
Using TCP Adapters in
Productions

Version 2019.4
2020-01-28

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using TCP Adapters in Productions
InterSystems IRIS Data Platform Version 2019.4 2020-01-28
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

1 Using the Inbound TCP Adapters ... 3
1.1 Overview of Inbound TCP Adapter .. 3
1.2 Overall Behavior .. 4
1.3 Creating a Business Service to Use a TCP Inbound Adapter ... 5
1.4 Implementing the OnProcessInput() Method ... 5

1.4.1 Signature for OnProcessInput() for EnsLib.TCP.CountedInboundAdapter 5
1.4.2 Signature for OnProcessInput() for EnsLib.TCP.CountedXMLInboundAdapter 6
1.4.3 Signature for OnProcessInput() for EnsLib.TCP.TextLineInboundAdapter 6
1.4.4 Implementing OnProcessInput() .. 6

1.5 Example for EnsLib.TCP.TextLineInboundAdapter .. 7
1.6 Adding and Configuring the Business Service ... 7

2 Using the Outbound TCP Adapters .. 9
2.1 Overview of Outbound TCP Adapter ... 9
2.2 Overall Behavior .. 10
2.3 Creating a Business Operation to Use a TCP Outbound Adapter .. 10
2.4 Creating Message Handler Methods .. 11

2.4.1 Calling Adapter Methods from the Business Operation .. 12
2.5 Example for EnsLib.TCP.CountedOutboundAdapter .. 13
2.6 Adding and Configuring the Business Operation ... 13

3 Special Topics .. 15
3.1 Adding a TCP Status Service ... 15
3.2 Creating Custom TCP Adapter Classes .. 16
3.3 Common Customizations in TCP Adapter Subclasses ... 17

Reference for Settings .. 19
Settings for the TCP Inbound Adapters .. 20
Settings for the TCP Outbound Adapters ... 23

Using TCP Adapters in Productions iii

About This Book

TCP is a transport layer protocol that supports many types of higher-level communication protocol. This book describes
how to use the InterSystems IRIS® production TCP adapters, which support several simple types of TCP, with inbound
and outbound versions of each type.

This book contains the following sections:

• Using the TCP Inbound Adapters

• Using the TCP Outbound Adapters

• Special Topics

• Reference for Settings

For a detailed outline, see the table of contents.

The following books provide related information:

• Developing Productions describes how to create productions in general.

• Best Practices for Creating Productions describes best practices for organizing and developing productions.

• Configuring Productions describes how to configure the settings for productions, business hosts, and adapters. It provides
details on settings not discussed in this book.

Using TCP Adapters in Productions 1

1
Using the Inbound TCP Adapters

This chapter describes how to use each of the TCP inbound adapters (EnsLib.TCP.CountedInboundAdapter,
EnsLib.TCP.CountedXMLInboundAdapter, and EnsLib.TCP.TextLineInboundAdapter). It contains the following sections:

• Overview of Inbound TCP Adapter

• Overall Behavior

• Creating a Business Service to Use a TCP Inbound Adapter

• Implementing the OnProcessInput() Method

• Example for EnsLib.TCP.TextLineInboundAdapter

• Adding and Configuring the Business Service

Tip: InterSystems IRIS® also provides specialized business service classes that use TCP adapters, and one of those
might be suitable for your needs. If so, no programming would be needed. See “Connectivity Options” in Intro-
ducing Interoperability Productions.

Also, you can develop a new inbound adapter class based on the EnsLib.TCP.InboundAdapter or any of its subclasses.
See the section “Creating Custom TCP Adapter Classes,” later in this book.

1.1 Overview of Inbound TCP Adapter
InterSystems IRIS provides the following inbound TCP adapters, all of which are subclasses of EnsLib.TCP.InboundAdapter:

• EnsLib.TCP.CountedInboundAdapter supports incoming TCP connections over which a TCP client and TCP listener
exchange blocks of data, with the block length specified in the first 4 bytes of the block. The adapter uses the block
length to acquire the meaningful portion of the data from the client application.

• EnsLib.TCP.CountedXMLInboundAdapter acts as a TCP listener for an XTE server. The adapter receives XML data in
counted TCP format and imports the XML data into InterSystems IRIS. The result is an instantiated InterSystems IRIS
object.

• EnsLib.TCP.TextLineInboundAdapter supports incoming TCP connections over which a TCP client and TCP listener
exchange data as text strings that end with a line terminator character. The default terminator is the newline character
(ASCII 10).

An important example of a business service that uses the EnsLib.TCP.TextLineInboundAdapter is the built-in business
service class EnsLib.TCP.StatusService. This class provides a command-line interface that allows a console user or

Using TCP Adapters in Productions 3

command-line script to retrieve basic status information from a running production. For more information, see “Adding
a TCP Status Service,” later in this book.

1.2 Overall Behavior
Each TCP inbound adapter checks for data on a specified port, reads the input, and sends the input as a stream to the asso-
ciated business service. The business service, which you create and configure, uses this stream and communicates with the
rest of the production. The following figure shows the overall flow:

In more detail:

1. Each time the adapter encounters input from its configured data source, it calls the internal ProcessInput() method of
the business service class, passing the stream as an input argument.

2. The internal ProcessInput() method of the business service class executes. This method performs basic production tasks
such as maintaining internal information as needed by all business services. You do not customize or override this
method, which your business service class inherits.

