
I/O Device Guide

Version 2019.4
2020-01-28

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

I/O Device Guide
InterSystems IRIS Data Platform Version 2019.4 2020-01-28
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

1 About I/O Devices ... 3
1.1 Device Management Utilities ... 4
1.2 Default Devices .. 4

1.2.1 Devices ... 4
1.2.2 Device Subtypes ... 5

1.3 Identifying Devices .. 5
1.3.1 Device Mnemonics ... 5
1.3.2 Device IDs .. 5
1.3.3 Device Alias ... 5
1.3.4 Default Device IDs and Mnemonics .. 6
1.3.5 Device Types .. 7

1.4 Defining Devices .. 7
1.5 Accessing Devices .. 7

1.5.1 Allowing Users to Select Devices with the %IS Utility ... 7
1.5.2 Accessing Devices with the OPEN Command ... 8
1.5.3 Interpretation Levels for Devices ... 8

1.6 Defining Default Mnemonic Spaces .. 9
1.6.1 Predefined Mnemonic Spaces .. 9

2 I/O Devices and Commands .. 11
2.1 Overview of I/O Commands .. 11

2.1.1 General I/O Syntax ... 12
2.1.2 OPEN Command .. 12
2.1.3 USE Command .. 13
2.1.4 READ Command ... 14
2.1.5 WRITE Command ... 14
2.1.6 CLOSE Command ... 15

2.2 Specifying I/O Devices .. 16
2.3 Allowing Users to Specify a Device ... 16

2.3.1 How %IS Works ... 16
2.3.2 %IS Mnemonics ... 18
2.3.3 Structure of ^%IS Global ... 20

2.4 Specifying Devices in I/O Commands ... 21
2.4.1 Specifying Terminals and Printers by Device Name .. 21
2.4.2 Specifying Devices by InterSystems IRIS ID .. 22
2.4.3 Specifying Files on Disk .. 22

2.5 Processes and Devices .. 23
2.5.1 Principal Device and Current Device ... 23
2.5.2 The Null Device ... 24
2.5.3 One Process Owns a Device .. 24

2.6 Application Development I/O Commands ... 24
2.7 Device Special Variables .. 25
2.8 Controlling Devices with Mnemonic Spaces ... 26

2.8.1 Predefined Mnemonic Spaces .. 26
2.8.2 Creating a Mnemonic Space .. 26
2.8.3 Select a Mnemonic Space .. 27

I/O Device Guide iii

3 Terminal I/O .. 29
3.1 Overview of Terminal I/O Capabilities .. 29

3.1.1 Your Login Terminal or Console is Your Principal Device .. 30
3.2 Special Variables Show I/O Conditions .. 30

3.2.1 $X and $Y and Cursor Position ... 30
3.2.2 $TEST Shows Timed Operation Results .. 32
3.2.3 $ZA Shows READ Status .. 32
3.2.4 $ZB Shows What Ended a READ .. 32

3.3 OPEN and USE Commands ... 33
3.3.1 OPEN Command .. 33
3.3.2 USE Command .. 34
3.3.3 Positional Parameters for OPEN and USE Commands ... 35
3.3.4 Keyword Parameters for OPEN and USE Commands ... 37
3.3.5 Testing the Success of OPEN Commands .. 40
3.3.6 Letter Code Protocols for OPEN and USE .. 40
3.3.7 Protocol Terminator Characters ... 43
3.3.8 Explicit Terminator Characters .. 44
3.3.9 Summary of Protocols and Terminators in Read Operations ... 45

3.4 READ Command ... 45
3.4.1 Syntax ... 45
3.4.2 Examples .. 46
3.4.3 Read Line Recall .. 46
3.4.4 Special Protocol Characters Affect Terminal I/O ... 46
3.4.5 How the READ Command Processes Input ... 48

3.5 WRITE Command .. 49
3.5.1 Syntax ... 49
3.5.2 Examples .. 50

3.6 CLOSE Command .. 50
3.6.1 Syntax ... 50

3.7 Predefined Mnemonic Spaces for Terminals .. 51
3.7.1 Mnemonic Space for X3.64 ... 51
3.7.2 Mnemonic Space for DTM PC Console .. 54
3.7.3 DTM Examples .. 54

3.8 PRINT and ZPRINT Commands ... 56
3.8.1 Syntax ... 56

3.9 Programming Your Terminal .. 57
3.9.1 Using InterSystems IRIS to Program Formatted CRT Screens 57
3.9.2 Programming Escape Sequences ... 57
3.9.3 Example ... 58
3.9.4 InterSystems IRIS Supports Full or Half Duplex and Echo .. 59
3.9.5 InterSystems IRIS Supports Intercomputer Links and Special Devices 59

4 Local Interprocess Communication .. 61
4.1 Using Pipes to Communicate with Processes .. 61

4.1.1 Opening Pipes to InterSystems IRIS Utilities .. 61
4.1.2 Pipes and Command Pipes ... 62
4.1.3 OPEN Command for Interprocess Communication ... 62
4.1.4 READ Command for Interprocess Communication .. 66
4.1.5 CPIPE Exit Codes .. 67
4.1.6 CLOSE Command for Interprocess Communication .. 67
4.1.7 Using Named Pipes to Communicate with Visual Basic ... 67

iv I/O Device Guide

4.2 Communication Between InterSystems IRIS Processes .. 68
4.2.1 Specifying Memory Buffers for Interjob Communication Devices 69
4.2.2 Interjob Communication Device Numbers .. 69
4.2.3 I/O Commands for IJC Devices ... 70

5 TCP Client/Server Communication .. 73
5.1 TCP Connections Overview ... 73
5.2 OPEN Command for TCP Devices .. 74

5.2.1 Using the OPEN Command ... 74
5.2.2 Server-Side OPEN Command .. 80
5.2.3 Client-Side OPEN Command .. 81
5.2.4 OPEN and USE Command Keywords for TCP Devices ... 81
5.2.5 OPEN-Only Command Keywords for TCP Devices ... 87

5.3 Current TCP Device ... 88
5.4 USE Command for TCP Devices ... 89
5.5 READ Command for TCP Devices .. 89

5.5.1 READ Modifies $ZA and $ZB .. 90
5.6 WRITE Command for TCP Devices .. 91

5.6.1 How WRITE Works ... 91
5.6.2 WRITE Modifies $X and $Y ... 91
5.6.3 WRITE Command Errors .. 91
5.6.4 WRITE Control Commands ... 91

5.7 Connection Management .. 92
5.7.1 Job Command with TCP Devices .. 92
5.7.2 Job Command Example ... 94

5.8 Concatenation of Records .. 95
5.9 Multiplexing InterSystems IRIS TCP Devices ... 95
5.10 Closing the Connection .. 95

5.10.1 Disconnect with CLOSE Command .. 96
5.10.2 Automatic Disconnection ... 96
5.10.3 Effects of Disconnection .. 96

6 UDP Client/Server Communication .. 97
6.1 Establishing a UDP Socket .. 97
6.2 The Host Address ... 98

6.2.1 IPv4 and IPv6 ... 98

7 Sequential File I/O .. 101
7.1 Using Sequential Files .. 101

7.1.1 Specifying a File .. 102
7.1.2 OPEN Command .. 103
7.1.3 USE Command .. 111
7.1.4 READ and WRITE Commands ... 111
7.1.5 CLOSE Command ... 112

8 Spool Device .. 115
8.1 Opening and Using the Spool Device .. 115

8.1.1 OPEN and USE Commands for Spooling Device ... 116
8.2 Spooling and Special Variables .. 117
8.3 Closing the Spool Device ... 118

8.3.1 Changing Namespaces ... 118
8.3.2 Abort Job Processing .. 118

8.4 Viewing the ^SPOOL Global ... 118

I/O Device Guide v

8.5 Opening the Spooler Using the %IS Utility ... 119
8.6 Managing Spooled Documents Using %SPOOL ... 119

8.6.1 Printing with %SPOOL .. 120
8.6.2 Listing Spooled Documents ... 121
8.6.3 Deleting Spooled Documents ... 121

9 Printers .. 123
9.1 Overview of Printers ... 123
9.2 Specifying a Printer .. 123

9.2.1 Opening a Printer ... 124
9.2.2 Specifying a Printer on Windows ... 124
9.2.3 Specifying a Printer on UNIX® ... 125

9.3 Directing Output to a Printer .. 125
9.3.1 %IS Printer Set-Up Variable .. 126

9.4 Printer as Alternate Device ... 126

vi I/O Device Guide

List of Figures

Figure 3–1: READ Command Processing Normal (Non-Image) Mode ... 48
Figure 3–2: READ Command Processing Image Mode ... 49
Figure 5–1: Client/Server Connections in the Non-Concurrent and Concurrent Modes. 93

I/O Device Guide vii

List of Tables

Table 1–1: InterSystems IRIS Device Utilities ... 4
Table 1–2: Default Device Numbers and Mnemonics ... 6
Table 1–3: InterSystems IRIS Default Device Numbers ... 6
Table 1–4: Predefined Mnemonic Spaces ... 8
Table 1–5: Device Utilities .. 8
Table 2–1: %IS Device Variable Values .. 17
Table 2–2: CURRENT Return Values ... 19
Table 2–3: Spool Variables You Can Pass to %IS .. 20
Table 2–4: Specifying a Device in an I/O Command .. 21
Table 2–5: InterSystems IRIS Device Numbers and Devices ... 22
Table 2–6: Null Device Arguments ... 24
Table 2–7: Application Development I/O Commands ... 25
Table 2–8: Device Special Variables .. 25
Table 2–9: Predefined Mnemonic Spaces ... 26
Table 3–1: Effects of Echoing Characters ... 30
Table 3–2: $ZA Read Status Values .. 32
Table 3–3: OPEN and USE Keyword Parameters for Terminal Devices ... 37
Table 3–4: Letter Code Protocols for OPEN and USE .. 41
Table 3–5: Terminator Strings: Examples ... 45
Table 3–6: READ Command Arguments: Examples .. 46
Table 3–7: Output Control Characters ... 47
Table 3–8: Input Control Characters ... 47
Table 3–9: Control Mnemonics for %X364 Mnemonic Space ... 51
Table 3–10: Control Mnemonics for DTM PC Console .. 54
Table 3–11: Features Enabled By CURRENT^%IS ... 57
Table 4–1: OPEN and USE Command Keywords for Interprocess Communications Pipes 65
Table 4–2: OPEN-only Command Keywords for Interprocess Communications Pipes 66
Table 4–3: OPEN Command Keywords for Named Pipes ... 68
Table 4–4: IJC Device Numbers .. 69
Table 5–1: OPEN and USE Command Keywords for TCP Devices .. 82
Table 5–2: OPEN-only Command Keywords for TCP Devices ... 87
Table 7–1: OPEN Mode Parameters .. 105
Table 7–2: OPEN Keyword Arguments for Sequential Files ... 108
Table 7–3: Windows OPEN Mode Interactions ... 109
Table 7–4: UNIX® OPEN Mode Interactions ... 110
Table 7–5: USE Command Parameters ... 111
Table 7–6: USE-Only Command Keywords for Sequential Files .. 111
Table 7–7: CLOSE-Only Command Keywords for Sequential Files ... 113
Table 8–1: OPEN Positional Parameters for Spooling .. 116
Table 9–1: Additional OPEN Keyword Parameters for Windows Printers ... 125
Table 9–2: Variables Set by %IS .. 126

viii I/O Device Guide

About This Book

This book is a guide to managing I/O and devices with ObjectScript on InterSystems IRIS® data platform database.

Its chapters are:

• Introduction to InterSystems IRIS I/O

• I/O Devices and Commands

• Terminal I/O

• Local Interprocess Communication

• TCP Client/Server Communication

• UDP Client/Server Communication

• Sequential File I/O

• The Spool Device

• Printers

There is also a detailed Table of Contents.

The following documents provide information about related concepts:

• ObjectScript Language Reference

I/O Device Guide 1

1
About I/O Devices

InterSystems IRIS® data platform provides support for many different kinds of devices, both physical devices and logical
devices. This book describes how to manage:

• I/O Devices

• Terminal I/O

• Local Interprocess Communication

• TCP Client/Server Communication

• Sequential File I/O

• The Spooler

• Printers

Because I/O interfaces are often platform-dependent, several chapters in this manual have separate sections for managing
an I/O device on different operating system platforms.

This chapter introduces topics related to managing I/O devices in InterSystems IRIS. It includes the following topics:

• Device Management Utilities

• Default Devices

• Identifying Devices

• Defining Devices

• Accessing Devices

• Defining Default Mnemonic Spaces

InterSystems IRIS supports both physical and logical I/O devices. The supported physical devices include:

• Terminals

• Printers

• Disk drives

The supported logical devices include:

• Principal device

• Spooler

• Sequential files

I/O Device Guide 3

• Flat files

• Interjob communication (IJC) devices

• Routine interlock devices

1.1 Device Management Utilities
There are several ObjectScript utilities to manage devices. The table below summarizes these utilities and alternative ways
of accessing them.

Table 1–1: InterSystems IRIS Device Utilities

DescriptionUtilityAction

Allows you to define devices users can access with the %IS
utility. The devices are stored in the %IS global.You can edit
and delete these device definitions. At the Devices subsection,
you define devices, including mnemonics and aliases. Default
devices are provided. In the Device Sub-Types subsection,
you define device subtypes. Default subtypes are provided.

Device
configuration in the
Management
Portal

Define devices

You can control devices with the WRITE /mnemonic command.
On this panel, you enter the name of the default mnemonic
spaces that InterSystems IRIS uses when executing a WRITE
/mnemonic command that wasn't preceded by an OPEN or
USE command with a mnemonic space specification argument.

IO configuration
options in the
Management
Portal

Define default
mnemonic spaces

Programmers call this utility in character-based applications
to allow users to select a device by specifying its InterSystems
IRIS device mnemonic at a Device: prompt.The InterSystems
IRIS device and its mnemonic must be configured using the
Devices options from the Management Portal.

%ISAllow users to select a
device interactively in
character-based
applications.

For more information, see the chapter “SPOOL Device ” .%SPOOLAllow users to store
print output in a spool
file

1.2 Default Devices

1.2.1 Devices

When you install InterSystems IRIS, default devices are defined. These are displayed in the Devices configuration subsection
of the Management Portal. Select System Administration, Configuration, Device Settings, Devices. View the list of defined
devices.

4 I/O Device Guide

About I/O Devices

1.2.2 Device Subtypes

InterSystems IRIS ships with many default device subtypes. Each device subtype defines device characteristics, such as
screen length and form-feed characteristics.

The complete list of subtypes is in the Device Subtypes configuration option of the Management Portal. Select System

Administration, Configuration, Device Settings, Device Subtypes. View the list of defined subtypes.

1.3 Identifying Devices
When you define a device in the Devices configuration section of the Management Portal, you provide three device identifiers
to specify a device:

• Mnemonic, which is used at the %IS Device prompt.

• Device ID, which is used in an OPEN command.

• Alias, which can be used in place of a Device ID in an OPEN command.

These device identifiers have several advantages over physical device names:

• They uniquely identify logical devices regardless of how many physical devices you have.

• They assign different characteristics to each logical device.

• They allow user applications to reference devices by consistent numbers without having to know the actual physical
device names, which may vary on different platforms.

For more information about using device identifiers, see the Accessing Devices section.

1.3.1 Device Mnemonics

You can associate one or more mnemonics with a particular Device. You use a mnemonic in response to the “Device:”
prompt issued by the %IS character-based utility.

Mnemonics provide these advantages:

• They are flexible, because you can change where the mnemonic points rather than developers having to change their
applications.

• They are easy for users and developers to remember. For instance, you can set up a printer device with the mnemonic
Printer, or you can set up a Device ID for a file name and give it the mnemonic FILE.

1.3.2 Device IDs

You can identify devices by a number or by their operating system name. You use this identifier in OPEN commands.

1.3.3 Device Alias

You can define one or more alias values for each InterSystems IRIS device you define. When a user specifies an alias in
an OPEN command, InterSystems IRIS translates it into the Device ID.

I/O Device Guide 5

Identifying Devices

The default Device IDs that InterSystems IRIS provides are appropriate for most users. However, some users may want to
override these defaults. You can do this by providing an alias as part of the device's configuration settings in the Management
Portal.

1.3.4 Default Device IDs and Mnemonics

When you install InterSystems IRIS, these are the default device numbers and mnemonics for each type of device.

Table 1–2: Default Device Numbers and Mnemonics

NotesMnemonicDevice IDDevice

You cannot change the Device ID for
this device.

TERM0Principal

SPOOL2Spooler

However, InterSystems IRIS also recognizes other device numbers that you can use to define devices. The following table
lists the recognized default device numbers.

Table 1–3: InterSystems IRIS Default Device Numbers

DefinitionTypeDevice Number

For an interactive process, this is the terminal on which the user
logs in. For an InterSystems IRIS jobbed process, this is the
null device (by default) or the device provided in the argument
list for the job command which creates the jobbed process.

Principal device0

Use this device number to send error messages or other special
messages to the system messages log. For example, issuing
the following from a Terminal writes the specified string to the
messages log: OPEN 1 USE 1 WRITE "This is a test"
CLOSE 1. See also the WriteToConsoleLog() method.

messages.log1

This is a global that stores output so you can direct it to a
physical I/O device at another time.

InterSystems IRIS
system spooler

2

Used with the VIEW command and $VIEW function to transfer
data between memory and disk.

View buffer63

Provided for compatibility with DSM locking applications.Routine interlock
devices

20-46, 200-223

Interjob communication (IJC) logical devices. Used to transfer
information between InterSystems IRIS processes.You can
control the availability of these devices. See the section
“Communication Between InterSystems IRIS Processes ” for
more information.

IJC devices4-19, 64-199,
224-255,
2048-2375

/dev/null: the Null device on NL: the Null device on Used to
dispose of output you do not want displayed.

The Null deviceNone

Terminals, printers,
and flat files.

256-2047

Note: * Device 50 has a hardcoded blocksize of 2048.

6 I/O Device Guide

About I/O Devices

1.3.5 Device Types

In addition to the mnemonics and device numbers, InterSystems IRIS supports I/O device types. Each internal device
number belongs to one of these types. The following table shows the device types:

MeaningType

TerminalTRM

Spooling deviceSPL

Interprocess communication deviceIPC

Any other device, such as a printerOTH

1.4 Defining Devices
You define, edit, and delete devices in the Devices configuration settings of the Management Portal. The information you
enter is stored in the ^%IS global. For more information about this global, see the section Structure of ^%IS Global.

If you make device changes while InterSystems IRIS is running, you are prompted as to whether you want to activate the
changes without restarting InterSystems IRIS. If you agree to activate the changes, the new definitions are made available
immediately to users.

1.5 Accessing Devices
On a Windows system, you must use device numbers for interjob communication devices, and routine interlock devices.
For terminals and printers, you can use device mnemonics or device numbers you assign.

On a UNIX® system, you can use UNIX® file specifications to refer to files or you can set up device numbers to refer to
files.

You can access a device in one of two ways:

• Entering a device mnemonic at the “Device:” prompt in the %IS utility.

• Issuing an OPEN command and entering a Device ID or Alias.

1.5.1 Allowing Users to Select Devices with the %IS Utility

If you want users of a character-based application to select a device interactively, call the %IS utility from the application.
You can learn more about the %IS utility in the section Allowing Users to Specify a Device.

To select a device using the %IS utility:

1. At the Device: prompt, enter a device mnemonic.

I/O Device Guide 7

Defining Devices

Table 1–4: Predefined Mnemonic Spaces

Corresponding DeviceMnemonic

Terminal screen<ENTER>

SpoolerSPOOL

Spooler2

Default Windows Printer|PRN|

File at path specified or, if no path specification, in current
directory.

File name: MYFILE.TXT
DEV$:[TEST]MYFILE.TXT
C:\MGR\MYFILE.TXT

2. Depending on the type of device, you see another prompt:

Table 1–5: Device Utilities

Valid ResponsesPromptDevice

A number representing the number of characters
per line.

Right MarginTerminal

A number representing the number of characters
per line.

Right MarginPrinter

A valid file name for the platform, path optional.Name (of file)Spooler

A valid parameter list for an OPEN command for
the device type.

ParametersFile Name

1.5.2 Accessing Devices with the OPEN Command

You can use an OPEN command either in the Terminal or within an ObjectScript application to open a specific device for
reading and writing. When you specify the device, you can use its Device ID or its alias.

1.5.3 Interpretation Levels for Devices

Device identifiers you use with %IS or an OPEN command go through up to three levels of interpretation. Thus, if you
enter the mnemonic 47 at the %IS global “Device:” prompt, the final device ID that is used may be different. The three
levels are described below.

1.5.3.1 Level 1: %IS Utility Level

The first level is used if a device is selected with the %IS utility. Mnemonics in the ^%IS global can be associated with
device numbers. The %IS utility then issues an OPEN command to that device number.

1.5.3.2 Level 2: OPEN Command Level

In an OPEN command, InterSystems IRIS checks to see if this number exists in the Alias column of the Device panel table.
If so, it translates it to the actual device number or name for that device.

Note: Be sure not to define an alias that matches a Device ID but is associated with a different device if you want to
access that device by its mnemonic from ^%IS.

8 I/O Device Guide

About I/O Devices

1.6 Defining Default Mnemonic Spaces
Programmers can control devices by using WRITE /mnemonic commands in their applications. For instance, programmers
can move the cursor to a specific column in the current line on a terminal device when they use the %X364 mnemonic
space with this command:

 WRITE /CHA(column)

The action caused by any particular value of mnemonic is determined by the mnemonic space the WRITE command is
using. A mnemonic space is a routine with entry points (mnemonics) that define device actions and attributes.

The WRITE command uses the mnemonic space defined in the OPEN or USE command for the device. If the OPEN or
USE command includes no mnemonic space argument, then InterSystems IRIS uses the default mnemonic space for the
device type.

For further details on mnemonic spaces, see the.

1.6.1 Predefined Mnemonic Spaces

InterSystems IRIS ships with the predefined (default) mnemonic space ^%X364. This is the default mnemonic space for
X3.64 (ANSI) terminals. It is the default at startup for terminals, sequential files, and other devices.

These defaults are defined in the Management Portal. Select System Administration, Configuration, Device Settings, IO
Settings.

If you create your own mnemonic space routine(s), you may want to change the default mnemonic spaces InterSystems
IRIS uses for one or more of these device types.

I/O Device Guide 9

Defining Default Mnemonic Spaces

2
I/O Devices and Commands

This chapter describes how to work with I/O devices within InterSystems IRIS® data platform applications and at the
InterSystems IRIS prompt. It assumes your devices have been set up properly, as described in the About I/O Devices
chapter. For additional information about specific devices, see the other chapters in this guide.

• Overview of I/O Commands

• Specifying I/O Devices

• Allowing Users to Specify a Device

• Specifying Devices in I/O Commands

• Processes and Devices

• Application Development I/O Commands

• Device Special Variables

• Controlling Devices with Mnemonic Spaces

2.1 Overview of I/O Commands
The I/O commands allow you to own, use, read from, write to, and close devices. To direct I/O operations to a device, first
issue the following commands:

• Issue an OPEN command to establish ownership, unless the device is your principal device.

• Issue a USE command to make the device the current device.

• Subsequent READ and WRITE commands read from and write to that device.

• A CLOSE command releases ownership of the device so that other processes can use the device.

The following sections give an overview of the InterSystems IRIS I/O commands.

I/O Device Guide 11

2.1.1 General I/O Syntax

The following general syntax applies to I/O commands that support I/O command keywords in ObjectScript:

OPEN device:paramlist:timeout:"mnespace"
USE device:paramlist:"mnespace"
CLOSE device:paramlist

where paramlist is either a single parameter, or a list of parameters enclosed in parentheses and separated by colons:

 parameter (parameter:parameter[:...])

A parameter can either be a positional parameter or a keyword parameter. A keyword parameter has the following syntax:

/keyword[=value]

The leading slash distinguishes a keyword parameter from a positional parameter value. The meaning of a positional
parameter value is derived from its position in the colon-delimited list. The meaning of a keyword parameter value is
derived from the specified keyword.

Note that both positional and keyword parameters can be specified in the same paramlist. For example, the following
example mixes positional and keyword parameters to open a new file named test.dat in write/sequential mode with JIS I/O
translation:

 OPEN "test.dat":("NWS":/IOTABLE="JIS")

2.1.2 OPEN Command

OPEN establishes ownership of, and opens an I/O channel to, the device specified. This ownership persists until you issue
a CLOSE command, your process terminates, or some physical operation closes the device. For physical I/O devices or
for interprocess communications (such as TCP connections), this ownership prevents all other processes from accessing
the device. For logical I/O devices (such as sequential files), this ownership may allow other processes some form of shared
access to the file. The handling of multiple processes that open the same sequential file is highly platform-dependent. Use
of the LOCK command to restrict access to sequential files is strongly advised.

12 I/O Device Guide

I/O Devices and Commands

2.1.2.1 Syntax

OPEN device{:{(parameters)}{:{timeout}{:"mnespace"}}}

DescriptionArgument

The desired device name, ID number, or mnemonic. The maximum length of device is
256 characters.

device

Optional — One or more parameters specifying additional information necessary for
some devices. This parameter list is enclosed in parentheses, and the parameters in
the list are separated by colons. The individual parameters are listed in tables in the
Interprocess Communications, Sequential File I/O, and Terminal I/O chapters.

parameters

Optional — The number of seconds to wait for the request to succeed. The preceding
colon is required.timeout must be specified as an integer value or expression. If timeout
is set to zero (0), OPEN will make a single attempt to open the file. If the attempt fails,
the OPEN immediately fails. If the attempt succeeds it successfully opens the file. If
timeout is not set, InterSystems IRIS will continue trying to open the device until the
OPEN is successful or the process is terminated manually.

timeout

Optional — The name of the mnemonic space that contains the control mnemonics to
use with this device, specified as a quoted string.You can use these control mnemonics
with the WRITE /mnemonic command when directing I/O to this device.

mnespace

For further details, refer to the OPEN command in the ObjectScript Reference.

2.1.2.2 Examples

These examples show how to use the OPEN command on different platforms. They may be typed at the command line or
used in routines. When used in routines, you may want to replace platform-specific items with variables.

Examples of OPEN on Windows systems
This command opens outbound Telnet connections from a Windows system to a terminal server:

 OPEN "|TNT|node:port"

where node is the node name and port is the IP port on the server.

This command opens an I/O channel to an existing Windows file:

 OPEN "c:\abc\test.out":"WS"

Example of OPEN on UNIX® Systems
This command opens an I/O channel to the UNIX® terminal device /dev/tty06:

 OPEN "/dev/tty06/"

2.1.3 USE Command

This command makes the specified device the current device, and sets the special variable $IO to that device. To USE a
device other than your principal device, you must first issue an OPEN command for it; otherwise, you will receive a
<NOTOPEN> error. Arguments have the same meaning as in the OPEN command.

I/O Device Guide 13

Overview of I/O Commands

2.1.3.1 Syntax

USE device:(args):"mnespace"

DescriptionArgument

The desired device name, ID number, or alias. The maximum length of device is 256
characters.

device

Optional — Additional information necessary for some devices. These are listed in the
command keyword tables in the Interprocess Communications, Sequential File I/O, and
Terminal I/O chapters.

args

Optional — Name of the InterSystems IRIS routine containing the definition of the control
mnemonics you can use with the WRITE /mnemonic command when directing I/O to
this device.

mnespace

For further details, refer to the USE command in the ObjectScript Reference.

2.1.3.2 Examples

These examples show how to use the USE command on different platforms. They may be typed at the command line or
used in routines. When used in routines, you may want to replace platform specific items with variables.

Examples of USE on Windows systems
This Windows example shows the commands you would use to connect via TCP to a time-of-day server on remote host
“ larry” . It uses the service name daytime, which the local system resolves to a port number. The USE command replaces
the OPEN C mode with PSTE mode and turns off any user terminators:

 OPEN "|TCP|4":("larry":"daytime":"C")
 USE "|TCP|4":(::"PSTE")

Examples of USE on UNIX® systems
This UNIX® example shows the commands you would use to open an I/O channel to device “ /dev/tty06” and establish
it as your current device with the option of using WRITE /mnemonic with the X364 terminal mnemonics.

 OPEN "/dev/tty06"
 USE "/dev/tty06"::"^%x364"

2.1.4 READ Command

This command reads data from the current device. For some devices, arguments that begin with asterisks return ASCII
numeric information; for others, they indicate control functions.

2.1.4.1 Syntax

READ variable:timeout

For further details, refer to the READ command in the ObjectScript Reference.

2.1.5 WRITE Command

This command writes data to the current device. For some devices, arguments that begin with asterisks let you write ASCII
characters using their ASCII numeric values; for others, they indicate control functions. For some devices, arguments that
begin with the # character indicate the number of times to write that character.

14 I/O Device Guide

I/O Devices and Commands

WRITE /mnemonic syntax allows you to control a device with mnemonics which are defined in InterSystems IRIS code
in a mnemonic space. The mnemonic space is an InterSystems IRIS routine that must be made active in an OPEN or USE
command, or configured as a default for the device using the Management Portal. To learn how to define and activate
mnemonic spaces, see the section Defining Default Mnemonic Spaces.

2.1.5.1 Syntax

WRITE variable

For further details, refer to the WRITE command in the ObjectScript Reference.

2.1.5.2 Example

To move the cursor to column 1, line 2 on a terminal screen using the predefined ^%X364 mnemonic space, issue the
command:

 WRITE /CUP(1,2)

2.1.6 CLOSE Command

The CLOSE command releases ownership of the specified device. CLOSE reverses the effect of the OPEN command.

2.1.6.1 Syntax

CLOSE device[:params]

DescriptionArgument

The desired device name, ID number, or mnemonic.device

The parameter “K ” closes the device at the InterSystems IRIS level without closing it
at the operating system level.

The K parameter has no effect on Windows systems. The file is closed at the operating
system level.

params

If you issue a CLOSE command for your principal device, the principal device remains assigned to your process until you
log off.

Several other conditions can affect the behavior of CLOSE:

• If output to a device is stopped for some reason, InterSystems IRIS may be unable to finish output to that device, in
which case you cannot close it, and may not be able to halt. For example, if a terminal sends a Ctrl-S to the operating
system to tell it to stop output to the terminal, you must resume output to the terminal by pressing Ctrl-Q.

• If you close the current device, CLOSE changes the value of the system variable $IO to that of the principal device.
The CLOSE command releases ownership of the current device only after all output to that device is complete.

• When a process halts, the system automatically closes all devices the process opened while in InterSystems IRIS.

If output to the device is stopped for some reason, InterSystems IRIS may be unable to finish output to that device, in
which case you may not be able to close it or be able to halt.

For further details, refer to the CLOSE command in the ObjectScript Reference.

I/O Device Guide 15

Overview of I/O Commands

2.2 Specifying I/O Devices
When you develop InterSystems IRIS applications or work with I/O devices at the InterSystems IRIS programmer's prompt,
there are two ways to specify I/O devices:

• Call the %IS utility, which allows you to specify the device by using a mnemonic defined in the %IS global.

• Issue the I/O commands OPEN, USE, and CLOSE, using InterSystems IRIS device numbers or operating system file
specifications for the devices.

2.3 Allowing Users to Specify a Device
%IS is a general device selection utility for character-based applications. You can use the built-in %IS utility to allow
users to select a device to which to direct I/O operations. Whenever a device is to be selected, the application program
should call the %IS utility. This utility allows the user to specify the device to be used and the appropriate OPEN command
parameters, opens the selected device, then returns device-specific information to the calling program. Users enter a
mnemonic that has been defined in the ̂ %IS global. %IS relies upon IO configuration defaults established in the Management
Portal.

This section addresses the following topics:

• How %IS Works

• %IS Mnemonics

• Structure of ^%IS Global

2.3.1 How %IS Works

2.3.1.1 Device Prompt

When you call the %IS utility, InterSystems IRIS prompts for a device name. You respond in one of the following ways:

• Enter the desired device name or ID number.

• Enter a mnemonic for the device.

• Press Enter to select the current device.

%IS responds as follows:

• If you enter a device mnemonic, %IS finds the corresponding device in the ^%IS global and opens it.

• If you enter a device name, %IS issues an OPEN command to that device.

• If the device is an InterSystems IRIS device ID, %IS checks the device table to see if that number is remapped to
another actual device number. %IS then issues an OPEN for the device.

See the discussion “Alternate Devices” that is part of %IS Mnemonics section below for information about using alternate
devices.

