
Using Internet Utility Classes

Version 2019.4
2020-01-28

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using Internet Utility Classes
InterSystems IRIS Data Platform Version 2019.4 2020-01-28
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

1 Sending HTTP Requests .. 3
1.1 Introduction to HTTP Requests .. 3
1.2 Providing Authentication .. 4

1.2.1 Authenticating a Request When Using HTTP 1.0 ... 4
1.2.2 Authenticating a Request When Using HTTP 1.1 ... 5
1.2.3 Specifying the Authorization Header Directly ... 5
1.2.4 Enabling Logging for HTTP Authentication ... 6

1.3 Specifying Other HTTP Request Properties .. 6
1.3.1 The Location Property .. 6
1.3.2 Specifying the Internet Media Type and Character Encoding ... 7
1.3.3 Using a Proxy Server ... 7
1.3.4 Using SSL to Connect .. 8
1.3.5 The HTTPVersion, Timeout, WriteTimeout, and FollowRedirect Properties 8
1.3.6 Specifying Default Values for HTTP Requests .. 8

1.4 Setting and Getting HTTP Headers .. 9
1.5 Managing Keep-alive Behavior .. 10
1.6 Handling HTTP Request Parameters ... 10
1.7 Including a Request Body .. 11

1.7.1 Sending a Chunked Request ... 11
1.8 Sending Form Data ... 12

1.8.1 Example 1 .. 13
1.8.2 Example 2 .. 13

1.9 Inserting, Listing, and Deleting Cookies .. 13
1.10 Sending the HTTP Request .. 14
1.11 Creating and Sending Multipart POST Requests ... 15
1.12 Accessing the HTTP Response .. 16

1.12.1 Accessing the Data of the Response .. 16
1.12.2 Getting an HTTP Header by Name .. 17
1.12.3 Accessing Other Information about the Response ... 17

2 Sending and Receiving Email .. 19
2.1 Supported Email Protocols ... 19
2.2 How InterSystems IRIS Represents MIME Email Messages .. 20
2.3 Creating Single-part Email Messages .. 21

2.3.1 Example 1: CreateTextMessage() .. 22
2.3.2 Example 2: SimpleMessage() .. 22

2.4 Creating Multipart Email Messages ... 22
2.5 Specifying Email Message Headers ... 23

2.5.1 Specifying Basic Email Headers .. 23
2.5.2 Content-Type Header ... 23
2.5.3 Content-Transfer-Encoding Header ... 23
2.5.4 Custom Headers ... 24

2.6 Adding Attachments to a Message ... 24
2.6.1 Example: MessageWithAttachment() .. 25

2.7 Using an SMTP Server to Send Email ... 26
2.7.1 Example 1: HotPOPAsSMTP() and SendSimpleMessage() .. 27

Using Internet Utility Classes iii

2.7.2 Example 2: YPOPsAsSMTP() ... 27
2.7.3 Example 3: SendMessage() .. 28
2.7.4 Other Properties of %Net.SMTP ... 28

2.8 Fetching Email from a POP3 Server .. 29
2.8.1 Communicating with a POP3 Server ... 29
2.8.2 Getting Information about the Mailbox ... 31
2.8.3 Fetching Messages from the Mailbox .. 32
2.8.4 Saving Attachments as Files ... 33
2.8.5 Getting Attached Email Messages ... 34
2.8.6 Other Message Retrieval Methods ... 34
2.8.7 Deleting Messages ... 36

2.9 Working with a Received Email Message .. 37
2.9.1 Message Basics .. 37
2.9.2 Message Headers .. 37
2.9.3 Message Contents .. 37
2.9.4 Other Message Information ... 38
2.9.5 Example 1: ShowMsgInfo() ... 38
2.9.6 Example 2: ShowMsgPartInfo() ... 39
2.9.7 Example 3: ShowMsgHeaders() .. 39

2.10 Automatic Encoding and Character Translation ... 40
2.10.1 Outgoing Email .. 40
2.10.2 Incoming Email .. 40

3 Creating, Writing, and Reading MIME Messages .. 43
3.1 An Overview of MIME Messages .. 43
3.2 Creating MIME Parts ... 44

3.2.1 Setting and Getting MIME Part Headers ... 44
3.2.2 Specifying an Optional Message Boundary Value ... 45

3.3 Writing MIME Messages ... 45
3.3.1 Example: WriteMIMEMessage() ... 45

3.4 Reading MIME Messages .. 46

4 Using FTP .. 47
4.1 Establishing an FTP Session .. 47

4.1.1 Translate Table for Commands .. 48
4.2 FTP File and System Methods ... 48
4.3 Using a Linked Stream to Upload Large Files ... 49
4.4 Customizing Callbacks Issued by the FTP Server ... 49

5 Sending and Receiving IBM WebSphere MQ Messages ... 51
5.1 Using the InterSystems IRIS Interface to IBM WebSphere MQ .. 51

5.1.1 Getting Error Codes ... 52
5.2 Creating a Connection Object .. 52

5.2.1 Using the %Init() Method .. 52
5.2.2 Using the %Connect() Method .. 53

5.3 Specifying the Character Set (CCSID) ... 54
5.4 Specifying Other Message Options .. 55
5.5 Sending Messages .. 55

5.5.1 Example 1: SendString() .. 55
5.5.2 Example 2: SendCharacterStream() ... 55
5.5.3 Example 3: Sending a Message from the Terminal .. 56

5.6 Retrieving Messages ... 56

iv Using Internet Utility Classes

5.6.1 Example 1: ReceiveString() ... 57
5.6.2 Example 2: ReceiveCharacterStream() .. 57

5.7 Updating Message Information .. 57
5.8 Troubleshooting .. 58

6 Using SSH .. 61
6.1 Creating an SSH Session .. 61
6.2 Example: Listing Files via SFTP ... 61
6.3 Additional Examples .. 62

7 Other InterSystems %Net Tools .. 63

Using Internet Utility Classes v

List of Tables

Table 1–1: Example Properties for %Net.HttpRequest ... 6

vi Using Internet Utility Classes

About This Book

This manual helps programmers use some of the key classes in the %Net package, which provide an easy-to-use interface
for a number of useful Internet protocols. Because the class documentation for this package is fairly extensive, this manual
provides a quick, organizing overview, rather than an intensive look at every parameter, property, and method. It is assumed
that you are familiar with the protocols and third-party tools mentioned in this manual.

This book consists of the following chapters:

• Sending HTTP Requests

• Sending and Receiving Email

• Creating, Writing, and Reading MIME Messages

• Using FTP

• Using SSH

• Sending and Receiving IBM WebSphere MQ Messages

• Other InterSystems %Net Tools

For a detailed outline, see the table of contents.

Also see the following books:

• Creating Web Services and Web Clients describes how to create InterSystems IRIS® web services and web clients.

• Securing Web Services describes how to add security elements to InterSystems IRIS web services and web clients.

Using Internet Utility Classes 1

1
Sending HTTP Requests

This chapter describes how to send HTTP requests (such as POST or GET) and process the responses. It includes the fol-
lowing topics:

• Introduction to HTTP Requests

• Providing Authentication

• Specifying Other HTTP Request Properties

• Setting and Getting HTTP Headers

• Managing Keep-alive Behavior

• Handling HTTP Request Parameters

• Including a Request Body

• Sending Form Data

• Inserting, Listing, and Deleting Cookies

• Sending the HTTP Request

• Creating and Sending Multipart POST Requests

• Accessing the HTTP Response

1.1 Introduction to HTTP Requests
You create an instance of %Net.HttpRequest to send HTTP requests of various kinds and receive the responses. This object
is equivalent to a web browser, and you can use it to make multiple requests. It automatically sends the correct cookies and
sets the Referer header as appropriate.

To create an HTTP request, use the following general process:

1. Create an instance of %Net.HttpRequest.

2. Set properties of this instance to indicate the web server to communicate with. The basic properties are as follows:

• Server specifies the IP address or machine name of the web server. The default is localhost.

Note: Do not include http:// or https:// as part of the value of Server. This causes ERROR #6059:
Unable to open TCP/IP socket to server http:/.

Using Internet Utility Classes 3

• Port specifies the port to connect to. The default is 80.

3. Optionally set other properties and call methods of your HTTP request, as described in “Specifying Other HTTP
Request Properties.”

4. Then send an HTTP request, by calling the Get() method or other methods of your instance of %Net.HttpRequest, as
described in “Sending the HTTP Request.”

You can make multiple requests from your instance, which will automatically handle cookies and the Referer header.

Note: If you created this HTTP request for use with the production outbound adapter (EnsLib.HTTP.OutboundAdapter),
then instead use the methods of that adapter to send the request.

5. Use the same instance of %Net.HttpRequest to send additional HTTP requests if needed. By default, InterSystems IRIS
keeps the TCP/IP socket open so that you can reuse the socket without closing and reopening it.

For additional information, see “Managing Socket Reuse.”

The following shows a simple example:

 set request=##class(%Net.HttpRequest).%New()
 set request.Server="tools.ietf.org"
 set request.Https=1
 set request.SSLConfiguration="TEST"
 set status=request.Get("/html/rfc7158")

For information on the Https and SSLConfiguration properties, see “Using SSL to Connect,” later in this chapter. Also, for
a more complete version of this example, see “Accessing the HTTP Response.”

1.2 Providing Authentication
If the destination server requires login credentials, your HTTP request can include an HTTP Authorization header that
provides the credentials. The following subsections provide the details:

• Authenticating a Request When Using HTTP 1.0

• Authenticating a Request When Using HTTP 1.1

• Specifying the Authorization Header Directly

• Enabling Logging for HTTP Authentication

If you are using a proxy server, you can also specify login credentials for the proxy server; to do so, set the ProxyAuthorization

property; see “Using a Proxy Server.” For details, see the class documentation for %Net.HttpRequest.

1.2.1 Authenticating a Request When Using HTTP 1.0

For HTTP 1.0, to authenticate an HTTP request, set the Username and Password properties of the instance of
%Net.HttpRequest. The instance then creates the HTTP Authorization header based on that username and password,
using the Basic Access Authentication (RFC 2617). Any subsequent request sent by this %Net.HttpRequest will include
this header.

Important: Make sure to also use SSL (see “Using SSL to Connect”). In Basic authentication, the credentials are sent
in base-64 encoded form and thus can be easily read.

4 Using Internet Utility Classes

Sending HTTP Requests

https://tools.ietf.org/html/rfc2617

1.2.2 Authenticating a Request When Using HTTP 1.1

For HTTP 1.1, to authenticate an HTTP request, in most cases, just set the Username and Password properties of the instance
of %Net.HttpRequest. When an instance of %Net.HttpRequest receives a 401 HTTP status code and WWW-Authenticate
header, it attempts to respond with an Authorization header that contains a supported authentication scheme. The first
scheme that is supported and configured for IRIS is used. By default, it considers these authentication schemes, in order:

1. Negotiate (SPNEGO and Kerberos, per RFC 4559 and RFC 4178)

2. NTLM (NT LAN Manager Authentication Protocol)

3. Basic (Basic Access Authentication as described in RFC 2617)

Important: If there is a chance that Basic authentication will be used, make sure to also use SSL (see “Using SSL
to Connect”). In Basic authentication, the credentials are sent in base-64 encoded form and thus can
be easily read.

On Windows, if the Username property is not specified, IRIS can instead use the current login context. Specifically, if the
server responds with a 401 status code and a WWW-Authenticate header for SPNEGO, Kerberos, or NTLM, then IRIS
uses the current operating system username and password to create the Authorization header.

The details are different from the HTTP 1.0 case, as follows:

• If authentication succeeds, IRIS updates the CurrentAuthenticationScheme property of the %Net.HttpRequest instance
to indicate the authentication scheme that it used for the most recent authentication.

• If an attempt to get an authentication handle or token for a scheme fails, IRIS saves the underlying error to the
AuthenticationErrors property of the %Net.HttpRequest instance. The value of this property is a $LIST, in which each
item has the form scheme ERROR: message

Negotiate and NTLM are supported only for HTTP 1.1 because these schemes require multiple round trips, and HTTP 1.0
requires the connection to be closed after each request/response pair.

1.2.2.1 Variations

If you know the authentication scheme or schemes allowed by the server, you can bypass the initial round trip from the
server by including an Authorization header that contains the initial token for the server for a chosen scheme. To do
this, set the InitiateAuthentication property of the %Net.HttpRequest instance. For the value of this property, specify the name
of a single authorization scheme allowed by the server. Use one of the following values (case-sensitive):

• Negotiate

• NTLM

• Basic

If you want to customize the authentication schemes to use (or change their order in which they are considered), set the
AuthenticationSchemes of the %Net.HttpRequest instance. For the value of this property, specify a comma-separated list of
authentication scheme names (using the exact values given in the previous list).

1.2.3 Specifying the Authorization Header Directly

For either HTTP 1.0 or HTTP 1.1 (if applicable to your scenario), you can specify the HTTP Authorization header
directly. Specifically, you set the Authorization property equal to the authentication information required by the user agent
for the resource that you are requesting.

If you specify the Authorization property, the Username and Password properties are ignored.

Using Internet Utility Classes 5

Providing Authentication

https://tools.ietf.org/html/rfc4559
https://tools.ietf.org/html/rfc4178
https://tools.ietf.org/html/rfc2617

1.2.4 Enabling Logging for HTTP Authentication

To enable logging for the HTTP authentication, enter the following in the Terminal:

 set $namespace="%SYS"
 kill ^ISCLOG
 set ^%ISCLOG=2
 set ^%ISCLOG("Category","HttpRequest")=5

Log entries are written to the ^ISCLOG global. To write the log to a file (for easier readability), enter the following (still
within the %SYS namespace):

 do ##class(%OAuth2.Utils).DisplayLog("filename")

Where filename is the name of the file to create. The directory must already exist. If the file already exists, it is overwritten.

To stop logging, enter the following (still within the %SYS namespace):

 set ^%ISCLOG=0
 set ^%ISCLOG("Category","HttpRequest")=0

1.3 Specifying Other HTTP Request Properties
Before you send an HTTP request (see “Sending the HTTP Request”), you can specify its properties, as described in the
following sections:

• The Location Property

• Specifying the Internet Media Type and Character Encoding

• Using a Proxy Server

• Using SSL to Connect

• The HTTPVersion, Timeout, WriteTimeout, and FollowRedirect Properties

• Specifying Default Values for HTTP Requests

You can specify default values for all properties of %Net.HttpRequest, as specified in the section listed last.

1.3.1 The Location Property

The Location property specifies the resource that you are requesting from the web server. If you set this property, then when
you call the Get(), Head(), Post(), or Put() method, you can omit the location argument.

For example, suppose that you are sending an HTTP request to the URL http://machine_name/test/index.html

In this case, you would use the following values:

Table 1–1: Example Properties for %Net.HttpRequest

ValueProperties

machine_nameServer

test/index.htmlLocation

6 Using Internet Utility Classes

Sending HTTP Requests

1.3.2 Specifying the Internet Media Type and Character Encoding

You can use the following properties to specify the Internet media type (also called MIME type) and character encoding in
your instance of %Net.HttpRequest and its response:

• ContentType specifies the Content-Type header, which specifies the Internet media type of the request body. The
default type is none.

Possible values include application/json, application/pdf, application/postscript, image/jpeg,
image/png, multipart/form-data, text/html, text/plain, text/xml, and many others. For an extensive
list, see http://www.iana.org/assignments/media-types.

