
Using the Java Gateway

Version 2019.4
2020-01-28

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using the Java Gateway
InterSystems IRIS Data Platform Version 2019.4 2020-01-28
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

1 Introduction to the Java Gateway ... 3
1.1 Prerequisites ... 3
1.2 Starting and Stopping the Gateway .. 4
1.3 Connecting and Disconnecting ... 4
1.4 Java Gateway Modes .. 5

1.4.1 Proxy Object Mode .. 5
1.4.2 Stateless Service Mode .. 8

2 Using Dynamic Object Gateways .. 11
2.1 Introducing Dynamic Gateways ... 11
2.2 Creating and Using a Dynamic Object Gateway .. 12
2.3 Array Access ... 13
2.4 Gateway Reentrancy ... 14
2.5 The Java Fruit Class ... 15

3 Using the Java Gateway in a Production .. 17
3.1 Adding the Java Gateway Business Service ... 17
3.2 Settings for the Java Gateway Business Service .. 18
3.3 Calling Business Service Methods ... 19

3.3.1 StartGateway() Method .. 20
3.3.2 ConnectGateway() Method .. 20
3.3.3 StopGateway() Method .. 20

3.4 Creating a Business Operation ... 20
3.5 Calling API Methods .. 21

3.5.1 %Connect() Method ... 21
3.5.2 %Disconnect() Method .. 21
3.5.3 %Shutdown() Method .. 21
3.5.4 %Import() Method ... 22
3.5.5 %ExpressImport() Method ... 23
3.5.6 %ClassForName() Method ... 23
3.5.7 %GetAllClasses() Method ... 23

3.6 Using the Command Prompt .. 23
3.7 Using the Java Gateway Wizard ... 24
3.8 Error Checking ... 25
3.9 Troubleshooting .. 25

4 Sample Code .. 27
4.1 Setting Up Java Gateway Examples ... 27
4.2 Running Plain Java Examples .. 28
4.3 Running JDBC Examples ... 28
4.4 Running EJB Gateway Examples ... 28
4.5 Stateless Service Mode Example ... 29

5 Mapping Specification .. 31
5.1 Package and Class Names .. 31
5.2 Primitives .. 31
5.3 Date and Time .. 32
5.4 Properties .. 33

Using the Java Gateway iii

5.5 Methods .. 33
5.5.1 Overloaded Methods .. 33
5.5.2 Method Names ... 34
5.5.3 Static Methods .. 34

5.6 Constructors ... 34
5.7 Constants .. 34
5.8 Java Classes .. 35

5.8.1 Java Object Superclass (java.lang.Object) ... 35
5.8.2 Java Arrays ... 35
5.8.3 Java Collections Framework .. 36
5.8.4 Recasting .. 37
5.8.5 Java Standard Output Redirection .. 37

5.9 Restrictions ... 37

iv Using the Java Gateway

List of Figures

Figure 1–1: Connecting to a Java Gateway Worker Thread .. 5
Figure 1–2: Java Gateway Operational Model .. 7
Figure 1–3: Importing Java Classes ... 8

Using the Java Gateway v

About This Book

This book explains how to enable easy interoperation between InterSystems IRIS® and Java components. The Java Gateway
can instantiate an external Java object and manipulate it as if it were a native object within InterSystems IRIS.

This book contains the following chapters:

• Introduction to the Java Gateway

• Using Dynamic Gateways

• Using the Java Gateway in a Production

• Sample Code

• Mapping Specification

For a detailed outline, see the table of contents.

The following books provide related information:

• Best Practices for Creating Productions describes best practices for organizing and developing productions.

• Developing Productions explains how to perform the development tasks related to creating a production.

• Configuring Productions describes how to configure the settings for productions, business hosts, and adapters. It provides
details on settings not discussed in this book.

Using the Java Gateway 1

1
Introduction to the Java Gateway

This chapter introduces the Java Gateway, which provides an easy way for InterSystems IRIS® to interoperate with Java
components. It discusses the following topics:

• Prerequisites

• Starting and Stopping the Gateway

• Connecting and Disconnecting

• Java Gateway Modes

1.1 Prerequisites
The Java Gateway server runs within a JVM, which can be on the same machine as InterSystems IRIS or on a different
machine. Complete the following setup steps on the machine on which the Java Gateway will run:

1. Install the Java Runtime Environment (for example, JRE 1.8.0_67).

2. Make a note of the location of the installation directory for JRE. This is the directory that contains the subdirectories
bin and lib.

This is the value that you would use for JAVA_HOME environment variable. For example: c:\Program
Files\Java\jre8

You use this information later when you configure your production.

3. Also make a note of the Java version. If you are uncertain about the Java version, open a DOS window, go to the bin

subdirectory of your Java installation, and enter the following command:

java.exe -version

You should receive output like the following, depending on your platform:

java version "1.8.0_67"
Java(TM) SE Runtime Environment (build 1.8.0_67-b24)
Java HotSpot(TM) 64-Bit Server VM (build 23.19-b22, mixed mode)

It is not necessary to set any environment variables. To access the JVM, InterSystems IRIS uses information contained in
the production.

Using the Java Gateway 3

1.2 Starting and Stopping the Gateway
When using the Java Gateway with a production, it is a good practice to have the production start the Java Gateway server
at production startup, and stop it at production shutdown. This happens automatically if you add a Java Gateway business
service (EnsLib.JavaGateway.Service) to the production.

Start
Before you can use the Java Gateway, you must use some mechanism to start the Java Gateway server and tell InterSystems
IRIS the name of the host on which the Java Gateway server is running. You cannot start the Java Gateway from a remote
server. You can start the Java Gateway server in one of the following ways:

• Automatically, by adding a Java Gateway business service (EnsLib.JavaGateway.Service) to the production. The Java
Gateway server starts when the production starts.

• Manually , by using the Management Portal (System Administration > Configuration > Connectivity > Object Gateways

).

• Manually , by calling the %New() method of %Net.Remote.Gateway .

• Manually, by calling the business service StartGateway() method.

• Manually, by entering a command at the Terminal command prompt.

Stop
Once started, the Java Gateway server runs until it is explicitly shut down. You can stop the Java Gateway server in one
of the following ways:

• Automatically, by adding a Java Gateway business service to the production. The Java Gateway server stops when the
production stops.

• Manually, by calling the StopGateway() method of the business service.

• Manually, by calling the %Shutdown() method of EnsLib.JavaGateway.JavaGateway or %Net.Remote.Gateway .

Note: If you make changes to your Java classes and want them available to the Java Gateway, you can stop and then
restart the Java Gateway using any of these methods.

1.3 Connecting and Disconnecting
Once the Java Gateway server is running, each InterSystems IRIS session that needs to invoke Java class methods must
create its own connection to the Java Gateway server. You can connect InterSystems IRIS with the Java Gateway server
by calling the ConnectGateway method of the business service, or by calling the Java Gateway API %Connect() method.

The Connect command sets off the chain of sequential events (1), (2), and (3) shown in the following Connecting to a Java
Gateway Worker Thread diagram:

4 Using the Java Gateway

Introduction to the Java Gateway

Figure 1–1: Connecting to a Java Gateway Worker Thread

1. ObjectScript code sends a connection request.

2. Upon receiving the request, the Java Gateway server starts a worker thread in which the Java class methods subsequently
run.

3. The connection between this Java Gateway worker thread and the corresponding InterSystems IRIS session remains
established until it is explicitly disconnected.

ObjectScript code that establishes a worker thread must explicitly disconnect before exiting. Otherwise, the assigned port
for the connection stays “ in use” and is unavailable for use in other connections. ObjectScript code can disconnect its
thread by calling the Java Gateway API %Disconnect() method.

1.4 Java Gateway Modes
Java Gateway has two main modes of manipulation of Java objects:

• Proxy Object Mode — Allows you to statefully manipulate Java Objects from within InterSystems IRIS.

• Stateless Service Mode — Allows you to make simple calls to Java methods and return the results from within Inter-
Systems IRIS.

1.4.1 Proxy Object Mode

Proxy Object Mode provides an easy way for InterSystems IRIS to interoperate with Java components. It allows Java
Gateway to instantiate an external Java object and manipulate it as if it were a native object within InterSystems IRIS.

