
Using SQL Adapters in
Productions

Version 2019.4
2020-01-28

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using SQL Adapters in Productions
InterSystems IRIS Data Platform Version 2019.4 2020-01-28
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

1 About the SQL Adapters .. 3
1.1 Basic Tools ... 3
1.2 Helper Classes .. 3
1.3 General Use .. 4

2 Using the SQL Inbound Adapter .. 5
2.1 Overall Behavior .. 5
2.2 Creating a Business Service to Use the Adapter .. 7
2.3 Implementing the OnProcessInput() Method ... 7
2.4 Using the Default Snapshot Object .. 8
2.5 Initializing the Adapter ... 9

2.5.1 Initializing Persistent Values .. 9
2.5.2 Examples .. 10

2.6 Adding and Configuring the Business Service ... 10
2.7 Specifying the Data Source Name ... 10
2.8 Specifying Inbound Queries ... 12

2.8.1 Specifying the Query ... 12
2.8.2 Specifying Parameters .. 12

2.9 Processing Only New Rows ... 13
2.9.1 Available Tools ... 13
2.9.2 Practical Ways to Not Reprocess Rows ... 13

2.10 Reprocessing Rows .. 14
2.11 Examples That Use Query Settings .. 14

2.11.1 Example 1: Using KeyFieldName .. 14
2.11.2 Example 2: Using &%LastKey or %LastKey .. 15
2.11.3 Example 3: Using DeleteQuery ... 15
2.11.4 Example 4: Working with a Composite Key .. 16
2.11.5 Example 5: No KeyFieldName .. 16

2.12 Specifying Other Runtime Settings .. 17
2.13 Resetting Rows Previously Processed by the Inbound Adapter ... 18

3 Using the SQL Outbound Adapter ... 19
3.1 Default Behavior .. 19
3.2 Creating a Business Operation to Use the Adapter .. 19
3.3 Creating Methods to Perform SQL Operations .. 20
3.4 Handling Multiple SQL Statements per Message .. 21
3.5 Adding and Configuring the Business Operation ... 21

3.5.1 Specifying the Data Source Name ... 22
3.5.2 Specifying Other Runtime Settings .. 23

4 Creating Adapter Methods for SQL ... 25
4.1 Overview and Context .. 25
4.2 Using Parameters .. 26

4.2.1 Parameter Attributes ... 26
4.2.2 Specifying Parameters in an InterSystems IRIS Multidimensional Array 27

4.3 Executing Queries .. 28
4.3.1 Use Modes .. 29

Using SQL Adapters in Productions iii

4.3.2 Syntax for the Methods .. 29
4.3.3 Example ... 29

4.4 Performing Updates, Inserts, and Deletes .. 30
4.4.1 Example ... 30
4.4.2 Example with ExecuteUpdateParmArray .. 31

4.5 Executing Stored Procedures .. 31
4.5.1 Example ... 33

4.6 Specifying Statement Attributes ... 33
4.7 Managing Transactions .. 33
4.8 Managing the Database Connection ... 35

4.8.1 Properties ... 35
4.8.2 Methods .. 36

5 Using Result Sets ... 37
5.1 Creating and Initializing a Result Set ... 37
5.2 Getting Basic Information about the Result Set ... 37
5.3 Navigating the Result Set ... 38
5.4 Examining the Current Row of the Result Set ... 38

6 Using Snapshots .. 39
6.1 Creating a Snapshot .. 39

6.1.1 Creating a Snapshot from a Live Connection .. 39
6.1.2 Creating a Snapshot from Static Data .. 40
6.1.3 Creating a Snapshot Manually ... 42

6.2 Getting Basic Information about the Snapshot .. 43
6.3 Navigating the Snapshot ... 43
6.4 Examining the Current Row of the Snapshot ... 44
6.5 Resetting a Snapshot .. 45

iv Using SQL Adapters in Productions

About This Book

This book describes how an InterSystems IRIS® programmer can add SQL adapters to a production, so that the production
can communicate with JDBC or ODBC-compliant databases. You should be aware of the particular limitations (syntactical
or otherwise) of the database to which you are connecting, as well as the database driver that you use to do so; this book
does not include such information.

This book contains the following sections:

• About the SQL Adapters

• Using the SQL Inbound Adapter

• Using the SQL Outbound Adapter

• Creating Adapter Methods for SQL

• Using Result Sets

• Using Snapshots

For a detailed outline, see the table of contents.

For more information, try the following sources:

• Best Practices for Creating Productions describes best practices for organizing and developing productions.

• Developing Productions explains how to perform the development tasks related to creating a production.

• Configuring Productions describes how to configure the settings for productions, business hosts, and adapters. It provides
details on settings not discussed in this book.

• Using the InterSystems ODBC Driver describes how to use InterSystems ODBC, which enables you to connect to
InterSystems IRIS from an external application via ODBC, and allows InterSystems IRIS to access external ODBC
data sources.

• Using Java with the InterSystems JDBC Driver describes how to connect to InterSystems IRIS from an external
application using the InterSystems JDBC driver, and how to access external JDBC data sources from InterSystems
IRIS.

• Using the Java Gateway in Productions explains how to enable easy interoperation between InterSystems IRIS and
Java components.

Using SQL Adapters in Productions 1

1
About the SQL Adapters

The SQL inbound and outbound adapters enable your productions to communicate with JDBC or ODBC-compliant databases.
This chapter provides a brief introduction to these adapters.

1.1 Basic Tools
The adapters (EnsLib.SQL.InboundAdapter and EnsLib.SQL.OutboundAdapter) provide settings that you use to specify the
data source to connect to and any login details needed for that data source.

The adapters also provide methods to perform common SQL activities such as the following:

• Executing queries

• Executing stored procedures

• Performing inserts, updates, and deletes

• Performing database transactions

• Connecting to and disconnecting from a data source

Note: The adapters are clients and perform authentication by passing calls that include the username and password; they
do not use authentication from the operating system.

1.2 Helper Classes
InterSystems IRIS® provides two helper classes that are used as arguments and return values for the built-in SQL methods:

• The EnsLib.SQL.GatewayResultSet class represents a special-purpose result set for use in InterSystems IRIS. An ini-
tialized instance of this class has a live data connection to a data source. The class provides methods to examine the
contents of the result set as well as a method to return a static snapshot.

• The EnsLib.SQL.Snapshot class represents a static object that you can create and populate in various ways. For example,
you can populate it with the data of a result set, either all the rows or a subset of rows (starting at some row position);
you can populate it with the contents of a file or stream; or you can create it row by row.

The class provides methods for examining the data; more methods are available for this object than for the result set.

Using SQL Adapters in Productions 3

1.3 General Use
At a high level, to include an adapter in a production, you do the following:

• Create a business host (specifically a business service or business operation) class that uses the adapter. You use the
ADAPTER parameter of the business host class to specify the adapter to use.

• Within that class, implement the methods you need. Your methods use the properties and methods of the associated
adapter, via the Adapter property of your business host.

• Add the business service or business operation to your production and provide values for any runtime settings.

In most cases, your custom code resides within your business host class. You do not typically need to customize the adapters
directly.

4 Using SQL Adapters in Productions

About the SQL Adapters

2
Using the SQL Inbound Adapter

This chapter describes the default behavior of the SQL inbound adapter (EnsLib.SQL.InboundAdapter) and describes how
to use this adapter in your productions. It discusses the following topics:

• Overall behavior

• How to create a business service to use the adapter

• Details on how to implement the OnProcessInput() method

• Details on using the default snapshot object

• How to initialize the adapter

• How to add and configure the business service

• How to specify the data source for the query

• How to specify the query

• How to process only new rows

• How to reprocess rows

• Examples that use the settings related to queries

• Other common runtime settings

• How to reset the adapter so that it “ forgets” which rows it has already processed (a useful task during development)

2.1 Overall Behavior
First, it is useful to understand the details that you specify for the adapter. The EnsLib.SQL.InboundAdapter class provides
runtime settings that you use to specify items like the following:

• A polling interval, which controls how frequently the adapter checks for new input

• The external data source to which the adapter connects

• The ID of the production credentials that provide the username and password for that data source, if needed

• An SQL query to execute

• Optional parameters to use in the query

Using SQL Adapters in Productions 5

In general, the inbound SQL adapter (EnsLib.SQL.InboundAdapter) periodically executes a query and then iterates through
the rows of the result set, passing one row at a time to the associated business service. The business service, which you
create and configure, uses this row and communicates with the rest of the production. More specifically:

1. The adapter regularly executes its OnTask() method, which executes the given query. The polling interval is determined
by the CallInterval setting.

2. If the query returns any rows, the adapter iterates through the rows in the result set and does the following for each
row:

• If this row has already been processed and has not changed, the adapter ignores it.

To determine if a given row has already been processed, the adapter uses the information in the KeyFieldName

setting; see “Processing Only New Rows” later in this chapter.

• If this row has already been processed (as identified by the KeyFieldName setting) and an error occurred, the
adapter ignores it until the next restart.

• Otherwise, the adapter builds an instance of the EnsLib.SQL.Snapshot class and puts the row data into it. This
instance is the snapshot object. “Using the Default Snapshot Object” later in this chapter provides details on this
object.

The adapter then calls the internal ProcessInput() method of the associated business service class, passing the
snapshot object as input.

3. The internal ProcessInput() method of the business service class executes. This method performs basic production tasks
such as setting up a monitor and error logging; these tasks are needed by all business services. You do not customize
or override this method, which your business service class inherits.

4. The ProcessInput() method then calls your custom OnProcessInput() method, passing the snapshot object as input. The
requirements for this method are described later in “ Implementing the OnProcessInput() Method.”

The following figure shows the overall flow:

6 Using SQL Adapters in Productions

Using the SQL Inbound Adapter

2.2 Creating a Business Service to Use the Adapter
To use this adapter in your production, create a new business service class as described here. Later, add it to your production
and configure it. You must also create appropriate message classes, if none yet exist. See “Defining Messages” in Devel-
oping Productions.

The following list describes the basic requirements of the business service class:

• Your business service class should extend Ens.BusinessService.

• In your class, the ADAPTER parameter should equal EnsLib.SQL.InboundAdapter.

• Your class should implement the OnProcessInput() method, as described in “ Implementing the OnProcessInput()
Method.”

• Your class can optionally implement OnInit(); see “ Initializing the Adapter.”