• The ContentCharset property controls the desired character set for any content of the request if the content is of type
text (text/html or text/xml for example). If you do not specify this property, InterSystems IRIS uses the default
encoding of the InterSystems IRIS server.

Note: If you set this property, you must first set the ContentType property.

• The NoDefaultContentCharset property controls whether to include an explicit character set for content of type text
if you have not set the ContentCharset property. By default, this property is false.

If this property is true, then if you have content of type text and if you have not set the ContentCharset property, no
character set is included in the content type; this means that the character set iso-8859–1 is used for the output of the
message.

• The WriteRawMode property affects the entity body (if included). It controls how the body of the request is written.
By default, this property is false and InterSystems IRIS writes the body in the encoding that is specified in the request
headers. If this property is true, InterSystems IRIS writes the body in RAW mode (performing no translation of the
character set).

• The ReadRawMode property controls how the body of the response is read. By default, this property is false and
InterSystems IRIS assumes that the body is in the character set specified in the response headers. If this property is
true, InterSystems IRIS reads the body in RAW mode (performing no translation of the character set).

1.3.3 Using a Proxy Server

You can send an HTTP request via a proxy server. In order to set this up, specify the following properties of your HTTP
request:

• ProxyServer specifies the host name of the proxy server to use. If this property is not null, the HTTP request is directed
to this machine.

• ProxyPort specifies the port to connect to, on the proxy server.

• ProxyAuthorization specifies the Proxy-Authorization header, which you must set if a user agent must authenticate
itself with a proxy. For the value, use the authentication information required by the user agent for the resource that
you are requesting. Also see “Providing Login Credentials.”

• ProxyHTTPS controls whether the HTTP request is for an HTTPS page, rather than a normal HTTP page. This property
is ignored if you have not specified a proxy server. This property changes the default port on the target system to 443,
the proxy port. Also see “Using SSL to Connect.”

• ProxyTunnel specifies whether to establish a tunnel through the proxy to the target HTTP server. If true, the request
uses the HTTP CONNECT command to establish a tunnel. The address of the proxy server is taken from the ProxyServer

and ProxyPort properties. If ProxyHttps is true, then once the tunnel is established, InterSystems IRIS negotiates the
SSL connection. In this case, the Https property is ignored because the tunnel establishes a direct connection with the
target system.

Using Internet Utility Classes 7

Specifying Other HTTP Request Properties

http://en.wikipedia.org/wiki/Internet_media_type
http://www.iana.org/assignments/media-types

For details, see the class documentation for %Net.HttpRequest.

1.3.4 Using SSL to Connect

The %Net.HttpRequest class supports SSL connections. To send the request via SSL, do the following:

1. Set the SSLConfiguration property to the name of the activated SSL/TLS configuration to use.

For information on creating and managing SSL/TLS configurations, see “Using SSL/TLS with InterSystems IRIS”
in the Security Administration Guide. The SSL/TLS configuration includes an option called Configuration Name, which
is the string to use in this setting.

2. Also do one of the following, depending on whether you are using a proxy server:

• If you are not using a proxy server, set the Https property to true.

• If you are using a proxy server, set the ProxyHTTPS property to true.

In this case, to use an SSL connection to the proxy server itself, set the Https property to true.

Note that when you use an SSL connection to a given server, the default port on that server is assumed to be 443 (the
HTTPS port). For example, if you are not using a proxy server and Https is true, this changes the default Port property to
443.

Also see “Using a Proxy Server.”

1.3.4.1 Server Identity Checking

By default, when an instance of %Net.HttpRequest connects to a SSL/TLS secured web server, it checks whether the cer-
tificate server name matches the DNS name used to connect to the server. If these names do not match, the connection is
not permitted. This default behavior prevents “man in the middle” attacks and is described in RFC 2818, section 3.1; also
see RFC 2595, section 2.4.

To disable this check, set the SSLCheckServerIdentity property to 0.

1.3.5 The HTTPVersion,Timeout,WriteTimeout, and FollowRedirect Properties

%Net.HttpRequest also provides the following properties:

• HTTPVersion specifies the HTTP version to use when requesting a page. The default is "HTTP/1.1". You can also
use the "HTTP/1.0".

• Timeout specifies how long, in seconds, to wait for a response from the web server. The default is 30 seconds.

• WriteTimeout specifies how long, in seconds, to wait for a write the web server to complete. By default it will wait
indefinitely. The minimum accepted value is 2 seconds.

• FollowRedirect specifies whether to automatically follow redirection requests from the web server (signalled by the
HTTP status codes in the range 300–399). The default is true if you are using GET or HEAD; otherwise it is false.

1.3.6 Specifying Default Values for HTTP Requests

You can specify default values for all properties of %Net.HttpRequest.

• To specify a default value that apply to all namespaces, set the global node ̂ %SYS("HttpRequest","propname")
where "propname" is the name of the property.

8 Using Internet Utility Classes

Sending HTTP Requests

http://www.ietf.org/rfc/rfc2818
http://www.ietf.org/rfc/rfc2595

• To specify a default value for one namespace, go to that namespace and set the node
^SYS("HttpRequest","propname")

(The ^%SYS global affects the entire installation, and the ^SYS global affects the current namespace.)

For example to specify a default proxy server for all namespaces, set the global node
^%SYS("HttpRequest","ProxyServer")

1.4 Setting and Getting HTTP Headers
You can set values for and get values of the HTTP headers.

Each of the following properties of %Net.HttpRequest contains the value of the HTTP header that has the corresponding
name. These properties are automatically calculated if you do not set them:

• Authorization

• ContentEncoding

• ContentLength (This property is read-only.)

• ContentType (Specifies the Internet media type (MIME type) of the Content-Type header.)

• ContentCharset (Specifies the charset part of the Content-Type header. If you set this, you must first set the
ContentType property.)

• Date

• From

• IfModifiedSince

• Pragma

• ProxyAuthorization

• Referer

• UserAgent

The %Net.HttpRequest class provides general methods that you can use to set and get the main HTTP headers. These
methods ignore Content-Type and other entity headers.

ReturnHeaders()

Returns a string containing the main HTTP headers in this request.

OutputHeaders()

Writes the main HTTP headers to the current device.

GetHeader()

Returns the current value for any main HTTP header that has been set in this request. This method takes one
argument, the name of the header (not case-sensitive); this is a string such as Host or Date

SetHeader()

Sets the value of a header. Typically you use this to set nonstandard headers; most of the usual headers are set via
properties such as Date. This method takes two arguments:

Using Internet Utility Classes 9

Setting and Getting HTTP Headers

http://en.wikipedia.org/wiki/Internet_media_type

1. The name of the header (not case-sensitive), without the colon (:) delimiter; this is a string such as Host or
Date

2. The value of that header

You cannot use this method to set entity headers or read-only headers (Content-Length and Connection).

For details, see the class documentation for %Net.HttpRequest.

1.5 Managing Keep-alive Behavior
If you reuse the same instance of %Net.HttpRequest to send multiple HTTP requests, by default, InterSystems IRIS keeps
the TCP/IP socket open so that InterSystems IRIS does not need to close and reopen it.

If you do not want to reuse the TCP/IP socket, do either of the following:

• Set the SocketTimeout property to 0.

• Add the 'Connection: close' HTTP header in your HTTP request. To do so, add code like the following before you
send the request:

Set sc=http.SetHeader("Connection","close")

Note that the HTTP request headers are cleared after each request, so you would need to include this code before each
request.

The SocketTimeout property of %Net.HttpRequest specifies the window of time, in seconds, during which InterSystems
IRIS will reuse a given socket. This timeout is intended to avoid using a socket that may have been silently closed by a
firewall. The default value for this property is 115. You can set it to a different value.

1.6 Handling HTTP Request Parameters
When you send an HTTP request (see “Sending the HTTP Request”), you can include parameters in the location argument;
for example: "/test.html?PARAM=%25VALUE" sets PARAM equal to %VALUE.

You can also use the following methods to control how your instance of %Net.HttpRequest handles parameters:

InsertParam()

Inserts a parameter into the request. This method takes two string arguments: the name of the parameter and the
value of the parameter. For example:

 do req.InsertParam("arg1","1")

You can insert more than one value for a given parameter. If you do so, the values receive subscripts starting with
1. Within other methods, you use these subscripts to refer to the intended value.

DeleteParam()

Deletes a parameter from the request. The first argument is the name of the parameter. The second argument is
the subscript for the value to delete; use this only if the request contains multiple values for the same parameter.

10 Using Internet Utility Classes

Sending HTTP Requests

CountParam()

Counts the number of values that are associated with a given parameter.

GetParam()

Gets the value of a given parameter in the request. The first argument is the name of the parameter. The second
argument is the default value to return if the request does not have a parameter with this name; the initial value
for this default is the null value. The third argument is the subscript for the value to get; use this only if the request
contains multiple values for the same parameter.

IsParamDefined()

Checks whether a given parameter is defined. This method returns true if the parameter has a value. The arguments
are the same as for DeleteParam().

NextParam()

Retrieves the name of the next parameter, if any, after sorting the parameter names via $Order().

ReturnParams()

Returns the list of parameters in this request.

For details, see the class documentation for %Net.HttpRequest.

1.7 Including a Request Body
An HTTP request can include either a request body or form data. To include a request body, do the following:

1. Create an instance of %GlobalBinaryStream or a subclass. Use this instance for the EntityBody property of your HTTP
request.

2. Use the standard stream interface to write data into this stream. For example:

 Do oref.EntityBody.Write("Data into stream")

For example, you could read a file and use that as the entity body of your custom HTTP request:

 set file=##class(%File).%New("G:\customer\catalog.xml")
 set status=file.Open("RS")
 if $$$ISERR(status) do $System.Status.DisplayError(status)
 set hr=##class(%Net.HttpRequest).%New()
 do hr.EntityBody.CopyFrom(file)
 do file.Close()

1.7.1 Sending a Chunked Request

If you use HTTP 1.1, you can send an HTTP request in chunks. This involves setting the Transfer-Encoding to indicate
that the message is chunked, and using a zero-sized chunk to indicate completion.

Chunked encoding is useful when the server is returning a large amount of data and the total size of the response is not
known until the request is fully processed. In such a case, you would normally need to buffer the entire message until the
content length could be computed (which %Net.HttpRequest does automatically).

To send a chunked request, do the following:

Using Internet Utility Classes 11

Including a Request Body

1. Create a subclass of %Net.ChunkedWriter, which is an abstract stream class that defines an interface for writing data
in chunks.

In this subclass, implement the OutputStream() method.

2. In your instance of %Net.HttpRequest, create an instance of your %Net.ChunkedWriter subclass and populate it with
the request data that you want to send.

3. Set the EntityBody property of your %Net.HttpRequest instance equal to this instance of %Net.ChunkedWriter.

When you send the HTTP request (see “Sending the HTTP Request”), it calls the OutputStream() method of the
EntityBody property.

In your subclass of %Net.ChunkedWriter, the OutputStream() method should examine the stream data, decide whether to
chunk it and how to do so, and invoke the inherited methods of the class to write the output.

The following methods are available:

WriteSingleChunk()

Accepts a string argument and writes the string as non-chunked output.

WriteFirstChunk()

Accepts a string argument. Writes the appropriate Transfer-Encoding heading to indicate a chunked message, and
then writes the string as the first chunk.

WriteChunk()

Accepts a string argument and writes the string as a chunk.

WriteLastChunk()

Accepts a string argument and writes the string as a chunk, followed by a zero length chunk to mark the end.

If non-null, the TranslateTable property specifies the translation table to use to translate each string as it is written. All of
the preceding methods check this property.

1.8 Sending Form Data
An HTTP request can include either a request body or form data. To include a form data, use the following methods:

InsertFormData()

Inserts form data into the request. This method takes two string arguments: the name of the form item and the
associated value. You can insert more than one value for a given form item. If you do so, the values receive sub-
scripts starting with 1. Within other methods, you use these subscripts to refer to the intended value

DeleteFormData()

Deletes form data from the request. The first argument is the name of the form item. The second argument is the
subscript for the value to delete; use this only if the request contains multiple values for the same form item.

CountFormData()

Counts the number of values associated with a given name, in the request.

12 Using Internet Utility Classes

Sending HTTP Requests

IsFormDataDefined()

Checks whether a given name is defined

NextFormData()

Retrieves the name of the next form item, if any, after sorting the names via $Order().

For details on these methods, see the class documentation for %Net.HttpRequest.

1.8.1 Example 1

After inserting the form data, you generally call the Post() method. For example:

 Do httprequest.InsertFormData("element","value")
 Do httprequest.Post("/cgi-bin/script.CGI")

1.8.2 Example 2

For another example:

 Set httprequest=##class(%Net.HttpRequest).%New()
 set httprequest.SSLConfiguration="MySSLConfiguration"
 set httprequest.Https=1
 set httprequest.Server="myserver.com"
 set httprequest.Port=443
 Do httprequest.InsertFormData("portalid","2000000")
 set tSc = httprequest.Post("/url-path/")
 Quit httprequest.HttpResponse

1.9 Inserting, Listing, and Deleting Cookies
%Net.HttpRequest automatically manages cookies sent from the server; if the server sends a cookie, your instance of
%Net.HttpRequest will return this cookie on the next request. (For this mechanism to work, you need to reuse the same
instance of %Net.HttpRequest.)

Use the following methods to manage cookies within your instance of %Net.HttpRequest:

InsertCookie()

Inserts a cookie into the request. Specify the following arguments:

1. Name of the cookie.

2. Value of the cookie.

3. Path where the cookie should be stored.

4. Name of the machine from which to download the cookie.

5. Date and time when the cookie expires.

GetFullCookieList()

Returns the number of cookies and returns (by reference) an array of cookies.

DeleteCookie()

Deletes a cookie from the request.

Using Internet Utility Classes 13

Inserting, Listing, and Deleting Cookies

Remember that cookies are specific to an HTTP server. When you insert a cookie, you are using a connection to a specific
server, and the cookie is not available on other servers.

For details on these methods, see the class documentation for %Net.HttpRequest.

1.10 Sending the HTTP Request
After you have created the HTTP request, use one of the following methods to send it:

Delete()

method Delete(location As %String = "",
 test As %Integer = 0,
 reset As %Boolean = 1) as %Status

Issues the HTTP DELETE request.

Get()

method Get(location As %String = "",
 test As %Integer = 0,
 reset As %Boolean = 1) as %Status

Issues the HTTP GET request. This method causes the web server to return the page requested.

Head()

method Head(location As %String,
 test As %Integer = 0,
 reset As %Boolean = 1) as %Status

Issues the HTTP HEAD request. This method causes the web server to return just the headers of the response and
none of the body.

Patch()

method Patch(location As %String = "",
 test As %Integer = 0,
 reset As %Boolean = 1) as %Status

Issues the HTTP PATCH request. Use this method to partial changes to an existing resource.

Post()

method Post(location As %String = "",
 test As %Integer = 0,
 reset As %Boolean = 1) as %Status

Issues the HTTP POST request. Use this method to send data to the web server such as the results of a form, or
upload a file. For an example, see “Sending Form Data.”

Put()

method Put(location As %String = "",
 test As %Integer = 0,
 reset As %Boolean = 1) as %Status

Issues the HTTP PUT request. Use this method to upload data to the web server. PUT requests are not common.