Using the Java Gateway 5

Java Gateway Modes

Note: Static and Dynamic Proxy Objects
There are currently two kinds of proxy objects:

• Static proxies (described in this section) are standard ObjectScript classes, which must be individually generated
and compiled before they can be used. If a new version of the Java class changes the interface in any way,
the corresponding proxy class must be regenerated and recompiled to match it.

• Dynamic proxies (described in the next chapter, Using Dynamic Gateways) are created at runtime by intro-
specting the current version of the Java class. They are not projected and stored as standard ObjectScript
classes; they are simply created and used as needed by your application, and always reflect the current version
of the Java class.

In use, dynamic proxies look and work exactly like static proxies. The only difference is how they are created.
Static proxies have some useful features, and will continue to be supported, but dynamic proxies are recommended
for most new development.

1.4.1.1 Proxy Object Mode Architecture

The external Java object is represented within InterSystems IRIS by a “wrapper” or “proxy” class. The proxy object
appears and behaves just like any other InterSystems IRIS object, but it has the capability to issue method calls out to a
Java virtual machine (JVM), either locally or remotely. Any method call on the proxy object triggers the appropriate class
method inside the JVM.

You can use the Java Gateway to create proxy InterSystems IRIS classes for custom Java components. You can also create
proxy mappings to existing Java interface specifications, such as the Java Database Connection (JDBC), Java Message
Service (JMS), Enterprise Java Beans (EJB), Java Connector Architecture (JCA), etc. InterSystems IRIS can use this
mapping to work with any implementation that is compliant with one of these specifications.

When generating proxies from large Java libraries and frameworks, the best approach is to build a small wrapper class that
exposes just the functionality you want and then create a proxy for this wrapper. This makes the API between InterSystems
IRIS and Java very clean and eliminates many potential issues dealing with how to map more esoteric features to a proxy
object.

The following diagram provides a conceptual view of InterSystems IRIS and the Java Gateway at runtime while using
Proxy Object Mode.

6 Using the Java Gateway

Introduction to the Java Gateway

Figure 1–2: Java Gateway Operational Model

The Java Gateway server runs in the JVM. InterSystems IRIS and the JVM may be running on the same machine or on
different machines. The items (1), (2), and (3) in the preceding diagram represent the relationships established by the
commands that set up this operational model:

1. Start

2. Connect

3. Import

Later sections in this chapter explain how these commands work to set up InterSystems IRIS proxy classes for Java code,
as well as how the proxies work once these relationships are set up; see “Proxy Call Sequence” for details.

1.4.1.2 Importing Java Classes

The Java Gateway API %Import() method sets off the chain of sequential events (1), (2), and (3) shown in the following
diagram:

Using the Java Gateway 7

Java Gateway Modes

Figure 1–3: Importing Java Classes

1. The InterSystems IRIS session sends an import request.

2. Upon receiving the request, the Java Gateway worker thread introspects the indicated Java packages and classes.

3. If it finds any Java classes that are new or changed, or that have no proxy classes on the InterSystems IRIS side, the
thread generates new proxy classes for them.

Important: The Java Gateway import only imports classes, methods, and fields marked as public.

1.4.1.3 Proxy Call Sequence

A call to any InterSystems IRIS proxy method initiates the following sequence of events:

1. All InterSystems IRIS proxy parameters are written into the output buffer.

2. A message containing the method name and parameters is sent to the Java Gateway worker thread.

3. The Java Gateway worker thread consumes the message, reads the parameters, finds the appropriate method or con-
structor call, and invokes it using Java reflection. If the given method is an overloaded method, the gateway uses a
method overload algorithm to find the right Java method version. For details, see “Overloaded Methods” in the
chapter “Mapping Specification.”

4. The results of the method invocation (if any) are sent back to the InterSystems IRIS side over the same connection.

5. The InterSystems IRIS proxy processes any return values and the method call returns.

1.4.2 Stateless Service Mode

The Stateless Service Mode allows simple and efficient calls out to a particular Java service. A Java service is any imple-
mentation of the com.intersystems.gateway.Service interface. Only the following method needs to be implemented:

8 Using the Java Gateway

Introduction to the Java Gateway

public byte[] execute(byte[] args) throws Throwable;

This method takes a byte array, performs whatever service it needs to do, and produces a byte[] result. In order to invoke
the above Java service method from InterSystems IRIS, call the following %Net.Remote.Gateway method:

Method %ServiceRequest(serviceName As %String, arguments As %String, ByRef response As %String) As
%Status

Where serviceName is the name of the implementing Java service class, arguments corresponds to the Java service
args and

response corresponds to the Java service result. arguments and result are represented as %Strings on the
InterSystems IRIS, and byte arrays on the Java side, meaning any values serialized as such will be accepted by the under-
lying engine.

The following static method to %Net.Remote.Gateway directly allows invocation of an external Java service:

ClassMethod %RemoteService(host As %String, port As %Integer, serviceName As %String, arguments As
%String, additionalClassPaths As %ListOfDataTypes = "") As %String;

Note: The implementation of Java service should never include a callback to InterSystems IRIS as this newly added
component is not designed to be reentrant.

For a simple implementation using GSON please see Stateless Service Mode Example.

Using the Java Gateway 9

Java Gateway Modes

2
Using Dynamic Object Gateways

This chapter describes how to implement Object Gateways using dynamic proxy objects. In previous releases, static proxies
had to be generated separately, compiled, and stored in the class library just like any other ObjectScript class (see
“ Importing Java Classes” in the previous chapter).

Dynamic proxy objects do not require a separate import process before the business operation can start. The business
operation simply creates and uses them as needed during runtime.

• Introducing Dynamic Gateways — provides an overview of dynamic proxies.

• Creating and Using a Dynamic Object Gateway — describes how to use dynamic proxies and gives specific usage
examples.

• Array Access — describes how Java arrays are implemented as dynamic proxies.

• Gateway Reentrancy — describes how to ObjectScript and Java code can run safely using the same connection and
context.

• Example Classes — contains detailed information on the classes used as examples in this chapter.

2.1 Introducing Dynamic Gateways
All versions of the Object Gateway can instantiate an external Java object and manipulate it as if it were a native InterSystems
IRIS object. This is accomplished by creating a proxy object that provides all of the same methods and properties as the
corresponding Java object. Any call on the proxy object triggers the corresponding method or property of the Java object.
There are currently two kinds of proxy objects:

• Static proxies are standard ObjectScript classes, which must be individually generated and compiled before they can
be used. If a new version of the Java class changes the interface in any way, the corresponding proxy class must be
regenerated and recompiled to match it.

• Dynamic proxies are created at runtime by introspecting the current version of the Java class. All dynamic proxies are
instances of %Net.Remote.Object. Although each Object instance appears to have the same methods and properties as
the corresponding Java object, it actually uses an internal map of the interface to simulate these features.

In use, static and dynamic proxies are identical except for the way they are instantiated. For example:

// Static proxy: call %New() on a pregenerated class
 set newFruit = ##class(Fruit).%New()

// Dynamic proxy: create an Object instance and specify the class to introspect
 set newFruit = ##class(%Net.Remote.Object).%New(gateway,"Fruit")

Using the Java Gateway 11

When the code is used in a business production, the only noticeable difference is that dynamic gateways eliminate the
import process.

2.2 Creating and Using a Dynamic Object Gateway
This section describes the complete procedure for creating and running an Object Gateway that uses dynamic proxies:

• Get the server definition and test the server — the server definition is required for methods that monitor and control
the server.

• Define the location of your Java classes and create a Gateway connection — connection information must include the
path to each .class or .jar file you intend to use.

• Create a proxy and call some methods — after they’ve been created, static and dynamic proxies work the same way.

• Disconnect and shut down — the server will continue to run until you explicitly stop it.

