
Developing DTL
Transformations

Version 2019.4
2020-01-28

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Developing DTL Transformations
InterSystems IRIS Data Platform Version 2019.4 2020-01-28
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

1 Introduction to DTL Tools ... 3
1.1 Background .. 3
1.2 Introduction to the Data Transformation Builder Page .. 3
1.3 Introduction to the DTL Diagram .. 4
1.4 Controlling the Display .. 5
1.5 Introduction to the Data Transformation List Page .. 6
1.6 Other Tools ... 6
1.7 Using Data Transformations ... 6

2 Creating Data Transformations .. 9
2.1 Creating a Transformation .. 9
2.2 Opening an Existing Transformation ... 10
2.3 Specifying Transformation Details ... 10

2.3.1 Using the Create existing Option ... 11
2.4 Editing Transformation Actions ... 11

2.4.1 Adding an Action ... 12
2.4.2 Editing an Action ... 12

2.5 Rearranging Actions ... 12
2.6 Working with Groups of Actions .. 13
2.7 Undoing a Change .. 14
2.8 Saving a Transformation .. 14
2.9 Compiling a Transformation .. 14
2.10 Deleting a Transformation .. 14

3 Syntax Rules .. 15
3.1 References to Message Properties .. 15
3.2 Literal Values .. 15

3.2.1 XML Reserved Characters ... 16
3.2.2 Separator Characters in Virtual Documents ... 16
3.2.3 When XML Reserved Characters Are Also Separators ... 17
3.2.4 Numeric Character Codes .. 17

3.3 Valid Expressions ... 17

4 Adding Assign Actions .. 19
4.1 Introduction .. 19

4.1.1 Objects and Object References .. 20
4.2 Copying the Source Message ... 20
4.3 Copying a Value from a Source Property to a Target Property .. 20
4.4 Copying Values of All Sub-properties .. 21
4.5 Assigning a Literal Value to a Target Property ... 22
4.6 Using an Expression for the Value of a Target Property .. 23

4.6.1 Using the Data Transform Function Wizard .. 23
4.7 Assigning a Value to a Collection Item .. 23
4.8 Inserting a List Item ... 25
4.9 Appending a List Item .. 25
4.10 Removing a Collection Item ... 26
4.11 Clearing a Collection Property ... 27

Developing DTL Transformations iii

5 Adding Other Actions ... 29
5.1 Adding an If Action .. 29
5.2 Adding a For Each Action .. 30

5.2.1 Shortcuts for the For Each Action .. 31
5.2.2 Avoiding <STORE> Errors with Large Messages ... 32

5.3 Adding a Subtransform Action ... 32
5.4 Adding a Trace Action .. 33
5.5 Adding a Code Action .. 33

5.5.1 Guidelines for Using Custom Code in DTL .. 33
5.6 Adding an SQL Action ... 34

5.6.1 Guidelines for Using SQL in DTL ... 34
5.7 Adding a Switch Action .. 35
5.8 Adding a Case Action ... 35
5.9 Adding a Default Action ... 35
5.10 Adding a Break Action ... 35
5.11 Adding a Comment Action ... 36

6 Testing Data Transformations ... 37
6.1 Using the Transformation Testing Page ... 37
6.2 Testing a Transformation Programmatically .. 38

iv Developing DTL Transformations

About This Book

This book describes how to create DTL transformations for use in productions. It contains the following chapters:

• Introduction to DTL Tools

• Creating Data Transformations

• Syntax Rules

• Adding Assign Actions

• Adding Other Actions

• Testing Data Transformations

For a detailed outline, see the table of contents.

The following books provide related information:

• Best Practices for Creating Productions describes best practices for organizing and developing productions.

• Developing Productions explains how to perform the development tasks related to creating a production.

• Configuring Productions explains how to perform the configuration tasks related to creating a production.

• Business Process Language and Data Transformation Language XML Reference provides a reference description of
the XML definition of Data Transformations.

Developing DTL Transformations 1

1
Introduction to DTL Tools

This chapter introduces the tools that InterSystems IRIS® provides to enable you to develop and test DTL transformations.
It contains the following topics:

• Background

• Introduction to the Data Transformation Builder Page

• Introduction to the DTL Diagram

• Controlling the Display

• Introduction to the Data Transformation List Page

• Other Tools

• Using Transformations

1.1 Background
A data transformation creates a new message that is a transformation of another message. It is common for a production
to use data transformations, to adjust outgoing messages to the requirements of the target systems.

You can create and edit a DTL transformation visually in the DTL editor, available in either the Management Portal or
Studio. The DTL editor is meant for use by nontechnical users. The term DTL represents Data Transformation Language,
which is the XML-based language that InterSystems IRIS uses internally to represent the definition of a transformation
that you create in this editor.

You can invoke a data transformation from a business process, another data transformation, or a business rule. Note that
there is overlap among the options available in business processes, data transformations, and business rules. For a compar-
ison, see “Comparison of Business Logic Tools” in Developing Productions.

1.2 Introduction to the Data Transformation Builder Page
The Data Transformation Builder page enables you to create, edit, and compile DTL transformations.

To access this page in the Management Portal, select Interoperability > Build > Data Transformations.

Developing DTL Transformations 3

When you display this page, it shows the last transformation you opened in this namespace, if any. This page has the fol-
lowing areas:

• The ribbon bar that the top displays options you can use to create and open DTL transformations, compile the currently
displayed transformation, change the zoom display of the diagram, and so on.

For information on these options, see the chapter “Creating Data Transformations.”

• The upper part of the left area displays the DTL diagram. The next section provides details on this area.

• The lower part of the left area displays a table that lists the actions defined in the DTL transformation. When InterSystems
IRIS uses this transformation, it performs these actions in order as listed here.

• The right area displays three tabs:

– Transform — Enables you to edit information about the transformation. For details, see “Specifying Transformation
Details,” later in this book.

– Action — Enables you to edit details of the selected action. Later chapters describe the details for assign actions
and for other kinds of actions.

– Tools — Enables you to launch a wizard to test the currently displayed transformation. For details, see “Testing
Data Transformations,” later in this book.

• You can resize these three areas.

Tip: If you open a DTL transformation class in Studio, Studio displays a similar version of this page. You can view and
edit the XML definition of the Data Transformation by selecting View other code from the Studio Data Transformation
Builder page.

