
Adding SOAP Services and
Web Clients to Productions

Version 2019.4
2020-01-28

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Adding SOAP Services and Web Clients to Productions
InterSystems IRIS Data Platform Version 2019.4 2020-01-28
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

1 About SOAP and Web Services ... 3
1.1 InterSystems IRIS Support for Web Services .. 3
1.2 InterSystems IRIS Support for Web Clients ... 4

1.2.1 The SOAP Wizard .. 5
1.2.2 The Proxy Client .. 6
1.2.3 The Business Operation of an InterSystems IRIS Web Client ... 6

2 Creating a Web Service in a Production ... 9
2.1 Overall Behavior .. 9
2.2 Basic Requirements .. 10
2.3 Defining Web Methods for Use in InterSystems IRIS ... 11

2.3.1 Basic Steps of an InterSystems IRIS Interoperability Web Method 11
2.3.2 Returning Faults to the Caller .. 12
2.3.3 Example ... 12

2.4 Viewing the WSDL ... 13
2.5 Web Service Example ... 13
2.6 Enabling SOAP Sessions .. 14
2.7 Additional Options ... 15
2.8 Adding and Configuring the Web Service .. 15

3 Creating a Web Client in a Production ... 17
3.1 Overview .. 17
3.2 Basic Steps ... 18

3.2.1 Using the SOAP Wizard ... 18
3.3 Generated Classes for an InterSystems IRIS Interoperability Web Client 20
3.4 Creating a Business Operation Class Manually ... 21

3.4.1 Basic Requirements of the Class .. 22
3.4.2 Basic Requirements of the Methods .. 22
3.4.3 Ways to Execute the Proxy Methods .. 23
3.4.4 Reference Information ... 24

3.5 Adding and Configuring the Web Client .. 25
3.5.1 Specifying Basics ... 25
3.5.2 Specifying Credentials ... 25
3.5.3 Specifying an SSL Configuration .. 26
3.5.4 Specifying a Proxy Server .. 26

Appendix A: Configuring a Production for SOAP Services .. 27

Appendix B: Using the SOAP Inbound Adapter .. 29
B.1 Notes .. 29
B.2 Development Tasks .. 29
B.3 Configuration Tasks ... 30

Appendix C: Older Web Service Variation ... 31
C.1 Overview .. 31
C.2 Implementing the OnProcessInput() Method .. 31

C.2.1 Using the pHint Argument ... 32

Reference for Settings .. 33

Adding SOAP Services and Web Clients to Productions iii

Settings for the SOAP Inbound Adapter .. 34
Settings for the SOAP Outbound Adapter .. 36

iv Adding SOAP Services and Web Clients to Productions

About This Book

This book describes how an InterSystems IRIS® programmer can create the following:

• SOAP web services

• SOAP operations (clients to external SOAP web services)

You should be familiar with the web protocol, HTTP, REST, or SOAP, that you are using.

This book contains the following sections:

• About SOAP and Web Services

• Creating a Web Service in a Production

• Creating a Web Client in a Production

• Configuring a Production for SOAP Services

• Using the SOAP Inbound Adapter

• Older Web Service Variation

• Reference for Settings

For a detailed outline, see the table of contents.

For more information, try the following sources:

• SOAP pass-through services and operations, are described in “Configuring Pass-through Business Services” and
“Configuring Pass-through Business Operations” in Using a Production as an ESB. InterSystems IRIS’s pass-through
services and operations enable you to receive an HTTP, REST, or SOAP request and pass it through to an external
service.

• Best Practices for Creating Productions describes best practices for organizing and developing productions.

• Developing Productions explains how to perform the development tasks related to creating a production.

• Configuring Productions describes how to configure the settings for productions, business hosts, and adapters. It provides
details on settings not discussed in this book.

• Creating Web Services and Web Clients describes the specific standards followed by InterSystems product support for
SOAP and web services.

• Projecting Objects to XML describes how to project InterSystems IRIS objects to XML and how to control that projection.
(If you want to use an object as an argument for a web method, the class must be XML-enabled.)

Adding SOAP Services and Web Clients to Productions 1

1
About SOAP and Web Services

InterSystems IRIS® provides support for SOAP 1.1 and 1.2 (Simple Object Access Protocol). This support is easy to use,
efficient, and fully compatible with the SOAP specification. This support is built into InterSystems IRIS and is available
on every platform supported by InterSystems IRIS. Using InterSystems IRIS SOAP support, you can do the following:

• Add a web service to a production to provide a SOAP-enabled front end to the production. Client applications can
invoke this production web service by using the SOAP protocol. Such methods can be discovered and invoked by other
SOAP-aware applications. InterSystems IRIS runs SOAP methods directly within the database; the execution is highly
efficient.

• Add a web client to a production. You can use a tool to generate a business operation and the proxy client classes,
given the existing WSDL document of the web service you want to use. The InterSystems IRIS web client invokes the
external web service via the InterSystems IRIS SOAP outbound adapter and a generated proxy client class.

This chapter discusses the following topics:

• InterSystems IRIS support for web services

• InterSystems IRIS support for web clients

See the Creating Web Services and Web Clients book in the documentation set for information on the specific standards
followed by InterSystems product support for SOAP and web services, including WSDL limitations.

1.1 InterSystems IRIS Support for Web Services
You can provide a SOAP-enabled front end for your production. To do so, you create an production web service, which is
both a web service and a business service. Internally, your web methods generally receive SOAP request messages, use
them to create and send request messages as needed within the production, receive the response messages, and use them
to create SOAP response messages.

Adding SOAP Services and Web Clients to Productions 3

To enable you to create a production web service, InterSystems IRIS provides the base production web service class
(EnsLib.SOAP.Service), as well as supporting classes in the %SOAP and %XML packages.

InterSystems IRIS provides powerful, built-in support for web services. The base production web service class does the
following for you:

• Validates incoming SOAP messages.

• Unpacks SOAP messages, converts data to InterSystems IRIS representation, and invokes the corresponding method,
which sends a request message to a destination inside the production.

• Runs the method.

• Receives a response message and then creates and returns a response message (a SOAP message) to the caller.

The SOAP specification does not include session support. However, it is often useful to maintain a session between a web
client and the web service that it uses. You can do this with a production web service. If a web service uses sessions, it
establishes a session ID and allows repeated calls on the service after one successfully authenticated call from a client.

The production web service class also provides the full functionality of any business service.

Note: To create a production web service, you do not use a production adapter.

1.2 InterSystems IRIS Support for Web Clients
You can invoke an external web service from within a production. To do so, you create an InterSystems IRIS web client.

4 Adding SOAP Services and Web Clients to Productions

About SOAP and Web Services

At a high level, your InterSystems IRIS web client receives InterSystems IRIS requests, converts them to SOAP requests
and sends them to the appropriate web service. Similarly, it receives SOAP responses and converts them into InterSystems
IRIS responses.

The InterSystems IRIS web client consists of the following parts, all of which you can generate in Studio by using the
SOAP wizard:

• A proxy client class that defines a proxy method for each method defined by the web service. The purpose of the proxy
client is to specify the location of the web service and to contain the proxy methods. Each proxy method uses the same
signature used by the corresponding web service method and invokes that method when requested.

• A business operation that uses the InterSystems IRIS SOAP outbound adapter to invoke the proxy methods.

• Supporting classes as needed to define XML types and production messages.

1.2.1 The SOAP Wizard

In order to understand these parts, it is useful to consider how they are generated. First, when you use the SOAP wizard,
you provide the URL for the WSDL of the web service of interest. The wizard reads the WSDL and then generates a set
of classes.

Adding SOAP Services and Web Clients to Productions 5

InterSystems IRIS Support for Web Clients

1.2.2 The Proxy Client

The generated classes include the proxy client class that defines a proxy method for each method of the web service. Each
proxy method sends a SOAP request to the web service and receives the corresponding SOAP response.

