
PEX: Developing Productions
with Java

Version 2019.4
2020-01-28

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

PEX: Developing Productions with Java
InterSystems IRIS Data Platform Version 2019.4 2020-01-28
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

1 Introduction .. 3
1.1 Basic Workflow .. 3

2 About Business Hosts and Adapters ... 5
2.1 General Notes about Methods .. 5
2.2 Setting Runtime Variables .. 5
2.3 Messaging ... 6

3 Inbound Adapters ... 7
3.1 Java Class ... 7
3.2 Using the Inbound Adapter .. 7

4 Outbound Adapters .. 9
4.1 Java Class ... 9
4.2 Using the Outbound Adapter .. 9

5 Business Services .. 11
5.1 Java Class ... 11
5.2 Using the Business Service .. 11

6 Business Processes .. 13
6.1 Java Class ... 13

6.1.1 Persistent Properties ... 19
6.2 Using the Business Process .. 14

7 Business Operations ... 15
7.1 Java Class ... 15
7.2 Using the Business Operation .. 15

8 Running the Java Gateway .. 17
8.1 Jar Files Required by the Gateway ... 17

Appendix A: Java Business Hosts ... 19
A.1 Introduction to Java Business Hosts .. 19
A.2 Developing Java Business Services and Operations ... 20
A.3 Generating and Configuring the Java Business Hosts ... 21

PEX: Developing Productions with Java iii

About This Book

This book describes how to use the PEX framework to write production business hosts and adapters in Java rather than
ObjectScript. It contains the following chapters:

• Introduction

• About Business Hosts and Adapters

• Inbound Adapters

• Outbound Adapters

• Business Services

• Business Processes

• Business Operations

• Running the Java Gateway

PEX: Developing Productions with Java 1

1
Introduction

The PEX framework allows you to write business hosts and adapters in Java and integrate them within a interoperability
production. The PEX framework is powerful because you can integrate just one Java-based component into a production
that also uses built-in components, or write the entire production in Java, depending on your use case. Once integrated, the
production components written in Java are called at runtime and use the PEX framework to send messages to other compo-
nents in the production. Some reasons to use the PEX framework include:

• Creating new adapters for protocols using available Java libraries.

• Using available Java libraries to perform complex analysis or calculations.

• Implementing persistent messaging and long-running business processes without using ObjectScript in your application’s
technology stack.

You can create the following production components using Java:

• Inbound Adapter

• Outbound Adapter

• Business Service

• Business Process

• Business Operation

Collectively, business services, business processes, and business operations are referred to as business hosts. For an intro-
duction to adapters and business hosts and how they fit into an interoperability production, see Introducing Interoperability
Productions.

Though you are writing code in Java to create your adapters and business hosts outside of InterSystems IRIS, the Management
Portal is still the place to go to create and maintain the production. For example, you’ll use the Management Portal to create
the production, integrate the custom business hosts and adapters into the production, start and stop the production, and trace
persistent messages running through the production.

1.1 Basic Workflow
Implementing Java components into an interoperability production consists of three basic steps:

1. In you favorite IDE, write the business host or adapter in Java. The PEX Java library,
com.intersystems.enslib.pex, includes superclasses for each type of production component. For example,
com.intersystems.enslib.pex.BusinessOperation is the superclass for business operations written in

PEX: Developing Productions with Java 3

Java. Implementing a business host or adapter in Java begins by creating the appropriate subclass and overriding its
methods.

2. In the Management Portal, add a built-in PEX component that points to the new Java class. To integrate a custom
Java business host into a production, use the Management Portal to open the production and add a built-in PEX business
host to the production that acts as a proxy between the custom business host and the rest of the production. This built-
in PEX business host has a setting that specifies the Java class of the custom business host. Integrating an adapter into
the production also leverages a built-in PEX class as a proxy between the business host and the adapter written in Java.

3. From the Management Portal or InterSystems Terminal, manually start the Java Gateway with the required Jar files
in the classpath. The PEX framework requires the Java Gateway be running on the port that is defined in the settings
of the built-in PEX components. For more details, see Running the Java Gateway.

4 PEX: Developing Productions with Java

Introduction

2
About Business Hosts and Adapters

This chapter discusses information that applies to all business hosts and adapters written in Java. For implementation details
about a specific production component, refer to that component’s chapter.

2.1 General Notes about Methods
As you override methods in Java to implement a production component, keep the following in mind:

• Each production component can override the OnInit() and OnTearDown() methods.