14 Using Internet Utility Classes

Sending HTTP Requests

Send()

method Send(type As %String,
 location As %String,
 test As %Integer = 0,
 reset As %Boolean = 1) as %Status

Sends the specified type of HTTP request to the server. This method is normally called by the other methods, but
is provided for use if you want to use a different HTTP verb. Here type is a string that specifies an HTTP verb
such as "POST".

In all cases:

• Each method returns a status, which you should check.

• If the method completes correctly, the response to this request will be in the HttpResponse property.

• The location argument is the URL to request, for example: "/test.html".

• The location argument can contain parameters, which are assumed to be already URL-escaped, for example:
"/test.html?PARAM=%25VALUE" sets PARAM equal to %VALUE.

• Use the test argument to check that you are sending what you are expecting to send:

– If test is 1 then instead of connecting to a remote machine, the method will just output what it would have send
to the web server to the current device.

– If test is 2 then it will output the response to the current device after issuing the HTTP request.

• Each method automatically calls the Reset() method after reading the response from the server, except if test=1 or if
reset=0.

The Reset() method resets the %Net.HttpRequest instance so that it can issue another request. This is much faster than
closing this object and creating a new instance. This also moves the value of the Location header to the Referer
header.

For example:

 Set httprequest=##class(%Net.HttpRequest).%New()
 Set httprequest.Server="www.intersystems.com"
 Do httprequest.Get("/")

For other examples, see the class documentation for %Net.HttpRequest.

1.11 Creating and Sending Multipart POST Requests
To create and send a multipart POST request, use the %Net.MIMEPart classes, which are discussed more fully later in this
book. The following example sends a POST request with two parts. The first part includes file binary data, and the second
part includes the file name.

ClassMethod CorrectWriteMIMEMessage3(header As %String)
{
 // Create root MIMEPart
 Set RootMIMEPart=##class(%Net.MIMEPart).%New()

 //Create binary subpart and insert file data
 Set BinaryMIMEPart=##class(%Net.MIMEPart).%New()
 Set contentdisp="form-data; name="_$CHAR(34)_"file"_$CHAR(34)_"; filename="
 $CHAR(34)"task4059.txt"_$CHAR(34)
 Do BinaryMIMEPart.SetHeader("Content-Disposition",contentdisp)

 Set stream=##class(%FileBinaryStream).%New()
 Set stream.Filename="/home/tabaiba/prueba.txt"
 Do stream.LinkToFile("/home/tabaiba/prueba.txt")

Using Internet Utility Classes 15

Creating and Sending Multipart POST Requests

 Set BinaryMIMEPart.Body=stream
 Do BinaryMIMEPart.SetHeader("Content-Type","text/plain")

 // Create text subpart
 Set TextMIMEPart=##class(%Net.MIMEPart).%New()
 Set TextMIMEPart.Body=##class(%GlobalCharacterStream).%New()
 Do TextMIMEPart.Body.Write("/home/tabaiba/prueba.txt")

 // specify some headers
 Set TextMIMEPart.ContentType="text/plain"
 Set TextMIMEPart.ContentCharset="us-ascii"
 Do TextMIMEPart.SetHeader("Custom-header",header)

 // Insert both subparts into the root part
 Do RootMIMEPart.Parts.Insert(BinaryMIMEPart)

 // create MIME writer; write root MIME message
 Set writer=##class(%Net.MIMEWriter).%New()

 // Prepare outputting to the HttpRequestStream
 Set SentHttpRequest=##class(%Net.HttpRequest).%New()
 Set status=writer.OutputToStream(SentHttpRequest.EntityBody)
 if $$$ISERR(status) {do $SYSTEM.Status.DisplayError(status) Quit}

 // Now write down the content
 Set status=writer.WriteMIMEBody(RootMIMEPart)
 if $$$ISERR(status) {do $SYSTEM.Status.DisplayError(status) Quit}

 Set SentHttpRequest.Server="congrio"
 Set SentHttpRequest.Port = 8080

 Set ContentType= "multipart/form-data; boundary="_RootMIMEPart.Boundary
 Set SentHttpRequest.ContentType=ContentType

 set url="alfresco/service/sample/upload.json?"
 _"alf_ticket=TICKET_caee62bf36f0ea5bd51194fce161f99092b75f62"

 set status=SentHttpRequest.Post(url,0)
 if $$$ISERR(status) {do $SYSTEM.Status.DisplayError(status) Quit}
}

1.12 Accessing the HTTP Response
After you send an HTTP request, the HttpResponse property of the request is updated. This property is an instance of
%Net.HttpResponse. This section describes how to use the response object. It includes the following topics:

• Accessing the Data of the Response

• Getting an HTTP Header by Name

• Accessing Other Information about the Response

For details, see the class documentation for %Net.HttpRequest.

1.12.1 Accessing the Data of the Response

The body of the HTTP response is contained in the Data property of the response. This property contains a stream object
(specifically %GlobalBinaryStream). To work with this stream, use the standard stream methods: Write(), WriteLine(),
Read(), ReadLine(), Rewind(), MoveToEnd(), and Clear(). You can also use the Size property of the stream.

The ReadRawMode property of the request controls how the body of the response is read.

• By default, this property is false and InterSystems IRIS assumes that the body is in the character set specified in the
HTTP headers of the response (and translates the character set accordingly).

• If this property is true, InterSystems IRIS reads the body in RAW mode (performing no translation of the character
set).

16 Using Internet Utility Classes

Sending HTTP Requests

You can also use the OutputToDevice() method, which writes the full response to the current device. The headers are not
in the same order as generated by the web server.

The following shows a simple example in which we copy the response stream to a file and save it:

 set request=##class(%Net.HttpRequest).%New()
 set request.Server="tools.ietf.org"
 set request.Https=1
 set request.SSLConfiguration="TEST"
 set status=request.Get("/html/rfc7158")
 if $$$ISERR(status) {
 do $system.OBJ.DisplayError()
 } else {
 set response=request.HttpResponse
 }

 Set file=##class(%FileCharacterStream).%New()
 set file.Filename="c:/temp/rfc7158.html"
 set status=file.CopyFrom(response.Data)
 if $$$ISERR(status) {
 do $system.OBJ.DisplayError()
 }
 do file.%Close()

1.12.2 Getting an HTTP Header by Name

The %Net.HttpResponse class stores its HTTP headers in an InterSystems IRIS multidimensional array. To access the
headers, use the following methods:

GetHeader()

Returns the value of the given header.

GetNextHeader()

Returns the name of the next header after the given header.

Each of these methods takes a single argument, a string that is the name of an HTTP header.

You can also use the OutputHeaders() method, which writes the HTTP headers to the current device (although not in the
same order they were generated).

1.12.3 Accessing Other Information about the Response

The %Net.HttpResponse class provides properties that store other specific parts of the HTTP response:

• StatusLine stores the HTTP status line, which is the first line of the response.

• StatusCode stores the HTTP status code.

• ReasonPhrase stores the human-readable reason that corresponds to StatusCode.

• ContentInfo stores additional information about the response body.

• ContentType stores the value of the Content-Type: header.

• HttpVersion indicates the version of HTTP that is supported by the web server that sent the response.

Using Internet Utility Classes 17

Accessing the HTTP Response

2
Sending and Receiving Email

This chapter describes how you can use InterSystems IRIS to send and receive MIME email messages. It discusses the
following topics:

• Supported Email Protocols

• How InterSystems IRIS Represents MIME Email Messages

• Creating Single-part Email Messages

• Creating Multipart Email Messages

• Specifying Email Message Headers

• Adding Attachments to a Message

• Using an SMTP Server to Send Email

• Fetching Email from a POP3 Server

• Working with a Received Email Message

• Automatic Encoding and Character Translation

Also see the class documentation for examples and extensive comments.

Note: The examples in this chapter are organized so that the methods for managing email messages can be used with
different email servers, which is useful during testing and demonstrations. This is not necessarily the code orga-
nization that is most suitable for production needs.

2.1 Supported Email Protocols
Email sends messages across the Internet using standard protocols. InterSystems IRIS supports three of these protocols, as
follows:

• InterSystems IRIS provides an object representation of MIME email messages. It supports text and non-text attachments,
single-part or multipart message bodies, and headers in ASCII and non-ASCII character sets. (For more general support
of MIME parts, see the chapter “Creating and Writing MIME Messages.”)

• You can send email via an SMTP server. SMTP (Simple Mail Transport Protocol) is the Internet standard for sending
email.

Using Internet Utility Classes 19

• You can also retrieve email from an email server via POP3, the most common standard for retrieving email from remote
servers.

Note: InterSystems IRIS does not provide a mail server. Instead, it provides the ability to connect to and interact with
mail servers.

2.2 How InterSystems IRIS Represents MIME Email
Messages
First, it is useful to understand how InterSystems IRIS represents MIME email messages.

In general, a multipart MIME message consists of the following pieces:

• A set of message headers, each of which contains information such as the address to which the message is sent. This
also includes the Mime-Type header and the Content-Type header for the entire message.

For a multipart message, the Content-Type header must be multipart/mixed or some other subtype of
multipart; the MIME standard has many variants.

• Multiple message parts, each of which consists of the pieces:

– A set of content headers, which includes the Content-Type header and other headers specific to this part.

– A body, which is either text or binary, and which can be in a different character set than the bodies of other parts.

InterSystems IRIS uses two classes to represent email messages: %Net.MailMessage and %Net.MailMessagePart, the
superclass of %Net.MailMessage. The following graphic shows the relationship between these classes:

In general:

• To represent an ordinary, one-part message, you use %Net.MailMessage

• To represent a multipart message, you use %Net.MailMessage as the parent message and you use multiple instances
of %Net.MailMessagePart as its parts.

The following sections provide details.

20 Using Internet Utility Classes

Sending and Receiving Email

2.3 Creating Single-part Email Messages
To create a single-part email message, you use the %Net.MailMessage class. To create a mail message, do the following:

1. Create an instance of %Net.MailMessage.

Tip: You can specify a character set as the argument to %New(); if you do so, that sets the Charset property for
the message. For information on how this affects the message, see “Automatic Encoding and Character
Translation.”

2. Set the To, From, and Subject properties of your instance.

• To — The list of email addresses to which this message will be sent. This property is a standard InterSystems IRIS
list class; to work with it, you use the standard list methods: Insert(), GetAt(), RemoveAt(), Count(), and Clear().

• From — The email address this message is sent from.

• Subject — The subject of the message, if this is required by the SMTP server you are using.

3. Optionally set Date, Cc, Bcc, and other properties. For details, see “Specifying Basic Email Headers.”

4. If the message is not plain text, set the following properties to indicate the kind of message you are creating:

• If this is an HTML message, set the IsHTML property to 1.

• If this is a binary message, set the IsBinary property to 1.

5. To specify the character set of the message and its headers, set the Charset property as needed. (For details on how
this affects the message, see “Automatic Encoding and Character Translation.”)

Important: It is important to specify the character set before you add the contents of the message.

6. Add the contents of the message:

• For plain text or HTML, use the TextData property, which is an instance of %FileCharacterStream. You do not
need to specify the TranslateTable property of this stream; that occurred automatically when you specified the
character set of the mail message.

• For binary data, use the BinaryData property, which is an instance of %FileBinaryStream.

Tip: When you specify the Filename property of the stream, be sure to use a directory to which the users will have
write access.

To work with these properties, use the standard stream methods: Write(), WriteLine(), Read(), ReadLine(), Rewind(),
MoveToEnd(), and Clear(). You can also use the Size property of the stream, which gives you the size of the message
contents.

Note: You should be aware of the requirements of the SMTP server that you are using. For example, some SMTP servers
require that you include a Subject header. Similarly, some SMTP servers do not permit arbitrary From headers.

Similarly, some SMTP servers recognize the Priority header and others recognize X-Priority instead.

Also see “Creating Multipart Email Messages.”

Using Internet Utility Classes 21

Creating Single-part Email Messages

2.3.1 Example 1: CreateTextMessage()

The following method creates a simple message and specifies the addresses for it:

ClassMethod CreateTextMessage() As %Net.MailMessage
{
 Set msg = ##class(%Net.MailMessage).%New()
 set msg.From = "test@test.com"
 Do msg.To.Insert("xxx@xxx.com")
 Do msg.Cc.Insert("yyy@yyy.com")
 Do msg.Bcc.Insert("zzz@zzz.com")
 Set msg.Subject="subject line here"
 Set msg.IsBinary=0
 Set msg.IsHTML=0
 Do msg.TextData.Write("This is the message.")

 Quit msg
}

2.3.2 Example 2: SimpleMessage()

You may instead prefer to specify the addresses when you actually send the message (see “Example 3: SendMessage()”
in “Using an SMTP Server to Send Email”). The following variation of the preceding example generates a text message
with no addresses:

ClassMethod SimpleMessage() As %Net.MailMessage
{
 Set msg = ##class(%Net.MailMessage).%New()
 Set msg.Subject="Simple message "_$h
 Set msg.IsBinary=0
 Set msg.IsHTML=0
 Do msg.TextData.Write("This is the message.")
 Quit msg
}

There are other examples in the SAMPLES namespace. To find them, search for %Net.MailMessage in that namespace.

2.4 Creating Multipart Email Messages
To create a multipart email message:

1. Create an instance of %Net.MailMessage and set its To, From, and Subject properties. Optionally set other properties
to specify other message headers.

2. Set the IsMultiPart property to 1.

3. Set the MultiPartType property to one of the following: "related", "alternative", or "mixed". This affects the
Content-Type header of the entire message.

4. For each part that the message should contain, create an instance of %Net.MailMessagePart and specify its properties
as described in “Creating Single-part Email Messages” — starting with step 4.

5. For the parent email message, set the Parts property, which is an array. Insert each child message part into this array.

When you send the message, the %Net.SMTP class automatically sets the Content-Type header for the message as
appropriate (given the value of the MultiPartType property).

22 Using Internet Utility Classes

Sending and Receiving Email

2.5 Specifying Email Message Headers
As noted previously, both the message itself and each part of a message has a set of headers.

The %Net.MailMessage and %Net.MailMessagePart classes provide properties that give you easy access to the most commonly
used headers, but you can add any header you need. This section provides information on all the headers as well as how to
create custom headers.

The headers of a given message part are in the character set specified by the Charset property of that part.

Note: You should be aware of the requirements of the SMTP server that you are using. For example, some SMTP servers
require that you include a Subject header. Similarly, some SMTP servers do not permit arbitrary From headers.

Similarly, some SMTP servers recognize the Priority header and others recognize X-Priority instead.

2.5.1 Specifying Basic Email Headers

Set the following properties (only in %Net.MailMessage) to set the most commonly used headers of the message itself:

• To — (Required) The list of email addresses to which this message will be sent. This property is a standard InterSystems
IRIS list; to work with it, you use the standard list methods: Insert(), GetAt(), RemoveAt(), Count(), and Clear().

• From — (Required) The email address this message is sent from.

• Date — The date of this message.

• Subject — (Required) A string containing the subject for this message.

• Sender — The actual sender of the message.

• Cc — The list of carbon copy addresses to which this message will be sent.

• Bcc — The list of blind carbon copy addresses to which this message will be sent.

2.5.2 Content-Type Header

When you send the message, the Content-Type header for the message and for each message part is automatically set
as follows:

• If the message is plain text (IsHTML equals 0 and IsBinary equals 0), the Content-Type header is set to
"text/plain".

• If the message is HTML (IsHTML equals 1 and IsBinary equals 0), the Content-Type header is set to "text/html".