16 I/O Device Guide

I/O Devices and Commands

2.3.1.2 Additional Questions

If the device you specify is a terminal, the utility prompts you with a default right margin. Press Enter to select that margin
or type a different value. If a program later attempts to write past the specified right margin, the operating system inserts
a “CR LF” (carriage return and line feed) when the margin is reached. If you select a device other than a terminal, the
utility asks other types of secondary questions.

2.3.1.3 Examples

In the following example, the user presses Enter to specify the terminal. The utility prompts for a right margin, suggesting
a default value of 80. At the => prompt the user enters 132 as the new margin setting.

%SYS>DO ^%IS
Device: <RETURN>
Right margin: 80 => 132
%SYS>

2.3.1.4 %IS Sets the Variable IO and Returns Values of Other Variables

When you select a device, %IS sets the variable IO to the device name or number used in the OPEN command. %IS also
returns the values of the variables listed in the following table:

Table 2–1: %IS Device Variable Values

DescriptionExampleVariable

Generic dialog answer.Yes%ANS

Device number or device mnemonic of selected device.64IO

Form feed. WRITE # issues a form feed and changes $Y. WRITE
@IOF should be used to form feed.

#IOF

Backspace. WRITE $CHAR(8) issues a backspace and changes
$X. WRITE *8 issues a backspace but does not change $X. WRITE
@IOBS should be used to backspace.

*8IOBS

Right margin.80IOM

Screen/page length.66IOSL

Device type.TRMIOT

Device subtype (VT220 in this example).C-VT220IOST

Any other OPEN parameters.("auv":0:2048)IOPAR

Type of system (such as UNIX®, Windows NT).M/WNTMSYS

If not zero, specifies that no device was selected. That is, the user
entered STOP in response to Device: prompt.

0POP

Read/Write permissions.RWRMSDF

2.3.1.5 OPEN Parameters

By default, the OPEN command uses the specifications for the device defined in the ^%IS global. You can override these
settings by specifying other settings when you use %IS.

I/O Device Guide 17

Allowing Users to Specify a Device

2.3.1.6 Issue a USE Command

After running %IS, the application must issue a USE command to the device opened by %IS. You can use the variable
IO, as long as you understand that its value changes every time you call %IS. Then, subsequent InterSystems IRIS I/O
commands, such as READ and WRITE, refer to that device.

2.3.1.7 Issue a CLOSE Command

The user or application developer must close devices opened with the %IS utility.

2.3.2 %IS Mnemonics

%IS has several features to simplify its use. For example, if you want to send I/O to your own terminal, simply press Enter

at the “Device” prompt. You can also use built-in default mnemonics or new mnemonics you define yourself.

2.3.2.1 Device Mnemonics

It is useful to have mnemonics for the various devices and, in some cases, to have more than one mnemonic for a single
device. Multiple mnemonics allow you to specify different device characteristics for the device and vary characteristics
according to the manner in which the device is used. For example, a terminal that is normally used for data entry, and thus
has the characteristics of a terminal, may have an auxiliary printer attached. By assigning a different mnemonic that opens
the same device with different characteristics, you can treat the terminal/printer combination as a printer when you want
hard copy.

You can configure device mnemonics and characteristics using the Management Portal. To learn how to define and activate
mnemonic spaces, see the section Defining Default Mnemonic Spaces.

2.3.2.2 Default Mnemonics

The ̂ %IS global is initialized at installation with several default mnemonics. For instance, there are two default mnemonics,
SPOOL and 2, for the InterSystems IRIS spooler. Simply type “2” or “SPOOL” to send output to the InterSystems IRIS
spooler.

If you are logged in on an RT:, LT:, or VT: type device, and your terminal is the current device, %IS will accept 0, “ ” ,
or the value of IO in response to the “Device” prompt. It will use the appropriate template (RT0:, LT0: or VT0:) for your
terminal type to generate the information for your terminal.

2.3.2.3 Alternate Devices

If users enter an “A” at the Device prompt, output goes to the alternate device defined for the current device. Usually,
users expect the alternate device to be a printer. Instead of defining a separate alternate device for each device in the system,
you can create a device, pointing to a printer, with the mnemonic “A” . Then, when users enter “A” at the %IS “Device”
prompt, output goes to that device.

2.3.2.4 CURRENT^%IS Entry Point

CURRENT is an internal entry point within the %IS utility that you can use to obtain the device parameters of the current
device. This call to %IS returns the values of different variables, so you can keep one set of parameters for your principal
device and a different set for a device with different characteristics. Ordinarily, you make a call to this internal entry point
when you log in, to allow the application access to the device characteristics of the principal device. CURRENT^%IS
returns the values of the variables listed in the table below:

18 I/O Device Guide

I/O Devices and Commands

Table 2–2: CURRENT Return Values

DescriptionExampleVariable

WRITE @FF should be used for form feed on this device3FF

WRITE @BS should be used to backspace*8BS

Right margin80RM

Screen/page length24SL

Device subtypeC-VT100SUB

Set $X to DX and $Y to DY to perform direct cursor
positioning

(see Example below)XY

2.3.2.5 Example

After calling CURRENT^%IS, set $X and $Y to DX and DY to position the cursor.

 DO CURRENT^%IS
 WRITE *27,*61,*DY+32,*DX+32
 SET $X=DX,$Y=DY

2.3.2.6 IN^%IS Entry Point

IN is an internal entry point within %IS that can be called by routines that only plan to do input from the device. This entry
point can be used to ensure that you do not select an output-only device such as a printer.

%SYS> Do IN^%IS

Device: 3
Right margin: 132= <RETURN>
[you can't read from this device]
Device: <RETURN>
Right margin: 80= <RETURN>
%SYS>

2.3.2.7 OUT^%IS Entry Point

OUT is an internal entry point within %IS that can be called by routines that only plan to do output to the device.

2.3.2.8 Spooling

InterSystems IRIS spooling is independent of the spooling performed by your operating system. Spooling in InterSystems
IRIS is a technique that lets you automatically save the output of a program in a global instead of printing it immediately.
You can print the output later by sending the contents of the global to the printer.

The mnemonic SPOOL is a default mnemonic. To specify spooling, enter “SPOOL” in response to the Device prompt.
The system then asks for a spool file name and description. This is a named used in the ^SPOOL global—not a separate
file name at the operating system level.

If any existing file names start with or match the name you specify, they are displayed, and you are asked to choose one.
If you select none of the existing files, the system allows you to create a new file with the specified name and description
as shown in the following example:

Device: SPOOL
Name:TEST
1. 1 TEST 02 Nov 1999 10:17 am First test
2. 2 TEST 02 Nov 1999 10:18 am Second Test
Select one: <Return> not found
Create new document 'TEST'? Yes => yes
Description: Third Test

I/O Device Guide 19

Allowing Users to Specify a Device

If you reselect an existing document because you would like to continue adding to an existing file, the system gives you
the following options:

1. Add to the very end of the file;

2. Restart at the top of the last page, in which case the lines that will be deleted are displayed on the screen;

3. Restart at page 1 (the beginning).

You can pass the variables listed in the table below to %IS when you call it for spooling.

Table 2–3: Spool Variables You Can Pass to %IS

FunctionVariable

Document name (when this variable exists and is not a null string all questions are
suppressed, and a new document with this name is automatically created).

IODOC

Free text description.IODES

Name of a routine that should be called at print time to allow the user to set up printer for
the proper forms alignment.

IOPGM

2.3.2.9 Further Features of %IS

%IS can also be used to perform the following tasks:

• Right margin suppressing—It is possible to set up a terminal line so that whenever that device is selected, the Right
margin question is suppressed; the default value is automatically assumed.

• Automatic device selection—If the variable IOP exists when the %IS utility is called, the utility automatically tries
to open that device rather than ask for a device. If %IS is unsuccessful, it sets the variable POP to 1.

• Preconfigured terminals—Using the Management Portal, you can configure a device that does not request any device
information from the user.

2.3.3 Structure of ^%IS Global

The %IS global is stored in the %SYS namespace. It contains two subscripts. The first subscript is the mnemonic name
configured for the device in the Management Portal. Select System Administration, Configuration, Device Settings, IO Settings

to display the default mnemonic for different device types. The second subscript can be 0 or 1.

2.3.3.1 Contents of Node 0

Node 0 contains the Device panel Location value:

^%IS(mnemonic,0) = Location

2.3.3.2 Contents of Node 1

Node 1 contains the other Device panel field values separated by a caret (^):

^%IS(mnemonic,1) = Device #^Type^Subtype^Prompt code^not used
^Other Open parameters^Alternate device

In this example, the device with the mnemonic name 2 (which is a default name for the InterSystems IRIS spooler) has a
device number of 2, device type of SPL (spool), device subtype of PK-DEC. The other values are not defined for a spool
type device.

^%IS(2,1) = 2^SPL^PK-DEC^^^^^

20 I/O Device Guide

I/O Devices and Commands

2.4 Specifying Devices in I/O Commands
When you use the I/O commands OPEN, USE and CLOSE to process I/O on any device other than the one on which you
are working, you must specify an I/O device. You can specify devices in one of three ways, depending on device type, as
shown in the table below.

Table 2–4: Specifying a Device in an I/O Command

Use for these DevicesType of Specification

Terminals and PrintersInterSystems IRIS Device Name

All devices except sequential filesInterSystems IRIS Device ID or Device Alias

Sequential FilesFile Name

Note that Windows and UNIX® handle printer I/O differently. For details, refer to the Printers chapter of this manual.

2.4.1 Specifying Terminals and Printers by Device Name

If your I/O operations are to terminal (or a printer on some platforms), you can use the device name applied by the operating
system (UNIX® or Windows) to specify the device. The form is as follows:

OPEN "device" USE "device" CLOSE "device"

DescriptionParameter

The operating system name of the device, enclosed in quotes. The
maximum length of device is 256 characters.

device

2.4.1.1 Specifying a Terminal on Windows Systems

To open an I/O device connected to a serial communications port, specify an OPEN command with the following syntax:

OPEN "comn:"

where n represents the number of the port to which the device is attached.

DescriptionParameter

The number of the port to which the device is attached.n

 OPEN "com1:"

2.4.1.2 Specifying Terminals and Printers on UNIX®

To open an I/O device on a terminal that has the UNIX® device name /dev/tty06, enter the following command

 OPEN "/dev/tty06"

On UNIX® systems, a printer is identified by the name on the OPEN command and is handled as a “character special”
file on a tty device. Thus the OPEN and USE command arguments supported are the same as those for terminal I/O, not
sequential file I/O. On Windows systems, printer I/O is handled like sequential file I/O.

I/O Device Guide 21

Specifying Devices in I/O Commands

2.4.2 Specifying Devices by InterSystems IRIS ID

For compatibility with other InterSystems products and for convenience, you can refer to devices by device numbers (which
are stored in the device table). The system manager can link these numbers to devices using the Management Portal. Select
System Administration, Configuration, Device Settings, Devices to create a new device or edit an existing device.

The system manager can also cause a translation from one number to another. Thus, you can issue an OPEN 47 and Inter-
Systems IRIS will translate it to OPEN 49.

The following table shows the device numbers.

Table 2–5: InterSystems IRIS Device Numbers and Devices

DevicesDevice Numbers

Principal device (the device on which you logged in).0

InterSystems IRIS spooler. UNIX®: the mnemonic SPOOL applies to this
device.

2

An invalid device number. Attempting to open it returns a <NOTOPEN>
error without waiting for timeout expiration.

3

View buffer.63

Routine interlock devices.20-46, 200-223

Interjob communication devices.224-255

2.4.2.1 Examples

To open the spooler, you issue the command:

 OPEN 2

2.4.3 Specifying Files on Disk

You can open a disk file using the operating system file specification enclosed in double quotes.

A Windows file specification has the following format:

device:\directory\file.type

A UNIX® file specification has the following format:

/directory/name

For further details, refer to Specifying a File in the “Sequential File I/O” chapter of this manual.

2.4.3.1 UNIX Examples

If your current default directory on a UNIX® or Windows system is /usr/user, you can open a file named pat_rec.dat stored
in your current default directory by specifying:

 OPEN "pat_rec.dat"

The system opens the file automatically. For a new file, include the parameter string “WN” to avoid a hang.

To open a file with the same name, pat_rec.dat, stored in another directory, you must also specify the directory, as follows:

22 I/O Device Guide

I/O Devices and Commands

 OPEN "/usr/elsewhere/pat_rec.dat"

2.5 Processes and Devices

2.5.1 Principal Device and Current Device

2.5.1.1 Each Process has a Principal Device

Each InterSystems IRIS process has one principal input device and one principal output device. By default, these are the
same device. When you log in at a terminal and activate InterSystems IRIS, that terminal becomes your principal device.
Because InterSystems IRIS implicitly issues OPEN and USE commands for that terminal, you can issue READ and
WRITE commands to it immediately. The InterSystems IRIS principal device is the one that your operating system has
assigned as your principal input device. The $PRINCIPAL special variable contains the device ID of the principal device.

2.5.1.2 InterSystems IRIS Directs I/O Commands to the Current Device

InterSystems IRIS directs input and output operations, including READ, WRITE, PRINT, and ZLOAD commands, to
your current device. Your process' $IO special variable contains the device ID of your current device. When you log in to
InterSystems IRIS at a terminal, $IO initially contains your terminal's device name. In other words, your principal device
and your current device are the same immediately after you log in. After you issue a USE command, your current device
(the one contained in $IO) is normally the one named in the last USE command you executed.

Although you may issue OPEN and USE for a device other than your principal device in programmer mode, each time
InterSystems IRIS returns to the “>” prompt, it implicitly issues USE 0. To continue using a device other than 0, you must
issue a USE command in each line you enter at the “>” prompt.

2.5.1.3 When Your Principal Device Becomes Your Current Device

Your principal device automatically becomes your current device when you do any of the following:

• Sign on for the first time.

• Issue a USE 0 command.

• Issue a call to the ChangePrincipal() method of the %Library.Device class.

• Cause an error when an error trap is not set.

• Close the current device.

• Return to programmer mode.

• Exit InterSystems IRIS by issuing a HALT command.

2.5.1.4 USE 0 Opens the Principal Device

USE 0 implies an OPEN command to the principal device. If another process owns the device, this process hangs on the
implicit OPEN as it does when it encounters any OPEN.

Issuing a USE command for any other device that the process does not own (due to a previous OPEN command) produces
a <NOTOPEN> error.

An OPEN command with no timeout returns control to the process only when the process acquires the device. You can
interrupt the open command by a keyboard interrupt command like Ctrl-C. An OPEN that cannot succeed because of a

I/O Device Guide 23

Processes and Devices

protection problem or an invalid device name hangs forever. When you specify a timeout in the OPEN command, the
OPEN returns control to your process when the timeout expires.

2.5.2 The Null Device

2.5.2.1 Use the Null Device to Redirect I/O

If your application generates extraneous output which you do not want to appear on your screen, you can direct that output
to the null device. You specify the null device by issuing an InterSystems IRIS OPEN command with the appropriate
argument (see table). InterSystems IRIS treats it as a dummy device.

Table 2–6: Null Device Arguments

Null Device ArgumentPlatform

/dev/null/UNIX®

//./nulWindows

Subsequent READ commands immediately return an empty string. Subsequent WRITE commands immediately return
success. No actual data is read or written. The NULL device bypasses UNIX® open, write, and read system calls entirely.

Note: If you open the NULL device other than from within InterSystems IRIS (for example, by redirecting InterSystems
IRIS output to /dev/null from the UNIX® shell), the UNIX® system calls do occur as they would for any other
device.

2.5.2.2 Jobbed Processes Use the Null Device

When one process starts another with the JOB command, the default principal input and output device of the jobbed process
is the null device.

2.5.3 One Process Owns a Device

Only one process can own a device at a time, except sequential files.

In other words, after a process successfully issues an OPEN command for a device, no other process can open that device
until the first process releases it. A process releases the device in any of the following ways:

• By explicitly issuing a CLOSE command.

• By halting.

2.6 Application Development I/O Commands
There are a special set of I/O commands to load, edit, print, and save InterSystems IRIS routines. These commands load
routines from and save them to the current device; they are summarized in the table below

24 I/O Device Guide

I/O Devices and Commands

Table 2–7: Application Development I/O Commands

DescriptionCommand

The ZLOAD command, without arguments, loads an InterSystems IRIS routine
from the current device.You can use ZLOAD with OPEN and USE to output
or input routines from different devices. ZLOAD ends when it receives a null
line from terminal input or reaches the end of the file.

ZLOAD [routine]

Prints the routine in memory to the current device. It writes an empty line after
the last line of the routine. Optional arguments let you control the number of
lines you print.

PRINT [args]

or

ZPRINT [args]

ZSAVE writes the routine in memory back to disk, giving it the name you supply.
If you do not provide a name, it uses the name of the routine you loaded with
ZLOAD.

ZSAVE [routine]

2.7 Device Special Variables
Some I/O commands affect the value of certain system variables. This section defines these variables and tells why you
might want to use them. These variables are changed only when an I/O command is issued to the current device. These
device special variables are summarized in the table below:

Table 2–8: Device Special Variables

PurposeVariable

Contains the device ID of the current device, to which all output operations are directed.
InterSystems IRIS sets the value of $IO to the principal output device at login, and only
the USE and CLOSE commands, a BREAK command, or a return to programmer mode
can change this value.

$IO

Contains a running total of printable characters written since the last carriage return on
the current device. This number ranges from 0 to the width of the device.

$X

Contains a running total of line feeds written since the last form feed on the current device.
This number ranges from 0 to the length of the device.

$Y

Contains READ status information after a READ command to a terminal device.$ZA

Contains the character sequence or event ended the last READ operation on the current
device.

$ZB

Contains the parameters you used with the OPEN or USE command for the current device.$ZMODE

$X and $Y are useful in formatting printed output. For more information on them, see the chapter “Terminal I/O.” See
individual chapters of this document for device-specific information about $ZA and $ZB.

I/O Device Guide 25

Device Special Variables

2.8 Controlling Devices with Mnemonic Spaces
A mnemonic space is an InterSystems IRIS routine that performs device control actions, such as cursor movement and
device attributes. Each action is associated with a label. These labels are the mnemonics used in the WRITE /mnemonic
command. For more information on the WRITE /mnemonic syntax, see the WRITE command description for each device
type in the other chapters of this document.

2.8.1 Predefined Mnemonic Spaces

InterSystems IRIS provides predefined mnemonic spaces described in the table below.

Table 2–9: Predefined Mnemonic Spaces

DescriptionDevice Type DefaultRoutine Name

Mnemonic space for X3.64 (ANSI)
terminals. For information, see “Mnemonic
Space for X3.64 ” .

Terminals, Sequential files, Other
devices

^%X364

Mnemonic space for DTM PC Console. For
information, see “Mnemonic Space for DTM
PC Console ” .

DTM PC Console^%XDTM

2.8.1.1 Set Up Default Mnemonic Spaces

You can change the mnemonic space that is a default for the following device types in the Management Portal. Select
System Administration, Configuration, Device Settings, IO Settings. This displays the mnemonics for the following:

• Terminals

• Sequential files

• Other

After a default mnemonic space is defined, the control mnemonics in the default mnemonic space for the current device
are used if a WRITE /mnemonic command is issued, unless the default mnemonic space is overridden by a mnespace
argument to the OPEN or USE command for the current device.

2.8.2 Creating a Mnemonic Space

You can create your own mnemonic space routines. For example, you might want to create your own for terminal I/O.

1. Create an InterSystems IRIS routine containing the control mnemonics you want. Keep in mind the following points
about your routine:

• The entry points in this routine must be uppercase. These entry points are the mnemonics you reference in WRITE
/mnemonic commands.

• Some entry points may require arguments. The code in the mnemonic space at an entry point performs an action
on the current device.

• Cursor movement routines do not move the cursor past the edge of the screen in any direction, nor do they wrap
the cursor.

26 I/O Device Guide

I/O Devices and Commands

2. To make this mnemonic space available to all users, give the InterSystems IRIS routine a name that begins with “%”
and put it in the system manager's namespace (%SYS).

2.8.3 Select a Mnemonic Space

Before you issue WRITE /mnemonic commands to a device, you decide whether you want to use the default mnemonic
space for the device type as specified in the Management Portal configuration setting.

• When using the default mnemonic space, do not include a mnespace parameter when you issue OPEN or USE commands
for the device.

• To use another mnemonic space, specify its name in the mnespace parameter of the OPEN or USE command you
issue for the device.

 USE "device"::"^%X364"

For information on using the mnespace parameter, see the OPEN command and the USE command, as well as the chapters
on individual device types.

I/O Device Guide 27

Controlling Devices with Mnemonic Spaces

3
Terminal I/O

This chapter discusses terminal I/O in InterSystems IRIS® data platform.

• Overview of Terminal I/O Capabilities

• Special Variables Show I/O Conditions

• OPEN and USE Commands

• READ Command

• WRITE Command

• CLOSE Command

• Predefined Mnemonic Spaces for Terminals

• PRINT and ZPRINT Commands

• Programming Your Terminal

3.1 Overview of Terminal I/O Capabilities
ObjectScript provides commands that support serial asynchronous ASCII terminals. You can also use these commands
with console I/O.

Using Terminal I/O, your routine can:

• Enable or disable the echo of incoming characters.

• Send and receive ANSI-standard escape sequences.

• Control keyboard interruptions and program special user interactions, including formatted screens, reverse video, and
special keys for skipping fields.

• Enable and disable recognition of Ctrl-C interrupts.

• Control the flow of incoming and outgoing data by XON (Ctrl-Q) and XOFF (Ctrl-S).

• Specify COM port state parameters and modem baud rate.

• Conform to foreign protocols when you specify your own set of termination characters.

• Communicate with non-terminal devices, such as automated instruments.

I/O Device Guide 29

Printers are handled as terminal I/O devices on most platforms. UNIX® systems always handle a printer as a terminal I/O
device. On Windows, a printer connected through a serial communications port is handled as a terminal I/O device. Otherwise,
Windows systems handle printers as sequential file I/O devices. For further details, refer to the Printers chapter in this
manual.

3.1.1 Your Login Terminal or Console is Your Principal Device

The terminal or console on which you log in to InterSystems IRIS is your principal device. You need not open your principal
device. If you have not issued an OPEN and a USE, the first time a process issues a READ or WRITE, the system opens
your principal device automatically, and establishes it as the current device, as if you had issued OPEN 0 USE 0 explicitly.

Note: Through the rest of this chapter the word terminal is used to refer to both terminals and consoles.

3.2 Special Variables Show I/O Conditions
I/O commands can affect the values of special variables. You can test these variables to determine I/O conditions:

• $IO contains the name of the current device.

• $TEST contains a boolean value that shows whether the most recent timed operation was successful.

• $X and $Y show the position of the cursor.

• $ZA, $ZB, and $KEY show information about READ operations. $ZB and $KEY are similar, but not identical.

See the chapter “ I/O Devices and Commands” for more information on the device-independent $IO special variable. The
next sections describe terminal-specific information about the remaining special variables.

3.2.1 $X and $Y and Cursor Position

$X contains the horizontal position and $Y the vertical position of the cursor or print head. $X=0,$Y=0 denotes the upper
left corner of the CRT screen or the printed page. InterSystems IRIS calculates both $X and $Y modulo 256; that is, they
range from 0 to 255 and then begin again at 0.

The following table shows the effects of writing or echoing the characters

Table 3–1: Effects of Echoing Characters

Effect on $YEffect on $XASCII CodeCharacter

$Y=0$X=012Form Feed

$Y=$Y$X=013Return

$Y=$Y+1$X=$X10Line Feed

$Y=$Y$X=$X-18Backspace

$Y=$Y$X=$X+19Tab

$Y=$Y$X=$X+132 through 126Any printable ASCII
character

The S protocol of OPEN and USE turns off the echo. This protocol also disables the changing of $X and $Y during input,
so that they truly indicate the cursor's position.

30 I/O Device Guide

Terminal I/O

3.2.1.1 WRITE * and $X and $Y

WRITE * does not change $X and $Y. Thus, you can send a control sequence to your terminal and $X and $Y will still
reflect the true cursor position. Some control sequences do move the cursor, so you can set $X or $Y directly when you
need to.

3.2.1.2 $X and $Y Example

In the following example, a control sequence moves the cursor in a VT100 terminal to line 10, column 20, and sets $X and
$Y accordingly.

 ; set DY and DX to desired
 ; values for $Y and $X
 SET DY=10
 SET DX=20
 ; ...
 ; escape sequence moves
 ; cursor to desired position
 WRITE *27, *91, DY+1, *59, DX+1, *72
 ; ...
 ; updates $X and $Y
 SET $Y=DY
 SET $X=DX

3.2.1.3 Effect of Escape Sequences on $X and $Y Varies

Escape sequences can alter the effect of echoing on the values of $X and $Y. Three factors control this effect:

• Your operating system, which sets the default behavior.

• Whether /NOXY (which disables $X and $Y processing) was specified in the OPEN or USE command.

• You can set how $X handles escape sequences for the current process using the DX() method of the %SYSTEM.Process

class. The system-wide default behavior can be established by setting the DX property of the Config.Miscellaneous

class.

Escape Sequences Affect $X and $Y on Windows and UNIX® Systems
By default on UNIX® and Windows, when writing or echoing any string that includes the ASCII Escape character (decimal
value 27), InterSystems IRIS updates $X and $Y just as it does for any other character sequence. Thus, ANSI standard
control sequences, which the terminal acts on, but does not display, can upset the relationship of $X and $Y to the cursor's
position.

The easiest way to avoid this problem is to use the DX() method to alter the behavior (see the next section). Alternatively,
you can use the ASCII value of each character in the string in a WRITE * statement.

Control Sequence Example
Instead of using the code:

%SYS>WRITE $CHAR(27)_"[lm"

you can use the following equivalent statement that does not update $X and $Y:

%SYS>WRITE *27,*91,*49,*109

Switches Control Updates of $X for Escape Sequences
To select non-default behavior for updating $X for your process, issue the DX(n) method of the %SYSTEM.Process class.

The system manager can alter the system-wide default behavior by setting the DX property of the Config.Miscellaneous

class.

In both cases, n has a value from 0 through 4, as follows:

I/O Device Guide 31

Special Variables Show I/O Conditions

Default Behavior for Updating $XValue

Default for InterSystems IRIS0

DSM behavior1

DTM/MSM behavior2

For more information, see $X in the ObjectScript Language Reference.

3.2.2 $TEST Shows Timed Operation Results

The $TEST special variable is set by commands that take a timeout value. These commands include OPEN and READ.
The value of $TEST can be set to 1 or 0:

• $TEST is set to 1 if the timed command succeeded before the timeout expired.

• $TEST is set to 0 if the timeout expires on a timed command.

Note: OPEN and READ commands without a timeout have no effect on $TEST.

For more information, see $TEST in the ObjectScript Language Reference.

3.2.3 $ZA Shows READ Status

The $ZA special variable contains a number of bit flags that show the status of the last READ on the current device. You
cannot set $ZA; InterSystems IRIS controls its value. $ZA remains valid until the next READ. $ZA contains the sum of
the values listed in the table, which shows how your program can test this variable. ($ZA also contains bit flags for modem
connection status, which are not listed here. For a complete list of $ZA bit flag values, see $ZA in ObjectScript Language
Reference.)

Table 3–2: $ZA Read Status Values

MeaningTestValue

A Ctrl-C arrived, whether or not breaks were enabled.$ZA#21

The READ timed out.$ZA\2#22

InterSystems IRIS detected an invalid escape sequence.$ZA\256#2256

The hardware detected a parity or framing error.$ZA\512#2512

While many of the conditions that $ZA shows are errors, they do not interrupt the program's flow by trapping to the $ZTRAP
special variable. Programs that are concerned with these errors must examine $ZA after every READ. Of course, a Ctrl-C

with breaks enabled will trap to $ZTRAP. For more on error trapping and $ZTRAP, see the Error Processing chapter of
Using ObjectScript and $ZTRAP in the ObjectScript Language Reference.

3.2.4 $ZB Shows What Ended a READ

$ZB shows what character sequence or event ended the last READ operation on the current device. You cannot set $ZB;
InterSystems IRIS sets the value of $ZB each time you perform a READ. You can use this value to act on non-printable
characters such as the up arrow key or function keys.

$ZB can contain any of the following:

• A termination character, such as a carriage return

32 I/O Device Guide

Terminal I/O

• An escape sequence

• Character number y of a fixed-length READ x#y

• The single character of READ *x

• An empty string after a timed READ expires

$ZB never contains more than 64 characters. A longer escape sequence is invalid.

3.2.4.1 $ZB Example

The following example assigns the user-specified input characters to the READ command variable x, and assigns the input
terminator (usually the Return character) to the $ZB special variable. When issuing this command from the terminal prompt,
you need to set a variable to trap the value of $ZB on the same command line as the READ command. This is because the
line return used to issue a command line is written to $ZB as a terminator character. This example uses ZZDUMP to display
the value of the characters trapped by $ZB.

USER>READ x SET y=$ZB
USER>ZZDUMP y

0000: 0D
USER>

3.3 OPEN and USE Commands

3.3.1 OPEN Command

Establishes ownership of the terminal. An optional parameter list can set the right margin, specify device protocols, and
specify one or more termination characters. Following the parameter list, you can optionally specify a timeout argument,
and/or a mnespace argument. The mnespace argument specifies the InterSystems IRIS routine where control mnemonics
for use with WRITE /mnemonic are defined.

OPEN pauses the process until the system finishes opening the device. If you press Ctrl-C to interrupt the OPEN command,
a <NOTOPEN> error results.

OPEN retains control until the opening of the device is complete, unless you specify a timeout. With a timeout, if InterSystems
IRIS cannot open the device in the number of seconds you specify, it sets $TEST to 0 and returns control to the process.
Even if a device is unavailable at the operating-system level, OPEN keeps trying to obtain the device until it succeeds or
the timeout expires.

3.3.1.1 OPEN Syntax

The OPEN command takes the following arguments:

OPEN terminal:(margin:protocols:terminator:portstate:baud):timeout:"mnespace"

Only the terminal argument is required. The terminal argument can be an expression whose value is the name of a terminal
device. Zero (0) is the process's principal device. $IO is the current device. The maximum length of terminal is 256 char-
acters.

Arguments are separated by colons (:). If you omit an argument within the list, you must specify the colon as placeholder.
However, trailing colons are not permitted; you must not end either the command or its parameter list with a colon.

The optional parameter list is enclosed in parentheses and can contain the following optional parameters:

• margin is an integer that specifies the number of characters per line by specifying the right margin.

I/O Device Guide 33

OPEN and USE Commands

• protocols is one or more letter codes that specify terminal options.

• terminator is a string of one or more characters that terminate a READ operation. These characters supplement the
termination characters that are defined for a specific protocols.

• portstate is a string that specifies the COM port state.

• baud is an integer that specifies the baud rate for a COM port.

You can specify these optional parameters as either positional parameters (in the order shown), or as keyword parameters
with the syntax /KEYWORD=value. Keyword parameters may be specified in any order; because InterSystems IRIS executes
parameters in left-to-right order, interactions between parameters may dictate a preferred order in some cases. You can mix
positional parameters and keyword parameters in the same parameter list. The enclosing parentheses are required if you
specify more than one parameter.

The following parameter lists are equivalent:

 OPEN $IO:(80:"BFU":$CHAR(13))
 ; all positional
 OPEN $IO:(80::$CHAR(13):/PARAMS="BFU")
 ; mixed positional and keyword, using the /PARAMS keyword
 ; to specify a protocol letter code string.
 OPEN $IO:(/MARGIN=80:/TERMINATOR=$CHAR(13):/BREAK:/FLUSH:/UPCASE)
 ; all keyword, using separate keywords
 ; for each protocol letter code.

Following the parameter list (or a placeholder colon, if no parameter list is specified), you can specify an optional timeout
in seconds, and a mnespace argument to specify the routine that contains the control mnemonics for this device.

For more information, see OPEN in the ObjectScript Language Reference.

3.3.2 USE Command

Makes the specified terminal the current device. In programmer mode, all subsequent I/O commands on the same line of
code refer to that device. In application mode, the device you name in a USE command remains the current device until
the next USE command.

3.3.2.1 USE Syntax

The USE command takes the following arguments:

USE terminal:(margin:protocols:terminator):"mnespace"

The terminal argument can be an expression whose value is the name of a terminal device. Zero (0) is the process's principal
device. $IO is the current device. The maximum length of terminal is 256 characters.

Arguments are separated by colons (:). If you omit an argument, you must specify the colon. You must not end either the
command or its parameter list with a colon.

