
Defining Models for
InterSystems IRIS Business

Intelligence

Version 2019.4
2020-01-28

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Defining Models for InterSystems IRIS Business Intelligence
InterSystems IRIS Data Platform Version 2019.4 2020-01-28
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

1 Introduction .. 3
1.1 Purpose of Business Intelligence .. 3
1.2 Introduction to Business Intelligence Models .. 5
1.3 Introduction to the Model Development Process ... 5
1.4 Introduction to the Architect .. 6

1.4.1 Class Viewer ... 7
1.4.2 Model Viewer ... 8
1.4.3 Details Area .. 9

1.5 Accessing the Samples Shown in This Book ... 10

2 Basic Concepts .. 11
2.1 Introduction to Cubes ... 11

2.1.1 The Source Class of a Cube ... 12
2.2 Dimensions, Hierarchies, and Levels ... 12

2.2.1 Levels and Members .. 12
2.2.2 Member Names and Keys .. 13
2.2.3 Source Values ... 13
2.2.4 Hierarchies and Dimensions .. 13
2.2.5 The All Level and the All Member ... 14
2.2.6 List-Based Levels ... 14
2.2.7 See Also .. 14

2.3 Properties .. 15
2.4 Measures ... 15
2.5 Listings ... 16
2.6 Calculated Members ... 16

2.6.1 Calculated Measures .. 17
2.6.2 Non-Measure Calculated Members ... 17
2.6.3 See Also .. 17

2.7 Subject Areas .. 17
2.8 Filters .. 18

2.8.1 Filter Mechanisms .. 18
2.8.2 Using Filters ... 21

2.9 How the System Builds and Uses Fact Tables ... 21
2.9.1 Structure of a Fact Table .. 21
2.9.2 Populating the Fact Table ... 22
2.9.3 Using a Fact Table .. 23

2.10 How the System Generates Listings ... 24

3 Summary of Model Options .. 27
3.1 Items That You Can Use in Pivot Tables .. 27

3.1.1 Items That Group or Filter Records ... 27
3.1.2 Items That Behave Like Measures ... 28
3.1.3 Properties ... 29
3.1.4 Items That You Cannot Access Directly in the Analyzer ... 29

3.2 Items That You Can Use in Calculated Members and Measures .. 30
3.3 Comparison of Possible Widget Data Sources ... 30
3.4 High-Level Summary of Options ... 31

Defining Models for InterSystems IRIS Business Intelligence iii

4 Principles and Recommendations ... 35
4.1 Choosing a Base Table ... 35
4.2 Choosing the Form of the Base Table .. 36
4.3 Avoiding Large Numbers of Levels and Measures ... 36
4.4 Defining Measures Appropriately .. 36

4.4.1 Measures from Parent Tables ... 36
4.4.2 Measures from Child Tables .. 37

4.5 Understanding Time Levels .. 38
4.6 Defining Hierarchies Appropriately ... 40

4.6.1 What Happens if a Hierarchy Is Inverted ... 40
4.6.2 Time Hierarchies .. 41

4.7 Defining Member Keys and Names Appropriately .. 41
4.7.1 Ways to Generate Duplicate Member Keys ... 41
4.7.2 Ways to Generate Duplicate Member Names .. 41

4.8 Avoiding Very Granular Levels .. 42
4.9 Using List-Based Levels Carefully .. 42
4.10 Handling Null Values Correctly ... 45

4.10.1 Null Values in a Measure ... 45
4.10.2 Null Values in a Level .. 45

4.11 Usability Considerations .. 45
4.11.1 Consider How Dimensions, Hierarchies, and Levels Are Presented 45
4.11.2 Consider How to Use All Members ... 46

4.12 Considerations with Multiple Cubes .. 46
4.13 Recommendations .. 47

5 Defining Models for InterSystems Business Intelligence .. 49
5.1 Defining a Cube ... 49

5.1.1 Generating the Cube Class ... 50
5.1.2 Changing the Base Class for a Cube .. 51

5.2 Possible Source Classes for a Cube .. 51
5.3 Other Cube Options .. 52
5.4 Adding Items to a Cube .. 53
5.5 Names for Model Elements .. 54
5.6 Other Common Options ... 55
5.7 Compiling and Building a Cube ... 55
5.8 Opening a Cube in the Analyzer .. 55
5.9 Deleting a Cube .. 56

6 Compiling and Building Cubes ... 57
6.1 When to Recompile and Rebuild .. 57
6.2 Compiling a Cube ... 59
6.3 Building a Cube .. 59
6.4 Building the Cube Programmatically ... 60
6.5 Minimizing Cube Size During Development ... 61
6.6 Using Parallel Processing During a Cube Build .. 62
6.7 Build Errors .. 62

6.7.1 Seeing Build Errors .. 62
6.7.2 Checking the Fact Count .. 63
6.7.3 Possible Causes of Build Errors ... 63
6.7.4 Recovering from Build Errors .. 64

6.8 Business Intelligence Task Log .. 64

iv Defining Models for InterSystems IRIS Business Intelligence

7 Defining Dimensions, Hierarchies, and Levels .. 67
7.1 Overview .. 67
7.2 Creating a New Dimension, Hierarchy, and Level ... 68
7.3 Adding a Hierarchy and Level .. 69
7.4 Adding a Level ... 70
7.5 Defining the Source Values for a Dimension or Level ... 70

7.5.1 Specifying a Source Value when Using a Data Connector .. 71
7.6 Details for Source Expressions .. 71

7.6.1 Using a Term List ... 72
7.6.2 Using a Production Business Rule ... 73

7.7 Changing the Order of Dimensions in the Cube .. 73
7.8 Changing the Order of Levels in a Hierarchy .. 74
7.9 Validating Your Levels .. 74

8 Details of Defining Levels ... 77
8.1 Ensuring Uniqueness of Member Keys .. 77
8.2 Specifying the Null Replacement String for a Level .. 78
8.3 Defining a List-Based Level ... 78

8.3.1 Defining a Level When the Source Value Is in a Standard Format 78
8.3.2 Defining a Level When the Source Value Is in Another Format 78
8.3.3 Examples .. 79

8.4 Defining a Time Level .. 79
8.4.1 Introduction .. 80
8.4.2 Defining a Time Level .. 80
8.4.3 Time Levels and Hierarchies .. 84
8.4.4 Handling a Calendar That Has a Date Offset ... 85
8.4.5 Examples .. 85

8.5 Defining Custom Time Levels ... 85
8.5.1 Example ... 86

8.6 Defining an Age Level .. 86
8.7 Specifying a Range Expression .. 87

8.7.1 Defining Numeric Bins .. 88
8.7.2 Defining String Replacements ... 89
8.7.3 Examples .. 89

8.8 Configuring a Level to Use Display Values ... 89
8.8.1 Examples .. 89

8.9 Using Property Values as the Member Names ... 90
8.9.1 Examples .. 90

8.10 Specifying Tooltips for Members ... 91
8.11 Specifying the Sort Order for Members ... 91

8.11.1 For a Data Level ... 91
8.11.2 For a Time Level .. 92

8.12 Making the Member Names Localizable ... 93
8.13 Defining Dependencies Between Levels in Different Hierarchies ... 93

8.13.1 Example ... 94
8.14 Specifying the Field Names in the Fact Table .. 94

9 Defining Properties ... 95
9.1 Adding a Property ... 95

9.1.1 Defining a Property for a List-Based Level ... 96
9.1.2 Specifying a Format String .. 96

9.2 Getting a Property Value at Runtime .. 96

Defining Models for InterSystems IRIS Business Intelligence v

9.3 Changing the Order of Properties in a Level .. 97
9.4 Specifying the Column Names in the Dimension Tables ... 97
9.5 Special Uses for Properties .. 97

10 Defining Measures .. 99
10.1 Adding a Measure ... 99
10.2 Specifying the Measure Type ... 100
10.3 Specifying How to Aggregate a Measure ... 101
10.4 Specifying a Searchable Measure .. 101
10.5 Specifying a Format String ... 101

10.5.1 Format String Field .. 102
10.5.2 Color Piece ... 103

10.6 Specifying a Format String for a Date Measure ... 104
10.7 Changing the Order of Measures in the Cube .. 104
10.8 Specifying the Field Names in the Fact Table .. 104
10.9 Specifying Additional Filtering for Listings .. 105

10.9.1 Example ... 105

11 Defining Listings ... 107
11.1 Adding a Listing ... 107
11.2 Defining a Simple Listing .. 108

11.2.1 Additional Options ... 109
11.3 Defining a Data Connector Listing .. 110
11.4 Defining an SQL Custom Listing ... 110
11.5 Defining a Map Listing (Geo Listing) .. 111

12 Defining Listing Fields ... 115
12.1 About User-Defined Custom Listings .. 115
12.2 Creating a Listing Field .. 116

13 Defining Calculated Members ... 119
13.1 Defining a Calculated Measure .. 119
13.2 MDX Recipes for Calculated Measures ... 120

13.2.1 Measures Based on Other Measures .. 120
13.2.2 Measure That Uses a Pivot Variable As a Multiplier ... 121
13.2.3 Percentages of Aggregate Values ... 121
13.2.4 Distinct Member Count .. 122
13.2.5 Semi-Additive Measures .. 122
13.2.6 Filtered Measures ... 123
13.2.7 Measures That Use KPIs or Plug-ins ... 123

13.3 Defining a Calculated Member (Non-Measure) ... 123
13.4 MDX Recipes for Non-Measure Calculated Members .. 124

13.4.1 Defining Age Members .. 125
13.4.2 Aggregating Members .. 125
13.4.3 Aggregating Ranges of Dates ... 125
13.4.4 Defining an Aggregation of Members Defined by a Term List 126
13.4.5 Defining a Member for Filtering on Multiple Dimensions .. 126

13.5 Specifying Additional Filtering for Listings for a Calculated Measure 127

14 Defining a Named Set ... 129

15 Defining Subject Areas ... 131
15.1 Introduction to Subject Areas in the Architect ... 131

15.1.1 Model Viewer ... 132

vi Defining Models for InterSystems IRIS Business Intelligence

15.1.2 Details Area .. 132
15.2 Defining a Subject Area ... 133
15.3 Filtering a Subject Area .. 134

15.3.1 Building a Filter in the Analyzer and Copying It into Your Model 134
15.3.2 Writing Filter Expressions ... 134

15.4 Specifying Other Subject Area Options ... 136
15.5 Adding Items to a Subject Area .. 136
15.6 Defining an Override for a Measure ... 137
15.7 Defining an Override for a Dimension, Hierarchy, or Level .. 138
15.8 Redefining a Listing or Adding a New Listing .. 139
15.9 Compiling a Subject Area .. 140

16 Defining Listing Groups ... 141
16.1 Introduction to Listing Groups ... 141
16.2 Accessing the Listing Group Manager ... 142
16.3 Adding a Listing Group .. 143

16.3.1 Modifying Details of the Listing Group .. 144
16.4 Displaying a Listing Group .. 144
16.5 Adding a Listing to a Listing Group ... 145
16.6 Modifying a Listing .. 145
16.7 Removing a Listing from a Listing Group ... 145
16.8 Compiling a Listing Group .. 146

16.8.1 Possible Compile Errors ... 146
16.9 Deleting a Listing Group .. 146

Appendix A: Reference Information for Cube Classes .. 147
A.1 Requirements for a Cube Class ... 147
A.2 Common Attributes in a Cube ... 148
A.3 <cube> ... 149
A.4 <measure> ... 151

A.4.1 %COUNT Measure ... 153
A.4.2 Measures Dimension ... 154
A.4.3 formatString Details .. 154

A.5 <dimension> .. 154
A.6 <hierarchy> ... 156
A.7 <level> ... 156

A.7.1 Linking to Another Table .. 159
A.7.2 Specifying a Date Offset ... 159
A.7.3 Defining a Basic Range Expression .. 160
A.7.4 Defining a Compact Multi-Range Expression .. 160

A.8 <member> ... 161
A.9 <property> ... 161

A.9.1 Intrinsic Properties .. 163
A.10 <listing> .. 163
A.11 <listingField> .. 165
A.12 <calculatedMember> ... 165
A.13 <namedSet> ... 167
A.14 <relationship> .. 167
A.15 <expression> ... 168
A.16 <index> .. 169

Appendix B: Reference Information for Subject Area Classes ... 171

Defining Models for InterSystems IRIS Business Intelligence vii

B.1 Requirements for a Subject Area Class ... 171
B.2 Common Attributes in a Subject Area ... 172
B.3 <subjectArea> .. 173

B.3.1 Filtering a Subject Area ... 173
B.4 <measure> ... 174
B.5 <dimension> .. 174
B.6 <hierarchy> .. 174
B.7 <level> ... 175
B.8 <listing> ... 175
B.9 <calculatedMember> ... 176
B.10 <namedSet> ... 176

Appendix C: Details for the Fact and Dimension Tables ... 177
C.1 Fact Table ... 177

C.1.1 Field Names ... 178
C.1.2 Reuse of a Source Property in the Fact Table .. 179

C.2 Dimension Tables .. 180
C.2.1 Name of Dimension Table ... 180
C.2.2 Columns in a Dimension Table ... 180

viii Defining Models for InterSystems IRIS Business Intelligence

About This Book

This book describes, for developers, how to define basic InterSystems IRIS Business Intelligence models: cubes and subject
areas. It also describes how to define listing groups, which define listings outside of cube definitions. It includes the following
sections:

• Introduction

• Basic Concepts

• Summary of Model Options

• Principles and Recommendations

• Defining Models for InterSystems Business Intelligence

• Compiling and Building Cubes

• Defining Dimensions, Hierarchies, and Levels

• Details of Defining Levels

• Defining Properties

• Defining Measures

• Defining Listings

• Defining Listing Fields

• Defining Calculated Members

• Defining Named Sets

• Defining Subject Areas

• Defining Listing Groups

• Reference Information for Cube Classes

• Reference Information for Subject Area Classes

• Details for the Fact and Dimension Tables

For a detailed outline, see the table of contents.

The other developer books for Business Intelligence are as follows:

• Introduction to InterSystems Business Intelligence briefly introduces Business Intelligence and the tools that it provides.

• Developer Tutorial for InterSystems Business Intelligence guides developers through the process of creating a sample
that consists of a cube, subject areas, pivot tables, and dashboards.

• Implementing InterSystems Business Intelligence describes how to implement Business Intelligence, apart from creating
the model.

• Advanced Modeling for InterSystems Business Intelligence describes how to use the more advanced and less common
Business Intelligence modeling features: computed dimensions, unstructured data in cubes, compound cubes, cube
relationships, term lists, quality measures, KPIs, plug-ins, and other special options.

• Using InterSystems MDX introduces MDX and describes how to write MDX queries manually for use with cubes.

• InterSystems MDX Reference provides reference information on MDX as supported by Business Intelligence.

Defining Models for InterSystems IRIS Business Intelligence 1

• Client-Side APIs for InterSystems Business Intelligence provides information on the Business Intelligence JavaScript
and REST APIs, which you can use to create web clients for your Business Intelligence applications.

The following books are for both developers and users:

• Using Dashboards and the User Portal describes how to use the Business Intelligence User Portal and dashboards.

• Creating Dashboards describes how to create and modify dashboards in Business Intelligence.

• Using the Analyzer describes how to create and modify pivot tables, as well as use the Analyzer in general.

Also see the article Using PMML Models in InterSystems IRIS®.

2 Defining Models for InterSystems IRIS Business Intelligence

About This Book

1
Introduction

This chapter introduces InterSystems IRIS Business Intelligence models.

Be sure to consult the online InterSystems Supported Platforms document for this release for information on system
requirements for Business Intelligence.

1.1 Purpose of Business Intelligence
InterSystems Business Intelligence enables you to embed business intelligence (BI) into your applications so that your
users can ask and answer sophisticated questions of their data. Your application can include dashboards like the following
example:

Defining Models for InterSystems IRIS Business Intelligence 3

platforms/index.html

The widgets on a dashboard are driven by pivot tables and KPIs (key performance indicators). For a pivot table, a user can
display a listing, which displays source values.

Pivot tables, KPIs, and listings are queries and are executed at runtime:

• A pivot table can respond to runtime input such as filter selections made by the user. Internally it uses an MDX (Mul-
tiDimensional eXpressions) query that communicates with a cube.

A cube consists of a fact table and its indices. A fact table consists of a set of facts (rows), and each fact corresponds
to a base record. For example, the facts could represent patients or departments.

Depending on your configuration and implementation, the system detects changes in your transactional tables and
propagates them to the fact tables as appropriate.

The system generates an MDX query automatically when a user creates the pivot table in the Analyzer.

• A KPI can also respond to runtime user input. Internally, it uses either an MDX query (with a cube) or an SQL query
(with any table or tables).

In either case, you create the query manually or copy it from elsewhere.

• A listing displays selected values from the source records used for the rows of the pivot table that the user has selected.
Internally, a listing is an SQL query.

You can specify the fields to use and let the system generate the actual query. Or you can specify the entire query.

4 Defining Models for InterSystems IRIS Business Intelligence

Introduction

1.2 Introduction to Business Intelligence Models
A model includes some or all of the following elements:

• At least one cube definition. A cube describes ways that you can query a set of specific base elements (such as patients
or transactions). A cube includes levels, which enable you to group records from the base set, and measures, which
show aggregate values of those records. It also defines listings and other items.

When you create pivot tables, you use levels and measures. Consider the following pivot table:

In this pivot table, the rows correspond to the members of the Patient Group level; each member is shown as one
row. The data column displays the aggregate value of the Avg Test Score measure for each of these members; for
this measure, the system computes the average value. Notice that the Avg Test Score is null for the None patient
group.

• Any number of subject areas. A subject area is a subcube that enables users to focus on smaller sets of data without
the need for multiple cubes. A subject area also enables you to customize captions and defaults of the cube.

• Any number of KPIs.

In Business Intelligence, a KPI is an interactive data set that can be displayed on a dashboard. The KPI can define
actions, which a user can launch and which execute your custom code. (Note that actions are discussed in “Defining
Custom Actions” in Implementing InterSystems Business Intelligence.)

You use these elements to create dashboards as follows:

• Within the Analyzer, you create pivot tables.

Each pivot table is a query that you create by drag and drop actions. The query runs against a cube or subject area.

• Within the Dashboard Designer, you add pivot tables and KPIs to dashboards, along with any filter controls or other
needed controls.

The chapter “Basic Concepts” provides an overview of cubes and subject areas. A model can contain many additional
elements. See the chapter “Summary of Model Options” for a complete comparison of the options.

1.3 Introduction to the Model Development Process
The model development process typically is as follows:

1. Create, compile, and build a basic cube with only a few items.

2. Use the Analyzer or the Business Intelligence shell to examine the results and to identify changes to make.

For information on the Analyzer, see Using the Analyzer.

For information on the shell, see Introduction to InterSystems Business Intelligence.

3. Repeat the preceding steps as necessary.

Defining Models for InterSystems IRIS Business Intelligence 5

Introduction to Business Intelligence Models

4. When the cube is finalized or nearly finalized, define subject areas based on the cube.

Note that you might need multiple cubes.

1.4 Introduction to the Architect
You use the Architect to create cubes and subject areas.

To access the Architect, do the following:

1. Click the InterSystems Launcher and then click Management Portal.

Depending on your security, you may be prompted to log in with an InterSystems IRIS® username and password.

2. Switch to the appropriate namespace as follows:

a. Click Switch.

b. Click the namespace.

c. Click OK.

3. Click Analytics and then click Architect.

When you first display the Architect, you see the following:

4. Click Open, click Cubes, click the name of a cube, and then click OK.

Now the system displays something like the following:

6 Defining Models for InterSystems IRIS Business Intelligence

Introduction

The top area contains navigation links and buttons to perform different tasks.

Below that, the page consists of the following areas, when the Architect is displaying a cube.

1.4.1 Class Viewer

The left area is the Class Viewer, and it shows the properties in the base class used by the cube; this area is not shown for
a subject area. For example:

You can resize this area. To do so, drag the vertical divider on the right edge of this area.

Defining Models for InterSystems IRIS Business Intelligence 7

Introduction to the Architect

The following rules control the display of a class in the Architect:

• All properties are shown except for relationship properties, private properties, and transient properties.

• This display is recursive; that is, properties of properties are shown.

• If a property is a collection (a list or an array) or a relationship, it is shown as a folder that displays the properties of
the class used in the collection or relationship.

• If a property is of type %List (which is the object equivalent of $LISTBUILD), it is not shown as a folder.

For example, see the DiagnosesAsLB property, which is included in the Patients sample to illustrate this point.

• If a class is not accessible from the base class via cascading dot syntax, it is not shown.

• The Architect displays properties inherited from superclasses. (The sample does not demonstrate this.)

All core cube elements are based either on a source property or on a source expression (which is an ObjectScript expression)
that can use properties of any class.

Important: The Architect provides a useful view of the class properties, which makes it very easy to create Business
Intelligence elements based on those properties. It is important, however, to know that although this view
provides a convenient way to access some properties, you can also use a source expression to access any
data. These source expressions are evaluated when the cube is built and thus do not affect your runtime
performance.

1.4.2 Model Viewer

The center area is the Model Viewer, and it shows the current contents of the cube. For example:

8 Defining Models for InterSystems IRIS Business Intelligence

Introduction

You can resize this area. To do so, drag the vertical divider on the left edge of this area.

The links at the top include Add Element, which you can use to add measures, dimensions, and other items to the cube. In
the area below the links, you can select items for editing, including the cube itself in the first row. You can also delete an
item by clicking the X button in the row for that item.

1.4.3 Details Area

The right area is the Details Area, and it shows details for the element that is currently selected in Model Viewer (if any),
or for the cube (if nothing is selected).

For example:

Defining Models for InterSystems IRIS Business Intelligence 9

Introduction to the Architect

To hide this area, click the Hide Details button . If you do so, the Model Viewer is widened.

Then, to display this area again, click the Show Details button .

In this area, you primarily work on the Details tab.

The Tools tab provides quick access to other tools, not documented this book.

1.5 Accessing the Samples Shown in This Book
Most of the samples in this book are part of the Samples-BI sample (https://github.com/intersystems/Samples-BI) or the
Samples-Aviation sample (https://github.com/intersystems/Samples-Aviation).

InterSystems recommends that you create a dedicated namespace called SAMPLES (for example) and load samples into
that namespace. For the general process, see Downloading Samples for Use with InterSystems IRIS.

10 Defining Models for InterSystems IRIS Business Intelligence

Introduction

https://github.com/intersystems/Samples-BI
https://github.com/intersystems/Samples-Aviation

2
Basic Concepts

This chapter explains the most important concepts in InterSystems IRIS Business Intelligence models: cubes, subject areas,
and their contents. It discusses the following topics:

• Cubes

• Dimensions, hierarchies, and levels

• Properties

• Measures

• Listings

• Calculated members

• Subject areas

• Filters

• How the system builds and uses fact tables

• How the system generates listings

A model can contain many additional elements, which are discussed in the Advanced Modeling for InterSystems Business
Intelligence. See the next chapter for a complete comparison of the options.

Also see “Accessing the Samples Shown in This Book,” in the first chapter.

2.1 Introduction to Cubes
A cube is an MDX concept and it defines MDX elements for use in the Analyzer. These elements determine how you can
query the data, specifically, a set of specific records (such as patient records or transaction records). The set of records is
determined by the source class for the cube.

A cube can contain all the following definitions:

• Levels, which enable you to group records

• Hierarchies, which contain levels

• Dimensions, which contain hierarchies

• Level properties, which are values specific to the members of a level

Defining Models for InterSystems IRIS Business Intelligence 11

• Measures, which show aggregate values of those records

• Listings, which are queries that enable you to access the source data

• Calculated members, which are members based on other members

• Named sets, which are reusable sets of members or other MDX elements

The following sections discuss most of these items. For information on named sets, see Using InterSystems MDX.

2.1.1 The Source Class of a Cube

In most cases, the source class for a cube is a persistent class.

The source class can also be a data connector, which is a class that extends %DeepSee.DataConnector. A data connector
maps the results of an arbitrary SQL query into an object that can be used as the source of a cube. Typically, a data connector
accesses external data not in an InterSystems database, but you can also use it to specify an SQL query against an InterSystems
database, including an SQL query on a view. See “Defining and Using Data Connectors” in Implementing InterSystems
Business Intelligence.

The source class can also be a child collection class.

2.2 Dimensions, Hierarchies, and Levels
This section discusses dimensions, hierarchies, and levels.

2.2.1 Levels and Members

A level consists of members, and a member is a set of records. For the City level, the Juniper member selects the patients
whose home city is Juniper. Conversely, each record in the cube belongs to one or more members.

Most pivot tables simply display data for the members of one or more levels. For example, the Age Group level has the
members 0 to 29, 30 to 59, and 60+. The following pivot table shows data for these members:

For another example, the following pivot table shows data for the Age Group and Gender levels (shown as the first and
second columns respectively).

You can also drag and drop individual members for use as rows or columns. For example:

12 Defining Models for InterSystems IRIS Business Intelligence

Basic Concepts

For more details on the options, see Using the Analyzer.

2.2.2 Member Names and Keys

Each member has both a name and an internal key. The compiler does not require either of these to be unique, even within
the same level. Duplicate member names are legitimate in some cases, but you should check for and avoid duplicate
member keys.

For an example of legitimate duplicate member names, consider that different people can have the same name, and you
would not want to combine them into a single member. When a user drags and drops a member, the system uses the member
key, rather than the name, in its generated query, so that the query always accesses the desired member.

Duplicate member keys, however, make it impossible to refer to each individual member. Given a member key, the system
returns only the first member that has that key. You can and should ensure that your model does not result in duplicate
member keys.

For information on the scenarios in which you might have duplicate member names and duplicate member keys, see
“Defining Member Keys and Names Appropriately,” in the next chapter.

2.2.3 Source Values

Each level is based on a source value, which is either a class property or an ObjectScript expression. For example, the
Gender level is based on the Gender property of the patient. For another example, the Age Group level is based on an
expression that converts the patient’s Age property to a string (0 to 29, 30 to 59, or 60+), depending on the age.

2.2.4 Hierarchies and Dimensions

In Business Intelligence, levels belong to hierarchies, which belong to dimensions. Hierarchies and dimensions provide
additional features beyond those provided by levels.

Hierarchies are a natural and convenient way to organize data, particularly in space and time. For example, you can group
cities into postal codes, and postal codes into countries.

There are three practical reasons to define hierarchies in Business Intelligence:

• The system has optimizations that make use of them. For example, if you are displaying periods (year plus month) as
rows or columns, and you then filter to a specific year, the query runs more quickly if your model defines years as the
parent of periods.

• You can use hierarchies within a pivot table as follows: If you double-click a member of a level, the system performs
a drilldown to show the child members of that member, if any. For example, if you double-click a year, the system
drills down to the periods within that year; for details, see Using the Analyzer.

• MDX provides functions that enable you to work with hierarchies. For example, you can query for the child postal
codes of a given country, or query for the other postal codes in the same country.

You can use these functions in handwritten queries; the Analyzer does not provide a way to create such queries via
drag and drop.

Defining Models for InterSystems IRIS Business Intelligence 13

Dimensions, Hierarchies, and Levels

A dimension contains one or more parent-child hierarchies that organize the records in a similar manner; for example, a
single dimension might contain multiple hierarchies related to allergies. There is no formal relationship between two different
hierarchies or between the levels of one hierarchy and the levels of another hierarchy. The practical purpose of a dimension
is to define the default behavior of the levels that it contains — specifically the All level, which is discussed in the next
subsection.

2.2.5 The All Level and the All Member

Each dimension can define a special, optional level, which appears in all the hierarchies of that dimension: the All level. If
defined, this level contains one member, the All member, which corresponds to all records in the cube.

For example, the AgeD dimension includes one hierarchy with levels as follows:

For a given dimension, you specify whether the All member exists, as well as its logical name and its display name. Within
this dimension, the All member is named All Patients.

2.2.6 List-Based Levels

In Business Intelligence, unlike many other BI tools, you can base a level upon a list value. For example, a patient can have
multiple diagnoses. The Diagnoses level groups patients by diagnosis. For example:

For a list-based level, any given source record can belong to multiple members. The pivot table shown here includes some
patients multiple times.

2.2.7 See Also

See the chapter “Defining Dimensions, Hierarchies, and Levels.”

14 Defining Models for InterSystems IRIS Business Intelligence

Basic Concepts

2.3 Properties
Each level may define any number of properties. If a level has a property, then each member of that level has a value for
that property; other levels do not have values for the property.

In the Patients sample, the City level includes the properties Population and Principal Export.

Each property is based on a source value, which is either a class property or an ObjectScript expression. For the City level,
the properties Population and Principal Export are based directly on class properties.

You can use properties in queries in much the same way that you use measures. For example, in the Analyzer, you can use
properties as columns (this example shows two properties):

In contrast to measures, properties cannot be aggregated. A property is null for all levels except for the level to which it
belongs.

See the chapter “Defining Properties.”

2.4 Measures
A cube also defines measures, which show aggregate values in the data cells of a pivot table.

Each measure is based on a source value, which is either a class property or an ObjectScript expression. For example, the
Avg Test Score measure is based on the patient’s TestScore property.

The definition of a measure also includes an aggregation function, which specifies how to aggregate values for this measure.
Functions include SUM and AVG.

For example, the following pivot table shows the Patient Count measure and the Avg Test Score measure. The
Patient Count measure counts the patients used in any context, and the Avg Test Score measure shows the average
test score for the patients used in any context. This pivot table shows the value for these measures for the members of the
Age Group level:

Defining Models for InterSystems IRIS Business Intelligence 15

Properties

See the chapter “Defining Measures.”

2.5 Listings
A cube can also contain listings. Each listing has a name and specifies the fields to display when the user requests that
listing. The following shows an example:

The records shown depend on the context from which the user requested the listing.

If you do not define any listings in a cube, then if a user requests a listing, the Analyzer displays the following message:

Error #5001: %ExecuteListing: this cube does not support drill through

See the chapter “Defining Listings.”

Also:

• A cube can define individual listing fields with which users can create custom listings in the Analyzer. See the chapter
“Defining Listing Fields.”

• You can define listings outside of cube definitions (and without needing access to the Architect). See the chapter
“Defining Listing Groups.”

2.6 Calculated Members
A calculated member is based on other members. You can define two kinds of calculated members:

• A calculated measure is a measure is based on other measures. (In MDX, each measure is a member of the Measures
dimension.)

For example, one measure might be defined as a second measure divided by a third measure.

The phrase calculated measure is not standard in MDX, but this documentation uses it for brevity.

• A non-measure calculated member typically aggregates together other non-measure members. Like other non-measure
members, this calculated member is a group of records in the fact table.

Calculated members are evaluated after the members on which they are based.

You can create calculated members of both kinds within the cube definition, and users can create additional calculated
members of both kinds within the Analyzer.

16 Defining Models for InterSystems IRIS Business Intelligence

Basic Concepts

2.6.1 Calculated Measures

It is very useful to define new measures based on other measures. For example, in the Patients sample, the Avg Test
Score measure is defined as the Test Score measure divided by the Count measure. Consider the following pivot
table:

When this pivot table is run, the system determines the values for the Count and Test Score measures for each member
of the Allergy Severities level; a later section of this chapter describes how the system does this. Then, for the Avg
Test Score value for each member, the system divides the Test Score value by the Count value.

2.6.2 Non-Measure Calculated Members

For a non-measure calculated member, you use an MDX aggregation function to combine other non-measure members.
The most useful function is %OR.

Remember that each non-measure member refers to a set of records. When you combine multiple members into a new
member, you create a member that refers to all the records that its component members use.

For a simple example, consider the ColorD dimension, which includes the members Red, Yellow, and Blue. These
members access the patients whose favorite color is red, yellow, or blue, respectively. You can use %OR to create a single
new member that accesses all three groups of patients.

For example:

2.6.3 See Also

See the chapter “Defining Calculated Members.”

2.7 Subject Areas
A subject area is a subcube with optional overrides to names of items. You define a subject area to enable users to focus
on smaller sets of data without having to build multiple cubes. In a subject area, you can do the following:

• Specify a filter that restricts the data available in the subject area. For information on filters, see the next section.

Defining Models for InterSystems IRIS Business Intelligence 17

Subject Areas

You can hardcode this filter, or you specify it programmatically, which means that you can specify it based on the
$roles of the user, for example.

• Hide elements defined in the cube so that the Analyzer displays a subset of them.

• Define new names, captions, and descriptions for the visible elements.

• Specify the default listing for the subject area.

• Redefine or hide listings defined in the cube.

• Define new listings.

You can then use the subject area in all the same places where you can use a cube. For example, you can use it in the
Analyzer, and you can execute MDX queries on it in the shell or via the API.

See the chapter “Defining Subject Areas.”

2.8 Filters
In BI applications, it is critical to be able to filter data in pivot tables and in other locations. This section discusses the filter
mechanisms in Business Intelligence and how you can use them in your application.

2.8.1 Filter Mechanisms

The system provides two simple ways to filter data: member-based filters and measure-based filters. You can combine
these, and more complex filters are also possible, especially if you write MDX queries directly.

2.8.1.1 Member-Based Filters

A member is a set of records. In the simplest member-based filter, you use a member to filter the pivot table (for example,
other contexts are possible, as this section describes later). This means that the pivot table accesses only the records that
belong to that member.

For example, consider the following pivot table, as seen in the Analyzer:

Suppose that we apply a filter that uses the 0 to 29 member of the Age Group level. The resulting pivot table looks
like this:

The Analyzer provides options to display null rows and columns. If we display null rows, the pivot table looks like this:

18 Defining Models for InterSystems IRIS Business Intelligence

Basic Concepts

We can use the same filter in any pivot table. For example, consider the following unfiltered pivot table:

This pivot table shows the Patient Count measure although the headings do not indicate this. If we filter this pivot
table in the same way as the previous one, we see this:

Notice that the total record count is the same in both cases; in both cases, we are accessing only patients that belong to the
0 to 29 member.

You can also use multiple members together in a filter, and you can combine filters that refer to members of different levels.
Also, rather than choosing the members to include, you can choose the members to exclude.

Tip: Member-based filters are so easy to create and so powerful that it is worthwhile to create levels whose sole purpose
is for use in filters.

2.8.1.2 Measure-Based Filters

The system supports searchable measures. With such a measure, you can apply a filter that considers the values at the level
of the source record itself.

For the Patients sample, you can have a filter that accesses only the patients who have an encounter count of 10 or higher.
If we use this filter in a pivot table, we might see this:

Defining Models for InterSystems IRIS Business Intelligence 19

Filters

If we use the same filter in a different pivot table, we might see this:

In both cases, the total patient count is the same, because in both cases, the pivot table uses only the patients who have at
least 10 encounters.

A searchable measure can also contain text values. With such measures, you can use the operators = <> and LIKE to filter
the records.

2.8.1.3 More Complex Filters

It is possible to create more complex filters that combine member- and measure-based filters. The following shows an
example of such a filter, as created in the Analyzer:

Internally, the query does not use AND and OR, but instead uses MDX syntax. All Business Intelligence filters use MDX
syntax.

You can also create filters that use MDX functions. For example:

• The FILTER function uses the aggregate values of a measure, rather than the lowest-level values which a measure-
based filter uses. For example, you can use this to filter out patients who belong to cities that have fewer than 1000
patients.

In the Analyzer, the Levels option for a row or column uses this function internally.

20 Defining Models for InterSystems IRIS Business Intelligence

Basic Concepts

• The EXCEPT function can be used to remove specific members. The system uses this function when you create a
member-based filter that excludes your selected members.

InterSystems MDX provides many other functions that perform set operations.

• The TOPCOUNT and other functions access members based on their ranking.

For an introduction to MDX and a survey of your options, see Using InterSystems MDX. Also see InterSystems MDX Ref-
erence.