• If the message is binary (IsBinary equals 1), the Content-Type header is set to "application/octet-stream".

• If the message is multipart, the Content-Type header is set as appropriate for the value of the MultiPartType property.

Both %Net.MailMessage and %Net.MailMessagePart provide the ContentType property, which gives you access to the
Content-Type header.

2.5.3 Content-Transfer-Encoding Header

Both %Net.MailMessage and %Net.MailMessagePart provide the ContentTransferEncoding property, which provides an easy
way to specify the Content-Transfer-Encoding header of the message or the message part.

This property can be one of the following: "base64" "quoted-printable" "7bit" "8bit"

Using Internet Utility Classes 23

Specifying Email Message Headers

The default is as follows:

• For a binary message or message part: "base64"

Important: Note that if the content is "base64" encoded, it cannot contain any Unicode characters. If the content
you wish to send includes Unicode characters, then make sure to use $ZCONVERT to convert the
content to UTF-8, and then base-64 encode it. For example:

set BinaryText=$ZCONVERT(UnicodeText,"O","UTF8")
set Base64Encoded=$system.Encryption.Base64Encode(BinaryText)

The recipient must use the reverse process to decode the text:

set BinaryText=$system.Encryption.Base64Decode(Base64Encoded)
set UnicodeText=$ZCONVERT(BinaryText,"I","UTF8")

• For a text message or message part: "quoted-printable"

Also see “Automatic Encoding and Character Translation.”

2.5.4 Custom Headers

With both %Net.MailMessage and %Net.MailMessagePart, you can set or get custom headers by accessing the Headers

property, which is an array with the following structure:

Array ValueArray Key

Value of the headerName of the header, such as "Priority"

You use this property to contain additional headers such as X-Priority and others. For example:

 do msg.Headers.SetAt(1,"X-Priority")
 do msg.Headers.SetAt("High","X-MSMail-Priority")
 do msg.Headers.SetAt("High","Importance")

Different email servers and clients recognize different headers, so it can be useful to set multiple similar headers to be sure
that the server or client receives a message with a header it can recognize.

2.6 Adding Attachments to a Message
You can add attachments to an email message or message part (specifically, to an instance of %Net.MailMessagePart or
%Net.MailMessage). To do so, use the following methods:

Each of these methods adds the attachment to the Parts array of the original message (or message part), and automatically
sets the IsMultiPart property to 1.

AttachFile()

method AttachFile(Dir As %String,
 File As %String,
 isBinary As %Boolean = 1,
 charset As %String = "",
 ByRef count As %Integer) as %Status

Attaches the given file to the email message. By default the file is sent as a binary attachment, but you can specify
instead that it is text. You can also specify the character set that the file uses if it is text.

24 Using Internet Utility Classes

Sending and Receiving Email

Specifically, this method creates an instance of %Net.MailMessagePart and places the contents of the file in the
BinaryData or TextData property as appropriate, and sets the Charset property and TextData.TranslateTable prop-
erties if needed. The method returns, by reference, an integer that indicates the position of this new message part
within the Parts array.

This method also sets the Dir and FileName properties of the message or message part.

AttachStream()

method AttachStream(stream As %Stream.Object,
 Filename As %String,
 isBinary As %Boolean = 1,
 charset As %String = "",
 ByRef count As %Integer) as %Status

Attaches the given stream to the email message. The attachment is considered a file attachment if Filename is
specified. Otherwise it is considered an inline attachment. See the comments for AttachFile().

AttachNewMessage()

method AttachNewMessage() as %Net.MailMessagePart

Creates a new instance of %Net.MailMessage, adds it to the message, and returns the newly modified parent message
or message part.

AttachEmail()

method AttachEmail(mailmsg As %Net.MailMessage)

Given an email message (an instance of %Net.MailMessage), this method adds it to the message. This method also
sets the Dir and FileName properties of the message or message part.

Note: This method sets ContentType to "message/rfc822". In this case, you cannot add any other attach-
ments.

2.6.1 Example: MessageWithAttachment()

The following example generates a simple email message with one hardcoded attachment. It does not provide any addresses
for the message; you can provide that information when you actually send the message (see “Example 3: SendMessage()”
in “Using an SMTP Server to Send Email”).

ClassMethod MessageWithAttachment() As %Net.MailMessage
{
 Set msg = ##class(%Net.MailMessage).%New()
 Set msg.Subject="Message with attachment "_$h
 Set msg.IsBinary=0
 Set msg.IsHTML=0
 Do msg.TextData.Write("This is the main message body.")

 //add an attachment
 Set status=msg.AttachFile("c:\", "GNET.pdf")
 If $$$ISERR(status) {
 Do $System.Status.DisplayError(status)
 Quit $$$NULLOREF
 }

 Quit msg
}

For other examples, see the class reference for the %Net.MailMessagePart class.

Using Internet Utility Classes 25

Adding Attachments to a Message

2.7 Using an SMTP Server to Send Email
If you have access to an SMTP server, you can send email messages. The SMTP server must be running and you must have
the needed permissions to use it. To send email, do the following:

1. Create an instance of %Net.SMTP and set its properties as needed, especially the following:

• smtpserver is the name of the SMTP server you are using.

• port is the port you are using on the SMTP server; the default is 25.

• timezone specifies the time zone of the server, as specified by RFC 822, for example "EST" or "-0400" or
"LOCAL". If this is not set, the message uses universal time.

This object describes the SMTP server you will use.

2. If the SMTP server requires authentication, specify the necessary credentials. To do so:

a. Create an instance of %Net.Authenticator.

b. Set the UserName and Password properties of this object.

c. Set the authenticator property of your %Net.SMTP instance equal to this object.

d. If the message itself has an authorized sender, set the AuthFrom property of your %Net.SMTP instance.

3. To use an SSL/TLS connection to the SMTP server:

a. Set the SSLConfiguration property to the name of the activated SSL/TLS configuration to use.

For information on creating and managing SSL/TLS configurations, see “Using SSL/TLS with InterSystems
IRIS” in the Security Administration Guide. The SSL/TLS configuration includes an option called Configuration

Name, which is the string to use in this setting.

b. Set the UseSTARTTLS property to either 0 or 1.

In most cases, use the value 0. Use the value 1 for the case in which the server interaction begins on a normal TCP
socket and then switches to TLS on the same port as the normal socket. For details, see RFC 3207.

c. Optionally set the SSLCheckServerIdentity property to 1. Do this if you want to verify the host server name in the
certificate.

4. Create the email message to send (as described in “Creating Single-part Email Messages” and “Creating Multipart
Email Messages”).

5. Call the Send() method of your SMTP instance. This method returns a status, which you should check.

6. If the returned status indicates an error, check the Error property, which contains the error message itself.

7. Check the FailedSend property, which contains a list of email addresses for which the send action failed.

The examples in the following sections use a couple of different free SMTP services that were available at the time this
manual was written. No particular endorsement is implied by the selection of these services. Also note that the examples
do not show the actual passwords.

There are other examples in the SAMPLES namespace. To find them, search for %Net.SMTP in that namespace. Also see
the class documentation for %Net.SMTP.

26 Using Internet Utility Classes

Sending and Receiving Email

https://www.ietf.org/rfc/rfc0822.txt
http://www.ietf.org/rfc/rfc3207.txt

Important: %Net.SMTP writes the message body into a temporary file stream. By default, this file is written to the
namespace directory and if the directory requires special write permissions, the file is not created and you
get an empty message body.

You can define a new path for these temporary files and choose a path that does not restrict write access
(for example, /tmp). To do so, set the global node %SYS("StreamLocation",namespace) where
namespace is the namespace in which your code is running. For example:

Set ^%SYS("StreamLocation","SAMPLES")="/tmp"

If %SYS("StreamLocation",namespace) is null, then InterSystems IRIS uses the directory specified
by %SYS("TempDir",namespace). If %SYS("TempDir",namespace) is not set, then InterSystems
IRIS uses the directory specified by %SYS("TempDir")

2.7.1 Example 1: HotPOPAsSMTP() and SendSimpleMessage()

This example consists of two methods that you use together. The first creates an instance of %Net.SMTP that uses a test
account that has already been set up on the HotPOP SMTP server:

ClassMethod HotPOPAsSMTP() As %Net.SMTP
{
 Set server=##class(%Net.SMTP).%New()
 Set server.smtpserver="smtp.hotpop.com"
 //HotPOP SMTP server uses the default port (25)
 Set server.port=25

 //Create object to carry authentication
 Set auth=##class(%Net.Authenticator).%New()
 Set auth.UserName="isctest@hotpop.com"
 Set auth.Password="123pass"

 Set server.authenticator=auth
 Set server.AuthFrom=auth.UserName
 Quit server
}

The next method sends a simple, unique message, using an SMTP server that you provide as the argument:

ClassMethod SendSimpleMessage(server As %Net.SMTP) As %List
{
 Set msg = ##class(%Net.MailMessage).%New()
 Set From=server.authenticator.UserName
 Set:From="" From="xxx@xxx.com"
 Set msg.From = From

 Do msg.To.Insert("xxx@xxx.com")
 //Do msg.Cc.Insert("yyy@yyy.com")
 //Do msg.Bcc.Insert("zzz@zzz.com")
 Set msg.Subject="Unique subject line here "_$H
 Set msg.IsBinary=0
 Set msg.IsHTML=0
 Do msg.TextData.Write("This is the message.")

 Set status=server.Send(msg)
 If $$$ISERR(status) {
 Do $System.Status.DisplayError(status)
 Write server.Error
 Quit ""
 }
 Quit server.FailedSend
}

2.7.2 Example 2:YPOPsAsSMTP()

This example creates an instance of an instance of %Net.SMTP that uses YPOPs, which is client software that provides
SMTP and POP3 access to a Yahoo email account. It uses a test account that has already been set up for this purpose:

Using Internet Utility Classes 27

Using an SMTP Server to Send Email

ClassMethod YPOPsAsSMTP() As %Net.SMTP
{
 Set server=##class(%Net.SMTP).%New()
 //local host acts as the server
 Set server.smtpserver="127.0.0.1"
 //YPOPs uses default port, apparently
 Set server.port=25

 //Create object to carry authentication
 Set auth=##class(%Net.Authenticator).%New()
 //YPOPs works with a Yahoo email account
 Set auth.UserName="isc.test@yahoo.com"
 Set auth.Password="123pass"

 Set server.authenticator=auth
 Set server.AuthFrom=auth.UserName
 Quit server
}

You can use this with the SendSimpleMessage method shown in the previous example.

2.7.3 Example 3: SendMessage()

The following, more flexible method accepts both an SMTP server and an email message. The email message should already
include a subject line (if required by the SMTP server), but does not have to include addresses. This method then sends the
email message to a set of hardcoded test destinations:

ClassMethod SendMessage(server As %Net.SMTP, msg as %Net.MailMessage) as %Status
{
 Set From=server.authenticator.UserName
 //make sure From: user is same as used in authentication
 Set msg.From = From

 //finish addressing the message
 Do msg.To.Insert("xxx@xxx.com")
 //send the message to various test email addresses
 Do msg.To.Insert("isctest@hotpop.com")
 Do msg.To.Insert("isc_test@hotmail.com")
 Do msg.To.Insert("isctest001@gmail.com")
 Do msg.To.Insert("isc.test@yahoo.com")

 Set status=server.Send(msg)
 If $$$ISERR(status) {
 Do $System.Status.DisplayError(status)
 Write server.Error
 Quit $$$ERROR($$$GeneralError,"Failed to send message")
 }
 Quit $$$OK
}

This example is meant for use with the example methods SimpleMessage and MessageWithAttachment described
in “Adding Attachments to a Message”.

2.7.4 Other Properties of %Net.SMTP

The %Net.SMTP class also has some other properties that you might need, depending on the SMTP server you are using:

• AllowHeaderEncoding specifies whether the Send() method encodes non-ASCII header text. The default is 1, which
means that non-ASCII header text is encoded as specified by RFC 2047.

• ContinueAfterBadSend specifies whether to continue trying to send a message after detecting a failed email address. If
ContinueAfterBadSend is 1, the system will add the failed email address to the list in the FailedSend property. The
default is 0.

• ShowBcc specifies whether the Bcc headers are written to the email message. These will normally be filtered out by
the SMTP server.

28 Using Internet Utility Classes

Sending and Receiving Email

https://www.ietf.org/rfc/rfc2047.txt

2.8 Fetching Email from a POP3 Server
This section discusses how to use the %Net.POP3 class to fetch email messages. It includes the following topics:

• Communicating with a POP3 Server

• Getting Information about the Mailbox

• Fetching Messages from the Mailbox

• Saving Attachments as Files

• Getting Attached Email Messages

• Other Message Retrieval Methods

• Deleting Messages

Also see the class documentation for %Net.FetchMailProtocol for examples and extensive comments. %Net.FetchMailProtocol

is the abstract superclass of %Net.POP3.

2.8.1 Communicating with a POP3 Server

If you have the needed permissions and if the mail server is running, you can download and process email messages from
it using the POP3 protocol. In general, to communicate with a POP3 server, you log in, perform a series of actions that
affect a mailbox, and then either commit or roll back any changes. To do this in InterSystems IRIS:

1. Create an instance of %Net.POP3. This object describes the POP3 server you will use.

2. Optionally specify the following properties of your instance of %Net.POP3:

• port — Specifies the port you will use; the default is 110.

• timeout — Specifies the read timeout in seconds; the default is 30 seconds.

• StoreAttachToFile — Specifies whether to save each attachment to a file, when a message is read (when the message
includes the content-disposition; attachment header). The default is false.

Note that this setting does nothing unless AttachDir is also set.

• StoreInlineToFile — Specifies whether to save each inline attachment to a file, when a message is read (when the
message includes the content-disposition; inline header). The default is false.

Note that this setting does nothing unless AttachDir is also set.

• AttachDir — Specifies the directory into which the attachment are saved. There is no default. Make sure to terminate
the name of the directory with a slash (/) or backslash (\), as appropriate for the operating system. Also make
sure that this is directory already exists, and the users have write access to it.

• IgnoreInvalidBase64Chars — Specifies whether to ignore invalid characters found during base–64 decoding. The
default is false (and invalid characters result in an error). Note that RFC 2045 is ambiguous about whether unex-
pected characters should be ignored or should result in an error during base–64 decoding.

3. To use an SSL/TLS connection to the POP3 server:

a. Set the SSLConfiguration property to the name of the activated SSL/TLS configuration to use.

For information on creating and managing SSL/TLS configurations, see “Using SSL/TLS with InterSystems
IRIS” in the Security Administration Guide. The SSL/TLS configuration includes an option called Configuration

Name, which is the string to use in this setting.

Using Internet Utility Classes 29

Fetching Email from a POP3 Server

https://www.ietf.org/rfc/rfc2045.txt

b. Set the UseSTARTTLS property to either 0 or 1.

In most cases, use the value 0. Use the value 1 for the case in which the server interaction begins on a normal TCP
socket and then switches to TLS on the same port as the normal socket. For details, see RFC 2595.

c. Optionally set the SSLCheckServerIdentity property to 1. Do this if you want to verify the host server name in the
certificate.

4. Call the Connect() method of your instance. This method takes three arguments, in order:

a. The name of the POP3 server

b. A username

c. A password

5. Use the methods of your instance to examine the mailbox, retrieve messages, and delete messages. The following
sections provide details.