As shown in the figure, the generated classes also include classes that define any XML types needed as input or output for
the methods.

1.2.3 The Business Operation of an InterSystems IRIS Web Client

The wizard cab also generate a business operation class that invokes the proxy client, as well as classes that define message
types as needed. The following figure shows how these classes work:

6 Adding SOAP Services and Web Clients to Productions

About SOAP and Web Services

The classes and methods shown within dashed lines are all generated by the SOAP wizard.

The business operation uses the SOAP outbound adapter, which provides useful runtime settings and the generic method
InvokeMethod(). To invoke a proxy method in the proxy client class, the business operation class calls InvokeMethod(),
passing to it the name of the method to run, as well as any arguments. In turn, InvokeMethod() calls the method of the
proxy client class.

Adding SOAP Services and Web Clients to Productions 7

InterSystems IRIS Support for Web Clients

2
Creating a Web Service in a Production

This chapter describes how to create an production web service, which is a web service in a production. When you do this,
you are providing a SOAP-enabled interface to the production. This chapter discusses the following:

• Overall behavior of a production web service

• Basic requirements

• How to define web methods

• How to view the generated WSDL for your web service

• A simple web service example

• How to enable SOAP sessions

• A summary of ways you can fine-tune the web methods

• How to add and configure the web service

For settings not listed in this book, see “Settings in All Productions” in Managing Productions Productions.

For an alternative approach, see the appendix “Using the SOAP Inbound Adapter.”

Tip: InterSystems IRIS® also provides specialized business service classes that use SOAP, and one of those might be
suitable for your needs. If so, no programming would be needed. See “Connectivity Options” in Introducing
Interoperability Productions.

2.1 Overall Behavior
A production web service is based on EnsLib.SOAP.Service or a subclass. This class extends both Ens.BusinessService (so
that it is a business service) and %SOAP.WebService (so that it can act as a web service as well). A production web service
behaves as follows:

• Because it is a web service, it has a WSDL document (generated automatically) that describes the web methods available
in it. The service can receive any SOAP message that conforms to the WSDL and sends SOAP responses in return.

• Because it is a business service, it is an integral part of the production to which you add it. Monitoring, error logging,
runtime parameters, and all the rest of the production machinery are available as usual.

Note: A production web service is not available unless the production is running (and the business service is enabled).

Adding SOAP Services and Web Clients to Productions 9

Communication with the outside world is done via SOAP request and response messages. InterSystems IRIS Interoperability
request and response messages are used within the production.

2.2 Basic Requirements
To create a web service in a production, you create a new business service class as described here. Later, add it to your
production and configure it.

You must also create appropriate message classes, if none yet exist. See “Defining Messages” in Developing Productions.

The following list describes the basic requirements of the business service class:

• Your class should extend EnsLib.SOAP.Service. This class extends both Ens.BusinessService (so that it is a business
service) and %SOAP.WebService (so that it can act as a web service as well).

• The class should define the ADAPTER parameter as null (""). For example:

Parameter ADAPTER = "";

Or, equivalently:

Parameter ADAPTER;

• The class should specify values for other parameters:

DescriptionParameter

Name of the web service.This name must start with a letter and must contain
only alphanumeric characters. The default service name is
"MyProductionRequestWebService"

SERVICENAME

URI that defines the target XML namespace for your web service, so that
your service, and its contents, do not conflict with another service. This is
initially set to http://tempuri.org which is a temporary URI used by
SOAP developers during development.

NAMESPACE

XML namespace for the schema in the types defined by the web service.
If you do not specify this parameter, the schema is in the namespace given
by NAMESPACE instead.

TYPENAMESPACE

URI that defines the XML namespace for the response messages. By
default, this is equal to the namespace given by the NAMESPACE
parameter.

RESPONSENAMESPACE

• The class should define web methods, as described in the “Defining Web Methods” section.

• For other options and general information, see “Defining a Business Service Class” in Developing Productions.

The following example shows in general what the class might look like:

Class Hospital.MyService Extends EnsLib.SOAP.Service
{

///For this business service, ADAPTER should be "" so that we use the normal SOAP processing
Parameter ADAPTER = "";

Parameter SERVICENAME = "MyService";

Parameter NAMESPACE = "http://www.myhospital.org";

Parameter USECLASSNAMESPACES = 1;

10 Adding SOAP Services and Web Clients to Productions

Creating a Web Service in a Production

Method GetAuthorization(patientID As %Integer, RequestedOperation As %String,
LikelyOutcome As %String) As %Status [WebMethod]
{
 set request = ##class(Hospital.OperateRequest).%New()
 set request.PatientID = patientID
 set request.RequestedOperation = RequestedOperation
 set request.LikelyOutcome = LikelyOutcome
 set tSC=..SendRequestSync("Hospital.PermissionToOperateProcess",request,.response)
 // Create the SOAP response, set its properties, and return it.
}

}

2.3 Defining Web Methods for Use in InterSystems IRIS
This section describes the basic requirements for an InterSystems IRIS web method.

• Define the method within a subclass of EnsLib.SOAP.Service, as described in “Basic Requirements.”

• Mark the method with the WebMethod keyword.

• Ensure that all arguments and return values are XML-enabled:

– If the method uses an object as an argument or a return value, you must ensure that the object is XML-enabled.
That is, the class definitions for the types must extend %XML.Adaptor. The default settings for this class are normally
suitable; if not, see Projecting Objects to XML.

– If the method uses a data set as an argument or return value, you must ensure the data set is of type %XML.DataSet.

– To use a collection (%ListOfObjects or %ArrayOfObjects) as an argument or a return value, you must ensure that
the ELEMENTTYPE parameter of the collection is set and refers to an XML-enabled class.

Important: In most cases, web methods should be instance methods. Within a web method, it is often necessary to set
properties of and invoke methods of the web service instance to fine-tune the behavior of the method.
Because a class method cannot do these tasks, a class method is usually not suitable as a web method.

For additional notes, see “Basic Requirements” in the chapter “Creating Web Services” in Creating Web Services and
Web Clients.

2.3.1 Basic Steps of an InterSystems IRIS Interoperability Web Method

Within a production web service, a web method should generally do the following:

1. Create a request message and set its properties with information from the inbound SOAP message.

2. Call a suitable method of the business service to send the request to a destination within the production. Specifically,
call SendRequestSync(), SendRequestAsync(), or (less common) SendDeferredResponse(). For details, see
“Sending Request Messages” in Developing Productions

Each of these methods returns a status (specifically, an instance of %Status).

3. Check the status returned from the previous step and react appropriately.

4. Then:

• In the case of success, look at the response message that is returned by reference and use it to create the return
value of the web method. As noted previously, the return value must be XML-enabled so that it can be packaged
as a SOAP response.

• In the case of failure, call the ReturnMethodStatusFault() or ReturnStatusFault() method of the web service
so that a SOAP fault can be returned and an Ens.Alert can be generated; see the next section for details.

