use with the cube

• How to update black lists

4.11.1 Specifying Text Analytics Domain Parameters for a Measure

In rare cases, you might want to override the default Text Analytics domain parameters used for a given NLP measure. To
do so, edit the cube class in Studio and add the following to the definition of the applicable NLP measure:

iKnowParameters="parameter::value;parameter::value"

For parameter, use the parameter name or the macro that represents the parameter. Use two colons between a parameter
and its value. Use a semicolon to separate each name/value pair from the next pair in the list.

The following example overrides the default values for the DefaultConfig and MAT:SkipRelations parameters:

iKnowParameters="DefaultConfig::Spanish;MAT:SkipRelations::0"

Advanced Modeling for InterSystems IRIS Business Intelligence 41

Text Analytics Domain Management

For details on Text Analytics domain parameters, see “Alternatives for Creating an NLP Environment” in Using InterSystems
IRIS Natural Language Processing (NLP).

4.11.2 Loading Black Lists

A black list is a list of entities that you do not want a query to return. To load black lists for use with Business Intelligence:

1. Create a term list that consists of the black list items. For information on creating term lists, see “Defining Term Lists”
in Implementing InterSystems Business Intelligence.

2. Edit an NLP measure to use this black list. To do this, edit the measure in Studio and specify the iKnowParameters
attribute. This attribute contains one or more name/value pairs, where the names are Text Analytics domain parameters
and the values are the corresponding values. For general information on specifying iKnowParameters, see “Speci-
fying Text Analytics Domain Parameters for a Measure,” earlier in this chapter.

In this case, the Text Analytics domain parameter is $$$IKPDSBLACKLIST and its value is the term list name.

3. Either rebuild the cube or manually load the term list as a black list.

To manually load the term list as a black list, use the following class method of %iKnow.DeepSee.CubeUtils:

classmethod LoadTermListAsBlackList(pCube As %String,
 pMeasure As %String,
 pTermList As %String) as %Status

Where:

• pCube is the name of the cube that uses this NLP measure.

• pMeasure is the name of NLP measure that uses this black list.

• pTermList is the name of term list.

The system uses this black list for the following purposes:

• To filter entities returned by the entity dimension, in the Analyzer or directly through MDX.

• To exclude entities from the derivation of top groups as shown in the Entity Analysis screen (described in the chapter
“Using the Pivot Analysis Window” of Using Dashboards and the User Portal). Blacklisted entries (or their standardized
form) will not be a group by themselves, but still contribute to the scores of other groups. For example, if pilot is
blacklisted, helicopter pilot still contributes to the group helicopter.

• To filter entities shown in the Entities detail tab in the Entity Analysis screen.

The black list does not affect the assisted text entry for the Analyze String option in the Entity Analysis screen.

4.11.3 Updating Black Lists

To update a black list, edit the corresponding term list and then either rebuild the cube or manually load the term list as a
black list as described in the previous subsection.

4.12 When the NLP Updates Occur
The following table summarizes when the Analytics engine updates dictionaries, blacklists, and matching results:

42 Advanced Modeling for InterSystems IRIS Business Intelligence

Using Text Analytics in Cubes

Automatic NLP Updates by the Analytics EngineAction

NoneCompiling a cube

Building a cube • Refreshes all dictionaries used by this cube by appending any
new term lists (deleted and renamed items are not affected)

• Completely refreshes all blacklists for term lists used by the cube

• Fully updates the matching results

Synchronizing a cube • No refresh of dictionaries or blacklists

• Creates results for any new records in the fact table

NoneUpdating a term list via the API or the
Management Portal

Updating a term list via the
UpdateDictionary() method of
%iKnow.DeepSee.CubeUtils

• Completely refreshes the dictionary represented by the specified
term list

• Fully updates the matching results with respect to the specified
term list

Advanced Modeling for InterSystems IRIS Business Intelligence 43

When the NLP Updates Occur

5
Defining Term Lists

Term lists provide a way to customize an InterSystems IRIS® Business Intelligence model without programming. This
chapter describes how to define them. It discusses the following topics:

• Overview of term lists

• How to access the Term List Manager

• How to define a term list

• How to specify a term list pattern

• How to export and import term lists

• How to delete a term list

• How to access term lists programmatically

Also see “Accessing the Samples Shown in This Book,” in the preface.

5.1 Overview of Term Lists
Term lists provide a way to customize a Business Intelligence model without programming. A term list is a simple (but
extendable) list of key and value pairs. The key values must be unique within the list. You can extend the term list by adding
custom fields. You can use term lists in the following ways:

• You can use a term list to define additional data to use in the cube. In this case, the term list is used when the cube is
built. For example, you can use a term list to define a set of values to use as properties of a level. Or you could use a
term list to provide an alternative set of names for the level members.

• You can use a term list at run time to access additional values. (In this case, you use the LOOKUP and %LOOKUP
functions.)

• You can use a term list at run time to build a set of members, typically for use in a filter. In this case, you must specify
a term list pattern. You use the term list with the %TERMLIST function.

Tip: You can use term lists to define matching dictionaries for use with unstructured data. See “Using Unstructured
Data in Cubes” in Defining Models for InterSystems Business Intelligence.

Advanced Modeling for InterSystems IRIS Business Intelligence 45

5.2 Accessing the Term List Manager
To define and modify term lists, you use the Term List Manager. To access this tool:

1. Select the InterSystems Launcher and then select Management Portal.

Depending on your security, you may be prompted to log in with an InterSystems IRIS username and password.

2. Switch to the appropriate namespace as follows:

a. Select Switch.

b. Select the namespace.

c. Select OK.

3. Select Analytics —> Tools —> Term List Manager.

The Term List Manager page initially looks like this:

On this page you can do the following:

• Create new term lists. Select New and continue as described in “Defining a Term List.”

• Open and modify existing term lists. Select Open, select a term list, and continue as described in “Defining a Term
List.”

• Export and import term lists. See “Exporting and Importing Term Lists.”

5.3 Defining a Term List
To define a term list, select New. The system displays a dialog box that asks for the name of the new term list. Enter a name
and select OK. Then do the following tasks as needed:

• Enter descriptive information about the term list into the following optional fields on the Details tab:

– Caption — Optional caption for the term list

46 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining Term Lists

– Subject Area — Select the subject area where this term list will be used

– Description — Longer description of the term list

For information on Pattern, see “Specifying the Pattern for a Term List.”

•
Add terms. To do so, select Add Term on the right. Or select the New Term button .

A new row is added to the bottom of the term list.

•
Add custom fields. To do so, enter a value into Field Name and then select the Add Field button on the right. Or

select the New Field button .

A new column is added on the right side of the term list.

• Enter values into cells. To enter a value, select a cell and type a value. Then move the cursor to another cell, press
Enter, or select OK.

• Remove a term. To do so, select the row for the term and select Remove Term on the Details tab.

•
Remove a custom field. To do so, select the column for the custom field and select the Remove Field button on
the right.

Then save the term list. To do so, select Save or Save As. If you select Save As, specify a new name and then select OK.

5.4 Specifying the Pattern for a Term List
The %TERMLIST function returns a set that, by default, consists of members that are identified by the keys in the term
list, in combination with the term list pattern.

If you intend to use a term list with the %TERMLIST function, then define the term list as follows:

• For each term, specify the value field as a member name or the numeric key.

• For Pattern, specify an expression of one of the following forms:

– If the value field contains member names, use the form:

[dimension name].[hierarchy name].[level name].[*]

– If the value field contains member keys, use the form:

[dimension name].[hierarchy name].[level name].&[*]

In either case, dimension name, hierarchy name, and level name are the names of the dimension, hierarchy, and level to
which the member belongs. The asterisk represents the value in the value field. For an example, see %TERMLIST in the
InterSystems MDX Reference.

5.5 Exporting and Importing Term Lists
You can export term lists to comma-separated files and you can import term lists from such files.

Advanced Modeling for InterSystems IRIS Business Intelligence 47

Specifying the Pattern for a Term List

5.5.1 Exporting a Term List

To export a term list:

1. Display the term list in the Term List Manager.

2. Select Export. The system generates a file.

Depending on your browser settings, the browser then either saves the file automatically (in the default download
directory for this browser) or opens the file in a default application.

5.5.2 Sample Term List File

The following shows the contents of an example term list file:

%%NAME,My Term List
%%CAPTION,My Caption
%%DESCRIPTION,My Description
%%SUBJECTAREA,HoleFoods
%%MODDATE,2014-06-06 11:31:10
Atlanta,Braves
Boston,Red Sox
New York,Yankees

As you can see, the first lines of the export contain items that start with %%; these lines contain descriptive information
about the term list.

5.5.3 Importing a Term List

To import a term list:

1. In the right area, for CSV File to import, select Browse... and navigate to the file.

2. Select Import.

IRIS examines the name of the term list as contained in this file. Then:

• If the system already has a saved term list with the same name, the system asks if you want to overwrite that term
list. If you potentially want to overwrite the term list, select Yes. Otherwise, select Cancel to cancel the import
action.

If you select Yes, the system imports the file and displays the new definition of the term list, but does not save the
change.

• If the system does not yet contain a saved term list with the same name, the system imports the file and displays
the new term list, but does not save the new term list.

3. Optionally save the new or changed term list. To do so, select Save or Save As. If you select Save As, specify a new
name and then select OK.

5.6 Deleting a Term List
To delete a term list:

1. Display the term list in the Term List Manager.

2. Select Delete.

48 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining Term Lists

3. Select OK.

5.7 Accessing Term Lists Programmatically
You can use the %DeepSee.TermList class to access term lists programmatically. This class provides class methods like
the following:

• %ExportCSV()

• %GetTermLists()

• %GetValueArray()

• %Lookup()

• %TermListExists()

• And others

See the InterSystems Class Reference.

Advanced Modeling for InterSystems IRIS Business Intelligence 49

Accessing Term Lists Programmatically

6
Defining Worksheets

The Management Portal provides the Worksheet Builder option, which is no longer documented. Note that worksheets are
now deprecated.

Advanced Modeling for InterSystems IRIS Business Intelligence 51

7
Defining Quality Measures

This chapter describes how to define quality measures, which are similar to calculated measures (see Defining Models for
InterSystems Business Intelligence). It discusses the following topics:

• Overview

• Introduction to the Quality Measure Manager

• How to create a quality measure

• How to specify the overall expression for a quality measure

• How to edit other parts of the definition

• How to create a linked quality measure

• How to check the expression for a quality measure

• How to delete a quality measure

For a comparison of quality measures with more basic InterSystems IRIS Business Intelligence model elements, see the
chapter “Summary of Model Options” in Defining Models for InterSystems Business Intelligence.

7.1 Overview of Quality Measures
A quality measure is similar to a calculated measure that can be reused in multiple contexts. A quality measure is defined
by a formula that combines MDX expressions. You specify the subject area or subject areas in which it is available, and
you can control whether the quality measure is published (and thus available in the Analyzer).

Each quality measure is an InterSystems IRIS® class definition, specifically a subclass of
%DeepSee.QualityMeasure.QualityMeasure.

You can define quality measures either in the Quality Measure Manager or in Studio. This chapter discusses the Quality
Measure Manager.

You can use quality measures as follows:

• Published quality measures are displayed in the Analyzer, in the Quality Measure section of the left area. You can drag
and drop them into pivot tables.

• You can use quality measures in MDX queries. To refer to a quality measure in MDX, use the following syntax:

[%QualityMeasure].[catalog/set/qm name]

Advanced Modeling for InterSystems IRIS Business Intelligence 53

Where catalog is the catalog to which the quality measure belongs, set is a set in that catalog, and qm name is the short
name of the quality measure. (The full name of the quality measure is catalog/set/qm name.)

You can also refer to a group (group name) in a quality measure as follows:

[%QualityMeasure].[catalog/set/qm name/group name]

7.2 Introduction to the Quality Measure Manager
The Quality Measure Manager displays all compiled quality measure classes in the given namespace. You can use it to
create, modify, and delete them. To access the Quality Measure Manager:

1. In the Management Portal, select Analytics.

2. Select Tools > Quality Measures.

Here you can do the following:

• View summary information for the existing quality measures in this namespace. To do so, select Browse.

The middle area then displays something like the following:

• View the definition of a quality measure. To do so, select Open, expand the folders until you find the quality measure,
and then select the measure. The middle area then displays the details, which includes a section that shows the definition
of the measure. Typically this is as follows:

54 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining Quality Measures

You can then edit the measure or remove it.

• Create a quality measure. To do so, select New and then continue as described in the next section.

7.3 Creating a Quality Measure
To create a quality measure:

1. Select New.

The system displays a dialog box.

2. Specify the following values, which are all required:

• For Catalog, either select an existing catalog or type a new catalog name.

• For Set, either select an existing set or type a new set name.

• For Name, type a name.

• For Class Name for the Quality Measure, type a fully qualified class name (package and class).

3. Select OK.

The system closes the dialog box, and the middle area of the page now displays the initial definition of the quality
measure, as follows:

Advanced Modeling for InterSystems IRIS Business Intelligence 55

Creating a Quality Measure

Every quality measure is expressed as a formula as shown here in the Measure field. In this case, the formula is:

[Numerator]/[Denominator]

Where Numerator and Denominator are the names of groups defined in this quality measure.

Each group consists of one or more items, each of which is defined by an MDX expression.

In the initial definition of a quality measure, each of these groups is defined as a constant (100). The initial value of
this quality measure is 1.

The bottom area of the page displays any additional information:

4. Select Edit.

Now you can modify the formula and make other changes. See the following sections.

5. When you are done, select either Save to save the definition or select Save As to save it with a new name.

When you save the definition, the system automatically compiles the class and writes the quality measure definition
into a system global.

7.4 Specifying the Expression for a Quality Measure
Except for linked quality measures, when you display a quality measure in edit mode, you can edit the overall expression,
which looks like this initially:

56 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining Quality Measures

Here you can do the following:

•
Change the overall expression. To do so, select the edit button . Then specify a new expression and select OK. In
your formula:

– Use square brackets around the name of any group that is used in the formula. For example, use [Numerator]
to refer to the Numerator group, if your quality measure defines such a group.

– Use any of the standard mathematical operators.

– Include numeric constants as needed.

– Include parentheses to control precedence as needed.

•
Add a group. To do so, select the add button next to the Measure heading. Then edit the new group, which is
added to the end of definition.

•
Edit a group. To do so, select the edit button . Then specify new values for Name and Description as needed, and
select OK.

•
Add an element to a group. To do so, select the add button next to the group name. Then edit the new element.

•
Edit a element in a group. To do so, select the edit button next to the element name. Then specify new values for
Name and MDX Expression as needed, and select OK.

Advanced Modeling for InterSystems IRIS Business Intelligence 57

Specifying the Expression for a Quality Measure

For MDX Expression, see “Allowed MDX Expressions.”

• Change the order of groups within the measure definition or change the order of elements within a group. To do so,
select the up and down arrow next to the item that you want to move.

• Delete a group or an element. To do so, select the X button next to the item you want to delete. The system prompts
you to confirm this action.

7.4.1 Allowed MDX Expressions

For MDX Expression, specify one of the following kinds of expressions:

• A reference to a member, as shown in the example. This is the most common kind of expression used in quality measures.
A member is a set of records, and a quality measure usually consists of comparisons between different sets of records.

• Most other kinds of member expressions.

• Numeric literals such as 42 and other kinds of numeric expressions. You can, for example, use functions such as AVG
and COUNT.

• String literals such as "my label" and some other kinds of string expressions. The PROPERTIES and IIF functions
are not supported here.

• A tuple expression.

MDX Expression cannot be a set expression. You can, however, use %OR to enclose a set and return it as a single member.

Search expressions are not supported within quality measures.

For information on creating MDX expressions, see Using InterSystems MDX and the InterSystems MDX Reference.

7.4.2 How Groups and Elements Are Combined

The formula for the quality measure (shown below the Measure heading) determines how the groups are combined.

