
Using File Adapters in
Productions

Version 2019.4
2020-01-28

InterSystems Corporation   1 Memorial Drive   Cambridge MA 02142   www.intersystems.com



Using File Adapters in Productions
InterSystems IRIS Data Platform   Version 2019.4    2020-01-28   
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:



Table of Contents

About This Book .................................................................................................................................... 1

1 Using the File Inbound Adapter ........................................................................................................ 3
1.1 Overall Behavior ........................................................................................................................ 3
1.2 Creating a Business Service to Use the Inbound Adapter .......................................................... 4
1.3 Implementing the OnProcessInput() Method ............................................................................. 5

1.3.1 Invoking Adapter Methods ............................................................................................... 6
1.4 Example Business Service Classes ............................................................................................ 6

1.4.1 Example 1 ........................................................................................................................ 6
1.4.2 Example 2 ........................................................................................................................ 7
1.4.3 Example 3 ........................................................................................................................ 8

1.5 Adding and Configuring the Business Service ........................................................................... 9

2 Using the File Outbound Adapter ................................................................................................... 11
2.1 Overall Behavior ...................................................................................................................... 11
2.2 Creating a Business Operation to Use the Adapter .................................................................. 11
2.3 Creating Message Handler Methods ........................................................................................ 13

2.3.1 Calling Adapter Methods from the Business Operation ................................................ 13
2.4 Example Business Operation Class .......................................................................................... 15
2.5 Adding and Configuring the Business Operation ..................................................................... 16

3 Using the File Passthrough Service and Operation Classes ......................................................... 17

Reference for Settings .......................................................................................................................... 19
Settings for the File Inbound Adapter ............................................................................................ 20
Settings for the File Outbound Adapter .......................................................................................... 25

Using File Adapters in Productions                                                                                                                                        iii





About This Book

This book describes how configure and use the simple file adapters that InterSystems IRIS® data platform provides (the
adapters in the EnsLib.File package). This book contains the following sections:

• Using the File Inbound Adapter

• Using the File Outbound Adapter

• Using the File Passthrough Service and Operation Classes

• Reference for Settings

For a detailed outline, see the table of contents.

The following books provide related information:

• Best Practices for Creating Productions describes best practices for organizing and developing productions.

• Developing Productions explains how to perform the development tasks related to creating a production.

• Configuring Productions describes how to configure the settings for productions, business hosts, and adapters. It provides
details on settings not discussed in this book.

Using File Adapters in Productions                                                                                                                                         1





1
Using the File Inbound Adapter

This chapter describes how to use the file inbound adapter (EnsLib.File.InboundAdapter). It contains the following sections:

• Overall Behavior

• Creating a Business Service to Use the Inbound Adapter

• Implementing the OnProcessInput() Method

• Example Business Service Classes

• Adding and Configuring the Business Service

Tip: InterSystems IRIS® also provides specialized business service classes that use this adapter, and one of those might
be suitable for your needs. If so, no programming would be needed. See the section “Connectivity Options”  in
Introducing Interoperability Productions.

1.1 Overall Behavior
EnsLib.File.InboundAdapter finds a file in the configured location, reads the input, and sends the input as a stream to the
associated business service. The business service, which you create and configure, uses this stream and communicates with
the rest of the production. If the inbound file adapter finds multiple files in the configured location, it processes them in
order of the time, earliest first, based on when the file was last modified. But the adapter ignores any fractional seconds in
the time value. Consequently, if two or more files have a modified date-time differing only in the fractional second part of
the time, the adapter can process them in any order.

The following figure shows the overall flow:

Using File Adapters in Productions                                                                                                                                         3



In more detail:

1. Each time the adapter encounters input from its configured data source, it calls the internal ProcessInput() method of
the business service class, passing the stream as an input argument.

2. The internal ProcessInput() method of the business service class executes. This method performs basic production tasks
such as maintaining internal information as needed by all business services. You do not customize or override this
method, which your business service class inherits.

3. The ProcessInput() method then calls your custom OnProcessInput() method, passing the stream object as input. The
requirements for this method are described later in “ Implementing the OnProcessInput() Method.”

The response message follows the same path, in reverse.

1.2 Creating a Business Service to Use the Inbound
Adapter
To use this adapter in your production, create a new business service class as described here. Later, add it to your production
and configure it. You must also create appropriate message classes, if none yet exist. See “Defining Messages”  in Devel-
oping Productions.

The following list describes the basic requirements of the business service class:

• Your business service class should extend Ens.BusinessService.

• In your class, the ADAPTER parameter should equal EnsLib.File.InboundAdapter.

• Your class should implement the OnProcessInput() method, as described in “ Implementing the OnProcessInput
Method.”

• For other options and general information, see “Defining a Business Service Class”  in Developing Productions.

4                                                                                                                                         Using File Adapters in Productions

Using the File Inbound Adapter



The following example shows the general structure that you need:

Class EFILE.Service Extends Ens.BusinessService 
{
Parameter ADAPTER = "EnsLib.File.InboundAdapter";

Method OnProcessInput(pInput As %FileCharacterStream,pOutput As %RegisteredObject) As %Status
{
   set tsc=$$$OK
   //your code here
   Quit tsc
}
}

The first argument to OnProcessInput() could instead be %FileBinaryStream, depending on the contents of the expected file.