Adding SOAP Services and Web Clients to Productions 11

Defining Web Methods for Use in InterSystems IRIS

2.3.2 Returning Faults to the Caller

By default, if an error occurs when a web method runs, the web service returns a SOAP message to the caller, but this
message does not indicate where precisely the fault occurred. An example follows:

 <SOAP-ENV:Body>
 <SOAP-ENV:Fault>
 <faultcode>SOAP-ENV:Server</faultcode>
 <faultstring>Server Application Error</faultstring>
 <detail>
 <error xmlns='http://www.myapp.org' >
 <text>ERROR #5002: ObjectScript error: <INVALID OREF>
 zGetCustomerInfo+10^ESOAP.WebService.1</text>
 </error>
 </detail>
 </SOAP-ENV:Fault>
 </SOAP-ENV:Body>

Your web methods should check for an error and use ReturnMethodStatusFault() or ReturnStatusFault(). In case of
error, the message will be more informative, as follows:

 <SOAP-ENV:Body>
 <SOAP-ENV:Fault>
 <faultcode>SOAP-ENV:Method</faultcode>
 <faultstring>Server Application Error</faultstring>
 <faultactor>ESOAP.WebService</faultactor>
 <detail>
 <error xmlns='http://www.myapp.org' >
 <text>ERROR <Ens>ErrException:
 <DIVIDE>zGetCustomerRequest+8^ESOAP.MyOperation.1 -
 logged as '13 Jul 2007' number 4 @' set x=100/0'</text>
 </error>
 </detail>
 </SOAP-ENV:Fault>
 </SOAP-ENV:Body>

The ReturnMethodStatusFault() and ReturnStatusFault() methods return a SOAP fault to the caller and then generate
an exception which will create an alert (depending on settings). These methods have the following signatures:

ClassMethod ReturnStatusFault(pCode As %String,
 pStatus As %Status)

ClassMethod ReturnMethodStatusFault(pStatus As %Status)

Here:

• pCode is a string that represents the error code to use in the <faultcode> element of the SOAP fault. The
ReturnMethodStatusFault() method uses the generic error code SOAP-ENV:Method

• pStatus is the status to use in the returned SOAP fault. This is used to create the details of the SOAP fault.

Also notice that these methods set the <faultactor> element of the SOAP fault.

2.3.3 Example

The following shows a simple example:

Method GetCustomerInfo(ID As %Numeric) As ESOAP.SOAPResponse [WebMethod]
{
 //create request message with given ID
 set request=##class(ESOAP.CustomerRequest).%New()
 set request.CustomerID=ID

 //send request message
 set sc= ..SendRequestSync("GetCustomerInfoBO",request,.response)
 if $$$ISERR(sc) do ..ReturnMethodStatusFault(sc)

 //use info from InterSystems IRIS response to create SOAP response
 set soapresponse=##class(ESOAP.SOAPResponse).%New()
 set soapresponse.CustomerID=response.CustomerID
 set soapresponse.Name=response.Name

12 Adding SOAP Services and Web Clients to Productions

Creating a Web Service in a Production

 set soapresponse.Street=response.Street
 set soapresponse.City=response.City
 set soapresponse.State=response.State
 set soapresponse.Zip=response.Zip

 quit soapresponse
}

2.4 Viewing the WSDL
InterSystems IRIS automatically creates and publishes a WSDL document that describes your production web service.
Whenever you modify and recompile the web service, InterSystems IRIS automatically updates the WSDL correspondingly.

To view the WSDL for the web service, use the following URL:

base/app-name/web_serv.cls?WSDL

Here base is the base URL for your web server (including port if necessary), /csp/app is the name of the CSP application
in which the web service resides, and web_serv is the class name of the web service. (Typically, /csp/app is /csp/namespace,
where namespace is the namespace that contains the CSP application and the production.)

For example:

http://localhost:52773/csp/samples/MyApp.StockService.cls?WSDL

The browser displays the WSDL document as an XML document. The following shows an example:

2.5 Web Service Example
The following simple example shows a production web service that can be used to look up customer information, given a
customer ID.

Adding SOAP Services and Web Clients to Productions 13

Viewing the WSDL

Class ESOAP.WebService Extends EnsLib.SOAP.Service
{

Parameter ADAPTER;

Parameter NAMESPACE = "http://www.myapp.org";

Parameter SERVICENAME = "CustomerLookupService";

Method GetCustomerInfo(ID As %Numeric) As ESOAP.SOAPResponse [WebMethod]
{
 //create request message with given ID
 set request=##class(ESOAP.CustomerRequest).%New()
 set request.CustomerID=ID

 //send request message
 set sc= ..SendRequestSync("GetCustomerInfoBO",request,.response)
 if $$$ISERR(sc) do ..ReturnMethodStatusFault(sc)

 //use info from InterSystems IRIS response to create SOAP response
 set soapresponse=##class(ESOAP.SOAPResponse).%New()
 set soapresponse.CustomerID=response.CustomerID
 set soapresponse.Name=response.Name
 set soapresponse.Street=response.Street
 set soapresponse.City=response.City
 set soapresponse.State=response.State
 set soapresponse.Zip=response.Zip

 quit soapresponse
}

}

The SOAP response class is as follows:

///
Class ESOAP.SOAPResponse Extends (%RegisteredObject, %XML.Adaptor)
{

Property CustomerID As %Numeric;
Property Name As %String;
Property Street As %String;
Property City As %String;
Property State As %String;
Property Zip As %Numeric;

}

Note the following points:

• The example web method (GetCustomerInfo) uses SendRequestSync() to communicate with a business operation
elsewhere in the production. The method receives a response message and uses it to create a SOAP response message.

• The SOAP response class has the same properties as the corresponding production message response class. Unlike the
production message response, however, the SOAP response class is XML-enabled and non-persistent.

2.6 Enabling SOAP Sessions
The SOAP specification does not include session support. However, it is often useful to maintain a session between a web
client and the web service that it uses. You can do this with a production web service. If a web service uses sessions, it
establishes a session ID and allows repeated calls on the service after one successfully authenticated call from a client.

Support for SOAP sessions is controlled by the SOAPSESSION class parameter. The default is 0, which means that the
web service does not use sessions.

To enable SOAP sessions, create a subclass of EnsLib.SOAP.Service and set SOAPSESSION to 1 in the subclass. Base your
production web service on this subclass.

For more information on SOAP sessions, see Creating Web Services and Web Clients in the documentation.

14 Adding SOAP Services and Web Clients to Productions

Creating a Web Service in a Production

2.7 Additional Options
Because your production web service extends %SOAP.WebService, you can use all the SOAP support provided by that
class. This support includes options for the following customizations, among others:

• Customizing the SOAP headers

• Passing attachments in the SOAP messages

• Changing the binding style of the SOAP messages from document-style (the default) to rpc-style

• Changing the encoding style of the messages from literal (the default) to SOAP-encoded

• Customizing the XML types used in the SOAP messages

• Customizing the SOAPAction header used to invoke a web method

• Controlling whether elements are qualified (controlling the elementFormDefault attribute of the web service)

• Controlling the form of null arguments (to be an empty element rather than omitted)

• Writing the web method to have output parameters instead of return values

For these options and others, see Creating Web Services and Web Clients in the documentation set.

2.8 Adding and Configuring the Web Service
To add your production web service (a business service) to a production, use the Management Portal to do the following:

1. Add an instance of your custom class to the production.

Important: Ensure that the configuration name is the same as the full class name, including package. This is a
requirement for running a production web service.

2. Enable the business service.

3. Set the Pool Size setting to 0.

For other settings, see Configuring Productions.

4. Run the production.

Adding SOAP Services and Web Clients to Productions 15

Additional Options

3
Creating a Web Client in a Production

This chapter describes how to create an InterSystems IRIS® Interoperability web client. At a high level, your InterSystems
IRIS Interoperability web client receives InterSystems IRIS Interoperability requests from elsewhere within the production,
converts them to SOAP requests, and sends them to the appropriate web service. Similarly, it receives SOAP responses,
converts them into InterSystems IRIS responses, and sends them back within the production. This chapter discusses the
following topics:

• An overview of the parts of an InterSystems IRIS Interoperability web client

• The basic steps to create an InterSystems IRIS Interoperability web client

• Information on the generated classes

• Details on how to create your own business operation class manually

• How to add and configure the web client

Tip: InterSystems IRIS also provides specialized business service classes that use SOAP, and one of those might be
suitable for your needs. If so, no programming would be needed. See “Connectivity Options” in Introducing
Interoperability Productions.

3.1 Overview
An InterSystems IRIS Interoperability web client consists of the following parts:

• A proxy client class that defines a proxy method for each method defined by the web service. Each proxy method uses
the same signature used by the corresponding web service method and invokes that method when requested.