2.8.2 Using Filters

When you define a pivot table, you can specify how it is filtered. In practice, however, it is undesirable to create multiple
similar pivot tables with different filters, because the pivot tables can become difficult to maintain. Instead, you can use
any or all of the following tools:

• In the Analyzer, you can define named filters, which you can then use in multiple pivot tables. A named filter is
available in the Analyzer along with the contents of the cube or subject area (see the next item).

• In the Architect, you can define subject areas that are filtered views of a base cube. Then when you create pivot tables,
you start with a subject area rather than with the cube itself. These pivot tables are always filtered by the subject area
filter, in addition to any filters that are specific to the pivot tables themselves.

In a subject area, you can specify a hardcoded filter, or you can customize a callback method to specify the filter at
runtime (to base it on a value such as $roles, for example).

• In the User Portal, when you create dashboards, you can include filter controls in them (this applies only to simple,
member-based filters). Then the user can select the member or members to include or exclude.

Filters are always cumulative.

2.9 How the System Builds and Uses Fact Tables
When you compile a cube, the system generates a fact table and related tables. When you build a cube, the system populates
these tables and generates their indices. At runtime, the system uses these tables. This section describes this process. It
includes the following topics:

• Structure of a fact table

• How the system populates a fact table

• How the system uses a fact table

The system does not generate tables for subject areas. A subject area uses the tables that have been generated for the cube
on which the subject area is based.

2.9.1 Structure of a Fact Table

A fact table typically has one record for each record of the base table; this row is a fact. The fact contains one field for each
level and one field for each measure. The following shows a sketch:

Defining Models for InterSystems IRIS Business Intelligence 21

How the System Builds and Uses Fact Tables

The field for a given level might contain no values, a single value, or multiple values. Each distinct value corresponds to
a member of this level. The field for any given measure contains either null or a single value.

When the system builds this fact table, it also generates indices for it.

The fact table does not contain information about hierarchies and dimensions. In the fact table, regardless of relationships
among levels, each level is treated in the same way: the fact table contains one column for each level, and that column
contains the value or values that apply to each source record.

Tip: By default, the fact table has the same number of rows as the base table. When you edit a cube class in Studio, you
can override its OnProcessFact() callback, which enables you to ignore selected rows of the base table. If you do
so, the fact table has fewer rows than the base table.

2.9.2 Populating the Fact Table

When you build a cube, the system iterates through the records of the base table. For each record, the system does the fol-
lowing:

• Examines the definition of each level and obtains either no value, a single value, or multiple values.

In this step, the system determines how to categorize the record.

• Examines the definition of each measure and obtains either no value or a single value.

The system then writes this data to the corresponding row in the fact table and updates the indices appropriately.

2.9.2.1 Determining the Values for a Level

Each level is specified as either a source property or a source expression. Most source expressions return a single value for
given record, but if the level is of type list, its value is a list of multiple values.

For a given record in the base table, the system evaluates that property or expression at build time, stores the corresponding
value or values in the fact table, and updates the indices appropriately.

For example, the Age Bucket level is defined as an expression that returns one of the following strings: 0-9, 10-19,
20-29, and so on. The value returned depends upon the patient’s age. The system writes the returned value to the fact
table, within the field that corresponds to the Age Bucket level.

For another example, the Allergy level is a list of multiple allergies of the patient.

2.9.2.2 Determining the Value for a Measure

When the system builds the fact table, it also determines and stores values for measures. Each measure is specified as either
a source property or an ObjectScript source expression.

22 Defining Models for InterSystems IRIS Business Intelligence

Basic Concepts

For a given row in the base table, the system looks at the measure definition, evaluates it, and stores that value (if any) in
the appropriate measure field.

For example, the Test Score measure is based on the TestScore property of the patients.

2.9.2.3 Determining the Value for a Property

When the system builds the fact table, it also determines values for properties, but it does not store these values in the fact
table. In addition to the fact table, the system generates a table for each level (with some exceptions; see the appendix
“Details for the Fact and Dimension Tables”). When the system builds the fact table, it stores values for properties in the
appropriate dimension tables.

2.9.3 Using a Fact Table

Consider the following pivot table:

The first column displays the names of the members of the Age Bucket level. The first data column shows the Patient
Count measure, the second data column shows the Test Score measure, and the last column shows the Avg Test
Score measure. The Avg Test Score measure is a calculated member.

The system determines these values as follows:

1. The first row refers to the 0-9 member of the Age Bucket level. The system uses the indices to find all the relevant
patients (shown here with red highlighting) in the fact table:

2. In the pivot table, the Patient Count column shows the count of patients used in a given context.

For the first cell in this column, the system counts the number of records in the fact table that it has found for the 0-9
member.

3. In the pivot table, the Test Score column shows the cumulative test score for the patients in a given context.

Defining Models for InterSystems IRIS Business Intelligence 23

How the System Builds and Uses Fact Tables

For the first cell in this column, the system first finds the values for the Test Score in the fact table that it has found
for the 0-9 member:

Then it aggregates those numbers together, in this case by adding them.

4. In the pivot table, the Avg Test Score column is meant to display the average test score for the patients in a given
context.

The Avg Test Score measure is a calculated member, computed by dividing Test Score with Patient Count.

The system repeats these steps for all cells in the result set.

2.10 How the System Generates Listings
This section describes how the system uses the listings defined in the cube.

Within a pivot table, a user selects one or more cells.

The user then clicks the Listing button , and the system displays a listing, which shows the values for the lowest-
level records associated with the selected cells (also considering all filters that affect this cell):

To generate this display, the system:

1. Creates an temporary listing table that contains the set of source ID values that correspond to the facts used in the
selected cells.

2. Generates an SQL query that uses this listing table along with the definition of your listing.

24 Defining Models for InterSystems IRIS Business Intelligence

Basic Concepts

3. Executes this SQL query and displays the results.

Your cube can contain multiple listings (to show different fields for different purposes). When you create a pivot table in
the Analyzer, you can specify which listing to use for that pivot table.

The listing query is executed at runtime and uses the source data rather than the fact table. Because of this, if the fact table
is not completely current, it is possible for the listing to show a different set of records than you see in the fact table.

Defining Models for InterSystems IRIS Business Intelligence 25

How the System Generates Listings

3
Summary of Model Options

A model can contain many elements in addition to cubes and subject areas. The additional elements are discussed in the
Advanced Modeling for InterSystems Business Intelligence. For reference and planning, this chapter summarizes all the
elements, from both this book and the Advanced Modeling for InterSystems Business Intelligence. This chapter discusses
the following topics:

• Items you can use directly in pivot tables

• Items you can use in calculated members and measures

• Comparison of possible widget data sources

• High-level summary

Also see “Accessing the Samples Shown in This Book,” in the first chapter.

3.1 Items That You Can Use in Pivot Tables
This section compares items that you can use directly in the Analyzer to define a pivot table. These items are categorized
as follows:

• Levels and other items that group or filter records

• Items that behave measures

• Properties

• Items that are not directly accessible

3.1.1 Items That Group or Filter Records

The following items can be used to group or filter records. Except for some searchable measures, none of these items can
be used as measures.

Use in Filters

option
Use in Rows and
Columns options

Item

YesYesdimension or level

YesYesdimension or level of a related cube

Defining Models for InterSystems IRIS Business Intelligence 27

Use in Filters

option
Use in Rows and
Columns options

Item

YesYesshared dimension or level in the same compound cube

YesYescalculated member (non-measure)

YesYescalculated member (non-measure) in a related cube

NoNocalculated member (non-measure) in another cube in the same
compound cube

YesYescomputed dimension

YesYescomputed dimension in a related cube

NoNocomputed dimension in another cube in the same compound
cube

YesYesnamed set

NoNonamed set in another cube

YesNonamed filter

NoNonamed filter in another cube

YesYes, except for text,
string, and NLP
measures

searchable measures

Related cubes, compound cubes, computed dimensions, and NLP measures are discussed in the Advanced Modeling for
InterSystems Business Intelligence.

Named filters are discussed in Using the Analyzer.

Note that calculated members that are part of existing cube dimensions do not appear in filters unless the Show Calculated

Members in Filters option is selected.

3.1.2 Items That Behave Like Measures

The following items behave like measures and are shown in the body of a pivot table. With one exception (noted), these
items cannot be used for filtering.

28 Defining Models for InterSystems IRIS Business Intelligence

Summary of Model Options

Use in Filters

option
Use in Measures

option
Use in Rows and
Columns options

Item

Yes, if searchableYes, except for
text, string, and
NLP measures

Yes, except for
text, string, and
NLP measures

measure

NoNo*No*measure of a related cube

NoYesYesmeasure of another cube in the same
compound cube

NoYesYescalculated measure

NoNo**Nocalculated measure from another cube

NoYesYesquality measure

Not applicable**Not applicable**Not applicable**quality measure from another cube

NoYesYesproperty of pivot-type plug-in

Not applicable**Not applicable**Not applicable**pivot-type plug-in from another cube

Related cubes, compound cubes, NLP measures, quality measures, and plug-ins are discussed in the Advanced Modeling
for InterSystems Business Intelligence.

*These measures would not be aggregated correctly if used this way.

**Quality measures and plug-ins are designed to be directly associated with any cubes where they are to be used.

3.1.3 Properties

The following table summarizes how properties can be used:

Use in Filters

option
Use in Measures

option
Use in Rows and
Columns options

Item

NoNoYesproperty

NoNoYesproperty in another cube (related or compound)

Related cubes and compound cubes are discussed in the Advanced Modeling for InterSystems Business Intelligence.

3.1.4 Items That You Cannot Access Directly in the Analyzer

For reference, note that you cannot directly access the following items in the Analyzer:

• KPIs

• Term lists

• Aggregate-type plug-ins

• Production business metrics

Except for business metrics, however, you can define calculated members that use these items; see the next section. Then
you can use those calculated members in the Analyzer.

Defining Models for InterSystems IRIS Business Intelligence 29

Items That You Can Use in Pivot Tables

These items are all discussed in the Advanced Modeling for InterSystems Business Intelligence.

3.2 Items That You Can Use in Calculated Members and
Measures
Via calculated members and measures, you can greatly extend your model without rebuilding any cubes. The following
table summarizes all the kinds of model element that you can use within the definition of a calculated member or measure:

To Access This Item from a Calculated Member or MeasureItem

Many options; see Using InterSystems MDX.MDX standard cube items
(dimension, hierarchy, level,
measure, property, calculated
member, named set)

Use the dimension and member name to create a member expression
that refers to the desired member, in the same way that you do for any
standard member.

computed dimension*

Use the %QualityMeasure dimension to create a quality measure
expression that refers to the measure.

quality measure*

Use the %KPI function to refer to the value of a property in the KPI or
plug-in.

KPI or plug-in*

• Use the %LOOKUP function to return the value of a term list item.

• Use the LOOKUP function to return a given field (the value field or
another field), for a term list item.

• Use the %TERMLIST function to create a set of members, given a
term list pattern.

term list*

*These items are discussed in the Advanced Modeling for InterSystems Business Intelligence.

The system does not provide a way to access a production business metric from within a calculated member.

3.3 Comparison of Possible Widget Data Sources
The preceding chapter introduced pivot tables, which are the most common kind of data source for a widget on a dashboard.
The system provides many other kinds of data sources. You can directly use any of the following items as data sources:

• Pivot tables

• KPIs (see the Advanced Modeling for InterSystems Business Intelligence)

• Pivot-type plug-ins (see the Advanced Modeling for InterSystems Business Intelligence)

• Production business metrics (see Developing Productions)

The following table compares these items:

30 Defining Models for InterSystems IRIS Business Intelligence

Summary of Model Options

Production
Business
Metrics

PluginsKPIsPivot TablesFeature

Class definitionClass definitionClass definitionFolder itemHow definition is stored

StudioStudioStudioAnalyzerWhere defined

Values returned
by custom code

MDX queryMDX queryData source options • MDX query

• SQL query

• Values returned
by custom code

NoYesNoNoSupports custom
computation using
lowest-level records?

NoYes, depending
on your
implementation

Yes, depending on
your implementation

YesSupports filtering?

NoYes, depending
on your
implementation

Yes, depending on
your implementation

NoSupports custom filtering
(for example, provide user
with only a subset of the
members of a level)?

NoYesYes, depending on
your implementation

YesSupports listings?

NoNoNoYesSupports the Mini
Analyzer?

3.4 High-Level Summary of Options
For reference, the following table summaries the possible contents of an InterSystems IRIS Business Intelligence model,
including information on which tool you use to create each element:

Where describedPrimary tool
to create

Location of
definition

PurposeItem

“Defining Dimensions,
Hierarchies, and Levels”

Architectcube classDefine groups of recordsdimension,
hierarchy, and
level

Defining Models for InterSystems IRIS Business Intelligence 31

High-Level Summary of Options

Where describedPrimary tool
to create

Location of
definition

PurposeItem

“Defining Measures”Architectcube classAggregate values across
multiple records

measure
(numeric,
integer, date,
age, or
boolean)

Store string data in the fact
table. These measures are
usually also searchable.

measure (text
or string)

Aggregate values across
multiple records; also support
filtering of lowest-level records

searchable
measure

“Using Text Analytics in
Cubes” in Advanced
Modeling for
InterSystems Business
Intelligence

Architectcube classUsed by NLP dimensions; not
visible in the Analyzer

NLP measure

“Defining Properties”Architectcube classContain data specific to a levelproperty

“Defining Listings,”
“Defining List Fields”,
and “Defining Listing
Groups”

Architectcube classProvide access to lowest-level
details

listing

“Defining Calculated
Members”

Architect or
Analyzer

cube class
or pivot
table

Define a measure based on
other model elements

calculated
measure

Define a member based on
other model elements

calculated
member
(non-measure)

“Defining Named Sets”Architectcube classDefine a reusable set of
members

named set

“Defining Subject
Areas”

Architectsubject area
class

Filter a cube or otherwise refine
its definition

subject area

“Defining Computed
Dimensions” in
Advanced Modeling for
InterSystems Business
Intelligence

Architectcube classDefine groups of records to
retrieve at runtime (usually via
SQL or MDX)

computed
dimension

“Defining Quality
Measures” in Advanced
Modeling for
InterSystems Business
Intelligence

Quality
Measure
Manager

quality
measure
class

Define measure via MDX
outside of a cube

quality
measure

32 Defining Models for InterSystems IRIS Business Intelligence

Summary of Model Options

Where describedPrimary tool
to create

Location of
definition

PurposeItem

“Defining Cube-Cube
Relationships” in
Advanced Modeling for
InterSystems Business
Intelligence

Architectcube classUse levels of a different cuberelated cubes

“Defining Shared
Dimensions and
Compound Cubes” in
Advanced Modeling for
InterSystems Business
Intelligence

Architectsubject area
class

Combine measures from
different cubes or see these
measures side by side

compound
cube

“Defining Basic KPIs” in
Advanced Modeling for
InterSystems Business
Intelligence

StudioKPI classQuery the data in a more flexible
way, for use as an alternative
data source

KPI

“Defining Plug-ins” in
Advanced Modeling for
InterSystems Business
Intelligence

Studioplug-in classCalculate a value based on the
lowest-level data; use via drag
and drop

pivot-type
plug-in

Calculate a value based on the
lowest-level data; use in
calculated members

aggregate-type
plug-in

Defining Term Lists in
Advanced Modeling for
InterSystems Business
Intelligence

Term List
manager

Business
Intelligence
folder item

Define values outside of a cube,
for various purposes

term list

Developing ProductionsStudiobusiness
metric class

Compute data specific to a
production

business
metric

Using the AnalyzerAnalyzerglobalDefine a filter for use with a
specific cube

named filter

Defining Models for InterSystems IRIS Business Intelligence 33

High-Level Summary of Options

4
Principles and Recommendations

This chapter discusses core principles and other recommendations for your InterSystems IRIS Business Intelligence models:

• Choosing a base table

• Choosing the form of the base table

• Avoiding large numbers of levels and measures

• Defining measures appropriately

• Understanding time levels

• Defining hierarchies appropriately

• Defining member keys and names appropriately

• Avoiding very granular levels

• Using list-based levels carefully

• Handling null values appropriately

• Usability considerations

• Considerations when you define multiple cubes

• Other recommendations

Also see “Accessing the Samples Shown in This Book,” in the first chapter.

4.1 Choosing a Base Table
When defining a cube, the first step is to choose the class to use as the base class for that cube. The key point to remember
is this: Within the cube, any record count refers to a count of records in this class (as opposed to some other class referenced
within the cube). Similarly, the selection of the base class determines the meaning of all measures in the cube.

For example:

• If the base class is Transactions, transactions are counted. In this cube, you can have measures like the following:

– Average broker fee per transaction (or average for any group of transactions)

– Average transaction value per transaction (or average for any group of transactions)

• If the base class is Customers, customers are counted. In this cube, you can have measures like the following:

Defining Models for InterSystems IRIS Business Intelligence 35

– Average broker fee per customer (or average for any group of customer)

– Average transaction value per customer (or average for any group of customers)

You can have multiple cubes, each using a different base class, and you can use them together in dashboards.

4.2 Choosing the Form of the Base Table
It is also important to consider the form of the base table. The following table summarizes the key considerations:

Support for Listings?Support for DSTIME?Base Table

YesYesLocal persistent class (other than a linked table)

YesNoLinked table

YesNoData connector that uses local tables

NoNoData connector that uses linked tables

The DSTIME feature is the easiest way to keep the corresponding cube current. When this feature is not available, other
techniques are possible. For details, see “Keeping the Cubes Current” in Implementing InterSystems Business Intelligence.

4.3 Avoiding Large Numbers of Levels and Measures
InterSystems IRIS® imposes a maximum limit on the number of levels and measures on a cube, because there is a limit
on the number of indices in a class. For information on this limit (which may increase over time), see “General System
Limits” in the Orientation Guide for Server-Side Programming. For information on the number of indices that the system
creates for levels and measures, see the appendix “Details for the Fact and Dimension Tables.”

It is also best to keep the number of levels and measures much smaller than required by this limit, because an overly complex
model can be hard to understand and use.

4.4 Defining Measures Appropriately
The value on which a measure is based must have a one-to-one relationship with the records in the base table. Otherwise,
the system would not aggregate that measure suitably. This section demonstrates this principle.

4.4.1 Measures from Parent Tables

Do not base a measure on a field in a parent table. For example, consider the following two tables:

• Order — Each row represents an order submitted by a customer. The field SaleTotal represents the total monetary
value of the order.

• OrderItem — Each row represents an item in that order. In this table, the field OrderItemSubtotal represents
the monetary value of this part of the order.

36 Defining Models for InterSystems IRIS Business Intelligence

Principles and Recommendations

Suppose that we use OrderItem as the base table. Also suppose that we define the measure Sale Total, based on the
parent’s SaleTotal field. The goal for this measure is to display the total sale amount for all the sales of the selected
order items.

Let us consider the contents of the fact table. The following shows an example:

The first four rows represent the items in the same order. The next two rows represent the items of another order, and so
on.

Suppose that this model has a dimension called Item Type. Let us examine what happens when the system retrieves
records for all items of type R:

To compute the value of the Sale Total measure for type R, the system adds together the three values shown here:
279.07, 279.07, and 52.14. But this action double-counts one of the orders.

Depending on the case, the Sale Total measure might aggregate correctly; that is, it might show the correct total sales
figure for the selected order items. But you cannot ensure that the measure does this, because you cannot prevent double-
counting as shown as in this example.

4.4.2 Measures from Child Tables

You can use a value in a child table as the basis of a measure, but to do so, you must aggregate that value across the relevant
rows of the child table.

Consider the following two tables:

• Customer — Each row represents a customer.

• Order — Each row represents a customer order. The field SaleTotal represents the total monetary value of the
order.

Suppose that we use Customer as the base table, and that we want to create a measure based on the SaleTotal field.

Because a customer potentially has multiple orders, there are multiple values for SaleTotal for a given customer. To use
this field as a measure, we must aggregate those values together. The most likely options are to add the values or to average
them, depending on the purpose of this measure.

Defining Models for InterSystems IRIS Business Intelligence 37

Defining Measures Appropriately

4.5 Understanding Time Levels
A time level groups records by time; that is, any given member consists of the records associated with a specific date and
time. For example, a level called Transaction Date would group transactions by the date on which they occurred. There are
two general kinds of time levels, and it is important to understand their differences:

• Timeline-based levels. This kind of time level divides the timeline into adjacent blocks of time. Any given member of
this level consists of a single block of time. Or, more accurately, the member consists of the records associated with
that block of time. For a level called Transaction Quarter Year, the member Q1-2011 would group all the
transactions that occurred in any of the dates that belong to the first quarter of 2011.

This kind of level can have any number of members, depending on the source data.

• Date-part based levels. This kind of time level considers only part of the date value and ignores the timeline. Any
given member consists of multiple blocks of time from different parts of the timeline, as shown in the following figure.
Or, more accurately, the member consists of the records associated with those blocks of time. For a level called
Transaction Quarter, the member Q1 would group all the transactions that occurred in any of the dates that
belong to the first quarter of any year.

This kind of level has a fixed number of members.

The following figure compares these kinds of time levels:

You can use these kinds of levels together without concern; the engine will always return the correct set of records for any
combination of members. However, there are two typical sources of confusion:

38 Defining Models for InterSystems IRIS Business Intelligence

Principles and Recommendations

• If you define hierarchies of time levels (that is, hierarchies that contain more than one level), you must think carefully
about what you include. As noted in the next section, MDX hierarchies are parent-child hierarchies. Any member in
the parent level must contain all the records of its child members.

This means, for example, that you can use the Transaction Year level as the parent of the Transaction
Quarter Year level, but not of the Transaction Quarter level. To see this, refer to the preceding figure. The
Q1 member refers to the first quarters of all years, so no single year can be the parent of Q1.

“Time Levels and Hierarchies,” later in this book, gives guidelines on appropriate time hierarchies.

• Some MDX functions are useful for levels that represent the timeline, but are not useful for levels that represent only
a date part. These functions include PREVMEMBER, NEXTMEMBER, and so on. For example, if you use PRE-
VMEMBER with Q1–2011, the engine returns Q4–2010 (if your data contains the applicable dates). If you use
PREVMEMBER with Q1, there is nothing useful to return.

You might want to try defining the following flexible approach: Define a Year level so that you have one level that represents
the timeline. Define all other time levels as date-part levels. Then you can use these levels together as in the following
example:

This pivot table uses a combination of Year (a timeline level) and Quarter (a date-part level) for rows. The Quarter level
is also useful on its own, because it can provide information on quarter-by-quarter patterns. The sample data in SAMPLES

does not demonstrate this, but there are many kinds of seasonal activity that you could see this way. The following shows
an example:

Defining Models for InterSystems IRIS Business Intelligence 39

Understanding Time Levels

4.6 Defining Hierarchies Appropriately
In any hierarchy, pay attention to the order of the levels as shown in the Architect. A level is automatically a child of the
previously listed level in that hierarchy. For example, consider the HomeD dimension from the Patients sample:

The ZIP level is the parent of the City level. More precisely, each member of the ZIP level is the parent of one or more
members of the City level. (In reality, there is a many-to-many relationship between ZIP codes and cities, but the Patients
sample is simplistic, and in this sample, ZIP codes represent larger areas than cities.)

In your hierarchies, the first level should be the least granular, and the last one should be the most granular.

MDX hierarchies are parent-child hierarchies. To enforce this rule, the system uses the following logic when it builds the
cube:

• For the first level defined in a hierarchy, the system creates a separate member for each unique source value.

• For the levels after that, the system considers the source value for the level in combination with the parent member.

For example, suppose that the first level is State, and the second level is City. When it creates members of the City
level, the system considers both the city name and the state to which that city belongs.

The internal logic is slightly different for time hierarchies, but the intent is the same.

4.6.1 What Happens if a Hierarchy Is Inverted

In contrast, suppose that we move the City level so that it is before the ZIP level in the cube, recompile, and rebuild. If
we use the ZIP level for rows in a pivot table, we see something like the following:

In this case, the system has created more than one member with the same name, because it assumes that (for example) there
are two ZIP 32006 codes, which belong to different cities.

In this case, it is obviously incorrect to have multiple members with the same name. In other scenarios, however, it is
legitimate to have multiple members with the same name. For example, different countries can have cities with the same
name. That is, if you have duplicate member names, that can indicate an inverted hierarchy, but not in all cases.

40 Defining Models for InterSystems IRIS Business Intelligence

Principles and Recommendations

4.6.2 Time Hierarchies

MDX hierarchies are parent-child hierarchies. All the records for a given child member must be contained in the parent
member as well. It is important to carefully consider how to place time levels into hierarchies. See the previous section.
Also “Time Levels and Hierarchies,” later in this book, gives guidelines on appropriate time hierarchies.

4.7 Defining Member Keys and Names Appropriately
Each member has both a name and an internal key. By default, these are the same, except for time levels. Both of these
identifiers are strings. When you define your model, you should consider the following items:

• It can be correct to have duplicate member names. Different people, for example, can have the same name. When a
user drags and drops a member, the system uses the member key, rather than the name, in its generated query.

• InterSystems recommends that you ensure that member keys are unique in each level. Duplicate member keys make
it difficult to refer to all the individual members.

In particular, if you have duplicate member keys, users cannot reliably drill down by double-clicking.

• To help users distinguish the members, if a level has multiple members with the same name, InterSystems also recom-
mends that you add a property to the level whose value is the same as the key. To do so, simply base the property on
the same source property or source expression that the level uses.

Then the users can display the property to help distinguish the members.

Or add a tooltip to the level, and have that tooltip contain the member key.

The following sections describe the scenarios in which you might have duplicate member keys and names.

4.7.1 Ways to Generate Duplicate Member Keys

Duplicate member keys are undesirable. If you have duplicate member keys, users cannot reliably drill down by double-
clicking.

Except for time levels, each unique source value for a level becomes a member key. (For time levels, the system uses
slightly different logic to generate unique keys for all members.)

If there is a higher level in the same hierarchy, it is possible for the system to generate multiple members with the same
key. See “Ensuring Uniqueness of Member Keys,” later in this book.

4.7.2 Ways to Generate Duplicate Member Names

Duplicate member names may or may not be undesirable, depending on your business needs.

Except for time levels, each unique source value for a level becomes a member name, by default. (For time levels, the
system generates unique names for all members.)

There are only two ways in which the system can generate multiple members with the same name:

• There is a higher level in the same hierarchy. This higher level might or might not be suitable. See “Defining Hierarchies
Appropriately,” earlier in this chapter.

• You have defined a level as follows:

– The member names are defined separately from the level definition itself.

Defining Models for InterSystems IRIS Business Intelligence 41

Defining Member Keys and Names Appropriately

– The member names are based on something that is not unique.

See “Using Property Values as Member Names,” later in this book.

Note that InterSystems IRIS does not automatically trim leading spaces from string values as it builds the fact table. If the
source data contains leading spaces, you should use a source expression that removes those. For example:

$ZSTRIP(%source.myproperty,"<W")

Otherwise, you will create multiple members with names that appear to be the same (because some of the names have extra
spaces at the start).

4.8 Avoiding Very Granular Levels
For users new to Business Intelligence, it is common to define a level that has a one-to-one relationship with the base table.
Such a level is valid but is not particularly useful, unless it is also combined with filters to restrict the number of members
that are seen.

A very granular level has a huge number of members (possibly hundreds of thousands or millions), and Business Intelligence
is not designed for this scenario.

For example, suppose that we modified the Patient sample to have a Patient level. Then we could have a pivot table like
this:

This is valid but an SQL query would produce the same results more efficiently. Consider the processing that is described
in “How Business Intelligence Builds and Uses Fact Tables,” in the previous chapter. (That description gives the conceptual
flow rather than the actual processing, but the overall idea is the same.) That processing is intended to aggregate values
together as quickly as possible. The pivot table shown above has no aggregation.

If you need a pivot table like the one shown here, create it as an SQL-based KPI. See the Advanced Modeling for InterSystems
Business Intelligence.

4.9 Using List-Based Levels Carefully
In Business Intelligence, unlike many other BI tools, you can base a level upon a list value. Such levels are useful, but it
is important to understand their behavior.

For example, a patient can have multiple allergies. Each allergy has an allergen and a severity. Suppose that the base table
is Patients and the model includes the Allergies and Allergy Severity levels. We could create a pivot table
that looks like this:

42 Defining Models for InterSystems IRIS Business Intelligence

Principles and Recommendations

Upon first seeing this pivot table, the user might think that this pivot table shows correlations between different sets of
patient allergies. It does not.

This pivot table, as with all other pivot tables in this cube, shows sets of patients. For example, the ant bites row represents
patients who have an allergy to ant bites. The Minor column represents patients who have at least one allergy that is marked
as minor. There are 126 patients who have an allergy to ant bites and who have at least one allergy that is marked as minor.
This does not mean that there are 126 patients with minor allergies to ant bites.

It is possible to create a pivot table that does show correlations between different sets of patient allergies. To do so, however,
you would have to define a model based on the patient allergy, rather than the patient.

When you use a list-based level in a filter, the results require careful thought. Consider the following pivot table:

Defining Models for InterSystems IRIS Business Intelligence 43

Using List-Based Levels Carefully

This pivot table shows patients, grouped by allergy. Now suppose that we apply a filter to this pivot table, and the filter
selects the fish member:

Now we are viewing only patients who have an allergy to fish. Note the following:

• The pivot table shows the fish member. For this member, the patient count is the same as in the previous pivot table.

• It also shows some other members of the Allergies level. For these members, the patient count is lower than in the
previous pivot table.

• The pivot table does not include the No Data Available member of the Diagnoses level. Nor does it include the Nil
Known Allergies member.

To understand these results, remember that we are viewing only patients who are allergic to fish, and this is not the same
as “viewing only the fish allergy.” The patients who are allergic to fish are also allergic to other things. For example, 13
of the patients who are allergic to fish are also allergic to additives/coloring agents.

If we change the filter to select only the No Data Available member, we see this:

In this case, we are viewing only the patients who do not have any recorded allergy. By definition (because of how this
level is defined), there is no overlap of these patients with the patients who have specific allergies.

Note: List-based levels cannot have child or parent levels.

44 Defining Models for InterSystems IRIS Business Intelligence

Principles and Recommendations

4.10 Handling Null Values Correctly
For any measure or level, the source value could potentially be null in some cases. It is important to understand how the
system handles nulls and to adjust your model according to your business needs and usability requirements.

4.10.1 Null Values in a Measure

For a measure, if the source value is missing for a given record, the system does not write any value into the measure column
of the fact table. Also, the system ignores that record when aggregating measure values. In most scenarios, this is appropriate
behavior. If it is not, you should use a source expression that detects null values and replaces them with a suitable value
such as 0.

4.10.2 Null Values in a Level

For a level, if the source value is missing for a given record in the base class, the system automatically creates a member
to contain the null values (with one exception). You specify the null replacement string to use as the member name; otherwise,
the member is named Null.

The exception is computed dimensions, which are discussed in the Advanced Modeling for InterSystems Business Intelligence.
The replacement string has no effect in this case.

4.11 Usability Considerations
It is also useful to consider how users see and use the model elements. This section explains how the Analyzer and pivot
tables represent model elements and concludes with some suggestions for your models.

4.11.1 Consider How Dimensions, Hierarchies, and Levels Are Presented

The Model Contents area of the Analyzer displays each dimension and the levels in it, but does not display the hierarchies
(for reasons of space). For example:

Therefore, a user working in the Analyzer does not necessarily know which levels are related via hierarchies.

If a level is used for rows, then the name of the level appears as the column title. For example:

Defining Models for InterSystems IRIS Business Intelligence 45

Handling Null Values Correctly

If a dimension is used for rows, the name of the dimension appears as the column title. Also, the system uses an MDX
function that gets the All member for the dimension, as well as all members of the first level defined in that dimension:

4.11.2 Consider How to Use All Members

The Model Contents area displays every All member. For example:

In the Analyzer, users can drag and drop the All member, in the same way they can drag any other member.

The All member for one dimension is equivalent (except for its name) to the All member for any other dimension. If it has
a suitably generic name, an All member is useful as the bottom line. For example:

4.12 Considerations with Multiple Cubes
If you find that you need to define multiple cubes to analyze one area of your business, consider the following points:

• If you have a large number of cubes, relationships are often quite useful. Rather than defining the same dimension
repeatedly in different cubes (with different definitions), you can define it in a single place. This is more convenient
for development and lessens the amount of disk space that is needed.

The slight disadvantage of relationships is that if you rebuild the independent cube, you must also rebuild all the
dependent cubes in the appropriate order, as discussed in the Advanced Modeling for InterSystems Business Intelligence.

• If you define relationships or shared dimensions, use the Cube Manager to build the cubes in the correct order; see
“Keeping the Cubes Current” in Implementing InterSystems Business Intelligence.

46 Defining Models for InterSystems IRIS Business Intelligence

Principles and Recommendations

Or define a utility method or routine that builds the cubes in the appropriate order. It is easier to maintain such a method
as you add cubes than it is to manually rebuild them in the correct order.

Building related cubes in the wrong order can cause problems that are difficult to troubleshoot.

• If you need pivot tables that display measures from multiple cubes, you must define shared dimensions and a compound
cube. A compound cube is the only way to use measures together that belong to different cubes.

4.13 Recommendations
The following recommendations may also be useful to you, depending on your business needs:

• Decide whether you will use dimensions directly in pivot tables. If so, assign user-friendly names to them (at least for
display names).

If not, keep their names short and omit spaces, to enable you to write MDX queries and expressions more easily.

Also, use a different name for the dimension than for any level in the dimension, in order to keep the syntax clear, if
you need to view or create MDX queries or expressions.

• Hierarchy names are not visible in the Analyzer or in pivot tables. If you use short names (such as H1), your MDX
queries and expressions are shorter and easier to read.

• Define only one hierarchy in any dimension; this convention gives the users an easy way to know if the levels in a
dimension are associated with each other.

• Define an All member in only one dimension. Give this All member a suitably generic name, such as All Patients.
Depending on how you intend to use the All member, another suitable name for it might be Total or Aggregate
Value.

• Use user-friendly names for levels, which are visible in pivot tables.

• You can have multiple levels with the same name in different hierarchies. Pivot tables and filters, however, show only
the level name, so it is best to use unique level names.

• Specify a value for the Field name in fact table option for each applicable level and measure; this option does not apply
to time levels, NLP levels, or NLP measures. Take care to use unique names.

It is much easier to troubleshoot when you can identify the field in which a given level or measure is stored, within
the fact table.

For information, see “Details for the Fact and Dimension Tables.”

Defining Models for InterSystems IRIS Business Intelligence 47

Recommendations

5
Defining Models for InterSystems
Business Intelligence

This chapter describes the basics of defining cubes. It includes the following topics:

• How to define a cube

• Possible source classes for a cube

• How to specify the other cube options

• How to add items to a cube

• Rules for names of items in a cube

• Other common options for items in a cube

• How to compile and build a cube

• How to display a cube in the Analyzer

• How to delete a cube

Important: The system uses SQL to access data while building the cube, and also when executing detail listings. If
your model refers to any class properties that are SQL reserved words, you must enable support for
delimited identifiers so that InterSystems IRIS Business Intelligence can escape the property names. For
a list of reserved words, see “Reserved Words” in the InterSystems SQL Reference. For information on
enabling support for delimited identifiers, see “Identifiers” in Using InterSystems SQL.

Also see “Accessing the Samples Shown in This Book,” in the first chapter.

5.1 Defining a Cube
To define a cube:

1. In the Architect, click New.

The system displays a dialog box where you can enter details for the new cube.

2. Click Cube.

3. Enter the following information at a minimum:

Defining Models for InterSystems IRIS Business Intelligence 49

• Cube Name — Logical name of the cube to use in queries.