3. The ProcessInput() method then calls your custom OnProcessInput() method, passing the input object. The requirements
for this method are described later in this chapter.

The response message follows the same path, in reverse.

4 Using TCP Adapters in Productions

Using the Inbound TCP Adapters

1.3 Creating a Business Service to Use a TCP Inbound
Adapter
To use any of the TCP adapters in your production, create a new business service class as described here. Later, add it to
your production and configure it.

You must also create appropriate message classes, if none yet exist. See “Defining Messages” in Developing Productions.

The following list describes the basic requirements of the business service class:

• Your business service class should extend Ens.BusinessService.

• In your class, the ADAPTER parameter should equal EnsLib.TCP.CountedInboundAdapter,
EnsLib.TCP.CountedXMLInboundAdapter, or EnsLib.TCP.TextLineInboundAdapter.

• Your class must implement the OnProcessInput() method, as described in “Implementing the OnProcessInput Method.”

• Your class can implement the OnConnect() callback method. This method is called each time the TCP inbound adapter
establishes a new connection to or from a remote system.

If you implement this method, it must have the following signature:

Method OnConnect(pTimeout As %Numeric) As %Status

Implement OnConnect() if you need to take some action each time a new connection is established, for example to
send a logon sequence or a handshake token. The timeout argument is automatically provided by the TCP inbound
adapter. It takes its value from the Read Timeout adapter setting. For details about Read Timeout, see “Reference for
Settings.”

If OnConnect() returns an error status, the new connection fails and the adapter is disconnected. If an untrapped
exception occurs within OnConnect(), the adapter catches it and continues as if OnConnect() were not implemented.

• For other options and general information, see “Defining a Business Service Class” in Developing Productions.

Note: Studio provides a wizard that you can use to create a business service stub. To access this wizard, click File —>

New and then click the Production tab. Then click Business Service and click OK. Note that the wizard provides
a generic input argument. If you use the wizard, InterSystems recommends that you edit the method signature to
use the specific arguments needed with the adapter you chose; see the next section.

1.4 Implementing the OnProcessInput() Method
This section describes the method signature for OnProcessInput(), which depends upon the adapter, and describes how
to implement this method.

1.4.1 Signature for OnProcessInput() for EnsLib.TCP.CountedInboundAdapter

If your business service class uses EnsLib.TCP.CountedInboundAdapter, your OnProcessInput() method should have the
following signature:

Method OnProcessInput(pInput As %Library.GlobalCharacterStream,
 Output pOutput As %Library.AbstractStream) As %Status

Where:

Using TCP Adapters in Productions 5

Creating a Business Service to Use a TCP Inbound Adapter

• pInput contains the incoming data stream that the TCP client has directed to the adapter.

• pOutput contains any response that the business service might provide to the TCP client.

1.4.2 Signature for OnProcessInput() for
EnsLib.TCP.CountedXMLInboundAdapter

If your business service class uses EnsLib.TCP.CountedXMLInboundAdapter, your OnProcessInput() method should have
the following signature:

Method OnProcessInput(pInput As %RegisteredObject,
 Output pOutput As %RegisteredObject) As %Status

Where:

• pInput can be any of the objects specified by the Accept Class Names adapter setting.

For details about Accept Class Names, see “Reference for Settings.”

• pOutput contains any response that you might need to return to the XTE server.

1.4.3 Signature for OnProcessInput() for EnsLib.TCP.TextLineInboundAdapter

If your business service class uses EnsLib.TCP.TextLineInboundAdapter, your OnProcessInput() method should have the
following signature:

Method OnProcessInput(pInput As Ens.StringContainer,
 Output pOutput As Ens.StringContainer) As %Status

Where:

• pInput contains the incoming line of text.

• pOutput contains the outgoing response string (if any).

1.4.4 Implementing OnProcessInput()

In all cases, the OnProcessInput() method should do some or all of the following:

1. Examine the input object (pInput) and decide how to use it.

2. Create an instance of the request message, which will be the message that your business service sends.

For information on creating message classes, see “Defining Messages” in Developing Productions.

3. For the request message, set its properties as appropriate, using values in the input.

4. Call a suitable method of the business service to send the request to some destination within the production. Specifically,
call SendRequestSync(), SendRequestAsync(), or (less common) SendDeferredResponse(). For details, see
“Sending Request Messages” in Developing Productions

Each of these methods returns a status (specifically, an instance of %Status).

5. Make sure that you set the output argument (pOutput). Typically you set this equal to the response message that you
have received. This step is required.

6. If the data source expects an acknowledgment or response to its input, OnProcessInput() must create this response
and relay it to the data source, via the adapter.

7. Return an appropriate status. This step is required.

6 Using TCP Adapters in Productions

Using the Inbound TCP Adapters

1.5 Example for EnsLib.TCP.TextLineInboundAdapter
The following is an example of a business service class that uses EnsLib.TCP.TextLineInboundAdapter.