• For other options and general information, see “Defining a Business Service Class” in Developing Productions.

The following example shows the general structure that you need:

Class ESQL.NewService1 Extends Ens.BusinessService
{

Parameter ADAPTER = "EnsLib.SQL.InboundAdapter";

Method OnProcessInput(pInput As EnsLib.SQL.Snapshot, pOutput As %RegisteredObject) As %Status
{

 Quit $$$ERROR($$$NotImplemented)
}

}

Note: Studio provides a wizard that you can use to create a stub similar to the preceding. To access this wizard, click
New on the File menu and then click the Production tab. Choose to create a business service and select
EnsLib.SQL.InboundAdapter as the associated inbound adapter. The wizard then uses EnsLib.SQL.Snapshot as the
specific input argument needed with this adapter.

2.3 Implementing the OnProcessInput() Method
Within your custom business service class, your OnProcessInput() method should have the following signature:

Method OnProcessInput(pInput As EnsLib.SQL.Snapshot,
 pOutput As %RegisteredObject) As %Status

Here pInput is the snapshot object that the adapter sends to this business service; this is an instance of EnsLib.SQL.Snapshot.
Also, pOutput is the generic output argument required in the method signature.

The OnProcessInput() method should do some or all of the following:

1. Create an instance of the request message, which will be the message that your business service sends.

For information on creating message classes, see “Defining Messages” in Developing Productions.

2. For the request message, set its properties as appropriate, using values in the snapshot object. This object corresponds
to a single row returned by your query; for more information, see “Using the Default Snapshot Object.”

Using SQL Adapters in Productions 7

Creating a Business Service to Use the Adapter

3. Call a suitable method of the business service to send the request to some destination within the production. Specifically,
call SendRequestSync(), SendRequestAsync(), or (less common) SendDeferredResponse(). For details, see
“Sending Request Messages” in Developing Productions

Each of these methods returns a status (specifically, an instance of %Status).

4. Optionally check the status of the previous action and act upon it.

5. Optionally examine the response message that your business service has received and act upon it.

6. Return an appropriate status.

The following shows a simple example:

Method OnProcessInput(pInput As EnsLib.SQL.Snapshot,
 pOutput As %RegisteredObject) As %Status
{

 set req=##class(ESQL.request).%New()
 set req.CustomerID=pInput.Get("CustomerID")
 set req.SSN=pInput.Get("SSN")
 set req.Name=pInput.Get("Name")
 set req.City=pInput.Get("City")
 set sc=..SendRequestSync("ESQL.operation",req,.pOutput)

 quit sc
}

Notice that this example uses the Get() method of EnsLib.SQL.Snapshot to get data for specific columns; see “Using the
Default Snapshot Object.”

2.4 Using the Default Snapshot Object
When you create a business service class to work with EnsLib.SQL.InboundAdapter, the adapter passes a snapshot object
(an instance of EnsLib.SQL.Snapshot) to your custom OnProcessInput() method. This instance contains data for one row
of the data returned by your query. Your OnProcessInput() method typically uses the data available in this object.

Note: The EnsLib.SQL.Snapshot class provides properties and methods to manage multiple rows. However, multiple-
row snapshots are relevant only for operations that use the outbound adapter, described later in this book.

The following list describes the methods that you are most likely to use within your custom OnProcessInput() method:

Get()

method Get(pName As %String, pRow=..%CurrentRow) returns %String

Returns the value of the column that has the name pName, in the current row (which is the only row in this case).

GetColumnId()

method GetColumnId(pName As %String) returns %Integer

Returns the ordinal position of the column that has the name pName. This method is useful when you work with
unfamiliar tables.

GetData()

method GetData(pColumn As %Integer, pRow=..%CurrentRow) returns %String

8 Using SQL Adapters in Productions

Using the SQL Inbound Adapter

Returns the value of the column whose position is specified by pColumn in the current row (which is the only row
in this case). From left to right, the first column is 1, the second column is 2, and so on.

GetColumnName()

method GetColumnName(pColumn As %Integer = 0)

Returns the name of the column whose position is specified by pColumn.

GetColumnSize()

method GetColumnSize(pColumn As %Integer = 0)

Returns the size (the width in number of characters) of the database field whose position is specified by pColumn.

GetColumnType()

method GetColumnType(pColumn As %Integer = 0)

Returns the SQL type of the column whose position is specified by pColumn, for example, VARCHAR, DATE,
or INTEGER.

Note: SQL type names vary between different database vendors.

The following shows how you might use the Get() method to extract data from the snapshot and use it to populate the
request message:

 set req=##class(ESQL.request).%New()
 set req.CustomerID=pInput.Get("CustomerID")
 set req.SSN=pInput.Get("SSN")
 set req.Name=pInput.Get("Name")
 set req.City=pInput.Get("City")

2.5 Initializing the Adapter
To initialize the inbound adapter, customize the OnInit() method of your custom business service class. This method is
executed during startup of the business host; by default, this method does nothing.

Method OnInit() As %Status

The most common reason to initialize the adapter is to initialize values for use as parameters of the query, as described in
“Specifying Inbound Queries.” The following subsections list the relevant methods and provide an example.

2.5.1 Initializing Persistent Values

EnsLib.SQL.InboundAdapter provides the following method to initialize persistent values that are saved between restarts of
the business service:

ClassMethod InitializePersistentValue
 (pConfigName As %String,
 pPersistentValueName As %String = "%LastKey",
 pNewValue As %String)
 As %String

Use this to initialize a name-value pair associated with the adapter and then use the name for a parameter of the query. This
method checks the current value of the given persistent name-value pair. If the value is currently null, this method sets it
equal to pNewValue.

Using SQL Adapters in Productions 9

Initializing the Adapter

By default, if you omit the name, the method initializes the persistent name-value pair &%LastKey which contains the
IDKey value of the last row processed by the adapter.

In some cases, you might instead need the InitializeLastKeyValue(), which initializes the transient adapter property
%LastKey. This property is reset each time the business service is started. Also see the class documentation for
EnsLib.SQL.InboundAdapter for information on the related methods SetPersistentValue() and GetPersistentValue().

2.5.2 Examples

To initialize the &%LastKey persistent value, you would customize the OnInit() method of your business service to include
the following:

Method OnInit() As %Status
{
 #; initialize persistent last key value
 Do ..Adapter.InitializePersistentValue(..%ConfigName,,0)
 Quit $$$OK
}

To initialize the &TopSales persistent value, you would customize the OnInit() method of your business service to include
the following:

Method OnInit() As %Status
{
 #; must initialize so the query can do a numeric comparison
 Do ..Adapter.InitializePersistentValue(..%ConfigName,"TopSales",0)
 Quit $$$OK
}

2.6 Adding and Configuring the Business Service
To add your business service to a production, use the Management Portal to do the following:

1. Add an instance of your custom business service class to the production.

2. Enable the business service.

3. Set the PoolSize setting to 1.

If PoolSize is larger than 1, the adapter will process many records twice.

4. Configure the adapter to communicate with a specific external data source. Specifically:

• Specify the data source name to which the adapter should connect

• Specify the query that the adapter should execute

• Specify other common runtime settings for your production

These topics are discussed later in this chapter.

5. Run the production.

2.7 Specifying the Data Source Name
The EnsLib.SQL.InboundAdapter provides a runtime setting that you use to specify the data source to which you want to
connect. When you configure the business service, you should set an appropriate initial value for this setting:

10 Using SQL Adapters in Productions

Using the SQL Inbound Adapter

DSN

This data source name specifies the external data source to which to connect. InterSystems IRIS® distinguishes
between these three forms automatically: a defined InterSystems SQL Gateway connection, a JDBC URL, or an
ODBC DSN configured in your operating system.

If this name matches the name of a JDBC or ODBC connection configured from the System Administration >
Configure > Connectivity > SQL Gateway Connections page of the Management Portal, InterSystems IRIS uses
the parameters from that specification. If the entry is not the name of a configured connection and it contains a
colon (:), it assumes a JDBC URL, otherwise it assumes an ODBC DSN.

The following example shows the name of a DSN that refers to a JDBC URL:

jdbc:IRIS://localhost:9982/Samples

The following example shows the name of an ODBC DSN that refers to a Microsoft Access database:

accessplayground

If this data source is protected by a password, create production credentials to contain the username and password. Then
set the Credentials setting equal to the ID of those credentials; see “Specifying Other Runtime Settings” for details.

If you are using a JDBC data source, the following settings also apply:

JGService

Configuration name of the Java Gateway service controlling the Java Gateway server this operation uses.

Important: This setting is required for all JDBC data sources, even if you are using a working SQL gateway
connection with JDBC. For JDBC connections to work, a business service of type
EnsLib.JavaGateway.Service must be present. The SQL adapter requires the name of this config-
uration item and uses its configured settings to connect to the JVM it manages.

JDBCDriver

JDBC driver class name.

If you use a named SQL Gateway Connection as DSN, this value is optional; but if present, it overrides the value
specified in the named JDBC SQL Gateway Connection set of properties.

JDBCClasspath

Classpath for JDBC driver class name, if needed in addition to the ones configured in the Java Gateway Service.

ConnectionAttributes

An optional set of SQL connection attribute options. For ODBC, they have the form:

attr:val,attr:val

For example, AutoCommit:1.

For JDBC, they have the form

attr=val;attr=val

For example, TransactionIsolationLevel=TRANSACTION_READ_COMMITTED.

If you use a named JDBC SQL Gateway Connection as DSN, this value is optional; but if present, it overrides the
value specified in the named JDBC SQL Gateway Connection set of properties.

Using SQL Adapters in Productions 11

Specifying the Data Source Name

2.8 Specifying Inbound Queries
By default, the EnsLib.SQL.InboundAdapter executes a query periodically (and sends the results, row by row, to the business
service). This section includes information on the following:

• How to specify this query

• How to specify any parameters of the query

2.8.1 Specifying the Query

To specify the base query used by the inbound SQL adapters, you use the Query setting, which specifies the base query
string. It can include the standard SQL ? to represent replaceable parameters, which you specify in a separate setting (dis-
cussed in the next heading). Consider the following examples:

SELECT * FROM Customer

SELECT p1,p2,p3 FROM Customer WHERE updatetimestamp > ?

SELECT * FROM Sample.Person WHERE ID > ?

SELECT * FROM Sample.Person WHERE Age > ?, PostalCode = ?