Get the server definition and make sure the server is running

The Service class provides methods to start, stop, and test the server. Most of these methods require the server
definition contained in an ObjectGateway object. In the following example, Service.OpenGateway() returns an
ObjectGateway instance defining a server named JavaGate. Service.IsGatewayRunning() uses the information
to test the current state of the server, and Service.StartGateway() can start it if necessary.

try {
// Get a ObjectGateway instance that defines the JavaGate server
 set st = ##class(%Net.Remote.Service).OpenGateway("JavaGate",.OG)
 write !, "Using "_OG.Name_" server definition"

// Test to make sure the server is running. If not, start it
 if ('##class(%Net.Remote.Service).IsGatewayRunning(OG.Server,OG.Port,,.status)) {
 // Instantiate the server on the host machine
 set status = ##class(%Net.Remote.Service).StartGateway(OG.Name)
 }
}
catch ex {
 write !,$system.OBJ.DisplayError(ex.AsStatus())
}

Note: Exception Handling
Your ObjectScript code should always use try/catch for Object Gateway error handling. When the class running
on the host machine encounters an exception, the dynamic proxy will throw %Net.Remote.Exception. In addition
to standard status details, the Exception object contains call stack information, which is returned by calling method
Exception.StackAsArray(.array). The information may be different between Java and .NET.

Define the location of your Java classes and create a Gateway connection

Each dynamic proxy will access the corresponding Java object through a Gateway object connected to the server.
The Gateway object needs a path to each .class or .jar file containing a class you want to use. In this example, the
location of the .jar file containing class Fruit is specified in the last argument to Gateway.%Connect().

// define the location of the file containing the Fruit class
set fruitPath = ##class(%ListOfDataTypes).%New()
do fruitPath.Insert("C:\Dev\Fruit.jar")

// Connect a Gateway instance to server JavaGate on the host machine
set GW = ##class(%Net.Remote.Gateway).%New()
set st = GW.%Connect(OG.Server, OG.Port, "USER",,fruitPath)

This example only adds one path, but you can insert a separate path for each .class or .jar file you want to use.

12 Using the Java Gateway

Using Dynamic Object Gateways

Create a dynamic proxy for Java class Fruit and call some methods

In this example, an new instance of Object is created, specifying Fruit as the Java class to introspect. The resulting
dynamic proxy will communicate with the Java object through Gateway instance GW (created in the previous
example). Once the dynamic proxy is instantiated, it works just like a static proxy.

// Use GW connection to create a proxy for the Fruit class
set proxyFruit = ##class(%Net.Remote.Object).%New(GW,"Fruit")

write !,proxyFruit.id()
write !,"Current fruit preference: ",!," "_proxyFruit.getFruit()
do proxyFruit.setFruit("Jujube")
write !,"Fruit preference has been reset: ",!," "_proxyFruit.getFruit()

Prints:

This Java class displays your favorite fruit.
Current fruit preference: UglyFruit
Fruit preference has been reset: Jujube

Disconnect and shut down the server

The connection remains open and the server continues to run until you explicitly disconnect and shut down. In
this example, the Gateway.%Disconnect() method breaks the connection, but the server won’t release the port it
uses until the call to Service.StopGatewayObject() stops it.

// Disconnect from the server
 set st = GW.%Disconnect()

// Stop the server
 set st = ##class(%Net.Remote.Service).StopGatewayObject(OG)

2.3 Array Access
When a property is declared as an array, it is projected to the proxy as an instance of %Net.Remote.Object. To create a new
array, call the Object.%New() method and use array class name syntax in place of the regular class name. Arguments are
used as the initial values for the array. Here are some examples:

Array initialization

Array can be initialized by rank or elements:

// by rank
 set newArray = ##class(%Net.Remote.Object).%New(gateway,"String[2]")

// by elements
 set newArray = ##class(%Net.Remote.Object).%New(gateway,"String[]","A","B","C")

When rank and elements are both specified, rank must match element count.

// both rank and elements specified
 set newArray = ##class(%Net.Remote.Object).%New(gateway,"int[3]",11,22,33)

Getting and setting array elements

Besides supporting all the normal properties and methods available on an array object, Dynamic Gateway supports
two special methods for accessing array elements:

• %get(index) — object.%get(index)is translated to object[index]

• %set(index,value) — object.%set(index,value) is translated to object[index] = value.

For example:

Using the Java Gateway 13

Array Access

 set max = 5
 set arrSize = "String["_(max+1)_"]" // "String[6]"
 set arr = ##class(%Net.Remote.Object).%New(gateway,arrSize)

// Populate the array using %set()
 for idx=0:1:max {
 set val = $CHAR(65+idx) // $CHAR(65)=A
 do arr.%set(idx,val)
 }
// Print the array using %get()
 for idx=0:1:max {
 set val = arr.%get(idx)
 write "arr("_idx_")="_val_" "
 }

Prints:

arr(0)=A arr(1)=B arr(2)=C arr(3)=D arr(4)=E arr(5)=F

2.4 Gateway Reentrancy
Reentrancy means that when InterSystems IRIS code sends a request to Java, the Java code can respond with a request of
its own using the same physical connection and context as the original request. The following is a typical call sequence:

• Starting from the InterSystems IRIS side, a connection is made to Java using a %Net.Remote.Gateway object, allowing
us to create proxy objects that can make calls to Java methods.

• From a proxy, the Gateway.GatewayContext.getIRIS() method can be called to create an instance of jdbc.IRIS. The
IRIS object uses the same connection and context as the proxy, and provides access to all the methods for invoking
Native API calls (see “Using the InterSystems Native API for Java”).

• The IRIS object can call back into InterSystems IRIS, where it can get and set global values or call classmethods and
functions. Making one of these calls puts us back in InterSystems IRIS code again.

• From here, we can make another inner call back to Java using the same Gateway connection. Method
##class(%Net.Remote.Gateway).%GetContextGateway() returns the Gateway object for the current context.

• Calls back and forth between InterSystems IRIS and Java can go on indefinitely, always using the same connection
and context.

Getting a jdbc.IRIS object from GatewayContext()

The following example gets an IRIS object in Java, and uses it to read a global value from the InterSystems database:

IRIS native = GatewayContext.getIRIS();
// Read the value of global ^GlobalName("value2")
if (native != null) {
 String globalVal = native.getString("GlobalName","value2");
}

If the code is not invoked inside a valid Gateway context, the getIRIS() method will return a null object.

Getting a Gateway context object from within Native API calls

This example gets a %Net.Remote.Gateway object for the current context, and uses it to create a proxy for a Java
object in the same context:

set gateway = ##class(%Net.Remote.Gateway).%GetContextGateway()
if gateway'=$$$NULLOREF {
 set objFruit = ##class(%Net.Remote.Object).%New(gateway,"Fruit")
}

If the context is not valid, the Gateway object will be $$$NULLOREF.

14 Using the Java Gateway

Using Dynamic Object Gateways

Note: In general, reentrancy support is not compatible with prior versions of the Object Gateway .

2.5 The Java Fruit Class
This section lists the Fruit class used by most of the examples in this chapter. This trivial Java class has all the features
needed to demonstrate a simple proxy object: static class method id(), and property accessors getFruit() and setFruit().

The Fruit class

package demo;
 public class Fruit {
 public static String id() {
 return "This Java class displays your favorite fruit.";
 }
 public String fruit;
 public Fruit () {
 fruit = "Uglyfruit";
 }
 public void setFruit(String newFruit) {
 fruit = newFruit;
 }
 public String getFruit() {
 return "My favorite fruit is "+fruit;
 }
 public static void main(String []args) {
 System.out.println("\nGenerating output from Java class Fruit: ");
 Fruit myFruit = new Fruit ();
 System.out.println(myFruit.getFruit());
 }
 }

Using the Java Gateway 15

The Java Fruit Class

3
Using the Java Gateway in a Production

This chapter describes how to use the Java Gateway in a production. It discusses the following topics:

• Adding the Java Gateway Business Service

• Settings for the Java Gateway Business Service

• Calling Business Service Methods

• Creating a Business Operation

• Calling API Methods

• Using the Command Prompt

• Using the Java Gateway Wizard

• Error Checking

• Troubleshooting

3.1 Adding the Java Gateway Business Service
While it is possible to start the Java Gateway server from the command prompt, the simplest way to use the Java Gateway
with a production is to add and configure the EnsLib.JavaGateway.Service class as a business service within the production.
You can only do this if the Java Gateway server is on the local machine where you are running InterSystems IRIS®.