1.3 Introduction to the DTL Diagram
The following shows the DTL diagram a DTL class:

Note the following points:

• The left area displays the source message. The header above the column displays the name of the source message class,
and the boxes in the column display properties of the source message.

• The right area displays the target message in the same way.

• The top area includes a scroll button for each of these areas.

• The diagram shows connectors that represent actions within the transformations. The actions displayed here copy
values from source properties to target properties.

4 Developing DTL Transformations

Introduction to DTL Tools

• The middle area (the blue column) displays an icon on each connector line. The purpose of these icons is to enable
you to select the connectors more easily. (You can select a connector line anywhere on its length, but it is easier to
click the icons shown in this middle area.)

The following shows another example:

In this case, the source and target classes are more complex. Note the following additional points:

• The FavoriteColors property is defined as list of strings. This property is displayed here with parentheses () at the end
of its name.

In this example, Allergies is another collection property.

• The Address property is defined as an object that has the Street, City, and ZipCode properties. Notice that the box for
this property contains a triangle inside it.

In the left column, this property is displayed in expanded mode, so that you can see the properties. The triangle in the
box is not solid and is pointing down.

The right column, this property is displayed in collapsed mode. The triangle in this box is solid and is pointing to the
right.

• For the Address properties, the connector is shown with a dashed line on the side where the Address is collapsed. This
indicates that there are hidden sub-properties on this side of the assign action.

1.4 Controlling the Display
You can control the display of the Data Transformation Builder page in multiple ways:

• You can click a View option in the ribbon bar:

Use the buttons to view both the transform diagram and the action list in the left pane of the page, or instead to collapse
the section you do not want to see.

Developing DTL Transformations 5

Controlling the Display

• You can select a zoom option from the drop-down list in the ribbon bar. By default, this list displays 100%. Click a
value in the list to shrink or enlarge the size of the DTL diagram.

• Use the scroll bars in the header area of the DTL diagram, as described in the previous section.

• Collapse and expand the display of properties, as described in the previous section.

1.5 Introduction to the Data Transformation List Page
The Interoperability > List > Data Transformations page lists the data transformation classes defined in the current namespace.

This page lists two kinds of transformations:

• DTL transformations are displayed in blue. You can double-click one to open it in the Data Transformation Builder.

• Custom transformations are displayed in black. These classes are based on Ens.DataTransform and do not use DTL.
You must edit these in Atelier or Studio.

To use this page, select a transformation class and then click one of the following commands in the ribbon bar:

• Edit — (DTL transformations only) Click to change or view the data transformation using the Data Transformation
Builder.

• Test — Click to test the selected transformation class using the Test Transform wizard.

For details, see the chapter “Testing Data Transformations,” later in this book.

• Delete — Click to delete the selected transformation class.

• Export — Click to export the selected transformation class to an XML file.

• Import — Click to import a data transformation that was exported to an XML file.

You can also export and import these classes as you do any other class in InterSystems IRIS. You can use the System

Explorer > Globals page of the Management Portal or use the Export and Import commands on the Tools menu in Studio.

1.6 Other Tools
You can also invoke a data transformation programmatically, which can be useful for testing purposes. For details, see the
chapter “Testing Data Transformations.”

Also, because data transformations are classes, you can edit them and work with them in the same way that you do any
other class.

1.7 Using Data Transformations
You can invoke a data transformation from the following parts of a production:

• From another DTL data transformation. See “Adding a Subtransform Action,” in the chapter “Adding Other Actions.”

• From a BPL business process. See “<transform>” in the Business Process and Data Transformation Language Refer-
ence.

6 Developing DTL Transformations

Introduction to DTL Tools

• From a business rule. See “Selecting the Transformation and Target of a Send Action” in Developing Business Rules.

• From a custom business process or a custom DTL transformation. To do so, execute it programmatically as described
in the chapter “Testing Data Transformations.”

Note: This section applies to both DTL transformations and custom transformations.

Developing DTL Transformations 7

Using Data Transformations

2
Creating Data Transformations

This chapter describes generally how to create and edit data transformations. It contains the following sections:

• Creating a Transformation

• Opening a Transformation

• Specifying Transformation Details

• Editing Transformation Actions

• Rearranging Actions

• Working with Groups of Actions

• Undoing a Change

• Saving a Transformation

• Compiling a Transformation

• Deleting a Transformation

Later chapters describe the syntax to use in data transformations, details for assign actions, and details for other kinds of
actions.

2.1 Creating a Transformation
To create a transformation:

1. Click New.

If you are currently viewing a transformation and you have made changes but have not yet saved them, InterSystems
IRIS® prompts you to confirm that you want to proceed (which will discard those changes).

InterSystems IRIS then displays a dialog box where you can specify the basic information for the transformation.

2. Specify some or all of the following information:

• Package (required) — Enter a package name or click the arrow to select a package in the current namespace.

Do not use a reserved package name; see “Reserved Package Names” in Developing Productions.

• Name (required) — Enter a name for your data transformation class.

• Description — Enter an description for the data transformation; this becomes the class description.

Developing DTL Transformations 9

• Source Type and Source Class — Specifies the type of messages that this transformation will receive as input.

Choose one of the following:

– All Messages — This transformation can be used with any input message type.

– X12 — The input messages are instances of EnsLib.EDI.X12.Document.

– EDIFACT — The input messages are instances of EnsLib.EDI.EDIFACT.Document.

– XML — The input messages are instances of EnsLib.EDI.XML.Document.

Or click the search icon for Source Class and then select the class.

• Source Document Type (applicable only if the messages are virtual documents) — Enter or choose the document
type of the source messages. You can choose any type defined in the applicable schemas loaded into this namespace.

• Target Type and Target Class — Specifies the type of messages that this transformation will generate as output.
See the choices for Source Type and Source Class.

• Target Document Type (applicable only if the messages are virtual documents) — Enter or choose the document
type of the target messages. You can choose any type defined in the applicable schemas loaded into this namespace.

Apart from Package and Name, you can edit all these details later.

3. Specify details on the Transform tab. See “Specifying Transformation Details.”

2.2 Opening an Existing Transformation
To open a transformation:

1. Click Open.

If you are currently viewing a transformation and you have made changes but have not yet saved them, InterSystems
IRIS prompts you to confirm that you want to proceed (which will discard those changes).

2. Click the package that contains the transformation.

Then click the subpackage as needed.