2.8.2 Specifying Parameters

The Parameters setting specifies any replaceable parameters in the query string. This setting should equal a comma-separated
list of parameter value specifiers, as follows:

value,value,value,...

For a given value, you can use a constant literal value such as 10 or Gotham City; or you can refer to any of the following:

• You can use a property of the adapter. Within the Parameters setting, to refer to a property of the adapter, simply refer
to the property by its name.

• You can refer to a property of the associated business service. Use the syntax $property_name

Within the Parameters setting, if a parameter name starts with a dollar sign ($), InterSystems IRIS assumes that it is
a property of the service class.

For example, you could add a property named LastTS to the business service class to contain a timestamp. Within
the Parameters setting, you would refer to the value of that property as $LastTS

• You can refer to a special persistent value such as &%LastKey, which contains the IDKey value of the last row processed
by the adapter.

Within the Parameters setting, if a parameter name starts with an ampersand (&), InterSystems IRIS assumes that it is
a special persistent value.

Note: For information on initializing these values, see “ Initializing the Adapter.”

12 Using SQL Adapters in Productions

Using the SQL Inbound Adapter

2.9 Processing Only New Rows
Because it is often undesirable to keep executing a query against the same data, the EnsLib.SQL.InboundAdapter provides
several tools that you can use to keep track of the rows that it has processed. This section discusses those tools and then
describes several ways to use them in practice.

CAUTION: Be sure to set the PoolSize setting equal to 1. If it is larger than 1, the adapter will process many records
twice.

2.9.1 Available Tools

The EnsLib.SQL.InboundAdapter provides the following tools to keep track of the rows that it has processed:

• If you specify the KeyFieldName setting, the adapter adds data to an InterSystems IRIS global that indicates which
rows it has processed. This setting should refer to a field that contains values that are not reused over time; this field
must be in the result set returned by the query. The adapter uses the data in that field to evaluate whether a row has
previously been processed.

• The adapter provides a persistent value, &%LastKey, that contains the value of the Key Field Name for the last row
that was processed. This special persistent value is saved when you restart the business service.

• The adapter provides a transient property, %LastKey, that contains the value of the KeyFieldName for the last row that
was processed. This adapter property is created each time you restart the associated business service.

The latter two options are practical only if KeyFieldName refers to a field that increases monotonically for each new row.
Also see “ Initializing the Adapter.”

2.9.2 Practical Ways to Not Reprocess Rows

There are three practical ways that you can ensure that you do not reprocess the same data:

• Use the KeyFieldName setting of the adapter. If specified, this setting should refer to a field that contains values that
are not reused over time; this field must be in the result set returned by the query. If you specify a KeyFieldName, the
adapter uses the data in that field to evaluate whether a row has previously been processed. Note that if you specify
the pseudo field %ID in the SELECT and want to specify this field as the KeyFieldName, you should specify the
KeyFieldName as ID and should omit the % (percent sign).

The default is ID.

For example, you could specify Query as follows:

SELECT ID,Name,Done from Sample.Person

And then you could specify KeyFieldName as follows:

ID

This technique can be inefficient because InterSystems IRIS might select a large number of rows during each polling
cycle, and only a small number of those rows might be new.

• Use a query that uses a query parameter that refers to the special persistent value &%LastKey (or the transient adapter
property %LastKey). For example, you could specify Query as follows:

SELECT ID,Name,Done from Sample.Person WHERE ID>?

And then you could specify Parameters as follows:

Using SQL Adapters in Productions 13

Processing Only New Rows

&%LastKey

Also see “ Initializing the Adapter.”

• After executing the query, delete the source data or update it so that the query will not return the same rows. To do
this, you use the DeleteQuery setting. By default, after the EnsLib.SQL.InboundAdapter executes the main query (the
Query setting), it executes the DeleteQuery once for each row returned by the main query.

This query must include exactly one replaceable parameter (a question mark), which the adapter will replace with value
specified by KeyFieldName.

This query can either delete the source data or can perform an update to ensure that the same rows will not be selected
by the main query of the adapter.

For example, you could specify Query as follows:

SELECT ID,Name,Done from Sample.Person WHERE Done=0

And then you could specify DeleteQuery as follows:

UPDATE Sample.Person SET Done=1 WHERE ID=?

2.10 Reprocessing Rows
In many cases, it is necessary to notice changes in a row that has previously been processed by the SQL inbound adapter.
The easiest way to do this is as follows:

• Include a column in the relevant table to record if a given row has been changed.

• Install an update trigger in the data source to update that column when appropriate.

• Within the query used by the adapter, use the value of this column to determine whether to select a given row.

CAUTION: Be sure to set the PoolSize setting equal to 1. If it is larger than 1, the adapter will process many records
twice.

2.11 Examples That Use Query Settings
This section provides examples that use the preceding settings.

2.11.1 Example 1: Using KeyFieldName

In the simplest example, we select rows from the Customer table. This table has a primary key, the CustomerID field,
an integer that is automatically incremented for each new record. We are interested only in new rows, so we can use this
field as the KeyFieldName. Within our production, we use the following settings for the adapter:

14 Using SQL Adapters in Productions

Using the SQL Inbound Adapter

ValueSetting

SELECT * FROM CustomerQuery

noneDeleteQuery

CustomerIDKeyFieldName

noneParameters

When the production starts, the adapter will automatically select and process all rows in the Customer table. As it processes
each row, it adds an entry to the Event Log; this entry will have text like the following:

Processing row '216'

Here '216' refers to the CustomerID of the row being processed.

After the production startup, during each polling cycle, the adapter will select all rows but will process only the rows that
have a new value in the CustomerID field.

2.11.2 Example 2: Using &%LastKey or %LastKey

This example is a variation of the preceding. In this case, the main query selects a subset of the rows, which is more efficient
than selecting all the rows.

ValueSetting

SELECT * FROM Customer WHERE ID>?Query

noneDeleteQuery

CustomerIDKeyFieldName

&%LastKeyParameters

In each polling cycle, the adapter determines the value of &%LastKey and passes that value to SQL.

Also see “ Initializing the Adapter.”

Note: When the adapter selects a set of rows, it may or may not process them in the order given by the KeyFieldName.
For example, in a given polling cycle, it may select rows with CustomerID equal to 101, 102, 103, 104, and
105, but it may process customer 103 last (instead of customer 105). After this polling cycle, the value of
&%LastKey equals 103. So in the next cycle, the adapter will select customers 104 and 105 again, although it
will not reprocess them. (This is still more efficient than reselecting all the rows as in the previous example.) To
force the adapter to process the rows in a specific order, include an ORDER BY clause within the query, for
example:

SELECT * FROM Customer WHERE ID>? ORDER BY CustomerID

In this case, the value of &%LastKey will always be set to the highest CustomerID and no rows will be selected
more than once.

2.11.3 Example 3: Using DeleteQuery

In this example, the Customer table has a field called Done, in which we can record whether the adapter has previously
selected a given row.

Using SQL Adapters in Productions 15

Examples That Use Query Settings

ValueSetting

SELECT * FROM Customer WHERE Done=0Query

UPDATE Customer SET Done=1 WHERE CustomerID=?DeleteQuery

CustomerIDKeyFieldName

noneParameters

In common with the preceding example, this example selects any given row only once.

Tip: Using the delete query can be slow, because this query is executed once for each row that is processed. It is more
efficient to perform a batch delete (or batch update) at a regular interval.

2.11.4 Example 4:Working with a Composite Key

In many cases, you might want to treat multiple table fields collectively as the primary key. For example, you might have
a table of statistics that includes the fields Month and Year, and your query might need to treat the month and year together
as the unique key for the adapter. In such a case, you would use a query that concatenates the relevant fields and uses the
AS clause to provide an alias for the composite field.

For example, with SQL*Server, you could use a query that starts as follows:

SELECT Stats, Year||Month as ID ...

The result set available in the adapter will have a field named ID, which you can use for KeyFieldName.

Note: The syntax for concatenation depends upon the database with which you are working.

2.11.5 Example 5: No KeyFieldName

In some cases, you might not want to use KeyFieldName. If KeyFieldName is null, the adapter does not distinguish rows
and does not skip rows that had either an error or were successfully processed already.

For example:

ValueSetting

Select * from Cinema.Film Where TicketsSold>?Query

noneDeleteQuery

noneKeyFieldName

&TopSales (this refers to a special persistent value named TopSales that is defined
within the OnProcessInput() method of the business service)

Parameters

The business service is as follows:

Class Test.SQL.TopSalesService Extends Ens.BusinessService
{

Parameter ADAPTER = "EnsLib.SQL.InboundAdapter";

Parameter REQUESTCLASSES As %String = "EnsLib.SQL.Snapshot";

Method OnInit() As %Status
{
 #; must initialize so the query can do a numeric comparison
 Do ..Adapter.InitializePersistentValue(..%ConfigName,"TopSales",0)

16 Using SQL Adapters in Productions

Using the SQL Inbound Adapter

 Quit $$$OK
}

Method OnProcessInput(pInput As EnsLib.SQL.Snapshot,
 Output pOutput As Ens.Response) As %Status
{
 Kill pOutput Set pOutput=$$$NULLOREF

 for j=1:1:pInput.ColCount {
 }
 for i=1:1:pInput.RowCount {
 for j=1:1:pInput.ColCount {
 }
 }
 Set tSales=pInput.Get("TicketsSold")
 Set:tSales>$G($$$EnsStaticAppData(
..%ConfigName,"adapter.sqlparam","TopSales")) ^("TopSales")=tSales
 Quit $$$OK
}

}

2.12 Specifying Other Runtime Settings
EnsLib.SQL.InboundAdapter provides the following additional runtime settings.

Call Interval

Specifies the polling interval, in seconds, for the adapter. This specifies how frequently this adapter checks for
input.

Upon polling, if the adapter finds input, it creates an appropriate InterSystems IRIS object and passes the object
to its associated business service. If several inputs are detected at once, the adapter processes all of them sequentially
until no more are found. The adapter sends one request to the business service for each item of input it finds. The
adapter then waits for the polling interval to elapse before checking for input again. This cycle continues whenever
the production is running and the business service is enabled and scheduled to be active.

It is possible to set a property in the business service so that the adapter delays for the duration of the CallInterval

in between processing each input. For details, see Developing Productions.

The default CallInterval is 5 seconds. The minimum is 0.1 seconds.