• Class Name for the Cube — Complete package and class name for the cube class.

• Source Class — Complete package and class name of the base class for this cube. See the subsection “Possible
Source Classes.”

You can either type the class name or click Browse and select the class.

The other options are discussed later in this chapter.

Apart from the class name of the cube class, you can edit all cube options after creating the cube.

4. Click OK.

5. Optionally save the cube. To do so:

a. Click Save.

b. Click OK.

The system creates the class.

Another option is to use a utility to generate the cube class, as discussed in the following subsection.

Or manually create the class as described in the appendix “Reference Information for Cube Classes.”

5.1.1 Generating the Cube Class

The class %DeepSee.WizardUtils provides a method that you can use to generate a cube class. The method is as follows:

classmethod %GenerateCubeDefinition(pSourceClass As %Library.String(MAXLEN="")="",
 pCubeName As %Library.String(MAXLEN=""),
 pCubeClass As %Library.String(MAXLEN="")="",
 pAutoDelete As %Library.Integer = 0)

Where:

• pSourceClass is the full name of the source class for the cube.

• pCubeName is the logical name of the cube.

• pCubeClass is the full name of the cube class.

• pAutoDelete controls whether the cube class is deleted, if it already exists. If this argument is nonzero, the class is
deleted; otherwise it is not.

This method generates a cube definition as follows:

• It has one measure for each numeric property in the source class.

• It has one date dimension for each date property in the source class. This dimension contains one hierarchy with three
levels. The levels are year, year and month, and date.

• It has one data dimension for each other property in the source class. This dimension contains one hierarchy with one
level.

• It has one listing that uses all properties in the source class.

The method ignores transient and multidimensional properties.

50 Defining Models for InterSystems IRIS Business Intelligence

Defining Models for InterSystems Business Intelligence

5.1.2 Changing the Base Class for a Cube

On rare occasions, you might need to change the base class for a cube. To do so, you can do either of the following in the
Architect:

• Edit the Source Class option for the cube in the Details Area.

• Click the Change link next to Source Values at the top of the Class Viewer.

If you do so, the system displays a dialog box where you can choose a source class; this is the same dialog box as is
shown in “Possible Source Classes.”

After you do this, be sure to modify the source property or source expression appropriately for all parts of the model.

5.2 Possible Source Classes for a Cube
In the Architect, if you click Browse next to Source Class, the system displays a dialog box like the following:

Here you can select any class that can be used as the source of a cube in this namespace. There are three types of classes
you can use this way:

• Persistent classes — Classes that extend %Library.Persistent.

• Data connector classes — Classes that extend %DeepSee.DataConnector. A data connector maps the results of an
arbitrary SQL query into an object that can be used as the source of a cube. Typically, a data connector accesses data
in a non-InterSystems database, but you can also use it to specify an SQL query against an InterSystems database,
including an SQL query on a view.

Defining Models for InterSystems IRIS Business Intelligence 51

Possible Source Classes for a Cube

If you have a cube based on a data connector and listings in that cube that are also based on data connectors, all of
these data connectors must have the same property marked as idkey="true", because the underlying mechanism
uses the same ID values in all cases.

See “Defining and Using Data Connectors” in Implementing InterSystems Business Intelligence.

• Collection classes.

5.3 Other Cube Options
In the Architect, you can specify the following options for a cube:

• Cube name — Logical name of the cube to use in queries.

• Display name — Localizable name of the cube. If you do not specify this, the user interface instead displays the logical
name.

• Description — (Optional) Comments to add to the cube class definition. Each line is saved as a separate comment line
at the start of the class definition.

• Caption— (Optional) Specify the caption to display in the Analyzer and other utilities when working with this cube.

• Domain— (Optional) Specify the name of the domain to contain the localized strings of this cube. You might find it
convenient to use a single domain for all your cubes; in other cases, it might be appropriate to have a separate domain
for each cube. See the chapter “Performing Localization” in Implementing InterSystems Business Intelligence.

• Source class — Complete package and class name of the base class for this cube.

• Null replacement string — (Optional) Specifies the string (for example, None) to use as the member name if the source
data for a level is null.

This option can overridden for levels, by a level option of the same name.

• Default listing — (Optional) Logical name of the default listing for this cube. This listing must be defined in the cube.

• Resource — (Optional) Specify the resource that secures the cube.

For information on how this is used, see “Setting Up Security” in Implementing InterSystems Business Intelligence.

• Owner — (Optional) Specify the owner of the cube. Specify an InterSystems IRIS® username.

• Count measure name — (Optional) Specify an alternative name for the Count measure. The default is %COUNT. It is
useful to rename the Count measure if you create a compound cube; see the Advanced Modeling for InterSystems
Business Intelligence.

• Count measure caption — (Optional) Specify an alternative caption for the Count measure. The default is COUNT.

• Initial build order — (Optional) Specifies an optional ORDER BY clause for use when building the entire cube; does
not affect cube synchronization or incremental updates. Specify a comma-separated list of fields in the source table.
You can use the SQL keywords ASC and DESC. For example: Age DESC,Gender

For the implications of this option, see the section “Controlling the Fact Order” in Implementing InterSystems Business
Intelligence.

• Build restriction — (Optional) Specifies an optional WHERE clause to use when building or updating the cube; this
causes the cube to use a subset of the records. Specify an SQL comparison expression that uses fields in the source
table. For example: Gender='F'

This option has no effect if the cube is based on a data connector.

52 Defining Models for InterSystems IRIS Business Intelligence

Defining Models for InterSystems Business Intelligence

For an alternative option, see “Restricting the Records Used in the Cube” in the chapter “Using Advanced Features
of Cubes and Subject Areas” of Advanced Modeling for InterSystems Business Intelligence.

• Depends On — (Optional) Specifies the class or classes that must be runnable before this class can be compiled. This
option controls how the Architect sets the DependsOn compiler keyword.

By default, when a cube is created, the system automatically sets the DependsOn keyword equal to the name of the
source class for the cube. In some cases (for example with cube relationships), you might need to specify an additional
class.

If you need to specify this option, specify a comma-separated list of classes and specify the full package and class
name for each class in the list. Your list should include the source class for the cube.

For information on relationships between cubes, see the Advanced Modeling for InterSystems Business Intelligence.

• Allow SQL Restrict — (Optional) Selecting this check box enables you to use the %SQLRESTRICT dimension for a
cube. This option enables you to define an SQL restriction in the slicer of an MDX query by adding a SQL SELECT
statement or WHERE clause. Selecting this option also enables the SQL Restriction field in the Pivot Options menu of
the Analyzer. For more information on using the %SQLRESTRICT dimension, see the %FILTER Clause section of
the InterSystems MDX Reference.

5.4 Adding Items to a Cube
In the Architect, there are two general ways to add items to a cube:

• By using the Add Element link, as follows:

1. Click Add Element at the top of the Model Viewer.

The system displays a dialog box where you can choose the type of item to add.

2. Enter the item name.

3. Click the item type.

4. Click OK.

• By using a drag-and-drop action, as follows:

1. Drag a property name from the Class Viewer.

2. Drop the name onto a heading in the Model Viewer; the results depend upon where you drop the name. For
example, if you drag and drop a property name onto the Measures heading, the Architect creates a measure.

In both cases, the Architect adds the item and displays it in the Model Viewer. You can then make edits in the Details Area.

The following table indicates the parts of this book that discuss the different types of cube items. These sections also provide
specific information on where you can drag and drop property names.

Defining Models for InterSystems IRIS Business Intelligence 53

Adding Items to a Cube

See the chapter ...For information on ...

“Defining Dimensions, Hierarchies, and Levels”Data Dimension

Time Dimension

Age Dimension

Hierarchy

Level

“Defining Properties”Property

“Defining Measures”Measure

“Defining Listings”Listing

“Defining Listing Fields”Listing Field

“Defining Calculated Members”Calculated Member

“Defining Named Sets”Named Set

5.5 Names for Model Elements
When you define a model element, you specify a logical name for it (the Name field in the Architect). This name is used
in MDX queries and also is the default display name for that element. This section discusses requirements and suggestions
for these names.

The logical names must follow these rules:

• The first character must be either a letter (in the Latin-1 character set), a number, or the underscore character (_).

• The other characters must be either letters, numbers, spaces, or underscore characters.

Note that if you use spaces in a name, you must enclose the name within square brackets when writing MDX queries.

• The name must not be an MDX reserved keyword. Reserved keywords are not case-sensitive in MDX.

The logical names must also follow these additional rules:

• Within a given InterSystems IRIS namespace, each cube name must be unique.

• Within a given cube, each dimension name must be unique.

• Within a given dimension, each hierarchy name must be unique.

• Within a given hierarchy, each level name must be unique.

Note: Level names do not have to be unique within a cube. If you do have multiple levels with the same name
within a cube, however, you must specify the Field name in fact table option and ensure that each level has a
unique name in the fact table. See “Specifying Field Names in the Fact Table,” later in this book.

• Within a given level, each property name must be unique.

• Names of intrinsic properties are case-insensitive reserved keywords and cannot be used as names of your properties,
with one exception. The exception is that you can create a property named Name (in any case), if that property also
has the option Use as member names enabled.

For a list of intrinsic properties, see “Intrinsic Properties” in the InterSystems MDX Reference.

54 Defining Models for InterSystems IRIS Business Intelligence

Defining Models for InterSystems Business Intelligence

• Within a given cube, each measure name must be unique.

5.6 Other Common Options
In the Architect, when you define a model element, you can also specify the following options for it:

• Display name — (Optional) Localized name of this element for use in user interfaces. If you do not specify this, the
user interface instead displays the logical name.

• Description — (Optional) Description of this element.

• Disabled — (Optional) If you select this check box, the element is disabled (not seen by the compiler). When you
recompile the cube, this element is ignored.

• Additional Description — (Optional) Additional notes about this element, for display only within the Architect and
Studio.

5.7 Compiling and Building a Cube
In the Architect, as you develop your cubes, you will probably recompile and rebuild them multiple times. Briefly:

• To compile a cube, click Compile.

The system starts to compile the class and displays a dialog box that shows progress.

If you have made changes that you have not yet saved, the system saves them.

Then click Done.

• To build a cube, click Build. The system displays a dialog box. Click Build.

The system starts to build the cube and displays progress as it does so. Then click OK.

The cube is then available for use in the Analyzer.

For more information, see the chapter “Compiling and Building Cubes,” later in this book.

5.8 Opening a Cube in the Analyzer
As you develop your cubes, you should periodically use the Analyzer and examine the results. To open a cube in the Analyzer:

1. Click Analytics, click Analyzer, and then click Go.

Tip: If the Analyzer is already open, just click the Analyzer link at the top of the page.

2. If the left area is not currently displaying the cube you are validating, click Open and choose the cube.

For specific tips on validating levels, see “Validating Your Levels,” later in this book. For general information on using
the Analyzer, see Using the Analyzer.

Defining Models for InterSystems IRIS Business Intelligence 55

Other Common Options

5.9 Deleting a Cube
To delete a cube, do the following:

1. In the Terminal, execute the following command:

 do ##class(%DeepSee.Utils).%KillCube(cubeName)

Where cubeName is the logical name of the cube to remove. This command removes the cube cache and indices.

2. Also in the Terminal, delete the cube metadata, as follows:

 kill ^DeepSee.Cubes("cubes",cubeName)

Where cubeName is the logical name of the cube to remove.

3. Delete the cube class (and its generated classes and their data) in either of the following ways:

• In the Terminal, execute the following command:

 do $system.OBJ.Delete(classname)

Where classname is the full package and class name of the cube class. For example:

 do $system.OBJ.Delete("Mypackage.Myclass")

• In Studio, right-click the cube class and select Delete.

Or, if you decide not to delete the cube, recompile and rebuild it.

56 Defining Models for InterSystems IRIS Business Intelligence

Defining Models for InterSystems Business Intelligence

6
Compiling and Building Cubes

This chapter describes how to compile and build cubes. It includes the following topics:

• When to recompile and rebuild

• How to compile a cube

• How to build a cube in the Architect

• How to build a cube programmatically

• How to minimize cube size during development

• How to use parallel processing during a cube build

• Build errors

• Business Intelligence task log

Note: During the build process, users cannot execute queries. (However, if a query is currently running, you can build
the cube.)

See Implementing InterSystems Business Intelligence for the following related topics:

• Cube synchronization, which updates cubes incrementally (and permits queries to be executed at the same time). See
the chapter “Keeping the Cubes Current” in the above listed book.

• The InterSystems Business Intelligence Cube Manager utility, which you typically use for production systems. The
Cube Manager creates automated tasks that build or synchronize cubes according to your specifications. See the
chapter “Keeping the Cubes Current” in the above listed book.

• The cube version feature, which enables you to modify a cube definition, build it, and provide it to users, with only a
short disruption of running queries. See the appendix “Using Cube Versions” in the above listed book.

Also see “Accessing the Samples Shown in This Book,” in the first chapter.

6.1 When to Recompile and Rebuild
If you make any change to a cube class or a subject area class, you must recompile that class before those changes take
effect. For many changes to a cube, you must also rebuild the cube before those changes take effect.

The following table lists the required actions after changes:

Defining Models for InterSystems IRIS Business Intelligence 57

Required ActionsType of ChangeElement Type

Recompile and rebuildEdits to Name or Source classCube (root
element)

RecompileOther changes that apply to the cube but not to specific
elements in the cube

RecompileEdits to the following options of an existing measure (many
other elements have some or all of these common options).

• Disabled

• Hidden

• Display name

• Description

• Format string

Measure

Recompile and rebuildAll other changes, including adding and deleting measures

RecompileEdits to the following options of an existing dimension:

• Common options as listed in “Measure”

• Enable the All level for this dimension

• Caption for All member

• Display name for All member

Dimension (not a
computed
dimension)

Recompile and rebuildAll other changes, including adding and deleting dimensions

RecompileAll changesComputed
dimension

RecompileAll changesNLP dimension

RecompileEdits to the common options of an existing hierarchy (as listed
in “Measure”)

Hierarchy

Recompile and rebuildAll other changes, including adding and deleting hierarchies

RecompileEdits to the following options of an existing level:

• Common options as listed in “Measure”

• Null replacement string

• Sort option

Level

Recompile and rebuildAll other changes, including adding and deleting levels*

RecompileEdits to the following options of an existing property:

• Common options as listed in “Measure”

• Sort members by property value

Property

Recompile and rebuildAll other changes, including adding and deleting properties

RecompileAll changesListing

58 Defining Models for InterSystems IRIS Business Intelligence

Compiling and Building Cubes

Required ActionsType of ChangeElement Type

RecompileAll changesCalculated member

RecompileAll changesNamed set

RecompileAll changesSubject area

Recompile (after
recompiling all cubes
used in the compound
cube)

All changesCompound cube (a
kind of subject
area)

Recompile the quality
measure class

All changesQuality measure

Recompile the KPI or
plug-in class

All changesKPI or plug-in

*The current server locale determines the names of members of a time dimension. (See “Using the Locale to Control the
Names of Time Members,” later in this book.) If you change the locale, it is necessary to recompile and rebuild the cube.

6.2 Compiling a Cube
To compile a cube class in the Architect:

1. Click Compile.

The system starts to compile the class and displays a dialog box that shows progress.

If you have made changes that you have not yet saved, the system saves them before compiling the cube.

2. Click OK.

Or open the cube class in Studio and compile it in the same way that you compile other classes.

When you compile a cube class, the system automatically generates the fact table and all related classes if needed. If the
fact table already exists, the system regenerates it only if it is necessary to make a structural change.

If there are any cached results for this cube, the system purges them.

6.3 Building a Cube
The phrase building a cube refers to two tasks: adding data to the fact table and other tables and building the indices used
to access this data.

To build a cube in the Architect:

1. Click Build.

The system displays a dialog box.

2. Optionally specify a value for Maximum Number of Records to Build.

By default, the system iterates through all records in the source table and builds the same number of records to the fact
table. You can override this behavior when you build the cube. If you specify the Maximum Number of Records to Build

Defining Models for InterSystems IRIS Business Intelligence 59

Compiling a Cube

option, the system iterates through only that number of records. The result is a smaller fact table that the system builds
more quickly.

If the Maximum Number of Records to Build field is initialized with a number, that means that the cube class overrides
the default behavior. (For details, see the maxFacts attribute for <cube> in the appendix “Reference Information
for Cube Classes.”) In this case, you can either use the value provided by the cube class or enter a smaller value.

3. Click Build.

The system starts to build the cube and displays progress as it does so.

4. Click Done.

The cube is then available for use as described in Using the Analyzer.

6.4 Building the Cube Programmatically
To build the cube programmatically, execute the %BuildCube() class method of the %DeepSee.Utils class. This method
has the following signature:

classmethod %BuildCube(pCubeName As %String, pAsync As %Boolean = 1, pVerbose As
%Boolean = 1, pIndexOnly As %Boolean = 1, pMaxFacts As %Boolean = 0, pTracking As
%Boolean = 0, ByRef pBuildStatistics As %String = "") as %Status

Where:

• pCubeName is the logical name of the cube as given in its XData block; this is not case-sensitive.

• pAsync controls whether the system performs the build in multiple background processes. If this argument is true, the
system uses multiple processes and does not return until they are all complete. If this argument is false, the system
uses a single process and does not return until it is complete.

Note: If you have specified the cube option Initial build order, the system ignores the value of pAsync and uses a
single process to build the cube. These options are described in “Specifying Cube Options,” earlier in this
book.

• pVerbose controls whether the method writes status information. If this argument is 1, the system writes status updates
to the command line. (This argument does not affect whether the method writes build errors or other logging information.)

• pIndexOnly controls whether the method only updates the indices. If this argument is 1, the system only updates the
indices of the fact table.

• pMaxFacts specifies the maximum number of rows in the fact table. This determines the number of rows of the base
table that the system uses when building the cube.

If pMaxFacts is 0, the default, all rows of the base table are processed.

• pTracking is for internal use.

• pBuildStatistics returns an array of information about the cube build. This array has the following nodes:

60 Defining Models for InterSystems IRIS Business Intelligence

Compiling and Building Cubes

ValueNode

Elapsed build time, in seconds.pBuildStatistics(“elapsedTime”)

Number of build errors.pBuildStatistics(“errors”)

Number of facts that were built and indexed.pBuildStatistics(“factCount”)

Number of missing references.pBuildStatistics(“missingReferences”)

Time spent processing sourceExpressions to build the cube
elements.

pBuildStatistics(“expressionTime”)

Time spent building NLP indices.pBuildStatistics(“iKnowTime”)

This method returns a status. If errors occur during the cube build, the status code indicates the number of build errors.

For example:

 set status = ##class(%DeepSee.Utils).%BuildCube("patients")

This method writes output that indicates the following information:

• Number of processors used.

• Total elapsed time taken by the build process

• Total amount of time spent evaluating source expressions, summed across all processors.

For example:

Building cube [patients]
Existing cube deleted.
Fact table built: 1,000 fact(s) (2 core(s) used)
Fact indices built: 1,000 fact(s) (2 core(s) used)
Complete
Elapsed time: 1.791514s
Source expression time: 0.798949s

If Source expression time seems too high, you should re-examine your source expressions to be sure that they are
as efficient as possible; in particular, if the expressions use SQL queries, double-check that you have the appropriate indices
on the tables that the queries use.

6.5 Minimizing Cube Size During Development
While you are developing a cube, you typically recompile and rebuild it frequently. If you are using a large data set, you
might want to limit the number of facts in the fact table, in order to force the cube to be rebuilt more quickly. To do this,
do one of the following:

• If you build the cube in the Architect, specify a value for Maximum Number of Records to Build.

• Edit the cube class in Studio and add the maxFacts attribute to the <cube> element. See the appendix “Reference
Information for Cube Classes.”

If you do so, be sure to remove this attribute before deployment.

• Build the cube in the Terminal and specify the pMaxFacts argument. See “Building a Cube in the Terminal” earlier
in this chapter.

Defining Models for InterSystems IRIS Business Intelligence 61

Minimizing Cube Size During Development

6.6 Using Parallel Processing During a Cube Build
If all the following items are true, the system uses multiple cores to perform the build:

• You specify pAsync as 1 when you build the cube (see “Building the Cube Programmatically”).

• The source for a cube is a persistent class (rather than a data connector). Data connectors are described in Implementing
InterSystems Business Intelligence.

• The persistent class is bitmap-friendly.

• The Initial build order option of the cube has not been set. These options are described in “Specifying Cube Options,”
earlier in this book.

When you build a cube asynchronously, the system sets up %SYSTEM.WorkMgr agents to do the work, if it is possible to
use parallel processing.

Note: These agents are also used to execute queries.

On rare occasions, you might need to reset these agents. To do so, use the %Reset() method of %DeepSee.Utils. This
method also clears any pending tasks and clears the result cache for the current namespace, which would have an immediate
impact on any users. This method is intended for use only during development.

6.7 Build Errors
When you build a cube, pay attention to any error messages and to the number of facts that it builds and indexes. This
section discusses the following topics:

• Where you can see build errors

• Fact count, which is a useful indicator of build problems in all scenarios

• Possible causes of build errors

• How to recover from build errors

For more information on troubleshooting options, see the InterSystems Developer Community.

6.7.1 Seeing Build Errors

When you build a cube in the Architect or in the Terminal, the system indicates if there are any build errors but does not
show all of them. To see all the recorded build errors, do either of the following:

• Look for the log file install-dir/mgr/DeepSeeUpdate_cube_name_NAMESPACE.log, where cube_name is the name of
the cube, and NAMESPACE is the namespace in which this cube is defined.

The time stamp in this file uses $NOW to write the local date and time, ignoring daylight saving time.

• Use the %PrintBuildErrors() method of %DeepSee.Utils, as follows:

do ##class(%DeepSee.Utils).%PrintBuildErrors(cubename)

Where cubename is the logical name of the cube, in quotes.

This method displays information about all build errors. For example (with added line breaks):

62 Defining Models for InterSystems IRIS Business Intelligence

Compiling and Building Cubes

https://community.intersystems.com/node/418306

SAMPLES>do ##class(%DeepSee.Utils).%PrintBuildErrors("holefoods")
 1 Source ID: 100000
 Time: 05/09/2019 14:12:52
 ERROR #5002: ObjectScript error: <DIVIDE>%UpdateFacts+106^HoleFoods.Cube.Fact.1
 2 Source ID: 200000
 Time: 05/09/2019 14:12:41
 ERROR #5002: ObjectScript error: <DIVIDE>%UpdateFacts+106^HoleFoods.Cube.Fact.1
 3 Source ID: 300000
 Time: 05/09/2019 14:13:13
 ERROR #5002: ObjectScript error: <DIVIDE>%UpdateFacts+106^HoleFoods.Cube.Fact.1
 ...
 10 build error(s) for 'holefoods'

Important: In some cases, the system might not generate an error, so it is important to also check the fact count as
discussed in the next section.

6.7.2 Checking the Fact Count

When you build a cube, the system reports the number of facts that it builds and indexes.

Each fact is a record in the fact table. The fact table should have the same as the number of records in the base table, except
in the following cases:

• You limit the fact count as discussed earlier in this chapter.

• The cube class also defines the %OnProcessFact() callback, which you can use to exclude records from the cube.
See “Using Advanced Features of Cubes and Subject Areas” in Advanced Modeling for InterSystems Business Intel-
ligence.

Also, when the system builds the indices, the index count should equal the number of records in the fact table. For example,
the Architect should show the same number for Building facts and for Building indices. If there is a discrepancy between
these numbers, check the log files.

6.7.3 Possible Causes of Build Errors

If you see build errors or unexplained discrepancies in the fact count, do the following:

1. Examine any levels that use range expressions, and verify that these levels do not drop records. See “Validating Your
Levels,” later in this book.

An error of this kind affects the index count but not the fact count.

2. Try disabling selected dimensions or measures. Then recompile and rebuild to isolate the dimension or measure that
is causing the problem.

6.7.3.1 <STORE> Errors

In some cases, the build log might include errors like the following:

ERROR #5002: ObjectScript error: <STORE>%ConstructIndices+44^Cube.cube_name.Fact.1

This error can occur when a level has a very large number of members. By default, when the system builds the indices, it
uses local memory to store the indices in chunks and then write these to disk. If a level has a very large number of members,
it is possible to run out of local memory, which causes the <STORE> errors.

To avoid such errors, try either of the following:

• Build the cube with a single process. To do so, use %BuildCube() in the Terminal, and use 0 for its second argument.

Defining Models for InterSystems IRIS Business Intelligence 63

Build Errors

• In the <cube> element, specify bitmapChunkInMemory="false" (this is the default). When this cube is built
using background processes, the system will use process-private globals instead of local variables (and will not be
limited by local memory).

6.7.3.2 Missing Reference Errors

If your cubes have relationships to other cubes, the build log might include errors like the following:

ERROR #5001: Missing relationship reference in RelatedCubes/Patients: source ID 1 missing reference to
 RxHomeCity 4

This error can mean that you have built the cubes in the wrong order. See “Building Cubes That Have Relationships” in
Advanced Modeling for InterSystems Business Intelligence. Note that if you use the Cube Manager, the Cube Manager
determines an appropriate build order.

The missing relationship reference error can also occur when new source data becomes available during the
cube build process — that is, after only some of the cubes have been built. For example, consider the sample cubes
RelatedCubes/Cities and RelatedCubes/Patients (which are available in the SAMPLES namespace). Suppose that you build
the cube RelatedCubes/Cities, and after that, the source table for RelatedCubes/Patients receives a record that uses a new
city. When you build the cube RelatedCubes/Patients, there will be a missing relationship reference error.

If you are certain that you have built the cubes in the correct order, see the next section for information on recovering from
the errors.

6.7.4 Recovering from Build Errors

The system provides a way to rebuild only the records that previously generated build errors, rather than rebuilding the
entire cube. To do this:

1. Correct the issues that cause these errors.

2. Use the %FixBuildErrors() methods of %DeepSee.Utils, as follows:

set sc=##class(%DeepSee.Utils).%FixBuildErrors(cubename)

Where cubename is the logical name of the cube, in quotes. This method accepts a second argument, which specifies
whether to display progress messages; for this argument, the default is true.

For example:

Fact '100' corrected
Fact '500' corrected
Fact '700' corrected

3 fact(s) corrected for 'patients'
0 error(s) remaining for 'patients'

Or rebuild the entire cube.

6.8 Business Intelligence Task Log
The system creates an additional log file (apart from the previously described build logs). After it builds the cube or tries
to build the cube, the system also writes the DeepSeeTasks_NAMESPACE.log file to the directory install-dir/mgr. You can
use the %SetLoggingOptions method of the %DeepSee.WorkMgr class to turn on logging for background agents that the
system used during the build process. To do so, make a call like the following:

64 Defining Models for InterSystems IRIS Business Intelligence

Compiling and Building Cubes

do ##class(%DeepSee.WorkMgr).%SetLoggingOptions(,,1)

To see this file from the Management Portal, select Analytics > Admin > Logs.

Tip: This file also contains information about runtime errors of various kinds such as listing errors and KPI errors.

The time stamps in this files use the local date and time (taking daylight saving time into account).

Defining Models for InterSystems IRIS Business Intelligence 65

Business Intelligence Task Log

7
Defining Dimensions, Hierarchies, and
Levels

This chapter describes how to define dimensions and hierarchies, and describes the basics of defining levels. It discusses
the following topics:

• Overview

• How to create a new dimension, hierarchy, and level

• How to create a new hierarchy and level

• How to create a new level

• How to specify the source values for a dimension or level

• Details for source expressions

• How to change the order of the dimensions in a cube

• How to change the order of the levels in a hierarchy

• How to validate a level

The system provides many options that affect levels. The next chapter discusses levels in more details.

Also see “Accessing the Samples Shown in This Book,” in the first chapter.

7.1 Overview
In the Architect, you can create model elements in either of two ways:

• By drag and drop. If you can drag a property from the Class Viewer to an appropriate target in the Model Viewer, the
Architect creates a model element; as described in the table after this list. Then you can edit the definition in the Details
Area, if needed.

This technique makes it easy to define elements directly based on source properties. It is also useful as a starting point
when you need to create elements based on source expressions.

• By using the Add Element link.

For reference, the following table describes the result of various drag-and-drop actions:

Defining Models for InterSystems IRIS Business Intelligence 67

The Architect creates this...If you drop the property
XYZ here...

A measure named XYZ, XYZ1 or so on, as needed for uniqueness. The
measure is based on the source property XYZ and is aggregated with SUM.
See the chapter “Defining Measures.”

Measures heading or any
existing measure

A new data dimension named XYZ, XYZ1, or so on, as needed for uniqueness.
This dimension contains the hierarchy H1, which contains the level XYZ.The
level is based on the source property XYZ.

Dimensions heading

A new hierarchy (H2, for example), which contains the level XYZ. The level
is based on the source property XYZ.

Existing dimension

A new level named XYZ, XYZ1, or so on, as needed for uniqueness within
this hierarchy. The level is based on the source property XYZ.

Existing hierarchy

A new level property named XYZ, XYZ1, or so on, as needed for uniqueness
within this level.The level property is based on the source property XYZ. See
the chapter “Defining Properties.”

Existing level

7.2 Creating a New Dimension, Hierarchy, and Level
To define a usable level, you must define the following, at a minimum:

• A dimension

• A hierarchy in that dimension

• A level in that hierarchy

In the Architect, you can use drag-and-drop actions as described in “Overview.” Or, you can do the following:

1. Add a dimension:

a. Click Add Element.

The system displays a dialog box.

b. For Enter New Item Name, type a dimension name.

See “Names for Model Elements,” earlier in this book.

c. Click one of the following choices, depending on the type of dimension you want to create:

• Data Dimension — Click this for most dimensions.

• Time Dimension — Click this to create a dimension that groups data by a date or time value. For details, see
“Defining a Time Level,” later in this chapter.

• Age Dimension — Click this to create a dimension that groups data by age, based on a date value. Note that
age dimensions are not generally recommended. For details, see “Defining an Age Level,” later in this
chapter.

For information on the iKnow Dimension option, see “Using Text Analytics in Cubes” in Advanced Modeling for
InterSystems Business Intelligence.

d. Click OK.

68 Defining Models for InterSystems IRIS Business Intelligence

Defining Dimensions, Hierarchies, and Levels

The system creates the dimension and displays it in the Model Viewer. For example:

Note that the system has also created a hierarchy within this dimension and a level within that hierarchy.

2. Modify the automatically created level to use a more suitable name:

a. Click the level in the Model Viewer.

The system displays details in the Details Area.

b. Make the following changes:

• Name — Change this to the level name you want.

See “Names for Model Elements,” earlier in this book.

• Display Name — Specifies the localized display name for this level. Either clear this (so that the system uses
the value given for Name instead) or specify a display name.

See also “Other Common Options,” earlier in this book.

3. Specify the source values for this level, as described in the section “Defining the Source Values for a Dimension or
Level.”

4. Click Save.

5. When prompted, click OK.

Note: By default, the Analyzer does not display hierarchy names shown unless a dimension contains multiple hierarchies.
Alternatively, a dimension can be defined so that its hierarchy names are always shown or never shown. See the
reference for showHierarchies in “<dimension>” in the appendix “Reference Information for Cube Classes.”

7.3 Adding a Hierarchy and Level
In the Architect, to add a hierarchy and a level to an existing dimension, you can use drag-and-drop actions as described
in “Overview.” Or, you can do the following:

1. Click the dimension in the Model Viewer.

2. Click Add Element.

The system displays a dialog box.

3. For Enter New Item Name, type a hierarchy name.

See “Names for Model Elements,” earlier in this book.

4. Click Hierarchy.

5. Click OK.

The system creates the hierarchy and displays it in the Model Viewer. It also creates one level within that hierarchy.

6. Optionally select the hierarchy in the Model Viewer and edit the details in the Details Area.

7. Select the level in the Model Viewer and edit the details in the Details Area.

Defining Models for InterSystems IRIS Business Intelligence 69

Adding a Hierarchy and Level

7.4 Adding a Level
In the Architect, to add a level to an existing hierarchy, you can use drag-and-drop actions as described in “Overview.”
Or, you can do the following:

1. Click either the hierarchy or an existing level within that hierarchy, in the Model Viewer.

This action indicates where the level is to be added:

• If you click the hierarchy, the new level will be added after all the other levels in this hierarchy.

• If you click a level, the new level will be added immediately before that level.

2. Click Add Element.

The system displays a dialog box.

3. For Enter New Item Name, type a level name.

4. Click Level.

5. Click OK.

The system creates the level and displays it in the Model Viewer.

6. Optionally select the level in the Model Viewer and edit the details shown in the Details Area.

Alternatively, drag a class property from the Class Viewer and drop it onto a hierarchy. The system adds a level based on
this property; this level is added after any other levels in this hierarchy.

Important: The order of the levels in a hierarchy determines the structure of the hierarchy, as noted in “Defining
Hierarchies Appropriately,” earlier in this book. If you want to reorder the levels after defining them, see
“Changing the Order of Levels in a Hierarchy.”

7.5 Defining the Source Values for a Dimension or Level
Each level must have a specified source value. You can specify the source values within the dimension or within the level.
Typically:

• For data dimensions, you specify the source values within the level.

• For time and age dimensions, you specify the source values within the dimension.

• For NLP dimensions, see “Using Text Analytics in Cubes” in Advanced Modeling for InterSystems Business Intelligence.
NLP dimensions do not use the mechanism described here.

To specify a source value in the Architect:

1. Select the dimension or the level in the Model Viewer.

2. In the Details Area, specify a value for one of the following:

• Property — Specify the property name relative to the base class used by the cube; you can use dot syntax to refer
to properties of properties. For example:

Age

70 Defining Models for InterSystems IRIS Business Intelligence

Defining Dimensions, Hierarchies, and Levels

For another example:

HomeCity.PostalCode

The property must have a projection to SQL.

Also, you can refer to an object-valued property. When you do so, the numeric ID of the object is used as the
source value.

You cannot directly use a stream property (to use such a property, create an expression that returns the contents
of the stream or a selected part of the contents).

• Expression — Specify an ObjectScript expression on which the level is based. For example:

##class(Cubes.StudyPatients).GetFavoriteColor(%source.PatientID)

This expression is evaluated when the cube is built. For details, see the next section.

You can enter values into the Property and Expression fields in any of the following ways:

• By dragging a class property from the Class Viewer and dropping it into the field.

The property that you drag and drop replaces any existing contents of the field.

•
By clicking the Search button .

– For Property, the system then displays a dialog box that shows the properties of this class. Click a property and
then click OK.

– For Expression, the system then displays a dialog box with a larger field you can type into. Type an expression
and then click OK.

• By directly editing the value in the field.

The information on this section and in the next section also applies to level properties and to measures, which also require
source values of some form.

7.5.1 Specifying a Source Value when Using a Data Connector

If the cube is based on a data connector, note the following restrictions:

• Specify the Property option but not the Expression option.

• You cannot use dot syntax, because none of the properties of the data connector are object references.

For information on creating data connectors, see “Defining Data Connectors” in Implementing InterSystems Business
Intelligence.

7.6 Details for Source Expressions
As noted in the previous section, you can specify either a source value or a source expression to use as the basis of a
dimension or level (or property or measure). You can create source expressions as follows:

• You can refer to a property in the source class. To do so, use the syntax %source.PropertyName, where PropertyName
is the name of the property. When it builds the cube, the system parses this expression and looks up the SqlFieldName
of the given property.

Defining Models for InterSystems IRIS Business Intelligence 71

Details for Source Expressions

• You can use dot syntax to refer to properties of properties.

• You can refer to an object-valued property. When you do so, the numeric ID of the object is used as the source value.

• You can use the variable %cube to refer to the cube class; this is useful if you have defined utility methods in the cube
class that you want to use within source expressions.