3. Click the transformation class.

4. Click OK.

2.3 Specifying Transformation Details
For a transformation, the Transform tab displays details that apply to the transformation as a whole. You may or may not
have already specified some of these details. Other details can be edited only here. These details are as follows:

• Name (read-only) — Complete package and class name of the data transformation class.

• Create — Specifies how the transformation should create the target message. Choose one of the following:

– new — Create a new object of the target class (and type, if applicable), before executing the elements within the
data transformation. This is the default.

10 Developing DTL Transformations

Creating Data Transformations

– copy — Create a copy of the source object to use as the target object, before executing the elements within the
transform.

– existing — Use an existing object, provided by the caller of the data transformation, as the target object. See the
following subsection.

• Source Class — Specifies the type of messages that this transformation will receive as input. For details, see “Creating
a Transformation,” earlier in this chapter.

• Source Document Type (applicable only if the messages are virtual documents) — Specifies the document type of the
source messages.

• Target Class — Specifies the type of messages that this transformation will generate as output. For details, see “Cre-
ating a Transformation,” earlier in this chapter.

• Target Document Type (applicable only if the messages are virtual documents) — Specifies the document type of the
target messages.

• Language — Specifies the language you will use in any expressions in this DTL. This should be objectscript.

• Report Errors — Specifies whether InterSystems IRIS should log any errors that it encounters when executing this
transform. If you select this option, InterSystems IRIS logs the errors as Warnings in the Event Log. InterSystems IRIS
also returns a composite status code containing all errors as its return value. This option is selected by default.

• Ignore missing source — Specifies whether to ignore errors caused by attempts to get field values out of absent source
segments of virtual documents or properties of objects. If you select this option, InterSystems IRIS suppresses these
errors and does not call subtransforms where the named source is absent. This option is selected by default.

You can precisely control the behavior by including tests and conditional logic branches to confirm that any required
elements are present.

• Description — Description of the data transformation.

2.3.1 Using the Create existing Option

For Create, the existing option enables you to specify the target as an existing object, which results in a performance
improvement. This option applies when you invoke a series of transformations programmatically (or perform other
sequential processing). You would use this option in cases like the following scenario:

• You have three transformations that you want to perform in sequence:

1. MyApp.ADTTransform — Uses the new option for Create.

2. MyApp.MRNTransform — Uses the existing option for Create.

3. MyApp.LabXTransform — Uses the existing option for Create.

• You invoke the transforms as follows:

do MyApp.ADTTransform.Transform(message,.target) do MyApp.MRNTransform(target,.newtarget) do
MyApp.LabXTransform(newtarget,.outmessage)

2.4 Editing Transformation Actions
This section describes generally how to add and edit the actions in a transformation. It includes the following subsections:

• Adding an Action

Developing DTL Transformations 11

Editing Transformation Actions

• Editing an Action

Later chapters describe the syntax to use in data transformations, details for assign actions, and details for other kinds of
actions.

2.4.1 Adding an Action

To add an action, you can always do the following:

1. Optionally click a source or target property, depending on the kind of action you want to add.

2. Select an action from the Add Action drop-down list.

3. Edit the details for this action on the Action tab.

If applicable, the property that you selected is shown in the Property field, for use as a starting point. Optionally, you
can disable the action with the Disabled check box. If you disable a foreach or if action, all actions within the block
are also disabled.

Other techniques are possible for assign actions, as discussed in later in this book.

2.4.2 Editing an Action

To edit an action, first select it. To do so:

• Click the corresponding row in the table below the diagram.

• (If the action is displayed in the diagram) Click the symbol that InterSystems IRIS displays on the corresponding
connector line, in the center divider.

When you click this item, it changes color, the connector line turns bold, and the source and target property are high-
lighted in color. This means the connector is selected, as shown in the following figure.

Now edit the values on the Action tab. Optionally, you can disable the action with the Disabled check box. If you disable
a foreach or if action, all actions within the block are also disabled.

Tip: If you double-click a property in the diagram, InterSystems IRIS updates the currently selected action, if applicable.
If you double-click a field in the source, then the editor interprets it as your wanting to set the value for the selected
action. Similarly, if you double-click a target field, the editor interprets it as your wanting to set the target for the
selected action.

2.5 Rearranging Actions
InterSystems IRIS executes the actions in the order they are listed in the table below the diagram.

To rearrange actions, you must use the table below the DTL diagram, as follows:

1. Click the row corresponding to that action.

2. Click one of the following icons in that row, as needed:

12 Developing DTL Transformations

Creating Data Transformations

DescriptionTool

Move the selected action up one position. If the action is the first action in a group, for
example afor each or if block, then this moves the action up and out of the group.

Move the selected action down one position. If the action is the last action in a group, then
this moves the action just after the group. For example, if the action is the last action in an
if block, the action is moved right after the block. If the action is the last action in an if block
just before the else, then this moves the action into the first position in the else block.

Move the selected action out of the current group, for example a for each or if block. This
moves the action out of the current group to the position immediately before the group.

Move the selected action into the next group of actions, for example, a for each or if block.

Remove all the actions of the data transformation.

Remove the action in this row.

2.6 Working with Groups of Actions
You can gather actions into a display group by using the group action. Grouping actions helps organize them in the table
below the diagram. The description that you define on the Action tab appears in the list to help you identify a group.

To move an action in or out of a group, select the action in the list and click (move into group) or (move out of
group). To make the list more readable, you can collapse or expand groups as you review the list. To collapse a group and

hide the actions it contains, click next to the action name. To expand a group, click . You can also collapse and

expand all groups at once using the and buttons in the table’s Actions bar.

Developing DTL Transformations 13

Working with Groups of Actions

Note: You can also expand and collapse blocks of actions created by if , for each , switch , and case actions.

2.7 Undoing a Change

To undo the previous change, click the Undo button .

2.8 Saving a Transformation
To save a transformation, do one of the following:

• Click Save.

• Click Save As. Then specify a new package, class name, and description and click OK.

• Click Compile. This option saves the transformation and then compiles it.

2.9 Compiling a Transformation
To compile a transformation, click Compile. This option saves the transformation and then compiles it.

2.10 Deleting a Transformation
To delete a transformation, you must use a different page, the Interoperability > List > Data Transformations page.