The optional parameter list is enclosed in parentheses and can contain the margin, protocols, and terminator parameters.
You can specify the optional margin, protocols, and terminator parameters as either positional parameters (in the order
shown), or as keyword parameters with the syntax /KEYWORD=value. Keyword parameters may be specified in any order;
because InterSystems IRIS executes parameters in left-to-right order, interactions between parameters may dictate a preferred
order in some cases. You can mix positional parameters and keyword parameters in the same parameter list. The enclosing
parentheses are required if you specify more than one parameter.

To specify COM port state and baud rate with the USE command, use the appropriate keyword parameters.

Following the parameter list (or a placeholder colon, if no parameter list is specified), you can specify an optional mnespace
argument, which identifies an ObjectScript routine where control mnemonics for use with WRITE /mnemonic are defined.

For more information, see USE in the ObjectScript Language Reference.

34 I/O Device Guide

Terminal I/O

3.3.3 Positional Parameters for OPEN and USE Commands

The following positional parameters are available for the OPEN and USE commands. You can set these parameters for a
device in either the OPEN or USE command, or take the defaults configured in the Management Portal. These parameters
are positional; if you omit a parameter, you must include its preceding colon as a placeholder.

3.3.3.1 margin

The 1st positional parameter: An integer value specifying the right margin (and thus the number of characters per line).
Values from 1 to 255 set the right margin for output; any other value disables the right margin. An empty string leaves the
margin setting unchanged. On Windows platforms, you cannot use “ :n” to control the print margin used. Such notation is
ignored by InterSystems IRIS. Code such as “ |PRN| :121” is ignored. To control the printer width, send the appropriate
control characters for that printer. The notation does work on other platforms.

The default margins for various terminal types are defined in the Management Portal. Select System Administration, Con-

figuration, Device Settings, Device Subtypes. When you click on “Edit” for each listed device subtype, it displays a Right

Margin: default option.

3.3.3.2 protocols

The 2nd positional parameter: A string of letter code characters enclosed in quotation marks (for example, "BNFU”), where
each letter enables one of the terminal's rules for communicating. Letter codes are not case-sensitive. Letter codes may be
specified in any order; because InterSystems IRIS executes them in left-to-right order, interactions between letter codes
may dictate a preferred order in some cases. For a table of letter codes, see Letter Code Protocols.

A preceding plus or minus affects protocols as follows:

• No preceding plus or minus: New string replaces prior protocols string.

• Plus (+) precedes letter code string: Protocols in new string are added to prior protocols string.

• Minus (-) precedes letter code string: Protocols in new string are turned off, but other protocols remain in effect.

The + and – options for turning protocols on and off are not available in DSM-11 compatibility modes.

3.3.3.3 terminator

The 3rd positional parameter: A string of up to eight characters, any of which will terminate a READ. These terminators
are in addition to those built into the protocols. See Using Terminators to End I/O Operations.

3.3.3.4 portstate

The 4th positional parameter: A string of up to eight bytes in positional order that govern the COM port state. The portstate
bytes are as follows (bytes are numbered from 1 in left-to-right order):

ValuesMeaningByte

D=disconnect (hangup) the port. blank=don't disconnect the port.Disconnect1

1=use modem control. 0=don't use modem control. blank=no
change to modem control.

Modem Control2

5=five data bits. 6=six data bits. 7=seven data bits. 8=eight data
bits. blank=no change to data bit setting.

Data Bits3

0=no parity. 1=odd parity. 2=even parity. 3=mark parity. 4=space
parity. blank=no change to parity setting.

Parity4

I/O Device Guide 35

OPEN and USE Commands

ValuesMeaningByte

1=one stop bit. 5=1.5 stop bits. 2=two stop bits. blank=no change
to stop bit setting.

Stop Bits5

X=use Xon/Xoff flow control. C=use CTS/RTS flow control. D=use
DSR/DTR flow control. N=disable flow control. blank=no change
to flow control.

Flow Control6

0=disable DTR (set it off, keep it off). 1=enable DTR (set it on, keep
it on). blank=no change to DTR state.

DTR Setting7

0=disable $ZA error reporting (default). 1=enable $ZA error
reporting. blank=no change to $ZA error reporting.

$ZA Error Reporting8

The following example shows a COM port state string:

 OPEN "COM2":(:::" 0801x0")

The string values are: blank (don't disconnect the port); 0 (don't use modem control); 8 (eight data bits); 0 (no parity); 1
(one stop bit); X (use Xon/Xoff flow control); 0 (disable DTR); default (disable $ZA error reporting).

The Disconnect parameter performs a hangup on modem-controlled ports by lowering the DTR signal for two seconds and
then restoring it. A disconnect does not close the port; following a disconnect you can dial out again without reopening the
COM device.

The Modem Control parameter determines how InterSystems IRIS responds to the state of the RLSD (Received Line Signal
Detector) pin, also known as the DCD (Data Carrier Detect). If the line is modem controlled (modem control=1), InterSystems
IRIS monitors the state of the RLSD, and generates an <ENDOFFILE> error if a READ command is issued when carrier
is not present. InterSystems IRIS does not generate an error when a WRITE command is issued when carrier is not present.
This is because it must be possible to send the dial command to the modem prior to a connection being established. Inter-
Systems IRIS modem control can be enabled (1) or disabled (0) at any time. It is suggested that you disable modem control
while sending commands to the modem, then enable modem control once carrier is detected and connection has been
established.

The DTR Setting parameter is used to control login from an attached modem. If the DTR setting is 0 (zero), the DTR control
signal is off, and modems cannot communicate with the computer. This prevents a dial-in connection from occurring. If
the DTR setting is 1 (one), the DTR control signal is on, and modems can communicate with the computer. A dial-in con-
nection can occur. If you configure DTR as off (0), then you must set it to on (1) with the OPEN command or USE command
to be able to dial out using a connected modem. In most cases, the DTR setting is unimportant when using a null modem
cable to connect directly to a terminal device or a serial printer. This is because the null modem cable should force the DTR
control pin on.

The $ZA Error Reporting parameter enables reporting of the status of modem control pins to the $ZA special variable.
This checking can be done regardless of the Modem Control byte setting for the COM port. If $ZA error reporting is enabled,
COM port errors are cleared with a call to the Windows ClearCommError() function. The port error state is reported in the
$ZA bits 16 through 22. For a table of $ZA bit values, refer to $ZA in the ObjectScript Reference.

3.3.3.5 baud

The 5th positional parameter: an integer value that specifies the desired COM port baud rate. The following baud rates are
supported: 110, 300, 600, 1200, 4800, 9600, 14400, 19200, 38400, 56000, 57600, 115200, 128000, 256000.

36 I/O Device Guide

Terminal I/O

3.3.4 Keyword Parameters for OPEN and USE Commands

The following table describes the keyword parameters for controlling terminal devices with both OPEN and USE commands.
For each keyword, the table lists the corresponding Letter Code Protocols for OPEN and USE. Additional information on
the use of these protocols can be found in the Letter Code Protocols table.

Table 3–3: OPEN and USE Keyword Parameters for Terminal Devices

DescriptionLetter Code
Protocols

DefaultKeyword

Corresponds to the baud positional
parameter. /BAUD=n sets the modem
baud rate for a COM port. Supported
values are 110, 300, 600, 1200, 4800,
9600, 14400, 19200, 38400, 56000,
57600, 115200, 128000, 256000.

/BAUD=n

/BREAK or /BREAK=n for nonzero values
of n enable the protocol. /BREAK=n for a
zero value of n disables the protocol.

B0/BREAK[=n]

or

/BRE[=n]

Corresponds to the portstate positional
parameter. (This keyword provides a way
to specify a COM port state byte code
string in a position-independent way.) The
portstate byte codes that you can include
in str, are listed in a table in earlier in this
chapter.

/COMPARAMS=str

Specifies the stream data compression
type.You can enable a compression type
of ZLIB or ZSTD.You can specify
/COMPRESS="" to disable compression.
/COMPRESS="zlib" is equivalent to
/GZIP=1. To compress a string, use
%SYSTEM.Util.Compress().

""/COMPRESS=str

Associated with the C and P protocols.
/CRT or /CRT=n for nonzero values of n
enable the C protocol and disable the P
protocol. /CRT=n for a zero value of n
disables the C protocol and enables the
P protocol.

C and PDepends on the
operating system
terminal setting

/CRT[=n]

Corresponds to 1st byte of the portstate
positional parameter. /DISCONNECT
disconnects (hangs up) the COM port. It
does not close the port; you can dial out
again without reopening the COM device.

/DISCONNECT

/ECHO or /ECHO=n for nonzero values
of n disable the protocol. /ECHO=n for a
zero value of n enables the protocol.

S1/ECHO[=n]

I/O Device Guide 37

OPEN and USE Commands

DescriptionLetter Code
Protocols

DefaultKeyword

/EDIT or /EDIT=n for nonzero values of n
enable the R protocol and disable the N
protocol. /EDIT=n for a zero value of n
disables the R protocol and enables the
N protocol.

R and N0/EDIT[=n]

/FLUSH or /FLUSH=n for nonzero values
of n enable the protocol. /FLUSH=n for a
zero value of n disables the protocol.

F0/FLUSH[=n]

or

/FLU[=n]

Specifies GZIP-compatible stream data
compression. /GZIP or /GZIP=n (for
nonzero values of n) enables compression
on WRITE and decompression on READ.
/GZIP=0 disables compression and
decompression. Before issuing /GZIP=0
to disable compression and
decompression, check the $ZEOS special
variable to make sure that a stream data
read is not in progress. /GZIP
compression has no effect on I/O
translation, such as translation
established using /IOTABLE. This is
because compression is applied after all
other translation (except encryption) and
decompression is applied before all other
translation (except encryption).

1/GZIP[=n]

/IMAGE or /IMAGE=n for nonzero values
of n enable the protocol. /IMAGE=n for a
zero value of n disables the protocol.

I0/IMAGE[=n]

or

/IMA[=n]

Corresponds to the K\name\ protocol,
which establishes an I/O translation table
for the device.

If name is not
specified, the
default I/O
translation table
for the device is
used.

/IOTABLE[=name]

or

/IOT[=name]

Corresponds to the margin positional
parameter, which sets the right margin for
the terminal device.

0 (no margin)/MARGIN=n

or

/MAR=n

38 I/O Device Guide

Terminal I/O

DescriptionLetter Code
Protocols

DefaultKeyword

Resets protocols and sets the terminal
mode according to the value of n.

n=0 sets LF and ESC as default termina-
tors.

n=1 is the same as mode 0 and enables
the S protocol.

n=2 is the same as mode 0 and enables
the T protocol.

No default/MODE=n

No $X and $Y processing: /NOXY or
/NOXY=n (for nonzero values of n)
disables $X and $Y processing. This can
substantially improve performance of
READ and WRITE operations.The values
of the $X and $Y variables are
indeterminate, and margin processing
(which depends on $X) is disabled.
/NOXY=0 enables $X and $Y processing;
this is the default.

0/NOXY [=n]

Specifies the size of the terminal output
buffer in bytes. Increasing the output
buffer size can improve performance of
screen painting with telnet over wide area
networks with high latency. Valid values
for /OBUFSIZE are 256 through 65536.
The default is 256.

256/OBUFSIZE=nnn

Corresponds to the protocols positional
parameter. (This keyword provides a way
to specify a protocols letter code string in
a position-independent way.) For a table
of letter codes that you can include in str,
see Letter Code Protocols.

No default/PARAMS=str

or

/PAR=str

Corresponds to the terminator positional
parameter, which establishes user-defined
terminators. To compose str, see Using
Terminators to End I/O Operations.

No default/TERMINATOR=str

or

/TER=str

/TPROTOCOL or /TPROTOCOL=n for
nonzero values of n enable the protocol.
/TPROTOCOL=n for a zero value of n
disables the protocol.

T0/TPROTOCOL[=n]

or

/TPR[=n]

I/O Device Guide 39

OPEN and USE Commands

DescriptionLetter Code
Protocols

DefaultKeyword

/TRANSLATE or /TRANSLATE=n for
nonzero values of n enable I/O translation
for the device. /TRANSLATE=n for a zero
value of n disables I/O translation for the
device.

K1/TRANSLATE[=n]

or

/TRA[=n]

/UPCASE or /UPCASE=n for nonzero
values of n enable the protocol.
/UPCASE=n for a zero value of n disables
the protocol.

U0/UPCASE[=n]

or

/UPC[=n]

Corresponds to the Y\name\ protocol,
which establishes a $X/$Y action table for
the device.

Y\name\If name is not
specified, the
default $X/$Y
action table for
the device is
used.

/XYTABLE[=name]

or

/XYT[=name]

3.3.5 Testing the Success of OPEN Commands

To determine whether an OPEN command succeeded, your code should test $TEST and/or $ZE. $TEST is only set if the
OPEN command was specified with a timeout argument. A <NOTOPEN> error occurs only when Ctrl-C interrupts an
OPEN command. Therefore, your code must not depend on <NOTOPEN> errors.

3.3.6 Letter Code Protocols for OPEN and USE

Special situations or terminals can require different protocols. With the protocols letter code parameter (or the corresponding
keyword parameters) you can change the rules by which InterSystems IRIS communicates with the terminal. Protocols
affect normal and single-character reads alike.

Normal mode, with all special protocols disabled, suffices for most terminal I/O. In normal mode InterSystems IRIS echoes
each incoming ASCII character, sending it back to appear on the terminal. A Return, or a valid escape sequence, ends a
READ command.

Issuing OPEN for a terminal turns off all previous protocols, except when you use the + and - options.

The following table describes valid protocols characters and their effects.

40 I/O Device Guide

Terminal I/O

Table 3–4: Letter Code Protocols for OPEN and USE

DefinitionNameProtocol
Character

If breaks are enabled (+B), Ctrl-C interrupts a running routine with an
<INTERRUPT> error. If breaks are disabled (-B), Ctrl-C does not cause an
interrupt and “^C ” is not displayed. The use of this protocol is dependent
upon the BREAK command default established by the login mode, as fol-
lows:

If you log in as programmer mode, interrupts are always enabled (BREAK
1). The B (or /BREAK) protocol specified in an OPEN or USE command
has no effect.

If you log in as application mode, BREAK 0 is the default, and interrupts
can be enabled or disabled by the B (or /BREAK) protocol specified in the
OPEN or USE command.

BREAKB

C mode accepts all eight bit characters as data, except for the following six:
ASCII 3, 8, 10, 13, 21, and 127. The ASCII 127 Delete character echoes
as a destructive backspace, that is, it backspaces and erases the preceding
character. ASCII 21 (Ctrl-U) echoes enough destructive backspaces to bring
the cursor to the start of the READ. If the setting for the right margin, or the
nature of the terminal, forces echoed characters to begin a new line, Ctrl-U

can erase only the characters on the last physical line. In any case, Ctrl-U

cancels all input since the start of the READ. C is mutually exclusive with
the P protocol.

CRT terminalC

Flush (empty) the input buffer before each READ.You can flush the input
buffer to prohibit the user from typing ahead of READ operations on the
terminal, because InterSystems IRIS discards anything typed between
READ operations. Note that the command WRITE *–1 flushes the input
buffer at any time, regardless of the F protocol.

FlushF

I mode accepts all 256 eight bit characters as data, treating none as a READ
terminator, except the termination character(s) (if any) that you explicitly
specify in the terminator parameter. If you do not explicitly specify termination
characters, you should use only single character and fixed length READ
operations. Without defined termination characters, an ordinary READ
results in a <TERMINATOR> error.

Image mode (I) protocol can be combined with other protocol characters.
In image mode, InterSystems IRIS ignores the protocol characters P, C and
B. In image mode, the protocol characters F, N, R, S, and T remain in effect.
When not in image mode, the device is in N (normal) mode.

Image modeI

When you use the K protocol for a device, I/O translation will occur for that
device if translation has been enabled system-wide.You identify the
previously defined table on which the translation is based by specifying the
table's name. (The older form Knum, where “num ” represents the number
of the slot the table is loaded in, is being phased out but is still supported.)

I/O
Translation
Mode

K\name\

or

Knum

I/O Device Guide 41

OPEN and USE Commands

DefinitionNameProtocol
Character

N mode accepts all eight bit characters as data, except for the following six:
ASCII 3, 8, 10, 13, 21, and 127. These implicit terminator and command
line editing control characters, are described later in this chapter. If R (read
line recall) protocol is enabled, N disables R protocol. This mode is the
default if no protocols value is specified.

Normal
mode

N

The ASCII Delete character echoes as a backslash (\), and Ctrl-U echoes
as “^U ” followed by a carriage return and line feed. When you issue an
OPEN command for a terminal, InterSystems IRIS invokes the protocol C
or P automatically, depending on the operating system terminal setting.
These protocols remain in effect until you change the protocols for the device
explicitly. A protocol string containing neither C nor P does not cancel this
protocol.

Print deviceP

The R protocol enables read line recall mode for that device. To activate
read line recall for the current process, use the LineRecall() method of the
%SYSTEM.Process class.To set the system-wide read line recall default, use
the LineRecall property of the Config.Miscellaneous class. The R protocol
overrides these default settings for the specified device. To change read
line recall for an already-open device, you must explicitly specify another
OPEN command to that device. Read line recall is disabled by specifying
the N protocol.

Enable read
line recall
mode

R

Nothing echoes on a READ. READ commands do not change $X and $Y.
Read line recall is disabled.

Secret inputS

T mode does not treat any control characters as data. The following are
control characters: ASCII characters with decimal values from 0 to 31 and
127 to 159. Most of these control characters are treated as READ terminator
characters. The exceptions are the following control characters, which per-
form other control operations: ASCII 3 (Ctrl-C), ASCII 8 (backspace), ASCII
17 (Ctrl-Q), ASCII 19 (Ctrl-S), ASCII 21 (Ctrl-U), ASCII 24 (Ctrl-X), ASCII 27
(ESC), and ASCII 127 (DEL).

When T mode is combined with I mode (IT protocol) all control characters
(ASCII 0 to 31 and 127 to 159) are treated as READ terminator characters,
with the exceptions of the output control characters Ctrl-Q (XOFF), and Ctrl-

S (XON), and the input control characters Ctrl-H and Ctrl-Y. Output control
characters Ctrl-Q and Ctrl-S are intercepted by most terminals and do not
terminate a READ even in IT mode.

TerminatorT

U mode converts all input letters to upper case.Upcase
mode

U

42 I/O Device Guide

Terminal I/O

DefinitionNameProtocol
Character

When you use the Y protocol for a device, the system uses the named $X/$Y
Action Table.You identify a previously defined $X/$Y Action Table on used
to translate by specifying the table name. If you don't know it, you can get
the name from the system manager. $X/$Y action is always enabled. If Y
is not specified and a system default $X/$Y is not defined, a built in $X/$Y
action table is used. The + option works for turning on the Y protocol, but
the - option does not. In order to disable a $X/$Y association, you can issue
the command: USE 0:(:"Y0") (The older form Ynum, where num
represents the number of the slot the table is loaded in, is being phased out
but is still supported.)

$X/$Y Action
Mode

Y\name\

or

Ynum

3.3.6.1 Examples of Protocol Strings

The following series of examples show how protocol strings function. Each of the following USE commands builds on the
protocol established by the preceding USE commands:

 USE 0:(80:"BP")

The letter codes BP turn on the B and P protocols. This example enables breaks (B) and tells InterSystems IRIS to treat the
terminal as a printing device (P).

 USE 0:(80:"P")

When it follows the USE command in the example just above, this command leaves the P protocol in effect, but turns off
the B protocol.

 USE 0:(80:"+R")

+R turns on read line recall, without affecting other protocol settings.

 USE 0:(80:"")

The empty string turns off all protocols. However, the P or C protocol remains in effect.

 USE 0:(80)

Omitting the protocol parameter leaves the protocol and explicit terminators unchanged.

3.3.7 Protocol Terminator Characters

OPEN and USE protocols define what READ input characters, control sequences, and keystrokes are treated as implicit
terminator characters. These four protocols are I (image mode), N (normal mode (the default)), R (read line recall mode),
and T (terminator mode):

• I (image mode) accepts all 256 eight bit characters as data, treating none as a READ input terminator or a command
line editing character. Because of this, you should use only single character or fixed length READ operations in image
mode. Without defined termination characters, an ordinary READ results in a <TERMINATOR> error.

• N (normal mode) and C (CRT mode) accept all characters as data except the following six: ASCII 3, 8, 10, 13, 21, and
127. Two of these, ASCII 10 (linefeed) and 13 (carriage return) terminate READ and submit input. ASCII 3 (Ctrl-C)
discards input and issues an <INTERRUPT> error if BREAK is enabled. ASCII 8 (backspace) and 127 (delete) perform
a single-character backspace erase then continue READ. ASCII 21 performs a multi-character backspace, erasing all
prior characters, then continues READ.

I/O Device Guide 43

OPEN and USE Commands

• R (read line recall mode) accepts all characters as data except the following twenty: ASCII 1 through 8, 10 through
14, 16, 18, 21, 23, 24, 27, and 127. ASCII 10 (linefeed) and 13 (carriage return) terminate READ and submit input.
ASCII 3 (Ctrl-C) discards input and issues an <INTERRUPT> if BREAK is enabled. The other characters perform the
following command line editing functions:

1 ^A = beginning of line
2 ^B = back word
3 ^C = interrupt
4 ^D = delete current character
5 ^E = end of line
6 ^F = forward word
7 ^G = delete to beginning of word ("wipe word backward")
8 ^H = BS = destructive backspace
9 ^I = HT = horizontal tab (echoed as a SPACE)
10 ^J = LF = end of input
11 ^K = VT = forward character
12 ^L = FF = erase to end of line
13 ^M = CR = end of input (same as LF)
14 ^N = recall next input line
16 ^P = recall previous input line
18 ^R = back char (reverse)
21 ^U = erase to start of line
23 ^W = delete to end of word "gobble word forward")
24 ^X = erase entire line
27 ESC lead character for arrow and function keys
127 DEL = destructive backspace (same as BS)

• T (terminator mode) accepts all characters as data except the 65 control characters: ASCII 0 through 31 and ASCII
127 through 159. Most of these characters are treated as READ termination characters. This includes the tab character
(ASCII 9), which is treated as a data character in all other protocols. A few characters are treated as command line
control characters: ASCII 3 (Ctrl-C) discards input and issues an <INTERRUPT> if BREAK is enabled. ASCII 8
(backspace) and 127 (delete) perform a single-character backspace erase then continue READ. ASCII 21 (Ctrl-U) and
ASCII 24 (Ctrl-X) perform a multi-character backspace, erasing all prior characters, then continues READ. ASCII 27
is the Escape character.

• IT (image mode + terminator mode) accepts all characters as data except the 65 control characters: ASCII 0 through
31 and ASCII 127 through 159. It treats all of the control characters as READ terminator characters.

In any of these modes you can explicitly specify additional terminator characters using the terminator parameter. Because
image mode is commonly used for bit stream data, designation of any character as a terminator is usually avoided.

3.3.8 Explicit Terminator Characters

The terminator parameter in the OPEN or USE command lets you define specific characters as terminators for a READ
or WRITE command. These explicit terminators can be used to supplement the terminator characters supplied by the
specified protocol. The terminator parameter can also be used to override the designation of a character by the protocol,
and instead designate it a terminator character. The exceptions to this ability to redefine a character as a terminator are:
ASCII 0 (NULL), ASCII 3 (Ctrl-C), and the two output control characters Ctrl-Q (XON) and Ctrl-S (XOFF). These retain
their functionality, and cannot be redefined as terminator characters.

3.3.8.1 Example

This example defines Z, Backspace and Tab as terminators for the principal device. The underscore is the concatenate
operator.

 USE 0:("":"":"Z"_$CHAR(8,9))

By issuing an OPEN command for an unowned terminal, you implicitly clear the InterSystems IRIS internal list of explicit
terminators. When a protocol string appears, InterSystems IRIS then does the following:

1. Clears its list of explicit terminators.

2. Sets protocols according to the protocol string.

44 I/O Device Guide

Terminal I/O

3. Copies a terminator string, if any, into the internal list of explicit terminators.

The following table gives examples of explicit terminator strings.

Table 3–5:Terminator Strings: Examples

DefinitionTerminator String

The Escape character terminates a READ rather than beginning an
escape sequence.

USE 0:(80:"C":$CHAR(27))

The empty string clears all terminators.USE 0:(80:"C":"")

Omitting the terminator parameter when you specify protocol clears all
terminators.

USE 0:(80:"C")

Omitting both protocol and terminator leaves terminators unchanged.USE 0:(80) or U 0:80

3.3.9 Summary of Protocols and Terminators in Read Operations

The following characters end a normal (nonimage) mode READ:

• Enter

• Any character in the terminator string except ASCII NUL and the characters Ctrl-C, Ctrl-O, Ctrl-Q, and Ctrl-S.

• With the T protocol in effect, any control character except the output control characters. Control characters are non-
printing characters with decimal values 0 to 31 and 127 to 159.

• Any escape sequence.

• Character number y of a fixed-length READ x#y.

The following characters end an image-mode READ:

• Any character specified in the terminator string except ASCII NUL.

• With the T protocol in effect, any control character.

• Character number y of a fixed-length READ x#y.

3.4 READ Command
Reads from 0 to 32 KB from the keyboard into the named variable. The timeout argument is optional. The command cannot
end with a pound sign (#) or colon (:)

3.4.1 Syntax
READ variable:timeout ; Variable-length read
READ variable#length:timeout ; Fixed-length read
READ *variable:timeout ; Single-character read

For more information, see READ in the ObjectScript Language Reference.

I/O Device Guide 45

READ Command

3.4.2 Examples

The following table gives several examples of how you use these arguments.

Table 3–6: READ Command Arguments: Examples

EffectExample

Reads characters from the current device until it finds a terminator, and puts the
resulting string in the global ^GLO.

READ ^GLO

Reads from the current device until it finds a terminator, and puts the string read into
the variable X. Waits up to 60 seconds for the input to end before timing out. Striking
a key does not reset the timeout value.

READ X:60

Reads a single character from the current device and puts its decimal value in the
local variable X.

READ *X

Reads a single character from the current device and puts its string value into the
local variable X.

READ X#1

Reads up to 45 characters from the current device and puts the string value into the
local variable X. Waits up to 60 seconds for the input to end before timing out.

READ X#45:60

3.4.3 Read Line Recall

Read line recall mode provides line recall of editable lines as input for READ operations from a terminal. These recallable
lines include both previous READ input lines and previous command lines. Echoing of input lines is a necessary precondition
for read line recall.

InterSystems IRIS supports read line recall for both variable-length terminal reads (READ variable) and fixed-length
terminal reads (READ variable#length). InterSystems IRIS does not support read line recall for single-character ter-
minal reads (READ *varaiable). Read line recall supports the optional timeout argument.

For a fixed-length terminal read, the recalled line is truncated to one character less than the number of characters specified
in the READ. This final READ character position is reserved for typing a line termination character, specifying an edit
character, or adding one more data character.

When read line recall is active, you can provide input to a READ by using the Up Arrow and Down Arrow keys to recall a
previous terminal input line. You can then use the Left Arrow, Right Arrow, Home, and End keys to position the cursor for
editing the recalled line. You can use the Backspace key to delete a character, Ctrl-X to delete the entire line, or Ctrl-U to
delete all of the line to the left of the cursor.

When read line recall is not active, the four Arrow keys, the Home key, and the End key all issue a line termination character.
You can use the Backspace key to delete a single input character, and Ctrl-X (or Ctrl-U) to delete the entire input line.

You can use the OPEN or USE command to activate read line recall by specifying the R protocol, or to deactivate read
line recall by specifying the N, I, S, or T protocol.

3.4.4 Special Protocol Characters Affect Terminal I/O

Each operating system intercepts certain protocol characters (UNIX®) or key combinations (such as CTR-ALT-DEL on
Windows platforms), preventing these characters from affecting InterSystems IRIS. The console for Windows makes no
attempt to override these operating system characteristics.

46 I/O Device Guide

Terminal I/O

Other special characters can alter the way your routines execute, but do not appear in the READ command variable.
Operating your terminal in image mode cancels these effects and causes InterSystems IRIS to treat these characters like
any others.

READ is affected by output and input control characters. READ simply reads all other control characters, except termination
characters. It does not echo them.

Output control characters affect both the flow and the output of a routine. These are described in the following table:

Table 3–7: Output Control Characters

DefinitionDecimal
Value

Output Control
Character

If breaks are enabled, Ctrl-C interrupts a routine's execution. The routine
behaves as though an <INTERRUPT> error has occurred. If breaks are
disabled, Ctrl-C causes InterSystems IRIS to discard anything entered thus
far in the current READ.You can use Ctrl-C to interrupt global module
requests that require network operations. To trap Ctrl-C, set the special
variable $ZTRAP. For additional information, see the section on enabling
breaks.

3Ctrl-C

Ctrl-S suspends output to the terminal. Output to the terminal resumes when
InterSystems IRIS encounters a Ctrl-Q.

19Ctrl-S

Ctrl-Q resumes output suspended by Ctrl-S.17Ctrl-Q

Input control characters affect input. Image mode (I protocol) treats these characters as data, but in normal mode they affect
input to the current READ command. These characters are described in the following table:

Table 3–8: Input Control Characters

DefinitionDecimal
Values

Input Control
Character

The Delete character removes the last character entered. If you press
Delete repeatedly, you remove characters from right to left, but not beyond
the beginning of the current READ. Delete uses a backspace to erase the
last character on a CRT screen. Delete echoes as a backslash character
("\") on a printing terminal (such as a teletype).

127Delete

Deletes either all characters you have entered since the start of the current
READ or the contents of theUNIX® type-ahead buffer until the last carriage
return. Ctrl-U erases the deleted characters on a CRT; on a printer it echoes
^U and sends a Return and LineFeed To flush the typeahead buffer
completely, use Ctrl-X.

21Ctrl-U

Performs the same function as Delete on some systems.8Ctrl-H

A carriage return ends a READ in all protocols except “I” (image mode).13Return

I/O Device Guide 47

READ Command

DefinitionDecimal
Values

Input Control
Character

Begins an escape sequence. The sequence itself ends the READ, and
$ZB contains the full sequence, including the leading Escape. InterSystems
IRIS does not echo the characters of the sequence, but it does change $X
and $Y unless you include the escape sequence in a WRITE * command.
See $X and $Y and Cursor Position earlier in this chapter. An invalid escape
sequence sets bit 8 of $ZA. Consider the example, READ X. After you enter
the characters “AB ” , Escape, and “E ” , X will contain the two characters
“AB ” , while $ZB contains the two characters Escape E. $X increases by
two for the AB, but does not increase for the E.

27Escape

InterSystems IRIS interprets LineFeed as a terminator for all terminal I/O.10LineFeed

Tab is a data value that echoes as a space, increases $X by one, and is
stored as a Tab character in the string returned by the READ. This is true
for all protocols except “T” (terminator). In “T” protocol, a tab is a terminator
control character.

9Tab

3.4.4.1 Disabling UNIX® Job Control

Using the UNIX® job control character, Ctrl-Z, within InterSystems IRIS can cause serious problems. For this reason,
InterSystems IRIS disables Ctrl-Z automatically when you enter InterSystems IRIS on platforms whose UNIX® shell supports
job control. InterSystems IRIS reenables Ctrl-Z when you exit InterSystems, and when you issue a $ZF(-1) call to execute
a UNIX® shell command.

3.4.5 How the READ Command Processes Input

The READ command processes each character as it arrives from the input buffer. The following table shows how this
processing occurs in normal mode. The figure below shows how the READ command processes image mode data.

Figure 3–1: READ Command Processing Normal (Non-Image) Mode

48 I/O Device Guide

Terminal I/O

Figure 3–2: READ Command Processing Image Mode

3.5 WRITE Command
Writes zero or more characters to the terminal.

3.5.1 Syntax

WRITE *variable WRITE *-n WRITE # WRITE /mnemonic

where

DefinitionArgument

WRITE with no arguments writes all local variables on the current device.(none)

WRITE *variable writes one character, whose decimal value equals x. The value of
variable should be an integer in the range 0 to 255 for ASCII characters, and >255 for
Unicode characters. By convention, values from 0 to 127 signify 7 bit ASCII characters,
while 128 to 255, which represent the extended ASCII character set, relate to the
application itself. If the hardware and software are properly set, InterSystems IRIS can
handle 8 bit data. Example :You can use the eighth bit to represent international
character sets. InterSystems IRIS routines often use WRITE * to send control characters
for device dependent functions. Example : WRITE *27,*91,*50,*74 clears the terminal
screen. WRITE * does not change $X or $Y; the assumption is that WRITE * output is
highly specific to the output device.