Note: Studio provides a wizard that you can use to create a business service stub similar to the preceding. To access this
wizard, click File —> New and then click the Production tab. Then click Business Service and click OK. Note that
the wizard provides a generic input argument. If you use the wizard, InterSystems recommends that you edit the
method signature to use the specific input argument needed with this adapter; the input argument type should be
%FileCharacterStream or %FileBinaryStream.

1.3 Implementing the OnProcessInput() Method
Within your business service class, your OnProcessInput() method should have the following signature:

Method OnProcessInput(pInput As %FileCharacterStream,pOutput As %RegisteredObject) As %Status

Or:

Method OnProcessInput(pInput As %FileBinaryStream,pOutput As %RegisteredObject) As %Status

Where:

• pInput is the message object that the adapter will send to this business service. This can be of type %FileCharacterStream

or %FileBinaryStream, depending on the contents of the expected file. You use an adapter setting (Charset) to indicate
whether the input file is character or binary; see “Settings for the File Inbound Adapter.”

In either case, pInput.Attributes("Filename") equals the name of the file.

• pOutput is the generic output argument required in the method signature.

The OnProcessInput() method should do some or all of the following:

1. Examine the input file (pInput) and decide how to use it.

2. Create an instance of the request message, which will be the message that your business service sends.

For information on creating message classes, see “Defining Messages”  in Developing Productions.

3. For the request message, set its properties as appropriate, using values in the input.

4. Call a suitable method of the business service to send the request to some destination within the production. Specifically,
call SendRequestSync(), SendRequestAsync(), or (less common) SendDeferredResponse(). For details, see
“Sending Request Messages”  in Developing Productions

Each of these methods returns a status (specifically, an instance of %Status).

5. Make sure that you set the output argument (pOutput). Typically you set this equal to the response message that you
have received. This step is required.

6. Return an appropriate status. This step is required.

Using File Adapters in Productions                                                                                                                                         5

Implementing the OnProcessInput() Method



1.3.1 Invoking Adapter Methods

Within your business service, you might want to invoke the following instance methods of the adapter. Each method corre-
sponds to an adapter setting; these methods provide the opportunity to make adjustments following a change in any setting.
For detailed descriptions of each setting, see “Settings for the File Inbound Adapter,”  later in this chapter.

ArchivePathSet()

Method ArchivePathSet(pInVal As %String) As %Status

pInVal is the directory where the adapter should place a copy of each file after processing.

FilePathSet()

Method FilePathSet(path As %String) As %Status

path is the directory on the local server in which to look for files.

WorkPathSet()

Method WorkPathSet(path As %String) As %Status

WorkPath

path is the directory on the local server in which to place files while they are being processed.

1.4 Example Business Service Classes

1.4.1 Example 1

The following code example shows a business service class that references the EnsLib.File.InboundAdapter. This example
works as follows:

1. The file has a header. The header information is added to each transaction.

2. The file experiences a number of transactions.

3. The header and transaction XML structures are defined by the classes LBAPP.Header and LBAPP.Transaction (not
shown).

4. Some error-handling is shown, but not all.

5. The method RejectBatch() is not shown.

6. The transactions are submitted to the business process asynchronously, so there is no guarantee they are processed in
order as they appear in the file.

7. The entire transaction object is passed as the payload of each message to the business process.

8. All of the transactions in one file are submitted as a single InterSystems IRIS session.

Class LB.MarketOfferXMLFileSvc Extends Ens.BusinessService
{
Parameter ADAPTER = "EnsLib.File.InboundAdapter";

Method OnProcessInput(pInput As %FileCharacterStream,
                      pOutput As %RegisteredObject) As %Status
{

6                                                                                                                                         Using File Adapters in Productions

Using the File Inbound Adapter



 // pInput is a %FileCharacterStream containing the file xml

 set batch=pInput.Filename // path+name.ext
 set batch=##class(%File).GetFilename(batch) // name.ext

 // Load the data from the XML stream into the database
 set reader = ##class(%XML.Reader).%New()

 // first get the header
 set sc=reader.OpenStream(pInput)
 if 'sc {
   do $this.RejectBatch("Invalid XML Structure",sc,pInput,batch)
   quit 1
   }
 do reader.Correlate("Header","LBAPP.Header")
 if (reader.Next(.object,.sc)) {set header=object}
 else {
   if 'sc {do $this.RejectBatch("Invalid Header",sc,pInput,batch)}
   else {do $this.RejectBatch("No Header found",sc,pInput,batch)}
   quit 1
   }

 // then get the transactions, and call the BP for each one
 do reader.Correlate("Transaction","LBAPP.Transaction")
 while (reader.Next(.object,.sc)) {
   set object.Header=header
   set sc=$this.ValidateTrans(object)
   if sc {set sc=object.%Save()}
   if 'sc {
   do $this.RejectTrans("Invalid transaction",sc,object,batch,tranct)
   set sc=1
   continue
   }