To delete a transformation:

1. Click the row that displays its name.

2. Click the Delete button.

3. Click OK to confirm this action.

14 Developing DTL Transformations

Creating Data Transformations

3
Syntax Rules

This chapter describes the syntax rules for referring to properties and for creating expressions within various DTL actions.
It contains the following sections:

• References to Message Properties

• Literal Values

• Valid Expressions

3.1 References to Message Properties
In most actions within a transformation, it is necessary to refer to properties of the source or target messages. The rules for
referring to a property are different depending on the kind of messages you are working with.

• For messages other than virtual documents, use syntax like the following:

source.propertyname

Or:

source.propertyname.subpropertyname

Where propertyname is a property in the source message, and subpropertyname is a property of that property.

If the message includes a collection property, see “Special Variations for Repeating Fields” in “Virtual Property Path
Basics” in the Routing XML Virtual Documents in Productions. Some of the information there applies to both virtual
documents and standard messages.

• For virtual documents other than XML virtual documents, use the syntax described in “Syntax Guide for Virtual
Property Paths” in Using Virtual Documents in Productions. Also see the following subsection.

• For XML virtual documents, see the Routing XML Virtual Documents in Productions.

3.2 Literal Values
When you assign a value to a target property, you often specify a literal value. Literal values are also sometimes suitable
in other places, such as the value in a trace action.

Developing DTL Transformations 15

A literal value is either of the following:

• A numeric literal is just a number. For example: 42.3

• A string literal is a set of characters enclosed by double quotes. For example: "ABD"

Note: This string cannot include XML reserved characters. For details, see “XML Reserved Characters.”

For virtual documents, this string cannot include separator characters used by that virtual document format.
See “Separator Characters in Virtual Documents” and “When XML Reserved Characters Are Also Separa-
tors.”

3.2.1 XML Reserved Characters

Because DTL transformations are saved as XML documents, you must use XML entities in the place of XML reserved
characters:

Use this XML entity...To include this character...

>>

<<

&&

''

""

For example, to assign the value Joe’s "Good Time" Bar & Grill to a target property, set Value equal to the fol-
lowing:

"Joe's "Good Time" Bar & Grill"

This restriction does not apply inside code and sql actions, because InterSystems IRIS® automatically wraps a CData block
around the text that you enter into the editor. (In the XML standard, a CData block encloses text that should not be parsed
as XML. Thus you can include reserved characters in that block.)

3.2.2 Separator Characters in Virtual Documents

In most of the virtual document formats, specific characters are used as separators between segments, between fields,
between subfields, and so on. If you need to include any of these characters as literal text when you are setting a value in
the message, you must instead use the applicable escape sequence, if any, for that document format.

These characters are documented in the applicable books. For details, see:

• “Separators” in the reference section of the Routing EDIFACT Documents in Productions

• “Separators” in the reference section of the Routing X12 Documents in Productions

Important: In a data transformation, the separator characters and escape sequences can be different for the source and
target messages. InterSystems IRIS automatically adjusts values as needed, after performing the transfor-
mation. This means that you should consider only the separator characters and escape sequences that apply
to the source message.

16 Developing DTL Transformations

Syntax Rules

3.2.3 When XML Reserved Characters Are Also Separators

• If the character (for example, &) is a separator and you want to include it as a literal character, use the escape sequence
that applies to the virtual document format.

• In all other cases, use the XML entity as shown previously in “XML Reserved Characters.”

3.2.4 Numeric Character Codes

You can include decimal or hexadecimal representations of characters within literal strings.

The string &#n; represents a Unicode character when n is a decimal Unicode character number. One example is é
for the Latin e character with acute accent mark (é).

Alternatively, the string &#xh; represents a Unicode character when h is a hexadecimal Unicode character number. One
example is ¿ for the inverted question mark (¿).

3.3 Valid Expressions
When you assign a value to a target property, you can specify an expression, in the language that you selected for the data
transformation. You also use expressions in other places, such as the condition for an if action, the value in a trace action,
statements in a code action, and so on.

The following are all valid expressions:

• Literal values, as described in the previous section.

• Function calls (InterSystems IRIS provides a set of utility functions for use in business rules and data transformations.
For details, see “Utility Functions for Use in Productions” in Developing Business Rules.) InterSystems IRIS provides
a wizard for these.

• References to properties, as described in “References to Properties.”

• References to the aux variable passed by the rule. If the data transformation is called from a rule, it supplies the fol-
lowing information in the aux variable:

– aux.BusinessRuleName—Name of the rule.

– aux.RuleReason—Reason that the rule was fired. It is the same name as used in the logging. An example value is
'rule#1:when#1'. If the RuleReason is longer than 2000 characters, it is truncated to 2000 characters.

– aux.RuleUserData—Value that was assigned in the rule to the property 'RuleUserData'.

If the data transformation is called directly from code and not from a rule, the code can pass the auxiliary data in the
third parameter. If your data transformation may be called from code that does not set the third parameter, your DTL
code should check that the aux variable is an object in an if action using the $ISOBJECT function.

• Any expression that combines these, using the syntax of the scripting language you chose for data transformation. See
“Specifying Transformation Details,” earlier in this book. Note the following:

– In ObjectScript, the concatenation operator is the _ (underscore) character, as in:

value='"prefix"_source.{MSH:ReceivingApplication}_"suffix"'

– To learn about useful ObjectScript string functions, such as $CHAR and $PIECE, see the ObjectScript Reference.

– For a general introduction, see Using ObjectScript.

Developing DTL Transformations 17

Valid Expressions

4
Adding Assign Actions

This chapter provides details on adding different kinds of assign actions to a DTL transformation. It contains the following
sections:

• Introduction

• Copying the Source Message

• Copying a Value from a Source Property to a Target Property

• Copying Values of All Sub-properties

• Assigning a Literal Value to a Target Property

• Using an Expression for the Value of a Target Property

• Assigning a Value to a Collection Item

• Inserting a List Item

• Appending a List Item

• Removing a Collection Item

• Clearing a Collection Property

Important: For virtual documents, do not manually change escape sequences in the data transformation; InterSystems
IRIS® handles these automatically.

For information on adding other kinds of actions, see the next chapter.

For information about working with groups of actions, see Working with Groups of Actions .

4.1 Introduction
There are five kinds of assign actions: set, clear, remove, append, and insert. After you create any kind of assign action,
you can change the type. To do so, select a different value in the Action drop-down in the Action tab.