• You can refer to the value of an <expression> element. To do so, use the following syntax:

%expression.expressionName

For information on expressions, see the Advanced Modeling for InterSystems Business Intelligence

• You can use the utility methods ToUpper(), ToLower(), and Log() as in the following example:

..ToUpper(%source.HomeCity.Name)

The system can use these methods in this way because the fact table class inherits from %DeepSee.CubeFunctionSet,
which defines them. For details on these methods, see the class reference for that class.

• You can use the %Lookup() method of %DeepSee.CubeDefinition to invoke a term list. See the subsection “Using a
Term List.”

• You can use the %Rule() method of %DeepSee.CubeDefinition to invoke a production business rule. See the subsection
“Using a Production Business Rule.”

Note: You cannot use a source expression if the cube is based on a data connector.

Also, if a level is based on a source expression (rather than a source property) and if the members have purely
numeric names, InterSystems recommends that you also modify the cube in Studio and add
castAsNumeric="true" to that level definition. This option causes the system to treat the members as numbers
when searching for a replacement for a member that does not exist, when a query that uses an MDX range
expression (a specific kind of set expression).

7.6.1 Using a Term List

Term lists provide a way to customize an InterSystems IRIS Business Intelligence model without programming. A term
list is a simple (but extendable) list of key and value pairs. (See “Defining Term Lists” in the Advanced Modeling for
InterSystems Business Intelligence.)

You can invoke a term list within a source expression. To do so, use the %Lookup() method of %DeepSee.CubeDefinition.
This method has the following signature:

%Lookup(term_list_name, lookup_value,default,alternative_field)

Where the arguments are strings, and their values are as follows:

• term_list_name evaluates to the name of a term list.

• lookup_value evaluates to the string to look up in the term list.

• default, which is optional, evaluates to the value to return if lookup_value is not found in the term list.

• alternative_field, which is optional, is the name of the field to return. The default is "value".

This argument is not case-sensitive.

This function examines the given term list, finds the term whose "key" field equals the string given by lookup_value and
then returns the value contained in the field identified by alternative_field.

72 Defining Models for InterSystems IRIS Business Intelligence

Defining Dimensions, Hierarchies, and Levels

All term lists have at least two fields: "key" and "value". You can add additional fields. For information, see “Defining
Term Lists” in the Advanced Modeling for InterSystems Business Intelligence.

Note: Because your cube definition class inherits from %DeepSee.CubeDefinition, which defines the %Lookup() method,
you can use a source expression like the following:

%cube.%Lookup(term_list_name,lookup_value,default,alternative_field)

For example, suppose that you have the following term list, called LocalTeams:

You could add a property to the City level in HoleFoods as follows:

<property name="Team" sourceExpression='%cube.%Lookup("LocalTeams",%source.Outlet.City,"No Team")'/>

7.6.2 Using a Production Business Rule

Business rules allow nontechnical users to change the behavior of business processes in productions. You can also use them
in source expressions in cubes. (For details on production business rules, see Developing Business Rules.)

To access a production business rule within a source expression, use the %Rule() method of %DeepSee.CubeDefinition.
This method has the following signature:

%Rule(rule_name)

Where rule_name is the name of a production business rule.

When this function is evaluated (for a given source record) during a cube build, the system passes to it an instance of the
cube source class as the context object. The system uses this object, evaluates the rule, and then accesses the value returned
by the rule.

Note: Because your cube definition class inherits from %DeepSee.CubeDefinition, which defines the %Rule() method,
you can use a source expression like the following:

%cube.%Rule(rule_name)

7.7 Changing the Order of Dimensions in the Cube
In the Architect, to change the order of dimensions in the cube:

1. Click Reorder.

The system displays a dialog box.

2. Click Dimensions.

3. Optionally click Alphabetize to alphabetize them.

Defining Models for InterSystems IRIS Business Intelligence 73

Changing the Order of Dimensions in the Cube

This affects the list immediately. You can then reorganize the list further if needed. Also, when you add dimensions,
they are not automatically alphabetized.

4. Click the name of a dimension and then click the up or down arrows as needed.

5. Repeat as needed for other dimensions.

6. Click OK.

The order of the dimensions in the cube affects how they are displayed in the Analyzer. It does not have any other effect.
Some customers choose to alphabetize their dimensions for convenience; others put more-often used dimensions at the top
of the list.

7.8 Changing the Order of Levels in a Hierarchy
In the Architect, to change the order of levels in a hierarchy:

• To move a level up in the hierarchy, click the up arrow in the row for that level.

• To move a level down in the hierarchy, click the down arrow in the row for that level.

Important: The order of the levels in a hierarchy determines the structure of the hierarchy, as noted in “Defining
Hierarchies Appropriately,” earlier in this book.

7.9 Validating Your Levels
After defining levels, you should build the cube and validate that the levels behave appropriately. For each level, use the
Analyzer and create a new pivot table that displays the level as rows.

1. Click Analytics, click Analyzer, and then click Go.

Tip: If the Analyzer is already open, just click the Analyzer link at the top of the page.

2. If the left area is not currently displaying the cube you are validating, click Open and choose the cube.

3. In the left area, find the dimension that contains the level, and expand that dimension.

4. Drag and drop the level to the Rows box.

In this pivot table, look for the following items:

• Make sure that the level has the correct number of members.

If the level has duplicate members with the same name, see the section “Duplicate Member Names,” earlier in this
book.

If a member is missing, use the Management Portal to find the source records that should have been associated with
this member. Make sure that the source property is in the expected form needed by your source expression.

• Make sure that the member names are in the correct form, as needed by the business users.

• Make sure that the null member, if any, has a suitable name, as needed by the business users.

• Make sure that the members are sorted in the desired order.

74 Defining Models for InterSystems IRIS Business Intelligence

Defining Dimensions, Hierarchies, and Levels

If not, see the preceding section.

• If the level uses ranges, do the following to validate that the level is not dropping any records because of errors with
range ends:

1.
Click the Pivot Options button .

2. In the Row Options area, click Show Totals and then click OK.

The total line shows the total of the values above it. This total should equal the total number of records in the cube
(unless you do not want it to do so). If it does not, examine the ranges carefully to find any gaps. For example, consider
the following pivot table (for a cube that contains 10000 patients):

This version of the Age Group level uses the following ranges:

Patients who are 29, 30, 59, or 60 are not included in any member in this incorrectly defined level.

Tip: In the Analyzer, you can access the generated MDX query for a pivot table (to do so, click the Query Text button

). Then you can save that query to a text file and rerun the query later programmatically. This technique
enables you to revalidate the model again later, if the data has changed. Sometimes new data contains values that
you did not consider when creating the model.

For information on running queries programmatically, see the Implementing InterSystems Business Intelligence.

Another useful tool is the %AnalyzeMissing() method of %DeepSee.Utils. This method analyzes every non-computed
level, measure, and relationship within the given cube and return the number of facts that have no value for each. For
example:

Do ##class(%DeepSee.Utils).%AnalyzeMissing("patients")

 Level #Missing %Missing
Lvl [AgeD].[H1].[Age] 0 0.00%
Lvl [AgeD].[H1].[Age Bucket] 0 0.00%
Lvl [AgeD].[H1].[Age Group] 0 0.00%
Lvl [AllerD].[H1].[Allergies] 388 38.80%
Lvl [AllerSevD].[H1].[Allergy Severities] 388 38.80%
Lvl [BirthD].[H1].[Date] 0 0.00%
Lvl [BirthD].[H1].[Decade] 0 0.00%
Lvl [BirthD].[H1].[Period] 0 0.00%
Lvl [BirthD].[H1].[Quarter Year] 0 0.00%
Lvl [BirthD].[H1].[Year] 0 0.00%
Lvl [BirthQD].[H1].[Month] 0 0.00%
Lvl [BirthQD].[H1].[Quarter] 0 0.00%
Lvl [BirthTD].[H1].[Birth Time] 0 0.00%
Lvl [ColorD].[H1].[Favorite Color] 221 22.10%
Lvl [DiagD].[H1].[Diagnoses] 831 83.10%
Lvl [DocD].[H1].[Doctor] 159 15.90%
Lvl [DocD].[H1].[Doctor Group] 271 27.10%
Lvl [GenD].[H1].[Gender] 0 0.00%

Defining Models for InterSystems IRIS Business Intelligence 75

Validating Your Levels

Lvl [HomeD].[H1].[City] 0 0.00%
Lvl [HomeD].[H1].[ZIP] 0 0.00%
Msr [Measures].[Age] 0 0.00%
Msr [Measures].[Allergy Count] 388 38.80%
Msr [Measures].[Avg Age] 0 0.00%
Msr [Measures].[Avg Allergy Count] 388 38.80%
Msr [Measures].[Avg Enc Count] 0 0.00%
Msr [Measures].[Avg Test Score] 200 20.00%
Msr [Measures].[Encounter Count] 0 0.00%
Msr [Measures].[Test Score] 200 20.00%
Lvl [PatGrpD].[H1].[Patient Group] 0 0.00%
Lvl [PatGrpD].[H1].[Tested] 0 0.00%
Lvl [ProfD].[H1].[Industry] 564 56.40%
Lvl [ProfD].[H1].[Profession] 564 56.40%

 TOTAL FACTS 1,000

76 Defining Models for InterSystems IRIS Business Intelligence

Defining Dimensions, Hierarchies, and Levels

8
Details of Defining Levels

This chapter provides details on defining levels. It discusses the following topics:

• How to ensure that member keys are unique

• How to override the default null replacement string for level

• How to define a level based on a list

• How to define a time level

• How to define a custom time level

• How to define an age level

• How to specify a range expression for a level

• How to configure a level to use the DISPLAYLIST values of a class property

• How to use property values as member names

• How to specify tooltips for members

• How to control the sort order for the members

• How to make member names localizable in the same way as other cube elements

• How to define dependencies between levels in different hierarchies

• How to specify field names in the fact table

See the previous chapter for basic information, including information on specifying the source values.

Also see “Accessing the Samples Shown in This Book,” in the first chapter.

8.1 Ensuring Uniqueness of Member Keys
If a level has a parent level, it is possible for member keys not to be unique. For details, see “Defining Member Keys and
Names Appropriately,” earlier in this book. InterSystems recommends that you ensure that member keys are unique for
each level, so that you can easily access any member directly. Also, member keys must be unique within the first 113
characters.

If it is possible, considering your source values and your hierarchies, to have duplicate member keys, do the following:

Defining Models for InterSystems IRIS Business Intelligence 77

• Instead of using just the source value alone, concatenate the source value with some other value that is unique to the
parent member. For example, suppose that you want to base the level on a source property called CityName, but you
could have multiple cities with the same name in different countries. Instead of specifying Property, specify Expression.
Use an expression like the following:

%source.CountryName_%source.CityName

• If you do not want to use these concatenated strings as member names, use a unique value (such as the ID) as the source
value. Then add a property to the level and use the property values as the member names. See “Using Property Values
as the Member Names,” later in this chapter.

8.2 Specifying the Null Replacement String for a Level
For a level, the Null replacement string option specifies a string to use in place of any null values. This string takes precedence
over the null replacement string that you specify for the cube.

8.3 Defining a List-Based Level
You can define a level that is based on a list, an array, or an InterSystems IRIS® class relationship. Each distinct list item
is indexed as a separate member of the level. (For such levels, be sure to read “Using List-Based Levels,” earlier in this
book.)

The system can directly use a source value that has the type %List, that is in the format returned by the $List function, or
that is a character-delimited list. For other formats, you must convert the source value and then use it.

Note: A list-based level must be contained in its own hierarchy; there cannot be another level in this hierarchy.

8.3.1 Defining a Level When the Source Value Is in a Standard Format

If the source value is available in $List format, in %List format, or in a character-delimited list, define the level as described
earlier, with the following additional steps:

1. For Source value list type, select one of the following:

• $List structure — Use this if the source value is in the format returned by the $List function or has the type %List.

• Comma delimited — Use this if the source value is a comma-separated list.

• Other delimited — Use this if the source value is a list where the delimiter is some other character.

2. If you selected Other delimited, then for List delimiter, specify the character used to delimit the list.

8.3.2 Defining a Level When the Source Value Is in Another Format

If the source value is not available in $List format or as a character-delimited list, use the following approach:

1. Create a utility method that converts it into one of the required formats. For example:

78 Defining Models for InterSystems IRIS Business Intelligence

Details of Defining Levels

ClassMethod GetAllergies(ID As %Numeric) As %List
{
 Set allergies=##class(BI.Study.Patient).%OpenId(ID,0).Allergies
 If (allergies.Count()=0) {Quit $LISTFROMSTRING("No Data Available")}
 Set list=""
 For i=1:1:allergies.Count() {
 Set $LI(list,i)=allergies.GetAt(i).Allergen.Description
 }
 Quit list
}

Notice the following points:

• The %List class is equivalent to the $List format.

• The second argument to %OpenId() specifies concurrency locking. If this argument is zero, you are opening the
object without checking for other users of the object, for speed. Because you are only reading a value from the
object, this technique is safe even in a multi-user environment.

• If there are no allergies, this method returns the string No Data Available, which becomes a member of the
level, in exactly the same way as other returned strings.

Tip: You can place this utility method within the cube class. Also, you can easily test the method within the Terminal.

2. Within the Architect, when defining the level, do the following:

a. For Expression, invoke the utility method and pass %source.%ID to it as an argument. For example:

##class(Cubes.StudyPatients).GetAllergies(%source.%ID)

b. Select List.

c. If the source value is a character-separated list, then for List delimiter, specify the character used to delimit the list.

If this is null, the system assumes that the source value is in $List format.

8.3.3 Examples

In the SAMPLES namespace, the Patients cube provides the following examples of list-based levels:

• The Allergies level is based on a source expression that uses a utility method to return a list.

• The Allergy Severities level is based on a source expression that uses a utility method to return a list.

• The Diagnoses level uses a property that is in $List format.

8.4 Defining a Time Level
A time level groups the data according to a date/time value in the data (such as a birth date, order date, response date, and
so on). This section describes how to create this type of level. It discusses the following topics:

• Introduction

• How to define a time level

• Time levels and hierarchies

• Handling a calendar that has a date offset

• Where to find examples

Defining Models for InterSystems IRIS Business Intelligence 79

Defining a Time Level

8.4.1 Introduction

A time level is a level defined within a time dimension. For an example of a set of time levels, see the BirthD dimension
in the Patients cube. The BirthD dimension is based on the BirthDate property in the source class. This property contains
the patient’s birth date.

Each level in this dimension uses an option called Time function to extract a specific part of the birth date. For example,
the Year level extracts the year part of the date.

As a result:

• The Decade level has members such as 2010s, 2000s, 1990s, and so on.

• The Year level has members such as 2009, 2008, and so on.

• The Quarter Year level has members such as Q1 2009, Q2 2009, and so on.

• The Period level has members such as 2009–01, 2009–02, and so on.

• The Date level has members such as Jan 1 2009, Jan 2 2009, and so on.

• The order of levels within the hierarchy H1 establishes that the Decade level is the parent of the Year level. For
example, the member 1990s is the parent of the members 1990, 1991, 1992, and so on.

Similarly, the Year level is the parent of the Quarter Year level. For example, the member 2009 is the parent of
the members Q1 2009, Q2 2009, and so on.

With time levels, you can use a special member called NOW, which uses the current date (runtime) and accesses the
appropriate member of the level.

Note: By default, the system uses the Gregorian calendar. You can instead use a Hijri calendar. In that case, the member
names are different from those listed here (and the records are assigned to members as suitable for that calendar).

8.4.1.1 Using the Locale to Control the Names of Time Members

When you build a cube, the system can use the current server locale to determine the names of members of any time
dimensions. It is useful to check the relevant option, as follows:

1. In the Management Portal, select System Administration > Configuration > National Language Settings > Locale Defini-

tions.

This page displays the current server locale.

2. Examine the setting of the option Use locale date/time/number formats and change it if needed.

If this option is Yes, then the system considers the locale shown on this page when it builds or synchronizes the members
of time dimensions.

If you later change the locale, it is necessary to recompile and rebuild the cube.

Also, see “Locale Definitions” in the System Administration Guide.

8.4.2 Defining a Time Level

To define a time level:

1. Define a dimension as described earlier, with two changes:

• For Dimension Type, choose time.

• For Calendar, choose gregorian (the default) , hijri (tabular), hijri (observed) or partial.

80 Defining Models for InterSystems IRIS Business Intelligence

Details of Defining Levels

This option specifies the calendar to use when assigning source records into members of levels of this dimension.
For details on the partial option, see the following subsection.

• Specify either Property or Expression.

If you specify Property, the property should be one of the following types: %Date, %Time, %TimeStamp, or a
custom data type that meets the requirements given in the second subsection.

If you specify Expression, the source expression must return data in $Horolog format. The value can be null but
cannot equal 0 (the value 0 causes a validation error when the cube is built).

When you define the dimension, the system creates the dimension and a hierarchy.

2. Define a level within this hierarchy.

In this case, you will see different options than you saw for a data dimension.

3. For Extract value with function, choose a function that extracts the desired part of the date/time value. Use one of the
values in the following table. Note that for a Hijri calendar, not all functions are supported.

Available in Hijri
Time Dimensions?

How Value Is DisplayedHow Value Is StoredTime function

Yes01:2460958,5083MinuteNumber

Yes1am60958,5083HourNumber

YesNov 24 200760958DayMonthYear

Yes2424DayNumber

No2007W472007W47WeekYear

No4747WeekNumber

YesNovember11MonthNumber

YesNovember 2007200711MonthYear

YesQ44QuarterNumber

YesQ4 200720074QuarterYear

Yes20072007Year

Yes1950s1950Decade

NoSunday1DayOfWeek

4. For Time Format, optionally specify a format string that describes how the dates should be displayed. For details, see
the first subsection.

5. If you are using the Hijri (observed) calendar, use the class %Calendar.Hijri to add lunar observations.

For details, see the class reference for %Calendar.Hijri.

For the WeekYear and WeekNumber functions, the system follows the ISO 8601 standard, which assigns a week number
(from 1 to 53) for every date within a year. Because 7 is not a factor of 365 or 366, some years have 53 weeks. The first
week of a year is defined as the week that contains the first Thursday of the year. That means for some years, January 1 is
in the last week of the prior year. Similarly, December 31 may be in the first week of the next year.

Defining Models for InterSystems IRIS Business Intelligence 81

Defining a Time Level

http://en.wikipedia.org/wiki/ISO_8601

8.4.2.1 Partial Dates

Choosing a Calendar type of partial allows for uncertainty of dates in your data. Time levels with a Calendar type of partial

have special versions of the time functions mentioned in the previous section, like QuarterYear and MonthYearPartial. These
time functions share the same names as the time functions for other Calendar types, but are capable of accepting partial
date values, like 2017 or 2017-01, as opposed to the time functions of other Calendar types, which require complete dates
like 2018-05-02. The partial date time functions then convert these partial dates into complete keys, like 2017-00-00
or 2017-01-00. Any section of a date with missing information is represented by 00. For example, the partial date
2017-01 has a year and a month, but lacks a day, so it is converted to the form 2017-01-00 by the partial date time
functions. The partial date time functions also accept partial dates forms such as 2017-00-00 and 2017-01-00.

If you use a partial date-based calendar as the basis of a time level, keys that are encountered in the Analyzer will have any
00 values translated to the text Unknown. This translation is localized and follows formatting rules — for example, a key
of 2018-07-00 with a time format of ddd mm yyyy would produce the label Unk 07 2018. Additionally, each level
with unknown dates will have additional members to hold these unknown dates. For example, a level named QuarterYearPar-
tial that uses the QuarterYear time function might have members like Q0 2009 or Q0 2012 to represent dates in which
the quarter is unknown due to partial dates. The QuarterYearPartial level could also contain members for dates that are
known, such as Q1 2009 and Q4 2010.

Currently, the use of NOW and an offset is supported for partial date time levels. If there are any unknown portions to the
current key, then the NOW offset cannot be applied and the original key is returned.

The use of MDX query functions, like LAG and LEAD, are not currently supported for time levels based on the partial

Calendar type. Similarly, date offsets through the modification of the timeOffset and timeFormat properties in the
<level> element of the cube class are also not supported.

8.4.2.2 Specifying a Time Format

For a level within a time-type dimension, the Time Format specifies the format of the display names of the members of the
level. The system applies this formatting at query execution time. There is no effect on how values are stored or indexed.

For the Time Format attribute, you specify a string that consists of the following case-sensitive date pieces and other pieces:

Replaced ByPiece

Year numbery

Quarter numberq

Full month namemmmm

Short month namemmm

Month number with leading 0 if neededmm

Month number without a leading 0m

Full day namedddd

Short day nameddd

Day number of the month with leading 0 if neededdd

Day number of the month without a leading 0d

x\x

Unchangedperiod (.), slash (/), hyphen (-). space

Ignoredother characters

82 Defining Models for InterSystems IRIS Business Intelligence

Details of Defining Levels

All names are based on the current server locale. See “Using the Locale to Control the Names of Time Members,” earlier
in this chapter.

Important: For time levels, member display names must be unique. Also, a member can have exactly one display
name. These rules mean that not all the preceding date pieces are appropriate for all time levels.

The following table lists the date pieces that are suitable for different time levels.

Other ExamplesDefault
timeFormat

Suitable
Date Pieces

Kind of Level
(Setting for
Extract value with

function)

\F\Y y (FY 2004)
\F\Y (FY2004)

y (2004)yYear

\Qq \F\Y y (Q1 FY 2004)
\Qq \F\yy (Q1 FY2004)

\Qq y

(Q3 2004)

y, qQuarterYear

\Qq (Q3)qQuarterNumber

mmm y (Feb 2004)
y-mm (2004–02)

mm/y (02/2004)

m/y (2/2004)

\F\Yy-mm (FY2004-02)

mmmm y (February
2004)

y, mmmm, mmm,
mm, m

MonthYear

mmm (Feb)

mm (02)

m (2)

mmmm (February)mmmm, mmm,
mm, m

MonthNumber

mmmm dd y (February 03 2010)

y-mm-dd (2010-02-03)

mm/dd/y (02/03/2010)

m/d/y (2/3/2010)

dddd, mmmm dd y (Wednesday, February 03
2010)

ddd, mmm dd y (Wed, Feb 03 2010)

mmm dd y

(Feb 1 2004)

y, mmmm, mmm,
mm, m, dddd,
ddd, dd, d

DayMonthYear

dd (01)d (1)dd, dDayNumber

dd (03)

d (3)

dddd (Tuesday)dddd, ddd,
dd, d

DayOfWeek

8.4.2.3 Using a Custom Data Type

You can base a time level directly on a property that uses a custom data type, in either of the following scenarios:

• In the first scenario, the data type stores data in ODBC date format. The ClientDataType of the data type class must
be TIMESTAMP. The system converts the value to a full $Horolog date.

Defining Models for InterSystems IRIS Business Intelligence 83

Defining a Time Level

• In the second scenario, the data type stores data as a $Horolog time (that is, as the second part of a $Horolog string).
The ClientDataType of the data type class must be TIME. The system converts the value to a full $Horolog date. (The
date is arbitrarily chosen, so you should use this data only for hour and minute levels.)

See the implementation of %ConvertDate() in %DeepSee.Utils.

8.4.3 Time Levels and Hierarchies

As noted earlier, the order of levels in a hierarchy affects how the members of the levels are created. For any two adjacent
levels in the same hierarchy, the first level (level A) becomes the parent of the second level (level B). The hierarchy is a
parent-child hierarchy, which means the following:

• Any member of level A is the parent of one or more members of level B.

• Any member of level B is the child of exactly one member of level A.

• Any record that belongs to a given member of level B must always belong to the same member of level A.

Therefore, a level based on Year cannot be the parent of a level based on Quarter, for example. Consider two patients, one
born in Q3 2007 and one born in Q3 1982. These two patients both belong to the same member (Q3) of the Quarter level
but belong to different members (2007 and 1982, respectively) of the Year level.

As another example, a level based on Month cannot be the parent of a level based on WeekNumber. Since a week can fall
between two months, any record that belongs to a week member does not necessarily belong to the same month member.

The following table lists time levels and their typical child levels. For reference, it also shows example members of each
level:

NotesChild Level Is Typically Based on
the Time Function...

Has Members
Like This...

A Level Based
on the Time
Function...

These levels use all parts
of the date

Year, QuarterYear, MonthYear, or
DayMonthYear

1950sDecade

QuarterYear, MonthYear, or DayMonthYear2007Year

MonthYear or DayMonthYearQ4 2007QuarterYear

DayMonthYearNovember 2007MonthYear

WeekNumber2007W47WeekYear

No typical child levelNov 24 2007DayMonthYear

These levels are
independent of the year

MonthNumberQ4QuarterNumber

No typical child levelNovemberMonthNumber

No typical child level47WeekNumber

These levels are
independent of the year
and independent of the
part of the year

No typical child level24DayNumber

No typical child levelWednesdayDayOfWeek

These levels are
independent of the day

MinuteNumber1amHourNumber

No typical child level01:24MinuteNumber

84 Defining Models for InterSystems IRIS Business Intelligence

Details of Defining Levels

8.4.4 Handling a Calendar That Has a Date Offset

In some cases, you may need a time level to match a financial calendar that includes a date offset. For example, in many
companies, the financial year starts 1 Oct. Consider the following pivot table:

In the innermost grouping, this pivot table groups the records by the actual period (year and month, combined). For example,
there are 14 records associated with the actual period October 2001. The periods are grouped into fiscal quarters, and the
fiscal quarters are grouped into fiscal years. Note that the quarter FY 2002–Q1 includes October, November, and December
of 2001.

For such a time level, edit the cube class in Studio and specify the timeOffset and timeFormat properties of the
<level> element. For the example shown here:

• For the first two levels (the levels with members such as FY 2002 and FY 2002–Q1), timeOffset is "-3m" (which
subtracts three months from the date values used by these levels).

• For the third level (the level with members such as Oct-2001), timeOffset is not specified, and thus this level uses
the actual date values.

For information, see “Specifying a Date Offset” in the appendix “Reference Information for Cube Classes.”

8.4.5 Examples

The SAMPLES namespace provides the following examples of time levels:

• In the Patients cube, see the BirthD, BirthQD, and BirthTD dimensions.

• In the HoleFoods Sales cube, see the DateOfSale level.

8.5 Defining Custom Time Levels
You can define custom levels that use time in other ways. To do so:

• Create a dimension whose Type is data (not time).

• For each level, specify a value for Expression that returns the desired value.

Defining Models for InterSystems IRIS Business Intelligence 85

Defining Custom Time Levels

• See “Specifying the Sort Order for the Members,” later in this chapter.

By default, the members are sorted alphabetically.

8.5.1 Example

In the Patients cube in the SAMPLES namespace, see the BirthWeekdayD dimension. For this dimension, Expression is
as follows:

$system.SQL.DAYNAME(%source.BirthDate)

This method executes the DAYNAME() method in the %SYSTEM.SQL class. That class provides a large set of methods
that handle date values.

With this dimension, you can create pivot tables like this:

This sample dimension defines only a single level. With the appropriate logic, you can define a hierarchy with weeks,
months, and quarters in a 4–4–5 calendar, for example.

8.6 Defining an Age Level
An age level groups the records according to an age value in the data, relative to the cube build date. For example, it could
group patients by their ages (as computed at cube build time).

Note: To keep age levels accurate, it is necessary to rebuild the cube; the InterSystems IRIS Business Intelligence cube
synchronization feature has no effect on them. Thus, age levels are not generally recommended. If you need to
group records by age, InterSystems recommends that you instead define calculated members; see “Defining Age
Members,” later in this book.

To define an age level:

1. Define a dimension as described earlier, with two changes:

• For Type, choose age.

• Specify either Property or Expression.

Important: If you specify Property, the property must be in $Horolog format or must be of type %TimeStamp (or
a subclass).

If you specify Expression, the source expression must return data in $Horolog format.

When you define the dimension, the system creates the dimension and a hierarchy.

86 Defining Models for InterSystems IRIS Business Intelligence

Details of Defining Levels

http://en.wikipedia.org/wiki/4%E2%80%934%E2%80%935_calendar

2. Define a level within this hierarchy.

In this case, you will see different options than you saw for a data dimension.

3. For Extract value with function, choose a function that extracts the desired part of the time value. Use one of the following
values:

• "Days" – Use this to determine the age in days.

• "Months" – Use this to determine the age in months.

• "Years" – Use this to determine the age in years.

Note that the Patients sample does not demonstrate this type of level; the Age, Age Bucket, and Age Group levels group
patients in the fictitious study according to their ages at the date of the study; this is common practice with retrospective
studies.

8.7 Specifying a Range Expression
For any level in a data dimension, you can use the Range expression option. This option lets you use new values in the
place of the actual source values. For numeric data, this transformation can replace source values with discrete bins. For
any data, this transformation can specify replacement strings.

In either case, the new values become the names of the members of the level. The values also become the keys for the
members.

To specify a range expression:

1.
Click the Find button next to the Range expression field.

The Architect displays a page like the following:

2. For Form of original values, choose either Numeric or Strings.

This choice affects the form of this page.

3. Add a series of replacements as follows:

• To add a row to the end of the table, click Add Replacement.

Defining Models for InterSystems IRIS Business Intelligence 87

Specifying a Range Expression

Then enter details as given in the following subsections.

• To remove a row, click the X button for that row.

The order of the rows determines the default sort order of the members of this level.

4. Click OK to close this page.

The Range expression field now shows something like this (for numeric bins):

(,0]:None;(0,0.2):1-19%;[0.2,0.5):20-49%;[0.5,1]:50%+;

Or this (for string data):

NONE:None;MINR:Minor;SERS:Serious;FATL:Fatal;UNK:Unknown;

To make member names localizable, see “Manually Specifying the Members of a Level,” in the chapter “Using Additional
Advanced Features of Cubes and Subject Areas” in the Advanced Modeling for InterSystems Business Intelligence.

8.7.1 Defining Numeric Bins

When you define numeric bins, the Range Expression editor looks like this:

Each row in this table defines a numeric bin as follows:

•

The button at the left end of the line indicates the form of the lower limit — inclusive or exclusive .

When there is no lower limit, this option has no effect.

If the lower limit is inclusive, that means that exact value of From is included in the range. If the lower limit is exclusive,
that means that From is not in the range.

• From indicates the lower limit of the bin, if any.

• To indicates the upper limit of the bin, if any.

•

The button at the right end of the line indicates the form of the upper limit — inclusive or exclusive .

When there is no upper limit, this option has no effect.

• Replacement Value specifies the string to use as a member name for this level. Any record whose source value falls
within the defined range is assigned to this member.

This value is also the key for the member.

For this level, the system ignores records whose source values do not fall into any of the given bins.

88 Defining Models for InterSystems IRIS Business Intelligence

Details of Defining Levels

8.7.2 Defining String Replacements

When you define string replacements, the Range Expression editor looks like this:

Each row in this table defines a string replacement as follows:

• Original Value specifies a possible value of the source property or source expression of this level.

• Replacement Value specifies the string to use as a member name for this level. Any record whose source value matches
the given Original Value is assigned to this member.

This value is also the key for the member.

For this level, the system ignores records whose source values do not match any of the given original values.

8.7.3 Examples

The SAMPLES namespace provides the following examples of range expressions:

• In the Patients cube, see the Age Group level.

• In the HoleFoods Sales cube, see the Discount Type level.

8.8 Configuring a Level to Use Display Values
An InterSystems IRIS class property can have both a stored value and a displayed value, via the VALUELIST and
DISPLAYLIST property parameters. For example:

Property Gender As %String(VALUELIST = ",F,M", DISPLAYLIST = ",Female,Male");

When you use such a property as a level, by default, the system uses the value given in the VALUELIST parameter.

In the level definition, if you select the Use value in DISPLAYLIST option, the system uses the value given in the DISPLAYLIST
parameter instead. For example:

8.8.1 Examples

The SAMPLES namespace provides the following examples of levels that use the Use value in DISPLAYLIST option:

Defining Models for InterSystems IRIS Business Intelligence 89

Configuring a Level to Use Display Values

• The Gender level in the Patients cube.

• The Channel Name level in the HoleFoods Sales cube.

8.9 Using Property Values as the Member Names
By default, the source values for a level become the names for the members of the level.

You can instead specify the member names by defining a property for this level and using the values of that property as
the member names. This is useful in the following scenarios:

• To enable member names to be accessed at runtime — Values of properties can be accessed at runtime (the same is
not true for levels).

• To provide user-friendly member names for members — In some cases, you must base a level on a unique value that
is not user-friendly. For example, suppose that you have a level based on the patient’s primary care physician. People’s
names are not reliably unique, so you would have to base the level on a unique doctor identifier instead, which might
have no meaning for the users. In this case, you would also define a property that accesses the doctor’s name, and you
would use that property as the name of the member.

To use property values as the names for members of a level:

1. Define a property for this level, as described in the next chapter.

Each member of the level has a value for this property.

2. For this property, select the Use as member names option.

3. Optionally, to retrieve the property value at runtime, select the Get value at run time option.

If you use this option, note the following requirement: For the parent level (the level that contains the property), the
source property or source expression of that level must evaluate to an ID. The system assumes that (at least for this
level), the source data is normalized. That is, for the level, the data is in a different table and the source table contains
a link to that table.

8.9.1 Examples

The SAMPLES namespace provides the following examples of levels that have properties with Use as member names, Get

value at run time, or both:

• The DxDoc level in the Patients cube. This level has the property Name, which is configured with Use as member

names. The DxDoc level is based on the unique ID of the doctor. Depending on the number of patients you generate,
you may see multiple doctors with the same name. Because of how this level is defined, those doctors are not combined
with each other.

• The City level in the Patients cube. This level has the property Name, which is configured with Use as member names

and with Get value at run time.

• The City and Channel Name levels in the HoleFoods Sales cube. These levels have properties that are configured
with Use as member names.

• The Product Name level in the HoleFoods Sales cube. This level has a property that is configured with Use as

member names and with Get value at run time.

90 Defining Models for InterSystems IRIS Business Intelligence

Details of Defining Levels

8.10 Specifying Tooltips for Members
When a user hovers the cursor near a member name in the Analyzer, the system displays a tooltip. By default, the member
name is the tooltips. You can specify additional information to display in these tooltips for any level. To do so:

1. Add a property to that level. For the source value, use a value that contains the desired tooltips.

2. In Studio, edit the cube definition and modify the newly added property. For this property, specify the isDescription
attribute as "true". See <property> in the appendix “Reference Information for Cube Classes.”

Now the tooltip is the member name, followed by a hyphen, followed by the value of the specified property. For
example:

This is useful when you want to use short member names, for reasons of space, but also need to provide a fuller description
of each member.

8.11 Specifying the Sort Order for Members
This section describes how to control the sort order for members of a level.

8.11.1 For a Data Level

For a data level, by default, members are sorted as follows:

• If the level does not use a range expression, the members are sorted in increasing order by name (using alphabetic sort,
no matter what form the names have).

Defining Models for InterSystems IRIS Business Intelligence 91

Specifying Tooltips for Members

• If the level uses a range expression, the members are sorted in the order determined by the range expression. That is,
the first member is determined by the first replacement in the range expression, the second member is determined by
the second replacement, and so on.

To change the sort order for the members of a data level, use any of the techniques described in the following subsections.

8.11.1.1 Specifying the Level Sort Option

The simplest way to specify the sort order for members of a level is to set the Sort option for the level. Select asc, asc

numeric, desc, or desc numeric.

asc and desc sort members alphabetically, in ascending or descending order, and asc numeric and desc numeric sort
numerically, in ascending or descending order.

8.11.1.2 Sorting Members by Property Values

To sort the members of a level in order by property values:

1. Define a property for this level, as described in the next chapter.

Each member of the level has a value for this property.