Within any given group, the elements are combined as an MDX set (that is, they are combined via logical OR). If you need
to combine elements via logical AND, create one element that has an MDX tuple expression that combines the desired
pieces. For example: ([patgrp].[h1].[medicaid].[yes],[age].[h1].[0 to 2])

To compute the value for a quality measure in any given context, Business Intelligence does the following:

1. For each group, creates an MDX set expression that combines the elements in that group.

2. Evaluates each group and determines its value.

3. Combines the group values as given in the formula.

58 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining Quality Measures

Note that a quality measure can define groups that are not used by the formula. This can be useful if you are using the
special [%QualityMeasure] dimension to refer to groups, as described earlier in this chapter.

7.5 Editing Other Information for a Quality Measure
When you display a quality measure in edit mode, you can also edit Caption (at the top of the page), as well as the following
area at the bottom of the page:

Here you can do the following:

•
Edit an item. To do so, select the edit button next to that item and then specify the details.

• Add an item. To do so, select Add Meta Item.

The editable items here are as follows:

• Subject Area — Specifies the cube or subject area in which this quality measure is available.

To specify multiple cubes or subject areas, edit the quality measure class in Studio.

Note that the quality measure is automatically available in any subject areas that are based on any cubes in this list.

• Published — Specifies whether this quality measure is available in the Analyzer.

• Link to additional info — Specifies a link to a URL that contains any additional information.

• Your custom items — Specify any additional information to display in the Quality Measure Manager. The system does
not use these items.

7.6 Defining a Linked Quality Measure (Quality Measure
Alias)
A linked quality measure is an alias for another quality measure (the master measure). The master measure may or may
not be published, and can belong to a different subject area.

To define a linked quality measure:

1. Select New.

Advanced Modeling for InterSystems IRIS Business Intelligence 59

Editing Other Information for a Quality Measure

The system displays a dialog box.

2. Specify the following values, which are all required:

• For Catalog, either select an existing catalog or type a new catalog name.

• For Set, either select an existing set or type a new set name.

• For Name, type a name.

• For Class Name for the Quality Measure, type a fully qualified class name (package and class).

3. Select OK.

The system closes the dialog box, and the middle area of the page now displays the initial definition of the quality
measure.

4. Select Edit.

5. For Linked To, select the parent measure and select OK.

If you specify Linked To for an existing quality measure, the editor discards values for any optional properties of the
measure.

6. Optionally specify the following options:

• Caption

• Subject Area

• Published

Other options are inherited from the master measure.

7. When you are done, select either Save to save the definition or select Save As to save it with a new name.

When you save the definition, the system automatically compiles the class and writes the quality measure definition
into a system global.

7.7 Checking the Expression for a Quality Measure
You might want to check the overall expression that defines a quality measure, particularly if the definition is complex. To
do so, use the %GetExpression instance method of the quality measure. For example:

SAMPLES>set qm=##class(QM.Preventive.Child.QM7).%New()

SAMPLES>w qm.%GetExpression()
[tests].[h1].[leadscr].[yes]/([patgrp].[h1].[medicaid].[yes],[age].[h1].[0 to 2])

This is the expression for the following quality measure:

60 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining Quality Measures

7.8 Deleting a Quality Measure
To delete a quality measure:

1. Display its definition.

2. Select Remove.

3. Select OK.

Advanced Modeling for InterSystems IRIS Business Intelligence 61

Deleting a Quality Measure

8
Defining Basic KPIs

This chapter introduces key performance indicators (KPIs) in InterSystems IRIS Business Intelligence and describes how
to define KPIs that use hardcoded queries. It discusses the following topics:

• Introduction

• How to choose between MDX and SQL

• Structure of a KPI result set

• How to define a KPI with a hardcoded query

• Class parameters for the KPI class

• How to specify range and threshold values to affect speedometers

• How to disable the %CONTEXT filter

For a comparison of KPIs with other kinds of model elements, see the chapter “Summary of Model Options” in Defining
Models for InterSystems Business Intelligence.

Also see the chapters “Defining KPIs with Filters and Listings” and “Defining Advanced KPIs.”

For information on defining KPIs based on text analytics, see “KPIs and Dashboards” in Using InterSystems IRIS Natural
Language Processing (NLP).

Also see “Accessing the Samples Shown in This Book,” in the preface.

8.1 Introduction to KPIs
A KPI is a class based on %DeepSee.KPI. In most cases, a KPI uses a query and displays a result set. (In other cases, a KPI
only defines actions; see “Defining Custom Actions” in Implementing InterSystems Business Intelligence.)

8.1.1 Ways to Use KPIs

Like pivot tables, KPIs can be displayed on a dashboard, within a widget.

You can also use the MDX %KPI function to retrieve values for a KPI. As a consequence, you can define calculated
members that are based on KPIs.

To access the values of a KPI value from ObjectScript, use the %GetKPIValueArray() method of the KPI class. For an
example, see “Defining a KPI with a Hardcoded Query.”

Advanced Modeling for InterSystems IRIS Business Intelligence 63

8.1.2 Comparison to Pivot Tables

KPIs are similar to pivot tables in many ways, but provide additional options that are not available for pivot tables. One
difference is that a KPI can use an SQL query; this is important because SQL queries and MDX queries are suitable in
different scenarios. In some cases, an SQL query is more efficient, and in such cases, you should use an SQL query within
a KPI.

For additional differences and similarities between KPIs and pivot tables, see “Summary of Model Options” in Defining
Models for InterSystems Business Intelligence.

8.1.3 Requirements for KPI Queries

In most cases, a KPI uses either an MDX query or an SQL query. There are rules about the form of the query; these rules
are imposed by the structure of a KPI result set (discussed in a later section).

• If the query uses MDX, note the following requirements:

– The query must use members for rows. You can have nested rows.

– The query must use measures for columns.

– The query cannot include nesting for columns.

• The query must return numeric values.

• If the query returns more than 1000 rows, only the first 1000 rows are used.

You can use queries that do not follow these rules. To do so, you must parse the result set and directly specify properties
of the KPI instance. For information, see the chapter “Defining Advanced KPIs.”

Also note that if you display the KPI in a meter, only the first row of the KPI is used.

8.2 Choosing Between MDX and SQL
SQL queries and MDX queries are suitable in different scenarios, and in some cases, an SQL query is more efficient.

MDX is generally more suitable when you are aggregating across large numbers of records. In contrast, when you are not
aggregating at all, or when you are aggregating only at a low level, SQL performs better. For example, consider the following
pivot table:

In this pivot table, each row represents one row in the source table. The equivalent SQL query would be faster.

64 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining Basic KPIs

8.3 Structure of a KPI Result Set
The result set of a KPI is organized into series and properties.

A KPI series is a row. The following example shows nine series (displayed on the KPI test page, introduced later in this
chapter). Each series has a name, which is shown here in the first column.

A KPI property is a data column. The previous example shows a KPI with two properties.

For KPIs based on MDX queries, a series often corresponds to a member of a level, and a property often corresponds to a
measure.

8.4 Defining a KPI with a Hardcoded Query
To create a simple KPI that uses a hardcoded query, do the following in Studio:

1. Select File > New, select the Custom tab, and then select New Business Intelligence KPI.

2. Specify the following required values:

• Package Name — Package to contain the KPI class.

• Class Name — Short class name of the KPI class.

3. Optionally specify the following additional values:

• KPI Caption — Not used.

• KPI Name — Logical name of the KPI.

• Description — Description of the KPI, to be saved as comment lines for the class.

• Domain — Localization domain to which this KPI belongs; for details, see the Implementing InterSystems Business
Intelligence.

• Resource — Resource that secures this KPI. For information on how this is used, see “Setting Up Security” in
Implementing InterSystems Business Intelligence.

• Source Type — Specifies the source of the data for this KPI. Select either mdx or sql. (For information on manual,
see the chapter “Defining Advanced KPIs.”)

Advanced Modeling for InterSystems IRIS Business Intelligence 65

Structure of a KPI Result Set

• Properties — Type the names of the properties of this KPI (the column names of the result set). Type each property
on a separate line.

• Filters — Type the names of any filters to be used in the KPI query. See the next chapter. Type each filter name
on a separate line.

• Actions — Type the names of any actions to be defined in the KPI. See “Defining Custom Actions” in Implementing
InterSystems Business Intelligence. Type each action name on a separate line.

You can edit all these values later as well.

4. Select Finish.

The wizard generates a class definition like this:

Class MyApp.KPI.MyKPI Extends %DeepSee.KPI
{

Parameter DOMAIN = "MyAppDomain";

Parameter RESOURCE = "KPI_Resource";

/// This XData definition defines the KPI.
XData KPI [XMLNamespace = "http://www.intersystems.com/deepsee/kpi"]
{
<kpi xmlns="http://www.intersystems.com/deepsee/kpi"
 name="MyKPI" sourceType="mdx"
 caption="MyCaption"
>
<property name="PatCount" displayName="PatCount" columnNo="1"/>
<property name="AvgAge" displayName="AvgAge" columnNo="2"/>
</kpi>
}

The XData block defines the KPI. In the XData block, <kpi> is an XML element. This element starts with the opening
<kpi and ends with the closing angle bracket. xmlns, name, sourceType, and caption are XML attributes. Each
attribute has a value. In this example, the value of the sourceType attribute is mdx.

The class also includes stub definitions for several methods; by default, these do nothing. For details, see the following
two chapters.

5. Within the <kpi> element, add one of the following attribute specifications:

mdx="MDX query"

Or:

sql="SQL query"

Where MDX query is an MDX SELECT query or SQL query is an SQL SELECT query. (Use the mdx option if you
chose mdx in the wizard, and use the sql option if you chose sql.)

For example:

<kpi xmlns="http://www.intersystems.com/deepsee/kpi"
 name="MyKPI" sourceType="mdx"
 mdx="SELECT {MEASURES.[%COUNT],MEASURES.[Avg Age]} ON 0, HomeD.H1.City.MEMBERS ON 1 FROM patients"

 caption="MyCaption"
>

You can add the attribute specification anywhere between the opening <kpi and the closing angle bracket. The attribute
specification can be on its own line, as shown here, or it can be on the same line as other attributes. Within the XData
block, Studio provides assistance as you type.

For requirements, see “Requirements for KPI Queries,” earlier in this chapter.

For information on MDX, see Using InterSystems MDX and InterSystems MDX Reference.

66 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining Basic KPIs

6. Optionally specify class parameters, as described in the next section.

7. Compile the class.

8. Select View > Web Page.

You then see something like the following:

The Series column indicates the name of each series. This name is available as a label when you display this KPI in a
scorecard.

To the right of those columns, this table has one column for each <property> of the KPI. This column shows the
current value of that property, for each row in the KPI.

The KPI test page provides a convenient way to test the KPI before using it. You can also use the %GetKPIValueArray()
method of the KPI class. For example:

Advanced Modeling for InterSystems IRIS Business Intelligence 67

Defining a KPI with a Hardcoded Query

SAMPLES>set
status=##class("HoleFoods.KPIYears").%GetKPIValueArray("HoleFoods.KPIYears",.pValues,$LB("Value"))

SAMPLES>w status
1
SAMPLES>set
status=##class("HoleFoods.KPIYears").%GetKPIValueArray("HoleFoods.KPIYears",.pValues,$LB("Value"))

SAMPLES>w status 1
SAMPLES>zw pValues pValues(1)=$lb("2010")
pValues(2)=$lb("2011")
pValues(3)=$lb("2012")
pValues(4)=$lb("2013")
pValues(5)=$lb("2014")
pValues(6)=$lb("2015")

For details, see the class reference for %DeepSee.AbstractKPI.

8.5 Specifying Class Parameters
You can specify some or all of the following class parameters in your KPI class:

DOMAIN

Parameter DOMAIN = "MyAppDomain";

Specifies the localization domain to which this KPI belongs; for details, see the Implementing InterSystems Business
Intelligence.

FORCECOMPUTE

Specifies whether the system should always recompute the values in this KPI when this KPI is used within an
MDX query (that is, via the %KPI function). The default is false; when that query is rerun, the system uses cached
values instead.

If the KPI uses external data, it may be useful to set FORCECOMPUTE equal to true.

LABELCONCAT

Specifies the character used to concatenate labels for an MDX-based KPI that uses CROSSJOIN or NONEMPTY-
CROSSJOIN for rows. The default is a slash (/).

PUBLIC

Controls whether the KPI is available for use in scorecards and other dashboard widgets, as well as for use with
the MDX %KPI function. If you want to hide the KPI from use in dashboards, add the PUBLIC class parameter
to the class, with the value 0.

RESOURCE

Parameter RESOURCE = "KPI_Resource";

Specifies the resource that secures this KPI. For information on how this is used, see “Setting Up Security” in
Implementing InterSystems Business Intelligence.

For the ASYNC class parameter, see the chapter “Defining Advanced KPIs.”

68 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining Basic KPIs

8.6 Specifying Ranges and Thresholds for Speedometers
Within the definition of a KPI, you can specify its range and threshold values, for use in speedometers. To specify these
values, edit the <kpi> element and specify the following attributes:

• rangeLower — Default lowest value to display in the meter.

• rangeUpper — Default highest value to display in the meter.

• thresholdLower — Default lower end of the threshold for this KPI. The threshold area is displayed in contrasting
color.

• thresholdUpper — Default higher end of the threshold.

For example:

<kpi name="KPIForRangeDemos"
sourceType="mdx"
mdx='SELECT MEASURES.[%COUNT] ON 0, AgeD.[All Patients] ON 1 FROM PATIENTS'
rangeLower="0"
rangeUpper="900"
thresholdLower="20"
thresholdUpper="800"
>

<property name="Patient Count" columnNo="1" />

</kpi>

When displayed in a speedometer, this KPI looks as follows (by default):

Notice the value box in the speedometer displays the actual KPI value (1000), even though it is higher than the value of
rangeUpper.

You can also set the range and threshold values programmatically, which is useful if hardcoded values are not appropriate.
See the chapter “Defining Advanced KPIs.”

Note: When you configure a scorecard on a dashboard, you have the options Lower Threshold, Upper Threshold, Lower

Range, and Upper Range. Note that the KPI attributes rangeLower, rangeUpper, thresholdLower, and
thresholdUpper do not affect these scorecard options.

Advanced Modeling for InterSystems IRIS Business Intelligence 69

Specifying Ranges and Thresholds for Speedometers

8.7 Disabling the %CONTEXT Filter
As noted earlier, you can use the MDX %KPI function to retrieve values for a KPI. For MDX-based KPIs, the %KPI
function has an optional parameter (%CONTEXT) that passes context information to the KPI. By default, this context infor-
mation is applied to the MDX query as a filter clause. To disable this automatic behavior, override the
%GetMDXContextFilter() method as follows:

Method %GetMDXContextFilter() As %String
{
 Quit ""
}

70 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining Basic KPIs

9
Defining KPIs with Filters and Listings

This chapter describes options for defining KPIs that include filters and listings. It discusses the following topics:

• Introduction to KPI filters

• How to make filters interoperable between KPIs and pivot tables

• How to define filters in an MDX-based KPI

• How to define filters in an SQL-based KPI

• Additional options for defining filter names and items

• How to modify an MDX query to use filter values

• How to modify an SQL query to use filter values

• Additional MDX KPI examples

• How to define a listing for a KPI

Before using this chapter, see the chapter “Defining Basic KPIs.” For more advanced KPIs, see the chapter “Defining
Advanced KPIs.”

KPIs can also define actions. See “Defining Custom Actions” in Implementing InterSystems Business Intelligence.

Also see “Accessing the Samples Shown in This Book,” in the preface.

9.1 Introduction to Filters
Typical dashboards include one or more filter controls, with which the user interacts with the widgets on the dashboard.
Each filter control is typically displayed as a drop-down list. A filter can filter the data displayed by a widget, or it could
affect the data source in some other different manner.