Credentials

ID of the production credentials that can authorize a connection to the given DSN. For information on creating
production credentials, see Configuring Productions.

StayConnected

Specifies whether to keep the connection open between commands, such as issuing an SQL statement or changing
an ODBC driver setting.

• If this setting is 0, the adapter will disconnect immediately after each SQL command.

• If this setting is –1, the adapter auto-connects on startup and then stays connected. Use this value, for example,
if you are managing database transactions as described in “Managing Transactions,” later in this book.

This setting can also be positive (which specifies the idle time after each SQL command, in seconds), but such a
value is not useful for the SQL inbound adapter, which works by polling. (If the idle time is longer than the polling
interval [CallInterval], the adapter stays connected all the time. If the idle time is shorter than the polling interval,
the adapter disconnects and reconnects at every polling interval — meaning that the idle time is essentially ignored.)

For any settings not listed here, see Configuring Productions.

Using SQL Adapters in Productions 17

Specifying Other Runtime Settings

2.13 Resetting Rows Previously Processed by the Inbound
Adapter
During development and testing, you might find it useful to reset the adapter for a given business service in order to repeat
previous tests. To do so, use one of the following methods described here; these are class methods inherited by
EnsLib.SQL.InboundAdapter.

CAUTION: You do not normally use these methods within a live production.

ClearRuntimeAppData()

ClassMethod ClearRuntimeAppData(pConfigName As %String)

Clears all runtime data for the business service that has the given configured name. Note that you can use the
adapter property %ConfigName to access the name of currently configured business service. This data is cleared
automatically each time the business service starts.

ClearStaticAppData()

ClassMethod ClearStaticAppData(pConfigName As %String)

Clears static data for the business service specified by the configured name. This data includes all persistent values
associated with the adapter, such as the persistent last key value.

ClearAllAppData()

ClassMethod ClearAllAppData(pConfigName As %String)

This method just executes the ClearRuntimeAppData() and ClearStaticAppData() class methods.

18 Using SQL Adapters in Productions

Using the SQL Inbound Adapter

3
Using the SQL Outbound Adapter

This chapter describes the default behavior of the SQL outbound adapter (EnsLib.SQL.OutboundAdapter) and describes
how to use this adapter in your productions. It discusses the following topics:

• Default behavior

• How to create a business operation to use this adapter

• Details on how to create methods in that business operation

• How to handle multiple SQL statements per message

• How to add and configure the business operation

3.1 Default Behavior
Within a production, an outbound adapter is associated with a business operation that you create and configure. The business
operation receives a message from within the production, looks up the message type, and executes the appropriate method.
This method usually executes methods of the associated adapter.

The SQL outbound adapter (EnsLib.SQL.OutboundAdapter) provides settings that you use to specify the data source to
connect to and any login details needed for that data source. It also provides methods to perform common SQL activities
such as the following:

• Executing queries

• Executing stored procedures

• Performing inserts, updates, and deletes

3.2 Creating a Business Operation to Use the Adapter
To create a business operation to use the EnsLib.SQL.OutBoundAdapter, you create a new business operation class. Later,
add it to your production and configure it.

You must also create appropriate message classes, if none yet exist. See “Defining Messages” in Developing Productions.

The following list describes the basic requirements of the business operation class:

Using SQL Adapters in Productions 19

• Your business operation class should extend Ens.BusinessOperation.

• The ADAPTER parameter should equal EnsLib.SQL.OutboundAdapter.

• The INVOCATION parameter should specify the invocation style you want to use, which must be one of the following.

– Queue means the message is created within one background job and placed on a queue, at which time the original
job is released. Later, when the message is processed, a different background job will be allocated for the task.
This is the most common setting.

– InProc means the message will be formulated, sent, and delivered in the same job in which it was created. The job
will not be released to the sender’s pool until the message is delivered to the target. This is only suitable for special
cases.

• Your class should define a message map that includes at least one entry. A message map is an XData block entry that
has the following structure:

XData MessageMap
{
<MapItems>
 <MapItem MessageType="messageclass">
 <Method>methodname</Method>
 </MapItem>
 ...
</MapItems>
}

• Your class should define all the methods named in the message map. These methods are known as message handlers.
In general, these methods will refer to properties and methods of the Adapter property of your business operation.

• For other options and general information, see “Defining a Business Operation Class” in Developing Productions.

The following example shows the general structure that you need:

Class ESQL.NewOperation1 Extends Ens.BusinessOperation
{
Parameter ADAPTER = "EnsLib.SQL.OutboundAdapter";

Parameter INVOCATION = "Queue";

Method SampleCall(pRequest As Ens.Request, Output pResponse As Ens.Response) As %Status
{
 Quit $$$ERROR($$$NotImplemented)
}

XData MessageMap
{
<MapItems>
 <MapItem MessageType="Ens.Request">
 <Method>SampleCall</Method>
 </MapItem>
</MapItems>
}
}

Note: Studio provides a wizard that you can use to create a stub similar to the preceding. To access this wizard, click
New on the File menu and then click the Production tab. Choose to create a business operation and select
EnsLib.SQL.OutboundAdapter as the associated outbound adapter.

3.3 Creating Methods to Perform SQL Operations
When you create a business operation class for use with EnsLib.SQL.OutboundAdapter, typically your biggest task is writing
message handlers, that is, methods to perform various SQL operations. In general, these methods will refer to properties
and methods of the Adapter property of your business operation. For example:

20 Using SQL Adapters in Productions

Using the SQL Outbound Adapter

 set tSC = ..Adapter.ExecuteUpdate(.numrows,sql)

A method might look like the following.

/// Insert into NewCustomer table
Method Insert(pReq As ESQL.request, Output pResp As ESQL.response1) As %Status
{
 kill pResp
 set pResp=$$$NULLOREF

 set sql="insert into NewCustomer (Name,SSN,City,SourceID) values (?,?,?,?)"

 //perform the Insert
 set tSC = ..Adapter.ExecuteUpdate
 (.nrows,sql,pReq.Name,pReq.SSN,pReq.City,pReq.CustomerID)

 //create the response message
 set pResp=##class(ESQL.response1).%New()
 set pResp.AffectedRows=nrows

 if 'tSC write " failed ",tSC quit tSC
 quit 1
}

To create these methods, you should become familiar with the methods and properties of the EnsLib.SQL.OutboundAdapter

class. The chapter “Creating Adapter Methods for SQL” provides more detail about these tools.

3.4 Handling Multiple SQL Statements per Message
The adapter configuration is designed to deal with the simple case where the business operation executes one SQL statement
per message it receives. If your business operation needs to execute multiple SQL statements for a given message, use the
following style (or similar) in your OnMessage() method:

OnMessage(..)
{
 Set tStayConn=..Adapter.StayConnected
 Set ..Adapter.StayConnected=-1

 //... your ..Adapter SQL Operations here...

 Set ..Adapter.StayConnected=tStayConn
 If 'tStayConn&&..Adapter.Connected Do ..Adapter.Disconnect()
 Quit tSC
}

3.5 Adding and Configuring the Business Operation
To add your business operation to a production, use the Management Portal to do the following:

1. Add an instance of your custom business operation class to the production.

2. Enable the business operation.

3. Configure the adapter to communicate with a specific external data source. Specifically:

• Specify the data source to which the adapter should connect

• Use other common runtime settings for your production

4. Run the production.

Using SQL Adapters in Productions 21

Handling Multiple SQL Statements per Message

3.5.1 Specifying the Data Source Name

The EnsLib.SQL.OutboundAdapter provides a runtime setting that you use to specify the data source that you want to connect
to. When you configure the business operation, you should set an appropriate initial value for this setting:

DSN

This data source name specifies the external data source to which to connect. InterSystems IRIS® distinguishes
between these three forms automatically: a defined InterSystems SQL Gateway connection, a JDBC URL, or an
ODBC DSN configured in your operating system.

If this name matches the name of a JDBC or ODBC connection configured from the System Administration >
Configure > Connectivity > SQL Gateway Connections page of the Management Portal, InterSystems IRIS uses
the parameters from that specification. If the entry is not the name of a configured connection and it contains a
colon (:), it assumes a JDBC URL, otherwise it assumes an ODBC DSN.

If this data source is protected by a password, create production credentials to contain the username and password. Then
set the Credentials setting equal to the ID of those credentials; see “Specifying Other Runtime Settings” for details.

If you are using a JDBC data source, the following settings also apply:

JGService

Configuration name of the Java Gateway service controlling the Java Gateway server this operation uses.

Important: This setting is required for all JDBC data sources, even if you are using a working SQL gateway
connection with JDBC. For JDBC connections to work, a business service of type
EnsLib.JavaGateway.Service must be present. The SQL adapter requires the name of this config-
uration item and uses its configured settings to connect to the JVM it manages.

JDBCDriver

JDBC driver class name.

If you use a named SQL Gateway Connection as DSN, this value is optional; but if present, it overrides the value
specified in the named JDBC SQL Gateway Connection set of properties.

JDBCClasspath

Classpath for JDBC driver class name, if needed in addition to the ones configured in the Java Gateway Service.

ConnectionAttributes

An optional set of SQL connection attribute options. For ODBC, they have the form:

attr:val,attr:val

For example, AutoCommit:1.

For JDBC, they have the form

attr=val;attr=val

For example, TransactionIsolationLevel=TRANSACTION_READ_COMMITTED.

If you use a named JDBC SQL Gateway Connection as DSN, this value is optional; but if present, it overrides the
value specified in the named JDBC SQL Gateway Connection set of properties.

22 Using SQL Adapters in Productions

Using the SQL Outbound Adapter

3.5.2 Specifying Other Runtime Settings

The EnsLib.SQL.OutboundAdapter provides the following additional runtime settings:

Credentials

ID of the production credentials that can authorize a connection to the given DSN. For information on creating
production credentials, see Configuring Productions.

StayConnected

Specifies whether to keep the connection open between commands, such as issuing an SQL statement or changing
an ODBC driver setting.

• If this setting is 0, the adapter disconnects immediately after each command.

• If this setting is positive, it specifies the idle time, in seconds, after the command completes. The adapter
disconnects after this idle time.

• If this setting is –1, the adapter auto-connects on startup and then stays connected.

If you are managing database transactions as described in “Managing Transactions,” later in this book, do not set
StayConnected to 0.

For any settings not listed here, see Configuring Productions.

