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About This Book

This book describes how to migrate schemas and stored procedures from Informix ISQL to InterSystems IRIS® data platform.

The book includes an Overview, which includes information on configuring ISQL and migrating source code and data.

For a detailed outline, see the Table of Contents.

When using InterSystems ISQL, you may find the following additional sources useful:

• The InterSystems SQL Reference provides details on individual SQL commands and functions, as well as information
on the InterSystems SQL configuration settings, error codes, data types, and reserved words.

• Using the InterSystems SQL Gateway describes how to use the InterSystems SQL Gateway, which enables you to treat
external tables as if they were native InterSystems IRIS tables.

• Using the InterSystems ODBC Driver describes how to use InterSystems ODBC, which enables you to access InterSys-
tems IRIS tables via ODBC from external applications.

• Using Java with the InterSystems JDBC Driver includes information on connecting to InterSystems IRIS via the
InterSystems JDBC driver.
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1
Overview

InterSystems ISQL is an implementation of Informix ISQL which supports many of its features.

InterSystems ISQL also contains a few proprietary extensions not found in Informix ISQL.

This document will help you to quickly migrate schemas and stored procedures from Informix databases and it will provide
you with an understanding of the ISQL implementation in InterSystems IRIS® data platform.

1.1 Getting Started
To migrate existing ISQL applications to InterSystems ISQL, you need to perform three operations:

• Configure InterSystems IRIS for ISQL

• Migrate ISQL source code

• Migrate ISQL data

1.2 ISQL Configuration Settings
InterSystems IRIS provides four configuration settings to aid in the migration of ISQL to InterSystems SQL. These config-
uration settings can be set either by using the InterSystems IRIS Management Portal or by using a direct global reference.

To set ISQL configuration using the Management Portal:

• From the main page of the Management Portal, select System Administration, Configuration, SQL and Object Settings,
then ISQL Compatibility.

Here you can turn on or off Support Delimited Identifiers (the default is No), Generate Trace Code (the default is No),
and Return Result of Stored Procedure Call as Resultset (the default is Yes). You can also specify a Reserved Word

Prefix to be appended to an identifier when it conflicts with an InterSystems IRIS SQL reserved word. The purposes
of these settings are described below.

If you set one or more configuration options using the Management Portal, the Informix SQL Settings heading will be
followed by an asterisk, indicating that changes have been made but not yet saved. You must press the Save button for
configuration changes to take effect.
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• From the main page of the Management Portal, select System Administration, Configuration, SQL and Object Settings,
then SQL. From here, you can set the Default Schema. This is the system-wide default schema name (which maps to a
package) for all unqualified DDL entities.

• From the main page of the Management Portal, select System Administration, Configuration, SQL and Object Settings,
then User DDL Mappings. You can use this option to map any needed user-defined data types.

To set ISQL configuration using direct global reference, or to determine the current ISQL configuration settings, you can
use the following globals:

• ^%SYS("xsql","informix","DELIMIDENT") = 0 | 1 controls the delimited identifier setting. If 1, the Informix source
is parsed with double quotes used as identifier delimiters instead of literal string identifiers.

• ^%SYS("xsql","informix","RESERVEDWORDPREFIX")=prefix. If set, then any column names that are reserved
words will be resolved by adding prefix to the column name.

• ^%SYS("xsql","informix","TRACE") = 0 | 1. If 1, then TRACE code will be generated. Any procedure converted
while TRACE is 1 will contain calls to %XSQL.Log for each deferred statement—one for %Prepare and one for the
result. At runtime, any procedure that was converted with TRACE = 1 will log messages in a %XSQL.Log file. The
log is unique for each process.

• ^%SYS("xsql","informix","FUNCTIONRETURNSSET") = 0 | 1. If 1, then a function that returns multiple values
returns them as a result set.