Otherwise, you need to start the Java Gateway server from the command prompt. For details, see “Using the Command
Prompt.”

To add the EnsLib.JavaGateway.Service class as a business service in your production, use the Interoperability > Configure

> Production page of the Management Portal. The following steps summarize the configuration procedure:

1. Click the add icon () next to the Services column to start the Business Service Wizard.

2. Click the All Services tab, and choose EnsLib.JavaGateway.Service as the Service Class. You may accept the default
values for the other settings.

3. Click OK to display the updated production diagram.

4. Click the new Java Gateway business service configuration item and then the Settings tab to configure it.

Unlike most business hosts in a production, EnsLib.JavaGateway.Service does not handle any production messages.

Using the Java Gateway 17

3.2 Settings for the Java Gateway Business Service
The following settings specific to the Java Gateway service appear on the Settings tab. Hover the cursor over any setting
name to display its help text as it appears in the Class Reference or click the setting name to display the help text in a sep-
arate pop-up window.

Address

IP address or name of the machine where the JVM to be used by the Java Gateway Server is located.

Port

Port number to which the Java Gateway connects. The default is 55555.

HeartbeatInterval

Number of seconds between each communication with the Java Gateway to check whether it is active. When
enabled, the minimum value is 5 seconds and the maximum value is 3600 seconds (1 hour). The default is 10
seconds. A value of 0 disables this feature.

HeartbeatFailureTimeout

Number of seconds without responding to the heartbeat, to consider that the Java Gateway is in failure state. If
this value is smaller than the HeartbeatInterval property, the gateway is in failure state every time the Java Gateway
communication check fails. The maximum value is 86400 seconds (1 day). The default is 30 seconds.

HeartbeatFailureAction

Action to take if the Java Gateway goes into a failure state. Setting it to Restart (default) causes the Java Gateway
to restart. Setting it to Alert generates an alert entry in the Event Log. This is independent of the Alert on Error

setting.

HeartbeatFailureRetry

Time to wait before retrying the HeartbeatFailureAction if the Java Gateway server goes into failure state, and stays
in failure state. The default is 300 seconds (5 minutes). A value of 0 disables this feature, meaning that once there
is a failure that cannot be immediately recovered, there are no attempts at automatic recovery.

JavaHome

Location of the JVM; use the path you identified in “Prerequisites,” in the previous chapter. (This is the value
that you would use for JAVA_HOME environment variable). It is used to find the target JVM and assemble the
command to start the Gateway.

If there is a default JVM on the machine that is usable without the need to specify its location, you can leave this
setting blank.

ClassPath

Class path containing the files to be passed as an argument when starting the JVM. You must include any jar file
that define classes you are importing via the Java Gateway. There is no need to include InterSystems' .jar files
used by the Java Gateway. If you are specifying file paths containing spaces or multiple files, you should quote
the classpath and supply the appropriate separators for your platform.

The following is an example semicolon-separated list of file paths for a Microsoft Windows platform:

C:\Library\mygateway.jar;"C:\Jar files\utilities.jar"

18 Using the Java Gateway

Using the Java Gateway in a Production

Note that additional paths for the classpath can be specified in business operations derived from
EnsLib.JavaGateway.AbstractOperation. See the property AdditionalPaths in that class.

JVMArgs

Optional arguments to be passed to the Java Virtual Machine (JVM) to include when assembling the command
to start the Java Gateway. For example, you can specify system properties: Dsystemvar=value or set the maximum
heap size: Xmx256m and so on, as needed.

JDKVersion

Version of JDK used to select the intended version of the InterSystems .jar files. It is used to assemble the command
to start the Java Gateway. For example: Java 1.7

Logfile

Fully qualified name of a file to log all communication between the InterSystems IRIS server and the Java Gateway.
Usually this setting should be left blank, except when troubleshooting. These messages include acknowledgment
of opening and closing connections to the server, as well as any difficulties encountered in mapping Java classes
to InterSystems IRIS proxy classes.

JavaDebug

Allow a Java debugger (such as Eclipse or JSwat) to attach. If True, enables Java debugging. The default is False.

JavaDebugPort

Specify the port on which to listen. The default is 8000.

JavaDebugSuspend

If Yes, suspend the JVM on start to wait for the debugger to attach. The default is No.

Other settings are common to most business services. See “Settings in All Business Services” in Configuring Productions.

Once you have added and configured the Java Gateway business service, it automatically manages the Java Gateway as
follows:

• When the production starts, the Java Gateway business service starts an instance of the Java Gateway server, using the
settings that you specify on the configuration page.

• When the production receives a signal to stop, the Java Gateway business service attaches to the Java Gateway server
and instructs it to stop, as well.

For more information, see EnsLib.JavaGateway.Service in the Class Reference.

3.3 Calling Business Service Methods
The Java Gateway business service provides methods that you can use to start, connect to, and stop the Java Gateway
engine. You can call the following methods from InterSystems IRIS code after you have configured the Java Gateway
business service as a member of the production:

• StartGateway()

• ConnectGateway()

• StopGateway()

Using the Java Gateway 19

Calling Business Service Methods

See the EnsLib.JavaGateway.Service entry in the Class Reference for details on these methods.

3.3.1 StartGateway() Method
EnsLib.JavaGateway.Service:StartGateway(pJavaHome As %String,
 pClassPath As %String,
 pJVMArgs As %String,
 pPort As %String,
 pLogFile As %String = "",
 pDebug As %Boolean = 0,
 pJDKVersion As %String = "",
 ByRef pDevice As %String = "",
 pAddress As %String = "127.0.0.1",
 pCmdLine As %String = "")

This class method starts the Java Gateway server using the specified arguments. If pDebug is True, then the JVM is started
such that a debugger can attach to it. If pLogFile specifies a valid file name, then messages regarding gateway activities
are written to this file. These messages include acknowledgment of opening and closing connections to the server, and
difficulties encountered (if any) in mapping Java classes to InterSystems IRIS proxy classes.

3.3.2 ConnectGateway() Method
EnsLib.JavaGateway.Service:ConnectGateway(pEndpoint As %String,
 ByRef pGateway As EnsLib.JavaGateway.JavaGateway,
 pDebug As %Boolean = 0,
 pTimeout As %Integer = 5,
 pAdditionalPaths As %String = "")

This class method connects to the Java Gateway server at the specified pEndpoint (hostname:port:namespace) and returns
an instance of the EnsLib.JavaGateway.JavaGateway class. If pDebug is true, then the connection uses a much longer
timeout to allow for a Java debugger (such as Eclipse or JSwat) to attach.

3.3.3 StopGateway() Method
EnsLib.JavaGateway.Service:StopGateway(pPort As %String,
 pAddress As %String = "127.0.0.1",
 pTimeout As %Integer = 5)

This class method connects to the Java Gateway server and shuts it down.

3.4 Creating a Business Operation
An abstract business operation is available as a base for building Java Gateway oriented business operations for productions.
You can simply subclass the abstract class EnsLib.JavaGateway.AbstractOperation and implement the appropriate message
handlers.

Call the GetConnection() method to verify the connection and always access the Java Gateway connection object via the
gateway connection object returned by the GetConnection() method. For example:

 Set tSC = ..GetConnection(.tJavaGateway)
 If $$$ISOK(tSC)
 {
 // Now, start using the tJavaGateway instance ...
 }

This method returns a private gateway connection object to be used with the proxy classes.

You can configure the Java Gateway IP address and port in the business operation settings when you add the business
operation to the production. Note that the connection to the Java Gateway instance is made during OnInit() and closed in

20 Using the Java Gateway

Using the Java Gateway in a Production

OnTearDown(). You must override these methods in the business operation class to implement your own setup and tear
down procedures.

See the EnsLib.JavaGateway.AbstractOperation entry in the Class Reference for details on these methods and also the
AdditionalPaths, Address, ConnectTimeout, and Port properties.