2. For this property, select asc, asc numeric, desc, or desc numeric for Sort members by property value.

asc and desc sort members alphabetically, in ascending or descending order; asc numeric and desc numeric sort
numerically, in ascending or descending order.

(By default, no value is selected, and the property does not affect the sort order of the members.)

If you specify Sort members by property value within more than one property of a level, the members are sorted by the first
of those properties. Then they are subsorted by second of those properties, and so on.

For an example, see the Patients cube in SAMPLES namespace. In this cube, the Allergy Severities level has a
property that is configured with Sort members by property value. This property is based on a source expression that returns
a numeric value.

8.11.1.3 Using Property Names as Member Names

An alternative approach, similar to the preceding, is as follows:

1. Use a source expression for the level that forces the members in the desired order, even if the member names are not
desirable.

2. Define a property for this level, as described in the next chapter.

3. For this property, specify a source value or source expression that returns a better name for each. For this property,
select the option Use as member names.

8.11.1.4 Listing the Members in the Desired Order

To list the members in the desired order, edit the cube class to add <member> elements to the level. For information, see
“Manually Specifying the Members of a Level,” in the chapter “Using Additional Advanced Features of Cubes and Subject
Areas” in the Advanced Modeling for InterSystems Business Intelligence.

8.11.2 For a Time Level

By default, members of a time level as sorted in increasing order by time.

92 Defining Models for InterSystems IRIS Business Intelligence

Details of Defining Levels

To specify a different sort order for the members, specify Sort option. Choose either asc (ascending in time) or desc

(descending in time).

8.12 Making the Member Names Localizable
For cubes as well as dimensions, hierarchies, levels, and other cube elements, you can specify the Display name value, for
which you can later define translations in different languages. The same technique is available for members of a level, if
you know all the members in advance and if you edit the cube class in Studio. See “Manually Specifying the Members of
a Level,” in the chapter “Using Additional Advanced Features of Cubes and Subject Areas” in the Advanced Modeling
for InterSystems Business Intelligence.

For a time dimension, the current locale determines the names of members of a time dimension. (See “Using the Locale
to Control the Names of Time Members,” earlier in this book.) If you change the locale, it is necessary to recompile and
rebuild the cube.

8.13 Defining Dependencies Between Levels in Different
Hierarchies
In some cases, there is a virtual dependency between levels that are not in a hierarchy with each other. For example, you
might have a cube with a Country level and a Product level. These levels are logically independent from each other; theo-
retically any product could be sold in any country. It would not make sense to put these levels into a hierarchy in the same
dimension.

But if specific products are sold only in specific countries, there is a virtual dependency between these levels. When a user
selects a country, it is desirable to show only the products appropriate for that country. In such a case, you can add a
dependency between the levels as follows:

1. Open the cube class in the Architect.

2. Find the definition of the dependent level.

3. Edit the value of the Depends on option. Use a value like the following:

[dim].[hier].[level]

Where dim is the name of the other dimension, hier is the name of the hierarchy, and level is the name of the level.
[dim].[hier].[level] is the MDX identifier of the level.

For example:

[Region].[H1].[Country]

If the level depends on multiple levels, specify a comma-separated list. For example:

[dim1].[hier1].[level1],[dim2].[hier2].[level2]

You could also specify a relationship instead of a level.

This option attribute adds another index to the fact table and consequently consumes more disk space. Use this attribute
sparingly. Also, this option is completely unrelated to the DependsOn compiler keyword.

Defining Models for InterSystems IRIS Business Intelligence 93

Making the Member Names Localizable

8.13.1 Example

To see how this feature works, try the following demonstration:

1. In the Architect, open the Patients cube.

2. Edit the Patient Group level of the PatGrpD dimension. Specify Depends on as follows:

[HomeD].[H1].[ZIP]

3. Save and compile the cube.

4. In the Terminal, execute the ReassignPatients() method in BI.Populate:

d ##class(BI.Populate).ReassignPatients()

This method modifies the data for this sample so that there is a virtual dependency between the Patient Group level
and the ZIP code level. Patients in specific ZIP codes belong either to Patient Group A or no group; patients in the
other ZIP codes belong either to Patient Group B or no group.

The method synchronizes the cube, so there is no need to rebuild this cube after executing this method.

Then open the Basic Dashboard Demo and try the Home ZIP Code and Patient Group filters. When you choose a ZIP code,
that affects the list in the Patient Group filter.

8.14 Specifying the Field Names in the Fact Table
When you compile a cube class, the system generates a fact table class and some related classes. When you build a cube,
the system populates these tables, which are described in “Details for the Fact and Dimension Tables.”

By default, the system generates the names of the fields in the fact table, but you can specify the field names to use instead.
To do so, specify a value for the Field name in fact table option for each applicable level. Take care to use unique names.
This option is not available for time levels or NLP levels.

Important: For Field name in fact table, be sure not to use an SQL reserved word. For a list of the SQL reserved words,
see “Reserved Words” in the InterSystems SQL Reference. The name must start with either a letter or a
percent sign (%). If the first character is %, the second character must be Z or z. For more details on
restrictions, see “Class Members” in the appendix “Rules and Guidelines for Identifiers” in the Orientation
Guide for Server-Side Programming. Also, do not use fact or listing, in any combination of lowercase
and uppercase characters.

94 Defining Models for InterSystems IRIS Business Intelligence

Details of Defining Levels

9
Defining Properties

This chapter describes how to define properties. It discusses the following topics:

• How to create a property

• How to get the value of a property at runtime

• How to change the order of properties in a level

• How to specify column names in the dimension tables

• A summary of special uses for properties

Note: Time and age dimensions cannot contain properties.

Also see “Accessing the Samples Shown in This Book,” in the first chapter.

9.1 Adding a Property
To add a property to an existing level:

1. Click either the level or an property within that level, in the Model Viewer.

This action indicates where the property is to be added:

• If you click the level, the new property will be added after all the other properties in this level.

• If you click a property, the new property will be added immediately before that property.

Note: The order of the properties in a level is important if the properties are used to sort members. See “Specifying
the Sort Order for Members of a Data Level,” in the previous chapter.

2. Click Add Element.

The system displays a dialog box.

3. For Enter New Item Name, type a property name.

Note that there are reserved names for properties, unlike for other kinds of cube elements. For details, see “Names for
Model Elements,” earlier in this book.

4. Click Property.

5. Click OK.

Defining Models for InterSystems IRIS Business Intelligence 95

6. Select the property in the Model Viewer.

7. In the Details Area, specify a value for Property or Expression. See “Defining the Source Values for a Dimension or
Level” and “Details for Source Expressions,” earlier in this book.

Alternatively, drag a class property from the Class Viewer and drop it onto a level in the Model Viewer. Then make changes
if needed in the Details Area.

Also see “Other Common Options,” earlier in this book.

9.1.1 Defining a Property for a List-Based Level

If the associated level is list-based, you must define the property as follows:

• Specify a value for Expression.

• In the expression, refer to the %value variable. This variable contains the value of the associated list element.

For example, consider the Allergy Severities level in the Patients cube. This level has a property that controls the sort order
of the members of this level. This property (SeveritySort) is defined by the following expression:

%cube.GetSeveritySort(%value)

This executes the GetSeveritySort() method in the cube class and the allergy severity (a string) as a argument. The method
returns an integer.

9.1.2 Specifying a Format String

In Studio, you can specify a format string, which enables you to specify the display format for the property. You can
override this formatting in the Analyzer (or in manually written MDX queries). For details, see “<property>” in the first
appendix.

9.2 Getting a Property Value at Runtime
In some cases, you can define a property so that its value is retrieved at runtime from the appropriate source table. The
requirements are as follows:

• For the property, select the Get value at run time option.

• For the parent level (the level that contains the property), the source property or source expression of that level must
evaluate to an ID.

The system assumes that (at least for this level), the source data is normalized. That is, for the level, the data is in a
different table and the source table contains a link to that table.

This requirement means that, by default, the member names for this level are IDs, which is not generally suitable for
your users. In this case, also configure a property of this level for use as display names for the members. This can be
the same property or a different property.

See “Using Property Values as the Member Names,” in the previous chapter.

96 Defining Models for InterSystems IRIS Business Intelligence

Defining Properties

9.3 Changing the Order of Properties in a Level
To change the order of properties in a level:

• To move a property up in the level, click the up arrow in the row for that level.

• To move a property down in the level, click the down arrow in the row for that level.

The order of properties in a level can affect the sort order of the members of the level. See “Specifying the Sort Order for
Members of a Data Level,” in the previous chapter.

9.4 Specifying the Column Names in the Dimension Tables
When you compile a cube class, the system generates a fact table class and related classes for the dimensions. When you
build a cube, the system populates these tables, which are described in “Details for the Fact and Dimension Tables.” The
properties for a level are stored in the corresponding dimension table.

By default, the system generates the names of the columns in the fact table, but you can specify the column names to use
instead. To do so, specify a value for the Field name in level table option for each property. Take care to use unique names.

Important: For Field name in fact table, be sure not to use an SQL reserved word. For a list of the SQL reserved words,
see “Reserved Words” in the InterSystems SQL Reference. The name must start with either a letter or a
percent sign (%). If the first character is %, the second character must be Z or z. For more details on
restrictions, see “Class Members” in the appendix “Rules and Guidelines for Identifiers” in the Orientation
Guide for Server-Side Programming. Also, do not use fact or listing, in any combination of lowercase
and uppercase characters.

9.5 Special Uses for Properties
By default, properties have no effect on the members of the level to which they belong. You can, however, use properties
to modify the members in the following ways (which you can combine):

• You can use the property values as the member names, overriding the default member names defined by the level
definition.

To do this, use the Use as member names option and (optionally) Get value at run time options; see “Using Property
Values as the Member Names,” in the previous chapter.

Note that if you select Use as member names, and if the source value is null, the system instead uses the appropriate
null replacement string; this is either the null replacement string for the level (if defined) or for the cube (if defined).
See “Specifying the Null Replacement String for a Level” and “Specifying Cube Options.”

• You can use the property values to specify the default sort order of the members within the level.

To do this, use the Sort members by property value option; see “Specifying the Sort Order for Members of a Data
Level,” in the previous chapter.

The Sort members by property value option has no effect if the level uses a range expression.

Defining Models for InterSystems IRIS Business Intelligence 97

Changing the Order of Properties in a Level

• You can use the property values as tooltips for the members. This is useful when you want to use short member names,
for reasons of space, but also need to provide a fuller description of each member. To use a property this way, specify
the isDescription attribute as "true". See <property> in the appendix “Reference Information for Cube Classes.”

Tip: Within a level, member names are not required to be unique, as noted in the section “Defining Member Keys and
Names,” earlier in this book. In a well-defined cube, however, each member of a given level does have a unique
key. When a user creates a query in the Analyzer, the system automatically uses the member keys instead of the
names. The user can expand the list of members and separately drag and drop different members that have the same
names. For convenience of the users, InterSystems suggests that you also add a level property whose value is the
key. For such a property, simply base the property on the same source property or source expression that the level
uses. The users can then display this property in order to determine the unique identifier that the system uses for
the member.

98 Defining Models for InterSystems IRIS Business Intelligence

Defining Properties

10
Defining Measures

This chapter describes how to define measures. It discusses the following topics:

• How to create a measure

• How to specify the type of measure

• How to specify the aggregation for a measure

• How to specify a searchable measure

• How to specify a format string

• How to specify a format string for a date measure

• How to change the order of measures in a cube

• How to specify column names in the fact table

• How to specify an additional filter to apply to detail listings

The system automatically creates a measure whose default name is Count. To override this default name, specify the Count

measure caption option for the cube; see “Specifying Cube Options,” earlier in this book.

Also see “Accessing the Samples Shown in This Book,” in the first chapter.

10.1 Adding a Measure
To add a measure, drag a class property from the Class Viewer and drop it onto the Measures label in the Model Viewer.
Then make changes if needed in the Details Area.

Or do the following:

1. Click Add Element.

The system displays a dialog box.

2. For Enter New Item Name, type a measure name.

See “Names for Model Elements,” earlier in this book.

3. Click Measure.

4. Click OK.

5. Select the measure in the Model Viewer.

Defining Models for InterSystems IRIS Business Intelligence 99

6. Specify the following options, at a minimum:

• Type — Specifies the measure type, as described in “Specifying the Measure Type.”

• Property or Expression — Specifies the source values. See “Defining the Source Values for a Dimension or Level”
and “Details for Source Expressions,” earlier in this book.

• Aggregate — Specifies how to aggregate the measure values, as described in “Specifying How to Aggregate a
Measure.”

10.2 Specifying the Measure Type
The Type option specifies the kind of data the measure expects in the source data, as well as the type used in the generated
fact table, as follows:

Measure DetailsType Used by MeasureExpected Type of
Source Data

Measure
Type

Numeric value. Default
aggregation is SUM.

%DoubleNumeric datanumber (this
is the default)

Integer value. Default
aggregation is SUM.

%IntegerNumeric data (any
fractional values are
removed by
truncation)

integer

Age value in days. Can be used
only with AVG (default), MIN, and
MAX aggregations. Age
measures are not generally
recommended, unless you
perform nightly rebuilds.

%IntegerDate/time data in
$Horolog format

age

Date value (in $Horolog format,
with seconds removed). Can be
used only with AVG, MIN, and
MAX (default) aggregations.

%DeepSee.Datatype.dateTimeDate/time data in
$Horolog format

date

Boolean value that can be
aggregated. Default aggregation
is COUNT.

%Boolean0 or 1boolean

String values to be stored in the
fact table; these are not indexed.
Can be used only with COUNT.
This measure cannot be dragged
and dropped in the Analyzer.

%StringAnystring

Text values to be processed and
indexed using the NLP Smart
Indexing API. This measure
cannot be dragged and dropped
in the Analyzer.

%GlobalCharacterStream or %String,
depending on the selected
source

Text valuesiKnow
*

100 Defining Models for InterSystems IRIS Business Intelligence

Defining Measures

*For information on the iKnow type, see the Advanced Modeling for InterSystems Business Intelligence.

10.3 Specifying How to Aggregate a Measure
The Aggregate option specifies how to aggregate values for this measure, whenever combining multiple records. If you
specify this, use one of the following values:

• SUM (the default) — Adds the values in the set.

• COUNT — Counts the records for which the source data has a non-null (and nonzero) value.

• MAX — Uses the largest value in the set.

• MIN — Uses the smallest value in the set.

• AVG — Calculates the average value for the set.

For a boolean or a string measure, select COUNT.

10.4 Specifying a Searchable Measure
You can specify that a measure is searchable; if so, you can filter records used in a pivot table by the value of that measure.

To specify a measure as searchable, select the Searchable check box in the Details Area.

Note: A searchable measure cannot include square brackets or commas ([],) in its name.

10.5 Specifying a Format String
Note: For date measures, see the next section.

The Format string option enables you to specify the display format for the data. You can override this formatting in the
Analyzer (or in manually written MDX queries). To specify the formatting for a measure in the Architect, do the following
while the measure is displayed:

1.
Click the Find button .

The system displays a dialog box that includes the following fields:

Defining Models for InterSystems IRIS Business Intelligence 101

Specifying How to Aggregate a Measure

Here:

• Positive piece specifies the format to use for positive values.

• Negative piece specifies the format to use for negative values.

• Zero piece specifies the format to use for zero.

• Missing piece specifies the format to use for missing values; this is not currently used.

In each of these, Format string specifies the numeric format, and Color specifies the color.

The details are different for date-type measures; see the next section.

2. Specify values as needed (see the details after these steps).

3. Click OK.

10.5.1 Format String Field

The Format string field is a string that includes one of the following base units:

102 Defining Models for InterSystems IRIS Business Intelligence

Defining Measures

ExampleMeaningBase Unit

12345Display the value without the thousands separator. Do not include any decimal
places.

#

12,345Display the value with the thousands separator. Do not include any decimal
places. This is the default display format for positive numbers.

#,#

12345.67Display the value without the thousands separator. Include two decimal places
(or one decimal place for each pound sign after the period). Specify as many
pound signs after the period as you need.

#.##

12,345.67Display the value with the thousands separator. Include two decimal places (or
one decimal place for each pound sign after the period). Specify as many pound
signs after the period as you need.

#,#.##

00:05:32Display the value in the format hh:mm:ss, assuming that the value indicates the
number of seconds. This is useful for measures that display time durations.

%time%

Note that InterSystems IRIS displays the thousands separator and the decimal separator as determined by the server locale
(see “Using the Locale to Control the Names of Time Members,” earlier in this book). The locale, however, does not affect
the syntax shown in the first column of the preceding table.

You can include additional characters before or after the base unit.

• If you include a percent sign (%), the system displays the value as a percentage. That is, it multiplies the value by 100
and it displays the percent sign (%) in the position you specify.

• Any other characters are displayed as given, in the position you specify.

The following table shows some examples:

Display ValueLogical ValueExample formatString

6,6096608.9431formatString="#,#;(#,#);"

Note that this corresponds to the default way in which numbers are
displayed.

(1,234)–1,234

6,608.9436608.9431formatString="#,#.###;"

600%6formatString="#%;"

$2,195,7652195765formatString="$#,#;($#,#);"

($3,407,228)–3407228

10.5.2 Color Piece

For the Color field, specify either of the following:

• A CSS color name such as MediumBlue or SeaGreen. You can find these at https://www.w3.org/TR/css3-color/
and other locations on the Internet.

• A hex color code such as #FF0000 (which is red).

• An RGB value such as rgb(255,0,0) (which is red).

Defining Models for InterSystems IRIS Business Intelligence 103

Specifying a Format String

https://www.w3.org/TR/css3-color/
http://en.wikipedia.org/wiki/Web_colors

10.6 Specifying a Format String for a Date Measure
To specify the format string for a date measure, enter one of the following into the Format string field in the Details pane
of the Architect:

Example formattingHow This Affects the Format of the
Measure

Format string

Date uses the default date format for the
current process.

%date%

Date uses the default date format for the
current process and also is displayed in the
given color.

%date%^color

Where color is a color as described
in “Color Piece,” in the previous
section.

Date is displayed in the given color.^color

10.7 Changing the Order of Measures in the Cube
To change the order of measures in the cube:

1. Click Reorder.

The system displays a dialog box.

2. Click Measures.

3. Optionally click Alphabetize to alphabetize them.

This affects the list immediately. You can then reorganize the list further if needed. Also, when you add measures,
they are not automatically alphabetized.

4. Click the name of a measure and then click the up or down arrow as needed.

5. Repeat as needed for other measures.

6. Click OK.

The order of the measures in the cube affects how they are displayed in the Analyzer. It does not have any other effect.
Some customers choose to alphabetize their measures for convenience; others put more-often used measures at the top of
the list.

10.8 Specifying the Field Names in the Fact Table
When you compile a cube class, the system generates a fact table class and some related classes. When you build a cube,
the system populates these tables, which are described in “Details for the Fact and Dimension Tables.”

By default, the system generates the names of the columns in the fact table, but you can specify the column names to use
instead. To do so, specify a value for the Field name in fact table option for each measure. This option is not available for
NLP measures. Take care to use unique names.

104 Defining Models for InterSystems IRIS Business Intelligence

Defining Measures

Important: For Field name in fact table, be sure not to use an SQL reserved word. For a list of the SQL reserved words,
see “Reserved Words” in the InterSystems SQL Reference. The name must start with either a letter or a
percent sign (%). If the first character is %, the second character must be Z or z. For more details on
restrictions, see “Class Members” in the appendix “Rules and Guidelines for Identifiers” in the Orientation
Guide for Server-Side Programming. Also, do not use fact or listing, in any combination of lowercase
and uppercase characters.

10.9 Specifying Additional Filtering for Listings
By default, when a user displays a detail listing, the system displays one row for each source record that is used in the
current context (that is, the context in which the listing was requested). For a given measure, you can specify an additional
filter for the system to use when displaying the detail listing. For example, consider the Avg Test Score measure in the
Patients sample. This measure is based on the TestScore property, which is null for some patients. You could redefine this
measure to filter out those patients, when the user starts on the Avg Test Score measure and then displays a listing.

If you need such a filter, you include it as part of the measure definition. In most cases, the filter has the following form:

measure_value operator comparison_value

This filter is added to the detail listing query and removes any records that do not meet the filter criteria.

The other form of listing filter is MAX/MIN. If you use such a listing filter, the detail listing shows only the records that
have the maximum (or minimum) value of the measure. The measure must use the same kind of aggregation as does the
listing filter (if a listing filter is included).

To specify an additional filter for listings, for a specific measure:

1. Select the measure in the Model Viewer.

If you intend to use MAX for the listing filter, select a measure that is defined with Aggregate as MAX.

Similarly, if you intend to use MIN, select a measure that is defined with Aggregate as MIN.

2. In the section Measure-Specific Listing Filter (in the Details Area), specify the following values:

• Operator — Select one of the following: < <= > >= <> = MAX MIN

• Value — Specify the comparison value. Omit this option if Operator is MAX or MIN

When you use this option, the Architect automatically enables the Searchable check box, because this measure must be
searchable.

10.9.1 Example

Suppose that we modify the Avg Test Score measure in the Patients cube, and we specify Operator as <> and Value as "".
That is, we want to filter out the patients that have null test scores. Then consider the following pivot table:

Defining Models for InterSystems IRIS Business Intelligence 105

Specifying Additional Filtering for Listings

If we click the Patient Count cell (or the Avg Age cell) in the CHD row and then display a detail listing, we see something
like this:

But if we click the Avg Test Score cell in the pivot table and then display a detail listing, we see fewer records, like this:

106 Defining Models for InterSystems IRIS Business Intelligence

Defining Measures

11
Defining Listings

This chapter describes how to define listings. It discusses the following topics:

• How to add a listing

• Options for a simple listing

• Options for a data connector listing

• Options for a custom listing

• How to define a map listing

In Studio, you can define formatting for a listing. See “<listing>,” in the appendix “Reference Information for Cube
Classes.”

You can also define individual listing fields with which users can create custom listings in the Analyzer. See the next
chapter.

Tip: You can also define listings outside of cube definitions (and without needing access to the Architect). See the
chapter “Defining Listing Groups.”

Also see “Accessing the Samples Shown in This Book,” in the first chapter.

11.1 Adding a Listing
To add a listing:

1. Click Add Element.

The system displays a dialog box.

2. For Enter New Item Name, type a listing name.

See “Names for Model Elements,” earlier in this book.

3. Click Listing.

4. Click OK.

5. Select the listing name in the Model Viewer, in the Listings section.

6. Optionally specify the following details:

Defining Models for InterSystems IRIS Business Intelligence 107

• Display name — Localizable name of the listing. If you do not specify this, the user interface instead displays the
logical name.

• Description — Description of the listing.

• Listing type — Type of the listing. Select table (the default) or map.

If you choose map, see the section “Defining a Map Listing,” later in this chapter.

• Resource — Specify the resource that secures the listing.

For information on how this is used, see “Setting Up Security” in Implementing InterSystems Business Intelligence.

7. Define the listing as described in the following sections.

11.2 Defining a Simple Listing
A simple listing uses fields in the source table that is used by the cube. To define a simple listing, add a listing as described
earlier in this chapter and specify the following options:

• Field list — Specifies a comma-separated list of fields in the source table to display. To specify this option, click the

Search button next to Field list to display a dialog box where you can select the fields. If you do so, the Architect
displays the following:

To use this dialog box:

108 Defining Models for InterSystems IRIS Business Intelligence

Defining Listings

– If necessary, expand the items in the Source Class tree.

– To add a property, double-click the property name in the Source Class tree. The property is then added to the end
of the list shown in Field List. Properties with a default caption are automatically assigned an alias when added.
For more information on the CAPTION property, see Core Property Parameters in Using InterSystems IRIS Objects.
Note that the value shown is the SqlFieldName for the property, which might be different from the property name.

– To move an item up or down, click it in Field List and then click the up or down arrows as needed.

– To edit an item, click it in Field List, make changes in Edit Field: and then click Update. For example, you can add
an SQL alias. See the subsection “Additional Options.”

– To delete an item, click it in Field List and then click the X button.

When you are done, click OK.

Or type directly into Field list. For example:

PatientID,Age,Gender,HomeCity->Name AS "Home City",TestScore AS "Test Score"

Note that upon use of the Listing — Field List dialog box, any headers will be automatically wrapped with the $$$TEXT
token. The cube’s domain will be added using $$$TEXT, such as in the following example:

Product->Name AS "$$$TEXT["Product","HOLEFOODS"]"

You can override the cube’s default domain by entering a different domain directly into Field list.

• Order by — Specifies a comma-separated list of fields in the source table by which to sort the listing (these do not need
to be included in Field list). The overall sort is controlled by the first field in the list, the secondary sort is controlled
by the second field, and so on.

To specify this option, click the Search button next to Field list to display a dialog box where you can select the
fields. This dialog box is a simpler version of the one for Field list.

Or type directly into Order By. For example:

Age,Gender

After a field name, you can include the ASC or DESC keyword to sort in ascending or descending order, respectively.

• Ignore the Data Connector field and the Custom SQL query field.

11.2.1 Additional Options

Note the following points:

• You can use arrow syntax to refer to a property in another table. See “Implicit Joins (Arrow Syntax)” in Using Inter-
Systems SQL.

PatientID,HomeCity,PrimaryCarePhysician->DoctorGroup

• You can include aliases.

PatientID,Age,Gender,HomeCity->Name AS "Home City",TestScore AS "Test Score"

Or:

PatientID,Age,Gender,HomeCity->Name "Home City",TestScore "Test Score"

• You can localize an alias by providing using the special token $$$TEXT[]. For example:

%ID,DateOfSale As "$$$TEXT["Date Of Sale"]"

Defining Models for InterSystems IRIS Business Intelligence 109

Defining a Simple Listing

• You can use standard SQL and InterSystems SQL functions, if you enclose the function name within parentheses so
that it is not interpreted as a field name.

(UCASE(PatientID)),%EXTERNAL(Gender)

• You can use more advanced SQL features if you use source.field_name rather than field_name.

%ID,'$'||source.Sales AS Sales

In this case, the Sales column displays the Sales field, preceded by a dollar sign ($).

Tip: By default, InterSystems IRIS® uses the logical values for the fields. To instead use the display values, use the
SQL function %EXTERNAL.

11.3 Defining a Data Connector Listing
A data connector listing uses fields in a data connector. To define such a listing, add a listing as described earlier in this
chapter and specify the following options:

• Data Connector — Select the data connector class to use.

• Field list — Specify the fields to include. These must be fields in the data connector. You cannot include aliases, SQL
functions, or arrow syntax.

By default, the listing displays only a property named %ID, if that exists.

• Order by — Not used.

• Ignore the Custom SQL query field.

11.4 Defining an SQL Custom Listing
An SQL custom listing can use fields from tables other than the source table used by the cube. (Note that it cannot use
fields from a data connector.)

Note: The system supports another kind of “custom” listing — a listing defined by users in the Analyzer. See “<list-
ingField>” in the appendix “Reference Information for Cube Classes.”

To define an SQL custom listing, add a listing as described earlier in this chapter and specify the following options:

• Custom SQL query — Select this.

• Custom SQL — Specify an SQL SELECT query as described in this section.

Before looking at the details of the Custom SQL query, it is necessary to understand how the system creates listings. For
any listing, the system creates a temporary listing table that contains the set of source ID values that correspond to the facts
used in the current context (the context in which the user requests the listing). Your custom SQL query selects fields where
the records match the source IDs in the temporary listing table. Internally, the overall query might be as follows:

SELECT source.Field1,source.Field2
FROM BI_Study.Patient source,internal-listing-table-name list
WHERE source.%ID=list.sourceID AND list.queryKey='2144874459'

110 Defining Models for InterSystems IRIS Business Intelligence

Defining Listings

When you specify an SQL custom query, you specify tokens to replace some of these details. Specifically, for Custom SQL,
you provide a query with the following basic form:

SELECT list of field names FROM $$$SOURCE, othertable AS alias WHERE $$$RESTRICT
AND otherrestriction

Where:

• The FROM clause specifies multiple tables to query. In this clause, the $$$SOURCE token establishes source as the
alias for the source table of the cube, and it establishes list as the alias for the temporary listing table.

Internally $$$SOURCE is replaced by something like the following: BI_Study.Patient
source,internal-listing-table-name list

Also, othertable AS alias specifies another table to query, and an alias for this table (if wanted). You can specify
additional tables as well.

• The WHERE clause specifies conditions that join the source table to the listing table and to your additional table (or
tables).

The $$$RESTRICT token is replaced by a condition that joins the source table to the temporary listing table; internally
this is replaced by something context-dependent like the following: source.%ID=list.sourceID AND
list.queryKey='2144874459'

Also otherrestriction specifies another SQL restriction. In the syntax shown above, the restrictions are combined via
AND. You could use OR instead or create a more complex WHERE clause if wanted.

• For list of field names, use a comma-separated list of field names, which can be fields in any of the tables listed in the
FROM clause. For a field in the source table of the cube, use a reference of the form source.fieldname. You can
include arrow syntax as well.

• You can include aliases, and you can localize an alias by providing using the special token $$$TEXT[]. For example:

SELECT ID,UnitsSold As "$$$TEXT["Units Solds"]" FROM $$$SOURCE WHERE $$$RESTRICT

• You can also include the ORDER BY clause at the end of the query.

As a simple example (which uses only the source table of the cube):

SELECT source.PatientID,source.Age,source.HomeCity->Name
FROM $$$SOURCE
WHERE $$$RESTRICT

For another example (using data from other tables):

SELECT source.PatientID,FavoriteColor
FROM $$$SOURCE, BI_Study.PatientDetails AS details
WHERE $$$RESTRICT AND source.PatientID=details.PatientID

11.5 Defining a Map Listing (Geo Listing)
By default, Listing type is table, and the listing displays a table of information. If you have suitable data, you can instead
specify Listing type as map. In this case, the listing is a map with markers to indicate geographic locations contained in the
listing data. For example, the map could highlight sales locations or customer locations. For example:

Defining Models for InterSystems IRIS Business Intelligence 111

Defining a Map Listing (Geo Listing)

Important: A map listing uses the Google Maps API. Be sure that your usage of this API is consistent with the Terms
of Use, which you can access via a link displayed in this listing, as shown in the previous picture.

Note that in order to use the Google Maps API, you must obtain an API key. See Specifying Basic Settings in Implementing
InterSystems Business Intelligence for more information.

To define such a listing, use the general instructions earlier in this chapter and do the following:

• Specify Listing type as map.

• Define the listing query so that it contains the fields Latitude and Longitude (case-sensitive). These fields should
contain, respectively, the applicable latitude and longitude in decimal format (rather than degree/minute/second format).

For example, SQL Query could be as follows:

EventId, $$$IKSUMMARY as Summary, LocationCoordsLatitude As Latitude, LocationCoordsLongitude As
Longitude

This example is from the Aviation demo; see “Using Text Analytics in Cubes” in Advanced Modeling for InterSystems
Business Intelligence.

The listing query can also contain other fields. Any additional fields are displayed in a balloon when the user clicks a map
position. For example:

112 Defining Models for InterSystems IRIS Business Intelligence

Defining Listings

This example is from the Aviation demo; see “Using Text Analytics in Cubes” in Advanced Modeling for InterSystems
Business Intelligence.

Defining Models for InterSystems IRIS Business Intelligence 113

Defining a Map Listing (Geo Listing)

12
Defining Listing Fields

This chapter describes how to add individual listing fields to a cube. With individual listing fields, users can create custom
listings in the Analyzer. This chapter discusses the following topics:

• Summary of how users create custom listings

• How to create a listing field

Also see the chapter “Defining Listings.”

Also see “Accessing the Samples Shown in This Book,” in the first chapter.

12.1 About User-Defined Custom Listings
The purpose of individual listing fields is to enable users to define custom listings in the Analyzer. This process is described
in “Creating a Custom Listing” in Using the Analyzer, but the following steps provide a summary:

1. To start, the user displays the default listing.

2. The user selects Detail Listings in the left area of the Analyzer.

3. The user then expands the Custom Listing folder. For example:

Defining Models for InterSystems IRIS Business Intelligence 115

4. The user can then drag listing fields from this area to the Custom Listing Fields box. the system then executes the listing
query and displays the results.

12.2 Creating a Listing Field
To create a listing field:

1. Click Add Element.

The system displays a dialog box.

2. For Enter New Item Name, type a listing name.

See “Names for Model Elements,” earlier in this book.

3. Click ListingField.

4. Click OK.

5. Select the listing name in the Model Viewer, in the Listing Fields section.

6. Optionally specify the following details:

• Display name — Localizable name of the listing field. If you do not specify this, the user interface instead displays
the logical name.

• Description — Description of the listing field.

• Field Expression — SQL expression that refers to a field in the source table or (via arrow syntax, for example) to
a field in a related table. The following example (from the Hole Foods Sales cube) uses arrow syntax:

(Product->Category)

If you do not specify an alias, you must put parentheses around the expression as shown here.

If you do specify an alias, the parentheses are not required. For example:

116 Defining Models for InterSystems IRIS Business Intelligence

Defining Listing Fields

Product->Category Category

• Resource — Specify the resource that secures the listing field.

For information on how this is used, see “Setting Up Security” in Implementing InterSystems Business Intelligence.

In Field Expression, you can use SQL functions, including InterSystems SQL functions such as %EXTERNAL. When
a user creates a custom listing in the Analyzer, the system creates an SQL SELECT statement that contains a comma-
separated list of the Field Expression of the selected listing fields.

You can specify an SQL alias within Field Expression. However, if you do so, Display name is ignored and the field
name cannot be localized.

You can also create a listing field via drag-and-drop action. To do so, drag a field from the left area and drop it onto the
Listing Fields heading. Then select the new listing field and make any needed edits in the right-hand area.

You can also drag a different source field and drop it into Field Expression. If you do so, the value there is replaced with
the new field.

Defining Models for InterSystems IRIS Business Intelligence 117

Creating a Listing Field

13
Defining Calculated Members

This chapter describes how to add calculated members (including calculated measures) to a cube. It discusses the following
topics:

• How to define a calculated measure

• MDX recipes for calculated measures

• How to define calculated members that are not measures

• MDX recipes for non-measure calculated members

• How to define additional filtering for listings for a calculated measure

Note: Users can create additional calculated measures, calculated members, and named sets within the Analyzer.

In MDX terminology, a calculated measure is simply another form of calculated member. This documentation
uses the nonstandard phrase calculated measure for brevity.

Also see “Accessing the Samples Shown in This Book,” in the first chapter.

13.1 Defining a Calculated Measure
To add a calculated measure:

1. Click Add Element.

The system displays a dialog box.

2. For Enter New Item Name, type the name of the measure.

See “Names for Model Elements,” earlier in this book.

3. Click Calculated Member (Measure).

4. Click OK.

5. Select the calculated measure in the Model Viewer (in the section Calculated Members).

6. Specify the MDX expression that defines the new member. To do so, you can do either of the following:

• Type the expression directly into Value Expression.

• Use the Expression Builder. This tool is intended to make it easy to obtain the correct MDX identifier for any part
of the cube. To access this tool, click the magnifying glass next to Expression. The left area lists the contents of

Defining Models for InterSystems IRIS Business Intelligence 119

the cube, including all measures and levels. The right area displays the expression that you are creating. To add
an item to the expression, drag and drop it from the left area to the expression. The item is added to the end of the
expression, and you might need to move it to a different part of the expression.

The following section has some example expressions. For additional samples, see the HoleFoods and Patients cubes.

The Architect displays this new measure with the other measures, in the Measures group.

Also see “Specifying Additional Filtering for Listings for a Calculated Measure,” later in this chapter.

13.2 MDX Recipes for Calculated Measures
For a calculated measure, the MDX expression that you use as its definition should be a numeric expression. The section
“Numeric Expressions” in InterSystems MDX Reference provides information on all the ways to create numeric expressions
in MDX.