Using SQL Adapters in Productions 23

Adding and Configuring the Business Operation

4
Creating Adapter Methods for SQL

This chapter describes how to write adapter methods that perform SQL tasks, by using the tools available within the
EnsLib.SQL package. Typically you write such methods when you use the outbound adapter. This chapter includes the
following topics:

• An overview of when and how you write SQL adapter methods

• How to specify parameters within the SQL statements in this chapter

• How to execute queries

• How to perform updates, inserts, and deletes

• How to execute stored procedures

• How to specify statement attributes for use by the adapter

• How to manage database transactions

• How to manage the database connection, which you can set programmatically

4.1 Overview and Context
In various cases, you need to write methods that perform SQL tasks. The most common cases are as follows:

• If you use the SQL outbound adapter, you write message handlers and add those methods to the message map of the
adapter. Then, for example, if a business operation receives a certain type of message, a message handler could add a
record to a specific table.

• If you customize the startup or teardown of a business host, your custom OnInit() or OnTearDown() methods could
initialize or clean out certain tables.

To perform such tasks, your custom methods will use the methods of the SQL inbound and outbound adapters, both of
which inherit a core set of methods from the EnsLib.Common class. These methods can execute queries, run stored procedures,
insert records, and so on.

Using SQL Adapters in Productions 25

4.2 Using Parameters
If you use parameters when you run queries, perform updates, or execute procedures, you should obtain information on the
ODBC driver you are using. You should look for information on the following:

• Whether this driver supports the ODBC SQLDescribeParam function, as most drivers do.

– If so, you can use the SQL adapter methods ExecuteQuery() and ExecuteUpdate(). Each of these methods accepts
any number of parameter names, calls SQLDescribeParam, and uses the resulting information to automatically
bind those parameters appropriately.

– If not, you must use the alternative methods ExecuteQueryParmArray() and ExecuteUpdateParmArray(). In
this case, you must create and pass a multidimensional array that contains the parameters and all their attributes.

• Whether this driver supports the ODBC SQLDescribeProcedureColumns function, as most of the major drivers do.

– If so, you can use the SQL adapter method ExecuteProcedure(). This method accepts any number of parameter
names, calls SQLDescribeProcedureColumns, and uses the resulting information to automatically bind those
parameters appropriately.

– If not, you must use the alternative method ExecuteProcedureParmArray(). In this case, you must create and
pass a multidimensional array that contains the parameters and all their attributes.

If the driver does not support SQLDescribeProcedureColumns, you will also need to specify whether each
parameter you use is an input, output, or input/output type parameter.

4.2.1 Parameter Attributes

To use parameters in your SQL statements, if the ODBC driver does not support the SQLDescribeParam or
SQLDescribeProcedureColumns function, you will have to create an InterSystems IRIS® multidimensional array that
contains the parameters and all their appropriate attributes. InterSystems IRIS uses these values to ask the driver how to
bind each parameter appropriately:

• SQL data types — These are generally represented in InterSystems IRIS by integers (SqlType values). The InterSystems
IRIS include file EnsSQLTypes.inc contains definitions of the most commonly used values. Here are a few examples:

– 1 represents SQL_CHAR

– 4 represents SQL_INTEGER

– 6 represents SQL_FLOAT

– 8 represents SQL_DOUBLE

– 12 represents SQL_VARCHAR

Note that the include file also lists extended types such as SqlDB2BLOB and SqlDB2CLOB, which are also supported
by InterSystems IRIS.

However, consult the documentation for your database driver to see if it uses any nonstandard values not known to
InterSystems IRIS.

• Precision — For a numeric parameter, this generally refers to the maximum number of digits that are used by the data
type of the parameter. For example, for a parameter of type CHAR(10), the precision is 10. For a nonnumeric parameter,
this generally refers to the maximum length of the parameter.

26 Using SQL Adapters in Productions

Creating Adapter Methods for SQL

• Scale — For a numeric parameter, this refers to maximum number of digits to the right of the decimal point. Not
applicable to nonnumeric parameters.

4.2.2 Specifying Parameters in an InterSystems IRIS Multidimensional Array

To use the methods ExecuteQueryParmArray(), ExecuteUpdateParmArray(), and ExecuteProcedureParmArray(),
you first create an InterSystems IRIS multidimensional array to hold the parameters and their values. Then use this array
within the argument list as shown in the method signature. The array can contain any number of parameters, and it must
have the following structure:

ContentsNode

Must indicate the number of parameters.arrayname

Value of the parameter whose position is integer.arrayname(integer)

SqlType of this parameter, if needed. This is a number that
corresponds to an SQL data type. See the preceding section
for options. See the subsection “SqlType and CType Values ”
for further information.

arrayname(integer,"SqlType")

Local InterSystems IRIS type of this parameter, if needed.This
is a number that corresponds to an SQL data type. See the
preceding section for options. See the subsection “SqlType
and CType Values ” for further information.

arrayname(integer,"CType")

Precision of this parameter, if needed. See the preceding
section. The default is 255.

arrayname(integer,"Prec")

Scale of this parameter, if needed. See the preceding section.
The default is 0.

arrayname(integer,"Scale")

IOType for this parameter, if you need to override the flags in
the procedure. This is used only by the
ExecuteProcedureParmArray() method.

arrayname(integer,"IOType")

• 1 represents an input parameter.

• 2 represents an input/output parameter.

• 4 represents an output parameter.

Used in calls to get parameter values from the driver and in the
calculation to compute CType when only the SqlType subscript
is given.

arrayname(integer,"SqlTypeName")

Boolean value that specifies whether this parameter is a “ large
object. ”

arrayname(integer,"LOB")

Boolean value that specifies whether the parameter contains
binary data rather than character data.

arrayname(integer,"Bin")

Important: If you execute multiple queries that use the parameter array, kill and recreate the parameter array before
each query.

Using SQL Adapters in Productions 27

Using Parameters

The methods ExecuteQueryParmArray(), ExecuteUpdateParmArray(), and ExecuteProcedureParmArray() first
check to see if the given parameter array has descriptor subscripts. (Specifically InterSystems IRIS checks for the "CType"
or "SqlType" subscript for the first parameter.) Then:

• If the array does not have descriptor subscripts, then the method calls the ODBC function SQLDescribeParam or
SQLDescribeProcedureColumns function as appropriate and uses the values that it returns.

• If the array does have descriptor subscripts, then the method uses them.

Also note that you can prevent ExecuteProcedure() from calling DescribeProcedureColumns (which it calls by default).
To do so, you append an asterisk (*) to the end of the pIO argument. See “Executing Stored Procedures,” later in this
chapter.

4.2.2.1 SqlType and CType Values

You can specify both the "SqlType" and "CType" subscripts for any parameter. It is simpler to use only the "SqlType"
subscript.

For any given parameter, the values used are determined as follows:

Actual "CType" value
used

Actual "SqlType" value used"CType"

subscript
"SqlType"

subscript
Scenario

Computed automatically
from "SqlType" value

Value of "SqlType" subscriptNot specifiedSpecified1

Value of "SqlType" subscript
(which is automatically defined
by copying from the "CType"
subscript)

SpecifiedNot specified2

Value determined automatically
by querying the data source if
possible; otherwise InterSystems
IRIS uses 12 (SQL_VARCHAR)

Not specifiedNot specified3

Value of "CType" subscriptValue of "SqlType" subscriptSpecifiedSpecified4

4.3 Executing Queries
You can execute queries within an inbound adapter or within a business service. To execute a query, you use the
ExecuteQuery() or ExecuteQueryParmArray() method of the adapter. These methods use the EnsLib.SQL.GatewayResultSet

and EnsLib.SQL.Snapshot helper classes, which differ as follows:

• A result set (an instance of EnsLib.SQL.GatewayResultSet) must be initialized. When it has been initialized, it has a
live data connection to a data source.

• In contrast, a snapshot (an instance of EnsLib.SQL.Snapshot) is a static object that you can create and populate in var-
ious ways. For example, you can populate it with the data of a result set, either all the rows or a subset of rows (starting
at some row position). A later chapter discusses other ways to populate a snapshot.

Note: This section discusses how to get result sets and snapshots, rather than how to use them. For information on using
these objects, see the chapters “Using Result Sets” and “Using Snapshots.”

28 Using SQL Adapters in Productions

Creating Adapter Methods for SQL

4.3.1 Use Modes

When you use the ExecuteQuery() or the ExecuteQueryParmArray() method, you can receive (by reference) either a
result set or a snapshot, depending on how you invoke the method. To use these methods, you do the following:

1. Ensure that the adapter is connected to a DSN.

2. If you want to receive a snapshot object:

a. Create a new instance of EnsLib.SQL.Snapshot.

b. Optionally specify values for the FirstRow and MaxRowsToGet properties of that instance.

3. Invoke the ExecuteQuery() or the ExecuteQueryParmArray() method, passing the following arguments to it:

a. The snapshot instance, if any.

b. A string that contains the query.

c. Parameters as appropriate for the query and for the method (see next section).

If you did not provide a snapshot instance, the method returns a result set. If you did pass a snapshot instance to the method,
the method creates a new result set, uses it to populate your snapshot instance (using the values of the FirstRow and
MaxRowsToGet properties to choose the rows), and then returns the snapshot.

4.3.2 Syntax for the Methods

To execute a query, use one of the following methods:

ExecuteQuery()

Method ExecuteQuery(ByRef pRS As EnsLib.SQL.GatewayResultSet,
 pQueryStatement As %String,
 pParms...) As %Status

Executes a query. You provide a query string and any number of parameters. The result is returned by reference
in the first argument; the result is an instance of EnsLib.SQL.GatewayResultSet or EnsLib.SQL.Snapshot as described
previously.

The second argument is the query statement to execute. This statement can include the standard SQL ? to represent
replaceable parameters. Note that the statement should not use UPDATE.

ExecuteQueryParmArray()

Method ExecuteQueryParmArray(ByRef pRS As EnsLib.SQL.GatewayResultSet,
 pQueryStatement As %String,
 ByRef pParms) As %Status

Executes a query. This method is similar to the preceding method with the exception of how parameters are
specified. For this method, you specify the parameters in an InterSystems IRIS multidimensional array (pParms),
as described in “Specifying Parameters in an InterSystems IRIS Multidimensional Array,” earlier in this chapter.

Use the ExecuteQueryParmArray() method if you need to specify parameters and if the ODBC driver that you
are using does not support the ODBC SQLDescribeParam function.