InterSystems IRIS represents each assign action with a connector line in the DTL diagram.

Developing DTL Transformations 19

4.1.1 Objects and Object References

If you assign from the top-level source object or any object property of another object as your source, the target receives
a cloned copy of the object rather than the object itself. This prevents inadvertent sharing of object references and saves
the effort of generating cloned objects yourself.

If you instead want to share object references between source and target, you must assign from the source to an intermediate
temporary variable, and then assign from that variable to the target.

4.2 Copying the Source Message
To create an assign action that copies the source message:

1. Drag the circle tab to the right of the source message. Hold down the mouse button.

2. Drag the cursor to the triangle tab to the left of the target message until its box changes color.

3. Release the left mouse button.

4.3 Copying a Value from a Source Property to a Target
Property
To create an assign action that copies a value from a source property to a target property:

1. Drag a value from a source property to a target property. To do this:

a. Click the circle tab to the right of the source property. Hold down the mouse button. The display looks similar to
this:

b. Drag the cursor to the triangle tab to the left of the target property until its box changes color. The display looks
similar to this:

c. Release the left mouse button. The display looks similar to this:

20 Developing DTL Transformations

Adding Assign Actions

The table below the diagram now shows the details of the assign action.

2. Optionally edit the details on the Action tab.

This assign action uses set.

4.4 Copying Values of All Sub-properties
If parent properties in the source and target are identical and the source and target have the same type, you can assign the
values of all the sub-properties at once. In this case there is no need to expand the parent properties to reveal the sub-
properties. Simply drag the cursor from the parent property on the source side to the parent property on the target side.

In the following DTL diagram, the single connector between the EVN property on the source side and the EVN property
on the target side includes all of the following sub-properties of EVN:

• EventTypeCode

• RecordedDateTime and all of its sub-properties

• DateTimePlannedEvent and all of its sub-properties

• EventReasonCode

• OperatorID, all of its iterations, and all of its sub-properties

• EventOccurred and all of its sub-properties

Developing DTL Transformations 21

Copying Values of All Sub-properties

This assign action uses set.

Note: If the source and target types are different, you cannot use this feature to assign subproperties, even if the structures
appear to be parallel. For such a transformation, you must assign each leaf node of a structure independently and
add a For Each action to process iterations. See “Adding a For Each Action” for details on the For Each action.

4.5 Assigning a Literal Value to a Target Property
To assign a literal value to a target property:

1. Select the target property.

2. Click set from the Add Action drop-down list. The Action tab for this operation displays.

3. Type a literal numeric or string value in the Value field:

• A numeric literal is just a number. For example: 42.3

• A string literal is a set of characters enclosed by double quotes. For example: "ABD"

Note: This string cannot include XML reserved characters. For virtual documents, this string cannot include
separator characters used by that virtual document format. For details, see the chapter “Syntax Rules.”

4. Click Save.

22 Developing DTL Transformations

Adding Assign Actions

4.6 Using an Expression for the Value of a Target Property
A literal value, as described in the previous section, is a simple kind of expression. In some cases, you might want to use
a more complex expression as the value of a target property. To do so, either:

• To create an expression that uses a function, click the search button next to the Value field. This invokes the Data

Transform Function Wizard, which is described in the following subsection.

• To create a more complex expression, type the expression into the Value field.

See “Valid Expressions,” earlier in this book. Make sure that the expression is valid in the scripting language you
chose for the data transformation; see “Specifying Transformation Details,” earlier in this book.

4.6.1 Using the Data Transform Function Wizard

To use the Data Transform Function Wizard:

1. Select a Function from the drop-down list.

More fields display as needed to define the expression.

If you select Repeat Current Function from the drop-down list, a copy of the current function is inserted as a parameter
of the itself, which creates a recursive call to the function.

2. Edit the fields as needed. For instructions, see the context-sensitive help in the dialog.

3. Click OK to save your changes and exit the wizard.

4.7 Assigning a Value to a Collection Item
This section applies to the following kinds of collections:

• Collection properties in standard production messages.

Developing DTL Transformations 23

Using an Expression for the Value of a Target Property

• Repeating fields in XML virtual documents.

To change the value of an item from a collection:

1. Select the target list property or array property.

2. Click set from the Add Action drop-down list. The Action tab for this operation displays.

3. In the Property field, edit the value in parentheses so that it identifies the item to change.

For array properties, use the key of the array item. For list properties, use the index of the list item. For repeating fields
in virtual documents, use the index of the segment or field.

For example, suppose that you originally see this:

target.MyArrayProp.(1)

Edit the field to contain this instead:

target.MyArrayProp("key2")

4. Edit Value to contain a literal value or other valid expression.

See “Valid Expressions,” earlier in this book. Make sure that the expression is valid in the scripting language you
chose for the data transformation; see “Specifying Transformation Details,” earlier in this book.

5. Click Save.

For example:

Or, edit the Property field to remove the trailing .(1) from the displayed value. Then use key to specify identify the item
to change, as described in the next section. For example:

24 Developing DTL Transformations

Adding Assign Actions

4.8 Inserting a List Item
This section applies to list properties (but not array properties) in standard production messages. You can also use this
action with XML virtual documents; see the Routing XML Virtual Documents in Productions.

To insert an item into a list:

1. Select the target list property or array property.

2. Click insert from the Add Action drop-down list. The Action tab for this operation displays.

3. In the Property field, remove the trailing .(1) from the displayed value.

For example, suppose that you originally see this:

target.MyListProp.(1)

Edit the field to contain this instead:

target.MyListProp

4. Edit Value to contain a literal value or other valid expression.

See “Valid Expressions,” earlier in this book. Make sure that the expression is valid in the scripting language you
chose for the data transformation; see “Specifying Transformation Details,” earlier in this book.

5. For key, identify the index position for the new item.

For example:

5

6. Click Save.

For example:

4.9 Appending a List Item
This section applies to list properties (but not array properties) in standard production messages. You can also use this
action with XML virtual documents; see the Routing XML Virtual Documents in Productions.

Developing DTL Transformations 25

Inserting a List Item

To insert an item into a list:

1. Select the target list property or array property.

2. Click append from the Add Action drop-down list. The Action tab for this operation displays.

3. In the Property field, remove the trailing .(1) from the displayed value.

For example, suppose that you originally see this:

target.MyListProp.(1)

Edit the field to contain this instead:

target.MyListProp

4. Edit Value to contain a literal value or other valid expression.

See “Valid Expressions,” earlier in this book. Make sure that the expression is valid in the scripting language you
chose for the data transformation; see “Specifying Transformation Details,” earlier in this book.