1.2.1 Identifier Conflicts

InterSystems IRIS provides two alternative ways to resolve conflicts between ISQL identifiers (such as table names and
column names) and InterSystems IRIS SQL reserved words.

If a reserved word prefix is configured, an identifier name that conflicts with an InterSystems SQL reserved word is auto-
matically assigned the specified prefix. This prefixing is performed for any identifier that matches against the SQL reserved
words list. You can add “reserved words” to this list (for the purpose of resolving ISQL identifiers) using the global variable
^%SYS("xsql","informix",word), where word is the word to be reserved, in uppercase letters. This ability to supplement
the reserved word list is useful to maintain consistency between database systems that use different reserved word lists.

If a reserved word prefix is not configured and delimited identifier support is configured, the converter delimits an identifier
that matches against the SQL reserved words list (and any supplements) by enclosing it with quotation marks. A delimited
identifier can take any value, including a reserved word.

1.2.2 TRACE

XSQL deferred statements are dynamically prepared at runtime. The resulting implementation is cached to improve the
performance of subsequent executions. Cached implementations are purged whenever any of the referenced objects are
modified. The Informix ISQL converters supports a TRACE feature for compiled procedures that logs the deferred statement
text, argument values, and any errors encountered.

1.2.2.1 Configuring Trace Support

The trace feature for Informix can be activated in either of two ways:

• Go to the InterSystems IRIS Management Portal: System Administration, Configuration, SQL and Object Settings,  ISQL

Compatibility Settings, and turning on the Generate Trace Code setting.

• Invoke the ObjectScript macro $$$TraceOn
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1.2.2.2 TRACE Statements in Source Code

When InterSystems IRIS converts an ISQL procedure with trace configuration activated, basic support for trace is generated.
TRACE statements within the procedure code determine trace behavior. The TRACE ON statement activates the trace
feature and all generated traces will be logged. This trace feature is activated by default. The TRACE OFF statement
deactivates the trace feature and no further messages will be logged. If the trace feature is activated, TRACE expression
logs the value of expression to the current log.

1.2.2.3 TRACE Logging

Output from the trace is sent to a text file located in the same directory as the IRIS.DAT. This can be overridden by using
the %New() method to instantiate a %XSQL.Log class object as %xsqlLog with a file name specified. For example: SET
%xsqlLog = ##class(%XSQL.Log).%New("c:\mylogs\mytrace.log",1). The second argument to %New() is the initialize
flag. If it is TRUE (1) and the log file already exists, then it is cleared. If initialize is FALSE (0) then trace information is
appended to the existing log file, and a "log restarted..." message is written to the log. By default, log file names are qualified
by the current job number.

If TRACE is active, a message is logged whenever a result set is added to the current context object. The result set is
retrieved from the context object and the first ten rows copied to the log.

If TRACE is active, logging is performed for all embedded SQL / deferred SQL code execution in the converted Informix
procedures. The SQL statement tracing contains the statement text, any arguments and their values, the SQLCODE value,
%ROWCOUNT, and %msg following the run (if SQLCODE < 0), and the elapsed time it took to execute the SQL statement.
For CURSOR based SELECTs, a trace is recorded for the query, the OPEN, and the CLOSE of the cursor.

To write a message to the trace log, invoke the ObjectScript macro $$$TraceMessage(text), where text is any quoted string.

1.2.3 Legacy Function Call Mode

The Return Result of Stored Procedure Call as Resultset configuration setting governs how functions that return multiple
values should return those values. The default of “Yes”  returns the values as a result set. This setting supports an ISQL
legacy function call mode whereby any return values are returned in a single row result set instead of a return value and/or
output parameters.

1.3 Migrating Source Code
The initial application migration is simple:

1. Migrate the DDL/DML Script Files: The following method imports all DDL/DML script file in a given directory. All
files with the extension .sql in the directory will be imported.