Class TestTCPTextLine.AuthorizationTCPService Extends Ens.BusinessService
{
/// Name of the adapter class
Parameter ADAPTER = "EnsLib.TCP.TextLineInboundAdapter";

Method OnProcessInput(pInput As Ens.StringContainer,
 pOutput As Ens.StringContainer) As %Status
{
 set $ZT = "EXCEPTION"
 set st = $$$OK

 do {
 if ('$isobject($get(pInput))) { quit }

 // Input must have the following format: 'PatientCode:ProcedureCode'
 set tSubject = pInput.StringValue
 $$$TRACE("received line "_tSubject)

 set req = ##class(TestTCPTextLine.AuthorizationRequest).%New()
 set req.PatientCode = $piece(tSubject,":",1)
 set req.ProcedureCode = $piece(tSubject,":",2)

 set st = ..SendRequestSync("AuthorizationProcess", req, .resp)
 quit:$$$ISERR(st)

 set pOutput=
 ##class(Ens.StringContainer).%New(resp.AuthorizationFlag_
 ":"_resp.AuthorizationCode)
 } while (0)

EXIT
 //do ..Adapter.Disconnect()
 quit st

EXCEPTION
 set $ZT = ""
 set st = $$$EnsSystemError
 goto EXIT
}
}

1.6 Adding and Configuring the Business Service
To add your business service to a production, use the Management Portal to do the following:

1. Add an instance of your business service class to the production.

2. Configure the business service. For information on the settings, see “Reference for Settings.”

When you configure the business service, you specify a value for the Allowed IP Addresses settings, along other settings.
Note that Allowed IP Addresses provides a way to enable the adapter to initiate the connection.

3. Enable the business service.

4. Run the production.

Using TCP Adapters in Productions 7

Example for EnsLib.TCP.TextLineInboundAdapter

2
Using the Outbound TCP Adapters

This chapter describes how to use each of the TCP outbound adapters (EnsLib.TCP.CountedOutboundAdapter,
EnsLib.TCP.CountedXMLOutboundAdapter, and EnsLib.TCP.TextLineOutboundAdapter). It contains the following sections:

• Overview of Outbound TCP Adapter

• Overall Behavior

• Creating a Business Operation to Use a TCP Outbound Adapter

• Creating Message Handler Methods

• Example for EnsLib.TCP.CountedOutboundAdapter

• Adding and Configuring the Business Operation

Tip: InterSystems IRIS® also provides specialized business service classes that use TCP adapters, and one of those
might be suitable for your needs. If so, no programming would be needed. See “Connectivity Options” in Intro-
ducing Interoperability Productions.

Also, you can develop a new outbound adapter class based on the EnsLib.TCP.OutboundAdapter or any of its sub-
classes. See the section “Creating Custom TCP Adapter Classes,” later in this book.

2.1 Overview of Outbound TCP Adapter
InterSystems IRIS provides the following outbound TCP adapters, all of which are subclasses of EnsLib.TCP.OutboundAdapter:

• EnsLib.TCP.CountedOutboundAdapter contains methods to read or write blocks of data across the TCP connection.
InterSystems IRIS acts as a TCP client exchanging blocks of data with a TCP listener. The block length specified in
the first 4 bytes of the block. This convention allows a business operation to send requests to an external TCP server
for fulfillment.

• EnsLib.TCP.CountedXMLOutboundAdapter sends XML exported objects out as a counted block of bytes over a TCP
connection and imports a response object.

• EnsLib.TCP.TextLineOutboundAdapter contains methods to read or write text strings across a TCP connection. Inter-
Systems IRIS acts as a TCP client exchanging blocks of data with a TCP listener. The default terminator for the text
strings is the newline character (ASCII 10).

Using TCP Adapters in Productions 9

2.2 Overall Behavior
Within a production, an outbound adapter is associated with a business operation that you create and configure. The business
operation receives a message from within the production, looks up the message type, and executes the appropriate method.
This method usually executes methods of the associated adapter.

2.3 Creating a Business Operation to Use a TCP Outbound
Adapter
To create a business operation to use a TCP outbound adapter, you create a new business operation class. Later, add it to
your production and configure it.

You must also create appropriate message classes, if none yet exist. See “Defining Messages” in Developing Productions.

The following list describes the basic requirements of the business operation class:

• Your business operation class should extend Ens.BusinessOperation.

• In your class, the ADAPTER parameter should equal EnsLib.TCP.CountedOutboundAdapter,
EnsLib.TCP.CountedXMLOutboundAdapter, or EnsLib.TCP.TextLineOutboundAdapter.

• In your class, the INVOCATION parameter should specify the invocation style you want to use, which must be one of
the following.

– Queue means the message is created within one background job and placed on a queue, at which time the original
job is released. Later, when the message is processed, a different background job is allocated for the task. This is
the most common setting.

– InProc means the message will be formulated, sent, and delivered in the same job in which it was created. The job
will not be released to the sender’s pool until the message is delivered to the target. This is only suitable for special
cases.

• Your class must define a message map that includes at least one entry. A message map is an XData block entry that
has the following structure:

XData MessageMap
{
<MapItems>
 <MapItem MessageType="messageclass">
 <Method>methodname</Method>
 </MapItem>
 ...
</MapItems>
}

• Your class should define all the methods named in the message map. These methods are known as message handlers.
Each message handler should have the following signature:

Method Sample(pReq As RequestClass, Output pResp As ResponseClass) As %Status

Here Sample is the name of the method, RequestClass is the name of a request message class, and ResponseClass is
the name of a response message class. In general, the method code will refer to properties and methods of the Adapter

property of your business operation.

For information on defining message classes, see “Defining Messages” in Developing Productions.

10 Using TCP Adapters in Productions

Using the Outbound TCP Adapters

For information on defining the message handler methods, see “Creating Message Handler Methods,” later in this
chapter.