4.3.3 Example

The following shows an example method that executes a query:

Using SQL Adapters in Productions 29

Executing Queries

Method GetPhone(pRequest As ESQL.GetPhoneNumberRequest,
 Output pResponse As ESQL.GetPhoneNumberResponse) As %Status
{
 Set pResponse = ##class(ESQL.GetPhoneNumberResponse).%New()
 //need to pass tResult by reference explicitly in ObjectScript
 //Use an adapter to run a query in the Employee database.
 Set tSC = ..Adapter.ExecuteQuery(.tResult,
"Select "_pRequest.Type_" from Employee where EmployeeID="_pRequest.ID)

 //Get the result
 If tResult.Next() {
 Set pResponse.PhoneNumber = tResult.GetData(1)
 } Else {
 //Handle no phone number for example
 Set pResponse.PhoneNumber = ""
 }
 Quit $$$OK
}

4.4 Performing Updates, Inserts, and Deletes
To perform a database update, insert, or delete, use one of the following methods:

ExecuteUpdate()

Method ExecuteUpdate(Output pNumRowsAffected As %Integer,
 pUpdateStatement As %String,
 pParms...) As %Status

Executes an INSERT, UPDATE, or DELETE statement. You can pass any number of parameters for use in the
statement. Notes:

• The number of rows affected is returned as output in the first argument.

• The second argument is the INSERT, UPDATE, or DELETE statement to execute. This statement can include
the standard SQL ? to represent replaceable parameters.

ExecuteUpdateParmArray()

Method ExecuteUpdateParmArray(Output pNumRowsAffected As %Integer,
 pUpdateStatement As %String,
 ByRef pParms) As %Status

Executes an INSERT, UPDATE, or DELETE statement. This method is similar to the preceding method with the
exception of how parameters are specified. For this method, you specify the parameters in an InterSystems IRIS
multidimensional array (pParms), as described in “Specifying Parameters in an InterSystems IRIS Multidimensional
Array,” earlier in this chapter.

You use the ExecuteUpdateParmArray() method if you need to specify parameters and if the ODBC driver that
you are using does not support the ODBC SQLDescribeParam function.

4.4.1 Example

The following example uses the ExecuteUpdate() method:

30 Using SQL Adapters in Productions

Creating Adapter Methods for SQL

/// Insert into NewCustomer table
Method Insert(pReq As ESQL.request,
 Output pResp As ESQL.response1) As %Status
{
 kill pResp
 set pResp=$$$NULLOREF

 set sql="insert into NewCustomer (Name,SSN,City) values (?,?,?)"

 //perform the Insert
 set tSC = ..Adapter.ExecuteUpdate(.nrows,sql,pReq.Name,pReq.SSN,pReq.City)

 //create the response message
 set pResp=##class(ESQL.response1).%New()
 set pResp.AffectedRows=nrows

 if 'tSC write " failed ",tSC quit tSC
 quit 1
}

4.4.2 Example with ExecuteUpdateParmArray

The following example is equivalent to the example for ExecuteUpdate(), earlier in this chapter. This one uses the
ExecuteUpdateParmArray() method:

/// Insert into NewCustomer table
Method InsertWithParmArray(pReq As ESQL.request,
 Output pResp As ESQL.response1) As %Status
{
 kill pResp
 set pResp=$$$NULLOREF

 set sql="insert into NewCustomer (Name,SSN,City) values (?,?,?)"

 //set up multidimensional array of parameters
 //for use in preceding query
 set par(1)=pReq.Name
 set par(2)=pReq.SSN
 set par(3)=pReq.City

 //make sure to set top level of array,
 //which should indicate parameter count
 set par=3

 //perform the Insert
 set tSC = ..Adapter.ExecuteUpdateParmArray(.nrows,sql,.par)

 //create the response message
 set pResp=##class(ESQL.response1).%New()
 set pResp.AffectedRows=nrows

 if 'tSC write " failed ",tSC quit tSC
 quit 1
}

4.5 Executing Stored Procedures
To execute a stored procedure, use one of the following methods:

ExecuteProcedure()

Method ExecuteProcedure(ByRef pResultSnapshots As %ListOfObjects,
 Output pOutputParms As %ListOfDataTypes,
 pQueryStatement As %String,
 pIO As %String = "",
 pInputParms...) As %Status

Executes an SQL CALL statement that runs a stored procedure. You can pass any number of parameters. Notes:

• The result is returned by reference in the first argument as a list of EnsLib.SQL.Snapshot objects.

Using SQL Adapters in Productions 31

Executing Stored Procedures

• You can create a list of new instances of EnsLib.SQL.Snapshot and pass the list into the method as the first
argument. If you do, the method populates these instances and uses the values of its FirstRow and
MaxRowsToGet properties to choose the set of rows that each will represent. The method then returns the list
of instances.

• The second argument is the list of the output values of all scalar output and input/output parameters. If the
procedure returns a scalar return value and your statement retrieves it, this value will be the first output value.

• The third argument is the SQL CALL statement that runs a stored procedure. This statement can include the
standard SQL ? to represent replaceable parameters.

Important: The name of the stored procedure is case-sensitive. Also, make sure that the pQueryStatement
statement supplies an argument for every input or input/output parameter that the SQL query
requires.

• The fourth (optional) argument indicates the type (input, output, or input/output) for each parameter. If you
specify this argument, use a string that consists of the characters i, o, and b; the character at a given position
indicates the type of the corresponding parameter. For example, iob means that the first parameter is input,
the second parameter is output, and the third parameter is both input and output.

Tip: By default, the adapter calls the ODBC function DescribeProcedureColumns to get information
about the parameters and logs warnings if the parameter types specified here are different from the
types returned by that function. To prevent the adapter from making this check, append an asterisk
(*) to the end of this string.

Not all database support all these types of parameters. Be sure to use only the types that are supported by the
database to which you are connecting.

ExecuteProcedureParmArray()

Method ExecuteProcedureParmArray(ByRef pResultSnapshots As %ListOfObjects,
 Output pOutputParms As %ListOfDataTypes,
 pQueryStatement As %String,
 pIO As %String = "",
 ByRef pIOParms) As %Status

Executes an SQL CALL statement that runs a stored procedure. This method is similar to the preceding method
with the exception of how parameters are specified. For this method, you specify the parameters in an InterSystems
IRIS multidimensional array (pParms), as described in “Specifying Parameters in an InterSystems IRIS Multidi-
mensional Array,” earlier in this chapter.

You use the ExecuteProcedureParmArray() method if you need to specify parameters and if the ODBC driver
that you are using does not support the ODBC SQLDescribeParam function.

Also note:

• For a given parameter, if you specify the input/output type within the pIOParms array and within the pIO
argument, the type given in pIOParms array takes precedence.

• If you specify any input/output types within the pIOParms array, then for all output parameters, be sure to
leave the corresponding array nodes undefined.

If you have configured your SQL adapter to use JDBC through the Java Gateway, output parameters that have a
large object value are returned as streams. For compatibility with older versions of InterSystems IRIS, you can
set a global to return these large object output parameters as strings. But even with this global set, if the object
exceeds the size allowed for a string, it is returned as a stream. To set this compatibility behavior for a configuration
item SQLservice, set the global ^Ens.Config("JDBC","LOBasString","SQLservice") to 1.

32 Using SQL Adapters in Productions

Creating Adapter Methods for SQL

4.5.1 Example

The following code executes a stored procedure that has three parameters: an output parameter, an input parameter, and
another output parameter. The input parameter is extracted from the Parameters property of the request message:
pReq.Parameters.GetAt(1). The output parameters are ignored.

 Set tQuery="{ ?=call Sample.Employee_StoredProcTest(?,?) }"
 Set tSC = ..Adapter.ExecuteProcedure(.tRTs,.tOutParms,tQuery,"oio",pReq.Parameters.GetAt(1))
 Set tRes.ParametersOut = tOutParms

In this example, tRTs represents a result set that was previously created.

4.6 Specifying Statement Attributes
When using the SQL adapters, you can specify any driver-dependent statement attributes. To do so:

• If the connection has not been established, set the StatementAttrs property of the adapter equal to a comma-separated
list of attribute-value pairs as follows:

attribute:value,attribute:value,attribute:value,...

All subsequently created statements will inherit these attributes.

For example:

Set ..Adapter.StatementAttrs = "QueryTimeout:10"

• If the connection has already been established, call the SetConnectAttr() method of the adapter. This method takes
two arguments (the attribute name and the desired value) and returns a status. For example:

Set tout= ..Adapter.SetConnectAttr("querytimeout",10)

If a network error is detected, by default, the adapter tries to reconnect and start over. If you are setting connection
attributes such as AutoCommit, do the following so that this reconnect/retry logic can occur: test the status returned
from SetConnectAttr() and return that status value from the business operation in the case of an error.

Note: It is your responsibility to ensure that the attributes you use are supported by the ODBC driver for the database
to which you are connecting. It is beyond the scope of the InterSystems documentation to attempt to compile any
such list.

The most useful places to set statement attributes are as follows:

• Within a message handler method of a business operation, if you use the SQL outbound adapter.

• Within the OnInit() method of a business host.

4.7 Managing Transactions
The SQL adapters provide the following methods that you can use to manage formal database transactions:

SetAutoCommit()

Method SetAutoCommit(pAutoCommit) As %Status [CodeMode = expression]

Using SQL Adapters in Productions 33

Specifying Statement Attributes

Sets autocommit on or off for this adapter connection. This works only after the DSN connection is established.

If you want to set this at connect time, customize the OnInit() method of your business service or operation. In
your custom method, set the ConnectAttrs property.

If you switch on autocommit, do not set StayConnected to 0. This setting specifies whether to stay connected to
the remote system between handling commands:

• For details on how the SQL inbound adapter uses this setting, see “Specifying Other Runtime Settings,” in
the chapter “Using the SQL Inbound Adapter.”

• For details on how the SQL outbound adapter uses this setting, see “Specifying Other Runtime Settings,” in
the chapter “Using the SQL Outbound Adapter.”

If a network error is detected, by default, the adapter tries to reconnect and start over. If you are setting connection
attributes such as AutoCommit, do the following so that this reconnect/retry logic can occur: test the status returned
from SetAutoCommit() and return that status value from the business operation in the case of an error.

Commit()

Method Commit() As %Status

Commits all database activities (within this adapter process) since the last commit.