• A business operation that uses the InterSystems IRIS Interoperability SOAP outbound adapter to invoke the proxy
client.

• Supporting classes as needed to define XML types and production messages.

The following figure shows how the business operation, adapter, and proxy client class work together. Supporting classes
are not shown here.

Adding SOAP Services and Web Clients to Productions 17

In the preceding figure, all items within dashed lines can be generated by the SOAP client wizard in Studio. You can then
edit this code as needed.

For a more detailed look at these parts, see “ InterSystems IRIS Support for Web Clients,” earlier in this book.

3.2 Basic Steps
This section outlines the basic steps to create an InterSystems IRIS Interoperability web client.

To create an InterSystems IRIS Interoperability web client, do the following within Studio:

1. Use the SOAP wizard to generate the business operation class, proxy client class, and supporting classes. This tool is
described in “Using the SOAP Wizard” in this chapter.

2. Check whether you need to adjust the types of the inputs and outputs of the methods.

3.2.1 Using the SOAP Wizard

To use the SOAP wizard to generate an InterSystems IRIS Interoperability web client, do the following:

18 Adding SOAP Services and Web Clients to Productions

Creating a Web Client in a Production

1. In Studio, make sure that you are in the appropriate namespace.

2. Click Tools —> Add-ins —> SOAP Wizard.

3. On the first screen, enter the entire URL of the WSDL document for the web service you want to work with.

4. Click Next.

5. Select the check box to the left of Create Business Operation in Package. This option instructs the wizard to define a
business operation class that invokes the proxy client, as well as message classes for use with that business operation.

6. For Create Business Operation in Package, optionally change the subpackage name from BusOp to another name.

7. For Optional Package Name, type a package name for the proxy client and related classes. The default package name
is the service name. Also see the “Generated Classes and XMLKEEPCLASS section.”

8. For Class Type, choose a general type for the proxy client class: persistent or serial (the default).

9. Click Next. The wizard generates and compiles the classes and displays a list of these classes.

10. Click Finish.

3.2.1.1 Generated Classes and XMLKEEPCLASS

The SOAP wizard generates a set of classes; the details of these classes are discussed later in this chapter.

You specify the package in which the tool should create the proxy client class and the supporting classes. If this package
is the same as an existing package, by default the tool will overwrite any existing classes that have the same name. To
prevent the wizard from overwriting a class definition, add the XMLKEEPCLASS parameter to that class and set this
parameter equal to 1.

3.2.1.2 Using the Process() Method

Instead of using the wizard, you can use the Process() method of the %SOAP.WSDL.Reader class. To use this method:

1. Create an instance of %SOAP.WSDL.Reader.

2. Optionally set properties to control the behavior of your instance.

PurposeProperty

Specifies the flags to use when compiling the generated classes.The initial
expression is "dk"; use $System.OBJ.ShowFlags() to get information
on the available flags.

CompileFlags

If this property is 1, the proxy client is a persistent object; otherwise, it is a
registered object. The initial expression is 0.

MakePersistent

If this property is 1 and if MakePersistent is 1, the proxy client is a serial class.
The initial expression is 0.

MakeSerial

Controls how the WSDL reader sets the OUTPUTTYPEATTRIBUTE
parameter in the proxy client that it generates; which controls the use of
the xsi:type attribute in the SOAP messages. See Creating Web Services
and Web Clients in the documentation set.

OutputTypeAttribute

Specifies whether to generate a business operation and related request
and response objects. The ADAPTER setting for this business operation
is EnsLib.SOAP.OutboundAdapter. This option works only if you are working
within an interoperability-enabled namespace.

MakeBusinessOperation

For other properties, see the class documentation for %SOAP.WSDL.Reader.

Adding SOAP Services and Web Clients to Productions 19

Basic Steps

3. Invoke the Process() method, providing the following arguments:

• The first argument must be the URL of the WSDL of the web service or the name of the WSDL file (including
its complete path). Depending on the configuration of the web service, it may be necessary to append a string that
provides a suitable username and password; see the examples.

• The optional second argument is the name of the package in which the reader should place the generated classes.
If you do not specify a package, InterSystems IRIS uses the service name as the package name.

3.3 Generated Classes for an InterSystems IRIS
Interoperability Web Client
This section provides information about the classes that the SOAP wizard generates.

Consider a web service named MyService that has the following details:

• It is hosted at http://localhost:52773/csp/gsop/MyApp.AddService.CLS

• The target XML namespace for the web service is http://www.myapp.org

• It defines a web method named AddService, which accepts two complex numbers as arguments and returns the
result.

Suppose that you use the SOAP wizard to generate an InterSystems IRIS Interoperability web client for this web service.
If you specify the package for the client classes as MyClient, the SOAP wizard will generate the following classes and
add them all to your current project:

• It generates the MyClient.BusOp.MyServiceSoap class, which defines the business operation.

Class MyClient.BusOp.MyServiceSoap Extends Ens.BusinessOperation
{

Parameter ADAPTER = "EnsLib.SOAP.OutboundAdapter";

Method Add(pRequest As MyClient.BusOp.AddRequest,
Output pResponse As MyClient.BusOp.AddResponse) As %Library.Status
{
 Set ..Adapter.WebServiceClientClass = "MyClient.MyServiceSoap"
 Set tSC = ..Adapter.InvokeMethod("Add",.AddResult,
pRequest.a,pRequest.b) Quit:$$$ISERR(tSC) tSC

 Set tSC = pRequest.NewResponse(.pResponse) Quit:$$$ISERR(tSC) tSC
 Set pResponse.AddResult=AddResult
 Quit $$$OK
}

XData MessageMap
{
<MapItems>
 <MapItem MessageType="MyClient.BusOp.AddRequest">
 <Method>Add</Method>
 </MapItem>
</MapItems>
}

}

• It generates the MyClient.AddServiceSOAP class, the proxy client class:

Class MyClient.AddServiceSoap Extends %SOAP.WebClient
{

/// This is the URL used to access the web service.
Parameter LOCATION = "http://localhost:52773/csp/gsop/MyApp.AddService.cls";

20 Adding SOAP Services and Web Clients to Productions

Creating a Web Client in a Production

/// This is the namespace used by the Service
Parameter NAMESPACE = "http://www.myapp.org";

/// Use xsi:type attribute for literal types.
Parameter OUTPUTTYPEATTRIBUTE = 1;

/// This is the name of the Service
Parameter SERVICENAME = "AddService";

Method Add(a As MyClient.ComplexNumber, b As MyClient.ComplexNumber)
 As MyClient.ComplexNumber [Final,
 SoapBindingStyle = document, SoapBodyUse = literal, WebMethod]
{
 Quit ..WebMethod("Add").Invoke($this,
 "http://www.myapp.org/MyApp.AddService.Add",.a,.b)
}

}

• It generates the request and response message classes needed by the business operation. The request class is as follows:

Class MyClient.BusOp.AddRequest Extends Ens.Request
{

Parameter RESPONSECLASSNAME = "MyClient.BusOp.AddResponse";

Property a As MyClient.ComplexNumber;

Property b As MyClient.ComplexNumber;

}

The response class is as follows:

Class MyClient.BusOp.AddResponse Extends Ens.Response
{

Property AddResult As MyClient.ComplexNumber;

}

• Finally, it generates the MyClient.ComplexNumber class, which defines a complex number and which is used by
the other classes.

/// Created from: http://localhost:52773/csp/gsop/MyApp.AddService.CLS?WSDL=1
Class MyClient.ComplexNumber Extends (%RegisteredObject, %XML.Adaptor)
{
Parameter XMLNAME = "ComplexNumber";

Parameter XMLSEQUENCE = 1;

Property Real As %xsd.double(XMLNAME = "Real") [SqlFieldName = _Real];

Property Imaginary As %xsd.double(XMLNAME = "Imaginary");

}

When you compile these classes, the compiler also generates a class for each method defined in the web service. These
classes are not automatically added to your project and their internal details are subject to change. These classes extend
%SOAP.ProxyDescriptor, which you should never subclass yourself.