For a pivot table, any level in the cube or subject area can be used as filter. For a KPI, however, no filters are defined by
default. To add filters to a KPI, you use the following system:

• You define each filter; that is, you specify the filter names and the items in the filter lists.

You can skip this step if you intend to use filters provided by a pivot table.

• You specify the KPI query programmatically so that it uses the filters. To do this, you implement a callback method
in the KPI so that it overrides any hardcoded query. Within this method, you have access to the selected filter values.

Advanced Modeling for InterSystems IRIS Business Intelligence 71

In typical cases, you add a WHERE clause (or %FILTER, for an MDX query) that restricts the records used by the
query. Then when the user refreshes the dashboard, the system reruns the query and displays the results.

Because you construct the KPI query yourself, you can use filters in more general ways. That is, you are not required
to use the filter selection to affect the WHERE (or %FILTER) clause of the query. For an extreme example, a filter
could display the options 1, 2, and 3. Then the KPI could execute version 1, 2, or 3 of the query, which might be entirely
different versions. For another example, a filter could display a list of measure names, and the KPI could include the
selected measures in its query.

9.2 Creating Interoperable Filters
A dashboard can contain both KPIs and pivot tables, displayed in scorecards, pivot table widgets, or other widgets. Within
a dashboard, a filter can be configured to affect multiple widgets.

It is possible to define filters that affect both KPIs and pivot tables.

Pivot tables send and receive filter values in a specific syntax, described in the following subsection. To create interoperable
filters, you must consider this requirement; the second subsection describes two possible approaches.

9.2.1 Filter Syntax for Pivot Tables

The following table indicates the filter syntax used and expected by pivot tables. This syntax applies to pivot tables that
are displayed in any kind of dashboard widget.

ExampleSyntaxScenario

[Region].[H1].[Country]MDX level identifiersAllFilter Name

&[USA]MDX key for a member of that level,
which is an expression of the following
form: &[keyval] where keyval is the
key value for the member.

User selects a
single member

Filter Value

&[2006]:&[2009]Expression of the following form:
&[keyval1]:&[keyval2]

User selects a
range of
members

{&[2006],&[2007],&[2008]}Expression of the following form (for
example):{&[keyval1],&[keyval2]}

User selects
multiple
members

%NOT &[2010]Expression of the following form:
%NOT&[keyval1]

User selects a
single member
and selects
Exclude

%NOT {&[2006],&[2007]}Expression of the following form (for
example):
%NOT{&[keyval1],&[keyval2}

User selects
multiple
members and
selects Exclude

Other than the optional %NOT string, the filter names and filter values are not case-sensitive.

72 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining KPIs with Filters and Listings

9.2.2 Ways to Create Interoperable Filters

There are two general ways to create filters that can affect both pivot tables and KPIs:

• You can create a KPI that defines and uses filters in the format required by pivot tables.

• You can define a KPI that converts filter names and values from the pivot table format to the format needed for the
KPI query.

These approaches can work with either MDX-based or SQL-based KPIs, but more work is needed to convert values when
you use an SQL-based KPI.

For an MDX example, see the sample dashboard Demo Filter Interoperability. This dashboard demonstrates
the former approach. This dashboard displays two pivot table widgets; the upper one displays a pivot table, and the lower
one displays a KPI. For this dashboard, the Filters worklist on the left includes the following filters:

• The Favorite Color filter is configured as part of the upper widget and is therefore defined by the pivot table that
is displayed in that widget.

Favorite Color is a level in the cube on which this pivot table is based.

• The Doctor Group filter is configured as part of the lower widget and is therefore defined by the KPI that is displayed
in that widget.

This filter is defined programmatically within this KPI. This filter is defined to use values in pivot table format, as
given in the previous section.

For both of these filters, the target of this filter is * (which refers to all widgets in this dashboard). As you can see by
experimentation, both filters affect both of these widgets.

The KPI includes an additional filter (Yaxis), which controls the y-axis of the MDX query used by the KPI. This filter
has no effect on the pivot table.

For details on how this works, see “Additional MDX KPI Examples,” later in this chapter.

9.3 Defining Filters in an MDX-Based KPI
To define filters in an MDX-based KPI, do the following:

1. Specify the list of filters. Each filter can have a logical name (required) and a display name (the same as the logical
name by default).

One option is to hardcode the list of filters. To do so, add a set of <filter> elements to the <kpi> element. For
example:

<kpi name="sample KPI"...>
 <filter name="[aged].[h1].[age group]" displayName="Age Group"/>
 <filter name="[gend].[h1].[gender]" displayName="Gender"/>
 <filter name="[homed].[h1].[zip]" displayName="ZIP Code"/>
...

In this example, the logical filter names are MDX level identifiers. It is convenient, but not required, to specify the
logical names in this way.

You could instead specify filter names at runtime. See “Other Options for Defining Filter Names and Items,” later in
this chapter.

2. If you add <filter> elements, specify the following options as wanted:

Advanced Modeling for InterSystems IRIS Business Intelligence 73

Defining Filters in an MDX-Based KPI

• You can enable users to select only one element from a filter list (instead of multiple elements, which is the default).
To do so, add multiSelect="false" to the <filter> element. For example:

 <filter name="[homed].[h1].[zip]" displayName="ZipCode" multiSelect="false" />

When multiselect is disabled, the Exclude option is also disabled.

• If the filter items are days, you can display a calendar control rather than the default drop-down list. To do so, add
searchType="day" to the <filter> element. For example:

 <filter name="[birthd].[h1].[day]" displayName="Day"
filterProperty="Day" searchType="day"/>

• A filter can depend upon another filter. To indicate this, use the optional dependsOn attribute. For example:

<filter name="[homed].[h1].[zip]" displayName="ZIP Code"/>
<filter name="[homed].[h1].[city]" displayName="City" dependsOn="[homed].[h1].[zip]"/>

3. Define the filter items for each filter. Each filter item can have a logical name (required) and a display name (the same
as the logical name by default).

It is useful if the logical names are the same as MDX member keys; otherwise, more work is needed to construct filter
clauses, as described later in this chapter.

One option is to implement the %OnGetFilterMembers() method. If the logical names of the filters are MDX level
identifiers, you can use a version of the following simple implementation:

ClassMethod %OnGetFilterMembers(pFilter As %String, Output pMembers As %List,pSearchKey As %String
 = "") As %Status
{
 set status = $$$OK

 try {
 do ..%GetMembersForFilter("Patients.cube",pFilter,.pMembers,pSearchKey)
 }
 catch(ex) {
 set status = ex.AsStatus()
 }

 quit status
}

Simply replace Patients with the name of your cube. For example:

 do ..%GetMembersForFilter("YourCube.cube",pFilter,.pMembers,pSearchKey)

For details on %OnGetFilterMembers(), see the first subsection. The example shown here uses the
%GetMembersForFilter() method; for details, see the second subsection.

You could instead hardcode the filter items; see “Other Options for Defining Filter Names and Items,” later in this
chapter.

4. Modify the query to use the value or values selected by the user. See “Modifying an MDX Query to Use Filter Values,”
later in this chapter.

9.3.1 %OnGetFilterMembers() Details

In your KPI class, if you implement the %OnGetFilterMembers() method, use the following signature:

classmethod %OnGetFilterMembers(pFilter As %String,
 Output pMembers As %List, pSearchKey As %String
= "") as %Status

Where:

74 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining KPIs with Filters and Listings

• pFilter is the logical name of a filter.

• pMembers specifies the members in a $LISTBUILD list. This list contains both the logical names and the display
names. For details, see the class reference for %DeepSee.KPI.

• pSearchKey is the search key entered by the user.

Tip: You can use this method in any KPI, regardless of the type of query it uses.

If the logical names of the filters are MDX level identifiers, you can use a simple implementation as shown previously. If
not, it is necessary to do more work before getting the members. For examples, see “Using Custom Logic to Build the List
of Filter Items at Runtime,” later in this chapter.

9.3.2 %GetMembersForFilter() Details

In your KPI class, you can use the %GetMembersForFilter() method, which has the following signature:

classmethod %GetMembersForFilter(pCube As %String,
 pFilterSpec As %String, Output pMembers,
 pSearchKey As %String = "") as %Status

Where:

• pCube is the logical name of a cube, with .cube appended to it.

• pFilterSpec is a MDX level identifier (for example, "[DateOfSale].[Actual].[YearSold]").

• pMembers, which is returned as an output parameter, is a list of members in the form required by
%OnGetFilterMembers(). In this list, the filter items are member keys.

• pSearchKey is the search key entered by the user.

This method is more useful for MDX-based KPIs than for SQL-based KPIs. For an SQL-based KPI, you would need to
convert the filter values to a form suitable for use in your query.

9.4 Defining Filters in an SQL-Based KPI
To define filters in an SQL-based KPI:

1. Specify the list of filters. Each filter can have a logical name (required) and a display name (the same as the logical
name by default).

One option is to specify the <filter> element of the <kpi> element; see the previous section.

Or you could instead specify filter names at runtime. See “Other Options for Defining Filter Names and Items,” later
in this chapter.

2. Within each <filter> element, specify the following multiSelect, searchType, and dependsOn attributes as
wanted. See the previous section.

3. Define the filter items for each filter. Each filter item can have a logical name (required) and a display name (the same
as the logical name by default).

One option is to implement the %OnGetFilterMembers() method, described earlier in this chapter.

You could instead hardcode the filter items; see “Other Options for Defining Filter Names and Items,” later in this
chapter.

Advanced Modeling for InterSystems IRIS Business Intelligence 75

Defining Filters in an SQL-Based KPI

4. Modify the query to use the value or values selected by the user. See “Modifying an SQL Query to Use Filter Values,”
later in this chapter.

9.5 Other Options for Defining Filter Names and Items
This section describes other options for defining filter names and filter items. It discusses the following topics:

• How to specify filter names at runtime

• How to hardcode the list of filter items in the valueList attribute

• How to specify the list of filter items via the sql attribute

• How to use custom logic to create the list of the filter items at runtime

9.5.1 Specifying the Filter Names at Runtime

The easiest way to define the filter names is to hardcode them as described earlier in this chapter. Another option is to
define them at runtime. To do so, override the %OnGetFilterList() method of your KPI class. This method has the following
signature:

classmethod %OnGetFilterList(Output pFilters As %List,pDataSourceName As %String =
"") As %Status

Where pFilters is an array with the following nodes:

• pFilters — Specifies the number of filters.

• pFilters(n) — Specifies the details for the nth filter. This is a $LISTBUILD list that consists of the following items:

– A string that equals the logical name of the filter.

– A string that equals the display name of the filter.

– A string that equals the filter property; the default is the logical name of the filter.

– 1 or 0 to indicate whether multiselect is enabled for this filter. Use 1 to enable multiselect or 0 to disable it.

pDataSourceName is for future use.

For example, the following %OnGetFilterList() adds a filter named New Filter:

ClassMethod %OnGetFilterList(Output pFilters As %List, pDataSourceName As %String = "") As %Status
{
 set newfilter=$LB("New Filter","New Filter Display Name",,0)
 set pFilters($I(pFilters))=newfilter

}

For another example, the following %OnGetFilterList() uses a utility method to define as filters all the levels in the
Patients cube. The utility method %GetFiltersForDataSource() (in %DeepSee.Dashboard.Utils) returns a list of filters in
the format needed by %OnGetFilterList():

76 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining KPIs with Filters and Listings

ClassMethod %OnGetFilterList(Output pFilters As %List, pDataSourceName As %String = "") As %Status
{
 set tSC = ##class(%DeepSee.Dashboard.Utils).%GetFiltersForDataSource("patients.cube",.tFilters)
 quit:$$$ISERR(tSC)

 set i = ""
 for {
 set i = $order(tFilters(i), 1, data)
 quit:i=""

 set pFilters($i(pFilters)) = $lb($lg(data,2), $lg(data,1),,1)
 }
 quit $$$OK
}

9.5.2 Hardcoding the List of Filter Items via the valueList Attribute

Another way to build the list of filter items is to specify the valueList attribute of the <filter> element. Use a comma-
separated list of logical names for the filter items. The order of this list determines the order in which filter controls list the
filter items.

For example:

<filter name="ZipCode"
valueList="&[36711],&[34577],&[38928],&[32006],&[32007]"
displayList="36711,34577,38928,32006,32007"
/>

This attribute takes precedence over the sql attribute.

If you specify this attribute, you can also specify the displayList attribute, as shown above. If specified, this must be
a comma-separated list of display names. If you do not specify this attribute, the logical names are also used as the display
names.

9.5.3 Retrieving the List of Filter Items via the sql Attribute

Another way to build the list of filter items is to specify the sql attribute of the <filter> element. If specified, this must
be an SQL query. The query can return either one or two columns. The first column in the returned dataset must provide
the logical names for the filter items. The second column, if included, provides the corresponding display names. If you
do not include a second column, the logical names are also used as the display names.

For example:

<filter name="ZipCode1" sql="SELECT DISTINCT PostalCode FROM BI_Study.City"/>

If you specify the sql attribute, do not specify the displayList or valueList attributes (see the previous subsection).

9.5.4 Using Custom Logic to Build the List of Filter Items at Runtime

Another way to build the list of filter items is to implement %OnGetFilterMembers() and your own logic to create the
list. For example:

Advanced Modeling for InterSystems IRIS Business Intelligence 77

Other Options for Defining Filter Names and Items

ClassMethod %OnGetFilterMembers(pFilter As %String, Output pMembers As %List, pSearchKey As %String =
 "") As %Status
{
 Set status = $$$OK

 Try {
 If (pFilter = "AgeGroup") {
 set pFilterSpec="[AgeD].[h1].[Age Group]"
 } Elseif (pFilter="Gender") {
 set pFilterSpec="[GenD].[h1].[Gender]"
 } Elseif (pFilter="ZipCode") {
 set pFilterSpec="[HomeD].[h1].[ZIP]"
 }
 do ##class(%DeepSee.KPI).%GetMembersForFilter("Patients",pFilterSpec,.pMembers,pSearchKey)
 }
 Catch(ex) {
 Set status = ex.AsStatus()
 }

 Quit status
}

For another approach, you can query the dimension table that holds the level members. (For details on the dimension tables,
see “Details for the Fact and Dimension Tables” in Defining Models for InterSystems Business Intelligence.) The following
shows an example:

ClassMethod %OnGetFilterMembers(pFilter As %String, Output pMembers As %List, pSearchKey As %String =
 "") As %Status
{
 Set status = $$$OK

 Try {
 If (pFilter = "AgeGroup") {
 //get values from level table
 Set sql = "SELECT DISTINCT DxAgeGroup FROM BI_Model_PatientsCube.DxAgeGroup"
 Set st = ##class(%SQL.Statement).%New()

 Set status = st.%Prepare(sql)
 If $$$ISERR(status) {Do $system.Status.DisplayError(status) Quit}

 Set rs = st.%Execute()
 While(rs.%Next(.status)) {
 If $$$ISERR(status) {Do $system.Status.DisplayError(status) Quit}
 Set display=rs.DxAgeGroup
 Set actual="&["_display_"]"
 Set pMembers($I(pMembers)) = $LB(display,actual)
 }
 If $$$ISERR(status) {Do $system.Status.DisplayError(status) Quit}
 }
 }
 Catch(ex) {
 Set status = ex.AsStatus()
 }

 Quit status
}

Note that this example does not use the pSearchKey argument.

9.6 Modifying an MDX Query to Use Filter Values
For an MDX-based KPI, to modify the query to use filters, implement the %OnGetMDX() method. If you use the KPI
wizard in Studio and you choose the source type as MDX, the generated KPI class includes the following stub definition
for this method, which you can use as a starting point:

/// Return an MDX statement to execute.
Method %OnGetMDX(ByRef pMDX As %String) As %Status
{
 Quit $$$OK
}

78 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining KPIs with Filters and Listings

The variable pMDX contains the MDX query specified in the mdx attribute of <kpi>. (If you did not specify that attribute,
pMDX is null.)