6. Optionally, to prevent the connection from timing out, call the Ping() method of your %Net.POP3 instance.

7. Optionally, if you have marked messages for deletion but now choose not to delete them, call the RollbackDeletes()
method of your %Net.POP3 instance.

8. When you are done making changes to the mailbox, call one of the following methods:

• QuitAndCommit() — Commits your changes and logs out of the mail server.

• QuitAndRollback() — Rolls back your changes and logs out of the mail server.

Each of these methods returns a status, which you should check before continuing. Also see the class reference for %Net.POP3

for complete method signatures.

The examples in the following sections use two different free POP3 services that were available at the time this manual
was written. No particular endorsement is implied by the selection of these services. Also note that the examples do not
show the actual passwords.

2.8.1.1 Example 1: HotPOPAsPOP3()

The following method logs into the HotPOP POP3 server using an account that was previously set up for this purpose:

ClassMethod HotPOPAsPOP3() As %Net.POP3
{
 Set server=##class(%Net.POP3).%New()

 //HotPOP POP3 server uses the default port
 //but let's set it anyway
 Set server.port=110

 //just in case we plan to fetch any messages
 //that have attachments
 Set server.StoreAttachToFile=1
 Set server.StoreInlineToFile=1
 Set server.AttachDir="c:\DOWNLOADS\"

 Set servername="pop.hotpop.com"
 Set user="isctest@hotpop.com"
 Set pass="123pass"

 Set status=server.Connect(servername,user,pass)
 If $$$ISERR(status) {
 Do $System.Status.DisplayError(status)
 Quit $$$NULLOREF
 }
 Quit server
}

30 Using Internet Utility Classes

Sending and Receiving Email

http://www.ietf.org/rfc/rfc2595.txt

This method returns the %Net.POP3 server instance. Many of the examples later in this chapter accept the %Net.POP3

instance as an argument.

2.8.1.2 Example 2:YPOPsAsPOP3()

The following method also returns a %Net.POP3 server instance. In this case, we are using YPOPs, which is client software
that provides SMTP and POP3 access to a Yahoo email account. It uses a test account that has already been set up for this
purpose:

ClassMethod YPOPsAsPOP3() As %Net.POP3
{
 Set server=##class(%Net.POP3).%New()

 //YPOPs uses the default port
 //but let's set it anyway
 Set server.port=110

 //just in case we plan to fetch any messages
 //that have attachments
 Set server.StoreAttachToFile=1
 Set server.StoreInlineToFile=1
 Set server.AttachDir="c:\DOWNLOADS\"

 //local host acts as the server
 Set servername="127.0.0.1"
 //YPOPs works with a Yahoo email account
 Set user="isc.test@yahoo.com"
 Set pass="123pass"

 Set status=server.Connect(servername,user,pass)
 If $$$ISERR(status) {
 Do $System.Status.DisplayError(status)
 Quit $$$NULLOREF
 }
 Quit server
}

2.8.2 Getting Information about the Mailbox

While you are connected to a POP3 server, you are logged into a user account and have access to the mailbox for that user
account. Use the following methods to find what the mailbox contains:

GetMailBoxStatus()

Returns, by reference, the number of messages in the mailbox and the number of bytes that the mailbox uses.

GetMessageUIDArray()

If given an empty string as the first argument, this method returns, by reference, an array of information about the
messages in the mailbox (excluding any that are currently marked for deletion). Each element in this array contains
the following information about one message:

Array ItemArray Key

Unique message identifier (UID), which is the
permanent identifier of this message available
in all sessions.

UIDs are unique to each mailbox.

Number of the message, within the mailbox in its
current state. The first message is number 1, and
so on.
The message number of a given message is not
guaranteed to be the same in all sessions.

Using Internet Utility Classes 31

Fetching Email from a POP3 Server

GetSizeOfMessages()

If given an empty string as the first argument, this method returns, by reference, an array of information about the
messages in the mailbox (excluding any that are currently marked for deletion). Each element in this array contains
the following information about one message:

Array ItemArray Key

Size of this message, in bytes.Number of the message, within the mailbox in its
current state.

Each of these methods returns a status, which you should check before continuing. Also see “Other Message Retrieval
Methods” for more details on these methods.

2.8.2.1 Example: ShowMailbox()

For example, the following method writes information about the mailbox that we are currently accessing:

ClassMethod ShowMailbox(server as %Net.POP3)
{
 Set status=server.GetMailBoxStatus(.count,.size)
 If $$$ISERR(status) {
 Do $System.Status.DisplayError(status)
 Quit
 }
 Write "Mailbox information *****",!
 Write "Number of messages in mailbox: ",count,!
 Write "Size of messages: ",size,!

 Set status=server.GetMessageUIDArray(,.uids)
 Set status=server.GetSizeOfMessages(,.sizes)

 //iterate through messages, get info, and write it
 For i=1:1:count {
 Set uid=uids.GetAt(i)
 Set size=sizes.GetAt(i)
 Write "Msg number:", i," UID:",uid, " size:",size,!
 }

}

This method generates output similar to the following:

Mailbox information *****
Number of messages in mailbox: 4
Size of messages: 18634
Msg number:1 UID:6ef78df6fd660391 size:7245
Msg number:2 UID:7410041a6faf4a87 size:5409
Msg number:3 UID:5555af7fa489e406 size:5121
Msg number:4 UID:299ad2b54c01a6be size:859

2.8.3 Fetching Messages from the Mailbox

To simply get a message, use one of the following methods of the %Net.POP3 class:

Fetch()

Given a message number as the first argument, this method returns (by reference, as the second argument) an
instance of %Net.MailMessage that contains that message.

FetchMessage()

Given a message number as the first argument, this method returns (by reference) information such as the From
and To and other common headers, an array containing all the headers (including the common ones), and the
message contents themselves

32 Using Internet Utility Classes

Sending and Receiving Email

Each of these methods returns a status, which you should check before continuing. Note that these methods return an error
status if the message is currently marked for deletion.

Also see “Other Message Retrieval Methods,” which shows the complete method signatures for Fetch() and FetchMessage()

2.8.3.1 Example: FetchMailbox()

The following example is a variation of the ShowMailbox example described in “Getting Information about the Mailbox”.
This method uses the Fetch() method, examines each message, and writes the subject line of each message:

ClassMethod FetchMailbox(server As %Net.POP3)
{
 Set status=server.GetMailBoxStatus(.count,.size)
 If $$$ISERR(status) {
 Do $System.Status.DisplayError(status)
 Quit $$$NULLOREF
 }
 Write "Mailbox information *****",!
 Write "Number of messages in mailbox: ",count,!
 Write "Size of messages: ",size,!

 Set status=server.GetMessageUIDArray(,.uids)
 Set status=server.GetSizeOfMessages(,.sizes)

 //iterate through messages, get info, and write it
 For i=1:1:count {
 Set uid=uids.GetAt(i)
 Set size=sizes.GetAt(i)
 Set status=server.Fetch(i,.msg)
 If $$$ISERR(status) {
 Set subj="***error***"
 } else{
 Set subj=msg.Subject
 }
 Write "Msg number:", i," UID:",uid, " Size:",size
 Write " Subject: ",subj,!
 }
}

2.8.4 Saving Attachments as Files

The Content-Disposition header might specify attachment, with or without a filename. For example:

Content-Disposition: attachment; filename=genome.jpeg;

If the Content-Disposition header does specify attachment, your %Net.POP3 instance can save all attachments
in the message to files. To make this happen:

1. Specify the following properties of your %Net.POP3 instance:

• Specify StoreAttachToFile as 1.

• Specify StoreInlineToFile as 1.

• Specify a valid directory for AttachDir. Make sure to terminate the name of the directory with a slash (/) or backslash
(\), as appropriate for the operating system. Also make sure that this is directory already exists, and the users have
write access to it.

2. Call Fetch() or FetchMessage() of your %Net.POP3 instance.

Each filename is determined as follows:

1. If the Content-Disposition header specifies a filename, that filename is used.

2. Otherwise, if the Content-Type header specifies a filename, that filename is used.

3. Otherwise, the system creates a name of the form ATTxxxxxx.dat.

Using Internet Utility Classes 33

Fetching Email from a POP3 Server

Note the following points:

• If the file already exists, the attachment is not downloaded.

• There is no default for AttachDir.

• The size of the attachment is not limited by InterSystems IRIS but might be limited by the file system.

• The Dir and FileName properties are not used here. They are relevant only when you upload an attachment to a mail
message, as described in “Adding Attachments to a Message”.

2.8.4.1 Example: GetMsg()

The following example method retrieves an entire message, given an instance of %Net.POP3 and a message number:

ClassMethod GetMsg(server as %Net.POP3,msgno as %Integer) as %Net.MailMessage
{
 Set status=server.Fetch(msgno,.msg)
 If $$$ISERR(status) {
 Do $System.Status.DisplayError(status)
 Quit $$$NULLOREF
 }
 Quit msg
}

If the message had attachments, and if you specified the StoreAttachToFile, StoreInlineToFile, and AttachDir properties of
the %Net.POP3 server, those attachments would be saved to the given directory when you called this method.

2.8.5 Getting Attached Email Messages

While you are connected to a mailbox, you can download any email messages that are attached to the email messages in
the inbox. To do so, use the GetAttachedEmail() method of your %Net.POP3 instance to retrieve the contents of the
enclosed email.

Given an instance of %Net.MailMessagePart, this method returns a single-part message that has contents of that message
part. Specifically, it returns (as an output parameter) an instance of %Net.MailMessage initialized with the data taken from
the attached email message.

2.8.6 Other Message Retrieval Methods

This section lists all the methods of %Net.POP3 that you can use to examine and retrieve messages.

Fetch()

method Fetch(MessageNumber As %Integer,
 ByRef MailMsg As %Net.MailMessage,
 Delete As %Boolean = 0,
 messageStream As %BinaryStream) as %Status

Returns (by reference) the message indicated by MessageNumber and optionally marks the message for deletion.
Note that this method returns an error status if the message is already marked for deletion.

If messageStream is specified, then the original message is written to this binary stream.

FetchFromStream()

method FetchFromStream(messageStream As %BinaryStream, ByRef Msg As %Net.MailMessage) as %Status

This method is for use when you specify the messageStream argument for Fetch().

Retrieves a single email message from the given binary stream. messageStream must be a binary stream containing
the message. The message is returned by reference in Msg. This could be a multipart message.

34 Using Internet Utility Classes

Sending and Receiving Email

FetchMessage()

method FetchMessage(MessageNumber As %Integer,
 ByRef From As %String,
 ByRef To As %String,
 ByRef Date As %String,
 ByRef Subject As %String,
 ByRef MessageSize As %Integer,
 ByRef MsgHeaders As %ArrayOfDataTypes,
 ByRef MailMsg As %Net.MailMessage,
 Delete As %Boolean = 0) as %Status

Returns (by reference) specific message headers, the message size, the message header array, and the message
itself and optionally marks the message for deletion. Note that this method returns an error status if the message
is already marked for deletion.

FetchMessageHeaders()

method FetchMessageHeaders(MessageNumber As %Integer,
 ByRef MsgHeadersArray As %String) as %Status

Given a message number, this method returns (by reference) an array containing all the headers of that message.
This method returns an error status if the message is currently marked for deletion.

FetchMessageInfo()

method FetchMessageInfo(MessageNumber As %Integer,
 Lines As %Integer,
 ByRef From As %String,
 ByRef To As %String,
 ByRef Date As %String,
 ByRef Subject As %String,
 ByRef MessageSize As %Integer,
 ByRef MsgHeaders As %ArrayOfDataTypes,
 ByRef MessageText As %String) as %Status

Given a message number, this method returns (by reference) specific message headers, the message size, the
message header array, and the given number of lines of text from this message. This method returns an error status
if the message is currently marked for deletion.

GetAttachedEmail()

method GetAttachedEmail(msgpart As %Net.MailMessagePart,
 Output mailmsg As %Net.MailMessage) as %Status

Given a message part, this method returns (as an output parameter) a single-part email message that is initialized
with the data from the message part.

GetMessageUID()

method GetMessageUID(MessageNumber As %Integer,
 ByRef UniqueID As %String) as %Status

Returns, by reference, the UID of a message, given a message number. See the previous section for details on
message numbers and UIDs. This method returns an error status if the message is currently marked for deletion.

GetMessageUIDArray()

method GetMessageUIDArray(MessageNumber As %String = "",
 ByRef ListOfUniqueIDs As %ArrayOfDataTypes) as %Status

If given an empty string as the first argument, this method returns, by reference, an array of information about the
messages in the mailbox (excluding any that are currently marked for deletion). Each element in this array contains
the following information about one message:

Using Internet Utility Classes 35

Fetching Email from a POP3 Server

Array ItemArray Key

Unique message identifier (UID), which
is the permanent identifier of this
message available in all sessions.

UIDs are unique to each mailbox.

Number of the message, within the mailbox in its current
state. The first message is number 1, and so on.
The message number of a given message is not guar-
anteed to be the same in all sessions.

Or, given a message number, this method returns a one-element array that contains the UID of that message. In
this case, the method returns an error status if the message is currently marked for deletion.

GetSizeOfMessages()

method GetSizeOfMessages(MessageNumber As %String = "",
 ByRef ListOfSizes As %ArrayOfDataTypes) as %Status

If given an empty string as the first argument, this method returns, by reference, an array of information about the
messages in the mailbox (excluding any that are currently marked for deletion). Each element in this array contains
the following information about one message:

Array ItemArray Key

Size of this message, in bytes.Number of the message, within the mailbox in its current state.

Or, given a message number, this method returns a one-element array that contains the size (in bytes) of that
message. In this case, this method returns an error status if the message is currently marked for deletion.

2.8.7 Deleting Messages

While you are connected to a mailbox, you can mark messages for deletion in the mailbox that you are logged into. You
can do this in a couple of ways.

• You can use the DeleteMessage() method. This method takes one argument, the message number to delete.

• When you retrieve a message with the Fetch() or FetchMessage() method, you can specify an optional argument that
tells the POP3 server to mark the message for deletion after you have retrieved it.

Remember the following points:

• These methods do not delete a message; they mark it for deletion. The message is not deleted until you complete the
POP3 transaction with QuitAndCommit(). If you simply disconnect from the server, your changes are discarded.

• You can call the RollbackDeletes() method to change the messages so that they are no longer marked for deletion.

• Each of these methods returns a status, which you should check.

2.8.7.1 Example: GetMsgAndDelete() and CommitChanges()

The following example retrieves a message and marks it for deletion:

36 Using Internet Utility Classes

Sending and Receiving Email

ClassMethod GetMsgAndDelete(ByRef server As %Net.POP3, msgno As %Integer) As %Net.MailMessage
{
 //third argument to Fetch says whether to
 //mark for deletion
 Set status=server.Fetch(msgno,.msg,1)
 If $$$ISERR(status) {
 Do $System.Status.DisplayError(status)
 Quit $$$NULLOREF
 }

 Quit msg
}

Note that this message returns (by reference) an altered version of the %Net.POP3; the altered version contains the infor-
mation about which message is marked for deletion.

You would use the preceding method with a method like the following:

ClassMethod CommitChanges(server As %Net.POP3) As %Status
{
 //commit all changes and log out
 Set status=server.QuitAndCommit()
 If $$$ISERR(status) {
 Do $System.Status.DisplayError(status)
 Quit $$$ERROR($$$GeneralError,"Failed to commit changes")
 }
 Quit $$$OK
}

Alternatively you would roll back the changes with RollbackDeletes() or QuitAndRollback().