$SYSTEM.SQL.DDLImportDir(DDLMode, directory, logfile, EOSDelimiter)

DDLMode: Vendor from which the script file originated. This parameter is required. The only permitted value is
Informix

directory: The full path name of the directory to import. This parameter is required.

logfile: Either the full path name of the log file to report errors in, or the number 1. This parameter is optional. The
default is DDLImportDir.log in the directory loaded. If this parameter value is 1, a separate log file is generated for
each file loaded. The name of each log file will be the same as the file imported, but with the extension .log instead of
.sql.
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EOSDelimiter: End of statement delimiter. This parameter is optional. Defaults to an appropriate value based on the
value of %DDLMode.

For further details, see the InterSystems Class Reference.

2. Alternatively, you can invoke the Informix() method of the $System.SQL class to import the schema. This method
supports CREATE TABLE, ALTER TABLE, CREATE INDEX, CREATE VIEW, SET OPTION, and GRANT
statements. For further details, see the InterSystems Class Reference.

If the ISQL source contains CREATE PROC statements, then a class method containing the CREATE PROC source
is created. InterSystems IRIS places this class method in either an existing class or in a new class whose name is based
on the schema and procedure name. If the procedure already exists, then the existing version is replaced by the new
version. If a class matching the class name generated from the schema and procedure already exists, then this class
name is used — if it was previously generated by the ISQL utility. If not, then a unique class name is generated, based
on the schema and procedure name. The resulting class is compiled once the procedure has been successfully created.

If logging is requested then the source statements are logged along with the name of the containing class, class method,
and the formal arguments generated. Any errors encountered by the process are also reported in the log. If an error is
detected during CREATE PROC processing, InterSystems IRIS deletes any new class that was generated for that
procedure.

3. Inspect the log file for errors: Search by Error #. A summary count of errors and successful imports will appear at the
end of the log. In most cases, errors can be worked around or addressed by using information found in this document.

InterSystems IRIS provides the %XSQL.System.CacheMessageXRef class to cross-reference Informix error codes and
messages and the corresponding InterSystems SQLCODE error codes and messages.

4. Compile: When you import DDL, table and view definition compilation is automatically performed. To compile other
ISQL source code, it is best to use the command as follows:

  DO $SYSTEM.OBJ.CompileAll("-l")

The lowercase “L” qualifier flag specifies that locking is not applied for the duration of the compile. For a full list of
flag qualifiers, call DO $SYSTEM.OBJ.ShowFlags().

When compiling ISQL methods, ObjectScript code is generated. There is no system-level support for native ISQL. It is
best to maintain the methods in ISQL to retain the familiar look of the original stored procedures.

1.4 Migrating Informix Stored Procedures
InterSystems IRIS provides a converter to convert Informix SPL routines to class methods. The resulting class methods
contain ObjectScript code that replicates Informix SPL behavior, including temporary tables, deferred statement resolution
(statements are prepared dynamically at runtime; no metadata validation occurs at class compile time), and exception handling.
The InterSystems IRIS converter generates class methods whose formal spec consists of the SPL declared formal arguments.
Functions that return more than one value have additional formal arguments that correspond to the declared return types.
Iterator functions return a result set whose columns correspond to the declared return types.

The original Informix SPL source is retained in the class description for the generated class. The converter retains comments
in the source in the converted output.

Optionally, the Informix SPL converter can log all converted routines, errors encountered, and the names of each the class
method generated. This log is maintained in %XSQL.Log. A summary of all errors encountered during conversion is also
placed at the end of the log.

The ObjectScript version of an SPL routine uses %XSQL deferred statements, private temporary tables, and an error message
cross reference.
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1.4.1 Temporary Tables

Informix temporary tables (CREATE TEMP TABLE) are implemented as InterSystems IRIS global private temporary
tables. These are temporary tables that can only be accessed by the current process, and are defined until either explicitly
dropped or the process terminates. They are created using the InterSystems SQL command CREATE GLOBAL PRIVATE
TEMPORARY TABLE.