• Your class can implement the OnConnect() callback method. This method is called each time the TCP outbound
adapter establishes a new connection to or from a remote system.

If you implement OnConnect() method, it must have the following signature:

Method OnConnect(pTimeout As %Numeric) As %Status

Implement this method if you need to take some action each time a new connection is established, for example to send
a logon sequence or a handshake token. The timeout argument is automatically provided by the TCP outbound adapter.
It takes its value from the ConnectTimeout adapter setting. For details, see “Settings for the TCP Outbound Adapters.”

If OnConnect() returns an error status, the new connection fails and the adapter is disconnected. If an untrapped
exception occurs within OnConnect(), the adapter catches it and continues as if OnConnect() were not implemented.

• For other options and general information, see “Defining a Business Operation Class” in Developing Productions.

The following example shows the general structure that you need:

Class ETCP.NewOperation1 Extends Ens.BusinessOperation
{
Parameter ADAPTER = "EnsLib.TCP.CountedOutboundAdapter";

Parameter INVOCATION = "Queue";

Method Sample(pReq As RequestClass, Output pResp As ResponseClass) As %Status
{
 Quit $$$ERROR($$$NotImplemented)
}

XData MessageMap
{
<MapItems>
 <MapItem MessageType="RequestClass">
 <Method>Sample</Method>
 </MapItem>
</MapItems>
}
}

Note: Studio provides a wizard that you can use to create a business operation stub similar to the preceding. To access
this wizard, click File —> New and then click the Production tab. Then click Business Operation and click OK.

2.4 Creating Message Handler Methods
When you create a business operation class for use with a TCP outbound adapter, typically your biggest task is writing
message handlers for use with this adapter, that is, methods that receive production messages and then write files.

Each message handler method should have the following signature:

Method Sample(pReq As RequestClass, Output pResp As ResponseClass) As %Status

Here Sample is the name of the method, RequestClass is the name of a request message class, and ResponseClass is the
name of a response message class.

In general, the method should do the following:

1. Examine the inbound request message.

2. Using the information from the inbound request, call a method of the Adapter property of your business operation. For
example, the following line invokes the Connect() method:

Using TCP Adapters in Productions 11

Creating Message Handler Methods

 set sc=..Adapter.Connect()

See “Calling Adapter Methods from the Business Operation.”

3. Make sure that you set the output argument (pOutput). Typically you set this equal to the response message. This
step is required.

4. Return an appropriate status. This step is required.

2.4.1 Calling Adapter Methods from the Business Operation

Connect()

Method Connect(pTimeout As %Numeric) As %Status

Applies to all TCP outbound adapters.

Connect() opens a TCP socket to a port on the TCP listener machine. Connect() has one input argument, a
%Numeric value that identifies the number of seconds to wait for the connection attempt to succeed. A typical call
to the Connect() method gives this input argument the value of the configurable ConnectTimeout property.

If the Stay Connected adapter setting is set to –1, InterSystems IRIS creates the connection automatically at startup
time, from within the OnInit() method. See “Reference for Settings.”

Disconnect()

Method Disconnect()

Applies to all TCP outbound adapters.

Disconnect() takes down the connection to the TCP listener.

SendMessageStream()

Method SendMessageStream(pRequestStream As %Stream.Object,
 ByRef pResponseStream As %CharacterStream = "%GlobalCharacterStream")
 As %Status

Applies to EnsLib.TCP.CountedOutboundAdapter

SendMessageStream() sends the stream contents as a counted block on the TCP socket.

SendMessageString()

Method SendMessageString(pRequestString As %String,
 Output pResponseString As %String) As %Status

Applies to EnsLib.TCP.CountedOutboundAdapter and EnsLib.TCP.TextLineOutboundAdapter

SendMessageString() sends the string contents as a counted block on the TCP socket.

SendMessageXMLObj()

Method SendMessageXMLObj(pRequest As %RegisteredObject,
 Output pResponse As %RegisteredObject) As %Status

Applies to EnsLib.TCP.CountedXMLOutboundAdapter

SendMessageXMLObj() sends the request object to the TCP listener as a counted XML block. If the Get Reply

adapter setting is True, SendMessageXMLObj() also gets a reply from the TCP listener as a counted XML block,
which it imports as an InterSystems IRIS object. For details on Get Reply, see “Reference for Settings.”

12 Using TCP Adapters in Productions

Using the Outbound TCP Adapters

TestConnection()

Method TestConnection()

Applies to all TCP outbound adapters.

TestConnection() corrects the properties reflecting the connection state. If the adapter is connected,
TestConnection() returns True. If not, TestConnection() calls Disconnect() and returns False.

2.5 Example for EnsLib.TCP.CountedOutboundAdapter
The following is an example of a business operation class that references the EnsLib.TCP.CountedOutboundAdapter.