3.4 Creating a Business Operation Class Manually
Rather than using the business operation class that the SOAP wizard generates, you can create your own class. This section
describes how to do so. It discusses the following:

• Basic requirements of the business operation class

• Basic requirements of the methods

Adding SOAP Services and Web Clients to Productions 21

Creating a Business Operation Class Manually

• Specific techniques, with examples, for calling the proxy methods

• Reference information for the adapter property and methods used here

3.4.1 Basic Requirements of the Class

The following list describes the basic requirements of the business operation class:

• Your business operation class should extend Ens.BusinessOperation.

• In your class, the ADAPTER parameter should equal EnsLib.SOAP.OutboundAdapter.

• In your class, the INVOCATION parameter should specify the invocation style you want to use, which must be one of
the following.

– Queue means the message is created within one background job and placed on a queue, at which time the original
job is released. Later, when the message is processed, a different background job will be allocated for the task.
This is the most common setting.

– InProc means the message will be formulated, sent, and delivered in the same job in which it was created. The job
will not be released to the sender’s pool until the message is delivered to the target. This is only suitable for special
cases.

• Your class should define one method for each method of the proxy client, as described in the following section.

• Your class should define a message map that includes one entry for each method. A message map is an XData block
entry that has the following structure:

XData MessageMap
{
<MapItems>
 <MapItem MessageType="messageclass">
 <Method>methodname</Method>
 </MapItem>
 ...
</MapItems>
}

You will also need to define the production message classes that the business operation uses.

3.4.2 Basic Requirements of the Methods

Within your business operation class, your methods should invoke the proxy methods. Here the general requirements are
as follows:

1. The method should have the same signature as the proxy method that it is invoking.

2. The method should be marked with the WebMethod keyword.

3. The method should set the SoapBindingStyle and SoapBodyUse keywords as expected by the proxy client. (That is,
use the same values as in the signature of the corresponding proxy method.)

4. The method should set the WebServiceClientClass property of the adapter. When this property is set, a proxy client
instance is created and placed in the %Client property of the adapter.

5. The method should call the corresponding proxy method, using one of the techniques in the next section.

6. The method should check the status.

7. Then:

• In the case of success, create a new response message (via the NewResponse() method of the request) and set its
properties as appropriate.

22 Adding SOAP Services and Web Clients to Productions

Creating a Web Client in a Production

• In the case of failure, quit with the error.

3.4.3 Ways to Execute the Proxy Methods

Within your business operation, your methods should execute the proxy methods of the proxy client class. You can do this
in multiple ways, which are best shown via an example. This section uses an example web service that has a web method
named GetStock that accepts a stock symbol (a string) and returns a number. Suppose that you have used the SOAP
wizard to generate a proxy client (GetStock.StockServiceSoap), which contains a method called GetStock.

Also suppose that you have created message classes as follows:

Class GetStock.BusOp.GetQuoteRequest Extends Ens.Request
{

Parameter RESPONSECLASSNAME = "GetStock.BusOp.GetQuoteResponse";

Property StockName As %String;

}

And

Class GetStock.BusOp.GetQuoteResponse Extends Ens.Response
{

Property StockValue As %Numeric;

}

To execute the proxy method GetStock, your business operation class can do any of the following:

• Call the InvokeMethod() method of the adapter and specify the name of the proxy method to run, as well as any
number of arguments. In this case, there is only one argument (which we specify as pRequest.StockName). For
example:

Method GetQuote1(pRequest As GetStock.BusOp.GetQuoteRequest,
Output pResponse As GetStock.BusOp.GetQuoteResponse) As %Status
{
 set ..Adapter.WebServiceClientClass = "GetStock.StockServiceSoap"

 set status = ..Adapter.InvokeMethod("GetQuote",.answer,pRequest.StockName)
 if $$$ISERR(status) quit status

 set pResponse=##class(GetStock.BusOp.GetQuoteResponse).%New()
 set pResponse.GetQuoteResult=answer
 quit $$$OK
}

When you use the SOAP wizard to generate the business operation, it uses this method.

• Access the %Client property of the adapter, which gives you an instance of the proxy client class, and execute the proxy
method of that property. The %Client property is set when you set the WebServiceClientClass property. In this case,
%Client has a method named GetQuote, which accepts a string stock symbol. For example:

Method GetQuote2(pRequest As GetStock.BusOp.GetQuoteRequest,
Output pResponse As GetStock.BusOp.GetQuoteResponse) As %Status
{
 set ..Adapter.WebServiceClientClass = "GetStock.StockServiceSoap"

 set client=..Adapter.%Client
 set answer=client.GetQuote("GRPQ")

 set pResponse=##class(GetStock.BusOp.GetQuoteResponse).%New()
 set pResponse.GetQuoteResult=answer
 quit $$$OK
}

Note that with this technique, you do not have access to the retry logic of InterSystems IRIS.

Adding SOAP Services and Web Clients to Productions 23

Creating a Business Operation Class Manually

• Create a proxy method object by calling the WebMethod() method of the adapter. Set properties of this object as
appropriate (one property per named argument). In this case, WebMethod() returns an object with one property:
StockName. After setting properties as needed, call the Invoke() method of that object. For example:

Method GetQuote3(pRequest As GetStock.BusOp.GetQuoteRequest,
Output pResponse As GetStock.BusOp.GetQuoteResponse) As %Status
{
 set ..Adapter.WebServiceClientClass = "GetStock.StockServiceSoap"

 set proxymethod=..Adapter.WebMethod("GetQuote")
 set proxymethod.StockName=pRequest.StockName

 set status=..Adapter.Invoke(proxymethod)
 if $$$ISERR(status) quit status

 set pResponse=##class(GetStock.BusOp.GetQuoteResponse).%New()
 set pResponse.GetQuoteResult=proxymethod.%Result
 quit $$$OK
}

In this case, you can provide any number of arguments.

3.4.4 Reference Information

This section provides reference information for the adapter property and methods mentioned in the previous section.

%Client property

%SOAP.WebClient

The associated instance of the proxy client (an instance of %SOAP.WebClient). This property is set when you set
the WebServiceClientClass property of the adapter.

InvokeMethod() method

Method InvokeMethod(pMethodName As %String,
 Output pResult As %RegisteredObject,
 pArgs...) As %Status

Calls the specified method of the proxy client class, passing all the arguments and returns the status. The output
is returned by reference as the second argument.

WebMethod() method

Method WebMethod(pMethodName As %String) As %SOAP.ProxyDescriptor

Returns an object that corresponds to the specified method. This object has one property corresponding to each
method argument; you should set this properties before using the Invoke() method. For details on
%SOAP.ProxyDescriptor, see the class reference.

Invoke() method

Method Invoke(pWebMethod As %SOAP.ProxyDescriptor) As %Status

Calls the given method and returns the status.

24 Adding SOAP Services and Web Clients to Productions

Creating a Web Client in a Production

3.5 Adding and Configuring the Web Client
To add your InterSystems IRIS Interoperability web client to a production, use the Management Portal to do the following:

1. Add an instance of your custom business operation class to the production, specifically the business operation class
generated by the SOAP wizard.

2. Enable the business operation.

3. Specify appropriate values for the runtime settings of the associated adapter, as discussed below.

4. Run the production.

The following subsections describes the runtime settings for your InterSystems IRIS Interoperability web client, which fall
into several general groups:

• Basic settings

• Settings related to credentials

• The setting that controls use of SSL

• Settings that control the use of a proxy server

For settings not listed in this book, see “Settings in All Productions” in Managing Productions Productions.