3.5 Calling API Methods
In addition to using connect, disconnect, and stop from the business service, the following methods are also available in
the EnsLib.JavaGateway.JavaGateway class. You can use them when the business service model is not appropriate for your
situation:

The EnsLib.JavaGateway.JavaGateway class provides the following types of methods:

• API methods that let you %Connect() to the Java Gateway server, %Disconnect() from it, and %Shutdown() the Java
Gateway server.

• The %Import() method, which imports Java classes or packages from the JVM and generates all the necessary proxy
classes for the InterSystems IRIS side.

• The %ExpressImport() method, which combines calls to %Connect(), %Import(), and %Disconnect().

• The utility methods %ClassForName() and %GetAllClasses().

3.5.1 %Connect() Method
Method %Connect(host As %String,
 port As %Integer,
 namespace As %String,
 timeout As %Numeric = 5,
 additionalClassPaths As %ListOfDataTypes = "")
 As %Status [Final]

The %Connect() method establishes a connection with the Java Gateway engine. It accepts the following arguments:

DescriptionArgument

Identifies the machine on which the Java Gateway server is running.host

Port number over which the proxy classes communicate with the Java classes.port

interoperability-enabled namespace.namespace

Number of seconds to wait before timing out, the default is 5.timeout

Optional — use this argument to supply additional class paths; the paths are added
to the system class loader and are available until the session terminates.

additionalClassPaths

3.5.2 %Disconnect() Method
Method %Disconnect() As %Status [Final]

The %Disconnect() method closes a connection to the Java Gateway engine.

3.5.3 %Shutdown() Method
Method %Shutdown() As %Status [Final]

Using the Java Gateway 21

Calling API Methods

The %Shutdown() method shuts down the Java Gateway engine.

3.5.4 %Import() Method
Method %Import(javaClass As %String,
 ByRef imported As %ListOfDataTypes,
 additionalClassPaths As %ListOfDataTypes = "",
 exclusions As %ListOfDataTypes = "")
 As %Status [Final]

The %Import() method imports the given javaClass and all its dependencies by creating and compiling all the necessary
proxy classes. The %Import() method returns, by reference, a list (imported) of generated InterSystems IRIS proxy classes.
For details of how Java class definitions are mapped to InterSystems IRIS proxy classes, see the “Mapping Specification”
chapter.

%Import() is a onetime, startup operation. You only need to call it the first time you wish to generate the InterSystems
IRIS proxy classes. It is necessary again only if you recompile your Java code and wish to regenerate the proxies.

Note: Though it was necessary in earlier versions, %Import() does not need to be called at runtime every time you
connect.

The following sections provide more details about the %Import() method:

• Import Arguments

• Import Dependencies and Exclusions

3.5.4.1 %Import() Arguments

Before you invoke %Import(), prepare the %ListOfDataTypes arguments additionalClassPaths and exclusions. That is,
for each argument, create a new %ListOfDataTypes object and call its Insert() method to fill the list.

You can use the optional additionalClassPaths argument to supply additional CLASSPATH arguments, such as the name
of the jar file that contains the classes you are importing via the Java Gateway. List elements should correspond to individual
additional class path entries, which require one of the following formats:

"rootdirectory\..."
"rootdir\...\myjarfile.jar"

The additional paths are added to the system class loader and are available until the session terminates. Wildcards are not
accepted in CLASSPATH arguments; you must use a full name.

Note: While the examples in this topic use Windows pathname conventions, other supported InterSystems IRIS platforms
work also.

3.5.4.2 Import Dependencies and Exclusions

While mapping a Java class into an InterSystems IRIS proxy class and importing it into InterSystems IRIS, the Java Gateway
loops over all class dependencies discovered in the given Java class including all classes referenced as properties and in
argument lists. In other words, the Java Gateway collects a list of all class dependencies that would be needed for a successful
import of the given class, then walks that dependency list and generates all necessary proxy classes.

Important: The Java Gateway import only imports classes, methods, and fields marked as public.

You can control this process by specifying a list of package and class name prefixes that you would like to exclude from
this process. While this situation is rare, it does give you some flexibility to control what classes get imported. The Java
Gateway automatically excludes a small subset of packages such as sun.*, COM.rsa.*, and most com.sun.* packages.

22 Using the Java Gateway

Using the Java Gateway in a Production

In previous releases, the Java Gateway disallowed import of all com.sun.* classes, as some of them are Java internals.
However, subsequent releases have relaxed this so that you can import additional com.sun.* classes (including
com.sun.tools.javac.Main and com.sun.messaging).

3.5.5 %ExpressImport() Method
ClassMethod %ExpressImport(name As %String,
 port As %Integer,
 host As %String = "127.0.0.1",
 silent As %Boolean = 0,
 additionalClassPaths As %ListOfDataTypes = "",
 exclusions As %ListOfDataTypes = "")
 As %ListOfDataTypes

%ExpressImport() is a one-step convenience class method that combines calls to %Connect(), %Import(), and
%Disconnect(). It returns a list of generated proxies. It also logs that list, if you set the silent argument to 0. The name
argument is a semicolon-delimited list of classes or jar files.

3.5.6 %ClassForName() Method
Method %ClassForName(className As %String)
 As %Status [Final]

If you need your ObjectScript code to call the Java method Class.forName to load a Java class, use the Java Gateway
API method %ClassForName() to make the call. Its argument is the name of the class. Use the InterSystems IRIS proxy
class name as the argument, rather than the Java class name.

3.5.7 %GetAllClasses() Method
Method %GetAllClasses(jarFileOrDirectoryName As %String,
 ByRef allClasses As %ListOfDataTypes,
 implements As %String = "")
 As %Status

This method returns, in the ByRef argument allClasses, a list of all public classes available in the jar file or directory
specified by the first argument, jarFileOrDirectoryName. The implements optional argument limits the classes returned to
those that are implementations of the class specified by the string. By default, the value is an empty string and the method
returns all public classes.

3.6 Using the Command Prompt
Usually you start and stop the Java Gateway server automatically, by configuring the EnsLib.JavaGateway.Service business
service as a member of the production. Once this is done, the Java Gateway server starts and stops automatically with the
production. The StartGateway() class method is also available to manually start the Java Gateway server.

However, during development or debugging, or when InterSystems IRIS and the Java Gateway server run on different
machines, you may find it useful to start the Java Gateway server from a command prompt. Do this by entering the following
command (all on one line). Within this command, the service name has a length limit of 255 characters:

java -classpath classpath com.intersystems.gateway.JavaGateway port logfile sysclasslevel host
secureString

Using the Java Gateway 23

Using the Command Prompt

DescriptionArgument

Consists of a semicolon-separated list of paths of the files required to be passed as an
argument when starting the JVM. If any path includes space characters, that path should
be enclosed within double quotes. Be sure to use pathnames of the appropriate format
for your platform. The jar files needed by the Java Gateway are
<install-dir>\dev\java\lib\JDK18\intersystems-gateway-3.0.0.jar and
<install-dir>\dev\java\lib\JDK18\intersystems-jdbc-3.0.0.jar .You can start the Java Gateway
on a machine without InterSystems IRIS installed as long as you have access to these
jar files. If your client code does not include a path to the jar file that contains the classes
you are importing via the Java Gateway, you can add that jar file to the classpath
argument.

classpath

Port number on which to listen for the incoming requests.port

Optional — If specified, the command procedure creates a log file of that name.You
must specify the full pathname in the string.

logfile

Optional — Identifier assigned to all generated proxy classes.sysclasslevel

Optional — The host IP with the port that the Java Gateway is listening on. Specify null,
"", or 0.0.0.0 (the default) to listen on all IP addresses local to the machine (127.0.0.1,
VPN address, etc.) You can restrict the listener to one existing local IP address or listen
on all of them; you cannot enter a list of acceptable addresses.

host

Optional — Argument related to security.secureString

3.7 Using the Java Gateway Wizard
You can import a Java class or an entire .jar file using the Java Gateway wizard built into Studio. To start the wizard:

1. Start Studio.

2. From the Tools menu, point to and click Add-Ins.

3. Click Java Gateway Wizard to start the Java Gateway Wizard dialog.

4. Click Jar File and either enter the path name or click Browse to find the appropriate .jar file.

or

Click Class Name and either enter the full path name or click Browse to find the appropriate Java class file.