Class Test.GeneralTCPOperation Extends Ens.BusinessOperation
{
 Parameter ADAPTER = "EnsLib.TCP.CountedOutboundAdapter";
 Parameter MAXREAD=30000;

 Method OnMessage(pReq As Test.GeneralSendRequest,
 Output pResponse As Test.GeneralSendResponse) As %Status
 {
 Set str=
 pReq.Hr_pReq.DataLth_pReq.BID_pReq.Hr2_pReq.HrVacant_pReq.Cat_pReq.Hr3_pReq.Hr4
 Set tTextStream= ##class(%GlobalCharacterStream).%New()
 Set tSC=tTextStream.Write(str)
 Do pReq.Body2.Read(32) // Throw it away
 Set len=..#MAXREAD
 Set token= pReq.Body2.Read(.len)
 Set i=0
 While(len>0) {
 Set i=i+1
 Do tTextStream.Write(token)
 Set len=..#MAXREAD
 Set token= pReq.Body2.Read(.len)
 }
 Set tSC=
 ..Adapter.SendMessageStream(tTextStream,.tStreamReply) Quit:$$$ISERR(tSC) tSC
 Set pResponse=##class(Test.GeneralSendResponse).%New()
 Do tStreamReply.Rewind()
 Set pResponse.Body = tStreamReply.Read(,.tSC)
 Quit tSC
 }
}

2.6 Adding and Configuring the Business Operation
To add your business operation to a production, use the Management Portal to do the following:

1. Add an instance of your business operation class to the production.

2. Configure the business operation. For information on the settings, see “Reference for Settings.”

3. Enable the business operation.

4. Run the production.

Using TCP Adapters in Productions 13

Example for EnsLib.TCP.CountedOutboundAdapter

3
Special Topics

This chapter discusses the following additional topics:

• Adding a TCP Status Service

• Creating Custom TCP Adapter Classes

• Common Customizations in TCP Adapter Subclasses

For general information on customizing the callback methods of adapters, see “Less Common Tasks” in Developing
Productions.

Tip: InterSystems IRIS® also provides specialized business service classes that use TCP adapters, and one of those
might be suitable for your needs. If so, no programming would be needed. See “Connectivity Options” in Intro-
ducing Interoperability Productions.

3.1 Adding a TCP Status Service
The EnsLib.TCP.StatusService class parses an incoming text string to determine what type of production status information
is being requested, and then produces a reply string suitable for writing out to the console screen. A user can interact with
the status service directly, or write a command script that contacts the status service, issues commands, and writes the
replies to a text file for later analysis.

A developer enables interactions via the status service as follows:

1. Add an instance of EnsLib.TCP.StatusService to the production.

2. Configure the instance of EnsLib.TCP.StatusService to accept communications via a particular TCP port. Set a Port

number and a list of Allowed IP Addresses from which to accept connections. These are only two of the several settings
that are available to configure the TCP text line inbound adapter associated with the status service. For details, see
“Reference for Settings.”

Once you have completed these steps, any time the status service is enabled and running, a user or command-line script
can initiate a Telnet connection to the configured Port and send commands to the status service. Each command must be a
text string that ends with the newline character (ASCII 10). The reply strings will also terminate with a newline.

The following table describes the supported command lines and the contents of the text string returned in each case.

Using TCP Adapters in Productions 15

Text String ReturnedCommand Line

The full name of the InterSystems IRIS software version.build

When you enter this command with the configured name of any business host
in the currently running production, the status service returns a string that
expresses the current state of that business host.

A host that has currently running jobs, or active connections, records those
activities in the returned string. If the identified host is not a member of the cur-
rently running production, the returned string indicates this.

configitemstatusname

No string is returned. This command disconnects from the status service.You
may enter x instead of exit

exit

If InterSystems IRIS is running, this returns the start time of the currently running
production, expressed in local time coordinates. Otherwise, it returns a string
with the message <UNDEFINED>

localstarttime

The current time, in local time coordinates.localtime

The interoperability-enabled namespace where the currently running production
resides.

namespace

The configured name of the currently running production.production

No string is returned. This command disconnects from the status service.You
may enter q instead of quit

quit

If InterSystems IRIS is running, this returns the start time of the currently running
production, is expressed in universal time coordinates (UTC). Otherwise, it returns
a string with the message <UNDEFINED>

utcstarttime

The current time, in universal time coordinates (UTC).utctime

The abbreviated name of the InterSystems IRIS software version, for example
2018.1.0.514/2171

version

Same as exitx

3.2 Creating Custom TCP Adapter Classes
To create a custom subclass of a TCP adapter class, do the following in Studio:

1. On the File menu, click New, and then click the General tab.

2. Start the New Class Wizard by clicking InterSystems IRIS Class Definition and clicking OK.

a. Enter a package and class name and click Next.

Important: Be sure to avoid reserved package names; see “Reserved Package Names” in Developing Pro-
ductions.

b. Click Extends for the Class type.

c. Click Browse next to Name of super class and navigate to the class that you want to subclass.

d. Click OK.

16 Using TCP Adapters in Productions

Special Topics

e. Click Finish.

The result is a template class like the following, depending on the class you chose:

Class MyTest.NewClass1 Extends EnsLib.TCP.InboundAdapter
{

}

3. You can override any property, method, class parameter, or other class member inherited from the class or its parent
classes, or you can add new class members. The only requirements are as follows:

• An inbound adapter class must implement the OnConnected() method.

In your implementation, use helper methods inherited by your class.

• An outbound adapter class define methods that create a TCP connection, read or write over the connection, and
disconnect.

To define these methods, use helper methods inherited by your class.

4. Compile the class, which also saves it.

3.3 Common Customizations in TCP Adapter Subclasses
The following list suggests some common customizations in TCP adapter subclasses, in addition to implementing the
methods that the adapter needs:

• You can define a different value for InitialExpressions for the Terminators property.