 // Call the BP for each Transaction
 set request=##class(LB.TransactionReq).%New()
 set request.Tran=object
 set ..%SessionId="" // make each transaction a new session
 set sc=$this.SendRequestAsync("LB.ChurnBPL",request)
 }

 do reader.Close()
 quit sc
}
}

1.4.2 Example 2

The following code example shows another business service class that uses the EnsLib.File.InboundAdapter. Code comments
explain the activities within OnProcessInput():

Class training.healthcare.service.SrvFilePerson Extends Ens.BusinessService
{

Parameter ADAPTER = "EnsLib.File.InboundAdapter";

Method OnProcessInput(pInput As %RegisteredObject,
                      pOutput As %RegisteredObject) As %Status
{

  //file must be formatted as set of lines, each field comma separated:
  //externalcode,
  //name, surname, dateBirth, placeBirth, provinceBirth
  //nationality, gender,
  //address, city, province, country,
  //fiscalCode
  //note:
  //fiscalCode may be optional
  //sso is an internal code so must be detected inside InterSystems IRIS Interoperability
  //operation must be detected as well:
  //if the group: name, surname, dateBirth, placeBirth, provinceBirth
  //point to a record then it's an UPDATE; if not it's a NEW
  //no DELETE via files

  Set $ZT="trap"

  set counter=1  //records read
  while 'pInput.AtEnd {
    set line=pInput.ReadLine()

    set req=##class(training.healthcare.message.MsgPerson).%New()

Using File Adapters in Productions                                                                                                                                         7

Example Business Service Classes



    set req.source="FILE"

    set req.externalCode=$piece(line,",",1)
    set req.name=$piece(line,",",2)
    set req.surname=$piece(line,",",3)
    set req.dateBirth=$piece(line,",",4)
    set req.placeBirth=$piece(line,",",5)
    set req.provinceBirth=$piece(line,",",6)
    set req.nationality=$piece(line,",",7)
    set req.gender=$piece(line,",",8)
    set req.address=$piece(line,",",9)
    set req.city=$piece(line,",",10)
    set req.province=$piece(line,",",11)
    set req.country=$piece(line,",",12)
    set req.fiscalCode=$piece(line,",",13)

    //call the process
    //res will be Ens.StringResponse type message
    set st=..SendRequestAsync(
           "training.healthcare.process.PrcPerson", req)
    if 'st
    $$$LOGERROR("Cannot call PrcMain Process for Person N°" _ counter)

    set counter=counter+1
  }

  $$$LOGINFO("Persons loaded : " _ (counter - 1))
  Set $ZT=""
  Quit $$$OK

trap
  $$$LOGERROR("Error loading for record N°" _ counter _ " - " _ $ZERROR)
  SET $ECODE = ""
  Set $ZT=""
  Quit $$$OK
}

}

1.4.3 Example 3

The following code example shows a business service class that references the EnsLib.File.InboundAdapter.

Class EnsLib.File.PassthroughService Extends Ens.BusinessService
{

Parameter ADAPTER = "EnsLib.File.InboundAdapter";

/// Configuration item(s) to which to send file stream messages
Property TargetConfigNames As %String(MAXLEN = 1000);

Parameter SETTINGS = "TargetConfigNames";

/// Wrap the input stream object in a StreamContainer message object
/// and send it. If the adapter has a value for ArchivePath, send async;
/// otherwise send synchronously to ensure that we don't return to the
/// Adapter and let it delete the file before the target Config Item is
/// finished processing it.

Method OnProcessInput(pInput As %Stream.Object,
                      pOutput As %RegisteredObject) As %Status
{
  Set tSC=$$$OK, tSource=pInput.Attributes("Filename"),
                 pInput=##class(Ens.StreamContainer).%New(pInput)
  Set tWorkArchive=(""'=..Adapter.ArchivePath)&&(..Adapter.ArchivePath=
    ..Adapter.WorkPath || (""=..Adapter.WorkPath && 
    (..Adapter.ArchivePath=..Adapter.FilePath)))
  For iTarget=1:1:$L(..TargetConfigNames, ",")
 { 
    Set tOneTarget=$ZStrip($P(..TargetConfigNames,",",iTarget),"<>W")
    Continue:""=tOneTarget
    $$$sysTRACE("Sending input Stream ...")
    If tWorkArchive {
      Set tSC1=..SendRequestAsync(tOneTarget,pInput)
      Set:$$$ISERR(tSC1) tSC=$$$ADDSC(tSC,tSC1)
    } Else {
      #; If not archiving send Sync to avoid Adapter deleting file
      #; before Operation gets it
      Set tSC1=..SendRequestSync(tOneTarget,pInput)
      Set:$$$ISERR(tSC1) tSC=$$$ADDSC(tSC,tSC1)

8                                                                                                                                         Using File Adapters in Productions

Using the File Inbound Adapter



    }
  }
  Quit tSC
}
}

This example sets the tSource variable to the original file name which is stored in the Filename subscript of the Attributes

property of the incoming stream (pInput).