5. Click Save.

For example:

4.10 Removing a Collection Item
This section applies to collection properties (lists and arrays) in standard production messages. You can also use this action
with XML virtual documents; see the Routing XML Virtual Documents in Productions.

To remove an item from a collection:

1. Select the target list property or array property.

2. Click remove from the Add Action drop-down list. The Action tab for this operation displays.

3. In the Property field, remove the trailing .(1) from the displayed value.

For example, suppose that you originally see this:

target.MyArrayProp.(1)

Edit the field to contain this instead:

26 Developing DTL Transformations

Adding Assign Actions

target.MyArrayProp

4. For key, identify the item to remove.

For array properties, use the key of the array item. For list properties, use the index of the list item. For repeating fields
in virtual documents, use the index of the segment or field.

For example:

"key2"

5. Click Save.

For example:

4.11 Clearing a Collection Property
This section applies to collection properties (lists and arrays) in standard production messages. You can also use this action
with XML virtual documents; see the Routing XML Virtual Documents in Productions.

To clear the contents of a collection:

1. Select the target list property or array property.

2. Click clear from the Add Action drop-down list. The Action tab for this operation displays.

3. In the Property field, remove the trailing .(1) from the displayed value.

For example, suppose that you originally see this:

target.MyArrayProp.(1)

Edit the field to contain this instead:

target.MyArrayProp

4. Click Save.

For example:

Developing DTL Transformations 27

Clearing a Collection Property

28 Developing DTL Transformations

Adding Assign Actions

5
Adding Other Actions

This chapter provides details on adding other kinds of actions to a DTL transformation. It contains the following sections:

• Adding an If Action

• Adding a For Each Action

• Adding a Subtransform Action

• Adding a Trace Action

• Adding a Code Action

• Adding an SQL Action

• Adding a Switch Action

• Adding a Case Action

• Adding a Default Action

• Adding a Break Action

• Adding a Comment Action

For information about working with groups of actions, see Working with Groups of Actions .

For information on adding assign actions, see the previous chapter.

5.1 Adding an If Action
An if action executes other actions conditionally, depending on the value of an expression that you provide. InterSystems
IRIS® represents each if action as a connector line in the DTL diagram.

To add an if action:

1. If the condition depends upon the value of a source property, click that property.

2. Select if from the Add Action drop-down list.

On the Action tab, the Condition field automatically contains the name of the source property that you had selected.

The area below the diagram contains three new rows. The Actions column displays the following labels for these rows:

• if — This row marks the beginning of actions to perform if the condition is true.

• else — This row marks the beginning of actions to perform if the condition is false.

Developing DTL Transformations 29

• endf — This row marks the end of the if action.

3. Edit the Condition field so that it contains an expression that evaluates to either true or false.

For example:

source.ABC = "XYZ"

Notes:

• To create an expression that uses a function, click the search button next to the Value field. This invokes the
Data Transform Function Wizard, which is described earlier.

• To create a more complex expression, type the expression into the Value field. See “Valid Expressions,” earlier
in this book. Make sure that the expression is valid in the scripting language you chose for the data transformation;
see “Specifying Transformation Details,” earlier in this book.

4. To add actions to perform when the condition is true:

a. Click the if row.

b. Select an item from the Add Action drop-down list.

c. Edit the values in the Action tab as needed.

d. Repeat as necessary.

You can include assign actions, if actions, and for each actions.

5. To add actions to perform when the condition is false:

a. Click the else row.

b. Continue as described in the preceding item.

The details are then shown in the block below the DTL diagram. For example:

Note: It is not required to have any actions for the if branch or for the else branch. If there are no actions in either branch,
the if action has no effect.

5.2 Adding a For Each Action
The for each action enables you to define a sequence actions that is executed iteratively, once for each member of one of
the following:

• A collection property (for a standard message) .

• A repeating property (for a virtual document).

• A set of subdocuments in a document (for a virtual document).

30 Developing DTL Transformations

Adding Other Actions

InterSystems IRIS represents each for each action as a connector line in the DTL diagram.

You can break out of a For Each loop at any time by adding a break action within the loop.

To add a for each action:

1. Select a collection or repeating property in the source message.

2. Select for each from the Add Action drop-down list.

On the Action tab, the Property field automatically contains the name of the source property that you had selected.

Also, the Key field automatically contains k1. For the for each action, the Key field specifies the name of an iterator
variable.

3. On the Action tab, the Property field should not include the iterator key within the parentheses. For example, the fol-
lowing is correct:

source.{PID:PatientIdentifierList()}

This means that the for each will iterate through the PatientIdentifierList repeating fields, starting with the
first one (numbered 1) and ending with the last one.

For example:

4. To add actions to the for each block, click the for each action and then add the appropriate actions.

The details are then shown in the block below the DTL diagram. For example (partial):

If the <foreach> applies to a collection property in a message, the sequence of activities is executed iteratively, once for
every element that exists within the collection property. If the element is null, the sequence is not executed. The sequence
is executed if the element has an empty value, that is, the separators are there but there is no value between them, but is
not executed for a null value, that is, the message is terminated before the field is specified.

5.2.1 Shortcuts for the For Each Action

When you are working with virtual documents, InterSystems IRIS provides a shortcut notation that iterates through every
instance of a repeating field within a document structure. This means you do not actually need to set up multiple nested
for each loops to handle repeating fields; instead you create a single assign action using a virtual property path with empty

Developing DTL Transformations 31

Adding a For Each Action

parentheses within the curly bracket { } syntax. For information, see “Curly Bracket {} Syntax” in Using Virtual Documents
in Productions.

Note: If the source and target types are different, you cannot use this short cut for the For Each action. Use an explicit
For Each action in these cases.

5.2.2 Avoiding <STORE> Errors with Large Messages

As you loop over segments in a message or object collections, they are brought into memory. If these objects consume all
the memory assigned to the current process, you may get unexpected errors.

To avoid this, remove the objects from memory after you no longer need them. For example, if you are processing many
segments in a for each loop, you can call the commitSegmentByPath() method on both the source and target as the last
step in the loop. Similarly, for object collections, use the %UnSwizzleAt() method.