To specify an ASCII character, use the ObjectScript function $CHAR (abbreviated to $C). The following example
from EnsLib.TCP.TextLineInboundAdapter sets Terminators to the newline character (ASCII 10):

Property Terminators As %String [InitialExpression = {$C(10)}];

For more information about functions like $CHAR, see “ObjectScript Functions” in the ObjectScript Reference.

You can set Terminators to a single character or to a multi-character string. If you supply a string for the Terminators

value, InterSystems IRIS uses the string as follows:

– Any one of the characters in the string serves to terminate the input.

– The complete string of characters is appended to the output.

• You can add properties and methods.

• You can add and remove settings. See “Adding and Removing Settings” in the chapter “Programming in InterSystems
IRIS” in Developing Productions.

• If you need to require login credentials for the connection, simply add the property name Credentials to the
SETTINGS list. The Credentials property is already defined as a %String in the base class Ens.Adapter.

• (For inbound adapters) You can also enforce a pool size of 1 by setting the parameter SINGLEPOOLJOB = 1:

/// Force a single listener job regardless of PoolSize setting
Parameter SINGLEPOOLJOB = 1;

Any subclass of this adapter class or a business service class that uses such an adapter class can use this parameter in
its class code to better control the pool size.

Using TCP Adapters in Productions 17

Common Customizations in TCP Adapter Subclasses

• You can implement the OnInit() callback method to perform any special setup actions.

For inbound adapters, one of these actions might be to examine settings and initiate a connection between the adapter
and the TCP client it will listen to, or to create any object properties that the adapter will use.

For outbound adapters, one of these actions might be to examine settings and open a socket to a port on the TCP listener.

• For inbound adapters, you can implement the OnConnected() callback method.

Whenever a connection exists to the configured TCP client, the adapter calls OnConnected() to read a stream from
the TCP data source. This read operation is controlled by adapter settings.

OnConnected() uses helper methods to parse the data.

Upon successfully reading data, OnConnected() calls the production framework’s ProcessInput() method to pass the
received data stream to the associated business service. If this call returns an outbound stream, OnConnected() writes
that data as a reply to the TCP client.

If no data is available to read from the TCP connection during the CallInterval time, OnConnected() returns without
doing anything.

18 Using TCP Adapters in Productions

Special Topics

Reference for Settings

This section provides the following reference information:

• Settings for the TCP Inbound Adapters

• Settings for the TCP Outbound Adapters

Also see “Settings in All Productions” in Managing Productions Productions.

Using TCP Adapters in Productions 19

Settings for the TCP Inbound Adapters
Provides reference information for settings of the TCP inbound adapters.

Summary
The inbound TCP adapters have the following settings:

SettingsGroup

Call Interval, PortBasic Settings

Job Per Connection, Allowed IP Addresses, OS Accept Connection Queue Size, Stay
Connected, Read Timeout, SSL Configuration, Local Interface

Connection
Settings

Accept Classnames, CharsetAdditional Settings

The remaining settings are common to all business services. For information, see “Settings for All Business Services” in
Configuring Productions.

Accept Classnames
Applies to EnsLib.TCP.CountedXMLInboundAdapter.

Comma-separated list, giving the names of classes that this adapter will instantiate from XML blocks received.

Allowed IP Addresses
Applies to all inbound TCP adapters.

A comma-separated list of remote IP addresses from which to accept connections. The adapter accepts named IP addresses,
IPV4 addresses, or IPV6 addresses. An optional :port designation is supported; so, for example, both of the following
address formats are acceptable: 192.168.1.22 or 192.168.1.22:3298.

Note: IP address filtering is a means to control access on private networks, rather than for publicly accessible systems.
InterSystems does not recommend relying on IP address filtering as a sole security mechanism, as it is possible
for attackers to spoof IP addresses.

If a port number is specified, connections from other ports will be refused.

If the string starts with an exclamation point (!) character, the inbound adapter initiates the connection rather than waiting
for an incoming connection request. The inbound adapter initiates the connection to the specified address and then waits
for a message. In this case, only one address may be given, and if a port is specified, it supersedes the value of the Port

setting; otherwise, the Port setting is used.

Call Interval
Applies to all inbound TCP adapters.

Number of seconds that the adapter will listen for incoming data from its configured source, before checking for a shutdown
signal from the production framework.

If the adapter finds input, it acquires the data and passes it to the business service. The business service processes the data,
and then the adapter immediately begins waiting for new input. This cycle continues whenever the production is running
and the business service is enabled and scheduled to be active.

The default CallInterval is 5 seconds. The minimum is 0.1 seconds.

20 Using TCP Adapters in Productions

Reference for Settings

Charset
Applies to EnsLib.TCP.CountedInboundAdapter, EnsLib.TCP.CountedXMLInboundAdapter, and
EnsLib.TCP.TextLineInboundAdapter.

Specifies the character set of the inbound data. InterSystems IRIS® automatically translates the characters from this char-
acter encoding. The setting value is not case-sensitive. Use Binary for binary files, or for any data in which newline and
line feed characters are distinct or must remain unchanged. Other settings may be useful when transferring text documents.
Choices include:

• Binary — Binary transfer (the default)

• Ascii — Ascii mode FTP transfer but no character encoding translation

• Default — The default character encoding of the local InterSystems IRIS server

• Latin1 — The ISO Latin1 8-bit encoding

• ISO-8859-1 — The ISO Latin1 8-bit encoding

• UTF-8 — The Unicode 8-bit encoding

• UCS2 — The Unicode 16-bit encoding

• UCS2-BE — The Unicode 16-bit encoding (Big-Endian)

• Any other alias from an international character encoding standard for which NLS (National Language Support) is
installed in InterSystems IRIS

For background information on character translation in InterSystems IRIS, see “Localization Support” in the Orientation
Guide for Server-Side Programming.