1.5 Adding and Configuring the Business Service
To add your business service to a production, use the Management Portal to do the following:

1. Add an instance of your business service class to the production.

2. Configure the business service. For information on the settings, see “Reference for Settings.”

3. Enable the business service.

4. Run the production.

Using File Adapters in Productions                                                                                                                                         9

Adding and Configuring the Business Service





2
Using the File Outbound Adapter

This chapter describes how to use the file outbound adapter (EnsLib.File.OutboundAdapter). It contains the following sections:

• Overall Behavior

• Creating a Business Operation to Use the Outbound Adapter

• Creating Message Handler Methods

• Example Business Operation Class

• Adding and Configuring the Business Operation

Tip: InterSystems IRIS® also provides specialized business service classes that use this adapter, and one of those might
be suitable for your needs. If so, no programming would be needed. See the section “Connectivity Options”  in
Introducing Interoperability Productions.

2.1 Overall Behavior
Within a production, an outbound adapter is associated with a business operation that you create and configure. The business
operation receives a message from within the production, looks up the message type, and executes the appropriate method.
This method usually executes methods of the associated adapter.

2.2 Creating a Business Operation to Use the Adapter
To create a business operation to use EnsLib.File.OutboundAdapter, you create a new business operation class. Later, add
it to your production and configure it.

You must also create appropriate message classes, if none yet exist. See “Defining Messages”  in Developing Productions.

The following list describes the basic requirements of the business operation class:

• Your business operation class should extend Ens.BusinessOperation.

• In your class, the ADAPTER parameter should equal EnsLib.File.OutboundAdapter.

• In your class, the INVOCATION parameter should specify the invocation style you want to use, which must be one of
the following.

Using File Adapters in Productions                                                                                                                                       11



– Queue means the message is created within one background job and placed on a queue, at which time the original
job is released. Later, when the message is processed, a different background job is allocated for the task. This is
the most common setting.

– InProc means the message will be formulated, sent, and delivered in the same job in which it was created. The job
will not be released to the sender’s pool until the message is delivered to the target. This is only suitable for special
cases.

• Your class should define a message map that includes at least one entry. A message map is an XData block entry that
has the following structure:

XData MessageMap
{
<MapItems>
  <MapItem MessageType="messageclass">
    <Method>methodname</Method>
  </MapItem>
  ...
</MapItems>
}

• Your class should define all the methods named in the message map. These methods are known as message handlers.
Each message handler should have the following signature:

Method Sample(pReq As RequestClass, Output pResp As ResponseClass) As %Status

Here Sample is the name of the method, RequestClass is the name of a request message class, and ResponseClass is
the name of a response message class. In general, the method code will refer to properties and methods of the Adapter

property of your business operation.

For information on defining message classes, see “Defining Messages”  in Developing Productions.

For information on defining the message handler methods, see “Creating Message Handler Methods,”  later in this
chapter.

• For other options and general information, see “Defining a Business Operation Class”  in Developing Productions.

The following example shows the general structure that you need:

Class EHTP.NewOperation1 Extends Ens.BusinessOperation
{
Parameter ADAPTER = "EnsLib.File.OutboundAdapter";

Parameter INVOCATION = "Queue";

Method Sample(pReq As RequestClass, Output pResp As ResponseClass) As %Status
{
  Quit $$$ERROR($$$NotImplemented)
}

XData MessageMap
{
<MapItems>
  <MapItem MessageType="RequestClass">
    <Method>Sample</Method>
  </MapItem>
</MapItems>
}
}

Note: Studio provides a wizard that you can use to create a business operation stub similar to the preceding. To access
this wizard, click File —> New and then click the Production tab. Then click Business Operation and click OK.

12                                                                                                                                       Using File Adapters in Productions

Using the File Outbound Adapter



2.3 Creating Message Handler Methods
When you create a business operation class for use with EnsLib.File.OutboundAdapter, typically your biggest task is writing
message handlers for use with this adapter, that is, methods that receive production messages and then write files.

Each message handler method should have the following signature:

Method Sample(pReq As RequestClass, Output pResp As ResponseClass) As %Status

Here Sample is the name of the method, RequestClass is the name of a request message class, and ResponseClass is the
name of a response message class.

In general, the method should do the following:

1. Examine the inbound request message.

2. Using the information from the inbound request, call a method of the Adapter property of your business operation. The
following example calls the EnsLib.File.OutboundAdapter method PutString():

/// Send an approval to the output file
Method FileSendReply(pRequest As Demo.Loan.Msg.SendReply,
                     Output pResponse As Ens.Response) As %Status
{
  $$$TRACE("write to file "_pRequest.Destination)
  Set tSC=..Adapter.PutString(pRequest.Destination, pRequest.Text)
  Quit tSC
}

You can use similar syntax to call any of the EnsLib.File.OutboundAdapter methods described in “Calling Adapter
Methods from the Business Operation.”