• While native interoperability methods use one input argument and one output argument and return a status, the corre-
sponding PEX methods take one input argument and return the output argument as a return value.

• All error handling for PEX methods are done with exceptions.

• For native interoperability methods that don't require persistent objects as input and output arguments, the corresponding
PEX methods can also use arbitrary objects as arguments and return values. PEX utilizes forward proxy and reverse
proxy of the Gateway to map the arbitrary object appropriately. Examples of such methods are ProcessInput, OnPro-
cessInput and action methods of OutboundAdapters.

• For native interoperability methods that require persistent objects as arguments, i.e. the methods that send messages
to other processes, the corresponding PEX methods can use PEX Messages as arguments and return values. Examples
of such methods are SendRequestSync, SendRequestAsync, OnRequest, OnResponse and OnMessage.

• When overriding callback methods, you should not change the formal spec of the methods even if you have customized
the message class. The argument types should remain as objects.

2.2 Setting Runtime Variables
The Java code of a custom production component can contain properties that will be set at runtime based on values defined
in the Management Portal. At runtime, the values specified in the remoteSettings field of the built-in PEX component are
assigned to the corresponding Java component. Values are defined in the format: property=value. More than one
property/value pair can be specified as long as each pair is on its own line. No spaces are allowed.

For example, suppose your inbound adapter needs a username and password at runtime. In your Java code, you create string
variables called username and pw. Then, in the Management Portal, you can define the following in the remoteSettings

field of the business service that uses the adapter:

PEX: Developing Productions with Java 5

username=Employee1
pw=MySecret

2.3 Messaging
Within the PEX framework, most messages sent between business hosts are objects instantiated from a subclasses of
com.intersystems.enslib.pex.Message. You simply add properties to your subclass, and then pass instantiated
objects of the subclass using methods like SendRequestAsync() and SendRequestSync(). Within InterSystems
IRIS, the Java message object corresponds to an object of class EnsLib.PEX.Message, which makes the message per-
sistent and dynamic. By manipulating the object of type EnsLib.PEX.Message, you can reference any property in the
Java object. Internally, the Java object is represented as JSON as it passes between business hosts, so viewing the messages
in the Management Portal are displayed in JSON format.

Though you can use other message objects, they must still be persistent if they are being passed between business hosts.
For example, Java objects of type IRISObject could be used if they were mapped to persistent objects in InterSystems IRIS.
Trying to pass a non-persistent object as a message between business hosts results in a runtime error.

Objects sent from an inbound adapter to a business service are arbitrary and do not need to be persistent.

6 PEX: Developing Productions with Java

About Business Hosts and Adapters

3
Inbound Adapters

Business services use inbound adapters to receive specific types of input data. You can write a custom inbound adapter
that is used by an ObjectScript business service, or it can be used by a business service that is also written in Java. For
general information related to all production components written in Java, see About Business Hosts and Adapters.

3.1 Java Class
An inbound adapter written in Java extends com.intersystems.enslib.pex.InboundAdapter .

At a minimum, your Java inbound adapter should override the OnTask() method. At runtime, the OnTask() method is
called at the interval defined in the settings of the business service that is using the adapter. From within OnTask(), call
BusinessHost.ProcessInput() to dispatch to the associated business service. This ProcessInput() method
takes an arbitrary object as input and receives an arbitrary object as a return value. The input object becomes the input
argument of the business service’s OnProcessInput() method, and the return object comes from the output of the
business service’s OnProcessInput() method. These arbitrary objects do not need to be persistent within InterSystems
IRIS.

The methods that can be overridden include:

OnInit()

OnTearDown()

OnTask()

3.2 Using the Inbound Adapter
In the Management Portal, a business service has a setting, AdapterClassname, that specifies the class of the inbound adapter
associated with the business service. When the inbound adapter is written in Java, the business service’s AdapterClassname

setting must be EnsLib.PEX.InboundAdapter. In addition, the remoteClassname setting must be set to the name of
the Java class of the inbound adapter.

PEX: Developing Productions with Java 7

4
Outbound Adapters

Business operations use outbound adapters to send out specific types of data from the production. You can write a custom
outbound adapter that is used by an ObjectScript business operation, or it can be used by a business operation that is also
written in Java. For general information related to all production components written in Java, see About Business Hosts
and Adapters.

4.1 Java Class
An outbound adapter written in Java extends com.intersystems.enslib.pex.OutboundAdapter .

Within the outbound adapter’s Java class, you can create all the methods you need to successfully send out data from the
production. Each of these methods can be called from the business operation associated with the adapter.