Endian
Applies to EnsLib.TCP.CountedInboundAdapter and EnsLib.TCP.CountedXMLInboundAdapter.

A choice of Big or Little indicates the byte order of the 4-byte block count prefix. Big endian means the most significant
byte (MSB) goes over the wire first; Little endian means the least significant byte (LSB) goes over the wire first. The
default value for this string is Big.

Job Per Connection
Applies to all inbound TCP adapters.

When True, the adapter spawns a new job to handle each incoming TCP connection and allows simultaneous handling of
multiple connections. When False, it does not spawn a new job for each connection. False is usually the appropriate choice
for X12 connections. The default is True.

For TCP services, JobPerConnection causes each new incoming socket connection to be handled by a freshly spawned job
rather than by the listener job itself. Only one job at a time can be the listener, and one job must be the listener, so TCP
services configured with PoolSize greater than 1 still only start one listener job. However, this listener can spawn an
unlimited number of connection jobs if JobPerConnection is set to True. If the PoolSize setting is configured to a value
greater than 1, it serves as a limit on the number of simultaneous connection jobs that can exist. When this limit is reached,
the listener does not accept any more connections until one or more of the existing connection jobs quits or dies. An Event
Log warning appears when it first reaches the limit.

Local Interface
Applies to all inbound TCP adapters.

Specifies the network interface through which the TCP connection should go. Select a value from the list or type a value.
An empty value means use any interface.

Using TCP Adapters in Productions 21

Settings for the TCP Inbound Adapters

OS Accept Connection Queue Size
Applies to all inbound TCP adapters.

Specifies the number of incoming connections the operating system should hold in reserve on behalf of this business service.
Set to 0 if only 1 connection at a time is expected. Set to a large number if you expect many clients to connect rapidly. The
default is 100. The range is 0–1000.

Port
Applies to all inbound TCP adapters.

Identifies the TCP port on the local machine where the adapter is listening for TCP requests. Avoid specifying a port
number that is in the range used by the operating system for ephemeral outbound connections.

QSize
Applies to EnsLib.TCP.CountedInboundAdapter, EnsLib.TCP.CountedXMLInboundAdapter, and
EnsLib.TCP.TextLineInboundAdapter.

Specifies the number of incoming connections the operating system should hold in reserve on behalf of this business service.
Set to 0 if only 1 connection at a time is expected. Set to a large number if many clients will connecting rapidly. The default
is 100. The range is 0–1000.

Read Timeout
Applies to all TCP adapters.

Number of seconds to wait for each successive incoming TCP read operation, following receipt of initial data from the
remote TCP port. The default is 5 seconds. The range is 0–600 seconds (a maximum of 10 minutes).

SSLConfig
Applies to all TCP adapters.

The name of an existing SSL/TLS configuration to use to authenticate this connection. Choose a client SSL/TLS configu-
ration, because the adapter initiates the communication.

To create and manage SSL/TLS configurations, use the Management Portal. See the chapter “Using SSL/TLS with Inter-
Systems IRIS” in the Security Administration Guide. The first field on the Edit SSL/TLS Configuration form is Configuration

Name. Use this string as the value for the SSLConfig setting.

Stay Connected
Applies to all TCP adapters.

If StayConnected is a positive value, the adapter stays connected to the remote system for this number of seconds between
input events. A zero value means to disconnect immediately after every input event. The default of –1 means to stay per-
manently connected, even during idle times. Adapters are assumed idle at startup and therefore only auto-connect if they
are configured with a StayConnected value of –1.

The value of StayConnected controls how the TCP adapter treats disconnections. If StayConnected has a value of –1, the
TCP adapter treats a disconnection as an error. If it has a value of 0 or a positive integer, the TCP adapter does not consider
a disconnection an error.

22 Using TCP Adapters in Productions

Reference for Settings

Settings for the TCP Outbound Adapters
Provides reference information for settings of the TCP outbound adapters.

Summary
The outbound TCP adapters have the following settings:

SettingsGroup

IP Address, PortBasic Settings

Stay Connected, Connect Timeout, Reconnect Retry, Get Reply, Response Timeout,
Read Timeout, SSL Configuration, Local Interface, Charset, Endian

Connection
Settings

CharsetAdditional Settings

The remaining settings are common to all business operations. For information, see “Settings for All Business Operations”
in Configuring Productions.

Charset
Applies to EnsLib.TCP.CountedOutboundAdapter, EnsLib.TCP.CountedXMLOutboundAdapter, and
EnsLib.TCP.TextLineOutboundAdapter.

Specifies the desired character set of the outbound data. InterSystems IRIS® automatically translates the characters to this
character encoding. See “Charset” in “Settings for the TCP Inbound Adapters.”

Connect Timeout
Applies to all outbound TCP adapters.

Number of seconds to wait on each attempt to connect to the remote TCP listener. The default is 5 seconds.

Endian
Applies to EnsLib.TCP.CountedOutboundAdapter and EnsLib.TCP.CountedXMLOutboundAdapter.