When you implement this method, do the following:

1. If there is no initial query, specify an initial value of the variable pMDX. This should be an MDX SELECT query.

There is no initial query if you do not specify a query in the mdx attribute, as described in the previous chapter.

2. Examine each applicable filter and get its value.

To do this, use the %filterValues property of your KPI instance, as described in the first subsection.

3. Parse each filter value and convert it as needed to a form that can be used in an MDX %FILTER clause (if that is how
you intend to use the filter). For a table that lists the suitable forms, see the second subsection.

4. Modify the variable pMDX to use the filter values, as appropriate for your needs. In the most common case, append a
%FILTER clause for each non-null filter, as follows:

%FILTER mdx_expression

Where mdx_expression is the expression for that filter, as created in the previous step.

Or create an MDX tuple expression that combines the expressions and then add a single %FILTER clause like this:

%FILTER tuple_expression

In more exotic cases, you could use the filter values to rewrite the query string in other ways.

5. Return $$$OK (or 1).

The last subsection provides an example.

9.6.1 Accessing Filter Values

When a user selects filter items, the system sets the %filterValues property of your KPI instance. This property is an object
(specifically an instance of %ZEN.proxyObject) that the system creates as follows:

• It has one property for each filter in the KPI, with the same name (case-sensitive) as the filter.

For example, if a KPI has filters named filter1, filter2, and filter3, then the %filterValues property of
your KPI instance has properties named filter1, filter2, and filter3.

• The properties of %filterValues contain values shown in the following table:

NotesValue of %filterValues.FilterNameUser Selection in Filter

nullNone

itemOne item

Not applicable if multiselect is off{item1,item2}Multiple items

Not applicable if multiselect is off%NOT itemOne item and the Exclude

option

Not applicable if multiselect is off%NOT {item1,item2}Multiple items and the
Exclude option

Applies only to a filter defined in a
pivot table, which can affect the KPI

item1:item2Range

Advanced Modeling for InterSystems IRIS Business Intelligence 79

Modifying an MDX Query to Use Filter Values

9.6.2 Converting Filter Values to MDX Expressions for Use in %FILTER

The following table lists appropriate MDX expressions to use in %FILTER clauses, depending on user selections.

Appropriate MDX %FILTER ExpressionUser Selection in Filter

none (do not apply a %FILTER clause in this case)None

[dimension].[hierarchy].[level].[member]One item

[dimension].[hierarchy].[level].[member].%NOTOne item and the Exclude

option

{item1,item2,...} where each item has the form
[dimension].[hierarchy].[level].[member]

item1 and item2

EXCEPT([dimension].[hierarchy].[level].MEMBERS,{item,item,item,...}) where
each item has the form [dimension].[hierarchy].[level].[member]

Multiple items and the
Exclude option

[dimension].[hierarchy].[level].[member]:[member]A range

For an example, see the method BuildString() in the sample class BI.Utils.MDXAutoFiltersKPI.

Note that if multiselect is disabled, EXCLUDE is also disabled, and there are fewer possible forms of filter values. In this
case, query construction is comparatively simple.

9.6.3 Example

The following implementation of %OnGetMDX() applies to a KPI in which multiselect is disabled:

Method %OnGetMDX(ByRef pMDX As %String) As %Status
{
 if (..%filterValues."[aged].[h1].[age group]"'="")
 {
 set pMDX = pMDX _ " %FILTER [aged].[h1].[age group]." _..%filterValues."[aged].[h1].[age group]"
 }

 if (..%filterValues."[gend].[h1].[gender]"'="")
 {
 set pMDX = pMDX _ " %FILTER [gend].[h1].[gender]." _..%filterValues."[gend].[h1].[gender]"
 }

 if (..%filterValues."[homed].[h1].[zip]"'="")
 {
 set pMDX = pMDX _ " %FILTER [homed].[h1].[zip]." _..%filterValues."[homed].[h1].[zip]"
 }

 quit $$$OK
}

Because this method uses delimited property names, it can be confusing to read. Notes:

• "[aged].[h1].[age group]" is a valid property name.

• ..%filterValues."[aged].[h1].[age group]" is a reference to the "[aged].[h1].[age group]"
property of the %filterValues property of the KPI instance.

80 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining KPIs with Filters and Listings

9.7 Modifying an SQL Query to Use Filter Values
For an SQL-based KPI, to modify the query to use filters, implement the %OnGetSQL() method. If you use the KPI
wizard in Studio and you choose the source type as SQL, the generated KPI class includes the following stub definition
for this method, which you can use as a starting point

/// Return an SQL statement to execute.
Method %OnGetSQL(ByRef pSQL As %String) As %Status
{
 Quit $$$OK
}

The variable pSQL contains the SQL query specified in the sql attribute of <kpi>. If you did not specify that attribute,
pSQL is null.

When you implement this method, do the following:

1. If there is no initial query, specify an initial value of the variable pSQL. This should be an SQL SELECT query.

There is no initial query if you do not specify a query in the sql attribute, as described in the previous chapter.

2. Examine each applicable filter and get its value. The options are as follows:

• Use the %GetSQLForFilter() method, which returns values in a convenient format for use in the WHERE clause
of an SQL query. See the first subsection.

• Use the %filterValues property of your KPI instance, as described in the previous section.

3. Modify the variable pSQL to use the filter values, as appropriate for your needs. In the most common case, modify the
query to include an SQL WHERE clause.

In more exotic cases, you could use the filter values to rewrite the query string in other ways.

The second and third subsections provide examples.

4. Return $$$OK (or 1).

Note: An SQL-based KPI cannot have more than 1000 rows; the system automatically limits the number of rows returned.

9.7.1 %GetSQLForFilter()

For an SQL-based KPI, you can use a method to access filter values in a format that is useful for including in your query:

method %GetSQLForFilter(sql_field_reference,filter_name) As %String

Examines the current filter selections and returns a string that you can use in the WHERE clause of an SQL query.

sql_field_expression is an SQL field name and can include arrow syntax. filter_name is the name of a filter defined in this
KPI.

For example, consider the following method call:

..%GetSQLForFilter("City->Name","City")

The following table shows the values returned by this method call, in different scenarios.

Advanced Modeling for InterSystems IRIS Business Intelligence 81

Modifying an SQL Query to Use Filter Values

Value Returned by MethodScenario

City->Name = 'PINE'User selects PINE

City->Name = ('MAGNOLIA':'PINE')User selects a range, starting with MAGNOLIA and
ending with PINE

City->Name IN ('MAGNOLIA','PINE')User selects MAGNOLIA and PINE

City->Name <> 'PINE'User selects PINE and selects Exclude

City->Name NOT IN ('MAGNOLIA','PINE')User selects MAGNOLIA and PINE and selects Exclude

9.7.2 SQL KPI Example 1

The following example is from the sample class BI.Model.KPIs.DemoSQL. In this case, the filter adds GROUP BY and
ORDER BY clauses to the SQL query.

Method %OnGetSQL(ByRef pSQL As %String) As %Status
{
 //this is the start of the SQL query for this KPI
 Set pSQL = "SELECT Count(*),AVG(Age) FROM BI_Study.Patient "

 Set where = ""
 //look at %filterValues to see if a filter has been applied to this KPI instance
 If $IsObject(..%filterValues) {
 If (..%filterValues.ZipCode'="")
 {
 // Call utility method that returns filter data in convenient format
 Set sqlstring=..%GetSQLForFilter("HomeCity->PostalCode","ZipCode")
 Set where = "WHERE "_sqlstring

 }
 }

 Set groupby="GROUP BY HomeCity "
 Set orderby="ORDER BY HomeCity "
 // assemble the SQL statement
 Set pSQL=pSQL_where_groupby_orderby
 Quit $$$OK
}

9.7.3 SQL KPI Example 2

The following example is from the sample class HoleFoods.KPISQL:

Method %OnGetSQL(ByRef pSQL As %String) As %Status
{
 If $IsObject(..%filterValues) {
 Set tWHERE = ""
 If (..%filterValues.City'="") {
 Set tWHERE = tWHERE _ $S(tWHERE="":"",1:" AND ") _ " Outlet->City = '" _ ..%filterValues.City
_"'"
 }
 If (..%filterValues.Product'="") {
 Set tWHERE = tWHERE _ $S(tWHERE="":"",1:" AND ") _ " Product = '" _ ..%filterValues.Product _"'"
 }

 If (tWHERE'="") {
 // insert WHERE clase within query
 Set tSQL1 = $P(pSQL,"GROUP BY",1)
 Set tSQL2 = $P(pSQL,"GROUP BY",2)
 Set pSQL = tSQL1 _ " WHERE " _ tWHERE
 If (tSQL2 '= "") {
 Set pSQL = pSQL _ " GROUP BY" _ tSQL2
 }
 }
 }
 Quit $$$OK
}

82 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining KPIs with Filters and Listings

In this case, the KPI defines the initial query within the sql attribute, as described in the previous chapter. The
%OnGetSQL() method modifies that query.

9.8 Additional MDX KPI Examples
This section discusses some other MDX KPI examples.

9.8.1 DemoMDXAutoFilters KPI

The sample class BI.Model.KPIs.DemoMDXAutoFilters KPI is simple but uses a special superclass:

Class BI.Model.KPIs.DemoMDXAutoFilters Extends BI.Utils.MDXAutoFiltersKPI
{

Parameter CUBE = "PATIENTS";

Parameter DOMAIN = "PATIENTSAMPLE";

XData KPI [XMLNamespace = "http://www.intersystems.com/deepsee/kpi"]
{
<kpi name="DemoMDXAutoFilters" displayName="DemoMDXAutoFilters"
sourceType="mdx"
mdx="SELECT {[Measures].[%COUNT],[Measures].[Avg Age],[Measures].[Avg Allergy Count]} ON 0,
NON EMPTY [DiagD].[H1].[Diagnoses].Members ON 1 FROM [Patients]">

<property name="Patient Count" displayName="Patient Count" columnNo="1" />
<property name="Avg Age" displayName="Avg Age" columnNo="2" />
<property name="Avg Allergy Count" displayName="Avg Allergy Count" columnNo="3" />

</kpi>
}

}

Notice that this class does not directly define any filters, does not directly define the filter members, and defines only a
hardcoded MDX query. When you display the test page for this KPI, however, you can use all the levels of the Patients
cube as filters, and the KPI appends a suitable %WHERE clause to the query. For example:

Advanced Modeling for InterSystems IRIS Business Intelligence 83

Additional MDX KPI Examples

This KPI extends the sample BI.Utils.MDXAutoFiltersKPI, which defines the filters and rewrites the query.

Within this class:

• %OnGetFilterList() retrieves all the levels defined in the cube, as given by the CUBE class parameter.

• %OnGetFilterMembers() is implemented. For each level, it retrieves the level members, in the format required by
pivot tables; see “Filter Syntax for Pivot Tables,” earlier in this chapter.

• The instance method FilterBuilder() iterates through the cube-based filters, retrieves the current value of each, and
then combines them into a string that is suitable for use as an MDX %FILTER clause.

• %OnGetMDX() appends the %FILTER clause to the hardcoded query.

9.8.2 DemoInteroperability KPI

The sample class BI.Model.KPIs.DemoInteroperability KPI is a more complex version of the preceding example. Within this
class, %OnGetFilterList() retrieves all the levels defined in the cube, as given by the CUBE class parameter. It then adds
an additional filter called Yaxis:

84 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining KPIs with Filters and Listings

ClassMethod %OnGetFilterList(ByRef pFilters As %List, pDataSourceName As %String = "") As %Status
{
 //call method in superclass so we can get filters of the associated cube
 set tSC=##super(.pFilters,pDataSourceName)
 quit:$$$ISERR(tSC) tSC

 //update pFilters array to include the custom filter
 set pFilters($i(pFilters)) = $lb("Yaxis","Yaxis",,0)

 quit $$$OK
}

%OnGetFilterMembers() is implemented. For the filter Yaxis, this method provides a set of members. For other filters,
it retrieves the level members, in the format required by pivot tables; see “Filter Syntax for Pivot Tables,” earlier in this
chapter. This method is as follows:

ClassMethod %OnGetFilterMembers(pFilter As %String, Output pMembers As %List, pSearchKey As %String =
 "",
pDataSourceName As %String = "") As %Status
{
 set pMembers=""
 if (pFilter="Yaxis") {
 set pMembers($I(pMembers))=$LB("Home City","[homed].[h1].[city]")
 set pMembers($I(pMembers))=$LB("Favorite Color","[colord].[h1].[favorite color]")
 set pMembers($I(pMembers))=$LB("Profession","[profd].[h1].[profession]")
 set pMembers($I(pMembers))=$LB("Diagnoses","[diagd].[h1].[diagnoses]")
 } else {
 //call method in superclass so we can get filter members for the associated cube
 do ..%GetMembersForFilter(..#CUBE,pFilter,.pMembers)
 }
 quit $$$OK
}

Finally, %OnGetMDX() constructs the MDX query. The Yaxis filter determines which level is used for rows. Then the
method appends the %FILTER clause to the query; the %FILTER clause uses any cube-based filters as in the previous
example.

Method %OnGetMDX(ByRef pMDX As %String) As %Status
{
 set yaxis=", NON EMPTY [profd].[h1].[profession].MEMBERS ON 1"
 //check custom filter value
 if (..%filterValues."Yaxis"'="") {
 set yaxis=", NON EMPTY "_..%filterValues.Yaxis_".MEMBERS ON 1"
 }
 set pMDX="SELECT {MEASURES.[%COUNT],MEASURES.[avg age]} on 0"_yaxis_" FROM "_..#CUBE

 /// append a %FILTER clause to handle any other filter values
 Set pMDX = pMDX _ ..FilterBuilder()
 Quit $$$OK
}

9.9 Defining a Listing for a KPI
You can define a KPI so that it includes a listing option. In this case, if the KPI also includes filters, the listing definition
must consider the filter selections.

To define the listing, you implement the %OnGetListingSQL() method in your KPI class. This method has the following
signature:

ClassMethod %OnGetListingSQL(ByRef pFilters As %String,
 ByRef pSelection As %String) As %String

This method returns the text of a listing query. The arguments are as follows:

• pFilters is a multidimensional array that contains the current filter values. This array has the following nodes:

Advanced Modeling for InterSystems IRIS Business Intelligence 85

Defining a Listing for a KPI

Node ValueNode

Current value of this filterpFilters(filter_name) where filter_name is the name of a filter defined
in this KPI

For details, see “Defining KPI Filters.”

• pSelection is a multidimensional array that contains the information about the current selection. This array has the
following nodes:

Node ValueNode

Currently selected cells in the pivot as a string in the form
"startRow,startCol,endRow,endCol" (1-based).

pSelection("selectedRange")

Comma-separated list of the values for the selected rows. In
these values, any comma is presented as a backslash (\). If
no property of the KPI is configured as the value, then this
node contains the series name instead.

pSelection("rowValues")

Specifies the number of the column to use for sorting the
listing. Use 0 for no sorting.

pSelection("sortColumn")

Specifies the sort direction, "ASC" or "DESC"pSelection("sortDir")

The method should return an SQL SELECT query. In this query, you can also use arrow syntax and SQL functions, as with
other listings.

Or you can override the %OnGetListingResultSet() method. In this case, you must prepare and execute the result set.

9.9.1 Example

The following example is from HoleFoods.KPISQL:

ClassMethod %OnGetListingSQL(ByRef pFilters As %String, ByRef pSelection As %String) As %String
{
 Set tSQL = "SELECT TOP 1000 %ID,DateOfSale,Product FROM HoleFoods.SalesTransaction"

 // apply sorting, if asked for
 If (+$G(pSelection("sortColumn"))>0) {
 Set tSQL = tSQL _ " ORDER BY " _ pSelection("sortColumn") _ " " _ $G(pSelection("sortDir"))
 }

 Quit tSQL
}

86 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining KPIs with Filters and Listings

10
Defining Advanced KPIs

This chapter describes how to implement KPIs that use advanced features. It discusses the following:

• How to define manual KPIs

• How to define KPIs that cache their results

• How to define KPIs that execute asynchronously

Also see the chapters “Defining Basic KPIs” and “Defining KPIs with Filters and Listings.”