The methods that can be overridden include:

OnInit()

OnTearDown()

4.2 Using the Outbound Adapter
In the Management Portal, a business operation has a setting, AdapterClassname, that specifies the class of the outbound
adapter being used. When the outbound adapter is written in Java, the business service’s AdapterClassname setting must
be EnsLib.PEX.OutboundAdapter. In addition, the remoteClassname setting must be set to the name of the Java class
of the outbound adapter.

PEX: Developing Productions with Java 9

5
Business Services

Business services connect with external systems and receive messages from them through an inbound adapter. For general
information related to all production components written in Java, see About Business Hosts and Adapters.

5.1 Java Class
A business service written in Java extends com.intersystems.enslib.BusinessService.

The OnProcessInput() method takes an arbitrary object from the ProcessInput() method of the business service’s
adapter, and returns an arbitrary object. These arbitrary objects do not need to be persistent.

For information about sending messages between the business service and another business host, see Messaging.

The methods that can be overridden include:

OnInit()

OnTearDown()

OnProcessInput()

SendRequestAsync()

SendRequestSync()

5.2 Using the Business Service
When you want to integrate the Java business service into the production:

1. Open the production in the Management Portal and add a business service based on the PEX class
EnsLib.PEX.BusinessService.

2. Define the remoteClassname setting of the new PEX business service as the Java class you created for the custom
business service.

3. Use the gatewayHost and gatewayPort settings of the PEX business service to define the values of the Java Gateway.

For example, suppose you have a business service written in a Java class called MyJavaBusinessService. To incorporate
this custom business service into the production, you go to the Management Portal and add a business service based on the

PEX: Developing Productions with Java 11

PEX class EnsLib.PEX.BusinessService. Once added, edit the RemoteClassname setting of the PEX business service
to point to the Java classname MyJavaBusinessService.

12 PEX: Developing Productions with Java

Business Services

6
Business Processes

Business processes allow you to define business logic, including routing and message transformation. Business processes
receive messages from other business hosts in the production for processing.

For general information related to all production components written in Java, see About Business Hosts and Adapters.

6.1 Java Class
A business service written in Java extends com.intersystems.enslib.BusinessProcess.

For information about sending messages between the business process and another business host, see Messaging.

The methods that can be overridden include:

OnInit()

OnTearDown()

SendRequestAsync()

SendRequestSync()

OnRequest()

OnResponse()

OnComplete()

6.1.1 Persistent Properties

Within InterSystems IRIS, business processes are persistent objects. For the lifespan of a Business Process, properties of
the Business Process are stored and accessible during each callbacks. Within the PEX framework, you can save properties
of the business process class saved by using @Persistent annotation. Within InterSystems IRIS, persistent properties
are saved in the corresponding instance of the business process. Persistent properties are restored before each callback and
are saved after each callback. The @Persistent annotation only works for String, primitive types and their boxed types. The
following is an example of using the @Persistent annotation:

@Persistent
public integer runningTotal = 0;

@Persistent
public string CurrentName = "temp";

PEX: Developing Productions with Java 13

6.2 Using the Business Process
When you want to integrate the Java business process into the production:

1. Open the production in the Management Portal and add a business service based on the PEX class
EnsLib.PEX.BusinessProcess.

2. Define the remoteClassname setting of the new PEX business process as the Java class you created for the custom
business process.

3. Use the gatewayHost and gatewayPort settings of the PEX business process to define the values of the Java Gateway.

For example, suppose you have a business process written in a Java class called MyJavaBusinessProcess. To incorporate
this custom business process into the production, you go to the Management Portal and add a business process based on
the PEX class EnsLib.PEX.BusinessProcess. Once added, edit the RemoteClassname setting of the PEX business
process to point to the Java classname MyJavaBusinessProcess.

14 PEX: Developing Productions with Java

Business Processes

7
Business Operations

Business operations connect with external systems and send messages to them via an outbound adapter.

For general information related to all production components written in Java, see About Business Hosts and Adapters.

7.1 Java Class
A business operation written in Java extends com.intersystems.enslib.BusinessOperation.

For information about sending messages between the business operation and another business host, see Messaging.

At runtime, the OnMessage() method is called when the business operation receives a message from another business
host. From within this method, the business operation can call any of the methods defined in the outbound adapter associated
with the business operation.

Parameters for calls from a business operation to an outbound adapter are primitive types only, and do not need to be per-
sistent.