For an introduction to InterSystems MDX, see Using InterSystems MDX.

This section discusses recipes for the following scenarios:

• Measures based on other measures

• Measures that use a pivot variable as a multiplier

• Measures that show percentages of aggregate values

• Measures that count distinct members

• Semi-additive measures

• Filtered measures, which are null in some cases

• Measures that use KPIs or plug-ins, which are discussed in the Advanced Modeling for InterSystems Business Intelligence

For samples, see the HoleFoods and Patients cubes.

Note: Do not define a calculated measure that is based on another calculated measure that is based on a plug-in. (For
information on plug-ins, see the Advanced Modeling for InterSystems Business Intelligence).

13.2.1 Measures Based on Other Measures

It is common to base one measure on other measures via an Expression like the following:

([MEASURES].[my measure 1] + [MEASURES].[my measure 2]) / [MEASURES].[my measure 3]

More formally, Expression is a numeric-valued MDX expression and can include the following elements:

• References to measures. The syntax is as follows:

[MEASURES].[measure name]

Or:

MEASURES.[measure name]

You can omit the square brackets around the measure name, if the measure name contains only alphanumeric characters,
does not start with a number, and is not an MDX reserved word.

120 Defining Models for InterSystems IRIS Business Intelligence

Defining Calculated Members

The expression is not case-sensitive.

• Numeric literals. For example: 37

• Percentage literals. For example: 10%

Note that there cannot be any space between the number and the percent sign.

• Pivot variables. See “Defining and Using Pivot Variables” in Using the Analyzer.

To refer to a pivot variable, use the syntax $variable.variablename where variablename is the logical variable
name. This syntax is not case-sensitive; nor is the pivot variable name.

• Mathematical operators. InterSystems IRIS Business Intelligence supports the standard mathematical operators: +
(addition), - (subtraction), / (division), and * (multiplication). It also supports the standard unary operators: + (positive)
and - (negative).

You can also use parentheses to control precedence.

For example: MEASURES.[%COUNT] / 100

• MDX functions that return numeric values. Many MDX functions return numeric values, including AVG, MAX,
COUNT, and others. See the InterSystems MDX Reference for details. The function names are not case-sensitive.

Tip: The MDX function IIF is often useful in such expressions, for example, to prevent dividing by zero. It evaluates a
condition and returns one of two values, depending on the condition.

13.2.2 Measure That Uses a Pivot Variable As a Multiplier

To define a measure that uses a pivot variable as a multiplier, use an Expression like the following:

measures.[measure A]*$variable.myQueryVariable

Where myQueryVariable is the logical name of a pivot variable. In this scenario, use a literal pivot variable that provides
numeric values. See “Defining and Using Pivot Variables” in Using the Analyzer. The syntax is not case-sensitive; nor is
the pivot variable name.

13.2.3 Percentages of Aggregate Values

It is often necessary to calculate percentages of the total record count or percentages of other aggregate values. In such
cases, you can use the %MDX function, which is an InterSystems extension. This function executes an MDX subquery,
which should return a single value, and returns that value, which is unaffected by the context in which you execute the
function. This means that you can calculate percentages with an Expression like the following:

100 * MEASURES.[measure A] / %MDX("SELECT MEASURES.[measure A] ON 0 FROM mycube")

The subquery SELECT MEASURES.[measure A] ON 0 FROM mycube selects the given measure from the cube and
aggregates it across all records.

For example:

100 * MEASURES.[%COUNT]/%MDX("SELECT MEASURES.[%COUNT] ON 0 FROM patients")

In the case of the Count measure, you can use a simpler subquery:

100 * MEASURES.[%COUNT]/%MDX("SELECT FROM patients")

The following shows an example that uses the Percent of All Patients calculated measure, which is defined by
the preceding Expression:

Defining Models for InterSystems IRIS Business Intelligence 121

MDX Recipes for Calculated Measures

13.2.4 Distinct Member Count

In some cases, for a given cell, you want to count the number of distinct members of some particular level. For example,
the DocD dimension includes the levels Doctor Group and Doctor. The calculated measure Unique Doctor Count
uses the following Expression, which uses the Doctor level:

COUNT([docd].[h1].[doctor].MEMBERS,EXCLUDEEMPTY)

We can use this measure in a pivot table as follows:

13.2.5 Semi-Additive Measures

A semi-additive measure is a measure that is aggregated across most but not all dimensions. For example, customers’ bank
balances cannot be added across time, because a bank balance is a snapshot in time. To create such measures, you can use
the %LAST function, an InterSystems extension to MDX.

Consider the following measures:

• Balance is based on the source property CurrentBalance and is aggregated by summing.

You would avoid aggregating this measure over time, because it would give incorrect results; that is, you should use
this measure only in pivot tables that include a time level for rows or columns.

• Transactions is based on the source property TxCount and is aggregated by summing.

You can define a calculated measure called LastBalance and use the following expression for Expression:

%LAST(Date.Day.Members,Measures.Balance)

122 Defining Models for InterSystems IRIS Business Intelligence

Defining Calculated Members

The %LAST function returns the last non-missing value for a measure evaluated for each member of the given set. In this
case, it finds the last day that has a value and returns that value.

13.2.6 Filtered Measures

A normal measure considers all records in the fact table for which the source value is not null. In some cases, you may
want to define a filtered measure, which has the following behavior:

• The measure is null for certain records.

• For the other records, the measure has a value.

For a filtered measure, use an Expression like the following:

AGGREGATE([DIMD].[HIER].[LEVEL].[member name],[MEASURES].[my measure])

In this case, the AGGREGATE function aggregates the given value across all the records that belong to the given member.

For example, the Patients sample has the Avg Test Score measure, which is the average test score considering all
patients who have a non-null value for the test. Suppose that in addition to the Avg Test Score measure, your customers
would like to see another column that just shows the average test scores for patients with coronary heart disease (the CHD
diagnosis). That is, the customers would like to have the measure Avg Test Score - CHD. In this case, you can create
a calculated measure that has the following Expression:

AGGREGATE(diagd.h1.diagnoses.chd,MEASURES.[avg test score])

13.2.7 Measures That Use KPIs or Plug-ins

For any KPI or plugin, (all discussed in Advanced Modeling for InterSystems Business Intelligence), you can create a cal-
culated measure that retrieves values from it. Then users can drag and drop this measure within the Analyzer. To create
such a calculated measure, use an MDX expression of the following form for Expression:

%KPI(kpiname,propertyname,seriesname,"%CONTEXT")

Where kpiname is the name of the KPI or plug-in, propertyname is the name of the property or column, and seriesname is
the name of the series. You can omit seriesname; if you do, this function accesses the first series in the KPI or plug-in.

For MDX-based KPIs and plug-ins, you can provide a parameter that carries context information. "%CONTEXT" is a special
parameter that provides row, column, and filter context to the KPI or plug-in; this information is passed to the base MDX
query used by the KPI or plug-in. The default for this parameter is "all", which uses the row, column, and filter context
in combination. For additional options, see the %KPI function in the InterSystems MDX Reference.

For example (for a KPI or plug-in with only 1 series):

%KPI("PluginDemo2","Count",,"%CONTEXT")

For another example, you can define a calculated measure that uses the sample median plug-in (%DeepSee.PlugIn.Median).
To do so, use the following Expression:

%KPI("%DeepSee.Median","MEDIAN",1,"%measure","Amount Sold","%CONTEXT")

13.3 Defining a Calculated Member (Non-Measure)
To add a calculated member that is not a measure:

1. Click Add Element.

Defining Models for InterSystems IRIS Business Intelligence 123

Defining a Calculated Member (Non-Measure)

The system displays a dialog box.

2. For Enter New Item Name, type the name of the member.

See “Names for Model Elements,” earlier in this book.

3. Click Calculated Member (Dimension).

4. Click OK.

5. Select the calculated member in the Model Viewer (in the section Calculated Members).

6. For Dimension, type the name of the dimension to which this member belongs.

You can specify any dimension, including an existing dimension that includes non-calculated members or a new
dimension.

7. Specify the MDX expression that defines the new member. To do so, you can do either of the following:

• Type the expression directly into Value Expression.

• Use the Expression Builder. This tool is intended to make it easy to obtain the correct MDX identifier for any part
of the cube. To access this tool, click the magnifying glass next to Expression. The left area lists the contents of
the cube, including all measures and levels. The right area displays the expression that you are creating. To add
an item to the expression, drag and drop it from the left area to the expression. The item is added to the end of the
expression, and you might need to move it to a different part of the expression.

The next section provides some recipes.

For details and examples, see “WITH Clause” in the InterSystems MDX Reference.

The Patients cube defines some samples; see the ColorD dimension, which includes two calculated members in
addition to the standard members.

13.4 MDX Recipes for Non-Measure Calculated Members
This section provides recipes for non-measure calculated members for some common scenarios.

For general syntax, see “WITH Clause” in the InterSystems MDX Reference.

For an introduction to InterSystems MDX, see Using InterSystems MDX.

This section discusses recipes for the following scenarios:

• Defining age members

• Aggregating multiple members together

• Aggregating ranges of dates

• Aggregating members defined by a term list

• Combining members of different levels, especially for filtering

For samples, see the Patients cube. The ColorD dimension, which includes two calculated members in addition to the
standard members.

124 Defining Models for InterSystems IRIS Business Intelligence

Defining Calculated Members

13.4.1 Defining Age Members

It is often useful to have members that group records by age. To define such members, use an existing time level and the
special NOW member. For example, consider the MonthSold level in the HoleFoods sample. You could define a calculated
member named 3 Months Ago with the following Expression:

[dateofsale].[actual].[monthsold].[now-3]

You can define a set of age members, to create groups by age. For example, you could define the following members:

• Dimension: AgeGroups

Member name: 1 to 2 year(s)

Expression: %OR(DateOfSale.DaySold.[NOW-2y-1d]:[NOW-1y])

• Dimension: AgeGroups

Member name: 2 to 3 year(s)

Expression: %OR(DateOfSale.DaySold.[NOW-3y-1d]:[NOW-2y])

For more details and options, see “NOW Member for Date/Time Levels” in the InterSystems MDX Reference.

13.4.2 Aggregating Members

In many cases, it is useful to define a coarser grouping that combines multiple members. To do so, create a non-measure
calculated member that has an Expression of the following form:

%OR({member_expression, member_expression,...})

For example:

%OR({[colord].[h1].[favorite color].[red],
[colord].[h1].[favorite color].[blue],
[colord].[h1].[favorite color].[yellow]})

In any case, each non-measure member refers to a set of records. When you create a member that uses the %OR function,
you create a new member that refers to all the records that its component members use.

13.4.3 Aggregating Ranges of Dates

Another useful form uses a range of members aggregated by %OR:

%OR(member_expression_1:member_expression_n)

The expression member_expression_1:member_expression_n returns all members from member_expression_1
to member_expression_n, inclusive. This form is particularly useful with time levels, because you can use it to express
a range of dates in a compact form.

For time levels, you can also use the special NOW member. The following expression aggregates sales records from 90
days ago through today:

%OR(DateOfSale.DaySold.[NOW-90]:DateOfSale.DaySold.[NOW])

Or use the following equivalent form:

%OR(DateOfSale.DaySold.[NOW-90]:[NOW])

Defining Models for InterSystems IRIS Business Intelligence 125

MDX Recipes for Non-Measure Calculated Members

You can also use the %TIMERANGE function, which enables you to define a member that consists of all the members in
an open-ended range. For example, the following expression defines a range that starts after the 2009 member:

%TIMERANGE(DateOfSale.YearSold.&[2009],,EXCLUSIVE)

The %TIMERANGE function is supported only with time levels and is not supported with relationships.

You can also use the PERIODSTODATE function to get a range of dates. For example, the following expression gets the
range of days from the start of the current year to today and aggregates these days together:

%OR(PERIODSTODATE(DateOfSale.YearSold,DateOfSale.DaySold.[NOW]))

13.4.4 Defining an Aggregation of Members Defined by a Term List

Term lists provide a way to customize a Business Intelligence model without programming. A term list is a simple (but
extendable) list of key and value pairs. (See “Defining Term Lists” in the Advanced Modeling for InterSystems Business
Intelligence.)

You can use term lists in the multiple ways; one is to build a set of members, typically for use in a filter. In this case, you
use the %TERMLIST function and the %OR function; create a non-measure calculated member that has a Expression of
the following form:

%OR(%TERMLIST(term_list_name))

Where term_list_name is a string that evaluates to the name of a term list.

For example:

%OR(%TERMLIST("My Term List"))

This expression refers to all records that belong to any of the members indicated by the term list (recall that %OR combines
the members into a single member).

The %TERMLIST function has an optional second argument; if you specify "EXCLUDE" for this argument, the function
returns the set of all members of the level that are not in the term list.

13.4.5 Defining a Member for Filtering on Multiple Dimensions

Member-based filters are so useful that it is worthwhile to create members whose sole purpose is for use in filters. Suppose
that you need a filter like the following (which does not show literal syntax):

Status = "discharged" and ERvisit = "yes" and PatientClass="infant"

Also suppose that you need to use this filter in many places.

Rather than defining the filter expression repeatedly, you could define and use a calculated member. For this calculated
member, specify Expression as follows:

%OR({member_expression,member_expression,...}

For example:

%OR({BIRTHD].[H1].[YEAR].[NOW],[ALLERSEVD].[H1].[ALLERGY SEVERITIES].[003 LIFE-THREATENING]}

The expression ([BIRTHD].[H1].[YEAR].[NOW],[ALLERSEVD].[H1].[ALLERGY SEVERITIES].[003
LIFE-THREATENING]) is a tuple expression, which is the intersection of the member [BIRTHD].[H1].[YEAR].[NOW]
and the member [ALLERSEVD].[H1].[ALLERGY SEVERITIES].[003 LIFE-THREATENING] — that is, all patients
who were born in the current year and who have a life-threatening allergy.

Or more generally, use an expression of the following form:

126 Defining Models for InterSystems IRIS Business Intelligence

Defining Calculated Members

%OR({set_expression})

13.5 Specifying Additional Filtering for Listings for a
Calculated Measure
By default, when a user displays a detail listing, the system displays one row for each source record that is used in the
current context (that is, the context in which the listing was requested). For a given calculated measure, you can specify an
additional filter for the system to use when displaying the detail listing.

To specify an additional filter for listings, for a specific calculated measure:

1. Select the calculated measure in the Model Viewer.

2. In Details Area, specify Listing Filter as an MDX filter expression. To create the expression, type directly into this field
or click the magnifying glass and create the expression via the editor.

For information on and examples of MDX filter expressions, see “Filtering a Subject Area,” earlier in this book.

Regular measures can also include an additional filter for use when a listing is displayed. The syntax is different but the
net effect is the same. For details and an example, see “Specifying Additional Filtering for Listings,” earlier in this book.

Defining Models for InterSystems IRIS Business Intelligence 127

Specifying Additional Filtering for Listings for a Calculated Measure

14
Defining a Named Set

See “Accessing the Samples Shown in This Book,” in the first chapter.

To add a named set:

1. Click Add Element.

The system displays a dialog box.

2. For Enter New Item Name, type the name of the set.

See “Names for Model Elements,” earlier in this book.

3. Click Named Set.

4. Click OK.

5. Select the named set in the Model Viewer (in the section Named Sets).

6. For Set expression, specify an MDX set expression.

For details, see the reference section “Set Expressions” in the InterSystems MDX Reference.

For samples, see the HoleFoods and Patients cubes.

Defining Models for InterSystems IRIS Business Intelligence 129

15
Defining Subject Areas

This chapter describes how to define subject areas. It includes the following topics:

• Introduction to the parts of the Architect when displaying a subject area

• How to define a new subject area

• How to filter a subject area

• How to specify other options for a subject area

• How to add items to a subject area

• How to add overrides for measures

• How to add overrides for dimensions, hierarchies, and levels

• How to redefine an existing listing or add a new listing

• How to compile a subject area

Note: In the current release, you cannot hide relationships in a subject area. To hide, add, or override named sets and
calculated members (including calculated measures), use Studio. See “Reference Information for Subject Area
Classes.”

Also see “Defining Compound Cubes” in Advanced Modeling for InterSystems Business Intelligence.

Also see “Accessing the Samples Shown in This Book,” in the first chapter.

15.1 Introduction to Subject Areas in the Architect
This section describes what the Architect displays when you are viewing a subject area rather than a cube.

1. Click Open, click Subject Areas, click AsthmaPatients, and then click OK.

Now the system displays the page similar to what you see for a cube, except that it does not have the Class Viewer on
the left:

Defining Models for InterSystems IRIS Business Intelligence 131

15.1.1 Model Viewer

The left area is the Model Viewer, and it shows the overrides defined in this subject area. For example:

This subject area does not define any overrides or any listings. (Many subject areas include only a filter.)

Here you can add overrides, select existing overrides for editing, and delete overrides.

You can also define new listings.

15.1.2 Details Area

The right area is the Details Area, and it shows details for the element that is currently selected in Model Viewer (if any),
or for the subject area (if nothing is selected).

For example:

132 Defining Models for InterSystems IRIS Business Intelligence

Defining Subject Areas

15.2 Defining a Subject Area
To define a subject area:

1. In the Architect, click New.

2. Click Subject Area.

3. Enter the following information at a minimum:

• Subject Area Name — Name of the subject area to use as the default caption and to use in queries.

• Class name for the Subject Area — Complete package and class name for the subject area class.

• Base Cube — Logical name of the cube on which to base this subject area.

You can either type the cube name or click Browse and select the cube.

You can also use a comma-separated list of cubes; see “Defining Compound Cubes” in Advanced Modeling for
InterSystems Business Intelligence.

The other options are discussed later in this chapter.

Apart from the class name, you can edit all options after creating the subject area.

4. Click OK.

5. Click the subject definition in the Architect to select it. Then edit the Depends On option in the Details Area. For the
value, specify the full package and class name of the cube class on which this subject area is based.

The subject area class should always be compiled after the cube class. The Depends On setting helps control this.

6. Optionally save the subject area. To do so:

a. Click Save.

b. Click OK.

The system creates the class.

Or manually create the class as described in the appendix “Reference Information for Subject Area Classes.”

Defining Models for InterSystems IRIS Business Intelligence 133

Defining a Subject Area

15.3 Filtering a Subject Area
In most cases, you use subject areas to control access to data. In these cases, you specify the filter for the subject area. You
can do this in either or both of the following ways:

• You can specify a hardcoded filter. To do so, specify a value for the Filter option in the Architect. For this option,
specify an MDX filter expression to use as the filter for this subject area.

This section discusses how to create hardcoded filters.

• You can specify a filter whose value is determined at runtime. To do so, customize the %OnGetFilterSpec() method
of the subject area class. This method has access to the hardcoded filter, if any, and can modify that filter.

For information, see “Filtering a Cube or Subject Area Dynamically” in Advanced Modeling for InterSystems Business
Intelligence.

Note: The following subsections apply to MDX filters in general, not just to filters of subject areas.

15.3.1 Building a Filter in the Analyzer and Copying It into Your Model

If you are not familiar with MDX, the easiest way to specify a filter expression is as follows:

1. Create a filter by drag and drop as described in Using the Analyzer.

2.
Click the Query Text button .

The Analyzer displays a dialog box with text like this:

SELECT FROM [PATIENTS] WHERE [AGED].[H1].[AGE GROUP].&[0 TO 29]

3. Ignore all text before WHERE, which might be considerably more complicated depending on what you have done in
the Analyzer. Copy all the text that follows WHERE into the system clipboard or other temporary location.

4. Paste the copied text into the Filter option for the subject area.

For example:

[AGED].[H1].[AGE GROUP].&[0 TO 29]

15.3.2 Writing Filter Expressions

This section discusses common forms of filter expressions.

Also the InterSystems MDX Reference.

15.3.2.1 Simple Filter

A simple filter refers to a single member:

[AGED].[H1].[AGE GROUP].&[0 TO 29]

This filter accesses only patients in the age range 0 to 29.

The preceding expression is an MDX member expression. Note the following details:

• [AGED] is a dimension in this sample.

134 Defining Models for InterSystems IRIS Business Intelligence

Defining Subject Areas

• [H1] is the hierarchy in this dimension.

• [AGE GROUP] is a level in this hierarchy.

• &[0 TO 29] is the key for a member of that level.

The preceding member expression refers to the &[0 TO 29] member of the [AGE GROUP] level of the [H1] hier-
archy of the [AGED] dimension.

Also note the following possible timesaving variations:

• You can specify any of these identifiers in upper case, lower case, or mixed case at your convenience. MDX is not
case-sensitive.

• You can omit the square brackets for any identifier that does not include space characters.

• You can omit the hierarchy and level names if the resulting expression is not ambiguous.

You must always include the dimension name.

• You can use the member name instead of the member key. In most cases, this means that you can simply omit the
ampersand (&) from the member identifier.

15.3.2.2 Filter with Set of Members

In other cases, you might need multiple members. For example:

{[aged].[h1].[age group].[0 to 29],[aged].[h1].[age group].[30 to 59]}

The subject area is filtered to include all records of the fact table that belong to any of the elements of the set. This subject
area sees patients in the age group 0 to 29 and patients in the age group 30 to 59 — that is, it sees all patients under 60 years
of age.

Important: Notice that the list is enclosed by braces; this indicates that the list is an MDX set. A set is a union of ele-
ments.

15.3.2.3 Filter with a Tuple

In some cases, you might need to find only records that meet multiple simultaneous criteria. In this case, you use a tuple
expression. For example:

([aged].[h1].[age group].[60+],[diagd].[h1].[diagnoses].[diabetes])

This subject area sees patients who are 60 or older and who also have diabetes.

Important: Notice that the list is enclosed by parentheses; this indicates that the list is an MDX tuple. A tuple is an
intersection of elements.

15.3.2.4 Filter with Multiple Tuples

You can list multiple tuple expressions within a set. For example:

{([aged].[h1].[age group].[60+],[diagd].[h1].[diagnoses].[diabetes]),
([colord.].[h1].[color].[red],[allergd].[h1].[allergy].[soy])}

This subject area sees all patients who meet at least one of the following criteria:

• They are at least 60 years old and who also have diabetes.

• They are allergic to soy and their favorite color is red.

Defining Models for InterSystems IRIS Business Intelligence 135

Filtering a Subject Area

15.4 Specifying Other Subject Area Options
In addition to the previously described options, you can specify the following additional options for a subject area:

• Disabled — (Optional) If you select this check box, the override is disabled. When you recompile the subject area, this
override is ignored and the system uses the definition given in the cube.

• Display name — Localizable name of the subject area.

• Description — (Optional) Comments to add to the subject area class definition. Each line is saved as a separate comment
line at the start of the class definition.

• Default member — (Optional) Default member to use when a query skips an axis. Specify an MDX expression that
returns a member that is accessible in this subject area. For information on member expressions, see the InterSystems
MDX Reference. If this is not specified, the system uses the default member as defined in the cube.

• Default listing — (Optional) Logical name of the default listing for this subject area. This listing must be defined in
the cube or in the subject area. If this is not specified, the system uses the default listing as defined in the cube.

• Owner — (Optional) Specify the owner of the cube. Specify an InterSystems IRIS® username.

• Count measure caption — (Optional) Specify an alternative name for the Count measure.

• Resource — (Optional) Specify the resource that secures the subject area.

For information on how this is used, see “Setting Up Security” in Implementing InterSystems Business Intelligence.

• Caption— (Optional) Specify the caption to display in the Analyzer and other utilities when working with this cube.

• Domain— (Optional) Specify the name of the domain to contain the localized strings of this subject area. You might
find it convenient to use a single domain for all your cubes and subject areas; in other cases, it might be appropriate
to have a separate domain for each cube and subject area. See the chapter “Performing Localization” in Implementing
InterSystems Business Intelligence.

15.5 Adding Items to a Subject Area
To add an override or a listing to a subject area, use the following general procedure:

1. Click Add.

The system displays a dialog box on which you can choose an item from the cube:

136 Defining Models for InterSystems IRIS Business Intelligence

Defining Subject Areas

If the subject area already defines an override for an item, this dialog box displays a check mark for that item.

2. Click Measure, Dimension, or Listing.

With Measure, you can override any measure defined in the cube.

With Dimension, you can override any dimension, hierarchy, or level defined in the cube.

With Listing, you can override any listing defined in the cube. You can also add listings.

3. Click the item or items to override and then click OK.

The system adds the items, displays them in the Model Viewer, and shows their details in the Details Area.

4. Edit the details in the Details Area.

15.6 Defining an Override for a Measure
To define an override for one or more measures:

1. Optionally click a measure name in the Model Viewer, to indicate where the new override is to be added.

If you do so, the new override is added before the measure you clicked.

2. Click Add.

3. Click Measure.

4. Click the measure or measures to override and then click OK.

The system adds the measures and displays them in the Model Viewer.

5. To define the override for a measure, click the measure name in Model Viewer and edit the following options in the
Details Area. These are all optional.

• Hidden — Select this to hide this measure in this subject area. Or clear it to use this measure in this subject area.

• Display name — Specify a new display name to replace the one defined in the cube.

• Description — Specify a new description to replace the one defined in the cube.

Defining Models for InterSystems IRIS Business Intelligence 137

Defining an Override for a Measure

• Format string — Specify a new format string to replace the one defined in the cube. See “Specifying a Format
String,” earlier in this book.

Note: You cannot define overrides for calculated measures this way. A calculated measure is actually a calculated
member; to define an override for it, you must use Studio.

15.7 Defining an Override for a Dimension, Hierarchy, or
Level
To define an override for one or more dimensions, hierarchies, or levels:

1. Click Add.

2. Click Dimension.

The system displays the dimensions, hierarchies, and levels of the cube as follows:

3. Click the item or items to override and then click OK.

The system adds the items and displays them in the Model Viewer.

You can click any combination of dimensions, hierarchies, and levels. If you click a hierarchy but not its containing
dimension, the system always adds the dimension as well (because the dimension is part of the hierarchy definition).
Similarly, if you click a level but not its containing hierarchy or dimension, the system always adds the hierarchy and
dimension as well.

138 Defining Models for InterSystems IRIS Business Intelligence

Defining Subject Areas

4. To define the override for an item, click the item name in Model Viewer and edit the following options in the Details
Area. These are all optional.

• Hidden — Select this to hide this item in this subject area. Or clear it to use this item in this subject area.

• Display name — Specify a new display name to replace the one defined in the cube.

• Description — Specify a new description to replace the one defined in the cube.

• Sort (Levels only) — Specify a different sort order for the members of this level.

Note: If you change the sort attribute for a level in a subject area, that change is not in effect until you rebuild
the cube.

15.8 Redefining a Listing or Adding a New Listing
To redefine a listing or define a new listing for the subject area:

1. Optionally click a listing name in the Model Viewer, to indicate where the new override is to be added.

If you do so, the new override is added before the listing you clicked.

2. Click Add.

3. Click Listing.

The system displays the listings of the cube and of the subject area as follows:

4. Optionally click the listing or listings to redefine.

5. Optionally type the name of a new listing in the box at the bottom.

6. Click OK.

The system adds the listings (with no definitions) and displays them in the Model Viewer.

Defining Models for InterSystems IRIS Business Intelligence 139

Redefining a Listing or Adding a New Listing

7. To define a listing, click the listing name in Model Viewer and edit the options in the Details Area.

For details, see the chapter “Defining Listings.”

15.9 Compiling a Subject Area
To compile a subject area class in the Architect:

1. Click Compile.

The system displays a dialog box.

2. Click Compile.

The system starts to compile the class and displays progress as it does so.

3. Click OK.

Or open the subject area class in Studio and compile it in the same way that you compile other classes.

Tip: Before you compile a subject area class, you must compile the cube class on which it depends. It is useful, but not
required, to use Studio to edit the subject area class and add the DependsOn keyword to force the classes to be
compiled in the correct order. See “Requirements for a Subject Area Class” in the appendix “Reference Information
for Subject Area Classes.”

140 Defining Models for InterSystems IRIS Business Intelligence

Defining Subject Areas

16
Defining Listing Groups

This chapter describes how to use the Listing Group Manager, which enables you to define listings that are not contained
in any cube definition. It discusses the following topics:

• Introduction to listing groups

• How to access the Listing Group Manager

• How to add a new listing group

• How to display an existing listing group

• How to add a listing to a listing group

• How to remove a listing from a listing group

• How to compile a listing group

• How to delete a listing group

Also see “Accessing the Samples Shown in This Book,” in the first chapter.

16.1 Introduction to Listing Groups
A listing group is a special kind of class that defines multiple listings, which are supplementary in the sense that they are
defined outside of the cube definition. These can be any kind of listing supported by InterSystems IRIS Business Intelligence.
You can give users access to the Listing Group Manager so that they can define additional listings without modifying the
cube definitions.

A listing group is meant to be a convenient container; it also specifies the following pieces of information that apply to all
listings in the group:

• The cube or cubes in which the listings can be used.

• The resource that secures each listing (by default).

A listing group cannot override listings defined elsewhere.

A listing group is either disabled or enabled. If a listing group is disabled, its listings are not available to any cubes. If a
listing group is enabled, and if it has been compiled, its listings are available to the specified cubes.

Important: The listings in a listing group are not available until the listing group has been compiled.

Defining Models for InterSystems IRIS Business Intelligence 141

The listing group can have an associated resource, so that only users with access to that resource can edit the listing group.

Note that the Analyzer and the Dashboard Designer do not display the listing groups themselves, but rather simply display
all available listings. End users do not have any information about where or how any given listing is defined.

16.2 Accessing the Listing Group Manager
The Listing Group Manager enables you to define listing groups and the listings in them. To access the Listing Group
Manager:

1. Click the InterSystems Launcher and then click Management Portal.

Depending on your security, you may be prompted to log in with an InterSystems IRIS® username and password.

2. Switch to the appropriate namespace as follows:

a. Click Switch.

b. Click the namespace.

c. Click OK.

3. Click Analytics, click Tools, and then click Listing Group Manager.

If there is a listing group in this namespace, the Listing Group Manager displays the last listing group that you looked
at.

If there is no listing group in this namespace, the Listing Group Manager prompts you to create one. Enter the following
details and then press OK:

• Listing Group Name — Logical name of the listing group. You can edit this later.

• Listing Group Class Name — Class name of the listing group, including the package.

• Listing Group Description — Optional description of the listing group. You can edit this later.

Or click the X in the upper right of the dialog box.

The Listing Group Manager displays a listing group as shown in the following picture:

142 Defining Models for InterSystems IRIS Business Intelligence

Defining Listing Groups

The left area displays the logical name of the listing group (Sample Listing Group in this example), followed by the
names of the listings in this listing group. You can collapse and expand this part of the display.

The right area displays details for the item that you have selected on the left, either the listing group or one of the listings
defined in it.

16.3 Adding a Listing Group
In the Listing Group Manager, to add a listing group:

1. Click New.

The system then displays a dialog box.

2. Enter the following details:

• Listing Group Name — Logical name of the listing group. You can edit this later.

• Listing Group Class Name — Class name of the listing group, including the package.

• Listing Group Description — Optional description of the listing group. You can edit this later.

3. Press OK.

The Listing Group Manager then creates and saves the class and displays the new listing group. The left area now displays
something like the following:

Defining Models for InterSystems IRIS Business Intelligence 143

Adding a Listing Group

Now you can modify details of the listing group (which affect all the listings it contains), as described in the following
subsection. Or you can add listings, as described in the later in this chapter.

16.3.1 Modifying Details of the Listing Group

In the Listing Group Manager, when you select the listing group in the left area (rather than selecting any listing contained
in it), the right area displays the following details, which you can edit:

• Disabled — Optionally click this to disable the listing group. If you do so, the listings in this listing group are not
available to any cubes.

• Listing Group Name — Specify the logical name of the listing group.

• Listing Group Display Name — Optionally specify the display name of the listing group.

• Listing Group Target Cubes — Select the cubes and subject areas that should be able to use the listings defined in this
listing group. Notes:

– If you select a cube, the listings will be available in that cube and in any subject areas based on that cube.

– If you select a subject area but do not select the cube on which the subject area is based, then the listings are
available only in that subject area.

The listings are available only if the listing group is enabled and compiled.

• Listing Group Resource — Optionally select the resource that secures this listing group. Only users with access to this
resource can edit this listing group.

For information on how resources are used, see “Setting Up Security” in Implementing InterSystems Business Intelli-
gence.

• Default Resource for Listings — Optionally select the resource that, by default, secures each listing in this listing group.

• Group Description — Optionally specify the description of the listing group.

After making changes, click either Save or Save As.

If you click Save As, the system prompts you for a new logical name, a new class name, and an optional new description.

To make the changes available to users, be sure to also compile the listing group.

16.4 Displaying a Listing Group
In the Listing Group Manager, to display a listing group:

1. Click Open.

2. Click the name of the listing group.

3. Click OK.

144 Defining Models for InterSystems IRIS Business Intelligence

Defining Listing Groups

Now you can modify details of the listing group (which affect all the listings it contains), as described in the previous section.
Or you can add, modify, or remove listings, as described later in this chapter.

16.5 Adding a Listing to a Listing Group
In the Listing Group Manager, to add a listing to a listing group:

1. Display the listing group.

2. Click Add Listing.

When you do, the system adds a new listing (with no details) and automatically saves the listing group at this point.
The left area displays the name of the new listing; it has a name such as New Listing or New Listing1 and so
on.

3. Click the name of the newly added listing.

4. Modify the name and other details shown in the right area. For information on these details, see the chapter “Defining
Listings.”

Note that you cannot specify a listing name that already exists in the target cube or cubes; a listing group cannot
override listings defined elsewhere.

5. Click Save to save the listing group. Or click Save As to create a new listing group.

6. To make the changes available to users, be sure to also compile the listing group.

16.6 Modifying a Listing
In the Listing Group Manager, to modify a listing:

1. Display the listing group that contains the listing.

2. In the left area, click the name of the listing.

3. Modify the name and other details shown in the right area. For information on these details, see the chapter “Defining
Listings.”

4. Click Save to save the listing group. Or click Save As to save the listing group with a new name.

5. To make the changes available to users, be sure to also compile the listing group.

16.7 Removing a Listing from a Listing Group
In the Listing Group Manager, to remove a listing:

1. Display the listing group that contains the listing.

2. In the left area, click the name of the listing.

3. Click Remove Listing and then click OK.

4. To make the changes available to users, be sure to also compile the listing group.

Defining Models for InterSystems IRIS Business Intelligence 145

Adding a Listing to a Listing Group

16.8 Compiling a Listing Group
In the Listing Group Manager, to compile a listing group:

1. Display the listing group.

2. If Disabled is cleared, make sure that Listing Group Target Cubes specifies at least one cube.

3. Click Compile.

The system then saves the class (if needed), compiles the class, and displays a message to indicate that it compiled the
class.

After a listing group is compiled, its listings are available to the target cubes and subject areas; for details; see “Modifying
Details of the Listing Group.”

16.8.1 Possible Compile Errors

The Listing Group Manager issues a compilation error in any of the following situations:

• If there is no target cube specified. In this case, make sure that Listing Group Target Cubes specifies at least one cube
and then recompile.

• If this listing group defines listings that have the same names as existing listings in the target cubes or subject areas.
In that case, modify the names of the listings in the listing group, and then recompile. (Or disable the applicable listings
within the listing group and then recompile.)

• If a target cube or subject area specifies disableListingGroups="true". The compilation error includes the
text Target cube does not accept listing groups: . In this case, remove that target cube, leaving any
others, and recompile. Or modify the cube or subject area so that it can accept listing groups and recompile the cube
or subject area.

For information on disableListingGroups, see “Reference Information for Cube Classes” and “Reference
Information for Subject Area Classes.” You cannot specify this option via the Architect.

16.9 Deleting a Listing Group
In the Listing Group Manager, to delete a listing group:

1. Display the listing group.

2. Click Delete.

3. Click OK to confirm this action.

The system then deletes the class and displays a message to indicate that it did so.