Also see “Accessing the Samples Shown in This Book,” in the preface.

10.1 Defining Manual KPIs
Any KPI is an instance of a subclass of %DeepSee.KPI. In a manual KPI, callback methods set properties of that instance.
This section discusses the following topics:

• Available properties of the KPI instance

• How to override properties of the KPI

• How to define a manual query

10.1.1 Available Properties

In the callback methods of your KPI instance, the following properties are available:

• %seriesCount — Specifies the number of series (rows) in this KPI.

• %seriesNames(n) — Specifies the name of the series n, where n is an integer.

• %data(n,propname) — Specifies the value of the given property (propname), for the series n.

• %rangeLower — Specifies the lower range value, which sets the default lower range indicator when this KPI is displayed
in a meter.

• %rangeUpper — Specifies the upper range value, which sets the default upper range indicator when this KPI is displayed
in a meter.

• %thresholdLower — Specifies the lower threshold value, which sets the default lower threshold indicator when this
KPI is displayed in a meter.

Advanced Modeling for InterSystems IRIS Business Intelligence 87

• %thresholdUpper — Specifies the upper threshold value, which sets the default upper threshold indicator when this
KPI is displayed in a meter.

• %filterValues — Contains the values of any filters. For details, see the previous chapter.

10.1.2 Overriding KPI Properties

The %OnLoadKPI() callback enables you to override properties of the KPI object instance before it is displayed. You
can use this to specify the range and threshold values at run time. This callback has the following signature:

Method %OnLoadKPI() As %Status

You can also set these properties within other methods of the KPI class.

10.1.2.1 Example

The following example is from HoleFoods.KPISalesVsTarget:

Method %OnLoadKPI() As %Status
{
 Set tSC = $$$OK

 // Compute additional values
 Set tFilters = ..%filterValues

 // compute recent history using query
 If ((tFilters.Year'="")&&(tFilters.Year'="*")) {
 // Take &[] off of Year value!
 Set tStartMonth = "Jan-"_$E(tFilters.Year,3,6)
 Set tEndMonth = "Dec-"_$E(tFilters.Year,3,6)
 }
 Else {
 Set tStartMonth = "NOW-12"
 Set tEndMonth = "NOW"
 }

 Set tROWS = ..RowsClause
 Set tMDX = "SELECT "_tROWS_"%LIST(DateOfSale.[MonthSold].["_tStartMonth_"]:["_tEndMonth_"]) "
 _"ON COLUMNS FROM HOLEFOODS WHERE Measures.[Amount Sold] " _ ..FilterClause
 Set tRS = ##class(%DeepSee.ResultSet).%New()
 Set tSC = tRS.%PrepareMDX(tMDX)
 If $$$ISERR(tSC) Quit tSC
 Set tSC = tRS.%Execute()
 If $$$ISERR(tSC) Quit tSC

 For n = 1:1:..%seriesCount {
 Set tValue = tRS.%GetOrdinalValue(1,n)
 Set ..%data(n,"History") = tValue
 }
 Quit tSC
}

This method populates the History property of this KPI. For each product, this property is a comma-separated list of the
past sales, month by month.

10.1.3 Defining a Manual Query

To base a KPI on a manual (custom) query, do the following:

• Specify sourceType="manual" within the <kpi> element.

• Override the %OnExecute() callback method of the KPI class. This method has the following signature:

method %OnExecute() as %Status

In this method, define a query using any logic you need. Then set the %seriesCount, %seriesNames, and %data properties.

88 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining Advanced KPIs

10.1.3.1 Example

The following shows a simple example with hardcoded values:

Method %OnExecute() As %Status
{
 Set ..%seriesCount=3
 Set ..%seriesNames(1)="alpha"
 Set ..%seriesNames(2)="beta"
 Set ..%seriesNames(3)="gamma"
 Set ..%data(1,"property1")=123
 Set ..%data(1,"property2")=100000
 Set ..%data(1,"property3")=1.234
 Set ..%data(2,"property1")=456
 Set ..%data(2,"property2")=200000
 Set ..%data(2,"property3")=2.456
 Set ..%data(3,"property1")=789
 Set ..%data(3,"property2")=300000
 Set ..%data(3,"property3")=3.789
 Quit $$$OK
}

10.2 Defining Cacheable KPIs
By default, a KPI that uses an MDX query is cached (along with all other MDX queries). This cache may or may not be
recent enough for your purposes; that is, you can also cache the KPI specifically as described in this section.

By default, non-MDX KPIs are not cached.

To modify a KPI so that its results are cached, make the following changes to the KPI class:

• Specify the CACHEABLE class parameter as 1.

• Implement the %OnComputeKPICacheKey() method.

Method %OnComputeKPICacheKey(Output pCacheKey As %String,
 pQueryText As %String = "") As %Status

Where pQueryText is the text of the KPI query and pCacheKey is a unique key to associated with the cached results.
Typically this is a hashed version of the query text.

• Implement the %OnComputeKPITimestamp() method.

Method %OnComputeKPITimestamp(ByRef pTimestamp As %String,
 pSourceType As %String,
 pQueryText As %String = "") As %Status

Where pSourceType is a string that indicates the query type ("mdx", "sql", or "manual"), pQueryText is the text
of the KPI query, and pTimestamp is the timestamp of the KPI.

For a given KPI, if %OnComputeKPITimestamp() returns the same timestamp stored in the KPI cache for the given
key, the system uses the cached value. Otherwise, the system reruns the KPI.

By default, %OnComputeKPITimestamp() returns a timestamp that is precise to the minute. This means that the
cache is kept for a minute (at most) by default.

To clear the cache for a given KPI, call its %ClearKPICache() method.

Note that specifying the FORCECOMPUTE parameter will prevent KPI caching even if CACHEABLE is set.

Advanced Modeling for InterSystems IRIS Business Intelligence 89

Defining Cacheable KPIs

10.3 Defining Asynchronous KPIs
Except for plug-ins (in the next chapter), KPIs are executed synchronously.

To modify a KPI so that it executes asynchronously, make the following changes to the KPI class:

• Specify the ASYNC class parameter as 1.

• Also modify the KPI so that its results are cached. See the previous section.

This is required so that the system has a place to store the results.

• Within %OnCompute(), optionally call %SetPercentComplete() to indicate the state of processing. For details, see
“ Indicating State of Completion” in the next chapter.

90 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining Advanced KPIs

11
Defining Plug-ins

This chapter describes how to define plug-ins, which are a specialized form of KPI. It discusses the following:

• Introduction

• Requirements for a simple plug-in

• How to implement the %OnCompute() method

• How to indicate the state of completion

• How to create a plug-in that can be used with multiple cubes

• How to filter the listing displayed for the plug-in

• Available error logging

• How to define a calculated member that uses a plug-in

Note: Before reading this chapter, be sure to read the previous chapters on KPIs.

For a comparison of plug-ins with other kinds of model elements, see the chapter “Summary of Model Options” in
Defining Models for InterSystems Business Intelligence.

Also see “Accessing the Samples Shown in This Book,” in the preface.

11.1 Introduction
A plug-in is a class that defines one or more computations to use in the Analyzer and in queries. A plug-in has the following
features:

• In any given context, the plug-in instance has access to the lowest-level data.

• It can accept parameters.

• It executes asynchronously. When the plug-in is used in a pivot table, the system can display the plug-in current status
(as the string n% complete) in any pending cells.

The pivot table automatically refreshes when the results are available.

• Values returned by the plug-in are cached.

Advanced Modeling for InterSystems IRIS Business Intelligence 91

Plug-ins are especially appropriate for complex or time-consuming computations. For example, you might have a compu-
tation that uses several different parts of the source record, as well as external information; a plug-in would be suitable in
this case.

11.1.1 How Plug-ins Can Be Used

Depending on the plug-in class, you can use it in some or all of the following ways:

• With the MDX %KPI function (which also enables you to specify values for any parameters). This is possible in all
cases.

This means that in all cases, you can define a calculated member that uses the plug-in. (For information on defining
calculated members, see Defining Models for InterSystems Business Intelligence.)

• Directly in the Analyzer and in widgets. This is possible if the PLUGINTYPE class parameter is "Pivot" and the
PUBLIC class parameter is 1 (the default).

To create a plug-in that cannot be directly used in the Analyzer or in widgets, specify PLUGINTYPE as "Aggregate".
Or specify PUBLIC as 0.

11.1.2 Available Plug-in Classes

The %DeepSee.PlugIn package provides several plug-in classes for you to use in calculated measures. These classes are as
follows:

• %DeepSee.PlugIn.Distinct — Gets the count of distinct values for a given level in a given cell.

%DeepSee.PlugIn.Median — Gets the median value for a given measure, across all the lowest-level records used in a
cell.

• %DeepSee.PlugIn.Percentile — Gets a percentile value for a given measure, across all the lowest-level records used
in a cell.

These plug-in classes are defined with PLUGINTYPE as "Aggregate" and so cannot be directly used in the Analyzer
or in widgets. For more details on them, see “%KPI” in the reference “MDX Functions” in InterSystems MDX Ref-
erence.

• Other classes — More advanced plug-ins for use with Text Analytics. These are used by the Pivot Analysis screens
in the Analyzer.

Another sample plug-in class is BI.Model.KPIs.PluginDemo. This plug-in class is defined with PLUGINTYPE as "Pivot"
and thus can be used directly.

11.1.3 Samples That Demonstrate Plug-ins

Within the BI samples, see the dashboards in the KPIs & Plug-ins folder:

• The dashboard HoleFoods Plug-ins uses the calculated measures Median Revenue and 90th Percentile
Revenue, which are defined in the HoleFoods cube. These measures use the %KPI function to retrieve values from
the sample plug-in classes %DeepSee.PlugIn.Median and %DeepSee.PlugIn.Percentile.

• The dashboard Patients Plug-ins has a pivot table that uses the calculated measures Median Test Score
and 90th Percentile Test Score. These calculated members are defined in the Patients cube, in a similar
manner to the ones in the previous bullet.

This dashboard contains another pivot table, which directly uses the plug-in defined by the sample class
BI.Model.KPIs.PluginDemo.

92 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining Plug-ins

11.2 Requirements for a Simple Plug-in
To define a simple plug-in, create a class as follows:

• Use %DeepSee.KPIPlugIn as a superclass.

• Define an XData block named KPI that specifies at least one property. For example:

XData KPI [XMLNamespace = "http://www.intersystems.com/deepsee/kpi"]
{
<kpi name="PluginDemo" displayName="PluginDemo" caption="PluginDemo" >

<property name="PatientCount" displayName="PatientCount" />
<property name="HighScoreCount" displayName="HighScoreCount" />

</kpi>
}

You can also include filters, as with other KPIs.

For details, see the appendix “Reference Information for KPI and Plug-in Classes.”

• Specify the BASECUBE class parameter. For a simple plug-in, specify the logical name of a single cube or subject
area. (But also see “Creating a Plug-in for Multiple Cubes,” later in this chapter.)

• Specify the base MDX query to use. Either specify the mdx attribute of <kpi> or implement the %OnGetMDX()
method in the following generic way:

Method %OnGetMDX(ByRef pMDX As %String) As %Status
{
 Set pMDX = "SELECT FROM "_..#BASECUBE
 Quit $$$OK
}

InterSystems IRIS automatically applies context information (row, column, and filter) to this base query.

• Specify the fields that need to be available to the %OnCompute method. These can be fields in the source table of
the cube or can be fields in the fact table. You can specify a hardcoded list, or you can use a callback to define the list
of fields.

To specify these fields:

– If the fields you want to use are in the fact table, specify the LISTINGSOURCE class parameter as "FactTable".
(For details on the fact table, see “Details for the Fact and Dimension Tables” in Defining Models for InterSystems
Business Intelligence.)

If you omit this parameter or specify it as "SourceTable", the plug-in queries the source table of the given
cube.

– If you want to specify a hardcoded list of field names, specify the LISTINGFIELDS class parameter. Specify a
comma-separated list of fields to use.

For example:

Parameter LISTINGFIELDS = "Field1, Field2, Field3";

You can specify an alias for any field. For example:

Parameter LISTINGFIELDS = "Field1, Field2 as FieldAlias, Field3";

You can also use arrow syntax and SQL functions, as with other listings.

If you use arrow syntax, be sure to specify an alias for the field.

Advanced Modeling for InterSystems IRIS Business Intelligence 93

Requirements for a Simple Plug-in

– Or if you want to define the list of fields programmatically, implement the %OnGetListingFields() method. For
example, the following method causes the plug-in to retrieve a single field:

Method %OnGetListingFields() As %String
{
 //could use an API to get the field name, but in this case factName is set
 //so the field name is known
 Set tListingFields = "MxTestScore"
 Quit tListingFields
}

For information, see “Defining a Listing for a KPI,” earlier in this book.

Note: For a plug-in, the LISTINGFIELDS parameter and the %OnGetListingFields() do not define a detail listing
or any listing fields. These options only define the fields that are available to the %OnCompute() method.

• Implement the %OnCompute() method. The following section provides details on this task.

• Optionally specify the PLUGINTYPE and PUBLIC class parameters. See “How Plug-ins Can Be Used,” earlier in
this chapter.

11.3 Implementing %OnCompute()
For each pivot table cell where the plug-in is used, the plug-in performs either a DRILLTHROUGH or DRILLFACTS
query (depending on the value of LISTINGSOURCE) and returns the fields specified by LISTINGFIELDS or
%OnGetListingFields() (as applicable). It then passes the field values to the %OnCompute() method. This method has
the following signature:

Method %OnCompute(pSQLRS As %SQL.StatementResult, pFactCount As %Integer) As %Status

Where:

• pSQLRS is an instance of %SQL.StatementResult that contains the fields specified by LISTINGFIELDS or
%OnGetListingFields().

For information on using this class, see “Using Dynamic SQL” in Using InterSystems SQL.

• pFactCount is total number of facts in the given context.

In your implementation of this method, do the following:

1. Iterate through the statement result. To do so, use the %Next() method of this instance.

2. As needed, retrieve values for each row. The statement result instance (pSQLRS) provides one property for each field
in the listing query; the name of the property is the same as the field name.

For example, in the previous section, %OnGetListingFields() retrieves a single field, MxTextScore. In this case,
pSQLRS has a property named MxTextScore.

3. Perform the desired computations.

4. Set the properties of the plug-in instance, as described in the previous chapter. At a minimum, set the following prop-
erties:

• %seriesCount — Specifies the number of series (rows) in this plug-in.

InterSystems recommends that plug-ins have only one series. (For plug-ins with PLUGINTYPE equal to "Pivot",
when a user drags and drops a plug-in property, the Analyzer uses only the first series.)

94 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining Plug-ins

• %seriesNames(n) — Specifies the name of the series n, where n is an integer.

• %data(n,propname) — Specifies the value of the given property (propname), for the series n.

The property name must exactly match the name of a <property> in the XData block.

For example:

 // place answer in KPI output
 Set ..%seriesCount = 1
 Set ..%seriesNames(1) = "PluginDemo"
 //set Count property of KPI -- just use received pFactCount
 Set ..%data(1,"PatientCount") = pFactCount

 // iterate through result set to get HighScoreCount
 set n = 0
 Set highcount = 0
 While (pSQLRS.%Next(.tSC)) {
 If $$$ISERR(tSC) Quit
 set n = n + 1

 Set testscore = pSQLRS.MxTestScore
 if (testscore>95) {
 Set highcount = highcount + 1
 }

 }
 Set ..%data(1,"HighScoreCount") = highcount

This is an extract from the sample class BI.Model.KPIs.PluginDemo, which is available in the Analyzer for use with the
Patients cube.