3. Make sure that you set the output argument (pOutput). Typically you set this equal to the response message. This
step is required.

4. Return an appropriate status. This step is required.

2.3.1 Calling Adapter Methods from the Business Operation

Your business operation class can use the following instance methods of EnsLib.File.OutboundAdapter.

CreateTimestamp()

ClassMethod CreateTimestamp(pFilename As %String = "",
                            pSpec As %String = "_%C") As %String

Using the pFilename string as a starting point, incorporate the time stamp specifier provided in pSpec and return
the resulting string. The default time stamp specifier is _%C which provides the full date and time down to the
millisecond.

For full details about time stamp conventions, see “Time Stamp Specifications for Filenames”  in Configuring
Productions.

Delete()

Method Delete(pFilename As %String) As %Status

Deletes the file.

Using File Adapters in Productions                                                                                                                                       13

Creating Message Handler Methods



Exists()

Method Exists(pFilename As %String) As %Boolean

Returns 1 (True) if the file exists, 0 (False) if it does not.

GetStream()

Method GetStream(pFilename As %String,
                 ByRef pStream As %AbstractStream = {$$$NULLOREF})
                 As %Status

Gets a stream from the file.

NameList()

Method NameList(Output pFileList As %ListOfDataTypes,
                pWildcards As %String = "*",
                pIncludeDirs As %Boolean = 0) As %Status

Get a list of files in the directory specified by the FilePath setting. The filenames are returned in a %ListOfDataTypes

object. Each entry in the list is a semicolon-separated string containing:

Filename;Type;Size;DateCreated;DateModified;FullPathName

PutLine()

Method PutLine(pFilename As %String, pLine As %String) As %Status

Writes a string to the file and appends to the string the characters specified in the LineTerminator property. By
default, the LineTerminator is a carriage return followed by a line feed (ASCII 13, ASCII 10).

If your operating system requires a different value for the LineTerminator property, set the value in the OnInit()
method of the business operation. For example:

 Method OnInit() As %Status
  {
      Set ..Adapter.LineTerminator="$C(10)"
      Quit $$$OK
  }

You can also make the property value to be dependent on the operating system:

 Set ..Adapter.LineTerminator="$Select($$$isUNIX:$C(10),1:$C(13,10))"

PutString()

Method PutString(pFilename As %String, pData As %String) As %Status

Writes a string to the file.

PutStream()

Method PutStream(pFilename As %String,
                 pStream As %Stream,
                 ByRef pLen As %Integer = -1) As %Status

Writes a stream to the file.

Rename()

Method Rename(pFilename As %String,
              pNewFilename As %String,
              pNewPath As %String = "") As %Status

14                                                                                                                                       Using File Adapters in Productions

Using the File Outbound Adapter



Renames the file in the current path or moves it to the path specified by pNewPath.

2.4 Example Business Operation Class
The following code example shows a business operation class that references the EnsLib.File.OutboundAdapter. This class
can perform two operations: If it receives valid Person data, it files Person information based on Person status. If it receives
invalid Person data, it logs this information separately.

Class training.operation.OpeFilePerson extends Ens.BusinessOperation
{

Parameter ADAPTER = "EnsLib.File.OutboundAdapter";

Parameter INVOCATION = "Queue";

/* write on log file wrong person records */
Method writeMessage(
       pRequest As MyData.Message,
       Output pResponse As Ens.StringResponse)
       As %Status
{
  $$$LOGINFO("called  Writer")

  set ..Adapter.FilePath="C:\Intersystems\test\ftp"

  set st=..Adapter.PutLine("person.log",message)

  Quit $$$OK
}

/* write on log file wrong person records */
Method logWrongPerson(
       pRequest As training.healthcare.message.MsgPerson,
       Output pResponse As Ens.StringResponse)
       As %Status
{
  $$$LOGINFO("called OpeFilePerson")

  set ..Adapter.FilePath="C:\Intersystems\test\errorparh"
  set message="some information are missing from record: " _
              pRequest.sso _ ", " _
              pRequest.name _ ", " _
              pRequest.surname

  set st=..Adapter.PutLine("Person.log",message)

  Quit $$$OK
}

/* write in xml format the list of active/inactive/requested Persons */
Method writeSSOList(
       pRequest As Ens.StringRequest,
       Output pResponse As Ens.StringResponse)
       As %Status
{
  set ..Adapter.FilePath="C:\Intersystems\test\ftp"
  set status=pRequest.StringValue

  if status="ACTIVE" set fileName="ActiveSSO.xml"
  if status="INACTIVE" set fileName="InactiveSSO.xml"
  if status="REQUESTED" set fileName="RequestedSSO.xml"

  set st=..Adapter.PutLine(fileName,"<Persons>")

  set rs=
  ##class(training.healthcare.data.TabPerson).selectPersons("",status)
  while rs.Next(){
    set st=..Adapter.PutLine(fileName,"<Person>")
    for i=1:1:rs.GetColumnCount() {
      set st=..Adapter.PutLine(fileName,
        "<"_ rs.GetColumnName(i)_">" _
        rs.GetData(i)_"</"_ rs.GetColumnName(i)_">")
    }
    set st=..Adapter.PutLine(fileName,"<Person>")
  }

  set st=..Adapter.PutLine(fileName,"<Persons>")