5. Enter the Host and Port for the Java Gateway server.

6. Enter Classpaths and Exclusions as instructed in the dialog.

7. If you select a Jar File in Step 4, you can click View to see a list of the classes in the jar file.

or

If you enter a Class Name in Step 4, continue to the next step.

8. Click Import to generate InterSystems IRIS proxy classes. The wizard displays the class name as it generates each
proxy class.

9. When the import operation is complete, click Finish to exit the wizard.

24 Using the Java Gateway

Using the Java Gateway in a Production

3.8 Error Checking
The Java Gateway provides error checking as follows:

• When an error occurs while executing InterSystems IRIS proxy methods, the error is, in most cases, a Java exception,
coming either from the original Java method itself, or from the Java Gateway engine. When this happens, a <ZJGTW>
error is trapped.

• Java Gateway API methods like %Import() or %Connect() return a typical InterSystems IRIS %Status variable.

In both cases, InterSystems IRIS records the last error value returned from a Java class (which in many cases is the actual
Java exception thrown) in the local variable %objlasterror.

You can retrieve the complete text of the error message by calling $system.OBJ.DisplayError(), as follows:

 Do $system.OBJ.DisplayError(%objlasterror)

3.9 Troubleshooting
When you encounter problems using the Java Gateway, it is always beneficial to turn on logging. This facilitates InterSystems
staff to help you troubleshoot problems. To activate logging, simply identify a log file when you start the Java Gateway.
You can do this whether you start from the command line, by configuring the business service, or using the StartGateway()
business service method.

Sometimes, while using the Java Gateway in a debugging or test situation, you may encounter problems with a Terminal
session becoming unusable, or with write errors in the Terminal window. It is possible that a Java Gateway connection
terminated without properly disconnecting. In this case, the port used for that connection may be left open.

If you suspect this is the case, to close the port, enter the following command at the Terminal prompt:

 Close "|TCP|port"

Where port is the port number to close.

Using the Java Gateway 25

Error Checking

4
Sample Code

You can find sample Java Gateway code in InterSystems IRIS® installations in the EnsLib.JavaGateway.Test class. These
samples demonstrate how to generate and use InterSystems IRIS proxy classes. They are presented in the following
example sections:

• Setting Up Java Gateway Examples

• Running Plain Java Examples

• Running JDBC Examples

• Running EJB Gateway Examples

• Stateless Service Mode Example

For each method described in this chapter, the port argument is the port number over which the proxy classes communicate
with the Java classes, and host identifies the machine on which the Java Gateway server is running. The port argument is
required; host is optional and defaults to "127.0.0.1" (the local machine) if not provided.

4.1 Setting Up Java Gateway Examples
To prepare to run sample code, in each of the examples described in this chapter, you must complete the following steps:

1. Start the Java Gateway server

2. Start a Terminal session and change to an interoperability-enabled namespace

3. Make sure to run Import code if this is the first time you are running the sample code or if you have modified or
recompiled your Java classes.

To prepare to run any of the sample code located under EnsLib.JavaGateway.Test — either for the first time, or after you
update or recompile your Java code — you must run the corresponding Import methods found under
EnsLib.JavaGateway.InterfaceEnabler. This imports the necessary Java classes. The specific sample Import method depends
on the type of example you are running. For example:

• To import the sample Java classes provided with InterSystems IRIS:

 Do ##class(EnsLib.JavaGateway.InterfaceEnabler).ImportJGSamples(port,host)

• To import the JDBC interface:

 Do ##class(EnsLib.JavaGateway.InterfaceEnabler).ImportJDBC(port,host)

Using the Java Gateway 27

• To import the InterSystems JBoss Person EJBs, enter the following command (all on one line):

 Do ##class(EnsLib.JavaGateway.InterfaceEnabler).ImportPersonJBoss(PersonEJBJar,
 j2eeJarFile,port,host)

Where PersonEJBJar points to the PersonEJB.jar file (as generated by the InterSystems EJB Boss projection) and
j2eeJarFile points to the J2EE jar file on your system, for example:

c:/myj2ee/j2ee.jar

• To import all J2EE interfaces (EJB, JCA, JTA, Java XML, JTA, etc.), enter the following command (all on one line):

 Do ##class(EnsLib.JavaGateway.InterfaceEnabler).ImportJ2EE(j2eeJarFile,
 port,host)

Where j2eeJarFile points to the J2EE jar file on your system, for example:

c:/myj2ee/j2ee.jar

In addition to these Import methods, the EnsLib.JavaGateway.InterfaceEnabler class provides a convenience method that,
given a jar file or a directory name, displays all available classes in that jar file or directory:

 Do ##class(EnsLib.JavaGateway.InterfaceEnabler).Browse(jarName,port,host)

4.2 Running Plain Java Examples
The Test() method shows how to use the sample classes delivered with InterSystems IRIS. To run it, first set up the
example, using ImportJGSamples() if you need to import. Then enter:

 Do ##class(EnsLib.JavaGateway.Test).Test(port,host)

The TestArrays() method shows how to use arrays. To run it, first set up the example, using ImportJGSamples() if you
need to import. Then enter:

 Do ##class(EnsLib.JavaGateway.Test).TestArrays(port,host)

4.3 Running JDBC Examples
The following example establishes a connection with InterSystems JDBC driver, then executes some standard JDBC code.
To run it, first set up the example, using ImportJDBC() if you need to import. Then enter:

 Do ##class(EnsLib.JavaGateway.Test).JDBC(port,host,jdbcPort,jdbcHost)

This sample code should work against any database that has a compliant JDBC driver. Simply replace the connection
parameters (JDBC driver class name, URL, username, and password) with appropriate values. See the Class Reference
entry for the JDBC method for details.

4.4 Running EJB Gateway Examples
The following example shows how ObjectScript code can access a sample Entity Bean (generated by InterSystems IRIS
EJB projections) using JBoss version 4.0.1. To run it, first set up the example, using ImportPersonJBoss() if you need to
import. Then enter:

28 Using the Java Gateway

Sample Code

 Do ##class(EnsLib.JavaGateway.Test).PersonJBoss(JBossRoot,port, host)

Where JBossRoot points to your JBoss root, for example:

c:/jboss-4.0.1sp1

You can easily modify this example to work against any application server. Simply set the CLASSPATH accordingly and
use appropriate connection and context parameters.

4.5 Stateless Service Mode Example
Here is a simple implementation using GSON which gets the Google directions between two cities and sends them back
in InterSystems IRIS JSON format. For more info on GSON go to: https://code.google.com/p/google-gson/.

Java code:

package jsonservice;
import java.io.BufferedReader;
import java.io.ByteArrayInputStream;
import java.io.InputStreamReader;
import java.net.URL;

import com.google.gson.JsonElement;
import com.google.gson.JsonObject;
import com.google.gson.JsonParser;

public class Directions implements com.intersystems.gateway.Service {

 public byte[] execute(byte[] args) throws Throwable {
 JsonElement inputJSON = new JsonParser().parse(new
 BufferedReader(new InputStreamReader(new ByteArrayInputStream(args),
"UTF-8")));
 JsonObject jsonObject = inputJSON.getAsJsonObject();
 String origin = jsonObject.get("origin").toString();
 String destination = jsonObject.get("destination").toString();

 URL URLsource = new URL("http://maps.googleapis.com/maps/api/directions/json?
 origin="+origin+"&destination="+destination+"&sensor=false");
 BufferedReader in = new BufferedReader(new InputStreamReader(URLsource.openStream(),"UTF-8"));

 JsonElement outputJSON = new JsonParser().parse(in);
 in.close();
 jsonObject = outputJSON.getAsJsonObject();
 String response = jsonObject.toString();
 return response.getBytes();
 }
}

To invoke the above service from InterSystems IRIS, simply do:

Set classPath=##class(%ListOfDataTypes).%New()
// add GSON to the classpath
Do classPath.Insert("c:/service/gson-1.4.jar")
// add the location of the above Service to the classpath
Do classPath.Insert("c:/service/")
// invoke the service
Write ##class(%Net.Remote.Gateway).%RemoteService("127.0.0.1",55555,"jsonservice.Directions","{""origin""
 :
 ""philadelphia"", ""destination"" :
""boston""}",classPath)

Note: The JSON parsing tool (GSON) is not strictly necessary in this simple example.