3.5.1 Specifying Basics

The following settings specify the basic information for the InterSystems IRIS Interoperability web client:

• Web Service URL

• Web Service Client Class

• Response Timeout

3.5.2 Specifying Credentials

The web service that you are accessing might require a username and password. In general, the InterSystems IRIS Interop-
erability SOAP client can log into a web service in either of the following ways:

• You can use WS-Security user authentication. In this case, you include a WS-Security header in the SOAP request;
this header includes the username and password. The proxy client automatically does this if you specify a value for
the SOAP Credentials setting.

CAUTION: Ensure that you are using SSL between the web client and the web service. The WS-Security header
is sent in clear text, so this technique is not secure unless SSL is used.

• You can use basic HTTP user authentication, which is less secure than WS-Security but is sometimes required. In this
case, you include the username and password in the HTTP header of the SOAP request. The proxy client automatically
does this if you specify a value for the Credentials setting.

Use the technique that is appropriate for the web service you are using.

Adding SOAP Services and Web Clients to Productions 25

Adding and Configuring the Web Client

3.5.3 Specifying an SSL Configuration

If the web server supports it, you can connect with SSL. To do so, specify a value for the SSL Configuration setting.

Note: You must also ensure the web service is at a URL that uses https://. The web service location is determined
by the Web Service URL setting; if this is not specified, the InterSystems IRIS Interoperability web client assumes
the web service is at the URL specified by the LOCATION parameter in the proxy client class.

3.5.4 Specifying a Proxy Server

You can communicate with the web service via a proxy server. To set this up, use Proxy Server and other settings in the
Proxy Settings group.

26 Adding SOAP Services and Web Clients to Productions

Creating a Web Client in a Production

A
Configuring a Production for SOAP
Services

This appendix briefly discusses how to configure your system so that you can use HTTP and SOAP services through the
Web port. This information is intended to help you set up a development or test system for these services. Complete
information about these topics is provided in the documentation. See “Configuring InterSystems IRIS®” in the System
Administration Guide for more details.

To set up an InterSystems IRIS development or test system for HTTP or SOAP services, follow these steps:

1. If you have installed InterSystems IRIS in a locked down installation, Studio access is disabled. Open the Management
Portal and enable Studio access:

a. Start the Management Portal from the InterSystems IRIS launcher. You will have to use your Windows login
username rather than _system to access the portal. Enter the password that you specified during installation.

b. Select System Administration, Security, and Services to get to the Services portal page.

c. The %Services_Bindings service is disabled by default. Select the service name and check the Service Enabled

check box and save the setting.

2. If you are not using an existing namespace, create a new namespace:

a. Select System Administration, Configuration, System Configuration, and Namespaces to get to the Namespaces
portal page.

b. Click the Create New Namespace button, specify a name for the namespace, such as SERVICESNS.

c. Click the Create New Database button for the globals database.

d. In the Database Wizard, enter a name for the globals database, such as SERVICES_GDB. The wizard uses the
name to create a directory for the database.

e. Click the Next button twice to get to the Database Resource form. Select the Create a new resource radio button.
The wizard displays a Create New Resource form. Accept the suggested name, such as %DB_SERVICES_GDB
and ensure that Public Permissions Read and Write check boxes are not checked. Click the Save button on the
Database Resource form and the Finish button on the Database Wizard form.

f. Repeat steps c through e for the routines database.

g. Click the Save button to complete creating the namespace.

h. Click Close to close the log.

3. Create an empty role and assign it to the unknown user:

Adding SOAP Services and Web Clients to Productions 27

a. Select System Administration, Security, and Roles to display the Roles portal page.

b. Click the Create New Role button and name the role, for example, Services_Role, and click the Save button.

c. Select the Members tab, select the Unknown User, click the right arrow, and click the Assign button.

4. Define a web application that will handle calls to the Web port. The web application name defines the root of the URL
that will call the service. A single web application can support multiple business services but they must all have a class
that is the same or a subclass of the web application dispatch class.

a. Select System Administration, Security, Applications, and Web Applications to display the Web Applications portal
page. Click the Create New Web Application button.

b. Name the web application, such as /weatherapp or /math/sum. You must start the name with a / (slash)
character.

c. Set the Namespace to the namespace that the production is running in, such as SERVICESNS. Leave the Namespace
Default Application unchecked.

d. You can check the Application, CSP/ZEN, and Inbound Web Services check boxes.

e. Leave the Resource Required and Group By ID fields empty.

f. Check the Unauthenticated check box on the Allowed Authentication Methods line.

g. Set the Dispatch Class to the component class, such as EnsLib.REST.GenericService or EnsLib.SOAP.GenericService.

h. Click Save.

i. Select the Matching Roles tab.

j. In the Select a Matching Role: field, select the role that you created in the previous step.

k. In the Select target roles to add to the selected matching role field, select the role or roles associated with the
namespace globals and routines. The globals and routines may be in the same database or in separate databases.
If your service, accesses another InterSystems IRIS database, you should also select its role. You can select mul-
tiple roles while holding the Ctrl key.

Note: The globals database also may have a secondary database and a corresponding role, such as
%DB_GDBSECONDARY. This secondary database is used to store passwords. You don’t need access
to this database for pass-through services and operations, but if you create a custom web service that
uses password access, you should also add the secondary database role to the target database.

l. After the roles are highlighted, click the right-arrow key to move them to the Selected text box.

m. Then click the Assign button.

This completes the system configuration.

28 Adding SOAP Services and Web Clients to Productions

Configuring a Production for SOAP Services

B
Using the SOAP Inbound Adapter

This appendix briefly discusses the class EnsLib.SOAP.InboundAdapter, which you can use as an alternative to
EnsLib.SOAP.Service (which is described in “Creating a Web Service in a Production.”)

The standard way to create a production web service is to create a subclass of EnsLib.SOAP.Service and set up a web server
to be your production web server. In this way, your system will be able to utilize all the SOAP and security features provided
by a commercial web server and the InterSystems IRIS® SOAP framework. Using the EnsLib.SOAP.InboundAdapter is
easier to configure and lighter weight but doing so bypasses the above mentioned formal web support machinery. Also,
the adapter does not expose the WSDL and test page the way the standard InterSystems IRIS SOAP framework does.

B.1 Notes
The SOAP inbound adapter (EnsLib.SOAP.InboundAdapter) does not require web server software. Instead it spawns a TCP
listener job using the InterSystems IRIS super server. This lets you run your service in a foreground window, which is
useful for debugging. (To do this, you must be running the service locally. Also make sure the PoolSize setting is 1 and the
JobPerConnection setting is false.) It also supports SSL.

The EnsLib.SOAP.InboundAdapter listens for HTTP input on a given port. When the adapter receives input, the following
occurs:

1. It extracts the HTTP SOAPaction header.

2. It creates a stream (%Library.GlobalBinaryStream) that contains the body of the input.

3. It calls the web method that corresponds to the given SOAPaction.

This adapter provides an advantage in that it supports persistent connections for successive SOAP calls. Also, if you use
it with JobPerConnection=0, it can retain expensively instantiated resources such as XPath parsers even across successive
connections that encompass individual SOAP service calls.

B.2 Development Tasks
To use the InterSystems IRIS SOAP inbound adapter, write and compile a new business service class in Studio. The fol-
lowing list describes the basic requirements:

• Your class should extend EnsLib.SOAP.Service. This class extends both Ens.BusinessService (so that it is a business
service) and %SOAP.WebService (so that it can act as a web service as well).

Adding SOAP Services and Web Clients to Productions 29

• Your class should provide values for SERVICENAME and other parameters, as described in “Basic Requirements.”

• The class should define web methods, as described in “Defining Web Methods for Use in InterSystems IRIS.”