Using File Adapters in Productions                                                                                                                                       15

Example Business Operation Class



  set pResponse=##class(Ens.StringResponse).%New()
  set pResponse.StringValue="done"

  quit $$$OK
}

XData MessageMap
{
<MapItems>
  <MapItem MessageType="training.healthcare.message.MsgPerson">
    <Method>logWrongPerson</Method>
  </MapItem>
   <MapItem MessageType="Ens.StringRequest">
    <Method>writeSSOList</Method>
  </MapItem>
</MapItems>
}

}

2.5 Adding and Configuring the Business Operation
To add your business operation to a production, use the Management Portal to do the following:

1. Add an instance of your business operation class to the production.

2. Configure the business operation. For information on the settings, see “Reference for Settings.”

3. Enable the business operation.

4. Run the production.

16                                                                                                                                       Using File Adapters in Productions

Using the File Outbound Adapter



3
Using the File Passthrough Service and
Operation Classes

InterSystems IRIS® also provides two general purposes classes to send and receive files in any format. These classes are
as follows:

• EnsLib.File.PassthroughService receives files of any format

• EnsLib.File.PassthroughOperation sends files of any format

EnsLib.File.PassthroughService provides the setting, Target Config Names, which allows you to specify a comma-separated
list of other configuration items within the production to which the business service should relay the message. Usually the
list contains one item, but it can be longer. Target Config Names can include business processes or business operations.

EnsLib.File.PassthroughOperation provides the File Name setting, which allows you to specify an output file name. The
FileName can include InterSystems IRIS Interoperability time stamp specifiers. For full details, see “Time Stamp Specifi-
cations for Filenames”  in Configuring Productions.

Using File Adapters in Productions                                                                                                                                       17





Reference for Settings

This section provides the following reference information:

• Settings for the File Inbound Adapter

• Settings for the File Outbound Adapter

Also see “Settings in All Productions”  in Managing Productions Productions.

Using File Adapters in Productions                                                                                                                                       19



Settings for the File Inbound Adapter
Provides reference information for settings of the file inbound adapter, EnsLib.File.InboundAdapter.

Summary
The inbound file adapter has the following settings:

SettingsGroup

File Path, File Spec, Archive Path, Work Path, Call IntervalBasic Settings

Subdirectory Levels, Charset, Append Timestamp, Semaphore Specification, Confirm
Complete, File Access Timeout

Additional Settings

The remaining settings are common to all business services. For information, see “Settings for All Business Services”  in
Configuring Productions.

Append Timestamp
Append a time stamp to filenames in the Archive Path and Work Path directories; this is useful to prevent possible name
collisions on repeated processing of the same filename.

• If this value is empty or 0, no time stamp is appended.

• If this setting is 1, then the standard template '%f_%Q' is appended.

• For other possible values, see “Time Stamp Specifications for Filenames”  in Configuring Productions.

Archive Path
Full pathname of the directory where the adapter should place the input file after it has finished processing the data in the
file. This directory must exist, and it must be accessible through the file system on the local InterSystems IRIS® Interoper-
ability machine. If this setting is not specified, the adapter deletes the input file after its call to ProcessInput() returns.

To ensure that the input file is not deleted while your production processes the data from the file, InterSystems recommends
that you set Archive Path and Work Path to the same directory. Alternatively, you can use only synchronous calls from your
business service to process the data.

Call Interval
The polling interval for this adapter, in seconds. This is the time interval at which the adapter checks for input files in the
specified locations.

Upon polling, if the adapter finds a file, it links the file to a stream object and passes the stream object to the associated
business service. If several files are detected at once, the adapter sends one request to the business service for each individual
file until no more files are found.

If the business service processes each file synchronously, the files will be processed sequentially. If the business service
sends them asynchronously to a business process or business operation, the files might be processed simultaneously.

After processing all the available files, the adapter waits for the polling interval to elapse before checking for files again.
This cycle continues whenever the production is running and the business service is enabled and scheduled to be active.

It is possible to implement a callback in the business service so that the adapter delays for the duration of the Call Interval

between input files. For details, see “Defining Business Services”  in Developing Productions.

The default Call Interval is 5 seconds. The minimum is 0.1 seconds.

20                                                                                                                                       Using File Adapters in Productions

Reference for Settings



Charset
Specifies the character set of the input file. InterSystems IRIS automatically translates the characters from this character
encoding. The setting value is not case-sensitive. Use Binary for binary files, or for any data in which newline and line
feed characters are distinct or must remain unchanged. Other settings may be useful when transferring text documents.
Choices include:

• Binary — Binary transfer

• Ascii — Ascii mode FTP transfer but no character encoding translation

• Default — The default character encoding of the local InterSystems IRIS server

• Latin1 — The ISO Latin1 8-bit encoding

• ISO-8859-1 — The ISO Latin1 8-bit encoding

• UTF-8 — The Unicode 8-bit encoding

• UCS2 — The Unicode 16-bit encoding

• UCS2-BE — The Unicode 16-bit encoding (Big-Endian)

• Any other alias from an international character encoding standard for which NLS (National Language Support) is
installed in InterSystems IRIS

Use a value that is consistent with your implementation of OnProcessInput() in the business service:

• When the Charset setting has the value Binary, the pInput argument of OnProcessInput() is of type %FileBinaryStream

and contains bytes.