2.9 Working with a Received Email Message
This section describes how you can work with an email message (%Net.MailMessage) that you have retrieved via %Net.POP3.

2.9.1 Message Basics

After you retrieve an email message (%Net.MailMessage), you generally start by determining what kind of message it is
and how to read it; that is, whether it is a multipart message and whether the parts are binary. In this step, you can use the
ContentType property. Or you can use the IsBinary, IsHTML, and IsMultiPart properties, which indirectly provide the same
information as ContentType.

If the message is a multipart message, each part is an instance of %Net.MailMessagePart.

2.9.2 Message Headers

Both the message itself and each part of a message has a set of headers.

The %Net.MailMessage and %Net.MailMessagePart classes provide properties that give you easy access to the most commonly
used headers. For example, %Net.MailMessage provides properties such as To, From, Subject, and Date. The Headers array
property lets you access any custom header; see “Specifying Email Message Headers.”

Also, if you have retrieved a message via %Net.POP3, you can use the GetAttribute() method. Given a header name and
an attribute, this method returns the value of that attribute.

2.9.3 Message Contents

Once you know what the general message structure is, use the following techniques to retrieve the contents:

Using Internet Utility Classes 37

Working with a Received Email Message

• For a multipart message, use the Parts property, which is an array of the parts. Parts.Count() gives you the number
of parts. The key for each part is an integer, starting with 1. Use the GetAt() method to retrieve a given part. A message
part is an instance of %Net.MailMessagePart.

For information on the relationship of %Net.MailMessage and %Net.MailMessagePart, see “How InterSystems IRIS
Represents MIME Email Messages.”

• For a binary message (or message part), use the BinaryData property.

• For a text message (or message part), use the TextData property.

– If IsHTML is 0, the TextData property is an ordinary text string.

– If IsHTML is 1, the TextData property is an HTML text string.

Note that the email client that sends a message determines any wrapping in the message. The mail server has no control
over this; nor does InterSystems IRIS.

2.9.4 Other Message Information

The MessageSize property indicates the total length of the message, apart from any attached email messages.

The following methods provide additional information about the message:

GetLocalDateTime()

Returns the date and time when the message was retrieved, converted to local time in $HOROLOG format.

GetUTCDateTime()

Returns the date and time when the message was retrieved, converted to UTC in $HOROLOG format.

GetUTCSeconds()

Returns the date and time when the message was retrieved, in seconds since 12/31/1840.

The following class methods are also available for time/date conversion:

HToSeconds()

A class method that converts a date/time in $HOROLOG format to seconds since 12/31/1840.

SecondsToH()

A class method that converts seconds since 12/31/1840 to a date/time in $HOROLOG format.

2.9.5 Example 1: ShowMsgInfo()

Given an instance of %Net.MailMessage, the following method writes information about the message to the current device:

38 Using Internet Utility Classes

Sending and Receiving Email

ClassMethod ShowMsgInfo(msg as %Net.MailMessage)
{
 Write "Message details *****",!
 Write "To (count): ", msg.To.Count(),!
 Write "From: ", msg.From,!
 Write "Cc (count): ", msg.Cc.Count(),!
 Write "Bcc (count): ", msg.Bcc.Count(),!
 Write "Date: ", msg.Date,!
 Write "Subject: ", msg.Subject,!
 Write "Sender: ", msg.Sender,!
 Write "IsMultipart: ", msg.IsMultiPart,!
 Write "Number of parts: ", msg.Parts.Count(),!
 Write "Number of headers: ", msg.Headers.Count(),!
 Write "IsBinary: ", msg.IsBinary,!
 Write "IsHTML: ", msg.IsHTML,!
 Write "TextData: ", msg.TextData.Read(),!
 Write "BinaryData: ", msg.BinaryData.Read(),!
}

This method produces output similar to the following:

Message details *****
To (count): 1
From: "XXX XXX" <XXX@XXX.com>
Cc (count): 0
Bcc (count): 0
Date: Fri, 16 Nov 2007 11:57:46 -0500
Subject: test 5
Sender:
IsMultipart: 0
Number of parts: 0
Number of headers: 16
IsBinary: 0
IsHTML: 0
TextData: This is test number 5, which is plain text.
BinaryData:

2.9.6 Example 2: ShowMsgPartInfo()

The following method writes information about a part of a message:

ClassMethod ShowMsgPartInfo(msg as %Net.MailMessage, partno as %Integer)
{
 Set part=msg.Parts.GetAt(partno)
 Write "Message part details *****",!
 Write "Message part: ", partno,!
 Write "IsMultipart: ", part.IsMultiPart,!
 Write "Number of parts: ", part.Parts.Count(),!
 Write "Number of headers: ", part.Headers.Count(),!
 Write "IsBinary: ", part.IsBinary,!
 Write "IsHTML: ", part.IsHTML,!
 Write "TextData: ", part.TextData.Read(),!
 Write "BinaryData: ", part.BinaryData.Read(),!
}

This produces output similar to the following (given a different message than previously shown):

Message part details *****
Message part: 1
IsMultipart: 0
Number of parts: 0
Number of headers: 2
IsBinary: 0
IsHTML: 0
TextData: 1 test string

BinaryData:

2.9.7 Example 3: ShowMsgHeaders()

The following method writes information about the headers of a message; you could write a similar method that did the
same for a message part.

Using Internet Utility Classes 39

Working with a Received Email Message

ClassMethod ShowMsgHeaders(msg as %Net.MailMessage)
{
 Set headers=msg.Headers
 Write "Number of headers: ", headers.Count(),!

 //iterate through the headers
 Set key=""
 For {
 Set value=headers.GetNext(.key)
 Quit:key=""
 Write "Header:",key,!
 Write "Value: ",value,!!
 }
}

This produces output similar to the following:

Number of headers: 16
Header: content-class
Value: urn:content-classes:message

Header: content-type
Value: multipart/alternative; boundary="----_=_NextPart_001_01C8286D.D9A7F3B1"

Header: date
Value: Fri, 16 Nov 2007 11:29:24 -0500

Header: from
Value: "XXX XXX" <XXX@XXX.com>

Header: message-id
Value: <895A9EF10DBA1F46A2DDB3AAF061ECD501801E86@Exchange1_backup>

Header: mime-version
Value: 1.0

...

2.10 Automatic Encoding and Character Translation
A email message part contains information about both the character sets used and the content-transfer-encoding used (if
any). For reference, this section describes how this information is used.

For background information on character translation in InterSystems IRIS, see “Localization Support” in the Orientation
Guide for Server-Side Programming.

2.10.1 Outgoing Email

%Net.SMTP checks the Charset property of each part and then applies the appropriate translation table.

If you do not specify the Charset property for a given part, InterSystems IRIS uses UTF-8.

%Net.SMTP also checks the ContentTransferEncoding property. If this property is "base64" or "quoted-printable",
then when it creates the message, %Net.SMTP encodes the body as needed. (If the content transfer encoding is "7bit" or
"7bit", no encoding is needed.)

Important: Note that if the content is "base64" encoded, it cannot contain any Unicode characters. If the content
you wish to send includes Unicode characters, then make sure to use $ZCONVERT to convert the content
to UTF-8.

2.10.2 Incoming Email

%Net.POP3 checks the Content-Transfer-Encoding header of each message part and decodes the body as needed.

40 Using Internet Utility Classes

Sending and Receiving Email

Then %Net.POP3 checks the Content-Type header of each message part. This affects the Charset property of the message
part and also controls the translation table used when the message part is created in InterSystems IRIS.

Using Internet Utility Classes 41

Automatic Encoding and Character Translation

3
Creating,Writing, and Reading MIME
Messages

InterSystems IRIS provides a class that you can use to create multipart MIME messages (%Net.MIMEPart). You use this
class when you create attachments to add to SOAP messages; see Creating Web Services and Web Clients. Because MIME
is a common standard, there are many other possible applications, such as email processing and HTTP multipart POST.

This chapter discusses the following topics:

• An Overview of MIME Messages

• Creating MIME Parts

• Writing MIME Messages

• Reading MIME Messages

3.1 An Overview of MIME Messages
A document in MIME format is referred to as a MIME part. Each MIME part has headers and either contains a message
body (either text or binary) or contains additional MIME parts. A MIME part that has a MIME-Version header can be
used as a top-level document and is called a MIME message. The following figure shows an example:

Using Internet Utility Classes 43

In this example, E and F have additional subparts that are not shown.

To represent a MIME part, you use the %Net.MIMEPart class, which provides properties that you use to set the headers and
contents of the part.

3.2 Creating MIME Parts
To create a MIME part, do the following:

1. Create an instance of %Net.MIMEPart.

2. Do one of the following:

• Add a text or binary body. To do so, create an instance of a stream (either text or binary) and set the Body property
of your MIME part equal to this stream. Use the standard stream interface to write data into this stream. Do not
specify a value for the Parts property.

• Add a list of MIME parts. To do so, create the MIME parts as described here and set the Parts property equal to
a list of these parts. Do not specify a value for the Body property.

3. Optionally set headers as described in “Setting and Getting MIME Part Headers.”

3.2.1 Setting and Getting MIME Part Headers

You can set values for and get values of the HTTP headers. The following properties of %Net.MIMEPart affect the MIME
headers:

• ContentType — The Internet media type (MIME type) of the Content-Type header. This specifies the Internet media
type of the Body data. For example: "text/plain", "text/html", "image/jpeg", "multipart/mixed" and
so on.

• ContentCharset — The charset part of the Content-Type header. If you set this, you must first set the ContentType

property. For each MIME part that contains a text body, be sure to set the ContentCharset property appropriately to
indicate the character set used in the body. This property should declare the character set that is already used, since
%Net.MIMEPart does not perform any conversion.

• ContentId — The normalized Content-ID header, without the angle brackets (<>) and any leading and trailing spaces.

• ContentLocation — The normalized Content-Location header, without any leading and trailing spaces.

• ContentTransferEncoding — The Content-Transfer-Encoding header. This property can be one of the following:
"base64" "quoted-printable" "7bit" "8bit"

There is no default value.

Important: Note that if the content is "base64" encoded, it cannot contain any Unicode characters. If the content
you wish to send includes Unicode characters, then make sure to use $ZCONVERT to convert the
content to UTF-8, and then base-64 encode it. For example:

set BinaryText=$ZCONVERT(UnicodeText,"O","UTF8")
set Base64Encoded=$system.Encryption.Base64Encode(BinaryText)

The recipient must use the reverse process to decode the text:

set BinaryText=$system.Encryption.Base64Decode(Base64Encoded)
set UnicodeText=$ZCONVERT(BinaryText,"I","UTF8")

44 Using Internet Utility Classes

Creating, Writing, and Reading MIME Messages

http://en.wikipedia.org/wiki/Internet_media_type

The %Net.MIMEPart class provides general methods that you can use to manage the MIME headers:

• GetHeader() returns the value of a header.

• NextHeader() gets the next header.

• SetHeader() sets the value of a header. Typically you use this to set nonstandard headers.

• RemoveHeader() removes a header.

For complete method signatures and other details, see the class documentation for %Net.MIMEPart.

3.2.2 Specifying an Optional Message Boundary Value

By default, message boundaries are generated automatically. You can specify the message boundary, if needed. To do so,
specify a value for the Boundary property. Be sure to use a string that is extremely unlikely to be used in any of the message
parts.

3.3 Writing MIME Messages
To write MIME messages, use %Net.MIMEWriter as follows:

1. Create an instance of the %Net.MIMEWriter class.

2. Optionally specify an output destination. To do so, use one of the following methods of your writer instance:
OutputToDevice() (the default), OutputToFile(), or OutputToStream().

3. Call methods of your writer to write output as needed:

• Given a header name and value, WriteHeader() writes that header.

• Given an instance of %Net.MIMEPart, WriteMIMEBody() writes the message body, which can have multiple
parts.

If the message is multipart, this method does not write any headers; it is your responsibility to write them. If the
message is not multipart, however, the method does write the headers.

• Given an instance of %Net.MIMEPart, WriteMIMEMessage() writes the MIME message, including all headers.

For single-part messages, WriteMIMEBody() and WriteMIMEMessage() produce the same output.

For complete method signatures and other details, see the class documentation for %Net.MIMEPart.

3.3.1 Example:WriteMIMEMessage()

The following example demonstrates the use of WriteMIMEMessage():

Using Internet Utility Classes 45

Writing MIME Messages

ClassMethod WriteMIMEMessage(text As %String,header as %String) as %Status
{
 Set msg=##class(%Net.MIMEPart).%New()
 Set msg.Body=##class(%GlobalCharacterStream).%New()
 Do msg.Body.Write(text)

 //specify some headers
 Set msg.ContentType="text/html"
 Set msg.ContentCharset="us-ascii"
 Do msg.SetHeader("Custom-header",header)

 //create MIME writer; write MIME message
 Set writer=##class(%Net.MIMEWriter).%New()
 Set status=writer.WriteMIMEMessage(msg)

 If $$$ISERR(status) do $system.Status.DisplayError(status)
 Quit $$$OK
}

The following Terminal session shows this method in use:

GNET> Set text = "message text"

GNET> Set header="my header value"

GNET> Do ##class(GNET.MIME).WriteMIMEMessage(text,header)
CONTENT-TYPE: text/html
Custom-header: my header value

message text

GNET>

3.4 Reading MIME Messages
To read MIME messages, use %Net.MIMEReader, as follows:

1. Create an instance of the %Net.MIMEReader class.

2. Specify the source of input. To do so, use one of the following methods of your reader instance: OpenFile() or
OpenStream().

3. Call the ReadMIMEMessage() method of your reader instance. This method returns an instance of %Net.MIMEPart

by reference as the first argument. It returns a status, which you should check.

For complete method signatures and other details, see the class documentation for %Net.MIMEPart.

46 Using Internet Utility Classes

Creating, Writing, and Reading MIME Messages

4
Using FTP

InterSystems IRIS provides a class, %Net.FtpSession, that you can use to establish a session with an FTP server from within
InterSystems IRIS. This chapter describes the following:

• Establishing an FTP Session

• FTP File and System Methods

• Using a Linked Stream to Upload Large Files

• Customizing Callbacks Issued by the FTP Server

4.1 Establishing an FTP Session
To establish an FTP session, do the following:

1. Create an instance of %Net.FtpSession.

2. Optionally set properties of this instance in order to control the general behavior of the session:

• Timeout specifies how long to wait for a reply from the FTP server, in seconds.

• SSLConfiguration specifies the activated SSL/TLS configuration to use for the connection, if any. Use this if the
FTP server uses https.

For information on creating and managing SSL/TLS configurations, see “Using SSL/TLS with InterSystems
IRIS” in the Security Administration Guide. The SSL/TLS configuration includes an option called Configuration

Name; this is the string to use in this setting.

• TranslateTable specifies the translation table to use when reading the contents of a file or writing the contents of
a file.

To find the name of the table for a given character set, use the %Net.Charset class described in “Other %Net
Tools.”

• UsePASV enables PASV mode.

• SSLCheckServerIdentity applies when the FTP server uses https. By default, when an instance of %Net.FtpSession

connects to a SSL/TLS server, it checks whether the certificate server name matches the DNS name used to connect
to the server. If these names do not match, the connection is not permitted. This default behavior prevents “man
in the middle” attacks and is described in RFC 2818, section 3.1; also see RFC 2595, section 2.4.