*variable

WRITE *-1 clears the input buffer when the next READ is issued. It clears any characters
that are pending for the next READ command. Thus all type-ahead characters are
cleared.

An input buffer holds characters as they arrive from the keyboard, even those you type
before the routine executes a READ command. Thus you can answer questions even
before they appear on the screen. When the READ command takes characters from
the buffer, InterSystems IRIS echoes them back to the terminal so that questions and
answers appear together. When a routine detects errors, it may issue WRITE *-1 to
cancel these answers.

*-1

WRITE *-10 clears the input buffer immediately. It does not wait for the next READ
command.Thus it clears all type-ahead characters issued before the WRITE *-10; type-
ahead characters issed after the WRITE *-10 remain in the input buffer for use by the
next READ.

*-10

I/O Device Guide 49

WRITE Command

DefinitionArgument

Issuing WRITE # to a CRT terminal clears the screen and sends the cursor to the home
(0,0) position. For a hardcopy terminal, it writes a Carriage Return and Form Feed.
WRITE # sets $Y to 0.

#

Issuing WRITE /mnemonic causes InterSystems IRIS to interpret mnemonic as defined
in the active mnemonic space. If there is no active mnemonic space, an error results.
You can specify the active mnemonic space in two ways: By naming a default mnemonic
space for each device type using the Namespace and Network Configuration editor by
specifying a mnemonic space in the OPEN or USE command for the device. For more
information, see Controlling Devices with Mnemonic Spaces.

/mnemonic

For more information, see WRITE in the ObjectScript Language Reference.

3.5.2 Examples

In the following example, WRITE * rings the bell on the user's terminal, displays a prompt, and clears the input buffer of
any characters received but not yet used.

 SET eek="No. I can't accept that reply"
 WRITE *7,eek,*-10

The following two examples show the difference between WRITE *-1 and WRITE *-10. In both cases, the user responds
to the first READ and presses ENTER, then types ahead during the two pauses caused by the HANG commands:

 READ "type:",x HANG 4 WRITE *-1 HANG 4 READ "type:",y

In the above example, InterSystems IRIS clears the input buffer when the second READ is issued. Thus any text typed
during either HANG is cleared from the buffer.

 READ "type:",x HANG 4 WRITE *-10 HANG 4 READ "type:",y

In the above example, InterSystems IRIS immediately clears the input buffer when WRITE *-10 is issued. Thus any text
typed during the first HANG is cleared, but any text typed during the second HANG is supplied to the second READ
command.

In the following example, WRITE /mnemonic uses the control mnemonic CUP (CUrsor Position) to move the cursor to
the third column of the fourth line on the terminal. In this example, the predefined mnemonic space ^%X364 is specified
in the USE command, and the name of an open terminal device is specified using the terminal variable. See Predefined
Mnemonic Spaces for Terminals for a description of ^%X364.

 USE terminal:(80:"BP"):"%X364"
 SET %1=3,%2=4
 WRITE /CUP(%1,%2)

3.6 CLOSE Command
Releases ownership of the device, which is gained with an OPEN command.

3.6.1 Syntax
CLOSE device

For more information, see CLOSE in the ObjectScript Language Reference.

50 I/O Device Guide

Terminal I/O

3.7 Predefined Mnemonic Spaces for Terminals
InterSystems IRIS provides two predefined mnemonic spaces for use with terminals:

• ^%X364 for ANSI X3.64 terminals

• ^%XDTM for DTM PC Console

If you make one of these mnemonic spaces active, you can use the control mnemonics associated with them in WRITE
/mnemonic commands. You can also create your own mnemonic spaces. See Controlling Devices with Mnemonic Spaces
in the chapter Terminal I/O for more information on mnemonic spaces.

The following sections describe the control mnemonics for these mnemonic spaces.

3.7.1 Mnemonic Space for X3.64

InterSystems IRIS provides a built-in mnemonic space for the ANSI X3.64 definition. This mnemonic space is the Inter-
Systems IRIS routine %X364 in the manager's namespace. To use routine %X364, either:

• Have your InterSystems IRIS system manager enter %X364 as the default mnemonic space in the IO Settings configu-
ration setting. From the Management Portal, select System Administration, Configuration, Device Settings, IO Settings.

• Issue an OPEN command specifying this mnemonic space:

 OPEN "terminal"::"^%X364"

The following table lists the mnemonics.

Table 3–9: Control Mnemonics for %X364 Mnemonic Space

System
Variable
Affected

NameCalling Sequence

Application Program CommandAPC

Ring the bellBEL

$XCursor Backward TabulationCBT(%1)

Cancel CharacterCCH

$XCursor Horizontal AbsoluteCHA(%1)

$XCursor Horizontal TabulationCHT(%1)

$X,$YCursor Next LineCNL(%1)

$X,$YCursor Preceding LineCPL(%1)

Cursor Position ReportCPR

Cursor Tabulation ControlCTC(%1,%2,%3,%4,
%5,%6,%7,%8,%9)

$XCursor BackwardCUB(%1)

$YCursor DownCUD(%1)

$XCursor ForwardCUF(%1)

I/O Device Guide 51

Predefined Mnemonic Spaces for Terminals

System
Variable
Affected

NameCalling Sequence

$X, $YCursor PositionCUP(%1,%2)

$YCursor UpCUU(%1)

$YCursor Vertical TabulationCVT(%1)

Device AttributesDA

Define Area QualificationDAQ(%1,%2,%3,%4,
%5,%6,%7,%8,%9)

Delete CharactersDCH(%1)

Device Control StringDCS

Delete LinesDL(%1)

Disable Manual InputDMI

Device Status ReportDSR(%1)

Erase in AreaEA(%1)

Erase CharactersECH(%1)

Erase in DisplayED(%1)

Erase in FieldEF(%1)

Erase in LineEL(%1)

Enable Manual InputEMI

End of Protected AreaEPA

End of Selected AreaESA

Font SelectionFNT

Graphic Size ModificationGSM

Graphic Size SelectionGSS

$XHorizontal Position AttributeHPA(%1)

$XHorizontal Position RelativeHPR(%1)

$XHorizontal Tab with JustifyHTJ

$XHorizontal Tab SetHTS

$X, $YHorizontal and vertical positionHVP(%1,%2)

Insert CharactersICH(%1)

Insert LinesIL(%1)

$YIndexIND

InterruptINT

JustifyJFY

Media CopyMC

52 I/O Device Guide

Terminal I/O

System
Variable
Affected

NameCalling Sequence

Message WaitingMW

$X, $YNext LineNEL

Next PageNP(%1)

Operating System CommandOSC

$YPartial Line DownPLD

$YPartial Line UpPLU

Privacy MessagePM

Preceding PagePP(%1)

Private Use 1PU1

Private Use 2PU2

QUADQUAD

$X, $YREPEATREP(%1)

$YReverse IndexRI

$X=0 $Y=0Reset to Initial StateRIS

Reset ModeRM(%1,%2,%3,%4,%
5,%6,%7,%8,%9)

Select Editing Extent ModeSEM

Select Graphic RenditionSGR(%1,%2,%3,%4,
%5,%6,%7,%8,%9)

Scroll LeftSL

Set ModeSM(%1,%2,%3,%4,%
5,%6,%7,%8,%9)

Start of Protected AreaSPA

Spacing IncrementSPI

Scroll RightSR

Single Shift TwoSS2

Single Shift ThreeSS3

Start of Selected AreaSSA

String TerminatorST

Set Transmit StateSTS

Scroll UpSU

Tabulation ClearTBC

Thin Space SpecificationTSS

I/O Device Guide 53

Predefined Mnemonic Spaces for Terminals

System
Variable
Affected

NameCalling Sequence

$YVertical Position AttributeVPA(%1)

$YVertical Position RelativeVPR(%1)

Vertical Tab SetVTS

3.7.2 Mnemonic Space for DTM PC Console

InterSystems IRIS provides the InterSystems IRIS routine %XDTM to match the mnemonics used in developing applications
for DTM. This mnemonic space is available but is not set up as the default mnemonic space for terminals. If you port
applications created for DTM to InterSystems IRIS, you can either:

• Configure ^%XDTM as the default mnemonic space for terminals (MnemonicTerminal) in the Management Portal, or

• Reference the ^%XDTM mnemonic space in the OPEN or USE command.

3.7.3 DTM Examples

3.7.3.1 UNIX®

 OPEN "/dev/tty04/"::"^%XDTM"

3.7.3.2 Windows

 OPEN "c:\sys\user"::"^%XDTM"

Then InterSystems IRIS can correctly interpret the DTM control mnemonics in WRITE /mnemonic commands, shown
in the following table.

Table 3–10: Control Mnemonics for DTM PC Console

DescriptionMnemonic

Normal modeAA

Bold modeAB

Underlined modeAC

Bold, underlined modeAD

Reverse videoAE

Reverse video/Bold modeAF

Reverse video/Underline modeAG

Reverse video/Bold, underlined modeAH

Blink modeAI

Bold, blink modeAJ

Underlined, blink modeAK

Bold, underlined, blink modeAL

54 I/O Device Guide

Terminal I/O

DescriptionMnemonic

Reverse video / Bold, blink modeAM

Reverse video / Bold, blink modeAN

Reverse video / Underlined, blink modesAO

Reverse video / Bold, underlined, blink modesAP

Mode ZAZ

Set video attributes: %1 provides attribute for characters, %2 provides attribute
for clearing frames

B(%1,%2)

Draw a window-relative utility boxBOX

Position cursor at column %1, line %2C(%1,%2)

Clear current frameCLR

Set IBM PC Color: Foreground %1, Background %2COLOR(%1,%2)

Delete %1 charactersDC(%1)

Erase %1 charactersEC(%1)

Erase to end of frameEF

Erase to end of lineEL

Fill rectangular area with $CHAR(%1) at upper left corner, %4 columns wide by
%5 lines high

F(%1,%2,%3, %4,%5)

Return terminal cursor positionGETCUR

Screen half bright offHF

Hide mouse cursorHIDECURSOR

Screen half brightHN

Insert %1 charactersIC(%1)

Disable literal modeLF

Enable literal mode, which displays control characters graphically on a PC screen.LN

Make mark on screenMARK(%1)

Enable normal display attributesNORM

Write %1 NULLS for paddingPAD(%1)

Pause offPF

Pause onPN

Screen reverse video offRF

Screen reverse videoRN

Scroll current frame down by %3 linesSD(%1,%2,%3)

Show mouse cursorSHOWCURSOR

Scroll current frame up by %3 lines, starting at line %1 down to but not including
line %2

SU(%1,%2,%3)

I/O Device Guide 55

Predefined Mnemonic Spaces for Terminals

DescriptionMnemonic

Visible cursor offVF

Visible cursor onVN

Draw a screen-relative utility boxWBOX

Close utility windowWCLOSE

Set scrolling windowWINDOW

Open utility windowWOPEN

Set binary frame attributeY(%1)

3.8 PRINT and ZPRINT Commands
Writes one or more lines of the currently loaded InterSystems IRIS routine to the current device.

ZPRINT has the same effect and arguments as PRINT.

3.8.1 Syntax

PRINT ZPRINT PRINT x ZPRINT x PRINT x:y ZPRINT x:y

where

DefinitionArgument

The PRINT or ZPRINT command with no arguments prints the entire routine.(none)

The variables x and y indicate the range of lines to print. They can be either a line
reference of the form TAG+OFFSET, or a line number of the form +7. Referring to a line
not in the routine implies the empty line following the routine's last line. x = First or only
line to print. y = Last line to print.

x,y

For more information, see PRINT in the ObjectScript Language Reference.

3.8.1.1 Example

This example prints the first line of the current routine, four lines starting at INIT, and all the lines from FINI to the end:

INIT
 SET a=1
 SET b=2
 SET c=3
 SET d=4
FINI
 SET x=24
 SET y=25
 SET z=26
 PRINT +1,INIT:INIT+3,FINI:+9999

56 I/O Device Guide

Terminal I/O

3.9 Programming Your Terminal

3.9.1 Using InterSystems IRIS to Program Formatted CRT Screens

Several features of Terminal I/O aid in programming formatted screens:

• Use WRITE * to send control sequences easily.

• Use READ to receive escape-sequence responses.

• Use SET $X = expression and SET $Y = expression to update the current cursor position.

Fixed-length READ and programmer-specified termination characters make it convenient to read individual fields. You
can use the Secret protocol to make passwords invisible.

Remember that WRITE * does not change $X or $Y. If you want to change them, use WRITE $C(X), or simply set them
explicitly.

3.9.1.1 Example

This example sets the VT100 cursor to line 10, column 20

%SYS>SET DY=10,DX=20
%SYS>WRITE *27,*91,DY+1,*59,DX+1,*72 SET $Y=DY,$X=DX

3.9.1.2 Use CURRENT^%IS to Set Variables

The utility routine CURRENT^%IS sets some useful local variables to work for the current device. To call this routine,
enter:

%SYS>DO CURRENT^%IS

This command sets the variables indicated in the following table.

Table 3–11: Features Enabled By CURRENT^%IS

DefinitionCode

Clears the screen and moves the cursor to the upper left corner (column
0, line 0) leaving $X=0, $Y=0.

W @FF

Moves the cursor directly to column 42, line 10, leaving $X=42, $Y=10.S DX=42,DY=10 X XY

3.9.2 Programming Escape Sequences

The ANSI standard for escape sequences makes programming of smart terminals practical. The Escape character and all
characters after it in a string do not display on the screen, but do update $X and $Y. Send escape sequences to the terminal
with WRITE * statements and keep $X and $Y up to date by setting them directly.

The ANSI standard establishes a standard syntax for escape sequences. The effect of a particular escape sequence depends
on the type of terminal you are using.

Look for incoming escape sequences in $ZB after each READ. InterSystems IRIS puts ANSI-standard escape sequences
and any others that use the ANSI forms in $ZB. InterSystems IRIS recognizes two forms of escape sequence:

I/O Device Guide 57

Programming Your Terminal

3.9.2.1 Regular form

• An ESC.

• Optionally the character “O” (the letter), decimal value 79.

• Zero or more characters with decimal values 32–47.

• One character with decimal value 48–126.

3.9.2.2 Control form

• The ESC character, decimal value 27.

• The “ [” character, decimal value 91.

• Zero or more characters with decimal values 48–63.

• Zero or more characters with decimal values 32–47.

• One character with decimal value 64–126.

Furthermore, the sequence can be no longer than 16 characters. Escape sequences that violate these forms or rules set bit
8 of $ZA, whose value is 256.

3.9.3 Example

Assume that you are programming a terminal whose Help key sends the two-character sequence Escape-? (? has a decimal
value of 63)

%SYS>SET HELP=$C(27,63)
ASK READ !,"Enter ID: ",X I $ZB=HELP Do GIVEHELP GoTo ASK

Your routine can detect nonstandard escape sequences as follows:

1. Make ESC a terminator.

2. When ESC appears in $ZB:

a. Disable echo with the Secret protocol to prevent modification of $X/$Y.

b. Read the rest of the sequence with READ *;

c. Turn off Secret to re-enable echo.

In the following figure, the user is asked to enter an ID. If the user presses Esc-?, a Help screen appears. The
subroutine ESCSEQ assumes that nonstandard escape sequences end with an asterisk “*” .

DEMOS
 SET HELP=$C(27,63) ;Get Help with <ESC>?
 SET ESC=$C(27) USE 0:("":"":ESC) ; Make <ESC> a READ terminator
 ; character
ASK READ !,"Enter ID: ",X I $ZB=ESC Do ESCSEQ G:SEQ=HELP ASK
 . ;Input ID. Handle Help request.
 .
 Quit
HELPSCR ;Process Help request
 .
 Quit
ESCSEQ USE 0:("":"S") SET SEQ=ESC ;Set terminal to no echo,init SEQ
 FOR I=1:1 {
 READ *Y
 SET SEQ=SEQ_$C(Y)
 QUIT:Y=42 }
 ; Read in Escape sequence,
 ; end at "*"
 USE 0:("":"":ESC) Quit ;Redefine terminator

58 I/O Device Guide

Terminal I/O

3.9.4 InterSystems IRIS Supports Full or Half Duplex and Echo

InterSystems IRIS prefers that you use full duplex terminals; in other words, your keyboard should operate independently
from your printer or screen.

Full duplex means simultaneous and independent transmission in both directions. Half duplex means transmission in only
one direction at a time. Duplex has nothing to do with echo, although you may see a terminal marked full duplex for remote
echo and half duplex for local echo. This designation means that the terminal displays the characters you type and does not
expect InterSystems IRIS to echo them.

Set your terminal to local echo off or full duplex, letting InterSystems IRIS provide the echo. The echo comes not when
the computer receives the character, but when the READ command takes it from the input buffer; therefore, the prompts
and answers of a dialog keep their intended positions on the screen regardless of whether the user types ahead.

Some public networks provide their own echo to the terminal.

On Windows systems, consoles do not permit local echo setup changes. For terminals attached via a terminal emulator
(e.g., VT220), refer to your terminal emulator documentation for instructions to disable local echo.

On UNIX® systems, use the stty command to avoid double echoes while keeping $X and $Y in agreement with the cursor's
position.

3.9.5 InterSystems IRIS Supports Intercomputer Links and Special Devices

InterSystems IRIS provides flexible protocols and large independent buffers enable routines to deal with unusual devices
and their protocols. For example, InterSystems IRIS easily supports full duplex communication between two computers
on a terminal-to-terminal link. Two InterSystems IRIS systems require only a physical connection, the right protocols, and
identical settings of speed, parity, and character length. With the aid of external converters, InterSystems IRIS communicates
with IBM ports as a synchronous EBCDIC terminal.

Keep these points in mind when designing an intercomputer link:

• Turn off echo at both ends by including the S protocol in OPEN or USE, or by using the operating system's terminal
parameters.

• Unless your communication protocol supports XON/XOFF flow control (Ctrl-Q and Ctrl-S), be sure it limits unacknowl-
edged transmissions to the limit of the operating system's input buffering; otherwise you may lose data.

• In image mode, InterSystems IRIS does not support XON/XOFF. In nonimage (normal) mode, the operating system's
terminal parameters determine whether the computer issues an XOFF if the operating system's input buffer is almost
full. If XOFF and XON are not supported, make the buffer large enough that you do not need them.

• Test $ZA after read operations to detect transmission errors such as parity or data overrun conditions.

I/O Device Guide 59

Programming Your Terminal

4
Local Interprocess Communication

This chapter describes how to set up communication between local InterSystems IRIS® data platform processes, and with
other processes outside of InterSystems IRIS.

• Using Pipes to Communicate with Processes

• Communication Between InterSystems IRIS Processes

For information on remote Client/Server communications using TCP/IP, refer to the TCP Client/Server Communication
chapter of this manual.

4.1 Using Pipes to Communicate with Processes
You can communicate between your InterSystems IRIS processes and external UNIX® or Windows processes through a
pipe, just as at the UNIX® or Windows operating system level. You can send output to or receive input from the pipe. The
pipe is one-way; you cannot read from and write to the same program at the same time.

When you open a pipe to another program for output, you can write to it as if it were a sequential file. The program then
uses what you have written as its input stream. This capability is especially helpful when you want InterSystems IRIS
processes to share resources with external processes.

For example, many users run InterSystems IRIS and a word processing program together and want the two applications to
share printers properly. InterSystems IRIS assumes it has full access and responsibility for letting processes send information
to devices. However, most UNIX® applications rely on a standard UNIX® utility, lpsched, to schedule access to the printer
and spooling files.

When these UNIX® applications need to print, they call a utility called lp or lpr, instead of writing directly to the printer
port. The lp (or lpr) utility then invokes lpsched, which in turn schedules access to the printer for the job from which lp
(or lpr) was called. When you use lp, you do not need to wait for printing to occur. As soon as you have finished writing
your print job to lp, you simply close the file; lp takes care of spooling the job to disk while awaiting its turn to print.

InterSystems IRIS enables you to join in this cooperative environment by an extension to the OPEN command. You can
issue this command directly, or through ObjectScript utilities that use it.

4.1.1 Opening Pipes to InterSystems IRIS Utilities

You can open a pipe to an InterSystems IRIS utility as well as to UNIX® or Windows processes. Before you can use a
pipe for utility I/O, your system manager must define the pipe device on your InterSystems IRIS system.

I/O Device Guide 61

After the system manager defines the pipe device, when you run a utility (such as %RD), you answer the “Device:” prompt
with the mnemonic the system manager defined. Your output goes automatically to that device.

4.1.2 Pipes and Command Pipes

InterSystems IRIS supports both standard pipes and command pipes (CPIPE). Standard pipes are used for relative short
command strings, in which the command name and its arguments are less than 256 characters. Command pipes are used
when the command string is 256 characters or more in length. In both cases, pipes can only be used on UNIX® and Windows
systems.

4.1.2.1 Standard Pipe OPEN

The following is the OPEN command syntax for standard pipes:

OPEN program:(parameters):timeout

Because program is the first argument (the device argument), it must follow the OPEN command device name limitation
of 256 characters.

If an OPEN command is issued for a standard pipe that is already open, the second OPEN is ignored. No error is issued.

4.1.2.2 Command Pipe OPEN

The following is the OPEN command syntax for command pipes:

OPEN cpipename:program:timeout
OPEN cpipename:(program:parameters:::closetimeout):timeout

The cpipename argument can take the value "|CPIPE|" if there is only command pipe open concurrently. To open multiple
concurrent pipes, specify "|CPIPE|xxxxxx", where xxxxxx represents a user-specified unique identifier. This cpipename
argument is the argument specified for subsequent USE and CLOSE commands.

Because program is the second argument, it is not limited to 256 characters. The maximum length of program is platform
dependent.

If an OPEN command is issued for a command pipe that is already open, the second OPEN is ignored. No error is issued.

4.1.3 OPEN Command for Interprocess Communication

The OPEN command allows your program to communicate with processes external to InterSystems IRIS.

4.1.3.1 OPEN Arguments

DescriptionArgument

Command Pipes Only — either "|CPIPE|" or "|CPIPE|xxxxxx", where xxxxxx
represents a user-specified unique identifier.

cpipename

62 I/O Device Guide

Local Interprocess Communication

DescriptionArgument

A command pipe can execute a program with a command shell, or without a command
shell (directly). Executing without a command shell is preferred in most situations. A
standard pipe executes a program with a command shell.

Command Pipes Only — To execute without a command shell, specify /COM-
MAND=program. If program has arguments, you must specify them using the /ARGS
keyword. If you specify either the /COMMAND or /ARGS keyword, the program is
executed without a command shell: (/COMMAND=program),
(/COMMAND=program:/ARGS=arg1) and (program:/ARGS=arg1) are all valid syntax.
/ARGS can take a single argument, a comma-separated list of arguments, or an array.
For example, (/COMMAND=program:/ARGS=arg1,arg2).You can specify a variable
number of arguments using an array:

 SET array(1)=arg1, array(2)=arg2, array=2

OPEN device:(/COMMAND=cmd:/ARGS=array...)

To execute using a command shell, specify program, omitting both the /COMMAND
and /ARGS keywords.

The program string contains the full pathname of a program installed on your system.
It contains the command name and its arguments (if any) to be executed on the host
system. For a standard pipe, limited to <256 characters. For command pipe, maximum
length is platform dependent, but substantially more than 256 characters.

program

Read. For a standard pipe specify “Q ” or “QR ” to open a queue or pipe to accept input
from another process. For a command pipe: because a command pipe is unambiguously
a pipe, the “Q ” letter code is not required; specify “R ” .

Write. For a standard pipe specify “QW ” to open a queue to send input to another
process. For a command pipe: because a command pipe is unambiguously a pipe, the
“Q ” letter code is not required; specify “W ” .

You can specify these and other parameters using the /keyword parameters, separated
by colons. For example, OPEN "|CPIPE|":(cmd:/READ:/IOTABLE="UTF8"). The
following optional keyword parameters are commonly used with pipes:

“K/name/ ” (or “Knum ”) to enable I/O translation, if translation has been enabled sys-
tem-wide.You identify the previously defined table on which the translation is based
by specifying the table's name. The “+ ” and “ - ” options for turning protocols on and
off are not available with the “K ” protocol.

“Y/name/ ” (or “Ynum ”) to tell the system to use the named $X/$Y Action Table.You
identify the previously defined $X/$Y Action Table on which translation is based by
specifying the table's name. $X/$Y action is always enabled. If Y is not specified and
a system default $X/$Y is not defined, a built in $X/$Y action table is used. The “+ ”
and “ - ” options for turning protocols on and off are not available with the Y protocol.

You can specify the “S ” (stream), “F ” (fixed length), or “U ” (undefined length) mode
parameters with the above parameters.You cannot specify the “V ” (variable length)
mode parameter.

For a complete list of letter code and keyword parameters, refer to OPEN Mode
Parameters in the “Sequential File I/O ” chapter of this manual.

parameters

I/O Device Guide 63

Using Pipes to Communicate with Processes

DescriptionArgument

Optional — UNIX® only:You can specify the number of seconds the CLOSE command
will wait for the command process to exit when closing a piped command device. The
default is 30 seconds.You can override this closetimeout by specifying an “I” (immediate)
argument on the CLOSE command for interprocess communication.

closetimeout

Optional — A positive integer whose value in seconds is the longest time InterSystems
IRIS waits for an OPEN to successfully finish. If InterSystems IRIS is able to open
interprocess communication before the timeout expires, it sets $TEST to 1. If
InterSystems IRIS is not able to open interprocess communication before the timeout
expires, it sets $TEST to 0. If you omit the timeout or specify 0, the OPEN returns
control to the process immediately.

timeout

4.1.3.2 OPEN Command Pipe Examples

The following are valid command pipe OPEN statements. Each example specifies a timeout of 10 seconds:

 OPEN "|CPIPE|1":"/nethome/myprog":10 // using shell, no args
 OPEN "|CPIPE|1":("/nethome/myprog":/WRITE):10 // using shell, no args, WRITE

 OPEN "|CPIPE|2":/COMMAND="/nethome/myprog":10 // no shell, no args
 OPEN "|CPIPE|3":("":/COMMAND="/nethome/myprog"):10 // no shell, no args
 OPEN "|CPIPE|4":(/COMMAND="/nethome/myprog":/ARGS=arg1):10 // no shell, 1 arg
 OPEN "|CPIPE|5":("/nethome/myprog":/ARGS=arg1):10 // no shell, 1 arg
 OPEN "|CPIPE|6":("/nethome/myprog":/ARGS=arg1:/WRITE):10 // no shell, 1 arg, WRITE
 OPEN "|CPIPE|7":(/COMMAND="/nethome/myprog":/ARGS=arg1,arg2):10 // no shell, 2 args
 OPEN "|CPIPE|8":(/COMMAND="/nethome/myprog":/ARGS=args...:/WRITE):10 // no shell, args array, WRITE

On a Windows system, an argument can include a blank space or a double quote (") character. In these cases, the argument
can be quoted, and a literal double quote character can be escaped by doubling it:

 OPEN "|CPIPE|9":("/nethome/myprog":/ARGS="string with blanks"):10
 OPEN "|CPIPE|10":("/nethome/myprog":/ARGS="string with literal "" character"):10

4.1.3.3 OPEN Errors

If you issue an OPEN command with the “QW” parameter for a non-IPC device, a <WRITE> error occurs when you try
to write to this device.

The following UNIX® example opens an output pipe to the lp program, whose pathname in this case is /usr/bin/lp. Then it
sends output from the global ^TEXT to the printer through this pipe.

print ; Send the first layer of global ^TEXT to the printer.
 SET IO="/usr/bin/lp"
 OPEN IO:"QW" ; Open the pipe to lp
 USE IO WRITE "The first layer of ^TEXT",! ; Print the title
 ; . . .
 ; Print each line, using $ORDER on the global ^TEXT
 USE IO WRITE !,"The End.",#
 CLOSE IO ; close the pipe, spooling the file to lpsched
 QUIT

You can alter this example so that the OPEN command passes arguments to the lp program. For example, to specify that
lp should send the output to the printer device named laserjet, you could replace the SET command with the following:

 SET IO="/usr/bin/lp -dlaserjet"

The following example shows how to read from an external program. Here the process opens an input pipe to the UNIX®
program who, so that it can read the IDs of all users who are currently logged in to UNIX®.

64 I/O Device Guide

Local Interprocess Communication

getids ; read the login IDs of everybody currently on
 SET IO="/usr/bin/who"
 SET $ZTRAP="EOT"
 KILL LOGINS
 OPEN IO:"Q"
 ; note that "R" (the default) is understood
 SET users=0
 FOR I=0:0 {
 USE IO
 READ USER
 SET users=users+1
 SET LOGINS(USER)=""
 }
 QUIT
EOT SET $ZTRAP=""
 USE 0
 WRITE !,USERS," is/are currently logged on.",!
 CLOSE IO
 QUIT

On a Windows system, when a CPIPE OPEN program argument specifies /COMMAND or /ARGS, the system uses Cre-
ateProcess() to run the command. If the CreateProcess() fails, the OPEN will fail with a <NOTOPEN> error. The GetLastEr-
ror() value is available via $SYSTEM.Process.OSError().

On a UNIX® system, when a CPIPE OPEN program argument specifies /COMMAND or /ARGS, the system creates a
new process which issues an exec() to run the command. If the exec() fails, the OPEN will fail with a <NOTOPEN> error.
The exec() errno is available via $SYSTEM.Process.OSError().

4.1.3.4 OPEN and USE Command Keywords

The following table describes the keywords for controlling interprocess communications pipes with both OPEN and USE
commands.

Table 4–1: OPEN and USE Command Keywords for Interprocess Communications Pipes

DescriptionDefaultKeyword

Corresponds to the K\name\ parameter code, which
establishes an I/O translation table for the device.

If name is not
specified, the
default I/O
translation table for
the device is used.

/IOTABLE[=name]

or

/IOT[=name]

Associated with the K parameter code. /TRANSLATE or
/TRANSLATE=n for nonzero values of n enable I/O
translation for the device. /TRANSLATE=n for a zero value
of n disables I/O translation for the device.

1/TRANSLATE[=n]

or

/TRA[=n]

Corresponds to the Y\name\ parameter code, which
establishes a $X/$Y action table for the device.

If name is not
specified, the
default $X/$Y action
table for the device
is used.

/XYTABLE[=name]

or

/XYT[=name]

4.1.3.5 OPEN-only Keywords

The following table describes the keywords for controlling interprocess communications pipes with only the OPEN command.

I/O Device Guide 65

Using Pipes to Communicate with Processes

Table 4–2: OPEN-only Command Keywords for Interprocess Communications Pipes

DescriptionDefaultKeyword

Corresponds to the I parameter code, which specifies
that a READ operation should be retried (ignoring any
EOF condition) indefinitely or until the specified timeout
expires. /IGNOREEOF or /IGNOREEOF=n for nonzero
values of n enable the parameter code and
/IGNOREEOF=n for a zero value of n disables the
parameter code.

0/IGNOREEOF[=n]

or

/IGN[=n]

Corresponds to the parameter codes positional
parameter. (It provides a way to specify a parameter
code string in a position independent way.)

No default/PARAMS=str

or

/PAR=str

Corresponds to the “Q” parameter code, which specifies
that an interprocess communications pipe should be
opened. Note that using this command requires Use
permission on the %System_Callout resource.

The device is not
recognized as an
interprocess
communications pipe.

/QUEUE

or

/QUE

Corresponds to the “R” parameter code, which specifies
that a queue or pipe should be opened to accept data
from another process.

Read is the default if
neither /Read nor /Write
is specified.

/Read

Corresponds to the “W” parameter code, which specifies
that a queue or pipe should be opened to send data to
another process.

Read is the default if
neither /Read nor /Write
is specified.

/Write

or

/WRI

4.1.4 READ Command for Interprocess Communication

4.1.4.1 Syntax

READ:pc readargument,...

READ reads data from a pipe.

where readargument can be:

formatting-mode
string
variable:timeout
*variable:timeout
variable#n:timeout

Use the I formatting-mode parameter with pipes. The I parameter lets you issue a timed READ for a named pipe without
losing any data that can occur in a partial record that follows an <ENDOFFILE> error. When you use this parameter on a
READ, the READ ignores <ENDOFFILE> messages.

The value of the I formatting-mode is “off” by default. If you include this parameter in a READ command without a
timeout, your process hangs until there is data to process.