The listings in this listing group are no longer available.

146 Defining Models for InterSystems IRIS Business Intelligence

Defining Listing Groups

A
Reference Information for Cube Classes

The Architect creates and modifies cube classes, which you can also create and edit directly in Studio. This appendix provides
reference information on these classes. It discusses the following topics:

• Basic requirements for a cube class

• Common attributes in a cube

• <cube>

• <measure>

• <dimension>

• <hierarchy>

• <level>

• <member>

• <property>

• <listing>

• <listingField>

• <calculatedMember>

• <namedSet>

• <relationship>

• <expression>

• <index>

Also see “When to Recompile and Rebuild,” earlier in this book, as well as “Using Advanced Features of Cubes and
Subject Areas” in Advanced Modeling for InterSystems Business Intelligence.

Also see “Accessing the Samples Shown in This Book,” in the first chapter.

A.1 Requirements for a Cube Class
To define a cube, create a class that meets the following requirements:

• It must extend %DeepSee.CubeDefinition.

Defining Models for InterSystems IRIS Business Intelligence 147

• It must contain an XData block named Cube

• For this XData block, XMLNamespace must be specified as follows:

XMLNamespace = "http://www.intersystems.com/deepsee"

• The root element within the XData block must be <cube> and this element must follow the requirements described
in the rest of this appendix.

• It is useful, but not required, for the class to specify the DependsOn compiler keyword so that this class is compiled
only after the source class of the cube is compiled and can be used.

• The class can define the DOMAIN parameter, which specifies the domain to which any localized strings belong. For
example:

Parameter DOMAIN = "PATIENTSAMPLE";

For details, see the chapter “Performing Localization” in Implementing InterSystems Business Intelligence.

For example:

Class BI.Model.PatientsCube Extends %DeepSee.CubeDefinition [DependsOn=BI.Study.Patient]
{

XData Cube [XMLNamespace = "http://www.intersystems.com/deepsee"]
{
<cube
name="Patients"
 owner="_SYSTEM"
 caption="Patients"
 sourceClass="BI.Study.Patient"
 other_cube_options...
>

<measure measure_definition/>
...

<dimension dimension_definition/>
...

</cube>
}

Studio provides assistance as you type. For example:

A.2 Common Attributes in a Cube
Most of the elements in the cube have the following attributes, which are listed here for brevity:

PurposeAttribute

Logical name of the element for use in MDX queries against this cube. See
“Names for Model Elements,” earlier in this book.

name

148 Defining Models for InterSystems IRIS Business Intelligence

Reference Information for Cube Classes

PurposeAttribute

(Optional) Localized name of this element for use in user interfaces. If you do
not specify this attribute, the user interface instead displays the value specified
by the name attribute. For details, see the chapter “Performing Localization”
in Implementing InterSystems Business Intelligence.

displayName

(Optional) Description of this element.description

(Optional) Controls whether the compiler uses this element. If this attribute is
"true" then the compiler ignores the element; this is equivalent to commenting
out the element. By default, this attribute is "false"

disabled

(Optional) Additional notes about this element, for display only within the
Architect and Studio.

additionalDescription

A.3 <cube>
The <cube> element is the root element in the XData block. This element contains the following contents:

PurposeAttribute or Element

See “Common Attributes in a Cube” earlier in this appendix.name, displayName,
description, disabled

Complete package and class name of the base class used by this cube.
See “Possible Source Classes for a Cube” earlier in this book.

sourceClass

(Optional) Name of owner of cube.owner

(Optional) Name of the resource used to control access to this cube, when
it is accessed via the Architect. See the Implementing InterSystems
Business Intelligence.

resource

(Optional) Caption to display in the Analyzer and other utilities when
working with this cube.

caption

(Optional) Caption to use for the default measure, which counts records.
The default caption is Count. Internally, the name of the measure is
%Count.

countMeasureCaption

(Optional) Name to use for the default measure, which counts records.
The default name of this measure is %Count.

countMeasureName

(Optional) Specify the logical name of the <listing> to use as the default
in this cube. See “<listing>,” later in this appendix.

defaultListing

(Optional) Specifies the string to use as the member name if the source
data for a level is null. For example, specify nullReplacement="None"

This option is overridden by the nullReplacement attribute, if specified,
for a given <level>.

nullReplacement

Defining Models for InterSystems IRIS Business Intelligence 149

<cube>

PurposeAttribute or Element

(Optional) Specifies the size of the caching buckets used for this cube. A
group is 64,000 contiguous rows, and a bucket is an integer multiple of
groups. The default bucket size is 8. That is, by default, the first 512,000
rows are bucket number 1, the next 512,000 rows are bucket number 2,
and so on.

In some cases, you may want to increase this value if you expect to have
a large number of facts and do not expect many updates to older values
within the cube. If you change this value, be sure to delete all cached
results for this cube. To do so, call the %KillCache() method of the cube
definition class.

bucketSize

(Optional) Specifies an associated KPI class that defines actions that are
available for pivot tables based on this cube. Specify the full package and
class name of a subclass of %DeepSee.KPI.

actionClass

(Optional) Specifies the maximum number of rows in the fact table. This
determines the number of rows of the base table that the system uses
when building the cube. Use this attribute to assist in debugging when
you do not want to process the entire base table. By default, all rows of
the base table are processed.

maxFacts

(Optional) Controls how the system builds the indices: using a
process-private global (slower but does not lead to <STORE> errors) or
entirely in memory (faster). The default is "false", in which case the
system uses a process-private global for temporary storage while it builds
in the indices.
If your cube does not contain a large number of indices (dimensions and
measures) and does not contain dimensions with very large numbers of
members, you can use "true" for faster performance. It is worthwhile to
try this setting; if you encounter <STORE> errors when you build the cube,
then change the value back to the default.

bitmapChunkInMemory

(Optional) Used to construct an optional ORDER BY clause for use when
building the entire cube; does not affect incremental updates. Specify a
comma-separated list of fields in the source table.You can use the SQL
keywords ASC and DESC. For example: "Age DESC,Gender"

initialBuildOrder

(Optional) Specifies an optional WHERE clause to use when building or
updating the cube; this causes the cube to use a subset of the records.
Specify an SQL comparison expression that uses fields in the source
table. For example: Gender='F'. Has no effect on a cube based on a
data connector.

buildRestriction

(Optional) See “Using Cube Inheritance to Define Reusable Elements,”
in Advanced Modeling for InterSystems Business Intelligence.

abstract

inheritsFrom

(Optional) Specify this attribute as "true" if you want to prevent anyone
from defining a listing group that uses this cube as a target. The default
is "false". See “Compiling a Listing Group,” earlier in this book.

disableListingGroups

(Optional) See the appendix “Using Cube Versions” in Implementing
InterSystems Business Intelligence.

version

150 Defining Models for InterSystems IRIS Business Intelligence

Reference Information for Cube Classes

PurposeAttribute or Element

Do not use.defaultMeasure,
defaultMember, precompute

(Optional) You can include zero or more <measure> elements, each of
which defines a measure.

<measure>

(Optional) You can include zero or more <dimension> elements, each
of which defines a dimension.

<dimension>

(Optional) You can include zero or more <listing> elements, each of
which defines a listing, to be available in the Analyzer.

<listing>

(Optional) You can include zero or more <listingField> elements,
each of which defines a listing, to be available in the Analyzer.

<listingField>

(Optional) You can include zero or more <namedSet> elements, each of
which defines a named set, which is an alias for a member or for a set of
members.

<namedSet>

(Optional) You can include zero or more <calculatedMember> elements,
each of which defines a member that is calculated in terms of other
members. This is typically used to define measures that are calculated
based on other measures.

<calculatedMember>

(Optional) You can include zero or more <relationship> elements. A
<relationship> element connects another cube to your cube so that you
can use levels of that other cube when you query your own cube.

<relationship>

(Optional) You can include zero or more <index> elements, each of which
defines an optional, custom index on the fact table. This can be useful if
you plan to run SQL queries on the fact table. For information on the fact
table, see “Details for the Fact and Dimension Tables.”

<index>

(Optional) You can include zero or more <expression> elements, each
of which defines an expression (typically an intermediate value), for use
in the definition of one or more measures or dimensions. Values of
expressions are not stored but are available during cube build time.

<expression>

For example:

<cube
name="Patients"
 owner="_SYSTEM"
 caption="Patients"
 sourceClass="BI.Study.Patient"
 >
...

A.4 <measure>
The <measure> element defines a measure; your cube can have any number of measures. This element has the following
attributes:

Defining Models for InterSystems IRIS Business Intelligence 151

<measure>

PurposeAttribute

See “Common Attributes in a Cube” earlier in this appendix.name, displayName,
description, disabled

Specify one of these attributes in almost the same way that you would specify
Property or Expression in the Architect; see “Specifying the Source Values for a
Dimension or Level” and “Details for Source Expressions,” earlier in this book.
Notes:

• For sourceProperty, use the same value you would enter for Property,
enclosed within single quotes.

For example: sourceProperty='Age'

• For sourceExpression, use the same value you would enter for Expression,
enclosed within single quotes.

For example: sourceExpression='%source.property/100'

You can enclose the value in double quotes instead if the value itself does not
contain any double quotes. For example:
sourceExpression="%source.property/100"

sourceProperty

sourceExpression

(Optional) Specifies the data type for the measure. Most measures are numeric,
which is the default. See “Specifying the Measure Type.”

type

(Optional) See “Using Text Analytics in Cubes” in Advanced Modeling for
InterSystems Business Intelligence.

iKnowSource,
iKnowDomain,
iKnowDictionaries,
iKnowParameters

(Optional) Specifies how to aggregate values for this measure, whenever
combining multiple records. If you specify this, use one of the following values:

• "SUM"

• "COUNT" — Counts the records for which the source data has a non-null
(and nonzero) value.

• "MAX" — Uses the largest value in the set.

• "MIN" — Uses the smallest value in the set.

• "AVG" — Calculates the average value for the set.

For a boolean or a string measure, this attribute must be "COUNT".

aggregate

(Optional) If hidden="true" then the measure is defined and can be used in
queries, but is not listed as an available measure in the Analyzer. This lets you
define measures that serve as intermediate calculations.

hidden

(Optional) Specifies the number of decimal places to keep. By default, scale
is 0, and the system rounds each measure value to a whole number before
writing it to the fact table.

scale

(Optional) See “Linking to Another Table.”linkClass,
linkProperty

152 Defining Models for InterSystems IRIS Business Intelligence

Reference Information for Cube Classes

PurposeAttribute

(Optional) If searchable="true" then the system displays this measure as
an option in advanced filters, where you can create filter expressions that refer
to the measure value (typically to compare the measure value to a constant).

For a searchable measure, the system adds an additional index, if appropriate,
to support these expressions. See “Measure Search Expressions” in the
InterSystems MDX Reference. A searchable measure cannot include square
brackets or commas ([],) in its name.

Note that it may be possible to use a measure as a searchable measure in a
manual MDX query even if it is not marked as searchable="true".
In all cases, the measure is also available for use in the same way as any other
measure.

searchable

(Optional) Name, in the generated fact table, for the column that corresponds
to this measure. If this attribute is null, the system generates a name.This option
does not apply to NLP measures.

Be sure not to use an SQL reserved word. For a list of the SQL reserved words,
see “Reserved Words” in the InterSystems SQL Reference. The name must
start with either a letter or a percent sign (%). If the first character is %, the second
character must be Z or z. For more details on restrictions, see “Class Members”
in the appendix “Rules and Guidelines for Identifiers” in the Orientation Guide
for Server-Side Programming. Also, do not use fact or listing, in any
combination of lowercase and uppercase characters.

factName

(Optional, not used by the system)Value to override the generated selectivity
of the property in the fact table class. Business Intelligence queries do not use
this parameter. This option is intended for cases where SQL is used directly
against the generated fact table and the generated selectivity needs to be
overridden.
Specify a positive value less than or equal to 1. For details, see
SetFieldSelectivity() in %SYSTEM.SQL.

factSelectivity

(Optional) Controls how the values are displayed. See “ formatString Details.”formatString

(Optional) Indicates the units in which the measure value is expressed. Currently
this attribute is provided only for general information.

units

(Optional) These attributes specify an optional additional filter that is applied
when a user selects this measure in a pivot table and then displays a listing.
For details, see “Specifying Additional Filtering for Listings,” in the chapter
“Defining Measures.”

listingFilterOperator

and listingFilterValue

For example:

<measure name="Test Score" sourceProperty="TestScore" aggregate="SUM"/>
<measure name="Avg Test Score" sourceProperty="TestScore" aggregate="AVG"/>
<measure name="Allergy Count"
 sourceExpression="##class(Cubes.StudyPatients).GetAllergyCount(%source.%ID)"/>

Notice that the Allergy Count measure uses a utility method that is defined within the cube class.

A.4.1 %COUNT Measure

The system includes a predefined measure named %COUNT, which returns the number of facts in a query.

Defining Models for InterSystems IRIS Business Intelligence 153

<measure>

A.4.2 Measures Dimension

The system automatically creates the Measures dimension, and places all measures into it.

A.4.3 formatString Details

The formatString attribute is a pieced string as follows:

Format^Color

• For the Format piece, specify a string that consists of one to four subpieces as follows:

positive_format;negative_format;zero_format;missing_format;

Where positive_format controls how a positive value is displayed, negative_format controls how a negative value is
displayed, zero_format controls how zero is displayed, and missing_format controls how a missing value is displayed.

For details, see “Specifying a Format String,” earlier in this book.

• For the Color piece, specify a string that consists of one to four subpieces as follows:

positive_color;negative_color;zero_color;missing_color;

Where positive_color controls the color for a positive value, negative_color controls the color for a negative value,
zero_color controls the color for zero, and missing_color controls the color for a missing value.

For each of these, specify a CSS color name or a hex color code.

For date measures, use the following variation:

%date%^Color

Where Color is as given above. The %date% piece formats the date according to the default date format for the current
process.

A.5 <dimension>
The <dimension> element defines a dimension, which contains one or more hierarchies, each of which contains one or
more levels. Your cube can have any number of dimensions.

The <dimension> element has the following contents:

PurposeAttribute or Element

See “Common Attributes in a Cube” earlier in this appendix.name, displayName,
description,
disabled

154 Defining Models for InterSystems IRIS Business Intelligence

Reference Information for Cube Classes

https://www.w3.org/TR/css3-color/
http://en.wikipedia.org/wiki/Web_colors

PurposeAttribute or Element

Specify one of these attributes in almost the same way that you would specify Property

or Expression in the Architect; see “Defining the Source Values for a Dimension or
Level. ” Notes:

• For sourceProperty, use the same value you would enter for Property, enclosed
within single quotes.

For example: sourceProperty='Age'

• For soureExpression, use the same value you would enter for Expression,
enclosed within single quotes.

For example: sourceExpression='%source.property_"ABC"'

You can enclose the value in double quotes instead if the value itself does not
contain any double quotes. For example:
sourceExpression="%source.property"

sourceProperty

sourceExpression

Specify one of the following:

• "data" (the default) — Creates an ordinary dimension.

• "time" — Creates a time dimension. See “Defining a Time Level. ”

• "age" — Creates an age dimension. See “Defining an Age Level. ”

• "computed" — Creates a computed dimension. See “Defining Computed
Dimensions” in Advanced Modeling for InterSystems Business Intelligence.

• "iKnow" — Creates a dimension uses text processed by NLP. See “Using Text
Analytics in Cubes” in Advanced Modeling for InterSystems Business Intelli-
gence.

type

(Optional) Specify this only if type is "time". The calendar attribute specifies the
calendar to use when assigning records into members of time levels. Use
"gregorian" (the default) for the Gregorian calendar. Or use "hijriTabular"
or "hijriObserved" for a Hijri calendar.

calendar

(Optional) See “Using Text Analytics in Cubes” in Advanced Modeling for
InterSystems Business Intelligence.

iKnowMeasure and
iKnowType

(Optional) Indicates whether this dimension has an All Level.The default is "true".hasAll

(Optional) Name used for the All Level and All Member for this dimension. The
default name is All dimension, where dimension is the dimension name.

allCaption

(Optional) Specifies the localized name used for the All member. If you do not specify
this attribute, the user interface instead displays the value specified by the
allCaption attribute.

allDisplayName

(Optional) If hidden="true" then the dimension is defined and can be used in
queries, but the Analyzer does not list the dimension as available for use.The default
is "false".

hidden

Defining Models for InterSystems IRIS Business Intelligence 155

<dimension>

PurposeAttribute or Element

(Optional) Controls whether the Analyzer displays the hierarchy names within this
dimension. Specify one of the following:

• "default" — Display the hierarchy names only if there is more than one hier-
archy.

• "true" — Always display the hierarchy names.

• "false" — Never display the hierarchy names.

This attribute has no effect on the queries themselves.

showHierarchies

(Optional) See “Defining a Shared Dimension,” in Advanced Modeling for
InterSystems Business Intelligence. Do not specify this option for date dimensions,
which are automatically shared.

sharesFrom

(Optional) See “Defining Computed Dimensions” in Advanced Modeling for
InterSystems Business Intelligence.

dimensionClass

Specifies a hierarchy within this dimension.You must include at least one
<hierarchy> element and can include multiple <hierarchy> elements.

<hierarchy>

A.6 <hierarchy>
The <hierarchy> element specifies a hierarchy within the given dimension. This element has the following contents:

PurposeAttribute or
Element

See “Common Attributes in a Cube,” earlier in this appendix.name,
displayName,
description,
disabled

(Optional) If hidden="true" then the hierarchy is defined and can be used in queries, but
the Analyzer does not list the hierarchy and its levels as available for use. The default is
"false".

hidden

Specifies a level within this hierarchy.You must include at least one <level> element and
you can include multiple <level> elements.

<level>

A.7 <level>
The <level> element specifies a level within the given hierarchy. It has the following contents:

PurposeAttribute

See “Common Attributes in a Cube,” earlier in this appendix.name, displayName,
description,
disabled

156 Defining Models for InterSystems IRIS Business Intelligence

Reference Information for Cube Classes

PurposeAttribute

Specify one of these attributes. The syntax is almost the same as you would use
for Property or Expression in the Architect; see “Defining the Source Values for a
Dimension or Level. ” Notes:

• For sourceProperty, use the same value you would enter for Property,
enclosed within single quotes.

For example: sourceProperty='Age'

• For sourceExpression, use the same value you would enter for Expression,
enclosed within single quotes.

For example: sourceExpression='%source.property_"ABC"'

You can enclose the value in double quotes instead if the value itself does not
contain any double quotes. For example:
sourceExpression="%source.property"

For the requirements for levels within a time or age dimension, see “Defining a
Time Level” and “Defining an Age Level. ”

For levels in an NLP dimension, sourceProperty and sourceExpression are
ignored, because these levels use a different mechanism to specify the source
values. See “Using Text Analytics in Cubes” in Advanced Modeling for InterSystems
Business Intelligence.

sourceProperty,
sourceExpression

Only for levels within a time or age dimension. See “Defining a Time Level” and
“Defining an Age Level. ”

timeFunction

(Optional) Only for levels within a time dimension. See “Specifying a Date Offset. ”timeOffset

(Optional) Only for levels within a time dimension. See “Specifying a Time Format”
in the chapter “Details of Defining Levels.”

timeFormat

(Optional) If this attribute is "true" then the source value is expected to be a list,
and each item in the list becomes a member of this level.
The default is "false".

By default, the list is expected to be in $LIST format. To use a string consisting of
a character-delimited list, specify listDelimiter.

A list-based level cannot have parent levels or child levels.

list

(Optional) Specifies the delimiter used to separate items in the list that is used as
the source data for the level. Use this if the list is a character-separated list.

listDelimiter

(Optional) Specifies the string to use as the member name if the source data for
this level is null. For example, specify nullReplacement="No City".

nullReplacement

(Optional) For numeric data, this specifies how to assign numeric values to bins
(each bin is a member of this level). For other data, this specifies replacement
values. This attribute also controls the default order of the members of this level.
See the subsections “Defining a Basic Range Expression” and “Defining a Compact
Multi-Range Expression.”

rangeExpression

Defining Models for InterSystems IRIS Business Intelligence 157

<level>

PurposeAttribute

(Optional) For properties that have values for the DISPLAYLIST and VALUELIST
parameters, this attribute specifies which value to include in the index. If this attribute
is "false" (the default), the system uses the value given by VALUELIST; if this
attribute is "true", the system uses the value given by DISPLAYLIST.

This option is ignored if you specify linkClass and linkProperty.

useDisplayValue

(Optional) Specifies how to sort members of this level by default. For a level in a
time dimension, specify "asc" or "desc"
For a level in a data dimension, specify "asc", "asc numeric", "desc", or "desc
numeric"

sort

(Optional) See “Linking to Another Table.”linkClass,
linkProperty

(Optional) Name, in the generated fact table, for the column that corresponds to
this level. If this attribute is null, the system generates a name. This option does
not apply to time levels or NLP levels.

See the comments for factName for <measure>.

factName

(Optional) Specifies the level (or relationship) on which this level has a dependency.
Specify the full MDX identifier of the level (or relationship) . Or specify a
comma-separated list of MDX level (or relationship) identifiers. See “Defining
Dependencies Between Levels in Different Hierarchies.” This attribute is completely
unrelated to the DependsOn compiler keyword.

dependsOn

(Optional) Specifies whether the level can be used as a filter control in the
dashboard. If this attribute is "true" (the default), users can select this level when
adding a filter control; if this attribute is "false", the level is not listed as an option.
The purpose of this option is only to reduce the number of choices seen in the
Dashboard Editor, and there is no effect on the Analyzer or on the engine.

useAsFilter

(Optional, not used by the system) Value to override the generated selectivity of
the property in the generated level table. Business Intelligence queries do not use
this parameter.This option is intended for cases where SQL is used directly against
the level table and the generated selectivity needs to be overridden.
Specify a positive value less than or equal to 1. For details, see SetFieldSelectivity()
in %SYSTEM.SQL.

factSelectivity

(Optional) If hidden="true" then the level is defined and can be used in queries,
but the Analyzer does not list the level as available for use. The default is "false".

hidden

(Optional) You can include any number of <member> elements, each of which
defines a member of the level.

<member>

(Optional) You can include any number of <property> elements, each of which
defines a property of the level.

<property>

For example:

<level name="ZIP" sourceProperty="HomeCity.PostalCode" />

For another example, the following level definition also defines a property for that level:

158 Defining Models for InterSystems IRIS Business Intelligence

Reference Information for Cube Classes

<level name="City" sourceProperty="HomeCity.Name">
 <property name="Population" sourceProperty="HomeCity.Population" />

A.7.1 Linking to Another Table

Within a <level>, <measure>, or <property> element, the linkClass and linkProperty attributes enable you
to use a property in another class, a class that you cannot access via dot syntax. To use the link feature, you must be able
to look up a record in the other class by the ID of the record.

The feature works as follows:

• Specify sourceProperty or sourceExpression as a value that gives the ID of the desired record in the other
class.

• Specify linkClass as the complete package and class name for the other class.

• Specify linkProperty as the property in the other class on which you want to base the level that you are defining.

For example, you could add the following to the Hole Foods sample:

<level name="Product" sourceProperty ="Product" linkClass="HoleFoods.Product" linkProperty="Name" />

If the external class linkClass and a property linkProperty are defined, the system runs a query against the external
class to fetch the value of the given property from that class, for the record whose ID equals the given sourceProperty
or sourceExpression.

A.7.2 Specifying a Date Offset

In some cases, you may need a time level to match a corporate financial calendar that does not start on 1 January. For
example, in many companies, the financial year starts 1 Oct. Consider the following pivot table:

In this case, the member FY 2005 consists of records of sales between 1 October 2004 and 30 September 2005, inclusive.

To create a level like this, specify the timeOffset and timeFormat attributes of the level (which must be within a time-
type dimension). This section discusses the timeOffset attribute; the next section discusses timeFormat.

The timeOffset attribute specifies an amount of time to add to the source values used in this level; this amount of time
can be negative or positive. The system uses this at cube build time.

For timeOffset, specify an amount of time by specifying a string of the following form:

#y#m#d

Where # is a number, #y represents an amount of time in years, #m represents an amount of time in months, and #d represents
an amount of time in days. If you omit an element, the system uses zero in its place. For example, the string 3m15d represents
three months and 15 days.

Defining Models for InterSystems IRIS Business Intelligence 159

<level>

The most common value for timeOffset is -3m, which you use if the fiscal year starts in 1 October of the previous year.
If timeOffset="-3m", the system subtracts three months to each time value used in this level. For example, for this
level, the date 1 Jan 2010 is converted to 1 Oct 2009.

Other levels are unaffected, even within the same dimension. This means that you can also define more granular levels that
display the actual dates. For an example, see “Handling a Calendar That Has a Date Offset.”

A.7.3 Defining a Basic Range Expression

For rangeExpression, the basic syntax is as follows:

value_or_range:new_value;value_or_range:new_value; ... ;

Here new_value is a single value, which the system treats as a string and uses as the name of a level member. Also,
value_or_range is any of the following:

• A single value such as 5 or Louisiana

• A range in the form (value1,value2)

• A range in the form [value1,value2]

• A range in the form (value1,value2]

• A range in the form [value1,value2)

In these expressions, value1 and value2 are numeric values or null (that is, omitted from the expression). The left and right
parentheses indicate that the range is not inclusive at the given endpoint. The left and right square brackets indicate that
the range is inclusive at the given endpoint. For example, (45,49] represents all values greater than 45 and less than or
equal to 49.

A.7.4 Defining a Compact Multi-Range Expression

In some cases, it is necessary to define many ranges for a given level, which can be a tedious process. Also the resulting
range expression (when viewed in Studio) is difficult to read. In such cases, you may want to use the following alternative
syntax for the value of rangeExpression:

rangeExpression="[start:increment:end]:replacement;"

Or use the appropriate parenthesis in place of either square bracket (details below).

This syntax generates a series of ranges.

Here, start is the numeric start value of the first range, end is the numeric end value of the last range, and increment is the
numeric value by which the ranges are defined. The first range extends from start to start plus increment, and so on.

Also, replacement is an expression that is used as the replacement value. Within replacement, you can use the following
elements:

• %1 — is replaced with the start value of the range

• %2 — is replaced with the end value of the range

• $$$eval(expression) — causes the system to evaluate the contained expression. For example: $$$eval(%2-1)
returns the end value of the range minus one

The square brackets or parentheses affect how the start and end values are treated, in the generated start and end ranges:

• A square bracket causes the value to be included in the range.

• A parenthesis causes the value to be excluded from the range.

160 Defining Models for InterSystems IRIS Business Intelligence

Reference Information for Cube Classes

At the intermediate range boundaries, the boundary value is always assigned to the upper range, rather than the lower range.
That is, for intermediate ranges, the opening bracket is always [and the closing bracket is always).

Consider the following range expression:

rangeExpression="[0:30:90]:%1 to $$$eval(%2-1);"

This generates the same members as the following longer form:

rangeExpression="[0,30):0 to 29;[30,60):30 to 59;[60,90]:60 to 90;"

If the value end - start is not an integer multiple of increment , the last range extends beyond end. For example, consider
the following range expression:

rangeExpression="[0:30:100]:%1 to $$$eval(%2-1);"

This generates the same members as the following longer form:

rangeExpression="[0,30):0 to 29;[30,60):30 to 59;[60,90):60 to 90;[90,119]:90 to 119;"

A.8 <member>
The <member> element is primarily for advanced use. See “Manually Specifying the Members of a Level,” in the chapter
“Using Additional Advanced Features of Cubes and Subject Areas” in the Advanced Modeling for InterSystems Business
Intelligence.

The <member> element has the following contents:

PurposeAttribute

See “Common Attributes in a Cube,” earlier in this appendix.name,
displayName,
description,
disabled

If the level is contained in a dimension that has type="computed", specify the SQL
query that returns the IDs of the fact table rows (or the source table rows) that this
member uses.
In other cases, optionally specify the value to use as the member key. If you omit this,
name becomes the member key.

spec

A.9 <property>
A level may contain zero or more custom level properties. These are properties whose value is derived from the source
data and is associated with a specific member of a level. For example, the city level could include properties such as popu-
lation or ZIP code. For each city, there would be one value of each of these properties.

The <property> element has the following contents:

Defining Models for InterSystems IRIS Business Intelligence 161

<member>

PurposeAttribute

See “Common Attributes in a Cube,” earlier in this appendix.name, displayName,
description,
disabled

Specify one of these attributes in almost the same way that you would specify Property

or Expression in the Architect; see “Specifying the Source Values for a Dimension
or Level” and “Details for Source Expressions.” Notes:

• For sourceProperty, use the same value you would enter for Property, enclosed
within single quotes.

For example: sourceProperty='MyProp'

• For sourceExpression, use the same value you would enter for Expression,
enclosed within single quotes.

For example: sourceExpression='%source.MyProp_"ABC"'

You can enclose the value in double quotes instead if the value itself does not contain
any double quotes. For example: sourceExpression="%source.MyProp"

sourceProperty

sourceExpression

(Optional) Specifies how to use this property to sort members of the level that
contains this property.You can sort a level by multiple properties; if you do, the
sorting is applied in the order in which you define the <property> elements; the
first property controls the primary sort, the second property controls the secondary
sort, and so on.
Specify "asc", "asc numeric", "desc", or "desc numeric"

By default, the property does not affect the sort order of the members.

sort

(Optional) If "true", this attribute specifies that, for a given level member, the
system should use the value of this property to specify the names of that member.
Specify either "true" or "false" (the default).

isName

(Optional) If "true", this attribute specifies that, for a given member, the system
should use the value of this property as the tooltip for the member. Specify either
"true" or "false" (the default).

isDescription

(Optional) If "true", this attribute specifies that the system should not store the
property value, but should instead define the property as an SQL computed field
that refers to the original source tables. If you specify isReference="true", the
level must be defined so that the member keys are the IDs of the records on which
the level (and its properties) are based.

isReference

(Optional) For class properties that have values for the DISPLAYLIST and
VALUELIST parameters, this attribute specifies which value to use for the property.
If this attribute is "true" (the default), the system uses the value given by
DISPLAYLIST; if this attribute is "false", the system uses the value given by
VALUELIST.

useDisplayValue

(Optional) See “Linking to Another Table.”linkClass,
linkProperty

162 Defining Models for InterSystems IRIS Business Intelligence

Reference Information for Cube Classes

PurposeAttribute

(Optional) Name used (in the generated dimension table) for the column that
corresponds to this property. If this attribute is null, the system generates a name.
You do not need to worry about this unless you plan to issue SQL queries directly
against the generated dimension table.
Despite the name of this attribute, properties are not contained in the fact table.
They are contained in the table that corresponds to the level to which the property
belongs.

See the comments for factName for <measure>.

factName

(Optional) Controls how the values are displayed. See “formatString Details,” earlier
in this appendix. In the format string, you can also use the special character 0, which
serves as a placeholder for leading zeros. For example, 00000 would show a five-digit
number padded with leading zeros.

formatString

(Optional) If hidden="true" then the property is defined and can be used in queries,
but is not listed as an available property in the Analyzer.

hidden

For example:

<property name="Population" sourceProperty="City.Population"/>

A.9.1 Intrinsic Properties

For each level, the system also automatically defines a set of intrinsic properties. These are listed in the InterSystems MDX
Reference.

A.10 <listing>
A cube can contain zero or more named listings. These are available in the Analyzer.

The default listing for a cube is either the listing specified in the defaultListing attribute for the <cube> element (if
specified) or the first <listing> element contained in the <cube>.

The <listing> element has the following contents:

PurposeAttribute

See “Common Attributes in a Cube,” earlier in this appendix.name,
displayName,
description,
disabled

Comma-separated list of fields to display. For options, see “Specifying a Simple Listing,”
earlier in this book. For options in a data connector listing, see “Specifying a Data
Connector Listing.”

fieldList

Defining Models for InterSystems IRIS Business Intelligence 163

<listing>

PurposeAttribute

List (delimited by carets) of CSS formatting instructions for the listing. Each piece of
the list is applied to the corresponding column in the listing.This list must have the same
number of elements as there are columns, and each list element must have one of the
following forms:

• {CSS formatting instruction}, for example, {text-align:center;} — Formats
the corresponding column.

You can use {text-align:left;} or {text-align:center;}. Other instructions
are ignored.

• display:none; — Hides the corresponding column.

• Null — Displays the corresponding column in the default style.

formatList

Applies only to simple listings.This attribute is a comma-separated list of fields by which
to sort the listing. The overall sort is controlled by the first field in the list, the secondary
sort is controlled by the second field, and so on.
After a field name, you can include the ASC or DESC keyword to sort in ascending or
descending order, respectively. For additional options, see “Specifying a Simple Listing,”
earlier in this book.

This attribute is ignored if the source is a data connector.

orderBy

Specifies the data connector, if any, on which this listing is based. If you specify this
attribute, specify the name of a class that extends %DeepSee.DataConnector. See the
Implementing InterSystems Business Intelligence.

sourceClass

Specifies the custom SQL query, if any, for this listing. See “Specifying a Custom
Listing,” earlier in this book.

sql

(Optional) Specifies the format of the listing. The default is "table". If you instead
specify "map" the system displays a map-type listing, which displays a map with points
marked by latitude and longitude. In this case, the listing query must contain the fields
Latitude and Longitude (case-sensitive). See “Defining a Map-type Listing,” earlier
in this book.

listingType

(Optional) Name of the resource used to control access to this listing. See the
Implementing InterSystems Business Intelligence.

resource

There are three kinds of listings, considering their sources:

• Basic listings, which directly use the source table used by the cube

• Data connector listings (which use data connectors)

• Custom listings (which use custom queries)

In all cases, the system creates and uses an SQL query.

The following table indicates which attributes of <listing> you specify for these kinds of listings:

164 Defining Models for InterSystems IRIS Business Intelligence

Reference Information for Cube Classes

http://www.w3schools.com/cssref/

sqlsourceClassorderByfieldListKind of Listing

Do not specify; this attribute
would take precedence.

Do not specify; this attribute
would take precedence.

OptionalRequiredBasic

IgnoredRequiredIgnoredOptionalData connector

RequiredDo not specify; this attribute
would take precedence.

IgnoredIgnoredCustom

A.11 <listingField>
A cube can define zero or more listing fields that enable end users to create custom listings in the Analyzer (see “Creating
a Custom Listing” in Using the Analyzer).

Note: The system supports another kind of custom listing — a listing that does not necessarily use the source table of
the cube. See “Defining a Custom Listing” in the chapter “Defining Listings.”

The <listingField> element has the following contents:

PurposeAttribute

See “Common Attributes in a Cube,” earlier in this appendix.name, displayName,
description,
disabled

SQL expression that refers to a field in the source table or (via arrow syntax, for
example) to a field in a related table. If you specify displayName, do not specify
an alias within the SQL expression. Conversely, if you specify an alias within the
SQL expression, displayName is ignored and the field name cannot be localized.
For details, see “Creating a Listing Field,” earlier in this book.

fieldExpression

(Optional) Name of the resource used to control access to this listing field. See the
Implementing InterSystems Business Intelligence.

resource

For example:

<listingField name="PatientID" displayName="PatientID" fieldExpression="PatientID" />
<listingField name="Age" displayName="Age" fieldExpression="Age" />
<listingField name="Gender" displayName="Gender" fieldExpression="Gender" />
<listingField name="Test Score" displayName="Test Score" fieldExpression="TestScore" />
<listingField name="City" displayName="City" fieldExpression="HomeCity->Name" />
<listingField name="Doctor" displayName="Doctor" fieldExpression="PrimaryCarePhysician->LastName" />

A.12 <calculatedMember>
A cube can contain zero or more calculated members. A calculated member is a member that is defined in terms of other
members. You can add two kinds of calculated member:

• You can define a new measure that is based on other measures. For example, you can define a measure via a formula
like the following:

Measure 3 = (Measure 1 + Measure 2) / Measure 2)

This is not the exact syntax.