To disable this check, set the SSLCheckServerIdentity property to 0.

Using Internet Utility Classes 47

http://www.ietf.org/rfc/rfc2818
http://www.ietf.org/rfc/rfc2595

3. Call the Connect() method to connect to a specific FTP server.

4. Call the Ascii() or Binary() method to set the transfer mode to ASCII mode or binary mode, respectively. To see the
current transfer mode, check the value of the Type property of your instance.

Note: Each method of %Net.FtpSession returns a status, which you should check. The methods also set the values of
properties that provide useful information on the state of the session:

• Connected is true if you are currently connected, and is false otherwise.

• ReturnCode contains the return code from the last communication with the FTP server.

• ReturnMessage contains the return message from the last communication with the FTP server.

The Status() method returns (by reference) the status of the FTP server.

For details, see the class documentation for %Net.FtpSession.

4.1.1 Translate Table for Commands

%Net.FtpSession uses the technique described in RFC 2640 to automatically handle character set translation when looking
at filenames and pathnames on an FTP server. When an instance of %Net.FtpSession connects to an FTP server, it uses the
FEAT message to determine whether the server UTF-8 characters. If so, it switches the command channel communication
to UTF-8 so that all filenames and pathnames will be correctly translated to and from UTF-8.

If the server does not support the FEAT command or does not report that it supports UTF-8, the %Net.FtpSession instance
uses RAW mode and reads or writes the raw bytes.

In rare cases, if you need to specify the translation table to use, set the CommandTranslateTable property of the
%Net.FtpSession instance. It should not be generally necessary to use this property.

4.2 FTP File and System Methods
Once you establish an FTP session, call methods of your session instance to perform FTP tasks. %Net.FtpSession provides
the following methods for reading and writing files:

Delete()

Deletes a file.

Retrieve()

Copies a file from the FTP server into an InterSystems IRIS stream and returns the stream by reference. To work
with this stream, use the standard stream methods: Write(), WriteLine(), Read(), ReadLine(), Rewind(),
MoveToEnd(), and Clear(). You can also use the Size property of the stream.

RetryRetrieve()

Allows you to continue retrieving a file, given a stream created by a previous use of Retrieve().

Store()

Writes the contents of an InterSystems IRIS stream into a file on the FTP server.

48 Using Internet Utility Classes

Using FTP

http://tools.ietf.org/html/rfc2640

Append()

Appends the contents of a stream to the end of the specified file.

Rename()

Renames a file.

In addition, %Net.FtpSession provides methods for navigating and modifying the file system on the FTP server:
GetDirectory(), SetDirectory(),SetToParentDirectory(), and MakeDirectory().

To examine the contents of the file system, use the List() or NameList() methods.

• List() creates a stream that contains a list of all the files whose names match a given pattern and returns this stream
by reference.

• NameList() creates an array of filenames and returns this array by reference.

You can also use the ChangeUser() method to change to a different user; this is faster than logging out and logging in
again. Use the Logout() method to log out.

The System() method returns (by reference) information about the type of computer that is hosting the FTP server.

The Size() and MDTM() methods return a file’s size and its modification time, respectively.

Use the generic sendCommand() method to send a command to the FTP server and to read the response. This method may
be used to send commands that are not explicitly supported in %Net.FtpSession.

For details, see the class documentation for %Net.FtpSession.

4.3 Using a Linked Stream to Upload Large Files
If you have a large file to upload, consider using the LinkToFile() method of the stream interface. That is, instead of creating
a stream and reading the file into it, create a stream and link it to the file. Use this linked stream when you call the Store()
method of %Net.FtpSession.

For example:

Method SendLargeFile(ftp As %Net.FtpSession, dir As %String, filename As %String)
{
 Set filestream=##class(%FileBinaryStream).%New()
 Set sc=filestream.LinkToFile(dir_filename)
 If $$$ISERR(sc) {do $System.Status.DisplayError(sc) quit }

 //Uploaded file will have same name as the original
 Set newname=filename

 Set sc=ftp.Store(newname,filestream)
 If $$$ISERR(sc) {do $System.Status.DisplayError(sc) quit }
}

4.4 Customizing Callbacks Issued by the FTP Server
You can customize the callbacks generated by the FTP server. By doing so, you can for example, give the user an indication
that the server is still working on a large transfer, or allow the user to abort the transfer.

To customize the FTP callbacks:

1. Create a subclass of %Net.FtpCallback.

Using Internet Utility Classes 49

Using a Linked Stream to Upload Large Files

2. In this subclass, implement the RetrieveCallback() method, which is called at regular intervals when receiving data
from the FTP server.

3. Also implement the StoreCallback() method, which is called at regular intervals when writing data to the FTP server.

4. When you create an FTP session (as described in “Establishing an FTP Session”), set the Callback property equal to
your subclass of %Net.FtpCallback.

For details, see the class documentation for %Net.FtpCallback.

50 Using Internet Utility Classes

Using FTP

5
Sending and Receiving IBM WebSphere
MQ Messages

InterSystems IRIS provides an interface to IBM WebSphere MQ, which you can use to exchange messages between
InterSystems IRIS and the message queues of IBM WebSphere MQ. To use this interface, you must have access to an IBM
WebSphere MQ server, and the IBM WebSphere MQ client must be running on the same machine as InterSystems IRIS.

The interface consists of the %Net.MQSend and %Net.MQRecv classes, which are both subclasses of %Net.abstractMQ.
These classes use a dynamic-link library that is automatically installed by InterSystems IRIS on all suitable platforms. (This
is MQInterface.dll on Windows; the file extension is different for other platforms.) In turn, the InterSystems IRIS dynamic-
link library requires IBM WebSphere MQ dynamic-link libraries.

The interface supports sending and receiving only text data, not binary data.

This chapter discusses the following topics:

• Using the InterSystems IRIS Interface to IBM WebSphere MQ

• Creating a Connection Object

• Specifying the Character Set (CCSID)

• Specifying Other Message Options

• Sending Messages

• Retrieving Messages

• Updating Message Information

• Troubleshooting

To use IBM WebSphere MQ, you will need the formal documentation for this product. Also, for additional information on
the InterSystems IRIS interface to IBM WebSphere MQ, see the class reference for %Net.abstractMQ.

5.1 Using the InterSystems IRIS Interface to IBM
WebSphere MQ
In general, to use the InterSystems IRIS interface to IBM WebSphere MQ, you do the following:

1. Make sure that you have access to IBM WebSphere MQ v7.x or higher. Specifically:

Using Internet Utility Classes 51

• The IBM WebSphere MQ client must be installed on the same machine as InterSystems IRIS. Note that the installer
updates the PATH environment variable and adds other system variables as needed.

• Make sure that you have rebooted the machine after installing the client, so that InterSystems IRIS is aware of the
client.

• The client must have access to an IBM WebSphere MQ server.

• The username under which you will access the server must have permission to use the queue managers and the
queues that you plan to use.

2. Create a new instance of %Net.MQSend or %Net.MQRecv, depending on whether you are going to send or receive
messages.

3. Connect to an IBM WebSphere MQ server. When you do so, you provide the following information:

• The name of a queue manager.

• The name of a queue to use.

• The channel by which to communicate with that queue. You specify a channel name, a transport mechanism, and
the IP address and port of the IBM WebSphere MQ server.

You can also provide a name and password if you are using the authentication feature of IBM WebSphere MQ.

4. Invoke the appropriate methods of %Net.MQSend or %Net.MQRecv to send or receive messages.

Note: To use IBM Websphere MQ on 64–bit Linux platforms, you must set the LD_LIBRARY_PATH to include the
location of the MQ libraries. Because the path must be set for any InterSystems IRIS process that uses the MQ
interface, it must be set prior to starting InterSystems IRIS if running background processes, and set in any UNIX®
terminal prior to running iris terminal.

5.1.1 Getting Error Codes

The methods of %Net.MQSend and %Net.MQRecv return either 1 if successful or 0 if unsuccessful. In the case of an error,
call the %GetLastError() method, which returns the last reason code given by IBM WebSphere MQ. For information on
the reason codes, see the formal IBM documentation.

5.2 Creating a Connection Object
Before you can send or receive messages via IBM WebSphere MQ, you must create a connection object, an object that
establishes a connection to a queue manager, opens a channel, and opens a queue for use. There are two ways you can do
this:

• You can use the %Init method, which takes arguments that specify all the needed information.

• You can use the %Connect method after first setting properties that specify all the needed information.

5.2.1 Using the %Init() Method

To use the %Init() method to create a connection object:

1. Create an instance of %Net.MQSend (if you are going to send messages) or %Net.MQRecv (if you are going to receive
messages). This chapter refers to this instance as the connection object.

52 Using Internet Utility Classes

Sending and Receiving IBM WebSphere MQ Messages

Note: If you receive the <DYNAMIC LIBRARY LOAD> error, a dynamic-link library is missing, and the messages.log

file (in the system manager’s directory) has more details.

2. If authentication is required, set the following properties of the connection object:

• Username — Specifies the username who has permission to use this channel.

• Password — Specifies the password for the given user.

3. Call the %Init() method of the connection object. This method takes the following arguments, in order.

a. (Required) A string that specifies the queue name; this should be a valid queue for the specified queue manager.

b. A string that specifies the queue manager; this should be a valid queue manager on the IBM WebSphere MQ
server.

If you omit this argument, the system uses the default queue manager, as configured in IBM WebSphere MQ. Or,
if IBM WebSphere MQ has been the configured so that the queue manager is determined by the queue name, the
system uses the queue manager that is appropriate for the given queue name.

c. A string that specifies the specification for the channel, in the following form:

"channel_name/transport/host_name(port)"

Here channel_name is the name of the channel to use, transport is the transport used by the channel, host_name
is the server name (or IP address) that is running the IBM WebSphere MQ server, and port is the port that this
channel should use.

Transport can be one of the following: TCP, LU62, NETBIOS, SPX

For example:

"CHAN_1/TCP/rodan(1401)"

"CHAN_1/TCP/127.0.0.1(1401)"

If you omit this argument, the system uses the default channel specification, as configured in IBM WebSphere
MQ. Or, if the system has been the configured so that the channel is determined by the queue name, the system
uses the channel that is appropriate for the given queue name.

d. An optional string that specifies the log file to write error messages to. The default is that no logging occurs.

4. Check the value returned by the %Init() method. If the method returns 1, the connection was established successfully,
and you can use the connection object to either send or receive messages (depending on the class you are using). See
“Getting Error Codes.”

5.2.2 Using the %Connect() Method

In some cases, you might prefer to specify all the details of the connection individually. To do so, you use the %Connect()
method, as follows:

1. Create an instance of %Net.MQSend (if you are going to send messages) or %Net.MQRecv (if you are going to receive
messages). As noted previously, this chapter refers to this instance as the connection object.

Note: If you receive the <DYNAMIC LIBRARY LOAD> error, a dynamic-link library is missing, and the
messages.log file (in the system manager’s directory) has more details.

2. Set the following properties of the connection object:

• QName — (Required) Specifies the queue name; this should be a valid queue for the specified queue manager.

Using Internet Utility Classes 53

Creating a Connection Object

• QMgr — Specifies the queue manager to use; this should be a valid queue manager on the IBM WebSphere MQ
server.

If you omit this argument, the system uses the default queue manager, as configured in IBM WebSphere MQ. Or,
if IBM WebSphere MQ has been the configured so that the queue manager is determined by the queue name, the
system uses the queue manager that is appropriate for the given queue name.

3. Optionally specify the channel to use by setting the following properties of the connection object:

• Connection — Specifies the host and port of the IBM WebSphere MQ server. For example: "127.0.0.1:1401".

• Channel — Specifies the name of the channel to use. This must be a valid channel on the IBM WebSphere MQ
server.

• Transport — Specifies the transport used by the channel. This property can be one of the following: "TCP",
"LU62", "NETBIOS", "SPX"

If you omit these arguments, the system uses the default channel specification, as configured in IBM WebSphere MQ.
Or, if the system has been the configured so that the channel is determined by the queue name, the system uses the
channel that is appropriate for the given queue name.

4. If authentication is required for the channel, set the following properties of the connection object:

• Username — Specifies the username who has permission to use this channel.

• Password — Specifies the password for the given user.

5. Call the %ErrLog() method of the connection object. This method takes one argument, the name of the log file to use
for this connection object.

6. Check the value returned by the %ErrLog() method. See “Getting Error Codes.”

7. Call the %Connect() method of the connection object.

8. Check the value returned by the %Connect() method. If the method returns 1, the connection was established success-
fully, and you can use the connection object to either send or receive messages (depending on the class you are using).
See “Getting Error Codes.”

5.3 Specifying the Character Set (CCSID)
To set the character set used for message conversions, call the %SetCharSet() method of your connection object. Specify
an integer Coded Character Set ID (CCSID) as used in IBM WebSphere MQ.

• If you are sending messages, this should be the character set of those messages. If you do not specify a character set,
the MQ system assumes the messages use the default character set specified for the MQ client.

• If you are retrieving messages, this is the character set to which those messages will be translated.

To get the CCSID that is currently being used, call the %CharSet() method. This method returns the CCSID by reference
and it returns 1 or 0 to indicate whether it was successful; see “Getting Error Codes.”

For information on the CCSID that corresponds to a given character set, see the formal IBM documentation.

54 Using Internet Utility Classes

Sending and Receiving IBM WebSphere MQ Messages

5.4 Specifying Other Message Options
To specify message descriptor options, optionally set the following properties of your connection object:

• ApplIdentityData specifies the Application Identity message descriptor option.

• PutApplType specifies the Put Application Type message descriptor option.

5.5 Sending Messages
To send messages, do the following:

1. Create a connection object as described in “Creating a Connection Object.” In this case, create an instance of
%Net.MQSend. The connection object has a message queue to which you can send messages.

2. Call the following methods, as needed:

• %Put() — Given a string, this method writes that string to the message queue.

• %PutStream() — Given an initialized file character stream, this method writes that string to the message queue.
Note that you must set the Filename property of the stream in order to initialize it. Binary streams are not supported.

• %SetMsgId() — Given a string, this method uses that string as the message ID for the next message that is sent.

3. Check the value returned by the method you called. See “Getting Error Codes.”

4. When you are done retrieving messages, call the %Close() method of the connection object to release the handle to
the dynamic-link library.

5.5.1 Example 1: SendString()

The following class method sends a simple string message to the queue mqtest, using queue manager QM_antigua, and
a queue channel named S_antigua. The channel uses TCP transport, and the IBM WebSphere MQ server is running on
a machine called antigua and is listening on port 1401.