Using the Java Gateway 29

Stateless Service Mode Example

https://code.google.com/p/google-gson/

5
Mapping Specification

This chapter describes the mapping between Java objects and the InterSystems IRIS® proxy classes that represent the Java
objects.

Important: Only classes, methods, and fields marked as public are imported.

This chapter describes mappings of the following types:

• Package and Class Names

• Primitives

• Date and Time

• Properties

• Methods

• Constructors

• Constants

• Java Classes

• Restrictions

5.1 Package and Class Names
Package and class names are preserved when imported, except that each underscore (_) in an original Java class name is
replaced with the character u and each dollar sign ($) is replaced with the character d in the InterSystems IRIS proxy class
name. Both the u and the d are case-sensitive (lowercase).

5.2 Primitives
Primitive types and primitive wrappers map from Java to InterSystems IRIS as shown in the following table.

InterSystems IRISJava

%Library.Booleanboolean

Using the Java Gateway 31

InterSystems IRISJava

%Library.Integerbyte

%Library.Stringchar

%Library.Numericdouble

%Library.Doublefloat

%Library.Integerint

%Library.Integerlong

%Library.SmallIntshort

%Library.Booleanjava.lang.Boolean

%Library.Numericjava.lang.Double

%Library.Doublejava.lang.Float

%Library.Integerjava.lang.Integer

%Library.Integerjava.lang.Long

%Library.SmallIntjava.lang.Short

%Library.Stringjava.lang.String

Primitive Java type wrappers are mapped by default to their corresponding InterSystems IRIS data types for performance
reasons. It is recommended that you always use data types whenever you are passing an argument whose type is a primitive
wrapper. For example, you can call the following Java method:

public Long getOrderNumber(Integer id, Float rate)

as follows in InterSystems IRIS:

 Set id=5
 Set rate=10.0
 // order is a local variable
 Set order=test.getOrderNumber(id,rate)

However, you are also free to import primitive wrapper types as is, then use them that way from your InterSystems IRIS
code, for example:

 Set id=##class(java.lang.Integer).%New(gateway,5)
 Set rate=##class(java.lang.Float).%New(gateway,10.0)
 // order is of java.lang.Long type
 Set order=test.getOrderNumber(id,rate)

5.3 Date and Time
Date and time types map from Java to InterSystems IRIS as follows:

InterSystems IRISJava

%Library.Datejava.sql.Date

%Library.Timejava.sql.Time

%Library.TimeStampjava.sql.Timestamp

32 Using the Java Gateway

Mapping Specification

5.4 Properties
The result of importing a Java class is an ObjectScript abstract class. For each Java property that does not already have
corresponding getter and setter methods (imported as is), the Java Gateway engine generates corresponding ObjectScript
getter and setter methods. It generates setters as setXXX, and getters as getXXX, where XXX is the property name. For
example, importing a Java string property called Name results in a getter method getName() and a setter method
setName(%Library.String). The gateway also generates set and get class methods for all static members.

5.5 Methods
After you perform the Java Gateway import operation, all methods in the resulting InterSystems IRIS proxy class have the
same name as their Java counterparts, subject to the limitations described in the Method Names section. They also have
the same number of arguments. The type for all the InterSystems IRIS proxy argument methods is %Library.ObjectHandle;
the Java Gateway engine resolves types at runtime.

For example, the Java method test():

public boolean checkAddress(Person person, Address address)

is imported as:

Method checkAddress(p0 As %Library.ObjectHandle,
 p1 As %Library.ObjectHandle) As %Library.ObjectHandle

5.5.1 Overloaded Methods

While ObjectScript does not support overloading, you can still map overloaded Java methods to InterSystems IRIS proxy
classes. This is supported through a combination of largest method cardinality and default arguments. For example, if you
are importing an overloaded Java method whose different versions take two, four, and five arguments, there is only one
corresponding method on the InterSystems IRIS side; that method takes five arguments, all of %ObjectHandle type. You
can then invoke the method on the InterSystems IRIS side with two, four, or five arguments. The Java Gateway engine
then tries to dispatch to the right version of the corresponding Java method.

While this scheme works reasonably well, avoid using overloaded methods with the same number of arguments of similar
types. For example, the Java Gateway has no problems resolving the following methods:

test(int i, String s, float f)
test(Person p)
test(Person p, String s, float f)
test(int i)

However, avoid the following:

test(int i)
test(float f)
test(boolean b)
test(Object o)

Tip: For better results using the Java Gateway, use overloaded Java methods only when absolutely necessary.

Using the Java Gateway 33

Properties

5.5.2 Method Names

InterSystems IRIS has a limit of 31 characters for method names. Ensure your Java method names are not longer than 31
characters. If the name length is over the limit, the corresponding InterSystems IRIS proxy method name contains only the
first 31 characters of your Java method name. For example, if you have the following methods in Java:

thisJavaMethodHasAVeryVeryLongName(int i) // 34 characters long
thisJavaMethodHasAVeryVeryLongNameLength(int i) // 40 characters long

InterSystems IRIS imports only one method with the following name:

thisJavaMethodHasAVeryVeryLongN // 31 characters long

The Java reflection engine imports the first one it encounters. To find out which method is imported, you can check the
InterSystems IRIS proxy class code. Better yet, ensure that logging is turned on before the import operation. The Java
Gateway log file contains warnings of all method names that were truncated or not imported for any reason.

Each underscore (_) in an original method name is replaced with the character u and each dollar sign ($) is replaced with
the character d. Both the u and the d are case-sensitive (lowercase). If these conventions cause an unintended overlap with
another method name that already exists on the InterSystems IRIS side, the method is not imported.

Finally, InterSystems IRIS class code is not case-sensitive. So, if two Java method names differ only in case, InterSystems
IRIS only imports one of the methods and writes the appropriate warnings in the log file.

5.5.3 Static Methods

Java static methods are projected as class methods in the InterSystems IRIS proxy classes. To invoke them from ObjectScript,
use the following syntax:

 // calls static Java method staticMethodName(par1,par2,...)
 Do ##class(className).staticMethodName(gateway,par1,par2,)

5.6 Constructors
You invoke Java constructors by calling %New(). The signature of %New() is exactly the same as the signature of the
corresponding Java constructor, with the addition of one argument in position one: an instance of the Java Gateway. The
first thing %New() does is to associate the proxy instance with the provided gateway instance. It then calls the corresponding
Java constructor. For example:

 // calls Student(int id, String name) Java constructor
 Set Student=##class(javagateway.Student).%New(Gateway,29,"John Doe")

5.7 Constants
The Java Gateway projects and imports Java static final variables (constants) as Final Parameters. The names are preserved
when imported, except that each underscore (_) is replaced with the character u and each dollar sign ($) is replaced with
the character d. Both the u and the d are case-sensitive (lowercase).

For example, the following static final variable:

public static final int JAVA_CONSTANT = 1;

is mapped in ObjectScript as:

34 Using the Java Gateway

Mapping Specification

Parameter JAVAuCONSTANT As INTEGER = 1;

From ObjectScript, access the parameter as:

##class(MyJavaClass).%GetParameter("JAVAuCONSTANT"))

5.8 Java Classes
The following sections describe the particulars of using the InterSystems IRIS Java Gateway with specific types of Java
classes:

• Java Object Superclass (java.lang.Object)

• Java Arrays

• Java Collections Framework

• Recasting

• Java Standard Output Redirection

5.8.1 Java Object Superclass (java.lang.Object)

Earlier versions of the Java Gateway did not allow the use of java.lang.Object. This release maps java.lang.Object as is.
When using java.lang.Object, consider the following:

• Primitive wrapper classes in Java, which are subclasses of java.lang.Object in Java, are mapped to InterSystems IRIS
data types and are thus not subclasses of java.lang.Object in InterSystems IRIS. For details, see the Java Arrays section.