Optionally, to disable support for calls via the adapter in your service, add this to your class:

Parameter ADAPTER="";

B.3 Configuration Tasks
Use the Management Portal to do the following:

1. Add an instance of your custom class to the production.

Important: Ensure that the configuration name is the same as the full class name, including package. This is a
requirement for running a production web service.

2. Enable the business service.

3. Set the PoolSize setting to 1 so that the adapter can use its TCP listener.

4. Set the StayConnected setting to 0. Otherwise, clients may hang for their timeout period while waiting for the server
to drop the connection.

5. Specify other settings as needed; see “Settings for the SOAP Inbound Adapter” in “Reference for Settings.”

6. Run the production.

30 Adding SOAP Services and Web Clients to Productions

Using the SOAP Inbound Adapter

C
Older Web Service Variation

In previous releases, an InterSystems IRIS® web method could not directly call SendRequestSync(), SendRequestAsync(),
or SendDeferredResponse(). An alternative approach was needed. This appendix provides the details, for the benefit of
anyone who is maintaining code that uses this alternative approach.

C.1 Overview
In previous releases, an InterSystems IRIS web method could not directly call SendRequestSync(), SendRequestAsync(),
or SendDeferredResponse(). Instead, there were two requirements for a production web service, in addition to the
requirements discussed earlier in this book:

• Each web method had to invoke the ProcessInput() method as appropriate, passing to it the appropriate request pro-
duction message and receiving a response message.

• The web service class had to define the OnProcessInput() callback method. In this method, you would call
SendRequestSync(), SendRequestAsync(), or SendDeferredResponse().

The following figure shows the overall flow of request messages in this scenario:

C.2 Implementing the OnProcessInput() Method
The OnProcessInput() method has the following signature:

Adding SOAP Services and Web Clients to Productions 31

Method OnProcessInput(pInput As %RegisteredObject,
 ByRef pOutput As %RegisteredObject,
 ByRef pHint As %String) As %Status

Here:

1. pInput is the request message that you are sending.

2. pOutput is the response message that is sent in return.

3. pHint is an optional string that you can use to decide how to handle the InterSystems IRIS request; see the subsection
“Using the pHint Argument.”

The following shows an example:

Method OnProcessInput(pInput As %RegisteredObject, ByRef pOutput As %RegisteredObject) As %Status
{
 set sc= ..SendRequestSync("Lookup",pInput,.pOutput)
 Quit sc
}

C.2.1 Using the pHint Argument

If a web service defined multiple methods, and you wanted to send them to different destinations within the production,
you used the optional hint argument of the ProcessInput() and OnProcessInput() methods, as follows:

1. When you invoke ProcessInput(), you used a value for the hint argument to indicate which web method is making
this call. For example:

Method GetCustomerInfo(ID As %Numeric) As ESOAP.SOAPResponse [WebMethod]
{
 //create request message with given ID
 set request=##class(ESOAP.CustomerRequest).%New()
 set request.CustomerID=ID

 //send request message
 //ProcessInput() calls OnProcessInput(), which actually
 //sends the message
 set sc=..ProcessInput(request,.response,"GetCustomerInfo")
...

 quit soapresponse
}

2. Within OnProcessInput(), you used the hint argument to determine the flow. For example:

Method OnProcessInputAlt(pInput As %RegisteredObject,
ByRef pOutput As %RegisteredObject, pHint As %String) As %Status
{
 if pHint="GetCustomerInfo"{
 set sc= ..SendRequestSync("GetCustomerInfoBO",pInput,.pOutput)
 }
 elseif pHint="GetStoreInfo" {
 set sc= ..SendRequestSync("GetStoreInfoBO",pInput,.pOutput)
 }
 Quit sc
}

32 Adding SOAP Services and Web Clients to Productions

Older Web Service Variation

Reference for Settings

This section provides the following reference information:

• Settings for the SOAP Inbound Adapter

• Settings for the SOAP Outbound Adapter

Also see “Settings in All Productions” in Managing Productions Productions.

Adding SOAP Services and Web Clients to Productions 33

Settings for the SOAP Inbound Adapter
Provides reference information for settings of the SOAP inbound adapter, EnsLib.SOAP.InboundAdapter. Also see “Creating
a Web Service in a Production,” which does not require this adapter.

Summary
The inbound SOAP adapter has the following settings:

SettingsGroup

Call Interval, PortBasic Settings

Enable Standard Requests, Adapter URL, Job Per Connection, Allowed IP Addresses,
OS Accept Connection Queue Size, Stay Connected, Read Timeout, SSL Configuration,
Local Interface, Generate SuperSession ID

Additional Settings

The remaining settings are common to all business services. For information, see “Settings for All Business Services” in
Configuring Productions.

Adapter URL
A specific URL for the service to accept requests on. For SOAP services invoked through the SOAP inbound adapter on
a custom local port, this setting allows a custom URL to be used instead of the standard csp/namespace/classname style of
URL.

Allowed IP Addresses
Specifies a comma-separated list of remote IP addresses from which to accept connections. The adapter accepts IP addresses
in dotted decimal form. An optional :port designation is supported, so either of the following address formats is acceptable:
192.168.1.22 or 192.168.1.22:3298.

Note: IP address filtering is a means to control access on private networks, rather than for publicly accessible systems.
InterSystems does not recommend relying on IP address filtering as a sole security mechanism, as it is possible
for attackers to spoof IP addresses.

If a port number is specified, connections from other ports will be refused.

If the string starts with an exclamation point (!) character, the inbound adapter initiates the connection rather than waiting
for an incoming connection request. The inbound adapter initiates the connection to the specified address and then waits
for a message. In this case, only one address may be given, and if a port is specified, it supersedes the value of the Port

setting; otherwise, the Port setting is used.

Call Interval
Specifies the number of seconds that the adapter will listen for incoming data from its configured source, before checking
for a shutdown signal from the production framework.

If the adapter finds input, it acquires the data and passes it to the business service. The business service processes the data,
and then the adapter immediately begins waiting for new input. This cycle continues whenever the production is running
and the business service is enabled and scheduled to be active.

The default is 5 seconds. The minimum is 0.1 seconds.

34 Adding SOAP Services and Web Clients to Productions

Reference for Settings

Enable Standard Requests
If this setting is true, the adapter can also receive SOAP requests in the usual way (bypassing the TCP connection). The
default is false.

Generate SuperSession ID
This property controls whether the message will have a SuperSessionID, which can be used to identify messages that cross
from one namespace to another. If this property is set, the business service first checks the HTTP header of the inbound
message for a SuperSession ID. If it has a SuperSessionID value, it uses it; otherwise, it generates a new SuperSession
value. It sets the SuperSesssion value in the production message and can also return the value in any HTTP response it
sends to the caller.

Job Per Connection
If this setting is true, the adapter spawns a new job to handle each incoming TCP connection and allows simultaneous
handling of multiple connections. When false, it does not spawn a new job for each connection. The default is true.

Local Interface
Specifies the network interface through which the connection should go. Select a value from the list or type a value. An
empty value means use any interface.

OS Accept Connection Queue Size
Specifies the number of incoming connections should the operating system should hold open. Set to 0 if only one connection
at a time is expected. Set to a large number if many clients will connecting rapidly.

Port
Identifies the TCP port on the local machine where the adapter is listening for SOAP requests. Avoid specifying a port
number that is in the range used by the operating system for ephemeral outbound connections.

Read Timeout
Specifies the number of seconds to wait for each successive incoming TCP read operation, following receipt of initial data
from the remote TCP port. The default is 5 seconds. The range is 0–600 seconds (a maximum of 10 minutes).

SSL Config
The name of an existing SSL/TLS configuration to use to authenticate this connection. This should be a server configuration.

To create and manage SSL/TLS configurations, use the Management Portal. See the chapter “Using SSL/TLS with Inter-
Systems IRIS” in the Security Administration Guide. The first field on the Edit SSL/TLS Configuration form is Configuration

Name. Use this string as the value for the SSLConfig setting.