///Method returns reason code from IBM WebSphere MQ
ClassMethod SendString() As %Integer
{
 Set send=##class(%Net.MQSend).%New()
 Set queue="mqtest"
 Set qm="QM_antigua"
 Set chan="S_antigua/TCP/antigua(1414)"
 Set logfile="c:\mq-send-log.txt"

 Set check=send.%Init(queue,qm,chan,logfile)
 If 'check Quit send.%GetLastError()

 //send a unique message
 Set check=send.%Put("This is a test message "_$h)

 If 'check Quit send.%GetLastError()
 Quit check
}

5.5.2 Example 2: SendCharacterStream()

The following class method sends the contents of a file character stream. It uses the same queue used in the previous
example:

Using Internet Utility Classes 55

Specifying Other Message Options

///Method returns reason code from IBM WebSphere MQ
ClassMethod SendCharacterStream() As %Integer
{
 Set send=##class(%Net.MQSend).%New()
 Set queue="mqtest"
 Set qm="QM_antigua"
 Set chan="S_antigua/TCP/antigua(1414)"
 Set logfile="c:\mq-send-log.txt"

 Set check=send.%Init(queue,qm,chan,logfile)
 If 'check Quit send.%GetLastError()

 //initialize the stream and tell it what file to use
 Set longmsg=##class(%FileCharacterStream).%New()
 Set longmsg.Filename="c:\input-sample.txt"

 Set check=send.%PutStream(longmsg)

 If 'check Quit send.%GetLastError()
 Quit check
}

5.5.3 Example 3: Sending a Message from the Terminal

The following example shows a Terminal session that sends a message to an IBM WebSphere MQ queue. This works only
on a machine that has been configured with the IBM WebSphere MQ client.

Set MySendQ = ##class(%Net.MQSend).%New()

Do MySendQ.%Init("Q_1", "QM_1","QC_1/TCP/127.0.0.1(1401)","C:\mq.log")

Do MySendQ.%Put("Hello from tester")

Set MyRecvQ =##class(%Net.MQRecv).%New()

Do MyRecvQ.%Init("Q_1", "QM_1","QC_1","C:\mq.log")

Do MyRecvQ.%Get(.msg, 10000)

Write msg,!

Also see the preceding sections for other examples.

5.6 Retrieving Messages
To retrieve messages, do the following:

1. Create a connection object as described in “Creating a Connection Object.” In this case, create an instance of
%Net.MQRecv. The connection object has a message queue from which you can retrieve messages.

2. Call the following methods, as needed:

• %Get() — Returns a string message by reference as the first argument.

• %GetStream() — Given an initialized file character stream, this method retrieves a message from the queue and
places it into the file associated with that stream. Note that you must set the Filename property of the stream in
order to initialize it. Binary streams are not supported.

For both methods, the second argument is the timeout, in milliseconds; this controls the time used to contact the server.
The default timeout is 0.

3. Check the value returned by the method you called. See “Getting Error Codes.” Remember that IBM WebSphere MQ
returns 2033 when the queue is empty.

4. When you are done retrieving messages, call the %Close() method of the connection object to release the handle to
the dynamic-link library.

56 Using Internet Utility Classes

Sending and Receiving IBM WebSphere MQ Messages

5.6.1 Example 1: ReceiveString()

The following class method retrieves a message from the mqtest queue.

///Method returns string or null or error message
ClassMethod ReceiveString() As %String
{
 Set recv=##class(%Net.MQRecv).%New()
 Set queue="mqtest"
 Set qm="QM_antigua"
 Set chan="S_antigua/TCP/antigua(1414)"
 Set logfile="c:\mq-recv-log.txt"

 Set check=recv.%Init(queue,qm,chan,logfile)
 If 'check Quit recv.%GetLastError()

 Set check=recv.%Get(.msg)
 If 'check {
 Set reasoncode=recv.%GetLastError()
 If reasoncode=2033 Quit ""
 Quit "ERROR: "_reasoncode
 }

 Quit msg
}

5.6.2 Example 2: ReceiveCharacterStream()

The following method can retrieve a longer message because it uses %GetStream():

/// Method returns reason code from IBM WebSphere MQ
ClassMethod ReceiveCharacterStream() As %Integer
{
 Set recv=##class(%Net.MQRecv).%New()
 Set queue="mqtest"
 Set qm="QM_antigua"
 Set chan="S_antigua/TCP/antigua(1414)"
 Set logfile="c:\mq-recv-log.txt"

 Set check=recv.%Init(queue,qm,chan,logfile)
 If 'check Quit recv.%GetLastError()

 //initialize the stream and tell it what file to use
 //make sure filename is unique we can tell what we received
 Set longmsg=##class(%FileCharacterStream).%New()
 Set longmsg.Filename="c:\mq-received"_$h_".txt"

 Set check=recv.%GetStream(longmsg)

 If 'check Quit recv.%GetLastError()
 Quit check
}

5.7 Updating Message Information
The %Net.MQSend and %Net.MQRecv classes also provide the following methods:

%CorId()

Updates (by reference) the Correlation Id for the last message read.

%ReplyQMgrName()

Updates (by reference) the reply queue manager name for the last message read.

Using Internet Utility Classes 57

Updating Message Information

%ReplyQName()

Updates (by reference) the reply queue name for the last message read.

5.8 Troubleshooting
If you encounter problems when using the InterSystems IRIS interface to IBM WebSphere MQ, you should first determine
whether the client is correctly installed and can communicate with the server. To perform such a test, you can use sample
programs that are provided by IBM WebSphere MQ. The executables are in the bin directory of the IBM WebSphere MQ
client.

The following steps describe how to use these sample programs on Windows. The details may be different on other operating
systems; consult the IBM documentation and check the names of the files present in your client.

1. Create an environment variable called MQSERVER. Its value should be of the form channel_name/transport/server,
where channel_name is the name of the channel to use, transport is a string that indicates the transport to use, and
server is the name of the server. For example: S_antigua/TCP/antigua

2. At the command line, enter the following command:

amqsputc queue_name queue_manager_name

where queue_name is the name of the queue to use and queue_manager_name is the name of the queue manager. For
example:

amqsputc mqtest QM_antigua

If the amqsputc command is unrecognized, make sure that the PATH environment variable has been updated to
include the bin directory of the IBM WebSphere MQ client.

In case of other errors, consult the IBM documentation.

3. You should see a couple of lines like the following:

Sample AMQSPUT0 start
target queue is mqtest

4. Now you can send messages. Simply type each message and press Enter after each message. For example:

sample message 1
sample message 2

5. When you are done sending messages, press Enter twice. You will then see a line like the following:

Sample AMQSPUT0 end

6. To complete this test, we will retrieve the messages you sent to the queue. Type the following command at the command
line:

amqsgetc queue_name queue_manager_name

where queue_name is the name of the queue to use and queue_manager_name is the name of the queue manager. For
example:

7. You should then see a start line, followed by the messages that you sent previously, as follows:

Sample AMQSGET0 start
message <sample message 1>
message <sample message 2>

58 Using Internet Utility Classes

Sending and Receiving IBM WebSphere MQ Messages

8. This sample program waits briefly to receive any other messages and then displays the following:

no more messages
Sample AMQSGET0 end

If the test fails, consult the IBM documentation. Possible causes of problems include the following:

• Security issues

• Queue is not defined correctly

• Queue manager is not started

Using Internet Utility Classes 59

Troubleshooting

6
Using SSH

The %Net.SSH package provides support for SSH (Secure Shell) communications. This chapter briefly introduces the
classes in this package.

6.1 Creating an SSH Session
%Net.SSH.Session represents an SSH session. To use this class:

1. Create an instance of the class.

2. Use the Connect() instance method to connect to a server.

3. Use either AuthenticateWithKeyPair() or AuthenticateWithUsername() to authenticate yourself to the server. For
details, see the class reference for %Net.SSH.Session.

4. Use additional methods of %Net.SSH.Session to perform SCP (Secure Copy) operations of single files to and from
the remote system, execute remote commands, tunnel TCP traffic, or perform SFTP operations. See the class reference
for %Net.SSH.Session.

For example, use OpenSFTP to use the session for SFTP operations. This method returns, by reference, an instance
of %Net.SSH.SFTP that you can use for SFTP operations. See the example in the next section.

Important: For information on the supported platforms where you can use these classes, see the class reference for
%Net.SSH.Session and %Net.SSH.SFTP.

6.2 Example: Listing Files via SFTP
The following method shows how you can write a list of the files on a server, via SFTP:

Using Internet Utility Classes 61

http://en.wikipedia.org/wiki/Secure_Shell

Method SFTPDir(ftpserver, username, password) As %Status
{
 set ssh = ##class(%Net.SSH.Session).%New()
 do ssh.Connect(ftpserver)
 do ssh.AuthenticateWithUsername(username,password)
 //open an SFTP session and get that returned by reference
 do ssh.OpenSFTP(.sftp)
 //get a list of files
 do sftp.Dir(".",.files)
 set i=$ORDER(files(""))
 while i'="" {
 write $listget(files(i),1),!
 set i=$ORDER(files(i))
 }
 quit $$$OK
}

6.3 Additional Examples
For additional SSH examples, open %Net.SSH.Session in Studio and see the TestExecute() and TestForwardPort()
methods of this class.

62 Using Internet Utility Classes

Using SSH

7
Other InterSystems %Net Tools

Here is a brief list of some other useful classes in %Net:

%Net.URLParser

InterSystems IRIS provides a utility class, %Net.URLParser, that you can use to parse URL strings into their
component parts. This is useful, for example, when you are redirecting an HTTP request.

This class contains one class method, Parse(), that takes a string containing a URL value and returns, by reference,
an array that contains the parts of the URL. For example:

Set url =
"https://www.google.com/search?q=Java+site%3Adocs.intersystems.com&oq=Java+site%3Adocs.intersystems.com"
Do ##class(%Net.URLParser).Parse(url,.components)

Upon return, components will contain an array of the parts of this URL:

DescriptionValueElement

The fragment (following
the # character) for the
URL

nullcomponents("fragment")

The host requested by
the URL

www.google.comcomponents("host")

The network address of
the URL

www.google.comcomponents("netloc")

The URL parameters
contained in the URL

components("params")

The file path of the URL/searchcomponents("path")

The query string
contained in the URL

q=Java+site%3Adocs.intersystems.com&oq=Java+site%3Adocs.intersystems.comcomponents("query"

The transport scheme
specified by this URL

httpscomponents("scheme")

For more information, refer to the class documentation for %Net.URLParser.

Using Internet Utility Classes 63

%Net.Charset

You can use %Net.Charset to represent MIME character sets within InterSystems IRIS and map these character
sets to InterSystems IRIS locales. This class includes the following class methods:

• GetDefaultCharset() returns the default character set for the current InterSystems IRIS locale,

• GetTranslateTable() returns the name of the InterSystems IRIS translation table for a given input character
set.

• TranslateTableExists() indicates whether the translation table for the given character set has been loaded.

For method signatures, see the class documentation for %Net.Charset.

For more information on character sets and translation tables, see “System Classes for National Language Support”
in Specialized System Tools and Utilities.

%Net.TelnetStream

You can use %Net.TelnetStream to emulate the handshaking behavior of Windows NT Telnet.exe. For details, see
the class documentation for %Net.TelnetStream.

%Net Security Classes

The %Net package provides many classes for authentication and security. For information, see the extensive class
documentation.

64 Using Internet Utility Classes

Other InterSystems %Net Tools

	Table of Contents
	About This Book
	1 Sending HTTP Requests
	1.1 Introduction to HTTP Requests
	1.2 Providing Authentication
	1.2.1 Authenticating a Request When Using HTTP 1.0
	1.2.2 Authenticating a Request When Using HTTP 1.1
	1.2.3 Specifying the Authorization Header Directly
	1.2.4 Enabling Logging for HTTP Authentication

	1.3 Specifying Other HTTP Request Properties
	1.3.1 The Location Property
	1.3.2 Specifying the Internet Media Type and Character Encoding
	1.3.3 Using a Proxy Server
	1.3.4 Using SSL to Connect
	1.3.5 The HTTPVersion, Timeout, WriteTimeout, and FollowRedirect Properties
	1.3.6 Specifying Default Values for HTTP Requests

	1.4 Setting and Getting HTTP Headers
	1.5 Managing Keep-alive Behavior
	1.6 Handling HTTP Request Parameters
	1.7 Including a Request Body
	1.7.1 Sending a Chunked Request

	1.8 Sending Form Data
	1.8.1 Example 1
	1.8.2 Example 2

	1.9 Inserting, Listing, and Deleting Cookies
	1.10 Sending the HTTP Request
	1.11 Creating and Sending Multipart POST Requests
	1.12 Accessing the HTTP Response
	1.12.1 Accessing the Data of the Response
	1.12.2 Getting an HTTP Header by Name
	1.12.3 Accessing Other Information about the Response

	2 Sending and Receiving Email
	2.1 Supported Email Protocols
	2.2 How InterSystems IRIS Represents MIME Email Messages
	2.3 Creating Single-part Email Messages
	2.3.1 Example 1: CreateTextMessage()
	2.3.2 Example 2: SimpleMessage()

	2.4 Creating Multipart Email Messages
	2.5 Specifying Email Message Headers
	2.5.1 Specifying Basic Email Headers
	2.5.2 Content-Type Header
	2.5.3 Content-Transfer-Encoding Header
	2.5.4 Custom Headers

	2.6 Adding Attachments to a Message
	2.6.1 Example: MessageWithAttachment()

	2.7 Using an SMTP Server to Send Email
	2.7.1 Example 1: HotPOPAsSMTP() and SendSimpleMessage()
	2.7.2 Example 2: YPOPsAsSMTP()
	2.7.3 Example 3: SendMessage()
	2.7.4 Other Properties of %Net.SMTP

	2.8 Fetching Email from a POP3 Server
	2.8.1 Communicating with a POP3 Server
	2.8.2 Getting Information about the Mailbox
	2.8.3 Fetching Messages from the Mailbox
	2.8.4 Saving Attachments as Files
	2.8.5 Getting Attached Email Messages
	2.8.6 Other Message Retrieval Methods
	2.8.7 Deleting Messages

	2.9 Working with a Received Email Message
	2.9.1 Message Basics
	2.9.2 Message Headers
	2.9.3 Message Contents
	2.9.4 Other Message Information
	2.9.5 Example 1: ShowMsgInfo()
	2.9.6 Example 2: ShowMsgPartInfo()
	2.9.7 Example 3: ShowMsgHeaders()

	2.10 Automatic Encoding and Character Translation
	2.10.1 Outgoing Email
	2.10.2 Incoming Email

	3 Creating, Writing, and Reading MIME Messages
	3.1 An Overview of MIME Messages
	3.2 Creating MIME Parts
	3.2.1 Setting and Getting MIME Part Headers
	3.2.2 Specifying an Optional Message Boundary Value

	3.3 Writing MIME Messages
	3.3.1 Example: WriteMIMEMessage()

	3.4 Reading MIME Messages

	4 Using FTP
	4.1 Establishing an FTP Session
	4.1.1 Translate Table for Commands

	4.2 FTP File and System Methods
	4.3 Using a Linked Stream to Upload Large Files
	4.4 Customizing Callbacks Issued by the FTP Server

	5 Sending and Receiving IBM WebSphere MQ Messages
	5.1 Using the InterSystems IRIS Interface to IBM WebSphere MQ
	5.1.1 Getting Error Codes

	5.2 Creating a Connection Object
	5.2.1 Using the %Init() Method
	5.2.2 Using the %Connect() Method

	5.3 Specifying the Character Set (CCSID)
	5.4 Specifying Other Message Options
	5.5 Sending Messages
	5.5.1 Example 1: SendString()
	5.5.2 Example 2: SendCharacterStream()
	5.5.3 Example 3: Sending a Message from the Terminal

	5.6 Retrieving Messages
	5.6.1 Example 1: ReceiveString()
	5.6.2 Example 2: ReceiveCharacterStream()

	5.7 Updating Message Information
	5.8 Troubleshooting

	6 Using SSH
	6.1 Creating an SSH Session
	6.2 Example: Listing Files via SFTP
	6.3 Additional Examples

	7 Other InterSystems %Net Tools
	Index