Rollback()

Method Rollback() As %Status

Rolls back all database activities (within this adapter process) since the last commit.

The following example shows a simple transaction that uses the preceding methods:

Method TransactionExample(pRequest As common.examples.msgRequest2,
 Output pResponse As common.examples.msgResponse) As %Status
{
 #Include %occStatus
 try {
 //initialize variables and objects
 set tSC = $$$OK
 set pResponse = ##class(common.examples.msgResponse).%New()

 #; start the transaction. Set autocommit to 0
 set tSC = ..Adapter.SetAutoCommit(0)
 $$$ThrowOnError(tSC)

 //Example UPDATE, INSERT, DELETE
 set tQueryIns="insert into common_examples.mytable(name,age,datetime)"
 " values ('SAMPLE"$random(9999)_"',40,'"_$zdt($h,3)_"')"

 set tSC = ..Adapter.ExecuteUpdate(.tAffectedRows,tQueryIns)
 $$$ThrowOnError(tSC)

 // finalize transaction
 set tSC=..Adapter.Commit()
 $$$ThrowOnError(tSC)

 }
 catch err{
 if (err.%ClassName(1)="common.err.exception") && ($$$ISERR(err.status)) {
 set tSC = err.status
 }
 else {
 set tSC =
 $system.Status.Error(err.Code,err.Name,err.Location,err.InnerException)
 }
 set pResponse.status = tSC
 do ..Adapter.Rollback()
 }
 Quit $$$OK
}

34 Using SQL Adapters in Productions

Creating Adapter Methods for SQL

Note: It is important to consider the database activities that make up a given transaction. If these activities are contained
within a single business host, you can just use the preceding methods to set up transaction management. However,
if the database activities are contained in multiple business hosts, you must write code (typically within a business
process) to simulate a true rollback.

4.8 Managing the Database Connection
To manage the database connection of an adapter, you can use the following properties and methods of the adapter.

4.8.1 Properties

The following properties control or provide information about the database connection:

Connected

%Boolean

This read-only property indicates if the adapter is currently connected.

ConnectAttrs

%String

An optional set of SQL connection attribute options. For ODBC, they have the form:

attr:val,attr:val

For example, AutoCommit:1.

For JDBC, they have the form

attr=val;attr=val

For example, TransactionIsolationLevel=TRANSACTION_READ_COMMITTED.

Set this property in the OnInit() method of your business operation or business service to specify the options to
use at connection time.

ConnectTimeout

%Numeric

This property specifies the number of seconds to wait on each connection attempt. The default value is 5.

StayConnected

%Numeric

This property specifies whether to stay connected to the remote system:

• For information on how the SQL inbound adapter uses this setting, see “Specifying Other Runtime Settings,”
in the chapter “Using the SQL Inbound Adapter.”

• For information on how the SQL outbound adapter uses this setting, see “Specifying Other Runtime Settings,”
in the chapter “Using the SQL Outbound Adapter.”

Using SQL Adapters in Productions 35

Managing the Database Connection

DSN

%String

This data source name specifies the external data source to connect to. The following example shows the name of
a DSN that refers to a Microsoft Access database:

accessplayground

4.8.2 Methods

Use the following methods to manage the database connection:

Connect()

Method Connect(pTimeout As %Numeric = 30) As %Status

Connects to the data source given by the current value of the DSN property.

Disconnect()

Method Disconnect() As %Status

Disconnects from the data source.

TestConnection()

Method TestConnection()

Tests the connection to the data source.

The adapter classes also provide several setter methods that you can use to set the properties listed in the preceding section.

36 Using SQL Adapters in Productions

Creating Adapter Methods for SQL

5
Using Result Sets

The EnsLib.SQL.GatewayResultSet class represents a special-purpose result set for use in InterSystems IRIS®. An initialized
instance of this class has a live data connection to a data source. The class provides methods to examine the contents of the
result set as well as a method to return a static snapshot.

This chapter describes how to use the EnsLib.SQL.GatewayResultSet class. It discusses the following:

• How to create and initialize a result set

• How to get basic information about the result set

• How to navigate the result set, row by row

• How to get information about the current row of the result set

Note that you can also get a snapshot that contains rows from the result set; see “Using Snapshots.”

5.1 Creating and Initializing a Result Set
To create and initialize an SQL result set:

1. Within an SQL adapter (either EnsLib.SQL.InboundAdapter or EnsLib.SQL.OutboundAdapter), connect to a DSN.

2. Use the ExecuteQuery() or the ExecuteQueryParmArray() method of the adapter. You will receive, by reference,
an instance of EnsLib.SQL.GatewayResultSet.

Note: If you just use the %New() class method, you can create a result set, but it will not be initialized and cannot
contain any data. To initialize the result set, use the procedure described here.

5.2 Getting Basic Information about the Result Set
The following properties of EnsLib.SQL.GatewayResultSet provide basic information about a result set:

• The ColCount property indicates the number of columns in the result set.

• The QueryStatement property indicates the query statement used by this result set.

Using SQL Adapters in Productions 37

5.3 Navigating the Result Set
A result set consists of rows of data. You can use the following methods to navigate through the rows:

Next()

method Next(ByRef pSC As %Status) returns %Integer

Advances the cursor to the next row and caches the row data. Returns 0 if the cursor is at the end of the result set.

SkipNext()

method SkipNext(ByRef pSC As %Status) returns %Integer

Advances the cursor to the next row. Returns 0 if the cursor is at the end of the result set.

5.4 Examining the Current Row of the Result Set
Use the following methods to examine the current row of the result set:

Get()

method Get(pName As %String) returns %String

Returns the value of the column that has the name pName, in the current row.

GetData()

method GetData(pColumn As %Integer) returns %String

Returns the value of the column whose position is specified by pColumn in the current row.

GetColumnName()

method GetColumnName(pColumn As %Integer = 0)

Returns the name of the column whose position is specified by pColumn.

Note: If the source data contains any unnamed columns, the result set automatically provides names for these
columns in the following form: xCol_n

38 Using SQL Adapters in Productions

Using Result Sets

6
Using Snapshots

The EnsLib.SQL.Snapshot class represents a static object that you create and populate in various ways. The class provides
methods for examining the data; more methods are available for this object than for the result set.

This chapter describes how to use the EnsLib.SQL.Shapshot class. It discusses the following:

• How to create a snapshot

• How to get basic information about the snapshot

• How to navigate the snapshot, row by row

• How to get information about the current row of the snapshot

• How to reset a snapshot

6.1 Creating a Snapshot
When you use the SQL inbound adapter, by default, you automatically receive snapshot objects within your business service.
For each row in your query, the adapter creates a snapshot object and sends it as an argument when it calls the ProcessInput()
method of the business service. As noted previously, by default, this snapshot contains only a single row.

You can create a snapshot and populate it in other ways. Some of these techniques were discussed in previous chapters,
but some are new to this chapter.

6.1.1 Creating a Snapshot from a Live Connection

In most cases, you will probably have a live connection to the data source. Specifically, you start with an SQL adapter
(either EnsLib.SQL.InboundAdapter or EnsLib.SQL.OutboundAdapter). Within the adapter, connect to a DSN. Then you can
do any of the following:

• Use the ExecuteProcedure() or ExecuteProcedureParmArray() method of the adapter. Each of these returns the
results as a snapshot.

These methods are discussed in the previous chapter.

• Create a result set (see the previous chapter) and then use the GetSnapshot() method of the result set. This method
has the following signature.

method GetSnapshot(ByRef pSnap As EnsLib.SQL.Snapshot,
 pFetchAll As %Boolean = 0) returns %Status

Using SQL Adapters in Productions 39

Returns a snapshot object by reference in the first argument. If you pass an existing snapshot object to the method, the
method uses the FirstRow and MaxRowsToGet properties of that object to determine which rows to place in the snapshot.
Otherwise, the method uses the default values.

6.1.2 Creating a Snapshot from Static Data

You can also create a snapshot from static data, without having a connection to a DSN. To do so, use any of the following
techniques:

• Use the CreateFromFile(), CreateFromStream(), or CreateFromResultSet class method.

• Create a new instance of a snapshot (via the %New() class method), and then use the ImportFile(),
ImportFromStream(), or ImportFromResultSet() method.

The following list provides the details for these methods, all of which are in the EnsLib.SQL.Shapshot class:

CreateFromFile()

classmethod CreateFromFile(pFilename As %String,
 pRowSeparator As %String,
 pColumnSeparator As %String,
 pColumnWidths As %String,
 pLineComment As %String,
 pStripPadChars As %String,
 pColNamesRow As %Integer,
 pFirstRow As %Integer,
 pMaxRowsToGet As %Integer,
 Output pStatus As %Status) as Snapshot

Creates a new snapshot object and loads it with data from a table-formatted text file. The arguments are as follows:

• pFilename specifies the name of the file to import. This is the only required argument.

• pRowSeparator is one of the following:

– The character that separates one row from the next row. The default is a line feed character.

– A number, preceded by a minus sign, that indicates the line length in characters.

• pColumnSeparator is one of the following:

– The character that separates one column from the next column. There is no default character.

– The number 0, which means that the columns are determined by the pColumnWidths argument; see the
next argument.

– A number, preceded by a minus sign, that indicates the number of initial characters to skip in each row.
In this case, the columns are determined by the pColumnWidths argument; see the next argument.

• pColumnWidths is one of the following:

– A comma-separated list of column widths (number of characters), if the fields in the file are positional.

– The number of columns, if the file uses column separators.

• pLineComment specifies a string after which the rest of a row should be ignored. Within a given row, after
this string is found, the snapshot does not parse the rest of the row into columns.

• pStripPadChars means characters to strip from the beginning and end of a field. The default is the space
character.

• pColNamesRow specifies the index of the row that contains column names, if any.

• pFirstRow specifies the index of the first row (from the file) to include in the snapshot.

40 Using SQL Adapters in Productions

Using Snapshots

• pMaxRowsToGet specifies the maximum number of rows to include in the snapshot.

• pStatus is the status that the method returns when it attempts to create the snapshot.

CreateFromStream()

classmethod CreateFromStream(pIOStream As %IO.I.CharacterStream,
 pRowSeparator As %String,
 pColumnSeparator As %String,
 pColumnWidths As %String,
 pLineComment As %String,
 pStripPadChars As %String,
 pColNamesRow As %Integer,
 pFirstRow As %Integer,
 pMaxRowsToGet As %Integer,
 Output pStatus As %Status) as Snapshot

Creates a new snapshot object and loads it with data from a table-formatted stream. See the comments for
CreateFromFile().