A GLOBAL PRIVATE TEMPORARY table is the same as a GLOBAL TEMPORARY table except that the table object
is maintained in %processcontext instead of %sqlcontext. %processcontext is a ProcedureContext instance that is never
new'ed or killed for the lifetime of the process. Temporary table objects referenced by %processcontext will therefore be
in scope until dropped or the process ends. Dropping a temporary table may not cause the table to be physically dropped.
If any active result sets reference the temporary table then it will remain active until those result set objects are closed
(destructed). An attempt to create a temporary table that is still active due to active result sets will result in an error.

1.4.2 Procedure Calls and Iterator Functions

Informix supports four types of SPL routines:

• A procedure, which returns no value (SPL). Invoked from InterSystems IRIS using the DO command.

• A standard function, which return a single value (SPL RETURN). These are invoked from InterSystems IRIS using
SET retval=function().

• A function that returns multiple values (SPL RETURN value1[,value2[,...]]). Informix SPL routines do not support
output format arguments. InterSystems IRIS converts this to a class method with multiple output formal arguments.
It is invoked using the DO command; output values are retrieved from the procedure context object and assigned to
the declared INTO variables.

• An iterator function that returns multiple rows, each row containing one or more values (SPL RETURN...WITH
RESUME). InterSystems IRIS implements this functionality as a class method with multiple output formal arguments
and with no return value. It is invoked using the DO command. It uses a result set class to first insert successive rows
into the result set, then reset the iterator to the first row of the result set to enable retrieval of multiple rows. Rows are
retrieved from the first result set returned in the procedure context object. The columns in the result set correspond to
the declared return types.

If the returned value(s) is longer than the defined size of the return variable, InterSystems IRIS (like Informix) automatically
truncates the returned value(s).

A scalar function cannot return a result set. InterSystems IRIS issues an SQLCODE -432 when a function is called that
expects a single return value but actually returns multiple rows. This corresponds to Informix error -686.

There is one significant difference in the flow with iterator functions. The Informix statement FOREACH EXECUTE calls
a procedure that returns a result set. That result set can reference temporary objects that are only valid in the scope of the
called procedure context. In the original Informix, a FOREACH EXECUTE resumes execution at the point of the previous
RETURN WITH RESUME statement. The converted ObjectScript method executes the iterator function to completion
and returns the results in a result set that is then iterated over by the FOREACH loop. The actual column values are retrieved
directly from the result set without the called procedure context. The EXIT FOREACH closes the cursor and releases the
lock on the last retrieved row.

1.4.3 Formal Arguments

InterSystems IRIS supports two settings for formal arguments: DEFAULTFORMAL and DEFAULTFORMALTYPE.
DEFAULTFORMAL is an optional setting that contains the name of a dummy formal argument. DEFAULTFORMALTYPE
is an optional setting containing the type of the DEFAULTFORMAL argument.
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If DEFAULTFORMAL is set, then a formal argument with that name is generated for any procedure or function that does
not declare any formal arguments. If DEFAULTFORMALTYPE is defined then it is the Informix type declaration used
for the generated formal argument. If DEFAULTFORMALTYPE is not defined, it defaults to INTEGER.

1.5 Migrating the Data
In the Management Portal select System Explorer then SQL. From the drop-down Wizards list select Data Migration.

1.5.1 Informix ROWID

The procedure conversion utility translates ISQL column references of ROWID to %ID. In Informix, the ROWID column
is a hidden column in nonfragmented tables and in fragmented tables that were created with the WITH ROWIDS clause.
The ROWID column is unique for each row, but it is not necessarily sequential. In InterSystems SQL it corresponds to
%ID.

1.5.2 NULL and Empty String Handling

In Informix, the string data types CHAR and VARCHAR treat the empty string ("") as identical to a single blank space ("
"). For all numeric, time and date data types, empty string ("") is treated as NULL.