11.4 Indicating State of Completion
Plug-ins are executed asynchronously. When a query containing plug-ins is executed, the query can be complete before
the plug-ins have completed execution. In this case, there are cells whose results are pending. Within these cells, you can
display the plug-in current status (as the string n% complete). To do so, within %OnCompute(), periodically invoke
the %SetPercentComplete() instance method; the argument is an integer between 0 and 100. For example, you could do
the following while iterating through the statement result:

 // update pct complete
 If (n#100 = 0) {
 Do ..%SetPercentComplete(100*(n/pFactCount))
 }

The appropriate approach depends on the logic in %OnCompute(). In some cases, the majority of the computation time
might occur outside of this iteration.

The pivot table automatically refreshes when the results are available.

11.5 Creating a Plug-in for Multiple Cubes
The previous sections describe how to create a plug-in that can be used with a single cube or subject area. You can also
create a plug-in that can be used in multiple cubes. In practice, this is difficult to do because it is usually necessary to pro-
grammatically determine the fields to query.

To create a plug-in that you can use with multiple cubes, use the following additional instructions:

• Specify the BASECUBE class parameter as one of the following:

Advanced Modeling for InterSystems IRIS Business Intelligence 95

Indicating State of Completion

– A comma-separated list of logical cube or subject area names

– "*" — refers to all cubes and subject areas in this namespace

This option determines which cubes and subject areas can use the plug-in.

• Include the following filter definition within the XData block:

<filter name="%cube" displayName="Subject Area" />

The name must be %cube but you can use any value for the display name.

When you use this plug-in within the Analyzer (if applicable), the system passes the name of the current cube or subject
area to this filter. Similarly, when you use this plug-in within an MDX query, the FROM clause of the query determines
the value of this filter.

• Implement the %OnGetMDX() method so that it uses the value of the %cube filter. For example:

Method %OnGetMDX(ByRef pMDX As %String) As %Status
{
 Set tBaseCube = ""

 // Use %cube filter to find the base cube
 If $IsObject(..%filterValues) {
 If (..%filterValues.%cube'="") {
 Set tBaseCube = ..%filterValues.%cube
 }
 }

 If (tBaseCube'="") {
 Set pMDX = "SELECT FROM "_tBaseCube
 }
 Quit $$$OK
}

• Ensure that the listing query can work with all the desired cubes and subject areas. Either:

– For hardcoded listings, use only fields that are suitable in all cases.

– Programmatically determine the fields to use.

For examples, see %DeepSee.PlugIn.Median and %DeepSee.PlugIn.Percentile.

11.5.1 Determining the Listing Fields Programmatically

If the query for the plug-in specifies LISTINGSOURCE as "FactTable", there are additional tools that enable you to
programmatically determine the fields to use in %OnGetListingSQL(). You can do the following:

• Include the following filter definition within the XData block:

<filter name="%measure" displayName="Measure" />

The name must be %measure but you can use any value for the display name. This filter provides a list of all measures
defined in the applicable cube or subject area.

• Implement the %OnGetListingSQL() method as follows:

1. Examine the value of the %measure filter.

2. Use the %GetDimensionInfo() method of the %DeepSee.Utils class to retrieve, by reference, information about
the selected measure.

Use this information as input for the next step.

3. Use the %GetDimensionFact() method of the %DeepSee.Utils class to retrieve the name of the field that stores
the selected measure.

96 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining Plug-ins

• Optionally implement the %OnGetListingOrderBy() and %OnGetListingMaxRows() callbacks. For details, see
the class reference for %DeepSee.KPIPlugIn.

For examples, see %DeepSee.PlugIn.Median and %DeepSee.PlugIn.Percentile. Also see the class reference for the
%DeepSee.Utils class.

11.6 Filtering the Listing
Plug-ins provide a feature that is not available in other scenarios: namely, the ability to specify which records to use when
a detail listing is displayed. By default, when a user requests a detail listing for a given cell or set of cells in the results, the
system displays a listing that shows all the records associated with those cells. In some cases, however, it is preferable to
show a subset of them. For example, the sample class BI.Model.KPIs.PluginDemo has a plug-in property called
HighScoreCount. The following shows an example MDX query that uses this plug-in property as a measure:

SELECT NON EMPTY {[Measures].[%COUNT],%KPI("PluginDemo","HighScoreCount",,"%CONTEXT")} ON 0,NON EMPTY
 [AllerSevD].[H1].[Allergy Severities].Members ON 1 FROM [PATIENTS]

 Patient Count HighScoreCount
1 Nil known allergi 158 12
2 Minor 113 7
3 Moderate 103 5
4 Life-threatening 133 9
5 Inactive 122 8
6 Unable to determi 119 6
7 No Data Available 385 29

Consider the row for Nil known allergies. If you display a listing for either cell, by default, the system displays a
listing that consists of 158 records, because there are 158 patients with no known allergies. But the purpose of the
HighScoreCount measure is to count the patients with scores above a given threshold, so when we display the detail
listing for the cell HighScoreCount in this row, we might prefer to see only the patients with scores above that threshold.

To apply this sort of filtering to a plug-in, include the following logic in your implementation of %OnCompute(), for any
source class ID that should be shown in the listing:

 set ..%data("IDLIST",pluginProperty,sourceClassID) = ""

Where pluginProperty is the name of the plug-in property that should use this filtering, and sourceClassID is the ID in the
source class. (The ID should be a source class ID even if plug-in otherwise uses the fact class. To make the source class
ID available to the plug-in, add %sourceId to the field list.)

For a given plug-in property, if %data("IDLIST",pluginProperty) is not defined, the listing shows all the records
associated with the given cell or cells.

11.6.1 Example

To see an example, edit the sample class BI.Model.KPIs.PluginDemo as follows:

1. Change LISTINGFIELDS to be the following:

Parameter LISTINGFIELDS As STRING = "%sourceId,MxTestScore";

2. Find the part of %OnCompute() that sets the highcount variable, and modify it as follows:

 if (testscore>95) {
 Set highcount = highcount + 1
 Set tHighScoreId = pSQLRS.sourceId
 Set ..%data("IDLIST","HighScoreCount",tHighScoreId)=""
 }

3. Save and recompile the class.

Advanced Modeling for InterSystems IRIS Business Intelligence 97

Filtering the Listing

Then, in the Analyzer, create a pivot table that uses both properties of this plug-in (for purposes of comparison). Select a
cell that displays the HighScoreCount property, display a listing, and notice that only patients with a high score are
shown. For contrast, select a cell that displays the PatientCount property and display a listing for that. In this case, you
will see patients with all scores.

11.7 Available Error Logging
If a plug-in encounters an error, the system writes to the error log file in the manager’s directory. The name of this file is
DeepSeeTasks_namespace.log.

11.8 Defining a Calculated Member That Uses a Plug-in
For any plug-in (and any other KPI), you can create a calculated member that retrieves values from it. Then users can drag
and drop this member within the Analyzer. To create such a calculated member:

• Define a calculated measure as described in “Defining a Calculated Measure,” in Defining Models for InterSystems
Business Intelligence.

• For Expression, specify an MDX expression of the following form:

%KPI(pluginname,propertyname,seriesname,"%CONTEXT")

Where pluginname is the name of the plug-in, propertyname is the name of the property, and seriesname is the name
of the series. You can omit seriesname; if you do, this function accesses the first series in the plug-in.

"%CONTEXT" is a special parameter that provides row, column, and filter context to the plug-in; this information is
passed to the base MDX query used by the plug-in.

For example (for a plug-in with only 1 series):

%KPI("PluginDemo2","Count",,"%CONTEXT")

For plug-ins with PLUGINTYPE equal to "Pivot", when a user drags and drops a plug-in property, the Analyzer
automatically uses syntax like this in the underlying MDX query that it generates.

For additional options, see the %KPI function in the InterSystems MDX Reference.

98 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining Plug-ins

12
Using Cube Inheritance

In some cases, it is necessary to define multiple similar cubes. The system provides a simple inheritance mechanism to
enable you to define these cubes more easily. This chapter describes how to use this mechanism. In some parts of this
procedure, you cannot use the Architect but must instead use Atelier or Studio.

12.1 Introduction to Cube Inheritance
To use the cube inheritance mechanism:

1. Define one cube class that contains the core items that should be in all the similar cubes.

This cube is the parent cube.

2. Optionally mark this cube as abstract so that it cannot be used directly.

To do so, specify abstract="true" in the <cube> element of this class. Then the compiler does not validate it,
the Analyzer does not display it, and you cannot execute queries against it.

Note that it is necessary to use Studio to make this change.

3. Define the child cubes in their own cube classes. For each of these cubes, specify the inheritsFrom attribute. For
the value of this attribute, specify the logical name of the parent cube.

This step means that, by default, each of these subcubes contains all the definitions from the parent cube.

You can specify only one cube for inheritsFrom. For inheritsFrom, you can specify a cube that inherits from
another cube.

You can define these cubes in the Architect, but to specify the inheritsFrom attribute, it is necessary to use Studio.

4. Make sure that the parent cube is compiled before any of its child cubes. To do this, specify the DependsOn compiler
keyword in each child cube class. For this step, it is necessary to use Studio.

5. Optionally redefine any dimension, measure, or other top-level element specified in the parent cube. To do so, specify
a definition in the child cube and use the same logical name as in the parent cube. The new definition completely
replaces the corresponding definition from parent cube. Also see “Hiding or Removing Items.”

You can use the Architect for this step.

6. Optionally specify additional definitions (dimensions, measures, listings, and so on) in the child cubes.

You can use the Architect for this step.

Advanced Modeling for InterSystems IRIS Business Intelligence 99

Note the cube inheritance mechanism has no relationship with class inheritance. Each subcube has its own fact table and
indices, and (at run time) these are independent of the parent cube. The cube inheritance mechanism is used only at build
time, and affects only the definitions in the cubes.

12.2 Cube Inheritance and the Architect
When you display a subcube in the Architect, you can view the inherited elements, override the inherited elements, and
define new elements. The left area displays the source class for the cube, so that you can drag and drop items from this
class for use as elements in the subcube. The middle area of the Architect displays both inherited items (in italic) and locally
defined items (in plain font).

When you select an inherited item in the middle area of the Architect, the Details pane displays the following at the top:

The rest of the Details pane is read-only.

The following subsections describe how to redefine inherited items, remove overrides, and add local elements. For infor-
mation on compiling and building cubes, see Defining Models for InterSystems Business Intelligence; subcubes are handled
in the same way as other kinds of cubes.

12.2.1 Redefining an Inherited Element

To redefine an inherited element, click the element in the middle area and then click the Customize button in the Details

pane on the right. If the element you want to customize is not a top-level element, then click the top-level element that
contains it, and then click the Customize button in the Details pane on the right.

When you click Customize, the Architect copies the definition from the parent cube to the subcube, creating a local definition
that overrides the inherited definition. You can now edit the local definition.

12.2.2 Removing an Override

To remove a local definition that overrides an inherited definition:

1. Click the X in the row for that item, in the middle area of the Architect.

2. Click OK to confirm the action.

12.2.3 Adding a Local Element

To add a local element to the subcube, either use the Add Element button or use the standard drag-and-drop actions, as
described in Defining Models for InterSystems Business Intelligence.

12.3 The %cube Shortcut
If the parent cube contains any source expressions that use the variable %cube, the system cannot build the cube unless
you do either of the following:

100 Advanced Modeling for InterSystems IRIS Business Intelligence

Using Cube Inheritance

• Modify the child cube class that it extends the parent cube class. (That is, use class inheritance.)

• Override the elements that use %cube. In your local definitions, replace %cube with the usual full syntax
(##class(package.class)).

12.4 Hiding or Removing Items
To hide a measure, dimension, calculated member, or calculated measure, add an override for that item and select the Hidden

option in your override. The item is still created but is not shown in the Analyzer.

To hide levels or hierarchies, redefine the dimension that contains them. To do so, add an override for the dimension. In
your override, define all the hierarchies and levels that this dimension should contain. This new dimension completely
replaces the inherited dimension. The new dimension can, for example, define fewer or more levels than the corresponding
dimension in the parent cube.

12.5 Inheritance and Relationships
If the parent cube has any relationships, note that those relationships are inherited, but necessarily not in a useful way,
because the relationships always point to the original cubes.

For example, suppose that two cubes (Patient and Encounter) are related to each other, and you create subcubes (Custom-
Patient and CustomEncounter) for each of them. By default, CustomPatient has a relationship that points to the original
Encounter cube. Similarly, the CustomEncounter cube has a relationship that points to the Patient cube. If you want a
relationship between CustomPatient and CustomEncounter, you must define that relationship explicitly in the subcubes.

Advanced Modeling for InterSystems IRIS Business Intelligence 101

Hiding or Removing Items

13
Defining Intermediate Expressions

In some cases, you might have multiple measures or dimensions that use similar logic, perhaps running the same subroutine
or using SQL to refer to another table. To improve performance of cube building, you can define expressions, which contain
intermediate values (one value for each fact), and then you can use these expressions within the definitions of other cube
elements.

Also see “Accessing the Samples Shown in This Book,” in the preface.

13.1 Defining and Using Intermediate Expressions in
Studio
To define an expression in Studio:

1. In Studio, open the cube class.

2. Find the <cube> starting element:

<cube name="Patients" displayName="Patients"
 owner="_SYSTEM"
 sourceClass="BI.Study.Patient"
 nullReplacement="None"
 defaultListing="Patient details">

3. After the greater than sign (>), add one or more <expression> elements. For example:

<expression name="patDetails" sourceExpression='%cube.GetPatientDetails(%source.PatientID)' />

At a minimum, the <expression> element must have the following attributes:

Advanced Modeling for InterSystems IRIS Business Intelligence 103

ValueAttribute

Name of this expression.name

Optionally specify an ObjectScript expression that returns a single value
for any given source record. If you specify this, do not specify
sourceProperty.
For an <expression> element, it is more likely that you will use
sourceExpression (because your cube elements can directly use
properties, without the need for the intermediate step provided by
<expression>).

An <expression> element can refer to another <expression> element.

sourceExpression

Optionally specify the property name relative to the base class used by
the cube; you can use dot syntax to refer to properties of properties. If
you specify this, do not specify sourceExpression.

sourceProperty

For additional options for sourceExpression and sourceProperty, see “Specifying the Source Values for a
Dimension or Level” and “Details for Source Expressions,” in Defining Models for InterSystems Business Intelligence.

4. Within the definition of a measure, dimension, level, or another <expression>, use the following syntax to refer to
an expression:

%expression.expressionName

5. Save and recompile the class.

6. Rebuild the cube.

13.1.1 Example

First, let us consider a scenario where we might want to use an <expression> element. The Patients cube has several
levels that are defined by source expressions that access data via SQL queries to the PatientDetails table. For example,
the Favorite Color level is defined with the following source expression:

%cube.GetFavoriteColor(%source.PatientID)

The GetFavoriteColor() method contains embedded SQL as follows:

ClassMethod GetFavoriteColor(patientID As %String) As %String
{
 New SQLCODE
 &sql(SELECT FavoriteColor INTO :ReturnValue
 FROM BI_Study.PatientDetails
 WHERE PatientID=:patientID)
 If (SQLCODE'=0) {
 Set ReturnValue=""
 }
 Quit ReturnValue
}

The Profession and Industry levels are defined similarly. As a consequence, when the Patients cube is built, the
system executes three queries on the PatientDetails table for each row of the source class.