CreateFromResultSet

classmethod CreateFromResultSet(pRS,
 pLegacyMode As %Integer = 1,
 pODBCColumnType As %Boolean = 0,
 pFirstRow As %Integer,
 pMaxRowsToGet As %Integer,
 Output pStatus As %Status) as Snapshot

Creates a new snapshot object and loads it with data from a result set. See the comments for CreateFromFile()
and for ImportFromResultSet.

ImportFile()

 method ImportFile(pFilename As %String,
 pRowSeparator As %String = $C(10),
 pColumnSeparator As %String = $C(9),
 pColumnWidths As %String = "",
 pLineComment As %String = "",
 pStripPadChars As %String = " "_$C(9),
 pColNamesRow As %Integer = 0) as %Status

Imports data from a table-formatted text file. See the comments for CreateFromFile().

ImportFromStream()

method ImportFromStream(pIOStream As %IO.I.CharacterStream,
 pRowSeparator As %String = $C(10),
 pColumnSeparator As %String = $C(9),
 pColumnWidths As %String = "",
 pLineComment As %String = "",
 pStripPadChars As %String = " "_$C(9),
 pColNamesRow As %Integer = 0) as %Status

Here pIOStream is the stream to import. See the comments for CreateFromFile().

ImportFromResultSet()

method ImportFromResultSet(pRS,
 pLegacyMode As %Integer = 1,
 pODBCColumnType As %Boolean = 0) as %Status

Imports a result set into a snapshot instance. The arguments are as follows:

• pRS is an instance of EnsLib.SQL.GatewayResultSet, or a result set in the %SQL package such as
%SQL.StatementResult or %SQL.ISelectResult (%SQL.IResult).

Using SQL Adapters in Productions 41

Creating a Snapshot

• pLegacyMode specifies how to search for meta data. If this argument is 0, then InterSystems IRIS® first tries
to use %GetMetadata. This leads to different source of metadata for legacy result set classes. The default is
1, which maintains previous behavior while still supporting %SQL.* and older classes.

• pODBCColumnType controls how the ColumnType is set. If pODBCColumnType is 1, then ColumnType
text is set to the ODBC type column type text and not the clientType.

6.1.2.1 Example

Consider a file that has the following contents:

col1,col2,col3
value A1,value A2,value A3
value B1, value B2 ,value B3

The following code reads this file, uses it to create a snapshot, and writes simple comments to the Terminal. Notice that
the only arguments used are the filename and the column separator:

 set filename="c:/demo.txt"
 set snap=##class(EnsLib.SQL.Snapshot).%New()
 do snap.ImportFile(filename,,",")
 d show
 quit

show
 w "number of rows in snapshot=",snap.RowCount,!
 while snap.Next()
 {
 w "current row=",snap.%CurrentRow,!
 w "data in first column=",snap.GetData(1),!
 w "data in second column=",snap.GetData(2),!
 w "data in third column=",snap.GetData(3),!
 }
 quit

The output from this routine is as follows:

number of rows in snapshot=3
current row=1
data in first column=col1
data in second column=col2
data in third column=col3
current row=2
data in first column=value A1
data in second column=value A2
data in third column=value A3
current row=3
data in first column=value B1
data in second column=value B2
data in third column=value B3

Notice that line feeds are used by default as row separators. Also notice that by default, leading and trailing spaces are
removed from each field.

6.1.3 Creating a Snapshot Manually

You can also create a snapshot manually, as follows:

1. Create a new instance of a snapshot (via the %New() class method).

2. Use the SetColNames(), SetColSizes(), and SetColTypes() methods to specify the names, sizes, and types of the
columns.

3. Use the AddRow() method to add a row of data.

The following list provides the details for these methods, all of which are in the EnsLib.SQL.Shapshot class:

42 Using SQL Adapters in Productions

Using Snapshots

AddRow()

method AddRow(pCol...) returns %Status

Adds a row that contains the given data. The argument list is the row data, field by field. For example, the following
adds a row to a snapshot. In this case, the column names are ID, Name, and DOB, respectively:

 set sc=snapshot.SetColNames("1023","Smith,Bob","06-06-1986")

SetColNames()

 method SetColNames(pColName...) returns %Status

Sets the names of the columns, in the order given by the arguments. For example, the following sets the column
names as ID, Name, and DOB, respectively:

 set sc=snapshot.SetColNames("ID","Name","DOB")

SetColSizes()

method SetColSizes(pColSize...) returns %Status

Sets the sizes of the columns (the width in number of characters), in the order given by the arguments.

SetColTypes()

method SetColTypes(pColType...) returns %Status

Sets the types of the columns, in the order given by the arguments.

Note: Remember that the SQL type names vary between different database vendors. Use the type names that
are appropriate for the database with which you are working. The SetColTypes() method does not perform
any checking of your type names.

6.2 Getting Basic Information about the Snapshot
The following properties of the snapshot provide basic information:

• The %CurrentRow property is an integer that indicates the current row.

• The AtEnd property is true if the current row is the last row; otherwise it is false.

• The ColCount properties indicates the number of columns in the snapshot.

• The RowCount properties indicates the number of columns in the snapshot. This property counts only the rows that do
not start with the comment string, if any. To create a snapshot that includes comments, use the CreateFromFile() and
related methods, and specify a value for the pLineComment argument. A row is counted if it begins without the comment
string but includes the comment string in a later position.

6.3 Navigating the Snapshot
A snapshot consists of rows of data. You can use the following methods to navigate through the rows:

Using SQL Adapters in Productions 43

Getting Basic Information about the Snapshot

Next()

method Next(ByRef pSC As %Status) returns %Integer

Advances the cursor to the next row. Returns 0 if the cursor is at the end of the snapshot.

Rewind()

method Rewind() returns %Status

Returns the cursor to the first row of the snapshot.

6.4 Examining the Current Row of the Snapshot
Use the following methods to examine the current row of the snapshot:

Get()

method Get(pName As %String, pRow=..%CurrentRow) returns %String

Returns the value of the column that has the name pName, in the indicated row (by default, the current row).

GetData()

method GetData(pColumn As %Integer, pRow=..%CurrentRow) returns %String

Returns the value of the column whose position is specified by pColumn in the indicated row (by default, the
current row).

GetColumnName()

method GetColumnName(pColumn As %Integer = 0)

Returns the name of the column whose position is specified by pColumn.

GetColumnId()

method GetColumnId(pName As %String) returns %Integer

Returns the ordinal position of the column that has the name pName. This method is useful when you work with
unfamiliar tables.

GetColumnSize()

method GetColumnSize(pColumn As %Integer = 0)

Returns the size (the width in number of characters) of the database field whose position is specified by pColumn.

GetColumnType()

method GetColumnType(pColumn As %Integer = 0)

Returns the type of the column whose position is specified by pColumn.

Note: SQL type names vary between different database vendors.

44 Using SQL Adapters in Productions

Using Snapshots

6.5 Resetting a Snapshot
If you have an existing snapshot object, you can clear the data and definitions from it. To do so, use the Clean() method,
which returns a status. This is slightly more efficient than destroying the snapshot and creating a new one via %New().

Using SQL Adapters in Productions 45

Resetting a Snapshot

	Table of Contents
	About This Book
	1 About the SQL Adapters
	1.1 Basic Tools
	1.2 Helper Classes
	1.3 General Use

	2 Using the SQL Inbound Adapter
	2.1 Overall Behavior
	2.2 Creating a Business Service to Use the Adapter
	2.3 Implementing the OnProcessInput() Method
	2.4 Using the Default Snapshot Object
	2.5 Initializing the Adapter
	2.5.1 Initializing Persistent Values
	2.5.2 Examples

	2.6 Adding and Configuring the Business Service
	2.7 Specifying the Data Source Name
	2.8 Specifying Inbound Queries
	2.8.1 Specifying the Query
	2.8.2 Specifying Parameters

	2.9 Processing Only New Rows
	2.9.1 Available Tools
	2.9.2 Practical Ways to Not Reprocess Rows

	2.10 Reprocessing Rows
	2.11 Examples That Use Query Settings
	2.11.1 Example 1: Using KeyFieldName
	2.11.2 Example 2: Using &%LastKey or %LastKey
	2.11.3 Example 3: Using DeleteQuery
	2.11.4 Example 4: Working with a Composite Key
	2.11.5 Example 5: No KeyFieldName

	2.12 Specifying Other Runtime Settings
	2.13 Resetting Rows Previously Processed by the Inbound Adapter

	3 Using the SQL Outbound Adapter
	3.1 Default Behavior
	3.2 Creating a Business Operation to Use the Adapter
	3.3 Creating Methods to Perform SQL Operations
	3.4 Handling Multiple SQL Statements per Message
	3.5 Adding and Configuring the Business Operation
	3.5.1 Specifying the Data Source Name
	3.5.2 Specifying Other Runtime Settings

	4 Creating Adapter Methods for SQL
	4.1 Overview and Context
	4.2 Using Parameters
	4.2.1 Parameter Attributes
	4.2.2 Specifying Parameters in an InterSystems IRIS Multidimensional Array

	4.3 Executing Queries
	4.3.1 Use Modes
	4.3.2 Syntax for the Methods
	4.3.3 Example

	4.4 Performing Updates, Inserts, and Deletes
	4.4.1 Example
	4.4.2 Example with ExecuteUpdateParmArray

	4.5 Executing Stored Procedures
	4.5.1 Example

	4.6 Specifying Statement Attributes
	4.7 Managing Transactions
	4.8 Managing the Database Connection
	4.8.1 Properties
	4.8.2 Methods

	5 Using Result Sets
	5.1 Creating and Initializing a Result Set
	5.2 Getting Basic Information about the Result Set
	5.3 Navigating the Result Set
	5.4 Examining the Current Row of the Result Set

	6 Using Snapshots
	6.1 Creating a Snapshot
	6.1.1 Creating a Snapshot from a Live Connection
	6.1.2 Creating a Snapshot from Static Data
	6.1.3 Creating a Snapshot Manually

	6.2 Getting Basic Information about the Snapshot
	6.3 Navigating the Snapshot
	6.4 Examining the Current Row of the Snapshot
	6.5 Resetting a Snapshot