The methods that can be overridden include:

OnInit()

OnTearDown()

OnMessage()

SendRequestAsync()

SendRequestSync()

7.2 Using the Business Operation
When you want to integrate the Java business operation into the production:

1. Open the production in the Management Portal and add a business operation based on the PEX class
EnsLib.PEX.BusinessOperation.

2. Define the remoteClassname setting of the new PEX business operation as the Java class you created for the custom
business operation.

PEX: Developing Productions with Java 15

3. Use the gatewayHost and gatewayPort settings of the PEX business operation to define the values of the Java Gateway.

For example, suppose you have a business operation written in a Java class called MyJavaBusinessOperation. To
incorporate this custom business operation into the production, you go to the Management Portal and add a business oper-
ation based on the PEX class EnsLib.PEX.BusinessOperation. Once added, edit the RemoteClassname setting of
the PEX business operation to point to the Java classname MyJavaBusinessOperation.

16 PEX: Developing Productions with Java

Business Operations

8
Running the Java Gateway

The PEX framework requires the Java Gateway to be running when the production is running. It is recommended that you
manually start the Java Gateway from the Management Portal or InterSystems Terminal rather than adding EnsLib.Java-
Gateway.Service to the production. Complete the following tasks to ensure that the Gateway is properly configured to
support the PEX framework:

• In the Management Portal, use the gatewayHost and gatewayPort settings of each PEX component to specify the host
and port of the Gateway that will be running.

• Put the required jar files in the classpath of the Gateway.

8.1 Jar Files Required by the Gateway
The following Jar files must be on the classpath of the Java Gateway used for the PEX production:

• gson-2.8.5.jar, which is a serialization/deserialization library that converts Java objects into JSON and back. This jar
file is located at <install-dir>\dev\java\lib\gson\gson-2.8.5.jar.

• Jar files that contain the subclasses you created for each production component. For example, if you wrote an inbound
adapter in Java, you might have a jar file MyJavaAdapter.jar.

If you are using a dedicated Gateway for your PEX production, it makes sense to add these jar files to the classpath when
starting the Gateway. Alternatively, you can specify these jar files for individual PEX components in the Management
Portal. Every PEX component in a production has a setting Gateway Extra CLASSPATH. You can add the jar file that corre-
sponds to the PEX component in this setting rather than specifying it when you start the Gateway, but don’t forget to also
add gson-2.8.5.jar to the classpath.

PEX: Developing Productions with Java 17

A
Java Business Hosts

A.1 Introduction to Java Business Hosts
Important: In previous releases of InterSystems IRIS before the PEX framework was available, Java Business Hosts

provided a way to create new business services and business operations using Java without need for any
ObjectScript coding. This feature is now deprecated; use the PEX framework instead.

You can use Java Business Hosts with the following kinds of messages:

• Plain text

• XML

• X12

• EDIFACT

• HL7(InterSystems IRIS for Health and HealthShare Health Connect only)

• ASTM (InterSystems IRIS for Health and HealthShare Health Connect only)

To develop a production using Java Business Services and Operations, you do the following:

• Write your Java code implementing the com.intersystems.gateway.bh.BusinessService and the
com.intersystems.gateway.bh.BusinessOperation classes. These classes enable your Java code to send
messages to a production and receive messages from a production.

• Compile your Java classes into jar files.

• Use the Java Business Host page in the Management Portal to add a EnsLib.JavaGateway.Initiator component to a
production and then generate Java Business Services and Operations from your jar files.

• Add the Java Business Services and Operations to the production using the Production Configuration page in the
Management Portal.

• Adjust any settings on your Java Business Services and Operations using the Product Configuration page.

• Add any other Business Services, Business Processes, and Business Operations to your production. For example, you
can add a router Business Process or a Data Transformation to your production.

• Use the production infrastructure to manage and monitor your production. For example, you can examine messages
and trace their path through the production.

PEX: Developing Productions with Java 19

Java Business Hosts provides an easy way to create business services and operations in Java. It uses the InterSystems IRIS™
Java Gateway to do this. Although it is more work to use the Java Gateway directly, it provides more options and capabil-
ities than Java Business Hosts. For more information, see Using the Java Gateway.

A.2 Developing Java Business Services and Operations
This section describes how to implement the Java code for business services and business operations. To create a business
service or business operation, you implement the following classes:

• com.intersystems.gateway.bh.BusinessService

• com.intersystems.gateway.bh.BusinessOperation

These classes are defined in the intersystems-gateway-3.0.0.jar file provided in the install-dir\dev\java\lib\JDK18 directory.
In addition to the BusinessService and BusinessOperation classes, this jar file defines the
com.intersystems.gateway.bh.Production, which provides access to the production and the Business Service.