You can redefine the cube so that the system executes only one query on the PatientDetails table for each row of the
source class. To do so:

1. In an editor, open the Patients cube class, BI.Model.PatientsCube

2. Within the <cube> element in this class, add the following element:

104 Advanced Modeling for InterSystems IRIS Business Intelligence

Defining Intermediate Expressions

<expression name="patDetails" sourceExpression='%cube.GetPatientDetails(%source.PatientID)' />

This expression runs a method in the cube class. The method is defined as follows:

ClassMethod GetPatientDetails(patientID As %String) As %String
{
 New SQLCODE
 &sql(SELECT Profession->Industry,Profession->Profession,FavoriteColor
 INTO :Industry,:Profession,:FavoriteColor
 FROM BI_Study.PatientDetails
 WHERE PatientID=:patientID)

 If (SQLCODE'=0) {
 Set Industry="",Profession="",FavoriteColor=""
 }
 Set ReturnValue=$LISTBUILD(Industry,Profession,FavoriteColor)
 Quit ReturnValue
}

This method retrieves several fields for a given patient, builds a list that contains the information, and returns the list.

3. Redefine the levels that use the PatientDetails table as follows:

• Redefine the Industry level to use the following sourceExpression:

sourceExpression='$LI(%expression.patDetails,1)'

• Redefine the Profession level to use the following sourceExpression:

sourceExpression='$LI(%expression.patDetails,2)'

• Redefine the Favorite Color level to use the following sourceExpression:

sourceExpression='$LI(%expression.patDetails,3)'

4. Save and recompile the class.

5. Rebuild the cube.

13.2 Defining Intermediate Expressions in Architect
To define an expression in the Architect:

1. Open a cube definition in the Architect.

2. Select Add Element.

The system displays a dialog box.

3. For Enter New Item Name, type a name.

4. Select Expression.

5. Select OK.

6. In the Details tab on the right, specify values for each of the fields.

Advanced Modeling for InterSystems IRIS Business Intelligence 105

Defining Intermediate Expressions in Architect

14
Other Options

This chapter describes how to use other options for cubes and subject areas. It discusses the following topics:

• How to specify maxFacts in the cube definition

• How to restrict the records used by the cube

• How to define intermediate expressions for use in building the cube

• How to specify the members manually for a level

• How to add custom indices to the fact table

• How to customize other cube callback methods

• How to filter cubes or subject areas dynamically

Also see “Accessing the Samples Shown in This Book,” in the preface.

14.1 Specifying maxFacts in the Cube Definition
While you are developing a cube, you typically recompile and rebuild it frequently. If you are using a large data set, you
might want to limit the number of facts in the fact table, in order to force the cube to be rebuilt more quickly. To do this,
you can specify the pMaxFacts argument for %BuildCube(); see “Building the Cube in the Terminal” in Defining Models
for InterSystems Business Intelligence.

Or you can specify the maxFacts attribute as follows:

1. In Studio, open the cube class.

2. Find the <cube> element:

<cube name="HoleFoods"
caption="HoleFoods Sales"
defaultListing="Listing"
nullReplacement="Missing Value"
actionClass="HoleFoods.KPIAction"
sourceClass="HoleFoods.Transaction">

3. Add the maxFacts attribute to this element:

Advanced Modeling for InterSystems IRIS Business Intelligence 107

<cube name="HoleFoods"
caption="HoleFoods Sales"
defaultListing="Listing"
nullReplacement="Missing Value"
actionClass="HoleFoods.KPIAction"
sourceClass="HoleFoods.Transaction"
maxFacts="10000">

The value that you specify determines the maximum size of the fact table.

4. Save and recompile the class.

5. Rebuild the cube.

Important: Be sure to remove the maxFacts attribute before you deploy the cube.

14.2 Restricting the Records Used in the Cube
By default, the system uses all the records in the source class. You can modify the cube definition so that some of the
records are ignored. You can do this in either or both of the following ways:

• By specifying the Build restriction option for the cube definition, as described in “Defining Models for InterSystems
Business Intelligence” in Defining Models for InterSystems Business Intelligence.

This option has no effect if the cube is based on a data connector.

• By defining the %OnProcessFact() callback of the cube class.

14.2.1 %OnProcessFact() Callback

To ignore some of the records of the base table and not include them in the cube, you can define the %OnProcessFact()
method in your cube definition class:

classmethod %OnProcessFact(pID As %String, ByRef pFacts As %String, Output
pSkip As %Boolean, pInsert As %Boolean) as %Status

The system calls this method immediately after accessing each row in the base table, when building or updating the fact
table. It passes the following values to this method:

• pID is the ID of the row in the source data being processed.

• pFacts is a multidimensional array that contains the values that will be used for the row. This array has the following
structure:

ValueNode

Value of that level or
measure. For example,
Magnolia or 47.

pFacts(factName) where factName is the name of the level or measure
in the fact table, as specified by the Field name in fact table option.

• pInsert is 1 if this is a new row.

If you want to skip this record, your method should set pSkip to true; otherwise it should set pSkip to false.

For example, the following callback causes the cube to ignore all patients whose favorite color is blue:

108 Advanced Modeling for InterSystems IRIS Business Intelligence

Other Options

ClassMethod %OnProcessFact(pID As %String, ByRef pFacts As %String,
Output pSkip As %Boolean, pInsert As %Boolean) As %Status
{
 if pFacts("DxColor")="Blue"
 {
 set pSkip=1
 } else {
 set pSkip=0
 }
 quit $$$OK
}

This example assumes that the cube defines the Field name in fact table option as DxColor for the favorite color level.

For another example, the following callback would cause the cube to ignore all records whose ID was less than 1000000:

ClassMethod %OnProcessFact(pID As %String, ByRef pFacts As %String,
Output pSkip As %Boolean, pInsert As %Boolean) As %Status
{
 if pID<1000000
 {
 set pSkip=1
 } else {
 set pSkip=0
 }
 quit $$$OK
}

14.3 Manually Specifying the Members for a Level
After you define a level in the Architect, you can manually specify the members and their order. To do so, modify the cube
class in Studio as follows:

1. In Studio, open the cube class.

2. Find the section that defines the level:

<level name="MyLevel" displayName="MyLevel" ... >
</level>

3. Just before the </level> line, add a set of <member> elements like the following:

<level name="MyLevel" displayName="MyLevel" ... >
<member name="first" displayName="first" spec="1" />
<member name="second" displayName="second" spec="2" />
<member name="third" displayName="third" spec="3" />
<member name="fourth" displayName="fourth" spec="4" />
<member name="fifth" displayName="fifth" spec="5" />
</level>

Each <member> element identifies a member. In <member>, name specifies the name of the member, displayName
specifies an optional localized display name for the member, and spec specifies an optional key specification for this
member.

The rules for name and spec are as follows:

ResultRequirementScenario

The value of name
becomes the key.

The value of name must exactly match a value of the
source property or source expression, including case.

Specify only name

The value of spec
becomes the key.

The value of spec must exactly match a value of the
source property or source expression, including case.

Specify both name
and spec

Additional notes:

Advanced Modeling for InterSystems IRIS Business Intelligence 109

Manually Specifying the Members for a Level

• In these attributes, you cannot use XML reserved characters. See the following subsection.

• Include as many <member> elements as needed.

• The order of these elements determines the default sort order of the corresponding members.

• Include all members of the level (there is no wildcard option).

4. Save and recompile the class.

5. Rebuild the cube.

Note: This option is useful only when the set of members is unlikely to change. If the system receives new records that
contain a value not given by one of the <member> elements, those records are not represented in this level.

14.3.1 XML Reserved Characters

When you edit a cube class in Studio, you cannot use XML reserved characters in the values of name, displayName, or
other attribute values. Instead substitute as follows:

Use This InsteadReserved Character

<<

&&

""

''

It is not an error to use >, but you can use > instead of that character.

When you type these characters into input fields in the Architect, the Architect automatically makes these substitutions. If
you examine a cube class in Studio, you might notice that the Architect also makes other substitutions. The preceding table
lists only the substitutions that are necessary.

14.4 Adding Custom Indices to the Fact Table
The system automatically defines all the indices that it needs. However, you can use the fact table directly for your own
purposes, and if you do, you might need additional indices. To add them, edit the cube class in Studio and add <index>
elements as needed.

See “Reference Information for Cube Classes” in Defining Models for InterSystems Business Intelligence.

14.5 Customizing Other Cube Callbacks
The class %DeepSee.CubeDefinition provides callback methods that you can override to customize the cube behavior further.
This section describes some commonly overridden methods.

Also see “%OnProcessFact() Callback” and “Filtering a Cube or Subject Area Dynamically,” elsewhere in this chapter.

See the class reference for %DeepSee.CubeDefinition for additional options.

110 Advanced Modeling for InterSystems IRIS Business Intelligence

Other Options

14.5.1 %OnAfterProcessFact() Callback

The %OnAfterProcessFact() callback enables you to add custom code that runs after any given record is added or updated
in the fact table of the cube.

ClassMethod %OnAfterProcessFact(pID As %String, ByRef pFactArray As %String,
pUpdateStatus As %Status) as %Status

The system passes the following information to this callback:

• pID is the id of the row in the source data being processed.

• pFacts is an array containing the values that will be used for the row, subscripted by fact name.

• pUpdateStatus is the status about to be returned by %ProcessFact(). If an error is passed in, this error will already be
logged in the Business Intelligence logs and the ^DeepSee.BuildErrors global.

The %ProcessFact() method ignores the value returned by this method.

14.5.2 %OnGetDefaultListing() Callback

The %OnGetDefaultListing() callback enables you to programmatically specify the name of the listing to use, in the case
where the system uses the default listing. The signature of this method is as follows:

ClassMethod %OnGetDefaultListing() as %String

This callback is called when a user requests the default listing and has no effect when a specific listing is requested. The
following shows an example:

ClassMethod %OnGetDefaultListing() As %String { Quit "Listing By Product" }

You could use this, for example, to check the role to which a user belongs and display a suitable listing for that role.

14.5.3 %OnExecuteListing() Callback

In some cases, additional setup work is required before a listing query can run.

To do this, implement the %OnExecuteListing() method in your cube definition class:

ClassMethod %OnExecuteListing(pSQL As %String) as %Status

The system calls this method immediately before it executes a listing query. When the system calls this method, it passes
the value pSQL, which is the listing query that will be executed.

14.5.4 %OnAfterBuildCube() Callback

The %OnAfterBuildCube() callback, if defined, is called after the cube is built.

ClassMethod %OnAfterBuildCube(pBuildStatus As %Status, pBuildErrors As %Boolean = 0)
 As %Status

The system calls this as the last step in the %BuildCube method in %DeepSee.Utils. The system passes the following
information to this callback:

• buildStatus is the status of the cube build thus far

• factErrorCount is the count of any facts for which there were build errors.

Advanced Modeling for InterSystems IRIS Business Intelligence 111

Customizing Other Cube Callbacks

Your implementation should return an instance of %Status.

This method is called before the lock on the cube build is released, which means that only one process can execute the
callback at once.

14.6 Filtering a Cube or Subject Area Dynamically
Instead of (or in addition to) specifying a hardcoded filter for a subject area, you can implement the %OnGetFilterSpec()
callback. This enables you to specify the contents of the filter at runtime. This callback is also available in cube classes.
Thus you can filter both cubes and subject areas dynamically.

The signature of this method is as follows:

classmethod %OnGetFilterSpec(pFilterSpec As %String) as %String

Here pFilterSpec is the value of the filterSpec attribute in <subjectArea>. The method must return a valid MDX
set expression. For example:

ClassMethod %OnGetFilterSpec(pFilterSpec As %String) As %String
{
 Quit "AgeD.H1.[20 to 29]"
}

The following shows another simple example. In this case, the method checks the $ROLES special variable and removes
any filtering if the user belongs to the %All role:

ClassMethod %OnGetFilterSpec(pFilterSpec As %String) As %String
{
 if $ROLES["%All" {
 //remove any filtering
 set pFilterSpec=""
 }
 Quit pFilterSpec

}

For another example, the following callback modifies the original filter value by performing a cross join of the original
value and an additional filter:

ClassMethod %OnGetFilterSpec(pFilterSpec As %String) As %String
{
 //test to see if $ROLES special variable includes TestRole
 if $ROLES["%DB_SAMPLE" {
 //a member expression like the following is a simple set expression
 set colorrestrict="colord.h1.[favorite color].red"

 //create a tuple that intersects the old filter with the new filter
 //this syntax assumes original is just a member
 set newfilter="CROSSJOIN("_pFilterSpec_","_colorrestrict_")"
 set pFilterSpec=newfilter
 }
 Quit pFilterSpec

}

112 Advanced Modeling for InterSystems IRIS Business Intelligence

Other Options

A
Reference Information for KPI and Plug-in
Classes

This appendix contains reference information for KPI and plug-in classes. It discusses the following topics:

• Basic requirements for the class

• Common attributes in a KPI or plug-in

• <kpi>

• <property>

• <filter>

• <action>

You must recompile a KPI class after making any change.

A.1 Basic Requirements
To define a KPI, create a class that meets the following requirements:

• It must extend %DeepSee.KPI.

• It must contain an XData block named KPI

• For this XData block, XMLNamespace must be specified as follows:

XMLNamespace = "http://www.intersystems.com/kpi"

• The root element within the XData block must be <KPI> and this element must follow the requirements described in
this appendix.

• The class can define several class parameters. See “Class Parameters for the KPI Class,” earlier in this book.

The requirements for a plug-in are the same, with the following exceptions:

• The class must extend %DeepSee.KPIPlugIn rather than %DeepSee.KPI.

• The class can define the PLUGINTYPE class parameter; see “Defining Plug-ins.”

Advanced Modeling for InterSystems IRIS Business Intelligence 113

A.2 Common Attributes in a KPI or Plug-in
Most of the elements in a KPI or plug-in have the following attributes, which are listed here for brevity:

PurposeAttribute

Logical name of the element.name

(Optional) Localized name of this element for use in user interfaces. If you do not specify
this attribute, the system instead uses the value specified by the name attribute. For
details, see the chapter “Performing Localization” in Implementing InterSystems Business
Intelligence.

displayName

(Optional) Description of this element.description

(Optional) Controls whether the compiler uses this element. If this attribute is "true"
then the compiler ignores it. By default, this attribute is "false"

disabled

A.3 <kpi>
The <kpi> element is the root element in the XData block in a KPI or plug-in class. This element contains the following
items:

PurposeAttribute or
Element

See “Common Attributes in a KPI, ” earlier in this appendix.name, displayName,
description,
disabled

Not used.caption

See “Specifying the Query for the KPI. ”sourceType, mdx,
sql

See “Specifying Ranges and Thresholds for Speedometers. ”rangeLower,
rangeUpper,
thresholdLower,
thresholdUpper

(Optional) Specifies an associated KPI class that defines actions that are available
to this KPI, in addition to the actions defined within this KPI. Specify the full package
and class name of another KPI.

actionClass

(Optional) You can include zero or more <property> elements, each of which
corresponds to a column of the query that the KPI uses.You cannot display the query
results unless you specify <property> elements.

<property>

(Optional) You can include zero or more <action> elements, each of which is available
for use when you create a scorecard based on this KPI.

<action>

(Optional) You can include zero or more <filter> elements, each of which is available
for use when you create a scorecard based on this KPI.

<filter>

114 Advanced Modeling for InterSystems IRIS Business Intelligence

Reference Information for KPI and Plug-in Classes

A.4 <property>
Within <kpi>, a <property> element contains the following attributes:

PurposeAttribute

See “Common Attributes in a KPI, ” earlier in this appendix.

Note that the name or displayName of a KPI property is used as the default caption
in any meter widget that displays this property; it is convenient to specify a name that
is suitable for that use.

name, displayName,
description,
disabled

Number of the column in the query that contains the data for this property. The first
data column is 1.

columnNo

(Optional) Default numeric format for this property, when this KPI is displayed in a
pivot table widget. For example: format="##.###"

format

(Optional) CSS style to apply to the cells that display this property, when this KPI is
displayed in a pivot table widget. For example: style="color:red"

style

(Optional) CSS style to apply to the corresponding header cells, when this KPI is
displayed in a pivot table widget. For example:
style="color:red;font-style:italic"

headerStyle

Not used.defaultValue

Note that the KPI test page ignores the format, style, and headerStyle attributes. These attributes affect only pivot
table widgets.