66 I/O Device Guide

Local Interprocess Communication

4.1.5 CPIPE Exit Codes

You can retrieve the exit code of a command pipe (|CPIPE|) process. This exit code must be retrieved before the |CPIPE|
device is closed. It is obtained with the PipeExitCode method of the %SYSTEM.Process class. Exit codes are always
integer values. If the exit code is not available, the method returns a null string and sets the status argument with an expla-
nation, as shown in the following example:

 SET exitcode=$SYSTEM.Process.PipeExitCode(device, .status)
 IF exitcode="" {DO $SYSTEM.OBJ.DisplayError(status)}
 ELSE {WRITE "CPIPE exit code is ",exitcode }

On a UNIX® system, an exit code is available only for non-shell commands; that is, CPIPE devices opened with /COMMAND
or /ARGS.

4.1.6 CLOSE Command for Interprocess Communication

If you create a child process using OPEN with a “Q” (/QUEUE) parameter code, the child process may survive a CLOSE
operation on the device. Survivability of a queued interprocess communications pipe is platform-dependent. On UNIX®
systems the child process always survives the CLOSE. On Windows systems the survival of the process depends upon
how old the process is. A child process that has just been initiated does not survive a CLOSE operation, but once a child
process is fully established it survives a CLOSE.

On UNIX® systems, you can specify the how long the CLOSE command should wait when closing a piped command
device. The timeout default is 30 seconds. You can modify this default by specifying the OPEN command closetimeout
positional argument. You can override the default or specified timeout for a CLOSE command by specifying the optional
“I” positional argument. The “I” argument specifies immediate close (close after 1 second). The CLOSE syntax is as follows:

CLOSE cpipename:"I"

4.1.7 Using Named Pipes to Communicate with Visual Basic

On Windows, use named pipes in InterSystems IRIS as you would use TCP devices, but use the device name “ |NPIPE|nnn”
instead of “ |TCP|nnn” . The OPEN arguments are as follows:

OPEN "|NPIPE|3":(server:pipename)

where server is the Windows NT machine name, and pipename is the name of the pipe that it is to be connected to. Windows
95/98 machines cannot be named pipe servers, but can only connect to them.

To connect to a local pipename, use "." (a quoted period) as a server. To create a pipe (as a server), use "" (quotes without
content) as the server name. The following are all valid server names:

 OPEN "|NPIPE|3":(".":"localpipe")
 OPEN "|NPIPE|3":("mother":"test")
 OPEN "|NPIPE|3":("":"info")

A server can open a named pipe and immediately issue a write before the client side has opened the same named pipe. The
write operation will hang until the client side opens the named pipe. A user can interrupt the hang by issuing a Control-C.

Once open, a pipe acts like an ordinary device. On the server side, clients can be disconnected as in TCP with:

 USE "|NPIPE|3":"DISCONNECT"

Alternatively:

 USE "|NPIPE|3" WRITE *-2

I/O Device Guide 67

Using Pipes to Communicate with Processes

4.1.7.1 OPEN Command Keywords

The following table describes the keywords for controlling named pipes with only the OPEN command.

Table 4–3: OPEN Command Keywords for Named Pipes

DescriptionDefaultKeyword

Corresponds to the server positional parameter, which
specifies the Windows NT workstation/server name. It
is not necessary to specify this keyword when opening
the pipe as a server. Use "." (a quoted period) to
connect to a local pipename.

The default is ""

(quotes without
content), which opens
the pipe as a server.

/HOSTNAME=str

or

/HOS=str

Specifies the size of the named pipe input buffer that
holds data received from the pipe but not yet delivered
to the application.

2048/IBUFSIZE=n

or

/IBU=n

Specifies the maximum number of instances allowed
for the named pipe. A value greater than 1 allows more
than one server to open an instance of the named pipe,
so that more than one client at a time can be served.

1/INSTANCES=n

or

/INS=n

Specifies the size of the output buffer used by the
operating system. This buffer size is advisory, since the
operating system sizes the buffer according to
system-imposed constraints.

2048/OBUFSIZE=n

or

/OBU=n

Corresponds to the pipename positional parameter which
specifies the name of the pipe.

No default/PIPENAME=str

or

/PIP=str

4.2 Communication Between InterSystems IRIS Processes
Interjob communication (IJC) devices are a set of special device numbers that let you transfer information between two or
more InterSystems IRIS processes. The processes can be either jobbed processes or interactive processes.

IJC devices work in pairs. You can have up to 256 IJC device pairs. You use even-numbered devices, called receivers, to
read data. You use odd-numbered devices, called transmitters, to write data. Attempts to read from a transmitter or write
to a receiver result in a <NODEV> error.

You issue I/O commands to IJC devices, just as to any other device. After issuing OPEN and USE commands to the device,
a process can issue:

• READ commands to a receiver device

• WRITE commands to a transmitter device

Only one process at a time can have a device open.

Pairs are based on relative order as mapped in the InterSystems IRIS Device Table, which you can view and edit using the
configuration options of the Management Portal.

68 I/O Device Guide

Local Interprocess Communication

Each pair of devices is associated with an IJC memory buffer. When a process issues a WRITE command to any odd-
numbered IJC device, InterSystems IRIS writes the data into the buffer for that device pair. When another process issues
a READ command to the even-numbered device from that pair, InterSystems IRIS reads the data from the same buffer.

Written data is buffered in memory in first-in, first-out fashion. If a READ occurs while the device is empty, the process
that issued it suspends until another process issues a corresponding WRITE. A WRITE that occurs while the buffer is full
suspends until another process reads from that buffer.

After you write a message to the buffer, it remains there until it is read, even if you close the transmitter. Several users can
issue OPEN, USE, WRITE, and CLOSE commands to a transmitter, one at a time in turn. Subsequent READ commands
get all of the messages in the order in which they were written.

4.2.1 Specifying Memory Buffers for Interjob Communication Devices

The system manager can configure the IJC buffers using the Management Portal. Select System Administration, Configuration,
Additional Settings, Advanced Memory. The two parameters that can be set are:

• ijcnum: The maximum number of IJC devices. The range is from 0 through 256. The default is 16. If you edit this setting,
you must restart InterSystems IRIS to apply the change.

• ijcbuff: The maximum size (in bytes) of each IJC buffer. The range is from 512 through 8192. The default size is 512
bytes. If you edit this setting, you must restart InterSystems IRIS to apply the change.

Each IJC device corresponds to one IJC buffer of the size specified in ijcbuff. You can write a message of length ijcbuff

minus 1.

4.2.1.1 Disabling Interjob Communication Buffers

If you will not be using IJC devices, you can set the maximum number of IJC devices (ijcnum) to 0 to avoid tying up
memory.

4.2.2 Interjob Communication Device Numbers

Interjob communication devices are automatically defined numbered by InterSystems IRIS. Their actual identification
numbers depends on the maximum number of IJC buffers configured on the system.

The table below gives the ranges of IJC device numbers that are available on your system, depending on the number of IJC
buffers that you have allocated.

For example, if you allocate 8 IJC buffers, then device numbers from 224 through 239 are defined on the system (even
numbers for READ devices and odd numbers for WRITE devices).

As another example, if you allocate 94 IJC buffers, then the following range of device numbers are defined: 224 through
255, 64 through 199, 4 through 19, and 2048 through 2051. You can use any even/odd number pairs with OPEN, USE,
READ, WRITE, and CLOSE commands.

Table 4–4: IJC Device Numbers

WRITE Device #READ Device #Buffers Allocated

2252241

2272262

2292283

......

25325215

I/O Device Guide 69

Communication Between InterSystems IRIS Processes

WRITE Device #READ Device #Buffers Allocated

25525416

656417

676618

.........

19719683

19919884

5485

7686

9887

111088

131289

151490

171691

191892

2049204893

2051205094

2053205295

.........

23712370254

23732372255

23752374256

4.2.3 I/O Commands for IJC Devices

You use all of the standard I/O commands with IJC devices: OPEN, USE, READ, WRITE, and CLOSE.

4.2.3.1 OPEN Command

The OPEN command reserves interjob communication devices for your use.

Syntax

OPEN device::timeout

where:

70 I/O Device Guide

Local Interprocess Communication

A device number from the table above. OPEN an even-numbered device to issue READ
commands. OPEN an odd-numbered device to issue WRITE commands. For two
processes to communicate, they must open a set of device pairs.

device

Optional — A positive integer whose value in seconds is the longest time InterSystems
IRIS waits for an OPEN to finish. If you specify 0, the OPEN returns control to the process
immediately.

timeout

This example shows how two processes communicate by opening separate devices for reading and writing:

Process A Process B
OPEN 227 USE 227 WRITE "MSG_1"
WRITE "MSG_2" OPEN 226 USE 226 READ X
CLOSE 227 CLOSE 226
OPEN 224 USE 224 READ X WRITE X
CLOSE 224 MSG_1
WRITE X .
MSG_3 .
 .
 OPEN 225 USE 225 WRITE "MSG_3"
 CLOSE 225

Process A begins by opening device 227 and writing MSG_1 to it. InterSystems IRIS writes this message into the buffer
shared by devices 226 and 227. Process A then writes a second message to the same buffer. Now Process B opens companion
device 226 and reads the first message (MSG_1) from the buffer.

Now Process A wants to read a message, so it must open a different device, 224. Because the buffer for this device and its
companion, 225, is currently empty, Process A waits until Process B opens device 225 and writes MSG_3 to it. After
InterSystems IRIS places this message in the buffer shared by devices 224 and 225, the READ command to device 224
succeeds.

I/O Device Guide 71

Communication Between InterSystems IRIS Processes

5
TCP Client/Server Communication

This chapter describes how to set up remote communication between InterSystems IRIS® data platform processes using
TCP/IP. For local communication between processes using pipes or using Interjob Communication (IJC) devices, refer to
the Local Interprocess Communication chapter of this manual.

InterSystems IRIS supports two Internet Protocols (IP): TCP and UDP. These Internet Protocol allow InterSystems IRIS
processes to communicate with processes on local or remote systems, whether or not those processes are running InterSystems
IRIS.

• TCP: the InterSystems IRIS Transmission Control Protocol (TCP) binding. Establishes a two-way connection between
a server and a single client. Provides reliable byte stream transmission of data with error checking and correction, and
message acknowledgement.

• UDP: the InterSystems IRIS User Datagram Protocol (UDP) binding. Provides two-way message transfer between a
server and a large number of clients. UDP is not connection-based; each transmission of data packets is an independent
event. Provides fast and lightweight data transmission for local packet broadcasts and remote multicasting. Inherently
less reliable than TCP. Does not provide message acknowledgement. For details, refer to the UDP Client/Server
Communication chapter of this manual.

The TCP binding connects InterSystems IRIS to a widespread networking standard so that basic features of the underlying
network protocol are available to InterSystems IRIS users through I/O commands.

The TCP/IP protocol allows systems to communicate even if they use different types of network hardware. For example,
TCP, through an Internet connection, transmits messages between a system using Ethernet and another system using Token
Ring. TCP controls the accuracy of data transmission. IP, or Internet Protocol, performs the actual data transfer between
different systems on the network or Internet.

Using TCP binding, you can create both client and server portions of client/server systems. In the client/server type of
distributed database system, users on one or more client systems can process information stored in a database on another
system, called the server.

5.1 TCP Connections Overview
To create a client/server relationship between systems, you must follow a particular set of conventions:

• Your systems must be connected with appropriate networking hardware and software, including TCP/IP protocol
software.

• Systems communicate with each other through a TCP port. The processes at both ends of the connection must use the
same port number.

I/O Device Guide 73

• You specify either the TCP port number, or the devicename of the device that represents it, as the device in InterSystems
IRIS OPEN, USE, and CLOSE commands.

Using these conventions, the general procedure of establishing a TCP binding connection is:

1. The server process issues an OPEN command to a TCP device.

2. The server process issues a USE command, followed by a READ command, awaiting input from the client process.
The server must be listening before a client can establish a connection. The initial READ command completes when
the client has opened the connection and sent some data. You can include the “A” mode parameter in the OPEN
command to make the initial READ complete as soon as the server accepts the connection.

3. The client process issues an OPEN command that specifies the TCP device to which it is connecting.

4. The client process issues a USE command followed by a WRITE command to complete the connection. InterSystems
IRIS copies all characters in the WRITE command(s) to a buffer. It does not write them to the network until you issue
a WRITE ! or WRITE # command to flush the buffer.

5. After the server has read the characters that the client sent in its first WRITE command, both sides can continue to
issue READ and WRITE commands. There is no further restriction on the order of these commands to the same port.

6. Either side can initiate the closing of a connection with the CLOSE or HALT command. Closing the client side first
is preferable. If the server needs to disconnect so that it can accept a connection from another client process, it can
instead issue a WRITE *-2 command.

Note: This procedure assumes that both the client and server are InterSystems IRIS processes (though either process
can be a non-InterSystems IRIS process).

The following sections detail how to use InterSystems IRIS I/O commands to create a TCP binding between client and
server processes.

5.2 OPEN Command for TCP Devices
Both server and client processes use the ObjectScript OPEN command to initiate a connection. The server completes the
connection by issuing a READ command, which receives the client OPEN command and first data transmission.

Note: If you issue an OPEN command on a TCP device that has already been opened, this second OPEN command is
treated as a USE command. That is, the hostname and port parameters are ignored (retaining the first OPEN
command values) and the mode and terminators parameters are updated.

5.2.1 Using the OPEN Command

The OPEN command reserves a TCP binding device for your use. The syntax is:

OPEN devicename:parameters:timeout:mnespace

where

74 I/O Device Guide

TCP Client/Server Communication

A string of the form |TCP| followed by some number of numeric digits. The numeric
portion of the device name is called the device identifier. If the port number is not
specified in the OPEN parameters, this device identifier must be a unique five-digit TCP
port number. If the port number is specified in the OPEN parameters (which is the
preferred practice), this device identifier can be any unique number (up to a maximum
of 2147483647), so long as all the TCP device names used by a single job are distinct.

devicename

Optional — A series of one or more device parameters, enclosed by parentheses and
separated by colons (:). If a parameter is omitted, specify the colon separator for the
missing parameter. (For a server-side OPEN the first parameter is always omitted.) The
specific parameters are described below.

If you specify only the first parameter (hostname), you can omit the parentheses. For
example, the client-side open: OPEN "|TCP|7000":"127.0.0.1":10. If you specify
no parameters, you can omit the parentheses, but you must retain the colon as a sep-
arator character. For example, the server-side open: OPEN "|TCP|7000"::10.

parameters

Optional — Maximum number of seconds InterSystems IRIS attempts to open the TCP
device. If it does not succeed within this interval, it sets $TEST to 0 and returns control
to the process. If it succeeds, it sets $TEST to 1. Including a timeout in OPEN commands
from the client prevents the client system from hanging if it tries to open a connection
while the server is busy with another client. The server can have only one connection
open at a time.

timeout

Optional — Supported as it is for all ObjectScript OPEN commands. There is no
predefined mnemonic space for TCP bindings.

mnespace

If you omit an OPEN argument, you can indicate its absence by specifying the colon separator.

The timeout argument, though optional, is strongly recommended because the success or failure of OPEN is indicated by
the value of the $TEST special variable, and $TEST is only set if timeout is specified. $TEST is set to 1 if the open attempt
succeeds before the timeout expires; if the timeout expires, $TEST is set to 0.

If a TCP connection attempt fails on WIndows systems, the TCP connection error is written to the InterSystems IRIS system
error log (see InterSystems IRIS System Error Log in the “Monitoring InterSystems IRIS Using the Management Portal”
chapter of the Monitoring Guide), for example, error code 10061 = WSAECONNREFUSED.

The following is an example of a client-side OPEN, where 7000 is the port number and "127.0.0.1" is the parameters
argument (the hostname, specified as an IPv4 address):

 SET dev="|TCP|7000"
 OPEN dev:("127.0.0.1":7000)

5.2.1.1 hostname Parameter

The hostname parameter is required for a client-side OPEN. The client-side parameters argument may be just the hostname,
or the hostname followed by other colon-separated parameters. If you specify just the hostname parameter, you can omit
the parameters parentheses.

The server-side parameters argument omits the hostname.

The hostname can be either the name of an IP host (from the local system's database of remote hosts) or an IP address in
either IPv4 or IPv6 protocol format. Because these protocols are incompatible, both the server and the client must use the
same Internet protocol or the transmission will fail.

I/O Device Guide 75

OPEN Command for TCP Devices

An IPv4 address has the following format. n is a decimal integer in the range 0 through 255:

n.n.n.n

An IPv6 address has the following full format. h is a hexadecimal number with four hexadecimal digits:

h:h:h:h:h:h:h:h

Commonly, IPv6 addresses are abbreviated by eliminating leading zeros and replacing consecutive sections of zeros with
a double colon (::); only one double colon may be used in an IPv6 address. By using IPv4 abbreviation rules, you can
specify the IPv6 loopback address as "::1" (meaning that the first seven consecutive h sections all have the value 0000,
and the leading zeros from the eighth section are eliminated).

Further details on IPv4 and IPv6 formats can be found in the section “Use of IPv6 Addressing” in the chapter “Server
Configuration Options” in the Orientation Guide for Server-Side Programming.

5.2.1.2 Supported Parameters

The parameters argument can be in either of the following formats:

hostname

(hostname{:port{:mode{:terminators{:ibufsiz{:obufsiz{:queuesize{:keepalivetime}}}}}}})

The parameters within the parameters argument are as follows:

MeaningParameter

Optional — Either the name of an IP host, an IP address in IPv4 protocol format, or an
IP address in IPv6 protocol format. Specified as a quoted string. A hostname is required
for a client-side OPEN; omitted (represented by a placeholder colon) for a server-side
OPEN.

hostname

Optional — If present, this is the TCP port number to use for the connection. If this port
number is null or omitted, then the port number is derived from the numeric portion of
the devicename.This parameter can either be a decimal port number or a service name,
which is submitted to the local system's TCP service name resolver.

port

76 I/O Device Guide

TCP Client/Server Communication

MeaningParameter

Optional — A string of letter code characters enclosed in quotes. Letter codes may be
specified in any order; because InterSystems IRIS executes them in left-to-right order,
interactions between letter codes may dictate a preferred order in some cases. The
default is packet mode. A mode string can consist of one or more of the following letter
codes:

• A—Accept mode. If A is on, the initial read on the server terminates with a zero-
length string as soon as the connection from the client job is accepted. If A is off,
the read blocks until the timeout is reached, or until data is available, whichever
occurs first.

• C—See Carriage Return Mode below.

• D—See Monitoring for Disconnect Mode below.

• E—See Escape Sequence Processing Mode below.

• G—Causes the port parameter to be interpreted as the socket descriptor of an
already opened data socket.

• M—Standard InterSystems IRIS device in stream mode. This mode is a shorthand
for invoking the “PSTE ” set of options. It yields a device that acts like a standard
InterSystems IRIS device that can be used to pass arbitrary lines of data in both
directions.You turn on stream mode so that you can send or receive any arbitrary
sequence of strings, without overrunning the buffers. Line feeds are added to output
and stripped from input. READ commands block until one of the following occurs:
a terminator character is seen, the timeout is reached, or the read length specified
has been filled.

• P—Pad output with record terminator characters. When this mode is set, WRITE !
sends LF (line feed) and WRITE # sends FF (form feed), in addition to flushing the
write buffer.The WRITE *-3 command can be used to initiate the sending of buffered
data without inserting any characters into the data stream. Note that WRITE *-3
just flushes the write buffer without sending any terminator character, and thus does
not signal the recipient program that the data is complete. WRITE *-3 is more
commonly used in Wait (W) mode, which does not require a terminator.

• Q—See Send Immediate Mode below.

• S—See Stream Mode below.

• T—Standard terminators on input. When this is set, the CR, LF, and FF control
characters function as read terminators.

• W—Wait mode. In this mode, WRITE ! and WRITE # commands will not cause a
TCP device to flush the network output buffers. Wait mode causes a TCP device to
wait until the next WRITE *-3 command to flush the buffers and transmit the data.

mode

Optional — A list of up to eight user terminator characters that will terminate reads on
the TCP binding device. If you specify both T mode and terminators at the same time,
T mode is ignored.

terminators

Optional — Input buffer size. Internally, characters that have been read from the network
but not yet delivered to the InterSystems IRIS program are buffered in a data area that
can hold ibufsiz bytes.

ibufsiz

I/O Device Guide 77

OPEN Command for TCP Devices

MeaningParameter

Optional — Output buffer size.The maximum amount of data the TCP device can buffer
between successive “SEND” operations. A SEND operation means to send the buffered
data out to the network. WRITE !, WRITE #, and WRITE *-3 commands can generate
SEND operations.

When S mode is specified, SEND operations are generated automatically to send the
contents of the output buffer whenever it gets too full. When done creating a message,
however, the programmer must still use one of the SEND operations to make sure the
message is sent.

When S mode is not specified, if a WRITE operation would place enough data in the
buffer to exceed the output buffer size, then a <WRITE> error occurs. Note that
attempting to write a string that is in itself longer than the output buffer size always fails.

obufsiz

Optional — An integer that specifies how many client jobs can queue for a connection
to the server. Used for server-side OPEN only. The default is 5. The maximum value
depends on the TCP implementation, but cannot exceed 1000.

queuesize

Optional — (Windows, AIX, and Linux only) Allows you to set a keepalive timer for this
device that is different than the system default. Specify an integer number of seconds
to keep alive the TCP connection. Valid values range from 30 to 432000. (432000 sec-
onds is 5 days.) A value less than 30 defaults to 30. If omitted or set to 0, the system-
wide default keepalive timer is used.

The system-wide default is can be set using the SetTCPKeepAlive() method. This
changes the system-wide keepalive number of seconds default for new processes;
changing this value has no effect on currently running processes. To determine the
current setting, call $SYSTEM.SQL.CurrentSettings().You can also view and set this
default using the Management Portal: select System Administration, Configuration, SQL and

Object Settings, SQL.View and edit the current setting of TCP keepalive for client connections

(seconds).

keepalivetime

5.2.1.3 Packet Mode

Packet mode is the default if no mode is specified. If stream mode is disabled, the mode defaults to packet mode.

In packet mode READ commands complete as soon as there is some data to return. Packet mode allows you to build an
entire TCP segment in the output buffer, and then send it all at one time by issuing a WRITE *-3 or WRITE ! command.

If you issue WRITE *-1 to initiate a TCP SEND operation when there are no characters to be sent, you receive a <WRITE>
error. If you issue WRITE of an empty string, you receive a <COMMAND> error.

The maximum size of the string you can send in packet mode is 1024 characters. If you exceed this limit without flushing
the buffer, you receive a <WRITE> error.

Because TCP/IP ignores records with a length of 0, you receive a <WRITE> error if you flush the write buffer when there
are no characters in it.

A WRITE command from server to client before the server has received a connection request produces a <WRITE> error
on the server.

5.2.1.4 Carriage Return Mode (C mode)

This mode modifies processing of carriage returns on input and output.

On Output, WRITE ! generates “CR LF” and WRITE # generates “CR FF” .

78 I/O Device Guide

TCP Client/Server Communication

On input, with T mode enabled, the server tries to record an adjacent CR and LF or an adjacent CR and FF as a single ter-
minator in $ZB. CR and LF are processed as separate terminators if they do not arrive within a short interval of each other.
By default, the interval is 1 second.

5.2.1.5 Monitoring for Disconnect Mode (D mode)

This mode turns on or off asynchronous disconnect monitoring. This mode is activated by specifying the “D” mode char-
acter, or the /POLL or /POLLDISCON keyword parameter. When you specify +D, TCP disconnect monitoring is activated;
when you specify –D, TCP disconnect monitoring is deactivated.

While activated, InterSystems IRIS polls the TCP connection roughly every 60 seconds. When it detects a disconnect,
InterSystems IRIS issues a <DISCONNECT> error. Disconnect detection does not occur in idle jobs, such as a job suspended
by a HANG command or a job waiting on a READ operation. InterSystems IRIS suspends all disconnect monitoring during
a rollback operation to prevent a <DISCONNECT> error being issued. InterSystems IRIS resumes disconnect monitoring
once the rollback concludes. This suspension applies both to a current TCP device with disconnect monitoring activated,
and to a current device without disconnect monitoring that is connected to a TCP device with disconnect monitoring activated.

You can also check for TCP disconnect by using the Connected() method of the %SYSTEM.INetInfo class.

5.2.1.6 Escape Sequencing Processing Mode (E mode)

When the E mode is set, escape sequences in the input stream are parsed and placed into the $ZB special variable. Escape
sequences must be 15 characters or less and must match the following syntax:

esc_seq::=type1 | type2

where:

type1 ::= '['['0':'?']*['':'/']*{'@':DEL} type2 ::= [';'|'?'|'O']['':'/']*{'0':DEL}

The syntactic symbols used here mean:

x:y means a specified range of characters from x through y in the ASCII sequence.:

x|y means specify either x or y.|

Specify zero or one members of the specified set.[]

Specify zero, one, or more members of the specified set.[]*

Specify exactly one member of the specified set.{ }

When InterSystems IRIS sees an ESCAPE, it waits up to 1 second for the rest of the escape sequence to arrive. If the escape
sequence does not match this syntax, or if it is longer than 15 characters, or if a valid escape sequence does not arrive within
1 second, InterSystems IRIS places the partial escape sequence in $ZB and sets the “BADESC” bit (256) in $ZA.

5.2.1.7 Send Immediate Mode (Q mode)

In send immediate mode, each WRITE command is output as its own packet. If you are not using send immediate mode,
you must either include a terminator or issue the command WRITE *–3 to output a packet.

This mode is entered by specifying the “Q” mode character, or the /SENDIMMEDIATE (or /SEN) keyword parameter.
To turn this option off, specify either of the following:

 USE TCPDEVICE:(/SEN=0)
 USE TCPDEVICE:(::"-Q")

To turn this option back on, specify either of the following:

I/O Device Guide 79

OPEN Command for TCP Devices

 USE TCPDEVICE:(/SEN=1)
 USE TCPDEVICE:(::"+Q")

Send Immediate Mode, which creates one packet per write, is used in combination with /NODELAY mode, which imme-
diately sends each packet as it is created. When both are on, the speed of transmission of a single burst of data is maximized.
This is useful when timely delivery of each unit of data is critical, for example, in transmitting mouse movements. When
both are off, a packet may contain multiple writes, and a transmission may contain multiple packets. This reduces network
traffic and improves overall performance. The default for Send Immediate Mode is off. The default for /NODELAY mode
is on.

5.2.1.8 Stream Mode (S mode)

In stream mode, InterSystems IRIS does not attempt to preserve TCP message boundaries in the data stream. On sending,
if the data does not fit in the message buffer, InterSystems IRIS flushes the buffer before placing the data in it.

On receiving, data up to the maximum string length can be received. All reads wait for the full timeout for terminators to
be reached or for the buffer to become full. When this mode is disabled (the default), you are in packet mode.

Jobbed processes that inherit TCP devices are automatically set to Stream format. You can reset the format with the USE
command.

5.2.1.9 Buffer Sizes

The ibufsiz and obufsiz parameters for TCP devices specify the sizes of the internal InterSystems IRIS buffers for TCP
input and output. They can take values between 1KB and 1MB on all supported platforms. However, operating system
platforms may use different sizes for their own input and output buffers. If the operating system platform buffer is smaller
than the InterSystems IRIS buffer (for example, 64KB vs 1MB), performance may be affected: a WRITE operation may
require several trips to the OS to send the entire InterSystems IRIS buffer; a READ operation may return smaller chunks
that are limited by the OS buffer size. For optimal performance, a user should experiment with the current OS to determine
which values for ibufsiz and obufsiz produce optimal results.

5.2.2 Server-Side OPEN Command

When the server-side OPEN is processed, it establishes a TCP socket and listens on the socket for incoming connection
requests on the appropriate port number. The port number is either specified explicitly in the parameter list, or derived from
the numeric portion of the devicename. The OPEN returns immediately after the socket has been set up to listen.

If the OPEN does not succeed, another process may already be listening for connection requests on that port number.

The following example of a server-side OPEN shows a device specification that allows reading and writing of terminated
strings up to the maximum string size, and uses maximum length read and write operations to consolidate use of the TCP
channel.

 OPEN "|TCP|4":(:4200:"PSTE"::32767:32767)

The parameters argument in this example is as follows: because this is a server-side OPEN, the first parameter (hostname)
is omitted. The second parameter explicitly specifies the port number (4200). The third parameter is the mode code characters.
The fourth parameter (terminators) is omitted. The fifth parameter is the input buffer size. The sixth parameter is the output
buffer size.

In the following example the port number is not specified as a parameter; it is derived from the numeric portion of the
devicename. This example opens port 4200 with no specified parameters and a timeout of 10 seconds:

 OPEN "|TCP|4200"::10

A server-side OPEN has default input buffer size (ibufsiz) and output buffer size (obufsiz) parameter values of 1,048,576
bytes (1 Mb).

80 I/O Device Guide

TCP Client/Server Communication

A server-side OPEN supports the optional queuesize parameter, and the optional “G” mode parameter. These options are
not available to a client-side OPEN.

A server-side OPEN supports the optional /CLOSELISTEN keyword parameter. This option is not available to a client-
side OPEN.

5.2.3 Client-Side OPEN Command

A client-side OPEN command differs from the server-side OPEN command in only one respect: the first device parameter
must specify the host to which you are connecting. To specify the host, you include either a name that the client recognizes
as a host, or an Internet address.

The OPEN succeeds as soon as the connection is established. At this point, you can read or write to the TCP device.
However, if the server side of the connection is another InterSystems IRIS process, the server does not complete its side
of the connection until some data has been sent from the client to the server with the WRITE command. Therefore, you
must issue a WRITE command before you issue any READ commands.

For details, see the section “WRITE Command for TCP Devices” .

Some examples of client-side OPEN commands are:

 OPEN "|TCP|4":("hal":4200::$CHAR(3,4)):10

This command opens a connection to host hal on port 4200. It specifies no mode string. It specifies two terminators (ASCII
$CHAR(3) and $CHAR(4)), and default input and output buffer sizes. It specifies a timeout of 10 seconds.

The following command is the same as the previous one, except that the destination is an explicit IP address in IPv4 format.

 OPEN "|TCP|4":("129.200.3.4":4200::$CHAR(3,4)):10

Further details on IPv4 and IPv6 formats can be found in the section “Use of IPv6 Addressing” in the chapter “Server
Configuration Options” in the Orientation Guide for Server-Side Programming.

The following command connects to time-of-day server on remote host “ larry” and prints the remote host's time of day
in ASCII format on the principal input device. It uses the service name daytime, which the local system resolves to a port
number:

 OPEN "|TCP|4":("larry":"daytime":"M")
 USE "|TCP|4"
 READ x
 USE 0
 WRITE x

The following command sets x to “hello” :

 OPEN "|TCP|4":("larry":"echo":"M")
 USE "|TCP|4"
 WRITE "hello",!
 READ x

The following command opens a connection to Internet address 128.41.0.73, port number 22101, with a 30-second timeout.

 OPEN "|TCP|22101":"128.41.0.73":30

5.2.4 OPEN and USE Command Keywords for TCP Devices

You can either use positional parameters (as described above) or keyword parameters. The following table describes the
keywords for controlling TCP devices with both OPEN and USE commands. There are additional OPEN-only keywords
(described later in this chapter) that can only be specified in the OPEN command. All keyword parameters are optional.

I/O Device Guide 81

OPEN Command for TCP Devices

Table 5–1: OPEN and USE Command Keywords for TCP Devices

DescriptionDefaultKeyword

Specifies read timeout behavior. Determines whether
TCP should reinitialize the timeout period when data
is received. If /ABSTIMEOUT=0 (the default) timeout
is reset to its original value each time data is received.
If /ABSTIMEOUT or /ABSTIMEOUT=1 the timeout
period continues to count down while data is received.

0/ABSTIMEOUT[=1]

Corresponds to the “A ” mode parameter character,
which specifies that the initial read on the server
terminates with a zero length string as soon as the
connection from the client job is accepted. /ACCEPT
and /ACCEPT=n for nonzero values of n enable A
mode. /ACCEPT=n for a zero value of n disables A
mode.

0/ACCEPT[=n]

or

/ACC[=n]

Specifies handling of data remaining in the output
buffer when the device is closed. /CLOSEFLUSH and
/CLOSEFLUSH=n for nonzero values of n flushes
remaining data. /CLOSEFLUSH=n for a zero value of
n discards remaining data.

1/CLOSEFLUSH[=n]

Specifies the stream data compression type.You can
enable a compression type of ZLIB or ZSTD.You can
specify /COMPRESS="" to disable compression.
/COMPRESS="zlib" is equivalent to /GZIP=1. To
compress a string, use %SYSTEM.Util.Compress().