When concatenating strings, concatenating NULL to string results in NULL. Concatenating an empty string to string has
no effect on string.

1.5.3 String Trailing Blanks

In ObjectScript strings trailing blanks are automatically truncated. This is true for both CHAR and VARCHAR data types.
As this differs from standard Informix behavior, this may be an important consideration when migrating data.

1.5.4 DATETIME Data Type

InterSystems IRIS supports the Informix DATETIME data type by mapping it to the %Library.InformixTimestamp datatype
class. Informix does not require the entire date or time to be present; it uses qualifiers to specify the range of components
of the date and time. InterSystems IRIS supports syntax for specifying the largest and smallest qualifiers. The YEAR TO
DAY qualifier maps as a DATE data type. The MINUTE TO SECOND qualifier maps as a TIME data type. All others
qualifiers map as %Library.InformixTimeStamp. For example, YEAR TO SECOND and HOUR TO SECOND.

InterSystems IRIS supports DATETIME arithmetic. It supports addition and subtraction operations for DATE, TIME,
TIMESTAMP, and INTERVAL.

1.5.5 SERIAL Data Type

InterSystems IRIS supports the Informix SERIAL data type by mapping it to the %Library.Counter datatype. When a field
is defined as data type %Counter, during SQL INSERT InterSystems IRIS increases the counter value by 1 (one) if no
value, a 0 (zero), or a non-numeric value is inserted for the field; and assigns the resulting counter value to the field. If a
positive integer value is explicitly inserted into the field, insert the value, and, if necessary, advance the counter node so
that the counter node value is not less than the specified field value.

There is no automatic creation of a UNIQUE constraint for fields defined with the %Counter type. If you want to ensure
the value is UNIQUE, you must create your own UNIQUE index on the property.
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Fields defined as %Counter fields may not be updated unless the old value of the field is 0 or NULL. This might be the
case if you add a %Counter field to an existing table that already has data and you want to go back and populate the %Counter
field for the existing rows. Otherwise, attempting to update a %Counter field generates an SQLCODE -105 error and a
%msg text.

The InterSystems SQL %Counter data type provides functionality similar to the Informix SERIAL data type. Informix
limits you to a single SERIAL field per table, but InterSystems IRIS has no restriction on the number of %Counter fields
defined per table.

1.6 ISQL Language Implementation

1.6.1 ISQL Comments and Annotations

ISQL supports the following comment types:

• –– comment (two hyphens) single line comment prefix.

• { comment } multiple line comment.

• /* comment */ multiple line comment.

Multiple line comments can be nested.

ISQL supports the following single-line annotation formats:

• ––!! annotation

• --## annotation

If an annotation is embedded in a SELECT statement, this annotation is appended to the FROM clause after conversion to
InterSystems SQL. For example:

FOREACH
    SELECT a,b,c 
    INTO v_a, v_b, v_c 
    FROM
       --!!%NOFLATTEN %NOTOPOPT 
       my_table as f 
    WHERE f.a IN ( "a") AND f.b = 88 AND f.c ="ZZ" 
    ORDER BY a, c DESC, b DESC

Annotations can only be used in a SELECT statement.

1.6.2 MATCHES Operator

ISQL supports the MATCHES operator for pattern matching. It supports the * wildcard character, which can be used to
represent 0 or more characters.

1.6.3 DEFINE var LIKE Command

The DEFINE var LIKE column statement defines the data type of a local variable based on the data type of a column.
This command is supported if the column reference can be resolved at conversion time.

1.6.4 LET Command

The LET command is used to assign a value to a variable. It can be used to assign more than one variable, as follows:
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LET a,b = c,d;

1.6.5 Supported Functions

The Informix compiler supports the following Informix functions:

• DATE

• CURRENT returns the current date in internal storage format (the date portion of the $HOROLOG value).

• LOWER

• REPLACE

• SUBSTR

• SUBSTRING

• TRIM (partial support)

• UPPER
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