Defining Models for InterSystems IRIS Business Intelligence 165

<listingField>

• You can define a new member that is based on other non-measure members. For example, you could create a Primary
Colors member that combines the red, yellow, and blue members of the Favorite Color dimension.

The new Primary Colors member refers to all the records of the fact table that correspond to the red, yellow,
or blue members.

In MDX, a measure is considered to be a member, which is why both kinds of calculated elements are considered to be
calculated members.

Note: When you use this element to define a measure, the cube command in the MDX shell does not currently list this
measure. You can, however, use the set in the MDX shell or in the query API.

The <calculatedMember> element has the following contents:

PurposeAttribute

See “Common Attributes in a Cube,” earlier in this appendix. For the name attribute,
the system does not check whether the name is already in use. If you use a name
that was previously used by another member of this dimension, you are overriding
that member.

name, displayName,
description,
disabled

Dimension to which this member belongs.dimension

MDX expression that defines the values for this member in terms of references to
other members. For simple but common scenarios, see “Defining Calculated
Elements” in Using the Analyzer. For details and examples, see the InterSystems
MDX Reference.

valueExpression

(Optional) Controls how the values are displayed. See “Specifying a Format String.”formatString

(Optional) Indicates the units in which the measure value is expressed. Currently
this attribute is provided only for general information.

units

(Optional, applies only if dimension is "measures") Specifies an additional filter
that is used when a user displays this calculated measure in a pivot table and then
requests a detail listing. See “Specifying Additional Filtering for Listings for a
Calculated Measure,” earlier in this book.

listingFilter

For example:

<calculatedMember name="Avg Age" dimension="MEASURES"
valueExpression="[MEASURES].[Age]/[MEASURES].[%COUNT]"/>

In any context where you use this calculated member, the system first evaluates the Age and Patient Count measures
in that context and then performs the division.

Note: You can define a calculated member in two other ways:

• Within an MDX query by using the WITH clause.

• Within the CREATE MEMBER statement.

This is useful only within the MDX Shell.

See the InterSystems MDX Reference.

166 Defining Models for InterSystems IRIS Business Intelligence

Reference Information for Cube Classes

A.13 <namedSet>
A cube can contain zero or more named sets. A named set is an alias for a member or for a set of members. You can use
named sets for rows or columns in your queries, and the system substitutes the member or the set when you run the query.

Note: When you define a named set, the cube command in the MDX shell does not list this set. You can, however, use
the set in the MDX shell or in the query API.

The <namedSet> element has the following contents:

PurposeAttribute

See “Common Attributes in a Cube,” earlier in this appendix. For the name attribute,
the system does not check whether the name is already in use. If you use a name that
was previously used by another named set, you are overriding that named set.

name,
displayName,
description,
disabled

MDX expression that returns a member or a set of members. For details and examples,
see the InterSystems MDX Reference.

setExpression

For example:

<namedSet name="SampleSet" setExpression="[homed].[h1].[city].MEMBERS" />

Note: You can define a named set in two other ways:

• Within an MDX query by using the WITH clause.

• Within the CREATE SET statement.

See the InterSystems MDX Reference.

A.14 <relationship>
To define a one-way relationship from one cube to another cube, you define a <relationship> element in the first cube.

To define a two-way relationship, you define two complementary <relationship> elements, one in each cube.

The <relationship> element has the following attributes:

PurposeAttribute

Name of the relationship.You use this logical name in MDX queries to use levels
of the other cube. Typically this is the name of the other cube.

name

See “Common Attributes in a Cube,” earlier in this appendix.displayName,
description,
disabled

Logical name of the other cube.relatedCube

Value of the name attribute in the <relationship> element in the other cube.inverse

Cardinality of the relationship.cardinality

Defining Models for InterSystems IRIS Business Intelligence 167

<namedSet>

PurposeAttribute

See “Defining a One-Way Relationship” and “Defining a Two-Way Relationship”
in “Defining Cube-Cube Relationships” in Advanced Modeling for InterSystems
Business Intelligence.

sourceProperty

sourceExpression

(Optional) Specifies the string to use as the member name if the source data for
this relationship is null. For example, specify nullReplacement="No City".
Specify this attribute within a <relationship> that specifies sourceProperty or
sourceExpression

nullReplacement

(Optional) Name used (in the fact table) for the column that corresponds to this
relationship. If this attribute is null, the system generates a name.

See the comments for factName for <measure>.

factName

Do not use. These are ignored.linkClass,
linkProperty

(Optional) Specifies the relationship on which this relationship has a dependency.
Specify the logical name of the relationship. See “Defining Dependencies Between
Levels in Different Hierarchies.” (Or, if the relationship depends upon a level, specify
the MDX identifier of that level.)

This attribute is completely unrelated to the DependsOn compiler keyword.

dependsOn

Important: When you compile the cube classes, first compile the independent cube, which is the one that does not
define a source property or source expression for the relationship. To control the compilation order, specify
the DependsOn keyword in the class definition of the dependent cube.

Similarly, you must build the independent cube first. The DependsOn keyword has no effect on the order
in which cubes are built.

The following table summarizes which keywords to specify in each of scenarios:

In a Two-way Relationship...In a One-way Relationship...Attribute

Specify this in both cubesOmit thisinverse

• In the dependent cube, use "one"

• In the independent cube, use "many"

Use "one"cardinality

Applicable only in the dependent cubeSpecify as usualsourceProperty or
sourceExpression

Applicable only in the dependent cube; ignored
in the other cube

Specify as usualfactName

For examples, see in “Defining Cube-Cube Relationships” in Advanced Modeling for InterSystems Business Intelligence.

A.15 <expression>
The <expression> element defines an optional expression that has a value for each row in the source table. Your cube
can have any number of expressions.

168 Defining Models for InterSystems IRIS Business Intelligence

Reference Information for Cube Classes

The <expression> element has the following contents:

PurposeAttribute

See “Common Attributes in a Cube,” earlier in this appendix.name, description,
disabled

See the Advanced Modeling for InterSystems Business Intelligence.sourceProperty,
sourceExpression

Do not specify these attributes.displayName,
factName,
linkClass,
linkProperty

A.16 <index>
The <index> element specifies an optional, custom index that you add to the fact table. The system does not use this index
(because it automatically adds the indices that it needs).

You can add a custom index if you plan to access the fact table via SQL. The <index> element has the following contents:

PurposeAttribute

See “Common Attributes in a Cube,” earlier in this appendix.name,
displayName,
description,
disabled

Specifies the type of index. Use "bitmap", "bitslice", "index", or "key".type

Specifies the fields of the fact table on which this index is based. Specify a
comma-separated list of properties of the fact table class.

properties

For example:

<index name="IndexName" type="bitmap" properties="MxAge,DxGender"/>

Tip: Remember that you can specify the factName attribute for most levels and measures, to control the names of the
properties in the generated fact table class.

Defining Models for InterSystems IRIS Business Intelligence 169

<index>

B
Reference Information for Subject Area
Classes

A subject area is analogous to an SQL view of a table. A subject area is a subcube that enables users to focus on smaller
sets of data without the need for multiple cubes. A subject area also enables you to customize captions and defaults of the
cube.

This appendix contains reference information for subject area classes. It discusses the following topics:

• Basic requirements for a subject area class

• Common attributes in a subject area

• <subjectArea>

• <measure>

• <dimension>

• <hierarchy>

• <level>

• <listing>

• <calculatedMember>

• <namedSet>

Also see “Using Advanced Features of Cubes and Subject Areas” in Advanced Modeling for InterSystems Business Intel-
ligence.

You must recompile a subject area class after making any change.

Also see “Accessing the Samples Shown in This Book,” in the first chapter.

B.1 Requirements for a Subject Area Class
To define a subject area, create a class that meets the following requirements:

• It must extend %DeepSee.SubjectArea.

• It must contain an XData block named SubjectArea

Defining Models for InterSystems IRIS Business Intelligence 171

• For this XData block, XMLNamespace must be specified as follows:

XMLNamespace = "http://www.intersystems.com/subjectarea"

• The root element within the XData block must be <subjectArea> and this element must follow the requirements
described in the rest of this appendix.

• It is useful, but not required, for the class to specify the DependsOn keyword so that this class is compiled only after
the cube class is compiled and can be used.

• The class can define the DOMAIN parameter, which specifies the domain to which any localized strings belong. For
example:

Parameter DOMAIN = "PATIENTSAMPLE";

For details, see the chapter “Performing Localization” in Implementing InterSystems Business Intelligence.

For example:

Class BI.Model.SubjectAreas.AsthmaPatients Extends %DeepSee.SubjectArea [DependsOn=Cubes.StudyPatients]
{

/// This XData definition defines the SubjectArea.
XData SubjectArea [XMLNamespace = "http://www.intersystems.com/deepsee/subjectarea"]
{
<subjectArea name="AsthmaPatients"
 displayName="Asthma Patients"
 baseCube="Patients" filterSpec="diagd.h1.diagnoses.asthma" >
 </subjectArea>
}

}

Studio provides assistance as you type.

B.2 Common Attributes in a Subject Area
Most of the elements in the subject area have the following attributes, which are listed here for brevity:

PurposeAttribute

Logical name of the element as specified in the base cube on which this subject area
is based.

name

(Optional) Localized name of this element for use in user interfaces. If you do not
specify this attribute, the user interface instead displays the logical name. For details,
see the chapter “Performing Localization” in Implementing InterSystems Business
Intelligence.

displayName

(Optional) Description of this element. If you do not specify this attribute, the user
interface instead displays the description specified in the cube definition.

description

(Optional) Controls whether the compiler uses the override defined by this element.
If this attribute is "true" then the compiler ignores this override; this is equivalent to
commenting out the override. By default, this attribute is "false"
If the override is disabled, then the system uses the definition as given in the cube.

disabled

172 Defining Models for InterSystems IRIS Business Intelligence

Reference Information for Subject Area Classes

B.3 <subjectArea>
The <subjectArea> element is the root element in the XData block in a subject area class. This element contains the
following items:

PurposeAttribute or Element

See “Common Attributes in a Subject Area” earlier in this appendix.

Note that the name attribute must be unique within the InterSystems IRIS®
namespace.

name, displayName,
description, disabled

Logical name of the cube on which this subject area is based. (This can also
be a comma-separated list of logical cube names; see “Defining Compound
Cubes” Advanced Modeling for InterSystems Business Intelligence.)

baseCube

(Optional) Name of owner of subject area.owner

(Optional) Name of the resource used to control access to this subject area,
when it is accessed via the Architect. See the Implementing InterSystems
Business Intelligence.

resource

(Optional) MDX set expression to use as a filter for this subject area. See the
subsection “Filtering a Subject Area.” The default is an empty string so that
there is no filtering.

filterSpec

(Optional) Caption for this subject area. If you do not specify this, the system
uses the caption of the base cube instead.

caption

(Optional) Caption to use for the default measure, which counts records. The
default caption is Count. Internally, the name of the measure is %Count.

countMeasureCaption

(Optional) Specify the logical name of the <listing> to use as the default in
this subject area; see “<listing>.” If you do not specify this, the system uses
the default listing as specified in the base cube.

defaultListing

(Optional) Specify this attribute as "true" if you want to prevent anyone from
defining a listing group that uses this subject area as a target. The default is
"false". See “Compiling a Listing Group,” earlier in this book.

disableListingGroups

Do not use.defaultMember,
defaultMeasure

(Optional) You can include zero or more <measure> elements, each of which
can hide or customize a measure.

<measure>

(Optional) You can include zero or more <dimension> elements, each of which
can hide or customize a dimension.

<dimension>

(Optional) You can include zero or more <listing> elements, each of which
can hide, customize, or add a listing for this subject area.

<listing>

B.3.1 Filtering a Subject Area

The filterSpec attribute enables you to specify a filter that applies to the subject area. This attribute must equal a valid
MDX set expression. For example:

{AgeD.H1.[10 to 19],AgeD.H1.[20 to 29]}

Defining Models for InterSystems IRIS Business Intelligence 173

<subjectArea>

See “Writing Filter Expressions,” earlier in this book.

Instead of (or in addition to) specifying filterSpec, you can implement the %OnGetFilterSpec callback; see “Filtering a
Cube or Subject Area Dynamically” in Advanced Modeling for InterSystems Business Intelligence.

B.4 <measure>
Within a subject area, a <measure> element hides or customizes a measure. This element has the following attributes:

PurposeAttribute

See “Common Attributes in a Subject Area” earlier in this appendix.name, displayName,
description,
disabled

(Optional) If hidden="true" then the measure is defined and can be used in queries,
but is not listed as an available measure in this subject area. The default is "false".

hidden

(Optional) If specified, this attribute overrides the formatString attribute specified
for this measure in the base cube. See “Specifying a Format String.”

formatString

Note: You cannot define overrides for calculated measures this way. A calculated measure is actually a calculated
member; to define an override for it, you must use <calculatedMember>.

B.5 <dimension>
Within a subject area, a <dimension> element hides or customizes a dimension. This element has the following contents:

PurposeAttribute or Element

See “Common Attributes in a Subject Area” earlier in this appendix.name, displayName,
description,
disabled

(Optional) If hidden="true" then the dimension is defined and can be used in
queries, but is not listed as an available dimension. The default is "false".

hidden

(Optional) If specified, this attribute overrides the allCaption attribute specified for
this dimension in the base cube.

allCaption

(Optional) If specified, this attribute overrides the allDisplayName attribute specified
for this dimension in the base cube.

allDisplayName

(Optional) You can include zero or more <hierarchy> elements, each of which can
hide a hierarchy (or part of a hierarchy).

<hierarchy>

B.6 <hierarchy>
Within a subject area, a <hierarchy> element hides or customizes a hierarchy. This element has the following contents:

174 Defining Models for InterSystems IRIS Business Intelligence

Reference Information for Subject Area Classes

PurposeAttribute or Element

See “Common Attributes in a Subject Area” earlier in this appendix.name, displayName,
description,
disabled

(Optional) You can include zero or more <level> elements, each of which can hide
a level.

<level>

(Optional) If this attribute is "true" then the hierarchy is not available in this subject
area. The default is "false".
If all hierarchies of a dimension are hidden, then the dimension itself will be hidden
within the subject area. If you hide a dimension in this manner, the system also hides
any calculated members that you might place in the same dimension.

hidden

B.7 <level>
Within a subject area, a <level> element hides or customizes a level. This element has the following contents:

PurposeAttribute

See “Common Attributes in a Subject Area” earlier in this appendix.name, displayName,
description,
disabled

(Optional) If this attribute is "true" then the level is not visible in this subject area.
The default is "false".

hidden

(Optional) For a level in a time dimension, this specifies how to sort members of this
level by default. Specify either "asc" or "desc"
This attribute has no effect for levels in data or age dimensions.

sort

B.8 <listing>
Within a subject area, a <listing> element hides, customizes, or adds a listing. This element has the following contents:

PurposeAttribute

See “Common Attributes in a Subject Area” earlier in this appendix.name,
displayName,
description,
disabled

(Optional) If this attribute is "true" then the listing is not visible in this subject area.
The default is "false".

hidden

(Optional) See “<listing>” in the previous appendix. Specify these only if you are
redefining a listing or adding a new listing.

other attributes

Defining Models for InterSystems IRIS Business Intelligence 175

<level>

B.9 <calculatedMember>
Within a subject area, a <calculatedMember> element hides or customizes a calculated member.

PurposeAttribute

See “Common Attributes in a Subject Area” earlier in this appendix.name, displayName,
description,
disabled

Dimension to which this member belongs.dimension

(Optional) If this attribute is "true" then the calculated member is not visible in
this subject area. The default is "false".

hidden

(Optional) See “<calculatedMember>” in the previous appendix. Specify these
only if you are redefining or adding a calculated member.

other attributes

B.10 <namedSet>
Within a subject area, a <namedSet> element hides or customizes a named set. This element has the following contents:

PurposeAttribute

See “Common Attributes in a Subject Area” earlier in this appendix.name,
displayName,
description,
disabled

(Optional) If this attribute is "true" then the named set is not visible in this subject
area. The default is "false".

hidden

(Optional) See “<calculatedMember>” in the previous appendix. Specify these only if
you are redefining or adding a named set.

other attributes

176 Defining Models for InterSystems IRIS Business Intelligence

Reference Information for Subject Area Classes

C
Details for the Fact and Dimension Tables

Internally, the system uses a star schema, which consists of the fact table and dimension tables, which the fact table references.
Note that dimension tables are also called star tables. You can directly query these tables, which the system populates when
you build a cube, and which the system updates when changes occur. This chapter discusses the following:

• Fact table

• Dimension tables

Important: Do not redefine these tables or attempt to write data to them except via the authorized interfaces; see the
chapter “Keeping the Cubes Current” in Implementing InterSystems Business Intelligence.

When you compile a cube definition class, the system also generates a table name Listing, in the same package as the
fact table. Do not use the Listing table, which is for internal use only.

Also see “Accessing the Samples Shown in This Book,” in the first chapter.

C.1 Fact Table
When you compile a cube definition class, the system generates the corresponding fact table with the name
Package_CubeClass.Fact where Package_CubeClass corresponds to the package and class of the cube definition, following
the usual rules for translating package and class name to table names. The system also generates foreign key definitions in
the fact table that declare the links to the star table IDs.

The system updates the fact table whenever you build the cube or update it incrementally.

It is useful to examine this table, as well as the class definition that uses it.

The fact table contains the following fields:

• ID — ID of this row, assigned when the row is created.

• %dspartition — For future use. Ignore this field.

• %sourceID — The ID of the record in the base class on which this record is based. This field is a pointer to the source
table.

• One field for each measure, to contain this measure value for this record. (There is one exception; see “Reuse of a
Source Property in the Fact Table,” later in this appendix.)

This field stores the actual measure values. The fact table class defines bitslice indices on these values. For example:

Defining Models for InterSystems IRIS Business Intelligence 177

/// Index for measure M1.
Index MxAge On MxAge [Type = bitslice];

/// Measure: MxAge

/// Source: Age
Property MxAge As %Integer;

• One field for each level, to indicate the level member to which this record belongs. (There is one exception; see “Reuse
of a Source Property in the Fact Table,” later in this appendix.)

– For levels in data dimensions, the fact table stores the ID of the level member, which is a pointer to a table that
defines the members.

The fact table class defines bitmap indices on these values. For example:

/// Index for fact 1. Index DxGender On DxGender [Type = bitmap];

/// Dimension: DxGender

/// Source: Gender
Property DxGender As Test.TestCube.DxGender;

If this dimension is shared from another cube, then this pointer refers to a record in the applicable dimension table
for that other cube. For information on shared dimensions, see the Advanced Modeling for InterSystems Business
Intelligence.

– For a time- or age-type level, the fact table stores an integer.

The fact table class defines the corresponding property as a computed value and defines a bitmap index for it. For
example:

/// Index for fact 4. Index DxBirthDateFxYear On DxBirthDateFxYear [Type = bitmap];

/// Dimension: DxBirthDateFxMonthYear

/// Source: BirthDate Property DxBirthDateFxMonthYear As %Integer [details omitted];
Property DxBirthDateFxYear As %Integer [Calculated, SqlComputeCode = ... , SqlComputed];

– For a cube-to-cube <relationship>, if this cube specifies the sourceProperty or sourceExpression
for the relationship, the fact table stores the ID of the corresponding row in the other fact table. That ID is a pointer
to the other fact table.

• An additional field for each time-type or age-type dimension, to contain the complete value of the time or age dimension
for this record. (There is one exception; see “Reuse of a Source Property in the Fact Table,” later in this appendix.)

This value is in the form %DeepSee.Datatype.dateTime and is not indexed.

The class does not include properties for any NLP levels or NLP measures; those are handled differently.

If you specified the dependsOn attribute for any levels, the fact table contains additional indices on the level combinations:

Index DxPostalCodeViaHomeCityANDDx2642257510 On (DxPostalCodeViaHomeCity, Dx2642257510) [Type = bitmap
];

If you defined any <index> elements in the <cube>, the fact table contains additional, custom indices. For example:

Index %UserIndexName On (MxAge, DxGender) [Type = bitmap];

These custom indices are for your own use; the system does not use them.

C.1.1 Field Names

The following table summarizes how the system determines the names for the measure, level, and dimension fields (in the
case where you do not specify the factName attribute):

178 Defining Models for InterSystems IRIS Business Intelligence

Details for the Fact and Dimension Tables

ExampleField Name in Fact Table (If Not Overridden by
factName attribute)

Item and Scenario

MxAgeMxprop_name where prop_name is the name of the
property.

Measure based on a
source property

MxAgeViaOtherTableMxother_prop_nameViaprop_name where
other_prop_name is the name of the property in the
other class. However, if the resulting field name would
be too long, the system generates a unique number.

Measure based on a
source property in
another table, via dot
syntax (rare)

Mx1968652733IMxnnnnnnnnnT where nnnnnnnnn is an integer and
T indicates the measure type. (For example, I
represents an integer measure.)

Measure based on a
source expression

DxGenderDxprop_nameData level based on
a source property
(with no range
expression)

DxAgeRg855025875Dxprop_nameRgnnnnnnnnnn where nnnnnnnnn is
an integer.

Data level based on
a source property
with a range
expression

DxPostalCodeViaHomeCityDxother_prop_nameViaprop_name
However, if the resulting field name would be too
long, the system generates a unique number.

Data level based on
a source property in
another table, via dot
syntax

Dx2163088627DxnnnnnnnnnnData level based on
a source expression

DxBirthDateDxdim_name where dim_name is the name of the
dimension. (This field is for use by levels in this
dimension.)

Time- or age-type
dimension

DxBirthDateFxYearDxdim_nameFxfunc_name, where func_name is the
name specified in the timeFunction attribute for
this level.

Time- or age-type
level

RxMainCityRxgenerated_name, where generated_name is the
name of the source property or a generated name
based on the source expression.

Relationship

C.1.2 Reuse of a Source Property in the Fact Table

If a cube contains multiple measures that use the same property (via sourceProperty), the fact table contains a field
for only one of those measures (the last of those measures found in the cube definition). For example, suppose that the cube
contained the following measure definitions:

<measure name="Age" sourceProperty="Age" aggregate="SUM" factName="AgeFact"/>
<measure name="Avg Age" sourceProperty="Age" aggregate="AVG" factName="AvgAgeFact"/>

These two measures are different only by how they aggregate across multiple records; the fact table would contain the same
value for these measures, for any given record. For efficiency, the fact table would include the field AvgAgeFact, but not
the field AgeFact.

Defining Models for InterSystems IRIS Business Intelligence 179

Fact Table

The same logic applies when a cube contains multiple levels that use the same property. The logic also applies when a cube
contains multiple age or time dimensions that use the same property.

For a given measure, level, or dimension, if you use sourceExpression and access the property via
%source.propertyname, the system always generates a separate field for that value.

C.2 Dimension Tables
When you compile a cube definition class, the system also generates a table for each level, other than the age- and time-
type levels. These tables are in the same package as the fact table. The system also generates foreign key definitions in the
dimension tables that declare links to the other dimension table IDs within the model schema.

The system updates the dimension tables (also called star tables) whenever you build the cube or update it incrementally.

The dimension table for a level contains one row for each member of that level. The dimension tables are created dynamically
as the system processes records in the base table. For a given level, each time a new unique value is discovered, that value
is added as a new row to the appropriate dimension table. This means that the system automatically adds rows to the
dimension tables when needed; no intervention is required.

C.2.1 Name of Dimension Table

If the cube definition specifies the factName attribute for the corresponding level, the applicable dimension table uses
that value as its name.

Otherwise, the name of the dimension table has the following form:

Stargenerated_name

Where generated_name is the corresponding field name in the fact table, without the Dx at the start. For example, suppose
that in the fact table, the field name for the Home City level is DxPostalCodeViaHomeCity. In this case, the corre-
sponding dimension table is named StarPostalCodeViaHomeCity.

C.2.2 Columns in a Dimension Table

The columns in this row are as follows:

• ID — ID of this row, assigned when the row is created.

• One column to contain the key for this member. The field name is the same as the column name field in the fact table
that corresponds to this level; see the previous section.

• One column for each property of this level, to contain the actual property value for this member.

The field name starts with Dx and is based either on the source property name or is generated as a unique number, as
described earlier.

If you use linkClass and linkProperty to define both the property and the level to which it belongs, the field
names for the property and the level would be identical. In this scenario, the system appends _Link to the end of the
field name for the property.

• One column for the parent level of this level, to contain the ID of the parent of this member.

The field name is the same as the column name in the fact table that corresponds to the parent level.

Depending on how the level is defined, you can find the member names as follows:

• By default, the key is used as the name, and the name is not stored separately.

180 Defining Models for InterSystems IRIS Business Intelligence

Details for the Fact and Dimension Tables

• If the level includes a property that is defined with isName="true", then the member names are stored in the column
that contains that property (with one exception). The exception is when the property is also defined with
isReference="true"; in this case, the field is computed at runtime.

Defining Models for InterSystems IRIS Business Intelligence 181

Dimension Tables

	Table of Contents
	About This Book
	1 Introduction
	1.1 Purpose of Business Intelligence
	1.2 Introduction to Business Intelligence Models
	1.3 Introduction to the Model Development Process
	1.4 Introduction to the Architect
	1.4.1 Class Viewer
	1.4.2 Model Viewer
	1.4.3 Details Area

	1.5 Accessing the Samples Shown in This Book

	2 Basic Concepts
	2.1 Introduction to Cubes
	2.1.1 The Source Class of a Cube

	2.2 Dimensions, Hierarchies, and Levels
	2.2.1 Levels and Members
	2.2.2 Member Names and Keys
	2.2.3 Source Values
	2.2.4 Hierarchies and Dimensions
	2.2.5 The All Level and the All Member
	2.2.6 List-Based Levels
	2.2.7 See Also

	2.3 Properties
	2.4 Measures
	2.5 Listings
	2.6 Calculated Members
	2.6.1 Calculated Measures
	2.6.2 Non-Measure Calculated Members
	2.6.3 See Also

	2.7 Subject Areas
	2.8 Filters
	2.8.1 Filter Mechanisms
	2.8.2 Using Filters

	2.9 How the System Builds and Uses Fact Tables
	2.9.1 Structure of a Fact Table
	2.9.2 Populating the Fact Table
	2.9.3 Using a Fact Table

	2.10 How the System Generates Listings

	3 Summary of Model Options
	3.1 Items That You Can Use in Pivot Tables
	3.1.1 Items That Group or Filter Records
	3.1.2 Items That Behave Like Measures
	3.1.3 Properties
	3.1.4 Items That You Cannot Access Directly in the Analyzer

	3.2 Items That You Can Use in Calculated Members and Measures
	3.3 Comparison of Possible Widget Data Sources
	3.4 High-Level Summary of Options

	4 Principles and Recommendations
	4.1 Choosing a Base Table
	4.2 Choosing the Form of the Base Table
	4.3 Avoiding Large Numbers of Levels and Measures
	4.4 Defining Measures Appropriately
	4.4.1 Measures from Parent Tables
	4.4.2 Measures from Child Tables

	4.5 Understanding Time Levels
	4.6 Defining Hierarchies Appropriately
	4.6.1 What Happens if a Hierarchy Is Inverted
	4.6.2 Time Hierarchies

	4.7 Defining Member Keys and Names Appropriately
	4.7.1 Ways to Generate Duplicate Member Keys
	4.7.2 Ways to Generate Duplicate Member Names

	4.8 Avoiding Very Granular Levels
	4.9 Using List-Based Levels Carefully
	4.10 Handling Null Values Correctly
	4.10.1 Null Values in a Measure
	4.10.2 Null Values in a Level

	4.11 Usability Considerations
	4.11.1 Consider How Dimensions, Hierarchies, and Levels Are Presented
	4.11.2 Consider How to Use All Members

	4.12 Considerations with Multiple Cubes
	4.13 Recommendations

	5 Defining Models for InterSystems Business Intelligence
	5.1 Defining a Cube
	5.1.1 Generating the Cube Class
	5.1.2 Changing the Base Class for a Cube

	5.2 Possible Source Classes for a Cube
	5.3 Other Cube Options
	5.4 Adding Items to a Cube
	5.5 Names for Model Elements
	5.6 Other Common Options
	5.7 Compiling and Building a Cube
	5.8 Opening a Cube in the Analyzer
	5.9 Deleting a Cube

	6 Compiling and Building Cubes
	6.1 When to Recompile and Rebuild
	6.2 Compiling a Cube
	6.3 Building a Cube
	6.4 Building the Cube Programmatically
	6.5 Minimizing Cube Size During Development
	6.6 Using Parallel Processing During a Cube Build
	6.7 Build Errors
	6.7.1 Seeing Build Errors
	6.7.2 Checking the Fact Count
	6.7.3 Possible Causes of Build Errors
	6.7.4 Recovering from Build Errors

	6.8 Business Intelligence Task Log

	7 Defining Dimensions, Hierarchies, and Levels
	7.1 Overview
	7.2 Creating a New Dimension, Hierarchy, and Level
	7.3 Adding a Hierarchy and Level
	7.4 Adding a Level
	7.5 Defining the Source Values for a Dimension or Level
	7.5.1 Specifying a Source Value when Using a Data Connector

	7.6 Details for Source Expressions
	7.6.1 Using a Term List
	7.6.2 Using a Production Business Rule

	7.7 Changing the Order of Dimensions in the Cube
	7.8 Changing the Order of Levels in a Hierarchy
	7.9 Validating Your Levels

	8 Details of Defining Levels
	8.1 Ensuring Uniqueness of Member Keys
	8.2 Specifying the Null Replacement String for a Level
	8.3 Defining a List-Based Level
	8.3.1 Defining a Level When the Source Value Is in a Standard Format
	8.3.2 Defining a Level When the Source Value Is in Another Format
	8.3.3 Examples

	8.4 Defining a Time Level
	8.4.1 Introduction
	8.4.2 Defining a Time Level
	8.4.3 Time Levels and Hierarchies
	8.4.4 Handling a Calendar That Has a Date Offset
	8.4.5 Examples

	8.5 Defining Custom Time Levels
	8.5.1 Example

	8.6 Defining an Age Level
	8.7 Specifying a Range Expression
	8.7.1 Defining Numeric Bins
	8.7.2 Defining String Replacements
	8.7.3 Examples

	8.8 Configuring a Level to Use Display Values
	8.8.1 Examples

	8.9 Using Property Values as the Member Names
	8.9.1 Examples

	8.10 Specifying Tooltips for Members
	8.11 Specifying the Sort Order for Members
	8.11.1 For a Data Level
	8.11.2 For a Time Level

	8.12 Making the Member Names Localizable
	8.13 Defining Dependencies Between Levels in Different Hierarchies
	8.13.1 Example

	8.14 Specifying the Field Names in the Fact Table

	9 Defining Properties
	9.1 Adding a Property
	9.1.1 Defining a Property for a List-Based Level
	9.1.2 Specifying a Format String

	9.2 Getting a Property Value at Runtime
	9.3 Changing the Order of Properties in a Level
	9.4 Specifying the Column Names in the Dimension Tables
	9.5 Special Uses for Properties

	10 Defining Measures
	10.1 Adding a Measure
	10.2 Specifying the Measure Type
	10.3 Specifying How to Aggregate a Measure
	10.4 Specifying a Searchable Measure
	10.5 Specifying a Format String
	10.5.1 Format String Field
	10.5.2 Color Piece

	10.6 Specifying a Format String for a Date Measure
	10.7 Changing the Order of Measures in the Cube
	10.8 Specifying the Field Names in the Fact Table
	10.9 Specifying Additional Filtering for Listings
	10.9.1 Example

	11 Defining Listings
	11.1 Adding a Listing
	11.2 Defining a Simple Listing
	11.2.1 Additional Options

	11.3 Defining a Data Connector Listing
	11.4 Defining an SQL Custom Listing
	11.5 Defining a Map Listing (Geo Listing)

	12 Defining Listing Fields
	12.1 About User-Defined Custom Listings
	12.2 Creating a Listing Field

	13 Defining Calculated Members
	13.1 Defining a Calculated Measure
	13.2 MDX Recipes for Calculated Measures
	13.2.1 Measures Based on Other Measures
	13.2.2 Measure That Uses a Pivot Variable As a Multiplier
	13.2.3 Percentages of Aggregate Values
	13.2.4 Distinct Member Count
	13.2.5 Semi-Additive Measures
	13.2.6 Filtered Measures
	13.2.7 Measures That Use KPIs or Plug-ins

	13.3 Defining a Calculated Member (Non-Measure)
	13.4 MDX Recipes for Non-Measure Calculated Members
	13.4.1 Defining Age Members
	13.4.2 Aggregating Members
	13.4.3 Aggregating Ranges of Dates
	13.4.4 Defining an Aggregation of Members Defined by a Term List
	13.4.5 Defining a Member for Filtering on Multiple Dimensions

	13.5 Specifying Additional Filtering for Listings for a Calculated Measure

	14 Defining a Named Set
	15 Defining Subject Areas
	15.1 Introduction to Subject Areas in the Architect
	15.1.1 Model Viewer
	15.1.2 Details Area

	15.2 Defining a Subject Area
	15.3 Filtering a Subject Area
	15.3.1 Building a Filter in the Analyzer and Copying It into Your Model
	15.3.2 Writing Filter Expressions

	15.4 Specifying Other Subject Area Options
	15.5 Adding Items to a Subject Area
	15.6 Defining an Override for a Measure
	15.7 Defining an Override for a Dimension, Hierarchy, or Level
	15.8 Redefining a Listing or Adding a New Listing
	15.9 Compiling a Subject Area

	16 Defining Listing Groups
	16.1 Introduction to Listing Groups
	16.2 Accessing the Listing Group Manager
	16.3 Adding a Listing Group
	16.3.1 Modifying Details of the Listing Group

	16.4 Displaying a Listing Group
	16.5 Adding a Listing to a Listing Group
	16.6 Modifying a Listing
	16.7 Removing a Listing from a Listing Group
	16.8 Compiling a Listing Group
	16.8.1 Possible Compile Errors

	16.9 Deleting a Listing Group

	Appendix A: Reference Information for Cube Classes
	A.1 Requirements for a Cube Class
	A.2 Common Attributes in a Cube
	A.3 <cube>
	A.4 <measure>
	A.4.1 %COUNT Measure
	A.4.2 Measures Dimension
	A.4.3 formatString Details

	A.5 <dimension>
	A.6 <hierarchy>
	A.7 <level>
	A.7.1 Linking to Another Table
	A.7.2 Specifying a Date Offset
	A.7.3 Defining a Basic Range Expression
	A.7.4 Defining a Compact Multi-Range Expression

	A.8 <member>
	A.9 <property>
	A.9.1 Intrinsic Properties

	A.10 <listing>
	A.11 <listingField>
	A.12 <calculatedMember>
	A.13 <namedSet>
	A.14 <relationship>
	A.15 <expression>
	A.16 <index>

	Appendix B: Reference Information for Subject Area Classes
	B.1 Requirements for a Subject Area Class
	B.2 Common Attributes in a Subject Area
	B.3 <subjectArea>
	B.3.1 Filtering a Subject Area

	B.4 <measure>
	B.5 <dimension>
	B.6 <hierarchy>
	B.7 <level>
	B.8 <listing>
	B.9 <calculatedMember>
	B.10 <namedSet>

	Appendix C: Details for the Fact and Dimension Tables
	C.1 Fact Table
	C.1.1 Field Names
	C.1.2 Reuse of a Source Property in the Fact Table

	C.2 Dimension Tables
	C.2.1 Name of Dimension Table
	C.2.2 Columns in a Dimension Table