""/COMPRESS=str

Corresponds to the “C ” mode parameter character,
which modifies processing of carriage returns on input
and output. /CRLF and /CRLF=n for nonzero values
of n enable C mode. /CRLF=n for a zero value of n
disables C mode.

0/CRLF[=n]

Corresponds to the “E ” mode parameter character,
which specifies that escape sequences in the input
stream are parsed and placed into $ZB. /ESCAPE and
/ESCAPE=n for nonzero values of n enable E mode.
/ESCAPE=n for a zero value of n disables E mode.

0/ESCAPE[=n]

or

/ESC[=n]

82 I/O Device Guide

TCP Client/Server Communication

DescriptionDefaultKeyword

Specifies GZIP-compatible stream data compression.
/GZIP or /GZIP=n (for nonzero values of n) enables
compression on WRITE and decompression on READ.
/GZIP=0 disables compression and decompression.
Before issuing /GZIP=0 to disable compression and
decompression, check the $ZEOS special variable to
make sure that a stream data read is not in progress.
/GZIP compression has no effect on I/O translation,
such as translation established using /IOTABLE. This
is because compression is applied after all other
translation (except encryption) and decompression is
applied before all other translation (except encryption).
For further information on WRITE with compressed
data, refer to WRITE Control Characters in this
chapter.

1/GZIP[=n]

Establishes an I/O translation table for the device.If name is not
specified, the
default I/O
translation table for
the device is used.

/IOTABLE[=name]

or

/IOT[=name]

(Windows, AIX, and Linux only) Allows you to set a
keepalive timer for this device that is different than the
system default. An integer that specifies the number
of seconds to keep alive the TCP connection. Same
as the keepalivetime positional parameter.Valid values
range from 30 to 432000. (432000 seconds is 5 days.)
A value less than 30 defaults to 30. If omitted or set to
0, the system default is used. This setting can be
disabled using /NOKEEPALIVE; once disabled, it
cannot be re-enabled until this TCP device is closed.

system default/KEEPALIVE=n

Specifies whether packets should be bundled or sent
individually. If /NODELAY=1 (the default) each packet
is immediately transmitted. If /NODELAY=0 the TCP
driver bundles packages together using an optimization
algorithm. This can cause a slight transmission delay
for an individual packet, but by reducing network traffic
it can improve overall performance. /NODELAY has
no corresponding mode parameter character. Use of
/NODELAY should be coordinated with use of
/SENDIMMEDIATE.

1/NODELAY=n

I/O Device Guide 83

OPEN Command for TCP Devices

DescriptionDefaultKeyword

If specified, the system-wide TCP keepalive timer is
disabled for this device. InterSystems IRIS enables
this timer by default when opening any TCP device;
issuing the /NOKEEPALIVE option on OPEN or USE
overrides this default. If /KEEPALIVE has been used
to set a non-default keepalive timer, /NOKEEPALIVE
disables that keepalive timer. Once you disable a
keepalive timer there is no way to re-enable it until the
TCP device is closed. See /KEEPALIVE.

/NOKEEPALIVE

No $X and $Y processing: /NOXY or /NOXY=n (for
nonzero values of n) disables $X and $Y processing.
This option can improve performance when device
$X/$Y is not used, for example with CSP. It can
substantially improve performance of READ and
WRITE operations. This option is the default setting
for superserver slave jobs.When /NOXY=1, the values
of the $X and $Y variables are indeterminate, and
margin processing (which depends on $X) is disabled.
/NOXY=0 enables $X and $Y processing; this is the
default. /TCPNOXY is a deprecated synonym for
/NOXY.

0/NOXY[=n]

Corresponds to the “P ” mode parameter character,
which specifies that output is padded with record
terminator characters when WRITE ! (LF terminator)
or WRITE # (FF terminator) is executed. /PAD and
/PAD=n for nonzero values of n enable P mode.
/PAD=n for a zero value of n disables P mode.

0/PAD[=n]

Corresponds to the mode positional parameter. (It
provides a way to specify a mode string in a
position-independent way.)

No default/PARAMS=str

or

/PAR=str

Corresponds to the “D ” mode parameter character,
which specifies asynchronous monitoring for
disconnect. /POLL or /POLL=1 corresponds to +D.
/POLL=0 corresponds to -D.

/POLL[=n]

or

/POLLDISCON[=n]

Corresponds to the “M ” mode parameter character,
which is a shorthand way to specify the P, S, T and E
mode parameter characters. /PSTE and /PSTE=n for
nonzero values of n enable P, S, T and E modes.
/PSTE=n for a zero value of n disables these modes.

0/PSTE[=n]

Corresponds to the “Q ” mode parameter character,
which specifies Send Immediate Mode.

0/SENDIMMEDIATE[=n]

or

/SEN[=n]

84 I/O Device Guide

TCP Client/Server Communication

DescriptionDefaultKeyword

From a client, specifies that the device attempts to
negotiate an SSL/TLS-secured connection according
to the client's specified configuration and server
requirements. When securing a socket as a server,
specifies that the server requires a SSL/TLS-secured
connection according to the server's specified configu-
ration and any client requirements.

cfg specifies the name of the configuration for the
connection or socket. pw specifies the optional private
key file password. DNShost specifies the fully qualified
DNS hostname of a specific server, for use with the
Server Name Indication (SNI) TLS extension. See
below for details.

This configuration name is used only the first time I/O
is performed after the OPEN or USE command. Sub-
sequent invocations are ignored./SSL="" or /TLS=""
is ignored. For more information, see the “Using
SSL/TLS with InterSystems IRIS ” chapter in the
Security Administration Guide.

IMPORTANT: The ability to include a password when
opening a new or securing an existing TCP connection
using SSL/TLS is for real-time interactive use only.
You should never store a private key password persis-
tently without protecting it. If you need to store such a
password, use the PrivateKeyPassword property of the
Security.SSLConfigs class.

No default/SSL="cfg[|pw] [|DNShost]"

or

/TLS="cfg[|pw] [|DNShost]"

Corresponds to the “S ” mode parameter character,
which specifies a stream mode of handling data that
does not preserve TCP message boundaries.
/STREAM and /STREAM=n for nonzero values of n
enable S mode. /STREAM=n for a zero value of n
disables S mode.

0/STREAM[=n]

or

/STR[=n]

Deprecated. A synonym for /NOXY./TCPNOXY

Set receive queue buffer size, in bytes. Can be used
to increase the buffer size from the default value to
support TCP protocol large windows. Large windows
improve performance over links with long latencies or
very high bandwidth. For appropriate values, consult
your OS/hardware documentation.

Default receive
buffer size

/TCPRCVBUF=n

Set send queue buffer size, in bytes. Can be used to
increase the buffer size from the default value to
support TCP protocol large windows. Large windows
improve performance over links with long latencies or
very high bandwidth. For appropriate values, consult
your OS/hardware documentation.

Default send buffer
size

/TCPSNDBUF=n

I/O Device Guide 85

OPEN Command for TCP Devices

DescriptionDefaultKeyword

Corresponds to the terminators positional parameter,
which establishes user-defined terminators.

No default/TERMINATOR=str

or

/TER=str

Corresponds to the “T ” mode parameter character,
which specifies CR, LF, and FF as standard read
terminators. /TMODE and /TMODE=n for nonzero
values of n enable T mode. /TMODE=n for a zero value
of n disables T mode.

0/TMODE[=n]

or

/TMO[=n]

/TRANSLATE or /TRANSLATE=n for nonzero values
of n enable I/O translation for the device.
/TRANSLATE=n for a zero value of n disables I/O
translation for the device.

1/TRANSLATE[=n]

or

/TRA[=n]

Corresponds to the “W ” mode parameter character,
which causes output buffers not to be flushed by the
WRITE ! and WRITE # commands. Rather, flushing
waits until the next WRITE *-3 command. /WAIT and
/WAIT=n for nonzero values of n enable W mode.
/WAIT=n for a zero value of n disables W mode.

0/WAIT[=n]

Establishes a timeout (in seconds) for TCP write
operations. If a write does not complete within n
seconds, InterSystems IRIS issues a <TCPWRITE>
error. If a <TCPWRITE> error is issued, your
application should immediately close the TCP device
to prevent data loss. InterSystems IRIS will not attempt
a TCP write operation following a <TCPWRITE> error.
The minimum n value is system-dependent. If n is
smaller than the minimum timeout value for the
platform, InterSystems IRIS uses the platform
minimum. No n value should be less than 2. The
default (-1) indicates no timeout is enforced.

-1/WRITETIMEOUT[=n]

Establishes a $X/$Y action table for the device. See
/NOXY.

If name is not
specified, the
default $X/$Y
action table for the
device is used.

/XYTABLE[=name]

or

/XYT[=name]

5.2.4.1 SSL / TLS Components

The value of the TCP device OPEN or USE /SSL or /TLS keyword parameter is a quoted string. This string can have can
have one, two, or three components, separated by the '|' character:

86 I/O Device Guide

TCP Client/Server Communication

The name of the SSL Configuration to use for this connection. This component is required.cfg

Optional — The password for the local private key file. This is intended for interactive
applications only, when a user is being prompted to enter the password at run time. It should
not be used with a persistently stored password. Use the
Security.SSLConfigs.PrivateKeyPassword property for persistent storage.

pw

Optional — For SSL clients only. Specify either the server-selected certificate (for Hostname
Verification) or the fully qualified DNS hostname of a specific server (for Server Name
Indication). If you omit pw you must specify the placeholder '|' character.

Hostname Verification is a feature that allows the client to check that the certificate it receives
from a server includes a field with the hostname that the client tried to connect to. This is
for use by client applications, such as %Net.HttpRequest(), that want to verify that the server
X.509 certificate contains a fully qualified server DNS hostname matching the server name
in the URL, either in the subjectAltName extension or the Subject CN field. This allows
clients to detect cases where a man in the middle attack uses a valid certificate for the
wrong domain.

Server Name Indication (SNI) is a feature that allows the client to submit the hostname it's
asking for to the server. This allows a server which handles multiple domains to select one
of its multiple certificates to return. The server can select one which will match hostname
checking on the client.

DNShost

The following are examples of valid /TLS keyword parameters:

/TLS="Client"
/TLS="Client|password"
/TLS="Client||www.intersystems.com"
/TLS="Client|password|www.intersystems.com"

5.2.5 OPEN-Only Command Keywords for TCP Devices

The following table describes the keywords for controlling TCP devices that can only be specified in the OPEN command.
There are additional OPEN/USE keywords (described earlier in this chapter) that can be specified with either the OPEN
or USE command. All keyword parameters are optional.

Table 5–2: OPEN-only Command Keywords for TCP Devices

DescriptionDefaultKeyword

Binds to a specified local address that is used when initiating
connection. For client, this is the source address used when
opening a TCP/IP connection from InterSystems IRIS. For
server, this is the IP address that the InterSystems IRIS
process will accept connections on when opening a TCP/IP
connection. /BINDTO=address is used to control which
network interface the connection will use. /BINDTO or
/BINDTO=”“ deletes a previously specified address.

/BINDTO[=address]

(Server only) Prevents more than one remote connections to
the listening port. If specified, the listen socket is closed after
the first connection is accepted. Additional clients attempting
to connect will time out on the OPEN command.

/CLOSELISTEN

I/O Device Guide 87

OPEN Command for TCP Devices

DescriptionDefaultKeyword

Corresponds to the queuesize positional parameter, which
determines how many client jobs can queue for a connection
to the server.

5/CONNECTIONS=n

or

/CON=n

Corresponds to the hostname positional parameter, which is
either the name of an IP host or an IP address in IPv4 or IPv6
address format. Further details on IPv4 and IPv6 formats can
be found in the section “Use of IPv6 Addressing ” in the
chapter “Server Configuration Options ” in the Orientation
Guide for Server-Side Programming.

No default/HOSTNAME=str

or

/HOS=str

Corresponds to the ibufsiz positional parameter, which
specifies the size of the TCP input buffer that holds data read
from the network, but not yet delivered to the application.

1024/IBUFSIZE=n

or

/IBU[=n]

Corresponds to the obufsiz positional parameter, which
specifies the size of the TCP output buffer that contains data
that is held between successive "SEND" operations.

1024/OBUFSIZE=n

or

/OBU[=n]

Corresponds to the port positional parameter, which is either
the TCP port number or a service name to use for the
connection.

No default/PORT=n

Corresponds to the “G ” mode parameter character, which
causes the port positional parameter to be interpreted as the
socket descriptor of an already opened data socket. This
keyword takes as its value that socket descriptor and is used
instead of the /PORT=n keyword. (A socket descriptor is
passed to ObjectScript from another programming
environment, such as C, using the InterSystems IRIS Call-in
or Call-out mechanisms.)

No default/SOCKET=n

or

/SOC=n

The following example shows a TCP/IP device being opened using keyword syntax:

 SET dev="|TCP|"_123
 SET portnum=57345
 OPEN dev:(/PSTE:/HOSTNAME="128.41.0.73":/PORT=portnum)

5.3 Current TCP Device
You can return the IP address and port number of the current TCP device using the methods of the %SYSTEM.TCPDevice

class. You can list these methods using the Help() method, as follows:

 DO $SYSTEM.TCPDevice.Help()

You can display information about a specific method by specifying the method name in Help(), as shown in the following
example:

 DO $SYSTEM.TCPDevice.Help("LocalAddr")

88 I/O Device Guide

TCP Client/Server Communication

5.4 USE Command for TCP Devices
The USE command issued from either the client or server lets you prepare to send or receive data using a TCP connection
you previously opened. It has the following syntax (colons must be specified as shown):

USE devicename:(::mode:terminators)

where

A string of the form |TCP| followed by some number of numeric digits. The numeric
portion of the device name is called the device identifier. If the port number is not
specified in the OPEN parameters, this device identifier must be a unique five-digit
TCP port number. If the port number is specified in the OPEN parameters (which is
the preferred practice), this device identifier can be any unique number, so long as
all the TCP device names used by a single job are distinct.

devicename

Optional — USE supports the same mode parameters as OPEN. See “OPEN and
USE Command Keywords for TCP Devices. ”

mode

Optional — A list of up to eight user terminator characters that will terminate reads
on the TCP binding device. It does not make sense to specify both T mode and user
terminators at the same time, but if you do then T mode is ignored.

terminators

The simplest form of USE takes its mode and terminators parameters from the OPEN command, as shown in the following
example:

 USE "|TCP|4"

You can replace, add, or delete mode parameters and user terminators after the device has been opened.

To replace the parameters specified in OPEN, specify replacement values in USE. In the following example, the USE
command replaces the OPEN mode with PSTE mode and turns off any user terminators:

 USE "|TCP|4":(::"PSTE")

To add to or delete from the mode parameters specified in OPEN, use the “+” sign to introduce mode parameters that will
be turned on, and the “ -” sign to introduce mode parameters that will be turned off. If you do not specify either “+” or
“ -” , the new set of mode parameters replaces the existing mode parameters. In the following example, the USE command
turns off Q mode (send immediate) and turns on W mode (wait). It leaves the rest of the mode string unchanged:

 USE "|TCP|4":(::"-Q+W")

In the following example, the USE command leaves the mode string unchanged and specifies a new set of user terminators.

 USE "|TCP|4":(::"+":$CHAR(3,4))

5.5 READ Command for TCP Devices
Issue the READ command from either the server or the client to read any characters set by either the client or the server.

I/O Device Guide 89

USE Command for TCP Devices

The syntax is as follows:

READ var:timeout READ *var:timeout READ var#length:timeout

The timeout argument, though optional, is strongly recommended because the success or failure of the READ is indicated
by the value of the $TEST special variable if timeout is specified. $TEST is set to 1 if the read attempt succeeds before
the timeout expires; if the timeout expires, $TEST is set to 0.

TCP READ timeout is supported for whole seconds or for a fraction of less than a second. TCP READ truncates a timeout
value of 1 second or more to an integer number of seconds (4.9 = 4 seconds). TCP READ supports timeout values of less
than 1 second to the 1/100th of a second (0.9 = nine tenths of a second).

For an SSL connection, a job can wait in the first read or first write command if the other party never issues a read or write
command after the connection is established. In this circumstance, InterSystems IRIS supports the read timeout for a READ
command and write timeout (with /WRITETIMEOUT=n option) for a WRITE command. If there is no read or write
timeout specified, then the job will wait until the other party issue a read or write command.

You can determine the number of reads performed by the current TCP connection using the TCPStats() method of the
%SYSTEM.INetInfo class.

5.5.1 READ Modifies $ZA and $ZB

Your application can learn about how the connection and read succeeded by testing the values of $ZA and $ZB.

5.5.1.1 $ZA and READ Command

$ZA reports the state of the connection. When the 0x1000 bit (4096) is set, this TCP device is functioning in Server mode.
When the 0x2000 bit (8192) is set, the device is currently in the Connected state talking to a remote host.

For example, assume that a server-side TCP device is expected to accept a new TCP connection. By looking at $ZA and
$TEST after an initial timed read, the InterSystems IRIS program can distinguish among three cases:

Meaning$TEST Value$ZA Value

No connection has been accepted.04096

Connection accepted, no data received.012288

Connection accepted and data received.112288

The following table shows what each bit in $ZA represents.

MeaningHexadecimal Value of $ZADecimal Value of $ZA

Read timed out.0x22

I/O error.0x44

Bad escape sequence received.0x80256

Server mode.0x10004096

Connected.0x20008192

5.5.1.2 $ZB and READ Command

$ZB holds the character that terminated the read. This character can be one of the following:

• A termination character, such as a carriage return

90 I/O Device Guide

TCP Client/Server Communication

• The yth character of a fixed-length READ x#y

• The single character of READ *X

• An empty string after a timed read expires

• An escape sequence

Note that if a string is terminated with CR LF, then only the CR is placed in $ZB.

5.6 WRITE Command for TCP Devices
The WRITE command sends data to a TCP device from the client or the server after you have established connection with
OPEN and USE.

The syntax is as follows:

WRITE x WRITE ! WRITE #

5.6.1 How WRITE Works

WRITE x sends x from the client or server to a buffer after the connection has been established.

WRITE ! and WRITE # do not indicate line and form feed. Instead, they tell InterSystems IRIS to flush any characters
that remain in the buffer and send them across the network to the target system.

You can determine the number of writes performed by the current TCP connection using the TCPStats() method of the
%SYSTEM.INetInfo class.

5.6.2 WRITE Modifies $X and $Y

InterSystems IRIS stores the number of characters in the buffer in the $X special variable.

The ASCII characters <return> and <line feed> are not included in this count, as they are not considered part of the record.
Flushing the buffer with WRITE ! resets $X to 0, and increases the value of $Y by 1. Flushing the buffer with WRITE #
writes the ASCII character <form feed> as a separate record, and resets $Y to 0.

5.6.3 WRITE Command Errors

You can receive a <WRITE> error in any of the following circumstances.

• If you exceed the maximum string size (1024 characters) without flushing the buffer.

• If you flush the write buffer when there are no characters in it (TCP/IP ignores records of 0 length).

• If you send a WRITE command from the server to the client before the server receives a connection request from
client. (InterSystems IRIS produces the <WRITE> error on the server.)

5.6.4 WRITE Control Commands

The InterSystems IRIS TCP binding device supports a series of control commands with the WRITE *-n syntax.

I/O Device Guide 91

WRITE Command for TCP Devices

DescriptionSyntax

On a server-mode session that is currently connected to a client, this command
disconnects from the session. To accept a new session you then execute a new
READ command on the device.

WRITE *-2

Sends any buffered output out the TCP connection; that is, executes a TCP SEND
operation on the data in the output buffer. If the data is compressed (/GZIP) stream
data, *-3 sends the data without marking the compression endpoint. Resets $X to
0. Increments $Y by 1. If there is no buffered output, this command does nothing.

WRITE *-3

Sends compressed (/GZIP) stream data. First marks the data in the output buffer
with a compression endpoint, then sends this compressed stream data by executing
a TCP SEND operation on the output buffer data.

WRITE *-99

5.7 Connection Management
The server maintains only one connection at a time. If a second client tries to connect while another connection is open,
TCP/IP places that client in a queue. While in the queue, the second client can write to the port as if it were connected. The
data the second client writes remains in a buffer until the first connection is closed and the second client connects.

The second client hangs if it issues a READ before the connection exists. Any connection attempt by a third client while
the second one is in the queue fails.

If a client that has already opened a TCP device tries to connect a second time while the first connection still exists, the
second OPEN command causes a <COMMAND> error. Treating this situation as an error rather than as a USE command
prevents surprising results. Such unexpected results could occur if an erroneous program thinks it has opened a new con-
nection, when it is actually reusing an existing connection that may have a different destination or different parameters.

To handle multiple clients, see below.

5.7.1 Job Command with TCP Devices

You can use the JOB command to implement a TCP concurrent server. A TCP concurrent server allows multiple clients
to be served simultaneously. In this mode, a client does not have to wait for the server to finish serving other clients. Instead,
each time a client requests the server, it spawns a separate subjob for that client which remains open as long as the client
needs it. As soon as this subjob has been spawned (indicated by the return of the JOB command), another client may request
service and the server will create a subjob for that client as well.

92 I/O Device Guide

TCP Client/Server Communication

Figure 5–1: Client/Server Connections in the Non-Concurrent and Concurrent Modes.

A concurrent server uses the JOB command with the switch concurrent server bit (bit 4 or bit 16) set. Bit 16 is the recom-
mended setting.

• If bit 4 is set, the JOB command passes to the spawned process the TCP device in the principal input and principal
output process parameters. Whenever you include bit 4 in switch, you must specify the TCP device in both principal
input and principal output process parameters. You must use the same device for both principal input and principal
output. Use of bit 4 is not recommended; refer to the JOB command in the ObjectScript Reference for further details.

• If bit 16 is set, the JOB command passes to the spawned process three separate devices for the TCP device, the principal
input, and principal output process parameters. You specify two of these TCP devices in the JOB command, using
the principal input and principal output process parameters. You can also default these parameters, as shown in the
following examples: JOB child:(:16:input:output) or JOB child:(:16::)).

Refer to the JOB command in the ObjectScript Reference for further details.

Before you issue the JOB command, the device(s) you specify for principal input and principal output must:

• Be open

• Be listening on a TCP port

• Have accepted an incoming connection

After the JOB command, the device in the spawning process is still listening on the TCP port, but no longer has an active
connection. The application should check $ZA after issuing the JOB command to make sure that the CONNECTED bit
in the state of the TCP device was reset.

The spawned process starts at the designated entry point using the specified TCP device. The TCP device has the same
name in the child process as in the parent process. The TCP device has one attached socket. The inherited TCP device is

I/O Device Guide 93

Connection Management

in S (stream) mode. However, the child process can change the mode with a USE command. We recommend that the server
open TCP device in the A (accept) mode.

The TCP device in the spawned process is in a connected state: the same state the device would receive after it is opened
from a client. The spawned process can use the TCP device with USE 0 or USE $P. It can also use the TCP device
implicitly (if switch=4). However, for the following reasons switch=16 is preferable to switch=4:

• When switch=4, if a <READ> error occurs on the principal device, the job simply halts, without taking an error trap.
This is because when switch=4 the TCP device is the principal device. To support error trapping, use switch=16 and
specify another device for the TCP device.

• When switch=4, if the remote TCP device closes down the connection, the job simply halts, without taking an error
trap. To override this default behavior and generate a <DSCON> error, you must set the DisconnectErr() method of
the %SYSTEM.Process class.

You can use the %SYSTEM.Socket class methods, rather than the JOB command, to create concurrent TCP server connections.
However, note that the %SYSTEM.Socket methods assume that the slave jobs are already started. You can use these methods
for concurrent TCP server connections if you do not need the master server to start the slave jobs, and the master server
knows Process IDs (PIDs) of the slave jobs.

5.7.2 Job Command Example

The following example shows a very simple concurrent server that spawns off a child job whenever it detects a connection
from a client. JOB specifies a concurrent server bit switch value (value 16) and passes the symbol table (value 1): 16+1=17.

server
 SET io="|TCP|1"
 SET ^serverport=7001
 OPEN io:(:^serverport:"MA"):200
 IF ('$TEST) {
 WRITE !,"Cannot open server port"
 QUIT }
 ELSE { WRITE !,"Server port opened" }
loop
 USE io READ x ; Read for accept
 USE 0 WRITE !,"Accepted connection"
 JOB child:(:17:io:io) ;Concurrent server bit is on
 GOTO loop
child
 WRITE $JOB,! ; Send job id on TCP device to be read by client
 QUIT
client
 SET io="|TCP|2"
 SET host="127.0.0.1"
 OPEN io:(host:^serverport:"M"):200 ;Connect to server
 IF ('$TEST) {
 WRITE !,"cannot open connection" Quit }
 ELSE {
 WRITE !,"Client connection opened"
 USE io READ x#3:200 ;Reads from subjob
 }
 IF ('$TEST) {
 WRITE !,"No message from child"
 CLOSE io
 QUIT }
 ELSE {
 USE 0 WRITE !,"Child is on job ",x
 CLOSE io
 QUIT }

The child uses the inherited TCP connection to pass its job ID (in this case assumed to be 3 characters) back to the client,
after which the child process exits. The client opens up a connection with the server and reads the child's job ID on the
open connection. In this example, the IPv4 format value “127.0.0.1” for the variable host indicates a loopback connection
to the local host machine. You can set up a client on a different machine from the server if host is set to the server's IP
address or name. Further details on IPv4 and IPv6 formats can be found in the section “Use of IPv6 Addressing” in the
chapter “Server Configuration Options” in the Orientation Guide for Server-Side Programming.

94 I/O Device Guide

TCP Client/Server Communication

In principle, the child and client can conduct extended communication, and multiple clients can be talking concurrently
with their respective children of the server.

Note that this simple example does not contain logic for detecting and handling disconnects or failed read operations.

5.8 Concatenation of Records
In certain situations, TCP concatenates separate records to form a single record. Concatenation can occur if a client or
server process issues a series of WRITE commands to a TCP port, separated by WRITE ! or WRITE # commands to flush
the buffer, whether or not a READ command is waiting at the other end of the connection.

The first example below outlines how Process A receives two separate records when it has a READ command waiting as
Process B writes two records to the TCP port.

Process A Process B
%SYS> USE "|TCP|41880" R A U 0 W A %SYS> USE "|TCP|41880" WRITE "ONE",!,"TWO"
<RETURN> <RETURN>
ONE
%SYS> USE 41880 R A U 0 W A
<RETURN>
TWO

The second example outlines how Process A receives one concatenated record when it issues its READ command after
Process B has finished writing two records to the TCP port.

Process A Process B
. %SYS> USE "|TCP|41880" WRITE "ONE",!,"TWO"
. <RETURN>
ONE
%SYS> USE "/TCP/41880" R A U 0 W A
<RETURN>
ONETWO

5.9 Multiplexing InterSystems IRIS TCP Devices
The %SYSTEM.Socket class provides methods for multiplexing InterSystems IRIS TCP devices. The Fork() and Select()
methods allow you to have a single job handling both accepting new connections and reading data from a connected TCP
device at the same time. After a listening TCP device received a connection, use Fork() to create a new TCP device for
reading data. The original listening TCP device continues to accept incoming connections. You use the Select() method to
wait for both listening and connected TCP devices. When a new connection arrived or data becomes available, Select()
returns the device name that was signaled.

You can use the Select(), Publish(), Export(), and Import() methods to have a master job accept an incoming connection
and pass the connected device to a slave job. This slave job could communicate with the remote client.

For further details and program examples, refer to the %SYSTEM.Socket class in the InterSystems Class Reference.

5.10 Closing the Connection
Either the client or the server can end a TCP binding connection. The preferred way to close a connection is for the client
to issue a CLOSE command for the TCP device. (Alternatively, the client may issue HALT command.) The server should
then issue another READ command to that device and receive a <READ> error, then issue a CLOSE command for the
TCP device.

I/O Device Guide 95

Concatenation of Records

The reason for this sequence is that, in accordance with the TCP/IP standard, connection resources are maintained for two
minutes after a CLOSE, but only for the “active closer” — the process that performs the CLOSE first. Thus it is preferable
to close the client first, because the resources of the server are usually more limited than those of the clients.

5.10.1 Disconnect with CLOSE Command

Issue this form of the CLOSE command from the client or server:

CLOSE "|TCP|devicenum"

As stated above, it is preferable for the client to issue the CLOSE command first. If the server issues the CLOSE command
first, the client gets a <WRITE> error and should then issue a CLOSE command.

5.10.1.1 JOBSERVER Resources

If you are writing an InterSystems IRIS server to interface with clients over which you have no control, the server process
must issue the CLOSE to close the TCP connection. The CLOSE command does close the connection as far as InterSystems
IRIS is concerned, but internally TCP/IP retains resources for this connection on the server for up to two minutes.

This can have unexpected results when JOBSERVERs are used to service TCP/IP jobs. When a JOBSERVER process
performs a halt, the process immediately returns to the pool of available JOBSERVER processes, but its resources are
retained internally for up to two minutes. Because JOBSERVER processes are assigned on a first-available basis, it is
possible for a heavy load from a relatively small number of clients to exhaust the resources of a JOBSERVER process.

To avoid this problem, a TCP/IP server opened by a JOB running under a JOBSERVER should explicitly issue a CLOSE,
and then issue a brief HANG before the final QUIT (or HALT) command. In accordance with TCP/IP specification, a
HANG 120 is required to guarantee no resources remain in use between incarnations in JOBSERVER. In practice, a HANG
of one second is usually sufficient to evenly distribute resource load among JOBSERVER processes.

5.10.2 Automatic Disconnection

The TCP binding connection closes automatically under these conditions:

• An InterSystems IRIS fatal error

• RESJOB of the client or server process

• iris stop

• iris force

5.10.3 Effects of Disconnection

The effect of a disconnection on data remaining in the output buffer is determined by the /CLOSEFLUSH setting established
during OPEN or USE. The default is to flush the data.

If one side closes a connection but the other side issues new WRITE commands, the first of these WRITE commands
may succeed. Any additional WRITE commands receive a <WRITE> error.

From the client side, all READ commands to the side that closed the connection receive <READ> errors. The device must
be closed and reopened to reestablish communication with the server.

From the server side, the first READ after a <READ> or <WRITE> error waits for and accepts a new connection.

You can use the %SYSTEM.TCPDevice.GetDisconnectCode() method to return the internal error that resulted in a
<READ> or <WRITE> error on the current TCP device. $IO must be a TCP device.

96 I/O Device Guide

TCP Client/Server Communication

6
UDP Client/Server Communication

This chapter describes how to set up remote communication between processes using UDP. For local communication
between processes using pipes or using Interjob Communication (IJC) devices, refer to the Local Interprocess Communi-
cation chapter of this manual.

InterSystems IRIS® data platform supports two Internet Protocols (IP): TCP and UDP. These Internet Protocol allow
InterSystems IRIS processes to communicate with processes on local or remote systems, whether or not those processes
are running InterSystems IRIS.

• TCP: the InterSystems IRIS Transmission Control Protocol (TCP) binding. Establishes a two-way connection between
a server and a single client. Provides reliable byte stream transmission of data with error checking and correction, and
message acknowledgement. For details, refer to the TCP Client/Server Communication chapter of this manual.

• UDP: the InterSystems IRIS User Datagram Protocol (UDP) binding. Provides two-way message transfer between a
server and a large number of clients. UDP is not connection-based; each data packet transmission is an independent
event. Provides fast and lightweight data transmission for local packet broadcasts and remote multicasting. Inherently
less reliable than TCP. Does not provide message acknowledgement.

UDP is supported through the %Net.UDP class. This class provides methods to Send() a packet to a specified destination
and port, to Recv() a packet from the socket, and to Reply() to the transmitter of the last received packet.

The destination is identified as a local host name or an IPv4 or IPv6 host address. The port can be either a specified port
number or a dynamic port assignment.

6.1 Establishing a UDP Socket
To use UDP, you must use the %New() method to create a UDP socket object. This object instance is then used to send,
receive, and reply to packet transmissions.

When you create a UDP socket object you can specify the port number and the host address, as shown in the following
example:

 SET UPDOref=##class(%Net.UDP).%New(3001,"0.0.0.0")

Both the port number and the host address are optional. The %New() method returns the oref (object reference) of the UDP
socket object instance.

There are two sides to a UDP transmission:

I/O Device Guide 97

• The server waits to receive a request and then provides the requested information. Thus this side of the transmission
may be referred to as the Receiver or the Provider. When a provider creates an UDP object, it must define a port
number on which it will receive requests.