• Otherwise, pInput is of type %FileCharacterStream and contains characters.

For background information on character translation in InterSystems IRIS, see “Localization Support”  in the Orientation
Guide for Server-Side Programming.

Semaphore Specification
The Semaphore Specification allows you to indicate that the data file is complete and ready to be read by creating a second
file that is used as a semaphore. The inbound file adapter waits until the semaphore file exists before checking the other
conditions specified by the Confirm Complete requirements and then processing the data file. This allows the application
creating the data file to ensure that the adapter waits until the data file is complete before processing it. The adapter tests
only for the existence of the semaphore file and does not read the semaphore file contents.

If the Semaphore Specification is an empty string, the adapter does not wait for a semaphore file and processes the data
file as soon as the conditions specified by the Confirm Complete requirements are met. If you are using a semaphore file
to control when the adapter processes the data file, you should consider setting the Confirm Complete field to None.

The Semaphore Specification allows you to specify individual semaphore files for each data file or a single semaphore file
to control multiple data files. You can use wildcards to pair semaphore files with data files, and can specify a series of
patterns matching semaphore files to data files. The adapter always looks for a matching semaphore file in the same directory
as the data file. If the adapter is looking for data files in subdirectories, the semaphore file must be in the same subdirectory
level as its corresponding data file.

The general format for specifying the Semaphore Specification is:

[DataFileSpec=] SemaphoreFileSpec [;[DataFileSpec=] SemaphoreFileSpec]...

For example, if the Semaphore Specification is:

ABC*.TXT=ABC*.SEM

Using File Adapters in Productions                                                                                                                                       21

Settings for the File Inbound Adapter



It means that the ABCTest.SEM semaphore file controls when the adapter processes the ABCTest.TXT file and that the
ABCdata.SEM semaphore file controls when the adapter processes the ABCdata.txt file.

Note: In a semaphore specification, the * (asterisk) matches any character except dot. In a file specification, the asterisk
matches any character including the dot.

You can have one semaphore file control multiple data files. For example, if the Semaphore Specification is:

*.DAT=DATA.SEM

The DATA.SEM semaphore file controls when the adapter processes all *.DAT files in the same directory. When the adapter
is looking for data files and corresponding semaphore files, it loops through all the data files at a polling interval. With the
previous Semaphore Specification, if it started looking for DATA.SEM for the ABC.DAT file and does not find it, it continues
looking for the semaphore files for the other files. But, if during this process DATA.SEM is created and it is looking for a
match for XYZ.DAT, it finds the corresponding semaphore file. But the adapter defers processing XYZ.DAT until the next
polling interval because a preceding data file, ABC.DAT, was waiting for the same semaphore file.

If you specify multiple pairings, separate them with a ; (semicolon). For example, if the Semaphore Specification is:

*.TXT=*.SEM;*.DAT=*.READY

The semaphore file MyData.SEM controls when the adapter processes MyData.TXT, but the semaphore file MyData.READY
controls when it processes MyFile.DAT.

The adapter finds the corresponding semaphore file for each data file by reading the Semaphore Specification from left to
right. Once it determines the corresponding semaphore file, it stops reading the Semaphore Specification for that file. For
example, if the Semaphore Specification is:

VIData.DAT=Special.SEM; *.DAT=*.SEM

The adapter looks for the semaphore file Special.SEM before it processes VIData.DAT, but it does not consider
VIData.SEM as a semaphore file for VIData.DAT. It does consider stuff.SEM as the semaphore file for stuff.DAT
because stuff.DAT did not match an earlier specification. Consequently, if you are including multiple specifications that
can match the same file, you should specify the more specific specification before the more general ones.

The data file target pattern is case-sensitive and the semaphore pattern case sensitivity is operating system dependent, that
is *.TXT=*.SEM .is only applied to target files found ending with capitalized .TXT but the operating system may not
differentiate between *.SEM and *.sem. If the operating system is not case-sensitive, the adapter treats semaphore files
ending in any case combination of *.SEM and *.sem as equivalent but only uses them as the semaphore for data files
named *.TXT. It cannot distinguish case in the semaphore files but can distinguish it in the data files.

If you only specify a single file specification and omit the = (equals) sign, the adapter treats that as the Semaphore Specifi-
cation for all data files. For example, if the Semaphore Specification is:

*.SEM

This is equivalent to specifying a single wildcard to the left of the = (equals) sign:

*=*.SEM

In this case, the semaphore file MyFile.SEM controls the data file MyFile.txt and the semaphore file BigData.SEM
controls the data file BigData.DAT.