If you cannot make code changes, a temporary workaround is to increase the amount of memory allocated for each process.
You can change this by setting the bbsiz parameter on the Advanced Memory Settings page in the Management Portal. Note
that this requires a system restart and should only occur after consulting with your system administrator.

5.3 Adding a Subtransform Action
A subtransform invokes another transformation (an ordinary transformation), often within a for each loop. Subtransfor-
mations are particularly useful with virtual documents, because EDI formats are typically based on a set of segments that
are used in many message types. The ability to reuse a transformation within another transformation means that you can
create a reusable library of segment transformations that you can call as needed, without duplicating code transformation.

InterSystems IRIS does not represent a subtransform action in the DTL diagram.

To add a subtransform action:

1. Select subtransform from the Add Action drop-down list.

2. On the Action tab, specify the following details:

• Transform Class — Specifies the data transformation class to use. This can be either a DTL transformation or a
custom transformation. For information on custom transformations, see “Defining Custom Transformations” in
Developing Productions. You must enter the class.

• Source Property — Identifies the property being transformed. This may be an object property or a virtual document
property path. Generally it is a property of the source message used by the transformation. You must enter the
source property.

• Target Property — Identifies the property into which the transformed value will be written. This may be an object
property or a virtual document property path. Generally it is a property of the target message used by the transfor-
mation. You must enter the target property.

• Auxiliary Property—Optionally, specifies a value that is passed to the subtransform. The subtransform accesses
the value as the aux variable.

• Disabled—Optionally, specifies that the subtransform is disabled.

• Description—Optionally, specifies a text description of the subtransform.

Note: In the case of a subtransform with Create as new or copy, it is not necessary to have a pre-existing target
object.

32 Developing DTL Transformations

Adding Other Actions

5.4 Adding a Trace Action
A trace action generates a trace message, which is helpful for diagnosis. If the Log Trace Events setting is enabled for the
parent business host, this message is written to the Event Log. If the Foreground setting is enabled for the parent business
host, the trace messages are also written to the Terminal window.

InterSystems IRIS does not represent a trace action in the DTL diagram.

To add a trace action:

1. Select trace from the Add Action drop-down list.

2. On the Action tab, specify the following:

• Value — Specify a literal value or other valid expression.

See “Valid Expressions,” earlier in this book. Make sure that the expression is valid in the scripting language
you chose for the data transformation; see “Specifying Transformation Details,” earlier in this book.

• Description — Specify an optional description.

The trace action generates trace message with User priority; the result is the same as using the $$$TRACE macro in
ObjectScript.

5.5 Adding a Code Action
A code action enables you to execute one or more lines of user-written code within a DTL data transformation. This option
enables you to perform special tasks that are difficult to express using the DTL elements. InterSystems IRIS does not rep-
resent a code action in the DTL diagram.

To add a code action:

1. Select code from the Add Action drop-down list.

2. On the Action tab, specify the following:

• Code — Specify one or more lines of code in the scripting language specified for the transformation. For rules
about expressions in this code, see “Syntax Rules.”

InterSystems IRIS automatically wraps your code within a CDATA block. This means that you do not have to
escape special XML characters such as the apostrophe (') or the ampersand (&),

Also see the notes below.

• Description — Specify an optional description.

Tip: To write custom code that you can debug easily, write the code within a class method or a routine so that it can be
executed in the Terminal. Debug the code there. Then call the method or routine from within the code action of the
DTL.

5.5.1 Guidelines for Using Custom Code in DTL

In order to ensure that execution of a data transformation can be suspended and restored, you should follow these guidelines
when using a code action:

Developing DTL Transformations 33

Adding a Trace Action

• The execution time should be short; custom code should not tie up the general execution of the data transformation.

• Do not allocate any system resources (such as taking out locks or opening devices) without releasing them within the
same code action.

• If a code action starts a transaction, make sure that the same action ends the transactions in all possible scenarios;
otherwise, the transaction can be left open indefinitely. This could prevent other processing or can cause significant
downtime.

5.6 Adding an SQL Action
An SQL action enables you to execute an SQL SELECT statement from within the DTL transformation. InterSystems IRIS
does not represent an sql action in the DTL diagram.

To add an sql action:

1. Select sql from the Add Action drop-down list.

2. On the Action tab, specify the following:

• SQL — Specify a valid SQL SELECT statement.

InterSystems IRIS automatically wraps your SQL within a CDATA block. This means that you do not have to
escape special XML characters such as the apostrophe (') or the ampersand (&).

Also see the notes below.

• Description — Specify an optional description.

5.6.1 Guidelines for Using SQL in DTL

Be sure to use the following guidelines:

• Always use the fully qualified name of the table, including both the SQL schema name and table name, as in:

MyApp.PatientTable

Where MyApp is the SQL schema name and PatientTable is the table name.

• Any tables listed in the FROM clause must either be stored within the local InterSystems IRIS database or linked to
an external relational database using the SQL Gateway.

• Within the INTO and WHERE clauses of the SQL query, you can refer to a property of the source or target object. To
do so, place a colon (:) in front of the property name. For example:

 SELECT Name INTO :target.Name FROM MainFrame.EmployeeRecord WHERE SSN = :source.SSN AND City =
:source.Home.City

• Only the first row returned by the query will be used. Make sure that the WHERE clause correctly specifies the desired
row.

34 Developing DTL Transformations

Adding Other Actions

5.7 Adding a Switch Action
A switch action contains a sequence of one or more case actions and a default action. When a switch action is executed,
it begins evaluating each case condition. When an expression evaluates to true, then the contents of the corresponding case
block are executed; otherwise, the expression for the next case action is evaluated. As soon as one of the case actions is
executed, the execution path of the transformation leaves the switch block without evaluating any other conditions. If no
case condition is true, the contents of the default action are executed and then control leaves the switch block.

5.8 Adding a Case Action
Use the case action within a switch block to execute a block of actions when a condition is matched. When a case condition
is met and the block of actions performed, the execution path of the transformation leaves the switch block without evalu-
ating any other conditions.

To add a case action:

1. Select a switch action in the list below the diagram.

2. Select case from the Add Action drop-down list.

3. On the Action tab, add the condition. You can click the magnifying glass to add a function as part of the condition.

4. With the case action selected in the list below the diagram, use the Add Action drop-down to add the actions that will
be executed if the condition evaluates to true.