For receiving messages from an external service, you implement a Java application that listens to messages and includes
the Java class:

com.intersystems.gateway.bh.BusinessService

with the following methods:

• OnInit: — this method is called when the production starts or the business service is enabled. It typically starts a listener
that will receive messages. The listener receives the messages from the external service and then sends them to the
business service in the production by calling the method Production.SendRequest(). The production is passed in as an
argument to OnInit. Your code should save it so that it can call SendRequest in the listener.

• OnTearDown: — this method is called when the production is stopped or the business service is disabled. It typically
stops the listener.

To define settings in the Business Service, define a static string named SETTINGS, that has a string value of a comma
separated list of settings name. For example, the following defines settings named MIN and MAX:

 public static final String SETTINGS = "Min,Max";

For sending messages from the production to an external service, you implement a Java application, which includes the
Java class:

com.intersystems.gateway.bh.BusinessOperation

with the following methods:

• OnInit — this method is called when the business operation starts. It typically initializes any structures needed by the
OnMessage method. The production is passed in as an argument to OnInit.

• OnMessage — this method is called when the business operation receives a message. It is responsible for sending the
message to the external service.

• OnTearDown — this method is called when the business operation ends. It typically releases any structures created
by the OnInit method.

The production is provided as an argument to the BusinessService.and BusinessOperation OnInit method. It allows you to
access settings on the Business Service and to set its status. The class com.intersystems.gateway.bh.Production
has the following methods:

20 PEX: Developing Productions with Java

Java Business Hosts

• SendRequest — Sends a request message to the target configuration item of the Business Service. This method is only
available to the BusinessService. It is not available in the BusinessOperation.

• GetSetting — Gets the value for the specified Business Service or Business Operation setting.

• SetStatus — Sets the status of the Business Service or Business Operation configuration item and changes the color
of the item on the Production Configuration page.

• LogMessage — Writes a message to the production log. You can use this to report errors or to help debug code.

For the reference documentation for these classes, see Javadocs Reference for Java Business Hosts Classes.

A.3 Generating and Configuring the Java Business Hosts
This section describes how to generate Java Business Hosts from jar files that contain one or more classes that implement
com.intersystems.gateway.bh.BusinessService or
com.intersystems.gateway.bh.BusinessOperation. To generate these hosts:

1. Add the Java Business Hosts initiator to a new or existing production.

2. If necessary, configure the settings on the initiator.

3. Use the Java Business Hosts Management Portal page to select a jar file.

4. Fill in the fields on the page.

5. Generate the host.

Once you have generated the hosts, you can add them to the production containing the initiator using the Production Con-
figuration page, specify the settings for each host, and enable the hosts to run your production.

If when you select the jar file on the Java Business Hosts page you get the The selected file does not contain
any classes which can be imported as a java business host. Try selecting a different

jar file. error, the problem may be one of the following:

• Mismatch between the class name and the structure of the files in the jar archive. For example, if the class name is
JavaHosts.JHBusinessService, but the jar file archive is organized so that the .class files are in the directory Output\Java-
Hosts\JHBusinessService, the extra level causes the initiator to not recognize the Java Business Hosts file.

• Missing jar files that are referenced by the Business Host jar file. Any jar file referenced in the Business Host’s jar file
must be specified in the initiator’s Class Path setting.

PEX: Developing Productions with Java 21

Generating and Configuring the Java Business Hosts

Java-Business-Hosts/index.html

	Table of Contents
	About This Book
	1 Introduction
	1.1 Basic Workflow

	2 About Business Hosts and Adapters
	2.1 General Notes about Methods
	2.2 Setting Runtime Variables
	2.3 Messaging

	3 Inbound Adapters
	3.1 Java Class
	3.2 Using the Inbound Adapter

	4 Outbound Adapters
	4.1 Java Class
	4.2 Using the Outbound Adapter

	5 Business Services
	5.1 Java Class
	5.2 Using the Business Service

	6 Business Processes
	6.1 Java Class
	6.1.1 Persistent Properties

	6.2 Using the Business Process

	7 Business Operations
	7.1 Java Class
	7.2 Using the Business Operation

	8 Running the Java Gateway
	8.1 Jar Files Required by the Gateway

	Appendix A: Java Business Hosts
	A.1 Introduction to Java Business Hosts
	A.2 Developing Java Business Services and Operations
	A.3 Generating and Configuring the Java Business Hosts