• The client sends a request for information and then receives a reply. Thus this side of the transmission may be referred
to as the Sender or the Requestor. When a requestor creates an UDP object, it can use a dynamic port number. The
default is 0. When it sends a packet, it must specify the host name and port number of the provider.

6.2 The Host Address
The Send() method specifies the binary address of the destination. This is a binary version of the host address. You must
create this binary host address by using the GetHostAddr() method, as follows:

 SET client=##class(%Net.UDP).%New()
 SET addrbin=##class(%Net.UDP).GetHostAddr("172.16.61.196")
 WRITE client.Send("message text",addrbin,3001)

You can specify a host name, an IPv4 address, or an IPv6 address to GetHostAddr(), as shown in the following examples:

 SET hostname="MYLAPTOP"
 SET IPv4="172.16.61.196"
 SET IPv6="::1"
 SET flag=$SYSTEM.INetInfo.CheckAddressExist(hostname)
 IF flag=1 { SET addrbin=##class(%Net.UDP).GetHostAddr(hostname)
 WRITE "host name valid",! }
 ELSE { WRITE "not a hostname: ",hostname,! }
 SET flag=$SYSTEM.INetInfo.CheckAddressExist(IPv4)
 IF flag=1 { SET addrbin=##class(%Net.UDP).GetHostAddr(IPv4)
 WRITE "IPv4 valid",! }
 ELSE { WRITE "not an IPv4 address: ",IPv4,! }
 SET flag=$SYSTEM.INetInfo.CheckAddressExist(IPv6)
 IF flag=1 { SET addrbin=##class(%Net.UDP).GetHostAddr(IPv6)
 WRITE "IPv6 valid",! }
 ELSE { WRITE "not an IPv6 address: ",IPv6,! }

You can expand this binary host address back to the host name using the AddrToHostName() method, as shown in the
following example:

 SET addrbin=##class(%Net.UDP).GetHostAddr("MYLAPTOP")
 WRITE $SYSTEM.INetInfo.AddrToHostName(addrbin)

You can use the LocalHostName() method to determine your host name. You can use the HostNameToAddr() method
to translate a host name to an IPv4 or IPv6 address, as shown in the following example:

 SET localhost=$SYSTEM.INetInfo.LocalHostName() /* get host name */
 WRITE "local host name is ",localhost,!
 SET addrbin=##class(%Net.UDP).GetHostAddr(localhost) /* compress to binary address */
 WRITE "binary form of IP address is ",addrbin,!
 SET hostname=$SYSTEM.INetInfo.AddrToHostName(addrbin) /* expand binary address to host name */
 WRITE "binary IP address expands to ",hostname,!
 SET ipaddr=$SYSTEM.INetInfo.HostNameToAddr(hostname) /* host name to IP address */
 WRITE "hostname corresponds to IP address ",ipaddr,!

6.2.1 IPv4 and IPv6

UDP supports both IPv4 and IPv6 Internet protocols. Because these protocols are incompatible, both the server and the
client must use the same Internet protocol or the transmission will fail.

98 I/O Device Guide

UDP Client/Server Communication

An IPv4 address has the following format. n is a decimal integer in the range 0 through 255:

n.n.n.n

You can specify the IPv4 protocol as "0.0.0.0".

An IPv6 address has the following full format. h is a hexadecimal number with four hexadecimal digits:

h:h:h:h:h:h:h:h

Commonly, IPv6 addresses are abbreviated by eliminating leading zeros and replacing consecutive sections of zeros with
a double colon (::); only one double colon may be used in an IPv6 address. By using IPv4 abbreviation rules, you can
specify the IPv6 protocol as "::" (meaning that all eight h sections have the value 0000).

To establish the Internet protocol:

• The client must establish either IPv4 or IPv6 in the %New() method. The default is IPv4.

• This must match the IPv4 or IPv6 protocol specified in the GetHostAddr() method and supplied (in binary form) in
the Send() method.

The following is an IPv4 transmission:

Server
 SET sobj=##class(%Net.UDP).%New(3001,"127.0.0.1")

 SET inmsg=sobj.Recv()

Client
 SET cobj=##class(%Net.UDP).%New() /* the default is IPv4 */
 SET bhost=##class(%Net.UDP).GetHostAddr("127.0.0.1")
 SET outmsg="this is the message to send"
 WRITE cobj.Send(outmsg,bhost,3001)

The following is an IPv6 transmission:

Server
 SET x=##class(%SYSTEM.INetInfo).IsIPV6Enabled()
 IF x=1 {
 SET sobj=##class(%Net.UDP).%New(3001,"::1")

 SET inmsg=sobj.Recv() }
 ELSE {WRITE "IPv6 not enabled" }

Client
 SET cobj=##class(%Net.UDP).%New(0,"::")
 SET bhost=##class(%Net.UDP).GetHostAddr("::1")
 SET outmsg="this is the message to send"
 WRITE cobj.Send(outmsg,bhost,3001)

Methods for handling host addresses are found in the %SYSTEM.INetInfo class documentation. Further details on IPv4 and
IPv6 formats can be found in the section “Use of IPv6 Addressing” in the chapter “Server Configuration Options” in the
Orientation Guide for Server-Side Programming.

I/O Device Guide 99

The Host Address

7
Sequential File I/O

This chapter describes using sequential files in InterSystems IRIS® data platform. All operating systems consider disk I/O
files as sequential files. Windows systems consider printers as sequential file I/O devices (unless the printer is connected
through a serial communications port). UNIX® systems consider printers as terminal I/O devices. For further details on
printers, refer to the Printers chapter of this manual.

7.1 Using Sequential Files
This section discusses how InterSystems IRIS processes sequential files. It provides an introduction to sequential file I/O
and descriptions of the relevant commands.

• To gain access to a sequential file, you must first open the file using the OPEN command, supplying the name of the
file as an argument. You also, optionally, specify OPEN mode parameters. If the OPEN specifies a file that does not
exist, a mode parameter specifies whether or not to create a new file. You can open multiple files concurrently.

• After opening a sequential file, you must specify a USE command to access the file, supplying the name of the file as
an argument. The USE command makes the specified file the current device; therefore you can only use one file at a
time. The USE command can also specify mode parameters.

• You then can issue multiple READ or WRITE commands against the file. Each READ or WRITE command delivers
one record to or from the file. You cannot write to the file unless it has been opened with the “W” mode parameter.
Attempting to read past the end of the file causes an <ENDOFFILE> error.

• You can use the $ZSEEK function to set the file position, specified by character count offset from the beginning,
current position, or end of the sequential file. The $ZPOS special variable contains the current character count position
from the beginning of the current sequential file.

• Once you have completed file I/O, you issue a CLOSE command to close the sequential file.

These operations can also be performed using the methods of the %Library.File class.

The %Library.File.Exists() method tells you whether a sequential file with the specified name already exists.

The %Library.File.Size property returns the number of characters currently in the sequential file.

The %Library.File.DateModified property is updated with the current local date and time when a file is opened, and —if
it has been modified—when it is closed.

The %Library.File.IsOpen property only returns 1 if the file has been opened by the %Library.File.Open() method; the
OPEN command does not set this boolean property.

I/O Device Guide 101

7.1.1 Specifying a File

A sequential file can be specified by a canonical (full) pathname or a relative (partial) pathname that the system expands
to a full pathname. A pathname can be canonical (c:\InterSystems\IRIS\mgr\user\myfiles\testfile.txt) or relative to the current
directory (testfile.txt). A leading period (.) specifies the current directory. A leading double period (..) specifies the parent
of the current directory. If the OPEN command creates a new file, the specified directory must already exist.

A file access error returned by the operating system, such as The system cannot find the file specified is
returned by the %SYSTEM.Process.OSError() method. This method returns the operating system error number enclosed
in angle brackets, followed by the error text. This is shown in the following Windows example:

USER>OPEN "C:\InterSystems\IRIS\mgr\nodir\testfile.txt":("WNS"):5

USER>w $SYSTEM.Process.OSError()
<3> The system cannot find the path specified.

The following Windows examples all create a file in the current namespace (USER) directory:

• full pathname: OPEN "C:\InterSystems\IRIS\mgr\user\testfile1.txt":("WNS"):10

• filename expansion: OPEN "testfile2.txt":("WNS"):10

• current directory expansion: OPEN ".\testfile3.txt":("WNS"):10

The following Windows example creates a file in an existing child directory of the current namespace (USER) directory:

• child of current directory: OPEN "mytemp\testfile4.txt":("WNS"):10

The following Windows examples create a file using parent directory (..) syntax:

• parent directory (C:\InterSystems\IRIS\mgr\): OPEN "..\testfile5.txt":("WNS"):10

• current directory (child of parent directory) C:\InterSystems\IRIS\mgr\user\: OPEN
"..\user\testfile6.txt":("WNS"):10.

• another child of parent directory C:\InterSystems\IRIS\mgr\temp\: OPEN
"..\temp\testfile7.txt":("WNS"):10.

• parent of parent directory C:\InterSystems\IRIS\: OPEN "..\..\testfile8.txt":("WNS"):10.

Windows pathnames use a \ (backslash) directory separator; UNIX pathnames use a / (slash) directory separator. Valid
characters may be 8-bit ASCII, or ISO Latin-1 Unicode.

A Windows file pathname specification has the following format:

device:\directory\file.type

For example, C:\InterSystems\IRIS\mgr\user\myfiles\testfile.txt. The type suffix is optional.

A UNIX® file pathname specification has the following format:

/directory/name

A file pathname must not exceed 256 characters when fully expanded. If the pathname length of all directories exceeds
256, a <DIRECTORY> error is generated. If the pathname length exceeds 256 because of the length of the filename, a
<NAMEADD> error is generated.

A UNIX® file pathname can include up to 255 characters of any type. While the characters period (“ .”) and underscore
(“_”) can appear anywhere in the filename, you typically use them to divide the name into meaningful parts. For example,
you can define a filename pat_rec.dat, using .dat as the file type.

102 I/O Device Guide

Sequential File I/O

When accessing files in the current UNIX® default directory, you usually need to specify only the name. The system fills
in default values for the directory.

A DLL name can be specified as a full pathname, or a partial pathname. If you specify a partial pathname, InterSystems
IRIS expands it to the current directory. Generally, DLLs are stored in the binary directory ("bin"). To locate the binary
directory, call the BinaryDirectory() method of the %SYSTEM.Util class.

7.1.1.1 File Pathname Tools

If the current device is a sequential file, $ZIO contains the full pathname of that file.

You can use $ZSEARCH to return the full file specification (pathname and filename) of a specified file or directory. The
filename may contain wild cards that $ZSEARCH uses to return a series of fully qualified pathnames that satisfy the wild
carding.

The %Library.File class contains numerous methods that provide file system services. These include:

• NormalizeDirectory(), which returns the full pathname of a specified file or directory.

• NormalizeFilenameWithSpaces(), which handles spaces in pathnames as appropriate for the host platform. If a
pathname contains a space character, pathname handling is platform-dependent. Windows and UNIX® permit space
characters in pathnames, but the entire pathname containing spaces must be enclosed in an additional set of double
quote (") characters. This is in accordance with the Windows cmd /c statement. For further details, specify cmd /?
at the Windows command prompt.

7.1.1.2 Tilde (~) Expansion

In Windows pathnames, a tilde (~) indicates 8.3 compression of long names. For example: c:\PROGRA~1\. To convert
compressed directory names, use the NormalizeDirectory() method of the %Library.File class.

In UNIX® pathnames, you can use tilde (~) expansion to indicate the current user’s home directory or the home directory
of a specified user:

• ~ and ~/myfile.txt are expanded to the current user's home directory: /Users/techwriter/ and
/Users/techwriter/myfile.txt, respectively.

• ~guest/myfile.txt is expanded to the home directory of user “guest”: /Users/guest/myfile.txt. However, if user
“guest” does not exist, IRIS expands to the current user's full directory pathname and appends ~guest/myfile.txt
as a literal: /Users/techwriter/iris/mgr/user/~guest/myfile.txt.

• ~myfile.txt and ~123.txt are appended to the current user's full directory pathname as a literal:
/Users/techwriter/iris/mgr/user/~myfile.txt and
/Users/techwriter/iris/mgr/user/~123.txt, respectively.

7.1.2 OPEN Command

OPEN opens a sequential file. Remember that you cannot use the OPEN command to open an InterSystems IRIS database
file.

The OPEN command by itself does not prevent another process from opening the same sequential file. You can govern
concurrent sequential file access by using the OPEN command “L” mode parameter and/or the ObjectScript LOCK command.
File locking support is provided by the file access rules of the underlying operating system.

InterSystems IRIS allocates each process' open file quota between database files and files opened with the ObjectScript
OPEN command. When an OPEN command causes too many files to be allocated to OPEN commands, a
<TOOMANYFILES> error occurs. The InterSystems IRIS maximum number of open files for a process is 1,024. The

I/O Device Guide 103

Using Sequential Files

actual maximum number of open files for each process is a platform-specific setting. For example, Windows defaults to a
maximum of 998 open files per process. Consult the operating system documentation for your system.

7.1.2.1 OPEN Syntax

OPEN filename{{:({parameters{:reclength{:terminators}}})}{:timeout}}

where

DescriptionArgument

Any valid file specification, enclosed in quotation marks. This file pathname must not
exceed 255 characters. Valid characters may be 8-bit ASCII, or ISO Latin-1 Unicode.
In UNIX pathnames, you can use tilde (~) expansion to indicate the current user’s
home directory. For example: ~myfile or ~/myfile.

filename

Optional — A string of one-letter codes, enclosed in quotation marks, that define the
file format and types of operations you can perform. (You may also specify parameters
using keywords that begin with the slash (/) character.) See the table “OPEN Mode
Parameters, ” for definitions of these codes. If the parameters do not include R or W,
then R is the default. This system-wide default open mode can be configured by
setting the OpenMode property of the Config.Miscellaneous class. To open a new file,
you must specify the parameter N for new. Otherwise, the OPEN will hang or return
unsuccessfully from a timeout. If the parameters do not include S, V, F, or U, then
the default for a new Windows or UNIX® file is S, and the default for an existing file
is the mode specified when the file was created. If A is not specified, WRITE operations
will overwrite the previous contents of the file. Parameters are applied in left-to-right
order.

parameters

Optional — For Windows and UNIX systems, specifies the maximum record length
for (S) and (U) records, or the absolute record length for fixed-length (F) records.
Ignored for variable-length (V) records. Default value is 32767.

reclen

Optional — A string of user-defined record terminators that apply to stream mode
only.They let you override the default terminators: carriage return, line feed, and form
feed. User-defined terminators only apply to input, they do not affect how data is
written to the file (terminators are written to a file as special characters). If there's
more than one user-defined terminator, it is treated as a list of terminators, not a
multi-character sequence to be used as a single terminator.

terminators

Optional — Number of seconds during which InterSystems IRIS attempts to open the
file. If it does not succeed within this interval, it sets $TEST to 0 and returns control
to the process. If it succeeds, it sets $TEST to 1.

timeout

The timeout argument, though optional, is strongly recommended because the success or failure of OPEN is indicated by
the value of the $TEST special variable, and $TEST is only set if timeout is specified. $TEST is set to 1 if the open attempt
succeeds before the timeout expires; if the timeout expires, $TEST is set to 0.

7.1.2.2 OPEN Mode Parameters

You can specify the OPEN mode parameters in either of two ways:

• A letter code string, such as “VRWN”, enclosed in quote characters. Each letter specifies a parameter. Letter codes
may be specified in any order; because InterSystems IRIS executes them in left-to-right order, interactions between
letter codes may dictate a preferred order in some cases.

104 I/O Device Guide

Sequential File I/O

• A series of /keyword parameters, not quoted. These parameters are separated by colons. Keyword parameters may be
specified in any order; because InterSystems IRIS executes them in left-to-right order, interactions between parameters
may dictate a preferred order in some cases.

When specifying a combination of letter code parameters and keyword parameters, specify the letter code string first, followed
by the keyword parameter(s), separated with colons. The following example specifies three letter code parameters, followed
by two keyword parameters, followed by the reclen and timeout arguments.

 OPEN "mytest":("WNS":/OBUFSIZE=65536:/GZIP=0:32767):10

Table 7–1: OPEN Mode Parameters

DescriptionKeywordLetter Code

New file. If the specified file does not exist, the system creates the
file. If the specified file already exists as a ReadOnly file, the system
deletes the old file and replaces it with a new one with the same
name (permissions permitting). Note that file locking should be used
to prevent concurrent processes using this parameter overwriting
the same file.

If the “N” mode (or the “T” mode) is not specified and the file specified
in OPEN does not exist, the Windows and UNIX® default is to not
create a new file.This behavior is configurable using the FileMode()
method of the %SYSTEM.Process class. The system-wide default
behavior can be established by setting the FileMode property of the
Config.Miscellaneous class.

/NEWN

Create a file if it does not exist. Does not delete and recreate an
existing file, as the “N” mode does. The default is to not create a
new file. This default is overridden if the FileMode() method of the
%SYSTEM.Process class, or the FileMode property of the
Config.Miscellaneous class is enabled.

/CREATE

or

/CRE

E

Truncate File: If the file exists and is writable it will be truncated and
its attributes left unchanged. If the specified file does not exist, the
system creates a new file, just as if the “N” mode was specified.
“WT” and “WNT” are functionally identical.

/TRUNCATET

Delete File: Specifies that the file should be automatically deleted
when it is closed. /DELETE or /DELETE=n for nonzero values of n
enable the parameter code. /DELETE=n for a zero value of n disables
the parameter code. The default is to not delete a file.

/DELETE[=n]

or

/DEL[=n]

D

Read: InterSystems IRIS permits READ access the file. Other
processes may also access this file (however, see “L” parameter).
If you attempt to open a nonexistent file in “R” mode, the process
hangs. To prevent this situation, use a timeout. “R” is the default for
all platforms.The system-wide default open mode can be configured
by setting the OpenMode property of the Config.Miscellaneous class.

/READR

I/O Device Guide 105

Using Sequential Files

DescriptionKeywordLetter Code

Write: InterSystems IRIS permits WRITE access to the file. In
Windows and UNIX®, “W” gives the process shared write access to
the file, with exclusive write access to the record. Use “WL” to specify
exclusive write access to the file. If you attempt to open a nonexistent
file in “W” mode, the process hangs until the file is created or the
process is resolved by a timeout, a Process Terminate, or RESJOB.
“R” is the default for all platforms. The system-wide default open
mode can be configured by setting the OpenMode property of the
Config.Miscellaneous class. Can be used with /OBUFSIZE.

/WRITE

or

/WRI

W

Locked Exclusive: Use the “L” mode with the “W” (Write) mode to
specify exclusive write access to a file. “WL” or “WRL” specifies that
the current process has exclusive write access to the file. A file
opened with “RL” may still have shared read access. The effects of
the “L” mode on concurrent opens are different in Windows and
UNIX®. Refer to the “OPEN Mode Locking” section, below, for further
details. On UNIX® systems if one process specifies “WL” (or “WRL”)
access to a file, other processes requesting read access to that file
must specify “RL” so that UNIX® can coordinate file locking.

L

Append: WRITE operations append data to the end of an existing
file. The default is to overwrite existing data, rather than append.

/APPEND

or

/APP

A

Stream format with carriage return, line feed, or form feed as default
terminators. Jobbed processes that inherit TCP devices are
automatically set to “S” format.You can reset the format with the
USE command. S, V, F, and U modes are mutually exclusive. Stream
record format is the default.

/STREAMS

Variable length: Each WRITE creates one record. For Windows and
UNIX®, a variable record can be of any length; the reclen argument
is ignored.

Do not attempt to insert records at any point other than the end of
a variable-length sequential file; a WRITE will render inaccessible
all data in the file from the point after the WRITE on. S, V, F, and U
modes are mutually exclusive. Stream record (S) format is the default.

A variable-length record written using a translation table, such as
Unicode data using UTF8 translation, can result in a stored record
with a different string length than the input data. InterSystems IRIS
uses the original input string length when reading this record.

/VARIABLEV

106 I/O Device Guide

Sequential File I/O

DescriptionKeywordLetter Code

Fixed length: Each record is the length specified in the reclen
argument. For example:

 OPEN "myfile":("RF":4)
 USE "myfile":0
 READ x:5

This example reads the first 4–character record into the variable x.
This works only for READ operations (not WRITE operations). S, V,
F, and U modes are mutually exclusive.

/FIXED

or

/FIX

F

Undefined length: Specifies that file records have an undefined length
and therefore READ operations must specify the number of
characters to read. The maximum record length is specified in the
reclen argument. No translation on output. Default value is the
maximum string length. S, V, F, and U modes are mutually exclusive.

/UNDEFINEDU

I/O Translation Mode: When you use the “K” parameter for a device,
I/O translation will occur for that device if translation has been
enabled system-wide.You identify the previously defined table on
which the translation is based by specifying the table's name. When
using keywords you specify /TRANSLATE to enable I/O translation
(n=1 to enable; n=0 to disable), and /IOTABLE=name to specify the
translation table to use. For a list of available translation tables, refer
to “Encoded Translation ” in the $ZCONVERT function
documentation. The + and - options for turning protocols on and off
are not available with the K protocol. (The older form Knum, where
“num ” represents the number of the slot the table is loaded in, is
being phased out but is still supported. The system manager can
display slot numbers in the %NLS utility in the selection window for
each table type.) This parameter may be used with either the OPEN
command or the USE command.

/TRANSLATE[=n]:
/IOTABLE[=name]

or

/TRA[=n]: /IOT[=name]

K\name\

or

Knum

$X/$Y Action Mode: When you use the “Y” parameter for a device,
the system uses the named $X/$Y Action Table.You identify the
previously defined $X/$Y Action Table on which translation is based
by specifying the table's name. $X/$Y action is always enabled. If
“Y” is not specified and a system default $X/$Y is not defined, a built
in $X/$Y action table is used.The + and - options for turning protocols
on and off are not available with the Y protocol. (The older form
Ynum, where “num ” represents the number of the slot the table is
loaded in, is being phased out but is still supported. The system
manager can display slot numbers in the NLS utility in the selection
window for each table type.) This parameter may be used with either
the OPEN command or the USE command.

/XYTABLE[=name]

or

/XYT[=name]

Y\name\

or

Ynum

No $X and $Y processing: /NOXY or /NOXY=n (for nonzero values
of n) disables $X and $Y processing.This can substantially improve
performance of READ and WRITE operations. The values of the $X
and $Y variables are indeterminate, and margin processing (which
depends on $X) is disabled. /NOXY=0 enables $X and $Y
processing; this is the default. This parameter may be used with
either the OPEN command or the USE command.

/NOXY [=n]

I/O Device Guide 107

Using Sequential Files

DescriptionKeywordLetter Code

Output Buffering: Creates an output WRITE buffer. The int variable
is an integer that specifies the size of the buffer in bytes. May only
be used when the file is open for write only (“W”, not “R” or “RW”).
May provide significant performance improvement when performing
multiple small writes, especially over a WAN. However, data in buffer
may be lost if a system crash occurs. Data in buffer is flushed to disk
upon CLOSE, or WRITE *-1 or WRITE *-3.

/OBUFSIZE=int

GZIP Compression: Specifies GZIP-compatible stream data
compression. /GZIP or /GZIP=n (for nonzero values of n) enables
compression on WRITE and decompression on READ. /GZIP=0
disables compression and decompression. Before issuing /GZIP=0
to disable compression and decompression, check the $ZEOS
special variable to make sure that a stream data read is not in
progress. /GZIP compression has no effect on I/O translation, such
as translation established using /IOTABLE. This is because
compression is applied after all other translation (except encryption)
and decompression is applied before all other translation (except
encryption).

/GZIP [=n]

Specifies the stream data compression type.You can enable a
compression type of ZLIB or ZSTD.You can specify /COMPRESS=""
to disable compression. /COMPRESS="zlib" is equivalent to
/GZIP=1. To compress a string, use %SYSTEM.Util.Compress().

/COMPRESS=str

7.1.2.3 OPEN Argument Keywords

The following table describes the OPEN command argument keywords for sequential files:

Table 7–2: OPEN Keyword Arguments for Sequential Files

DescriptionDefaultKeyword

Corresponds to the parameters positional
parameter. (It provides a way to specify a
parameter letter code string in a
position-independent way).

No default/PARAMS=str

or

/PAR=str

Corresponds to the reclen positional parameter,
which establishes a record size for fixed-length
records. (Currently only implemented for READ
operations.)

No default/RECORDSIZE=int

or

/REC=int

108 I/O Device Guide

Sequential File I/O

DescriptionDefaultKeyword

Corresponds to the terminators positional
parameter, which establishes user-defined
terminators. str is a string of user-defined record
terminators that apply to stream mode only.
They let you override the default terminators:
carriage return, line feed, and form feed.
User-defined terminators only apply to input,
they do not affect how data is written to the file
(terminators are written to a file as special
characters). If there's more than one
user-defined terminator, it is treated as a list of
terminators, not a multi-character sequence to
be used as a single terminator.

No default/TERMINATOR=str

or

/TER=str

7.1.2.4 OPEN Mode Locking

When two processes attempt to open the same sequential file, the second OPEN succeeds or fails based on the mode used
by the first OPEN. The following tables show the interactions between two opens using exclusive (“L”) and non-exclusive
read and write modes. Note that the interpretation of these interactions is platform-dependent. Tables are provided for
Windows operating systems and UNIX® operating systems.

In the following tables, the horizontal axes indicates the open mode of the first OPEN and the vertical axis indicates the
open mode of the second OPEN. A 1 indicates that the second OPEN succeeds; a 0 indicates that the second OPEN fails.

Table 7–3:Windows OPEN Mode Interactions

RRWLWLRLRWW

100111W

100111RW

100111RL

000000WL

000000RWL

100111R

For Windows systems, the interactions in this table apply equally to concurrent opens from the same InterSystems IRIS
instance, concurrent opens from two different InterSystems IRIS instances, or concurrent opens by InterSystems IRIS and
a non-InterSystems IRIS application (with restrictions on non-InterSystems IRIS applications, as described below).

I/O Device Guide 109

Using Sequential Files

Table 7–4: UNIX® OPEN Mode Interactions

RRWLWLRLRWW

111111W

111111RW

100111RL

100011WL

100011RWL

111111R

For UNIX® systems, the interactions in this table only to concurrent opens from the same InterSystems IRIS instance.
They do not govern concurrent opens from two different InterSystems IRIS instances, or concurrent opens by InterSystems
IRIS and a non-InterSystems IRIS application.

Interactions with Non-InterSystems IRIS Software
On Windows systems, opening a sequential file in InterSystems IRIS for “WL” write access generally prevents a non-
InterSystems IRIS application from opening the sequential file for write access. Similarly, a non-InterSystems IRIS appli-
cation opening a sequential file for write access generally prevents an InterSystems IRIS process from concurrent “WL”
write access.

However, certain non-InterSystems IRIS applications, including the Notepad and WordPad applications, open a file, make
a copy of the file in shared mode, and then immediately close it. Thus an InterSystems IRIS process could still open the
file in “WL” mode. An error would occur when one of these non-InterSystems IRIS applications then either attempts to
save changes from their copy to the original, or attempts to reopen the original file. A more serious situation can occur as
follows: If one of these non-InterSystems IRIS applications opens a file, then InterSystems IRIS opens, modifies, and closes
the file, then the non-InterSystems IRIS application saves changes to the file, the changes made by both processes are saved,
and the integrity of the file data could be compromised.

On UNIX® systems, opening a sequential file in InterSystems IRIS for “WL” write access generally has no effect on the
behavior of non-InterSystems IRIS applications. You must use locks to reliably restrict write access from non-InterSystems
IRIS applications.

7.1.2.5 Examples

The following example opens the file “LUDWIG.B” in the current directory. Because it specifies no mode parameters, it
opens the file with read access and in stream mode by default:

 OPEN "LUDWIG.B"

The following example opens a new file “LIST.FILE” in the current directory, with write access, in stream format. Notice
that you do not need parentheses when you include only the first of the arguments they would normally enclose.

 OPEN "LIST.FILE":"WNS"

The following example opens a file “CARDS” in the current directory, with read and write access, and 80-character fixed-
length records.

 OPEN "CARDS":("FRW":80)

The following example opens the stream-format file “STRNG” in the directory c:\usr\dir, with non-default terminators.

 OPEN "c:\usr\dir\STRNG":("S"::$CHAR(0)_$CHAR(255))

110 I/O Device Guide

Sequential File I/O

7.1.3 USE Command

The USE command makes an opened sequential file the current device. You can have many open sequential files, but you
can use only one sequential file at a time.

7.1.3.1 Syntax

USE file:position

where

Table 7–5: USE Command Parameters

DescriptionArgument

Any valid file specification, enclosed in quotation marks. The specified file must already
have been opened. In UNIX pathnames, you can use tilde (~) expansion to indicate the
current user’s home directory. For example: ~myfile or ~/myfile.

file

Optional — The position of the next READ or WRITE within the file. The position value is
a numerical expression whose meaning depends on the record format of the file. For fixed-
length records, position is the absolute record number, relative to zero, where each record
contains the number of characters specified in the previous OPEN command. For stream
or variable-length records, position is the absolute byte position relative to zero.The default
is to read or write records sequentially from the beginning of the file.

You can use the $ZSEEK function to set the file position, specified by character count
offset from the beginning, current position, or end of the sequential file.The $ZPOS special
variable contains the current character count position from the beginning of the sequential
file.

position

7.1.3.2 USE-Only Command Keywords

In addition to the command keywords that it shares with OPEN, listed above, the USE command has its own set of keywords:

Table 7–6: USE-Only Command Keywords for Sequential Files

DescriptionDefaultKeyword

Corresponds to the positional
parameter, which sets the
position of the next READ or
WRITE within a file.

Current file position. (The file pointer position is at
the beginning of a file when it is first opened, unless
the file was opened in append mode. In that case,
the file pointer position is at the end of the file.)

/POSITION=n

7.1.4 READ and WRITE Commands

After a positioned READ or WRITE, subsequent READ or WRITE operations proceed sequentially until the next USE
command with a position parameter.

7.1.4.1 READ Command

The READ command reads data from the current device, one record at a time. Reading past the end of file causes an
<ENDOFFILE> error.

I/O Device Guide 111

Using Sequential Files

Syntax

READ x#n:timeout

where

DescriptionArgument

The variable that will hold the record read from the file.x

Optional — For a variable-length read, the number of characters to read, specified as an
integer. For a fixed-length read, this argument is ignored.

n

Optional — The number of seconds to wait for the read operation to complete before timing
out. Either an integer value or a variable that resolves to an integer.

timeout

The timeout argument, though optional, is strongly recommended because the success or failure of the READ is indicated
by the value of the $TEST special variable if timeout is specified. $TEST is set to 1 if the read attempt succeeds before
the timeout expires; if the timeout expires, $TEST is set to 0.

The following example shows a READ operation reading fixed-length records from a Windows sequential file. It creates
a sequential file, writes data into it, then closes the file. It then opens this file for fixed-length reads of 4 characters ("RF":4).
It sets the USE position argument to the first record (record 0); each read operation advances this position. A FOR loop
reads each four-character record into a subscripted variable. The ZWRITE command then displays all of these subscripted
local variables and their values.

 SET myf="C:\InterSystems\IRIS\mgr\temp\myfixedlengthfile"
 OPEN myf:("NW") USE myf WRITE "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
 CLOSE myf
 OPEN myf:("RF":4) USE myf:0 FOR i=1:1:7 {READ x(i):5}
 CLOSE myf
 ZWRITE

7.1.4.2 WRITE Command

The WRITE command writes data, one record at a time, to the sequential file that is the current device.

Syntax

WRITE x

where

DescriptionArgument

The data in variable x is written as one record in the sequential file.x

7.1.4.3 Example

The following example reads the third, fourth, and fifth records of a fixed-length file:

 SET myfile="FIXED.LEN"
 OPEN myfile:("FR":100)
 USE myfile:2
 READ var1(3),var1(4),var1(5)

7.1.5 CLOSE Command

The CLOSE command relinquishes ownership of a sequential file.

112 I/O Device Guide

Sequential File I/O

If the specified file is not open or does not exist, InterSystems IRIS ignores CLOSE and returns without issuing an error.

7.1.5.1 Syntax

CLOSE file
CLOSE file:"D"
CLOSE file:("R":newname)

DescriptionArgument

Any valid file specification, enclosed in quotation marks. The specified file must
already have been opened. In UNIX pathnames, you can use tilde (~) expansion
to indicate the current user’s home directory. For example: ~myfile or ~/myfile.

file

Closes and deletes the file with the name specified in the argument."D"

Closes the file with the name specified in the argument and renames it newname.("R":newname)

7.1.5.2 CLOSE-Only Command Keywords

The following table describes the keywords for controlling sequential files with only the CLOSE command.