If no wildcard is used in the Semaphore Specification then it is the complete fileSpec for the semaphore file. For example,
if the Semaphore Specification is:

*.DAT=DataDone.SEM

Then the DataDone.SEM semaphore file controls when the adapter reads any data file with the .DAT file extension.

22                                                                                                                                       Using File Adapters in Productions

Reference for Settings



If a Semaphore Specification is specified and a data file does not match any of the patterns, then there is no corresponding
semaphore file and the adapter will not process this data file. You can avoid this situation by specifying * as the last data
file in the Semaphore Specification. For example, if the Semaphore Specification is:

*.DAT=*.SEM; *.DOC=*.READY; *=SEM.LAST

The SEM.LAST is the semaphore file for all files that do not end with .DAT or .DOC.

If an adapter configured with a FileSpec equal to *, the adapter usually considers all files in the directory as data files. But,
if the adapter also has a Semaphore Specification and it recognizes a file as a semaphore file, it does not treat it as a data
file.

After the adapter has processed through all the data files in a polling cycle, it deletes all the corresponding semaphore files.

Confirm Complete
Indicates the special measures that InterSystems IRIS should take to confirm complete receipt of a file. The options are:

DescriptionInteger
value

List option

Take no special measures to determine if a file is complete.0None

Wait until the reported size of the file in the FilePath directory stops increasing.
This option may not be sufficient when the source application is sluggish. If the
operating system reports the same file size for a duration of the File Access Timeout

setting, then InterSystems IRIS Interoperability considers the file complete.

1Size

Read more data for a file until the operating system allows InterSystems IRIS to
rename the file.

2Rename

Consider the file complete if it can open it in Read mode.4Readable

Consider the file complete if it can open it in Write mode (as a test only; it does
not write to the file).

8Writable

The effectiveness of each option depends on the operating system and the details of the process that puts the file in the File

Path directory.

File Access Timeout
The default is 10 seconds.

File Path
Full pathname of the directory in which to look for files. This directory must exist, and it must be accessible through the
file system on the local InterSystems IRIS Interoperability machine.

File Spec
Filename or wildcard file specification for file(s) to retrieve. For the wildcard specification, use the convention that is
appropriate for the operating system on the local InterSystems IRIS Interoperability machine.

Subdirectory Levels
Number of levels of subdirectory depth under the given directory that should be searched for files.

Work Path
Full pathname of the directory where the adapter should place the input file while processing the data in the file. This
directory must exist, and it must be accessible through the file system on the local InterSystems IRIS Interoperability

Using File Adapters in Productions                                                                                                                                       23

Settings for the File Inbound Adapter



machine. This setting is useful when the same filename is used for repeated file submissions. If no WorkPath is specified,
the adapter does not move the file while processing it.

To ensure that the input file is not deleted while your production processes the data from the file, InterSystems recommends
that you set Archive Path and Work Path to the same directory. Alternatively, you can use only synchronous calls from your
business service to process the data.

24                                                                                                                                       Using File Adapters in Productions

Reference for Settings



Settings for the File Outbound Adapter
Provides reference information for settings of the file outbound adapter, EnsLib.File.OutboundAdapter.

Summary
The outbound file adapter has the following settings:

SettingsGroup

File PathBasic Settings

Overwrite, Charset, Open TimeoutAdditional Settings

The remaining settings are common to all business operations. For information, see “Settings for All Business Operations”
in Configuring Productions.

Charset
Specifies the desired character set for the output file. InterSystems IRIS® automatically translates the characters to this
character encoding. See “Charset”  in “Settings for the File Inbound Adapter.”

File Path
Full pathname of the directory into which to write output files. This directory must exist, and it must be accessible through
the file system on the local InterSystems IRIS Interoperability machine.

Open Timeout
Amount of time for the adapter to wait on each attempt to open the output file for writing.

The default is 5 seconds.

Overwrite
If a file of the same name exists in the FilePath directory, the Overwrite setting controls what happens. If True, overwrite
the file. If False, append the new output to the existing file.

Using File Adapters in Productions                                                                                                                                       25

Settings for the File Outbound Adapter




	Table of Contents
	About This Book
	1 Using the File Inbound Adapter
	1.1 Overall Behavior
	1.2 Creating a Business Service to Use the Inbound Adapter
	1.3 Implementing the OnProcessInput() Method
	1.3.1 Invoking Adapter Methods

	1.4 Example Business Service Classes
	1.4.1 Example 1
	1.4.2 Example 2
	1.4.3 Example 3

	1.5 Adding and Configuring the Business Service

	2 Using the File Outbound Adapter
	2.1 Overall Behavior
	2.2 Creating a Business Operation to Use the Adapter
	2.3 Creating Message Handler Methods
	2.3.1 Calling Adapter Methods from the Business Operation

	2.4 Example Business Operation Class
	2.5 Adding and Configuring the Business Operation

	3 Using the File Passthrough Service and Operation Classes
	Reference for Settings
	Settings for the File Inbound Adapter
	Settings for the File Outbound Adapter

	Index