• Although using java.lang.Object in Java provides great flexibility, it often requires much (re)casting. ObjectScript has
only limited support for casting and recasting. When using java.lang.Object to point to its subclass, use the cast operation
in ObjectScript to execute the methods of the subclass. Here is an example from the EJB Gateway:

 Set jndiContext=##class(javax.naming.InitialContext).%New(gateway)
 Set jndiName="PersonEJB_Sample_EJBPerson"
 Set refPerson=jndiContext.lookup(jndiName)
 Set personHomeClass=##class(java.lang.Class).forName(gateway,
 Sample.EJBPersonHome)
 Set homePerson=##class(javax.rmi.PortableRemoteObject).narrow(gateway,
 refPerson,personHomeClass)
 // here homePerson is java.lang.Object, and in Java, we would simply
 // recast it to EJBPersonHome by saying:
 // homePerson = (EJBPersonHome) homePerson

 // In ObjectScript, you will need to 'recast' the method call:
 Set remotePerson=##class(Sample.EJBPersonHome)homePerson.findById(1)

Using java.lang.Object works as long as you remember you cannot recast an object per se. However, since InterSystems
IRIS proxy classes are abstract classes, method invocation recasting is sufficient for most purposes.

5.8.2 Java Arrays

Arrays of primitive types, wrappers, data and time types, and Class types are mapped as %Library.ListOfDataTypes. Arrays
of object types are mapped as %Library.ListOfObjects. Only one level of subscripts is supported.

Java byte arrays (byte[]) are projected as %Library.GlobalBinaryStream. Similarly, Java char arrays (char[]) are projected
as %Library.GlobalCharacterStream. This allows for a more efficient handling of byte and character arrays.

Using the Java Gateway 35

Java Classes

As an only exception to the general rule of pass-by-value-only semantics in the Java Gateway, you can pass byte and stream
arrays either by value or by reference. Passing by reference allows changes to the byte/char stream on the Java side visible
on the InterSystems IRIS side as well. A good example is the java.io.InputStream read method:

int read(byte ba[], int maxLen

which reads up to maxLen bytes into the ba byte array. For example, in Java:

byte[] ba = new byte[maxLen];
int bytesRead = inputStream.read(ba,maxLen);

The equivalent code in ObjectScript:

 Set readStream=##class(%GlobalBinaryStream).%New()
 // reserve a number of bytes since we are passing the stream by reference
 For i=1:1:50 Do readStream.Write("0")
 Set bytesRead=test.read(.readStream,50)

The following example passes a character stream by value, meaning that any changes to the corresponding Java char[] are
not reflected on the InterSystems IRIS side:

 Set charStream=##class(%GlobalCharacterStream).%New()
 Do charStream.Write("Global character stream")
 Do test.setCharArray(charStream)

5.8.3 Java Collections Framework

Previous versions of the Java Gateway provided special treatment when importing java.util.List (and its subclasses),
java.util.Map (and its subclasses) and java.util.Class. The Java Gateway imported the first two as either
%Library.ListOfDataTypes or %Library.ListOfObjects and java.util.Class as %Library.String.

This release now imports all of the above classes “as is.” You now can use the entire Java Collections Framework “as is”
in InterSystems IRIS. You can also take advantage of java.lang.Class methods. The following is a HashMap example using
ObjectScript:

 Set grades=##class(java.util.HashMap).%New(gateway)
 Set x=grades.put("Biology",3.8)

 Set x=grades.put("Spanish",2.75)
 Do student.mySetGrades(grades)

 Set grades=student.myGetGrades()
 Set it=grades.keySet().iterator()
 While (it.hasNext()) {
 Set key=it.next()
 Set value=grades.get(key)
 Write " ",key," ",value,!
 }

The following example uses Class.forName and java.utilArrayList:

 Set arrayListCls=##class(java.lang.Class).forName(gateway,"java.util.ArrayList")
 Set sports=arrayListCls.newInstance()
 Do sports.add("Basketball")

 Do sports.add("Swimming")

 Set list=student.myGetFavoriteSports()
 For i=0:1:list.size()-1 {
 Write " "_list.get(i),!
 }

36 Using the Java Gateway

Mapping Specification

5.8.4 Recasting

ObjectScript has limited support for recasting; namely, you can recast only at a point of a method invocation. However,
since all InterSystems IRIS proxies are abstract classes, this should be quite sufficient. For an example of how to recast,
see the Java Object Superclass section.

5.8.5 Java Standard Output Redirection

The Java Gateway automatically redirects any standard Java output in the corresponding Java code to the calling InterSystems
IRIS session. It collects any calls to System.out in your Java method calls and sends them to InterSystems IRIS to display
in the same format as you would expect to see if you ran your code from Java. To disable this behavior and direct your
output to the standard output device as designated by your Java code (in most cases that would be the console), set the
following global reference in your interoperability-enabled namespace:

 Set ^%SYS("Gateway","Remote","DisableOutputRedirect") = 1

5.9 Restrictions
Important: Rather than aborting import, the Java Gateway engine silently skips over all the members it is unable to

generate. If you repeat the import step with logging turned on, InterSystems IRIS records all skipped
members (along with the reason why they were skipped) in the WARNING section of the log file.

The Java Gateway engine always makes an attempt to preserve package and method names, parameter types, etc. That way,
calling an InterSystems IRIS proxy method is almost identical to calling the corresponding method in Java. It is therefore
important to keep in mind ObjectScript restrictions and limits while writing your Java code. In a vast majority of cases,
there should be no issues at all. You might run into ObjectScript limits if, for example:

• Your Java method names are longer than 30 characters.

• You have 100 or more arguments.

• You are trying to pass String objects longer than 32K.

• You rely on the fact that Java is case-sensitive when you choose your method names.

• You are trying to import a static method that overrides an instance method.

Check with the latest ObjectScript documentation regarding any limits or restrictions. The books are:

• Using ObjectScript

• ObjectScript Reference

Using the Java Gateway 37

Restrictions

	Table of Contents
	About This Book
	1 Introduction to the Java Gateway
	1.1 Prerequisites
	1.2 Starting and Stopping the Gateway
	1.3 Connecting and Disconnecting
	1.4 Java Gateway Modes
	1.4.1 Proxy Object Mode
	1.4.2 Stateless Service Mode

	2 Using Dynamic Object Gateways
	2.1 Introducing Dynamic Gateways
	2.2 Creating and Using a Dynamic Object Gateway
	2.3 Array Access
	2.4 Gateway Reentrancy
	2.5 The Java Fruit Class

	3 Using the Java Gateway in a Production
	3.1 Adding the Java Gateway Business Service
	3.2 Settings for the Java Gateway Business Service
	3.3 Calling Business Service Methods
	3.3.1 StartGateway() Method
	3.3.2 ConnectGateway() Method
	3.3.3 StopGateway() Method

	3.4 Creating a Business Operation
	3.5 Calling API Methods
	3.5.1 %Connect() Method
	3.5.2 %Disconnect() Method
	3.5.3 %Shutdown() Method
	3.5.4 %Import() Method
	3.5.5 %ExpressImport() Method
	3.5.6 %ClassForName() Method
	3.5.7 %GetAllClasses() Method

	3.6 Using the Command Prompt
	3.7 Using the Java Gateway Wizard
	3.8 Error Checking
	3.9 Troubleshooting

	4 Sample Code
	4.1 Setting Up Java Gateway Examples
	4.2 Running Plain Java Examples
	4.3 Running JDBC Examples
	4.4 Running EJB Gateway Examples
	4.5 Stateless Service Mode Example

	5 Mapping Specification
	5.1 Package and Class Names
	5.2 Primitives
	5.3 Date and Time
	5.4 Properties
	5.5 Methods
	5.5.1 Overloaded Methods
	5.5.2 Method Names
	5.5.3 Static Methods

	5.6 Constructors
	5.7 Constants
	5.8 Java Classes
	5.8.1 Java Object Superclass (java.lang.Object)
	5.8.2 Java Arrays
	5.8.3 Java Collections Framework
	5.8.4 Recasting
	5.8.5 Java Standard Output Redirection

	5.9 Restrictions