Table 7–7: CLOSE-Only Command Keywords for Sequential Files

DescriptionDefaultKeyword

Corresponds to the D parameter code, which specifies that
the file should be deleted. /DELETE or /DELETE=n for
nonzero values of n enable the parameter code and
/DELETE=n for a zero value of n disables the parameter
code.

0, unless the file
was marked for
delete when it was
opened.

/DELETE[=n]

or

/DEL[=n]

Corresponds to the R parameter code and the file name
positional parameter. The R parameter code specifies that
the file should be renamed and the file name positional
parameter gives the new name of the file.

Do not rename the
file.

/RENAME=name

or

/REN=name

I/O Device Guide 113

Using Sequential Files

8
Spool Device

InterSystems IRIS® data platform enables you to send print output directly to your printer or screen, or retain it in a spool
global for printing at a later time. InterSystems IRIS spooling is independent of the spooling performed by your operating
system.

Spooling in InterSystems IRIS is a technique that lets you automatically save the output of a program in the ^SPOOL sub-
scripted global instead of printing it immediately. You can print the output later by sending the contents of the ^SPOOL
global to the printer. This chapter describes two ways of using this spooling facility: using ObjectScript commands (OPEN,
USE, WRITE, CLOSE), or using the %IS and %SPOOL utilities.

• Opening and Using the Spool Device

• Spooling and Special Variables

• Closing the Spool Device

• Viewing the ^SPOOL Global

• Opening the Spooler Using the %IS Utility

• Managing Spooled Documents Using %SPOOL

8.1 Opening and Using the Spool Device
To send output to the spool global in your current namespace, you open the spooler and specify it as your output device.

The spooler is a predefined device provided with InterSystems IRIS. It is assigned device number 2 in the device table.
This device number can be used to identify the spooler device in OPEN, USE, and CLOSE commands.

You can access spooler device information through the Management Portal. Select System Administration, Configuration,
Device Settings, Devices. Here you will find both device 2 and a device named SPOOL. By default, these are both mapped
to the same physical device (device 2) and have the same option values.

When you set the InterSystems IRIS spooler as the current device, InterSystems IRIS stores any output sent to Device 2 in
the global ^SPOOL in your current namespace. Each line in ^SPOOL is in a separate global node.

There are two ways to open the InterSystems IRIS spooler and set it as the current output device:

• Issue OPEN and USE commands

• Invoke the %IS utility

I/O Device Guide 115

8.1.1 OPEN and USE Commands for Spooling Device

You can open the spooling device directly by issuing OPEN and USE commands to that device.

OPEN 2:(doc_num:index) USE 2

Table 8–1: OPEN Positional Parameters for Spooling

DefinitionParameter

The number of the spool document (file) you want to open. Spool documents are stored
in the ^SPOOL global. The default is 1.

doc_num

Line number, 1 or greater, within the spool document. The default is 1.index

These are positional parameters. If you omit both parameters, they default to (1:1). You can set first parameter (doc_num)
and omit the second (index), which defaults to 1. However, if you set the second parameter, you should specify the first
parameter.

InterSystems IRIS uses these values to locate the lines you want to print. It treats the doc_num parameter as the first subscript
of the ^SPOOL global. It treats the index parameter as the second subscript of the ^SPOOL global.

8.1.1.1 USE Command

When you issue USE 2 for device 2 after the command OPEN 2:(doc_num:index), InterSystems IRIS sends any sub-
sequent output to the spooler at ^SPOOL(doc_num:index). Each output line is stored as a separate global node within
^SPOOL.

8.1.1.2 WRITE Command

To write a line to the ^SPOOL global, issue a WRITE command, ending with a line terminator character. For example:

 /* Writing to the ^SPOOL global */
 OPEN 2
 USE 2
 WRITE "First line of text",!
 WRITE "Second line of text",!
 CLOSE 2

 /* Displaying the ^SPOOL global */
 WRITE ^SPOOL(1,1),^SPOOL(1,2)

Each line ends with a line terminator (the exclamation mark) and is stored in a separate global node.

However, in producing a single print line, you may want to use several WRITE commands; if a WRITE does not contain
a line terminator character, the next WRITE command appends to the same print line. Both write to the same global node.
This line is held in a buffer and not written into the spool global until either a line termination character is issued, or the
spooler device is closed.

The following example writes one global node when CLOSE is issued:

 /* Writing to the ^SPOOL global */
 OPEN 2
 USE 2
 WRITE "First half of line "
 WRITE "Second half of line"
 CLOSE 2

 /* Displaying the ^SPOOL global */
 WRITE ^SPOOL(1,1)

The line terminator character is commonly the ! (exclamation mark) WRITE command code character. This is equivalent
to a carriage return (ASCII 13) and a line feed (ASCII 10). To terminate a line, both of these control characters are necessary.

116 I/O Device Guide

Spool Device

Issuing just a carriage return (ASCII 13) causes the carriage return to be concatenated into the line node, rather than initiating
a new line node. In Terminal, a line of this type displays as an overwrite of the text before the carriage return, by the text
following it.

The following example writes only two line nodes in the ^SPOOL file:

 /* Writing to the ^SPOOL global */
 OPEN 2
 USE 2
 WRITE "AAAAAAAAAA",$CHAR(10),$CHAR(13)
 WRITE "BBBBBBBBBB",$CHAR(13)
 WRITE "XXXX",!
 CLOSE 2

 /* Displaying the ^SPOOL global */
 WRITE ^SPOOL(1,1),^SPOOL(1,2)

For more information, see the OPEN, USE, WRITE, and CLOSE commands in the ObjectScript Language Reference.

8.2 Spooling and Special Variables
When writing to ̂ SPOOL, InterSystems IRIS continually updates the $X and $Y special variables. $X indicates the number
of characters written to the current index line, and $Y contains the number of lines written during the current OPEN. Note
that the value of $Y is not necessarily the same as the node index. For example:

 /* Writing to the ^SPOOL global */
 OPEN 2:(2:3)
 USE 2
 WRITE "Hello " SET x1=$X,y1=$Y,z1=$ZA
 WRITE "world",! SET x2=$X,y2=$Y,z2=$ZA
 WRITE "Good to see you",! SET x3=$X,y3=$Y,z3=$ZA
 CLOSE 2

 /* Displaying the ^SPOOL global */
 WRITE ^SPOOL(2,3),^SPOOL(2,4)
 WRITE !,"$X=",x1," ",x2," ",x3
 WRITE !,"$Y=",y1," ",y2," ",y3
 WRITE !,"$ZA=",z1," ",z2," ",z3

In this example, the first WRITE sets $X=6 (the current column number) and the second and third WRITE both set $X=0
(because of the line returns). The first WRITE sets $Y=0, the second $Y=1 (because of the line return), and the third $Y=2.
Note however, that the lines that are being written are ^SPOOL(2,3), and ^SPOOL(2,4). To determine the index number,
use $ZA.

Writing to a spool file sets the $ZA special variable with the next available index number. Thus, if you are writing to
index=3, and do not include a line terminator, $ZA=3 (because the next WRITE continues writing to index 3), but if you
do include a line terminator, $ZA=4.

The USE command sets $ZB to contains the doc_num of the spool file specified in the OPEN command.

Note: The $IO special variable is not modified by writing to a spool file. Normally, $IO is reset by a USE command
to contain the ID of the current device. However, when the device is an output-only device (such as the spooler),
$IO continues to contain the ID of the current input device.

For more information, see the $X, $Y, $ZA, $ZB, and $IO special variables in the ObjectScript Language Reference.

I/O Device Guide 117

Spooling and Special Variables

8.3 Closing the Spool Device
When you issue CLOSE for device 2, the system automatically sets the node ̂ SPOOL(doc_num,2147483647) to store
information about closing the spool document and the highest index number the output reaches.

8.3.1 Changing Namespaces

When you change namespaces with a SPOOL device left open, the spool device is closed automatically before the namespace
change takes effect. The closing record in the ^SPOOL global is written into the correct database.

8.3.2 Abort Job Processing

If you open a spool device, dismount the current directory, then issue a HALT command or the Terminate($JOB) method
of the SYS.Process class, InterSystems IRIS returns a persistent <PROTECT> error for subsequent attempts to access this
spool device. To avoid this, change the namespace to automatically closes any open SPOOL device.

8.4 Viewing the ^SPOOL Global
Like any subscripted global, you can display lines from the spool file by issuing a WRITE command, as follows:

 WRITE "1st spool file node: ",^SPOOL(1,1),!

However, to view and edit the spool file itself, go to the Management Portal and select System Explorer, Globals. Select
your current namespace, locate the SPOOL global, then click data. This displays spool file data similar to the following
examples.

In the following spool file, the (!) termination character ends each node line in the spool file. These termination characters
are part of the spool file, concatenated to the text string as a $CHAR(13,10) (Return and Line Feed).

^SPOOL(1,1)=<<"First line of text"_$C(13,10)>>
^SPOOL(1,2)=<<"Second line of text"_$C(13,10)>>
^SPOOL(1,2147483647)={59605,43605{3{

In the following spool file, there are no line termination characters. The two WRITE commands wrote a single node line,
which was terminated by the closing the spool file.

^SPOOL(1,1)=First half of line Second half of line
^SPOOL(1,2147483647)={59605,43725{2{

In the following spool file, return and line feed characters were explicitly coded in the WRITE commands. The $CHAR(10)
line feed character initiates a new node line, and the $CHAR(13) return character is concatenated into these node lines.

^SPOOL(1,1)=<<"AAAAAAAAAA"_$C(10)>>
^SPOOL(1,2)=<<$C(13)_"BBBBBBBBBB"_$C(13)_"XXXX"_$C(13,10)>>
^SPOOL(1,2147483647)={59605,44993{3{

The final line of the spool file is generated by InterSystems IRIS when you close the spool file. It consists of the literal
1,2147483647; the date and time in $HOROLOG format (59605,44993), and the number of lines in the spool file,
including the final line.

You can edit or delete these spool file text lines. using the data display for the SPOOL global in the Management Portal
System Explorer, Globals option.

118 I/O Device Guide

Spool Device

8.5 Opening the Spooler Using the %IS Utility
%IS provides a convenient user interface at which a user can select the spool device, as well as any other device defined
in the ^%IS global in the %SYS namespace. Using %IS, you can create a named spool file and write lines of text to that
file. You can then print this spool file using the %SPOOL utility.

Note: Only spool files opened using the %IS utility can be manipulated using the %SPOOL utility.

To create a spool file using %IS do the following steps:

1. Invoke the %IS utility to open the spooler:

>DO ^%IS

2. At the “Device” prompt enter “2” or the mnemonic “SPOOL” .

3. At the “Name” prompt, enter the name of the spool document (file). (Press Enter at the “Name” prompt if you decide
not to open the spool device.) If you enter the name of an existing spool document, %IS asks if it is correct, displays
the last line of the file, and lets you choose where to add the new information. If you enter a new name, %IS asks if
you want to create a new document. Press Enter to create a new spool document, or enter “No” to redisplay the
“Name” prompt.

4. At the “Description” prompt, enter a one-line description. To increase readability, the description of the spooled
document is on a separate line and wraps at column 70 if it is too long to fit on one line.

The following example writes the line “TESTING SPOOL FUNCTIONALITY” to the ^SPOOL global. IO is a variable
that %IS sets to the device you specify at the “Device” prompt.

%SYS>DO ^%IS
Device: 2
Name: SPOOLFILE not found
Create new document 'SPOOLFILE'? Yes => <RETURN>
Description: This is my test spool file
%SYS>USE IO WRITE "TESTING SPOOLING FUNCTIONALITY",!
%SYS>CLOSE IO

8.6 Managing Spooled Documents Using %SPOOL
You manage spool files created when you access the InterSystems IRIS spool device with the %SPOOL utility. InterSystems
IRIS spooling is independent from system spooling.

Spooling in InterSystems IRIS is a technique that lets you automatically save the output of a program in the global ̂ SPOOL
instead of printing it immediately. You can print the output later by sending the contents of the global to the printer.

Use the %SPOOL utility to print, list, or delete spool documents in the ^SPOOL global in your current namespace. If you
send a document to the spooler from a particular namespace, you must run the %SPOOL utility from that namespace to
access it.

Note: Only spool files opened using the %IS utility can be manipulated using the %SPOOL utility.

%SPOOL asks which spooling option you want. You can choose any of the three functions by entering either:

• The menu number of the function

• The first letter of the function name

I/O Device Guide 119

Opening the Spooler Using the %IS Utility

You can also enter a question mark (?) to display a list of these functions.

The following example shows how you select a spooling function, in this case, Print.

%SYS>DO ^%SPOOL

Spool function: ?

The available spool functions are:

 1) Print
 2) List documents
 3) Delete document

Enter the number or first few characters of the name of the
spool function you want.

Spool function: 1 Print

The following sections describe how to use the %SPOOL utility to perform the following tasks:

• Print spool documents

• List spool documents

• Delete spool documents

8.6.1 Printing with %SPOOL

Option 1 of the %SPOOL utility menu, Print, lets you print one or more documents in the ^SPOOL global on any device,
resume printing an interrupted document, and handfeed single sheets of paper into a letter-quality printer. By sending output
to the spooler, you release your terminal for other uses while the output device prints your document.

You can start printing either before or after the spool document is fully created. If the printer catches up to the new output,
the print process pauses for five seconds, then prints all the output accumulated during that time. The print process knows
when you have closed the spool document and finishes when the document is done.

As %SPOOL prints the document, it keeps track of the pages it has printed. It also creates a page index, so that you can
sort through the document by page number and begin printing at the top of any page you choose.

If you stop printing (for example, by pressing ctrl-c during terminal output, or if your printer breaks), you can later resume
at the top of the last partially printed page or at the top of any other page in the document. Note that InterSystems IRIS
does not count form feeds at the start of the document as pages in the page count.

%SPOOL uses the term despool to mean print. There will be values in the Despool start-end column and on the description
line only if the document has been printed (despooled).

8.6.1.1 Using the Print Function

1. At the “Spool function:” prompt, enter 1.

2. At the “Name:” prompt, enter a ? to display help text, enter ?? to list all existing spool documents in the current
namespace, or enter the name of the spool document you want to print. %SPOOL confirms that this is the correct
document.

3. When %SPOOL asks you for the page where you want to start printing, press return to start at the first page, or enter
any page number in the document. If you try to start printing at the top of a page the printing process has not yet
reached, the following message displays: WARNING: Printing hasn't reached this point. After this warning, %SPOOL
asks if you are sure you want to start printing on the page you selected. If you enter No, it returns you to the “ Start at
page:” prompt. If you enter Yes to confirm the starting page, %SPOOL displays the first few lines of the page in
question and reconfirms that this is the right page.

4. You are prompted for the number of copies.

120 I/O Device Guide

Spool Device

5. %SPOOL lets you enter the names of other spool documents you want to print. When you respond to the “ Name:”
prompt by pressing return, it asks you for the output device and its right margin. Enter this information to start printing.

Note that %SPOOL issues a form feed after each page, whether you are printing on a screen or a printer.

The following example shows you how to print a document in the ^SPOOL global, in this case called SPOOLFILE. The
document will print on the device called MYPRINTER.

%SYS>DO ^%SPOOL

Spool function: 1 Print
Name: ??

Name Lines Spool start Despool start-end
1 SPOOLFILE 1 30 Aug 2:23 pm 30 Aug 2:25 pm-2:25 pm
 This is my test spool file

Name: SPOOLFILE

1 SPOOLFILE 30 Aug 2003 2:23 pm this is my test spool file
SPOOLFILE has 1 pages.
Is this correct? Yes=>Y
Start at page: 1=>Y
How many copies? 1=>Y

Name:RETURN
Print spooled files on
Device: MYPRINTER RETURN Parameters: "WNS"=>
Free this terminal? Yes =>Y
Starting Job in background . . . started.

Spool function:

8.6.2 Listing Spooled Documents

Option 2 of the %SPOOL utility menu, List documents, displays a list of the documents currently spooled for the directory
in which %SPOOL is running. If there is no Despool start-end value, the document has not yet been despooled (printed).

The description of each spooled document appears on one or more separate lines following the rest of the information about
that document.

In the following example, the user selected Option 2. The display reveals two documents stored in the spooler. The first
was stored on August 30 at 2:23 p.m. and printed the same day at 2:25 p.m. The second was stored on March 4 at 11:39
a.m. and printed the same day at 11:42 a.m.

Spool function: 2 List documents

Name Lines Spool start Despool start-end
1 SPOOLFILE 1 30 Aug 2:23 pm 30 Aug 2:25 pm- 2:25 pm
 This is my test spool file

3 LONGFILE 1 04 Mar 11:39 am 04 Mar 11:42 am- 11:42 am
 This is a very long description line that shows you what happens when you
have a long description. It shows you how the text wraps from line to line.
This particular description was made intentionally long, so as to wrap at least
twice.

8.6.3 Deleting Spooled Documents

Option 3 of the %SPOOL utility menu, Delete document, lets you delete one or more spool documents, When %SPOOL
prompts you for a name, enter the name of the document you want to delete, or enter ?? to display the current spool documents
for the namespace you are in. Enter a ? for help text.

%SPOOL confirms that this is the correct document, and that you want to delete it. If you answer “Yes,” %SPOOL
deletes the document, and allows you to name other documents you want to delete.

The following example deletes the spooled document called SPOOLFILE.

I/O Device Guide 121

Managing Spooled Documents Using %SPOOL

Spool function: 3 Delete document
Name: ??

Name Lines Spool start Despool start-end
1 SPOOLFILE 1 30 Aug 2:23 pm 30 Aug 2:25 pm- 2:25 pm
 This is my test spool file

Name: SPOOLFILE

1 SPOOLFILE 30 Aug 2003 2:23 pm this is my test spool file
SPOOLFILE has 1 pages.
Is this correct? Yes=>Y
Delete SPOOLFILE? No=> Y [Deleted]

Name:

122 I/O Device Guide

Spool Device

9
Printers

This chapter discusses how to configure and use print devices in InterSystems IRIS® data platform. A printer is a physical
output-only device. A printer may be a character printer, or a non-character device such as a fax or plotter.

In most cases, output is not sent directly to a printer. Often, output to be printed is first sent to a logical spool device (the
^SPOOL global). The contents of the ̂ SPOOL global can then be sent to the physical printer. For further details on spooling,
refer to the Spool Device chapter of this manual.

9.1 Overview of Printers
Note that Windows and UNIX® handle printer I/O differently.

• Windows systems handle a printer as a sequential I/O device, and thus follows the same syntax as sequential file I/O.
However, a printer connected through a serial communications port is handled as a terminal I/O device.

• UNIX® systems always handle a printer as a terminal I/O device. UNIX® treats it as a “character special” file on a
tty device, and thus follows the same syntax as terminal I/O.

On a Windows system, you can return a count of the current printers on your system using the
%Library.Device.InstalledPrinters() method. You can return a list of the current printers on your system using the
%Library.Device.GetPrinters() method.

9.2 Specifying a Printer
A printer can be assigned a device number between 256 and 2047, inclusive. This range of device numbers are also used
for terminals and flat files.

On a Windows system, you can refer to a printer using its device number or an assigned device mnemonic. The Windows
default printer mnemonic is |PRN|.

There are two ways to specify a printer:

• Call the %IS utility, which allows you to specify the device by using a mnemonic defined in the %IS global. This
utility opens the device and sets its parameters.

• Issue the I/O commands OPEN, USE, and CLOSE, using the operating system device name, specified as a quoted
string.

I/O Device Guide 123

9.2.1 Opening a Printer

When opening a printer, you can use the device name to specify the device. The device name must be enclosed in quotes.
The maximum length of this device name is 256 characters. The form is as follows:

OPEN "device" USE "device" CLOSE "device"

On Windows, you can also have a printer attached to a serial communications port. In this case, the printer is treated the
same as terminal I/O with the following syntax:

OPEN "comn:"

Where n is the port number to which the printer is attached.

9.2.2 Specifying a Printer on Windows

To use the default printer on Windows, enter the following:

 OPEN "|PRN|"

This causes InterSystems IRIS to use the default Windows printer for your machine, if you have set the default printer for
your machine. (For information on how to set the default printer, see your Windows documentation.)

To use a printer other than the default printer, enter the following:

 OPEN "|PRN|printer"

The Universal Naming Convention (UNC) name or a name that shows up on your machine's
list of printers (Print Manager in Windows NT, 2000, and XP).

printer

The following example illustrates the use of a UNC name:

 OPEN "|PRN|\\business\accounting"

The following example illustrates the use of a non-UNC name that might appear on your machine's list of printers:

 OPEN "|PRN|HP LaserJet 5P"

Note: InterSystems discourages the use of printer port names like COM1, LPT1, etc. If you do use such a name, Inter-
Systems IRIS will try to figure out which printer, if any, that name refers to and then it will use that name. However,
this will be a slow operation and is not really appropriate for Windows

On Windows systems, a printer is identified by the name on the OPEN command and is handled by the sequential I/O
module, not the terminal I/O module. Thus the OPEN and USE command arguments supported are the same as those for
sequential file I/O, not terminal I/O. The exception to this is a printer connected to a Windows system through a serial
communications port; in this case, the printer is handled as a terminal I/O device.

On Windows systems, you cannot use the “ :n” positional parameter to control the print margin used. Such notation is
ignored by InterSystems IRIS. Code such as "|PRN|":121 is ignored. To control the printer width, send the appropriate
control characters for that printer. The notation does work on other platforms.

On Windows, OPEN supports most of the sequential I/O keyword parameters, as described in the Sequential File I/O
chapter of this manual. The following table describes additional printer keyword parameters for controlling a printer (handled
as a sequential file) on Windows systems with the OPEN command.

124 I/O Device Guide

Printers

Table 9–1: Additional OPEN Keyword Parameters for Windows Printers

DescriptionDefaultKeyword

/DOCNAME enables you to redefine the printer
job name.

“IRIS”/DOCNAME= “name”

/OUTPUTFILE redirects print to a file. Specify a
fully-qualified pathname.

NULL/OUTPUTFILE= “filename”

/DATATYPE enables you to redefine the datatype
of the printer spool data. One frequently-used
datatype is TEXT.

“RAW”/DATATYPE= “type”

On Windows systems, if the OPEN prints directly to the printer (does not use a logical spool device), the OPEN command
timeout argument does not expire if the printer is turned off or does not exist. The InterSystems IRIS process remains in a
suspended state until the printer becomes available, or until the print document is cancelled from the Windows Control
Panel.

9.2.3 Specifying a Printer on UNIX®

To open an I/O device on a terminal that has the UNIX® device name /dev/tty06, enter the following command

 OPEN "/dev/tty06"

On UNIX® systems, a printer is identified by the name on the OPEN command and is handled as a “character special”
file on a tty device. Thus the OPEN and USE command arguments supported are the same as those for terminal I/O, not
sequential file I/O.

On UNIX®, OPEN supports most of the terminal I/O keyword parameters, as described in the Terminal I/O chapter of
this manual.

9.3 Directing Output to a Printer
You can use the %IS utility to direct output to a printer. You can invoke the %IS utility with the command DO ^%IS. (You
can also use DO OUT^%IS to specify that you are selecting an output-only device.) In either case, InterSystems IRIS returns
the Device: prompt. To specify a printer, reply with either the default mnemonic "|PRN|", or the mnemonic of another
configured printer. The %IS utility then suggests OPEN parameters; for a printer, the default is “W” (write-only). You can
accept the parameter default by pressing Enter, as shown in the following example:

%SYS>DO ^%IS
Device: |PRN|
Parameters? "W" => <RETURN>
%SYS>

This opens the specified printer as an output device for the current process.

The %IS utility sets various variables. The following are the printer default values on a Windows system.

I/O Device Guide 125

Directing Output to a Printer

Table 9–2:Variables Set by %IS

DescriptionValueVariable

Device mnemonic of selected device.|PRN|IO

Form feed character. WRITE # issues a form feed and changes $Y.
WRITE @IOF should be used to form feed.

#IOF

Backspace/overprint character (ASCII 8). WRITE $CHAR(8) issues
a backspace and changes $X. WRITE *8 issues a backspace but
does not change $X. WRITE @IOBS should be used to backspace.

$C(8)IOBS

Right margin; line length in characters.132IOM

Page length in characters.66IOSL

Device type. Here “Other”.OTHIOT

Device subtype name.P-DECIOST

OPEN parameters. Here “W” because a printer is a write-only device.("W")IOPAR

Type of system (such as UNIX® or Windows NT). M/WNT is
InterSystems IRIS on Windows NT.

M/WNTMSYS

Indicates that %IS was run (and these variables initialized). If 0, a
device was specified. If 1, no device was specified (user entered
STOP in response to the Device: prompt).

0POP

Most of these values can also be viewed and set from the Management Portal. Select System Administration, Configuration,
Device Settings. View the current contents of Devices and Device Subtypes. Select Edit to view the settings for a specific
printer.

9.3.1 %IS Printer Set-Up Variable

When you call %IS for spooling, you can pass it the IOPGM variable, which specifies the name of the routine that sets up
printer forms alignment.

9.4 Printer as Alternate Device
You can specify a printer as the alternate device for all processes by defining a new device named “A” and specifying a
physical device of |PRN|. Then when you use %IS, specify A at the Device: prompt.

You can set a printer as the alternative I/O device for a terminal process. Go to the Management Portal. Select System

Administration, Configuration, Device Settings, Devices. Select Edit for the current terminal device and specify an Alternate
Device value.

126 I/O Device Guide

Printers

	Table of Contents
	About This Book
	1 About I/O Devices
	1.1 Device Management Utilities
	1.2 Default Devices
	1.2.1 Devices
	1.2.2 Device Subtypes

	1.3 Identifying Devices
	1.3.1 Device Mnemonics
	1.3.2 Device IDs
	1.3.3 Device Alias
	1.3.4 Default Device IDs and Mnemonics
	1.3.5 Device Types

	1.4 Defining Devices
	1.5 Accessing Devices
	1.5.1 Allowing Users to Select Devices with the %IS Utility
	1.5.2 Accessing Devices with the OPEN Command
	1.5.3 Interpretation Levels for Devices

	1.6 Defining Default Mnemonic Spaces
	1.6.1 Predefined Mnemonic Spaces

	2 I/O Devices and Commands
	2.1 Overview of I/O Commands
	2.1.1 General I/O Syntax
	2.1.2 OPEN Command
	2.1.3 USE Command
	2.1.4 READ Command
	2.1.5 WRITE Command
	2.1.6 CLOSE Command

	2.2 Specifying I/O Devices
	2.3 Allowing Users to Specify a Device
	2.3.1 How %IS Works
	2.3.2 %IS Mnemonics
	2.3.3 Structure of ^%IS Global

	2.4 Specifying Devices in I/O Commands
	2.4.1 Specifying Terminals and Printers by Device Name
	2.4.2 Specifying Devices by InterSystems IRIS ID
	2.4.3 Specifying Files on Disk

	2.5 Processes and Devices
	2.5.1 Principal Device and Current Device
	2.5.2 The Null Device
	2.5.3 One Process Owns a Device

	2.6 Application Development I/O Commands
	2.7 Device Special Variables
	2.8 Controlling Devices with Mnemonic Spaces
	2.8.1 Predefined Mnemonic Spaces
	2.8.2 Creating a Mnemonic Space
	2.8.3 Select a Mnemonic Space

	3 Terminal I/O
	3.1 Overview of Terminal I/O Capabilities
	3.1.1 Your Login Terminal or Console is Your Principal Device

	3.2 Special Variables Show I/O Conditions
	3.2.1 $X and $Y and Cursor Position
	3.2.2 $TEST Shows Timed Operation Results
	3.2.3 $ZA Shows READ Status
	3.2.4 $ZB Shows What Ended a READ

	3.3 OPEN and USE Commands
	3.3.1 OPEN Command
	3.3.2 USE Command
	3.3.3 Positional Parameters for OPEN and USE Commands
	3.3.4 Keyword Parameters for OPEN and USE Commands
	3.3.5 Testing the Success of OPEN Commands
	3.3.6 Letter Code Protocols for OPEN and USE
	3.3.7 Protocol Terminator Characters
	3.3.8 Explicit Terminator Characters
	3.3.9 Summary of Protocols and Terminators in Read Operations

	3.4 READ Command
	3.4.1 Syntax
	3.4.2 Examples
	3.4.3 Read Line Recall
	3.4.4 Special Protocol Characters Affect Terminal I/O
	3.4.5 How the READ Command Processes Input

	3.5 WRITE Command
	3.5.1 Syntax
	3.5.2 Examples

	3.6 CLOSE Command
	3.6.1 Syntax

	3.7 Predefined Mnemonic Spaces for Terminals
	3.7.1 Mnemonic Space for X3.64
	3.7.2 Mnemonic Space for DTM PC Console
	3.7.3 DTM Examples

	3.8 PRINT and ZPRINT Commands
	3.8.1 Syntax

	3.9 Programming Your Terminal
	3.9.1 Using InterSystems IRIS to Program Formatted CRT Screens
	3.9.2 Programming Escape Sequences
	3.9.3 Example
	3.9.4 InterSystems IRIS Supports Full or Half Duplex and Echo
	3.9.5 InterSystems IRIS Supports Intercomputer Links and Special Devices

	4 Local Interprocess Communication
	4.1 Using Pipes to Communicate with Processes
	4.1.1 Opening Pipes to InterSystems IRIS Utilities
	4.1.2 Pipes and Command Pipes
	4.1.3 OPEN Command for Interprocess Communication
	4.1.4 READ Command for Interprocess Communication
	4.1.5 CPIPE Exit Codes
	4.1.6 CLOSE Command for Interprocess Communication
	4.1.7 Using Named Pipes to Communicate with Visual Basic

	4.2 Communication Between InterSystems IRIS Processes
	4.2.1 Specifying Memory Buffers for Interjob Communication Devices
	4.2.2 Interjob Communication Device Numbers
	4.2.3 I/O Commands for IJC Devices

	5 TCP Client/Server Communication
	5.1 TCP Connections Overview
	5.2 OPEN Command for TCP Devices
	5.2.1 Using the OPEN Command
	5.2.2 Server-Side OPEN Command
	5.2.3 Client-Side OPEN Command
	5.2.4 OPEN and USE Command Keywords for TCP Devices
	5.2.5 OPEN-Only Command Keywords for TCP Devices

	5.3 Current TCP Device
	5.4 USE Command for TCP Devices
	5.5 READ Command for TCP Devices
	5.5.1 READ Modifies $ZA and $ZB

	5.6 WRITE Command for TCP Devices
	5.6.1 How WRITE Works
	5.6.2 WRITE Modifies $X and $Y
	5.6.3 WRITE Command Errors
	5.6.4 WRITE Control Commands

	5.7 Connection Management
	5.7.1 Job Command with TCP Devices
	5.7.2 Job Command Example

	5.8 Concatenation of Records
	5.9 Multiplexing InterSystems IRIS TCP Devices
	5.10 Closing the Connection
	5.10.1 Disconnect with CLOSE Command
	5.10.2 Automatic Disconnection
	5.10.3 Effects of Disconnection

	6 UDP Client/Server Communication
	6.1 Establishing a UDP Socket
	6.2 The Host Address
	6.2.1 IPv4 and IPv6

	7 Sequential File I/O
	7.1 Using Sequential Files
	7.1.1 Specifying a File
	7.1.2 OPEN Command
	7.1.3 USE Command
	7.1.4 READ and WRITE Commands
	7.1.5 CLOSE Command

	8 Spool Device
	8.1 Opening and Using the Spool Device
	8.1.1 OPEN and USE Commands for Spooling Device

	8.2 Spooling and Special Variables
	8.3 Closing the Spool Device
	8.3.1 Changing Namespaces
	8.3.2 Abort Job Processing

	8.4 Viewing the ^SPOOL Global
	8.5 Opening the Spooler Using the %IS Utility
	8.6 Managing Spooled Documents Using %SPOOL
	8.6.1 Printing with %SPOOL
	8.6.2 Listing Spooled Documents
	8.6.3 Deleting Spooled Documents

	9 Printers
	9.1 Overview of Printers
	9.2 Specifying a Printer
	9.2.1 Opening a Printer
	9.2.2 Specifying a Printer on Windows
	9.2.3 Specifying a Printer on UNIX®

	9.3 Directing Output to a Printer
	9.3.1 %IS Printer Set-Up Variable

	9.4 Printer as Alternate Device