Stay Connected
Specifies whether to keep the connection open between requests.

• If this setting is 0, the adapter will disconnect immediately after every event.

• If this setting is -1, the adapter auto-connects on startup and then stays connected.

• This setting can also be positive (which specifies the idle time, in seconds), but such a value is not useful for this
adapter, which works by polling. If the idle time is longer than the polling interval (that is, the CallInterval) the adapter
stays connected all the time. If the idle time is shorter than the polling interval, the adapter disconnects and reconnects
at every polling interval.

Adding SOAP Services and Web Clients to Productions 35

Settings for the SOAP Inbound Adapter

Settings for the SOAP Outbound Adapter
Provides reference information for settings of the SOAP outbound adapter, EnsLib.SOAP.OutboundAdapter.

Summary
The outbound SOAP adapter has the following settings:

SettingsGroup

Web Service URL, Web Service Client Class, SOAP Credentials, CredentialsBasic Settings

SSL Configuration, SSL Check Server IdentityConnection
Settings

Proxy Server, Proxy Port, Proxy HTTPS, ProxyHttpTunnel, ProxyHttpSSLConnectProxy Settings

ResponseTimeout, HttpVersion, ConnectTimeout, SendSuperSessionAdditional Settings

The remaining settings are common to all business operations. For information, see “Settings for All Business Operations”
in Configuring Productions.

ConnectTimeout
Specifies the number of seconds to wait for the connection to the server to open. The default value is 5.

If the connection is not opened in this time period, the adapter retries repeatedly, up to the number of times given by Failure

Timeout divided by Retry Interval.

Credentials
Specify the ID of the production credentials that contain the username and password to be used in the HTTP header. For
information on creating production credentials, see Configuring Productions.

HttpVersion
Specifies the HTTP version that the adapter should report in the HTTP request it sends to the server.

ProxyHTTPS
Specifies whether the proxy (if any) uses HTTPS to communicate with the real HTTP/HTTPS server.

ProxyHttpTunnel
Specifies whether the adapter uses the HTTP CONNECT command to establish a tunnel through the proxy to the target
HTTP server. If true, the request uses the HTTP CONNECT command to establish a tunnel. The address of the proxy server
is taken from the Proxy Server and Proxy Port properties. If Proxy Https SSL Connect is true, then once the tunnel is
established, InterSystems IRIS® negotiates the SSL connection. The default value is false.

ProxyPort
Specifies the proxy server port on which to send HTTP requests, if using a proxy server. The default value is 80.

ProxyServer
Specifies the proxy server through which to send HTTP requests, if any.

36 Adding SOAP Services and Web Clients to Productions

Reference for Settings

ProxyHttpSSLConnect
Specifies whether the adapter should use a proxy SSL connection to the proxy. Note that the use of SSL to the eventual
endpoint is determined by the protocol part of web service's location URL.

ResponseTimeout
Specifies the timeout for getting a response from the remote web server (the timeout for opening the connection to the
server is set by ConnectTimeout). The default value is 30.

SendSuperSession
The SendSuperSession is a Boolean setting that controls whether the outbound adapter creates a SuperSession header in
the HTTP header and assigns an identifier to it. When finding a message, you can use the SuperSession value to match a
message in one production with the related message in another production. Within a production, it is easy to track a message
as it travels between business services, processes, and operations using the SessionId. But once a message leaves a business
operation via a SOAP message and enters a different production, the production receiving the message assigns a new Ses-
sionId.

If SendSuperSession is selected, the SOAP outbound adapter does the following:

1. Check if the message has an empty value in Ens.MessageHeaderBase.SuperSession property. If it does have an empty
value, the adapter generates a new value and stores it in the SuperSession property.

2. Stores the value of the SuperSession property in the private InterSystems.Ensemble.SuperSession HTTP header of the
outgoing message.

When an SOAP incoming adapter receives a message, it checks for the SuperSession value in the incoming HTTP message
header. If the value is present, it sets the Ens.MessageHeaderBase.SuperSession property. This property is preserved as the
message passes from one production component to another.

Note: There are no tools to automate tracking messages between productions using SuperSession.

SOAPCredentials
Specify the ID of the production credentials that contain the username and password to be used in the WS-Security header
of the SOAP request. For more information on WS-Security support, see Securing Web Services in the documentation set.

SSLCheckServerIdentity
Specifies that when making an SSL connection, the adapter should check that the server identity in the certificate matches
the name of the system being connecting to. This defaults to specifying that the check should be made. Uncheck this for
test and development systems where the name specified in the SSL certificate does not match the DNS name.

SSLConfig
The name of an existing SSL/TLS configuration to use to authenticate this connection. Choose a client SSL/TLS configu-
ration, because the web client initiates the communication.

To create and manage SSL/TLS configurations, use the Management Portal. See the chapter “Using SSL/TLS with Inter-
Systems IRIS” in the Security Administration Guide. The first field on the Edit SSL/TLS Configuration form is Configuration

Name. Use this string as the value for the SSLConfig setting.

Note: You must also ensure the web service is at a URL that uses https://. The web service location is determined
by the WebServiceURL setting; if this is not specified, the InterSystems IRIS web client assumes the web service
is at the URL specified by the LOCATION parameter in proxy client class.

Adding SOAP Services and Web Clients to Productions 37

Settings for the SOAP Outbound Adapter

WebServiceClientClass
Specifies the full name (including package) of the proxy client class, specifically the class that actually sends and receives
SOAP messages to the web service.

WebServiceURL
Specifies the URL where the web service is located. If this setting is not given, the adapter uses the default location (the
LOCATION parameter) declared in the proxy client class; see the WebServiceClientClass setting. Note that SSL will only
work if this URL uses https://

38 Adding SOAP Services and Web Clients to Productions

Reference for Settings

	Table of Contents
	About This Book
	1 About SOAP and Web Services
	1.1 InterSystems IRIS Support for Web Services
	1.2 InterSystems IRIS Support for Web Clients
	1.2.1 The SOAP Wizard
	1.2.2 The Proxy Client
	1.2.3 The Business Operation of an InterSystems IRIS Web Client

	2 Creating a Web Service in a Production
	2.1 Overall Behavior
	2.2 Basic Requirements
	2.3 Defining Web Methods for Use in InterSystems IRIS
	2.3.1 Basic Steps of an InterSystems IRIS Interoperability Web Method
	2.3.2 Returning Faults to the Caller
	2.3.3 Example

	2.4 Viewing the WSDL
	2.5 Web Service Example
	2.6 Enabling SOAP Sessions
	2.7 Additional Options
	2.8 Adding and Configuring the Web Service

	3 Creating a Web Client in a Production
	3.1 Overview
	3.2 Basic Steps
	3.2.1 Using the SOAP Wizard

	3.3 Generated Classes for an InterSystems IRIS Interoperability Web Client
	3.4 Creating a Business Operation Class Manually
	3.4.1 Basic Requirements of the Class
	3.4.2 Basic Requirements of the Methods
	3.4.3 Ways to Execute the Proxy Methods
	3.4.4 Reference Information

	3.5 Adding and Configuring the Web Client
	3.5.1 Specifying Basics
	3.5.2 Specifying Credentials
	3.5.3 Specifying an SSL Configuration
	3.5.4 Specifying a Proxy Server

	Appendix A: Configuring a Production for SOAP Services
	Appendix B: Using the SOAP Inbound Adapter
	B.1 Notes
	B.2 Development Tasks
	B.3 Configuration Tasks

	Appendix C: Older Web Service Variation
	C.1 Overview
	C.2 Implementing the OnProcessInput() Method
	C.2.1 Using the pHint Argument

	Reference for Settings
	Settings for the SOAP Inbound Adapter
	Settings for the SOAP Outbound Adapter

	Index