A.5 <filter>
Within <kpi>, a <filter> element contains the following attributes:

PurposeAttribute

See “Common Attributes in a KPI, ” earlier in this appendix.name, displayName,
description,
disabled

Logical name of the <property> element that this filter controls. This option is for
use when retrieving the filter values programmatically.

filterProperty

(Optional) Default value for this filter. Note that you can also specify a default value
for the filter when you include the KPI in a scorecard; that default value takes
precedence over the defaultValue attribute of the <filter> element.

defaultValue

See “Defining KPI Filters. ”sql, valueList,
displayList

(Optional) Specifies the kind of control to use when displaying this filter in a widget.
The default control is a drop-down list. To display a calendar instead, specify this
attribute as "day"

searchType

Advanced Modeling for InterSystems IRIS Business Intelligence 115

<property>

http://www.w3schools.com/cssref/

PurposeAttribute

(Optional) Specifies the name of another filter on which this filter depends. For example,
if your KPI has filters named State and City, you might include dependsOn="State"
in the definition of the City filter.

dependsOn

A.6 <action>
Within <kpi>, an <action> element contains the following attributes:

PurposeAttribute

See “Common Attributes in a KPI ” earlier in this appendix.

The name attribute cannot be any of the following (not case-sensitive): applyFilter,
setFilter, refresh, showListing, viewDashboard, navigate, newWindow,
rowCount, rowSort, colCount, colSort.

name, displayName,
description,
disabled

Note that the <action> element does not define the actions themselves, which you define within the
%OnDashboardAction() callback method of the class; see the chapter “Defining the Available Actions” in Implementing
InterSystems Business Intelligence.

The <action> element is necessary to notify the Dashboard Designer which actions are defined in a KPI or plug-in, so
that you can select them for use.

116 Advanced Modeling for InterSystems IRIS Business Intelligence

Reference Information for KPI and Plug-in Classes

B
Generating Secondary Cubes for Use with
Text Analytics

This appendix assumes that you have added an NLP measure to a cube (and created NLP dimensions that use that measure),
as described in the chapter “Using Text Analytics in Cubes.” This appendix describes how to generate secondary cubes
that analyze entity occurrences and dictionary matching results. Always build the main cube before building these cubes.

The approach in this appendix is an alternative to using plug-ins as described in “Adding Measures to Quantify Entity
Occurrences” and “Adding Measures to Quantify Matching Results,” in the chapter “Using Text Analytics in Cubes.”
Plug-ins are a better approach, because the secondary cubes must be rebuilt manually whenever the main cube is rebuilt or
synchronized.

Also see “Accessing the Samples Shown in This Book,” in the preface.

B.1 Entity Occurrence Cube
To generate a cube that represents entity occurrences, use the following command in the Terminal:

 d ##class(%iKnow.DeepSee.CubeUtils).CreateEOCube(cubename,measurename)

Where cubename is the name of the cube that contains an NLP measure, and measurename is the name of the NLP measure.

This method generates a read-only class that provides access to the entity occurrence data, for benefit of the cube class.
The entity occurrence class is named BaseCubeClass.measurename.EntityOccurrence, where BaseCubeClass is the
class name of the base cube class and measurename is the name of the NLP measure.

The method also generates the cube class: BaseCubeClass.measurename.EOCube. The new cube definition is as follows:

• The logical name of the cube is BaseCubemeasurenameEO where BaseCube is the logical name of the base cube and
measurename is the name of the NLP measure.

• This cube represents entity occurrences. That is, the fact table for this cube contains one row for each unique entity
occurrence.

• The cube defines the Count measure, which counts entity occurrences.

• The cube defines the Entity Value dimension, which groups entity occurrences by entity value.

This is a custom computed dimension; for general information on computed dimensions, see the chapter “Using
Advanced Features of Cubes and Subject Areas.”

Advanced Modeling for InterSystems IRIS Business Intelligence 117

For this cube, a fact represents an entity occurrence. Note that in this cube, there is a one-to-one relationship between
facts and entity values. In contrast, in the main cube, there is a one-to-many relationship between facts and entity values.

• The cube defines the Roles dimension, which has the members concept and relation. These members group the
entity occurrences into concepts and relations. For information on these terms, see “Logical Text Units Identified by
NLP” in Using InterSystems IRIS Natural Language Processing (NLP).

• The cube includes a relationship to the base cube. This relationship is called Main cube.

The following shows an example pivot table that uses the entity occurrence cube for the Aviation demo:

This pivot table is defined as follows:

• The measure is Count (count of entity occurrences.)

• The rows display members of the Entity Value dimension. Each member of this dimension represents an entity
occurrence. For example, the pilot member represents each occurrence of the entity pilot in the sources.

• The columns display members of the Category level of the Aircraft dimension in the main cube. Each member
of this dimension represents the source documents associated with a given aircraft category.

This pivot table indicates, for example, that the entity airplane occurred 4980 times in the reports for events in the
Airplane category.

B.2 Matching Results Cube
To generate a cube that represents matching results, use the following command in the Terminal:

 d ##class(%iKnow.DeepSee.CubeUtils).CreateMRCube(cubename,measurename)

Where cubename is the name of the cube that contains an NLP measure, and measurename is the name of the NLP measure.

This method generates a read-only class that provides access to the matching results data, for benefit of the cube class. The
matching results class is named BaseCubeClass.measurename.MatchingResults, where BaseCubeClass is the class
name of the base cube class and measurename is the name of the NLP measure.

This method also generates the cube class: BaseCubeClass.measurename.MRCube. The new cube definition is as follows:

• The logical name of the cube is BaseCubemeasurenameMR where BaseCube is the logical name of the base cube and
measurename is the name of the NLP measure.

118 Advanced Modeling for InterSystems IRIS Business Intelligence

Generating Secondary Cubes for Use with Text Analytics

• This cube represents dictionary matches. That is, the fact table for this cube contains one row for each unique dictionary
match.

• The cube defines the Count measure, which counts dictionary matches.

• The cube defines the Score measure, which shows the score of the dictionary matches.

• The cube defines the Dictionary dimension. The Dictionary level groups matches by dictionary, and the
Dictionary Item level groups matches by dictionary item.

For this cube, a fact represents a matching result. Note that in this cube, there is a one-to-one relationship between
facts and dictionary items. In contrast, in the main cube, there is a one-to-many relationship between facts and dictionary
items.

• The cube defines the Type dimension, which has the members entity, CRC, path, and sentence. These members
group the matches into entities, CRCs, paths, and sentences. For information on these terms, see “Logical Text Units
Identified by NLP” in Using InterSystems IRIS Natural Language Processing (NLP).

For this demo, the Type dimension only has the members entity and CRC.

• The cube includes a relationship to the base cube. This relationship is called Main cube.

The following shows an example pivot table that uses the matching results cube for the Aviation demo:

This pivot table is defined as follows:

• The measures are Count (count of matching results) and Score (cumulative score of the dictionary matches).

• The rows display members of the Injuries dictionary. Each member of this dimension represents an entity that
matches a specific item in this dictionary. For example, the minor member represents each entity in the sources that
matches the dictionary item minor.

• The columns display members of the Type dimension in the main cube. Each member of this dimension represents
the source documents associated with a given report type, either Accident or Incident.

This pivot table indicates, for example, that the sources of type Incident contain zero matches for the dictionary item fatal.
In contrast, the sources of type Accident contain 106 matches for this dictionary item.

Advanced Modeling for InterSystems IRIS Business Intelligence 119

Matching Results Cube

	Table of Contents
	About This Book
	Accessing the Samples Shown in This Book

	1 Defining Computed Dimensions
	1.1 Defining SQL Computed Dimensions
	1.1.1 Example Computed Dimensions
	1.1.2 Defining a SQL Computed Dimension
	1.1.3 A Closer Look at the Example
	1.1.4 Variations for spec

	1.2 Defining MDX Computed Dimensions
	1.2.1 Defining an MDX Computed Dimension
	1.2.2 %OnGetComputedMembers()

	2 Defining Shared Dimensions and Compound Cubes
	2.1 Overview
	2.1.1 Shared Dimensions
	2.1.2 Compound Cubes

	2.2 Defining a Formally Shared Dimension
	2.3 Defining an Informally Shared Dimension
	2.3.1 Examples

	2.4 Defining Compound Cubes
	2.4.1 Detail Listings for Compound Cubes
	2.4.2 Example Compound Cube

	3 Defining Cube-Cube Relationships
	3.1 Overview of Relationships
	3.1.1 A Look at a One-Way Relationship
	3.1.2 A Look at a Two-Way Relationship

	3.2 Defining a One-Way Relationship
	3.3 Defining a Two-Way Relationship
	3.4 Building Cubes That Have Relationships
	3.4.1 Determining the Build Order for Related Cubes
	3.4.2 Errors If You Build Related Cubes in the Wrong Order

	3.5 Using Model Browser
	3.6 Removing Relationships

	4 Using Text Analytics in Cubes
	4.1 Overview of Integration with Text Analytics
	4.1.1 Terminology
	4.1.2 About NLP (Natural Language Processing) Measures and Dimensions
	4.1.3 Generated Text Analytics Domains

	4.2 Setting Up the Aviation Events Demo
	4.2.1 Sample Dashboard
	4.2.2 A Closer Look at the Aviation Cubes

	4.3 Defining an NLP measure
	4.3.1 Alternative Technique: Using an Existing Text Analytics Domain
	4.3.2 Alternative Technique: Retrieving Unstructured Text from Elsewhere

	4.4 Loading and Updating Dictionaries
	4.4.1 Loading Dictionaries
	4.4.2 Updating Dictionaries

	4.5 Defining an Entity Dimension
	4.6 Defining a Dictionary Dimension
	4.7 Adding Member Overrides to an Item Level
	4.8 Adding Measures That Use Plug-ins
	4.8.1 Adding Measures to Quantify Entity Occurrences
	4.8.2 Adding Measures to Quantify Matching Results

	4.9 Including Text Analytics Results in Listings
	4.9.1 Including a Text Analytics Summary Field in a Listing
	4.9.2 Including a Link from a Listing to the Full Unstructured Text
	4.9.3 Creating a Specialized Listing for Use in Content Analysis Plug-in

	4.10 Text Analytics Domain Management
	4.11 Advanced Topics
	4.11.1 Specifying Text Analytics Domain Parameters for a Measure
	4.11.2 Loading Black Lists
	4.11.3 Updating Black Lists

	4.12 When the NLP Updates Occur

	5 Defining Term Lists
	5.1 Overview of Term Lists
	5.2 Accessing the Term List Manager
	5.3 Defining a Term List
	5.4 Specifying the Pattern for a Term List
	5.5 Exporting and Importing Term Lists
	5.5.1 Exporting a Term List
	5.5.2 Sample Term List File
	5.5.3 Importing a Term List

	5.6 Deleting a Term List
	5.7 Accessing Term Lists Programmatically

	6 Defining Worksheets
	7 Defining Quality Measures
	7.1 Overview of Quality Measures
	7.2 Introduction to the Quality Measure Manager
	7.3 Creating a Quality Measure
	7.4 Specifying the Expression for a Quality Measure
	7.4.1 Allowed MDX Expressions
	7.4.2 How Groups and Elements Are Combined

	7.5 Editing Other Information for a Quality Measure
	7.6 Defining a Linked Quality Measure (Quality Measure Alias)
	7.7 Checking the Expression for a Quality Measure
	7.8 Deleting a Quality Measure

	8 Defining Basic KPIs
	8.1 Introduction to KPIs
	8.1.1 Ways to Use KPIs
	8.1.2 Comparison to Pivot Tables
	8.1.3 Requirements for KPI Queries

	8.2 Choosing Between MDX and SQL
	8.3 Structure of a KPI Result Set
	8.4 Defining a KPI with a Hardcoded Query
	8.5 Specifying Class Parameters
	8.6 Specifying Ranges and Thresholds for Speedometers
	8.7 Disabling the %CONTEXT Filter

	9 Defining KPIs with Filters and Listings
	9.1 Introduction to Filters
	9.2 Creating Interoperable Filters
	9.2.1 Filter Syntax for Pivot Tables
	9.2.2 Ways to Create Interoperable Filters

	9.3 Defining Filters in an MDX-Based KPI
	9.3.1 %OnGetFilterMembers() Details
	9.3.2 %GetMembersForFilter() Details

	9.4 Defining Filters in an SQL-Based KPI
	9.5 Other Options for Defining Filter Names and Items
	9.5.1 Specifying the Filter Names at Runtime
	9.5.2 Hardcoding the List of Filter Items via the valueList Attribute
	9.5.3 Retrieving the List of Filter Items via the sql Attribute
	9.5.4 Using Custom Logic to Build the List of Filter Items at Runtime

	9.6 Modifying an MDX Query to Use Filter Values
	9.6.1 Accessing Filter Values
	9.6.2 Converting Filter Values to MDX Expressions for Use in %FILTER
	9.6.3 Example

	9.7 Modifying an SQL Query to Use Filter Values
	9.7.1 %GetSQLForFilter()
	9.7.2 SQL KPI Example 1
	9.7.3 SQL KPI Example 2

	9.8 Additional MDX KPI Examples
	9.8.1 DemoMDXAutoFilters KPI
	9.8.2 DemoInteroperability KPI

	9.9 Defining a Listing for a KPI
	9.9.1 Example

	10 Defining Advanced KPIs
	10.1 Defining Manual KPIs
	10.1.1 Available Properties
	10.1.2 Overriding KPI Properties
	10.1.3 Defining a Manual Query

	10.2 Defining Cacheable KPIs
	10.3 Defining Asynchronous KPIs

	11 Defining Plug-ins
	11.1 Introduction
	11.1.1 How Plug-ins Can Be Used
	11.1.2 Available Plug-in Classes
	11.1.3 Samples That Demonstrate Plug-ins

	11.2 Requirements for a Simple Plug-in
	11.3 Implementing %OnCompute()
	11.4 Indicating State of Completion
	11.5 Creating a Plug-in for Multiple Cubes
	11.5.1 Determining the Listing Fields Programmatically

	11.6 Filtering the Listing
	11.6.1 Example

	11.7 Available Error Logging
	11.8 Defining a Calculated Member That Uses a Plug-in

	12 Using Cube Inheritance
	12.1 Introduction to Cube Inheritance
	12.2 Cube Inheritance and the Architect
	12.2.1 Redefining an Inherited Element
	12.2.2 Removing an Override
	12.2.3 Adding a Local Element

	12.3 The %cube Shortcut
	12.4 Hiding or Removing Items
	12.5 Inheritance and Relationships

	13 Defining Intermediate Expressions
	13.1 Defining and Using Intermediate Expressions in Studio
	13.1.1 Example

	13.2 Defining Intermediate Expressions in Architect

	14 Other Options
	14.1 Specifying maxFacts in the Cube Definition
	14.2 Restricting the Records Used in the Cube
	14.2.1 %OnProcessFact() Callback

	14.3 Manually Specifying the Members for a Level
	14.3.1 XML Reserved Characters

	14.4 Adding Custom Indices to the Fact Table
	14.5 Customizing Other Cube Callbacks
	14.5.1 %OnAfterProcessFact() Callback
	14.5.2 %OnGetDefaultListing() Callback
	14.5.3 %OnExecuteListing() Callback
	14.5.4 %OnAfterBuildCube() Callback

	14.6 Filtering a Cube or Subject Area Dynamically

	Appendix A: Reference Information for KPI and Plug-in Classes
	A.1 Basic Requirements
	A.2 Common Attributes in a KPI or Plug-in
	A.3 <kpi>
	A.4 <property>
	A.5 <filter>
	A.6 <action>

	Appendix B: Generating Secondary Cubes for Use with Text Analytics
	B.1 Entity Occurrence Cube
	B.2 Matching Results Cube