A choice of Big or Little indicates the byte order of the 4-byte block count prefix. Big endian means the most significant
byte (MSB) goes over the wire first; Little endian means the least significant byte (LSB) goes over the wire first. The
default value for this string is Big.

Get Reply
Applies to all outbound TCP adapters.

If 1 (true) wait to read a reply message back from the socket before returning. If 0 (false) do not wait. The default value is
1.

IP Address
Applies to all outbound TCP adapters.

IP address to make a TCP connection to. The adapter accepts a named IP address, an IPV4 address, or an IPV6 address.

If the string starts with an exclamation point (!) character, the outbound adapter does not initiate the connection but rather
waits for an incoming connection request. Once it accepts the connection request, it can send outbound messages. The
exclamation point can be specified by itself or followed by a comma-separated list of IP addresses. If the exclamation point
is not followed by an IP address, the outbound TCP adapter accepts a connection from any IP address, otherwise the adapter

Using TCP Adapters in Productions 23

Settings for the TCP Outbound Adapters

accepts connections only from the specified addresses. The adapter accepts named IP addresses, IPV4 addresses, or IPV6
addresses. You can optionally specify a port for each IP address by appending a colon (:) followed by the port number. If
a port is specified, the adapter accepts connections from only the specified port.

Note: IP address filtering is a means to control access on private networks, rather than for publicly accessible systems.
InterSystems does not recommend relying on IP address filtering as a sole security mechanism, as it is possible
for attackers to spoof IP addresses.

LocalInterface
Applies to all outbound TCP adapters.

Specifies the network interface through which the TCP connection should go. Select a value from the list or type a value.
An empty value means use any interface. For details, see “Local Interface” in “Settings for the TCP Inbound Adapters.”

Port
Applies to all outbound TCP adapters.

Identifies the TCP port to connect to.

QSize
Applies to EnsLib.TCP.CountedOutboundAdapter, EnsLib.TCP.CountedXMLOutboundAdapter, and
EnsLib.TCP.TextLineOutboundAdapter.

Specifies the number of incoming connections the operating system should hold in reserve on behalf of this business
operation. There is generally no reason to change the default value of 0. Either the connection is outbound, or the business
operation is using '!' inbound mode, in which case only 1 client is allowed at a time, per business operation pool job.

Read Timeout
Applies to all TCP adapters.

Number of seconds to wait for each successive incoming TCP read operation, following receipt of initial data from the
remote TCP port. The default is 5 seconds. The range is 0–600 seconds (a maximum of 10 minutes).

Reconnect Retry
Applies to all outbound TCP adapters.

Number of retries at which to drop the connection and try reconnecting again. A value of 0 (zero) means never disconnect.
The default value is 5.

Response Timeout
Applies to all outbound TCP adapters.

Number of seconds to wait for a response to begin arriving back from the remote system after sending a request. The default
is 15 seconds.

SSL Configuration
Applies to all TCP adapters.

The name of an existing SSL/TLS configuration to use to authenticate this connection. Choose a client SSL/TLS configu-
ration, because the adapter initiates the communication. For details, see “SSL Config” in “Settings for the TCP Inbound
Adapters.”

24 Using TCP Adapters in Productions

Reference for Settings

Stay Connected
Applies to all TCP adapters.

If StayConnected is a positive value, the adapter stays connected to the remote system for this number of seconds after
completing an operation. A zero value means to disconnect immediately after every operation. The default of –1 means to
stay permanently connected, even during idle times. Adapters are assumed idle at startup and therefore only auto-connect
if they are configured with a StayConnected value of –1.

The value of StayConnected controls how the TCP adapter treats disconnections. If StayConnected has a value of –1, the
TCP adapter treats a disconnection as an error. If it has a value of 0 or a positive integer, the TCP adapter does not consider
a disconnection an error.

Using TCP Adapters in Productions 25

Settings for the TCP Outbound Adapters

	Table of Contents
	About This Book
	1 Using the Inbound TCP Adapters
	1.1 Overview of Inbound TCP Adapter
	1.2 Overall Behavior
	1.3 Creating a Business Service to Use a TCP Inbound Adapter
	1.4 Implementing the OnProcessInput() Method
	1.4.1 Signature for OnProcessInput() for EnsLib.TCP.CountedInboundAdapter
	1.4.2 Signature for OnProcessInput() for EnsLib.TCP.CountedXMLInboundAdapter
	1.4.3 Signature for OnProcessInput() for EnsLib.TCP.TextLineInboundAdapter
	1.4.4 Implementing OnProcessInput()

	1.5 Example for EnsLib.TCP.TextLineInboundAdapter
	1.6 Adding and Configuring the Business Service

	2 Using the Outbound TCP Adapters
	2.1 Overview of Outbound TCP Adapter
	2.2 Overall Behavior
	2.3 Creating a Business Operation to Use a TCP Outbound Adapter
	2.4 Creating Message Handler Methods
	2.4.1 Calling Adapter Methods from the Business Operation

	2.5 Example for EnsLib.TCP.CountedOutboundAdapter
	2.6 Adding and Configuring the Business Operation

	3 Special Topics
	3.1 Adding a TCP Status Service
	3.2 Creating Custom TCP Adapter Classes
	3.3 Common Customizations in TCP Adapter Subclasses

	Reference for Settings
	Settings for the TCP Inbound Adapters
	Settings for the TCP Outbound Adapters

	Index