5.9 Adding a Default Action
You cannot add a default block by using the Add Action drop-down list. Rather, the default action is automatically added
to a switch block when you add the switch action. The actions contained in the default block are executed if none of the
case conditions in the switch block are met. If you do not want anything to happen when none of the case conditions are
met, simply leave the default block empty.

5.10 Adding a Break Action
Add a break action to a For Each loop to leave the loop as soon as the break action is executed. After the break action is
executed, the data transformation continues to process the action immediately following the For Each loop.

If you add a break action outside of a For Each loop, the data transformation terminates as soon as the break action is
executed.

Developing DTL Transformations 35

Adding a Switch Action

5.11 Adding a Comment Action
To help annotate the actions in a data transformation, you can add a comment that appears in the list of actions. After
selecting Add Action > Comment, enter the comment in the Description text box on the Action tab.

36 Developing DTL Transformations

Adding Other Actions

6
Testing Data Transformations

After you compile a data transformation class, you can (and should) test it. This chapter describes how to do so. It contains
the following sections:

• Using the Transformation Testing Page

• Testing a Transformation Programmatically

Note: This chapter applies to both DTL transformations and custom transformations.

6.1 Using the Transformation Testing Page
The Management Portal provides the Test Transform wizard. You can access this from the following locations in the
Management Portal:

• Click Test from the Tools tab in the Data Transformation Builder

• Select the transformation and click Test on the Data Transformation List page.

Initially the Output Message window is blank and the Input Message window contains a text skeleton in a format appropriate
to the source message. To test:

1. If your DTL code references the properties of the aux, context, or process systems objects, enter values for these
properties to see the results as if the data transformation was invoked with these objects instantiated. The table for
entering values appears only if the DTL references the internal properties of aux, process, or context systems objects.

2. Edit the Input Message so that it contains appropriate data. What displays and what you enter in the input box depends
on your source type and class:

• For EDI messages, the window displays raw text; have some saved text files ready so that you can copy and paste
text from these files into the Input Message box.

• For regular production messages, the window displays an XML skeleton with an entry for each of the properties
in the message object; type in a value for each property.

• For record maps, complex record maps, and batch record maps, you can enter raw text or XML.

3. Click Test.

4. Review the results in the Output Message box.

Developing DTL Transformations 37

The following shows an example:

6.2 Testing a Transformation Programmatically
To test a transformation programmatically, do the following in the Terminal (or write a routine or class method that contains
these steps):

1. Create an instance of the source message class.

2. Set properties of that instance.

3. Invoke the Transform() class method of your transformation class. This method has the following signature:

classmethod Transform(source As %RegisteredObject, ByRef target As %RegisteredObject) as %Status

Where:

• source is the source message.

• target is the target message created by the transformation.

4. Examine the target message and see if it has been transformed as wanted. For an easy way to examine both messages
in XML format, do the following:

a. Create an instance of %XML.Writer.

b. Optionally set the Indent property of that instance equal to 1.

This adds line breaks to the output.

c. Call the RootObject() method of the writer instance, passing the source message as the argument.

d. Kill the writer instance.

e. Repeat with the target message.

For example:

38 Developing DTL Transformations

Testing Data Transformations

 //create an instance of the source message set source=##class(DTLTest.Message).CreateOne() set
writer=##class(%XML.Writer).%New() set writer.Indent=1 do writer.RootObject(source) w !! set
sc=##class(DTLTest.Xform1).Transform(source,.target) if $$$ISERR(sc) {do $system.Status.DisplayError(sc)}
 set writer=##class(%XML.Writer).%New() set writer.Indent=1 do writer.RootObject(target)

Developing DTL Transformations 39

Testing a Transformation Programmatically

	Table of Contents
	About This Book
	1 Introduction to DTL Tools
	1.1 Background
	1.2 Introduction to the Data Transformation Builder Page
	1.3 Introduction to the DTL Diagram
	1.4 Controlling the Display
	1.5 Introduction to the Data Transformation List Page
	1.6 Other Tools
	1.7 Using Data Transformations

	2 Creating Data Transformations
	2.1 Creating a Transformation
	2.2 Opening an Existing Transformation
	2.3 Specifying Transformation Details
	2.3.1 Using the Create existing Option

	2.4 Editing Transformation Actions
	2.4.1 Adding an Action
	2.4.2 Editing an Action

	2.5 Rearranging Actions
	2.6 Working with Groups of Actions
	2.7 Undoing a Change
	2.8 Saving a Transformation
	2.9 Compiling a Transformation
	2.10 Deleting a Transformation

	3 Syntax Rules
	3.1 References to Message Properties
	3.2 Literal Values
	3.2.1 XML Reserved Characters
	3.2.2 Separator Characters in Virtual Documents
	3.2.3 When XML Reserved Characters Are Also Separators
	3.2.4 Numeric Character Codes

	3.3 Valid Expressions

	4 Adding Assign Actions
	4.1 Introduction
	4.1.1 Objects and Object References

	4.2 Copying the Source Message
	4.3 Copying a Value from a Source Property to a Target Property
	4.4 Copying Values of All Sub-properties
	4.5 Assigning a Literal Value to a Target Property
	4.6 Using an Expression for the Value of a Target Property
	4.6.1 Using the Data Transform Function Wizard

	4.7 Assigning a Value to a Collection Item
	4.8 Inserting a List Item
	4.9 Appending a List Item
	4.10 Removing a Collection Item
	4.11 Clearing a Collection Property

	5 Adding Other Actions
	5.1 Adding an If Action
	5.2 Adding a For Each Action
	5.2.1 Shortcuts for the For Each Action
	5.2.2 Avoiding <STORE> Errors with Large Messages

	5.3 Adding a Subtransform Action
	5.4 Adding a Trace Action
	5.5 Adding a Code Action
	5.5.1 Guidelines for Using Custom Code in DTL

	5.6 Adding an SQL Action
	5.6.1 Guidelines for Using SQL in DTL

	5.7 Adding a Switch Action
	5.8 Adding a Case Action
	5.9 Adding a Default Action
	5.10 Adding a Break Action
	5.11 Adding a Comment Action

	6 Testing Data Transformations
	6.1 Using the Transformation Testing Page
	6.2 Testing a Transformation Programmatically

	Index

