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About This Book

This book is a guide to creating and using classes in InterSystems IRIS®, particularly object classes and persistent classes.
It consists of the following chapters:

• Introduction to InterSystems IRIS Classes

• Defining and Compiling Classes

• Package Options

• Defining and Referring to Class Parameters

• Defining and Calling Methods

• Working with Registered Objects

• Introduction to Persistent Objects

• Working with Persistent Objects

• Defining Persistent Classes

• Defining and Using Literal Properties

• Working with Collections

• Working with Streams

• Defining and Using Object-Valued Properties

• Defining and Using Relationships

• Other Options for Persistent Classes

• Defining Method and Trigger Generators

• Defining and Using Class Queries

• Defining and Using XData Blocks

• Defining Class Projections

• Defining Data Type Classes

• Implementing Callback Methods

• Using and Overriding Property Methods

• Implementing Dynamic Dispatch

This book also includes the following appendices:

• Object-Specific ObjectScript Features

• Using the Populate Utility

• Using the %Dictionary Classes

• Using the Object Synchronization Feature

For a detailed outline, see the table of contents.

For information about related topics, see the following documents:
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• Orientation Guide for Server-Side Programming is an orientation guide for programmers who are new to InterSystems
IRIS.

• The Class Definition Reference provides detailed reference information about how to define classes and their members.

• Using ObjectScript describes concepts and how to use the ObjectScript language.

• Using Globals describes the underlying data storage mechanisms that InterSystems IRIS uses.
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1
Basic Ideas in Class Programming

This book describes how to create and use classes in the InterSystems IRIS® data platform, particularly classes that define
objects.

If you are not familiar with class programming, this chapter is intended to give you a sense of how this kind of programming
works. If you are familiar with class programming, you might find it helpful just to skim the code examples, so that you
see what class programming in InterSystems IRIS looks like.

This chapter discusses the following:

• Objects and properties

• Methods

• Class constants (parameters)

• Class definitions and the use of types

• Inheritance

• Classes as containers of methods

• Abstract classes

The concepts in this chapter are largely independent of language, although the examples use ObjectScript.

1.1 Objects and Properties
In class programming, a key concept is objects. An object is a container for a set of values that are stored together or passed
together as a set. An object often corresponds to a real-life entity, such as a patient, a patient diagnosis, a transaction, and
so on.

A class definition is often a template for objects of a given type. The class definition has properties to contain the values
for those objects. For example, suppose that we have a class named MyApp.Clinical.PatDiagnosis; this class could have the
properties Date, EnteredBy, PatientID, DiagnosedBy, Code, and others.

You use the template by creating instances of the class; these instances are objects. For example, suppose that a user enters
a patient diagnosis into a user interface and saves that data. The underlying code would have the following logic:

1. Create a new patient diagnosis object from the patient diagnosis template.

2. Set values for the properties of the object, as needed. Some may be required, some may have default values, some may
be calculated based on others, and some may be purely optional.
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3. Save the object.

This action stores the data.

The following shows an example that uses ObjectScript:

 //create the object
 set diagnosis=##class(MyApp.Clinical.PatDiagnosis).%New()

 //set a couple of properties by using special variables
 set diagnosis.Date=$SYSTEM.SYS.TimeStamp()
 set diagnosis.EnteredBy=$username

 //set other properties based on variables set earlier by 
 //the user interface
 set diagnosis.PatientID=patientid
 set diagnosis.DiagnosedBy=clinicianid
 set diagnosis.Code=diagcode

 //save the data
 //the next line tries to save the data and returns a status to indicate
 //whether the action was successful
 set status=diagnosis.%Save()
 //always check the returned status
 if $$$ISERR(status) {do $System.Status.DisplayError(status) quit status}

Note the following points:

• To refer to a property of the object, you use the syntax object_variable.property_name, for example:
diagnosis.DiagnosedBy

• %New() and %Save() are methods of the MyApp.Clinical.PatDiagnosis class.

The next section discusses types of methods and why you invoke them in different ways as seen here.

1.2 Methods
A method is a procedure (in most cases; InterSystems IRIS supports other kinds of methods as you will see in the next
chapter). Methods can invoke each other and can refer to properties and parameters.

There are two kinds of methods in a class language: instance methods and class methods. These have different purposes
and are used in different ways.

1.2.1 Instance Methods

An instance method has meaning only when invoked from an instance of the class, usually because you are doing something
to or something with that instance. For example:

 set status=diagnosis.%Save()

For example, suppose that we are defining a class that represents patients. In this class, we could define instance methods
to perform the following actions:

• Calculate the BMI (body mass index) for the patient

• Print a report summarizing information for the patient

• Determine whether the patient is eligible for a specific procedure

Each of these actions requires knowledge of data stored for the patient, which is why most programmers would write them
as instance methods. Internally, the implementation of an instance method typically refers to properties of that instance.
The following shows an example definition of an instance method that refers to two properties:
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Method GetBMI() as %Numeric
{
 Set bmi=..WeightKg / (..HeightMeter*2)
 Quit bmi
}

To use this method, your application code might include lines like this:

 //open the requested patient given an id selected earlier
 set patient=##class(MyApp.Clinical.PatDiagnosis).%OpenId(id)  

 //get value to display in BMI Display field 
 set BMIDisplay=patient.GetBMI() 

1.2.2 Class Methods

The other type of method is the class method (called a static method in other languages). To invoke this type of method,
you use syntax that does not refer to an instance. For example:

 set patient=##class(MyApp.Clinical.PatDiagnosis).%New()

There are three very general reasons to write class methods:

• You need to perform an action that creates an instance of the class.

By definition, this action cannot be an instance method.

• You need to perform an action that affects multiple instances.

For example, you might need to reassign a group of patients to a different primary care physician.

• You need to perform an action that does not affect any instance.

For example, you can write a method that returns the time of day, or a random number, or a string formatted in a par-
ticular way.

1.2.3 Methods and Variable Scope

A method typically sets values of variables. In nearly all cases, these variables are available only within this method. For
example, consider the following class:

Class GORIENT.VariableScopeDemo
{

ClassMethod Add(arg1 As %Numeric, arg2 As %Numeric) As %Numeric
{
    Set ans=arg1+arg2
    Quit ans
}

ClassMethod Demo1()
{
   set x=..Add(1,2)
   write x
}

ClassMethod Demo2()
{
   set x=..Add(2,4)
   write x
}

}

The Add() method sets a variable named ans and then returns the value contained in that variable.

The method Demo1() invokes the method Add(), with the arguments 1 and 2, and then writes the answer. The method
Demo2() is similar but uses different hardcoded arguments.
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If the method Demo1() or Demo2() tried to refer to the variable ans, that variable would be undefined in that context and
InterSystems IRIS would throw an error.

Similarly, Add() cannot refer to the variable x. Also the variable x within Demo1() is a different variable from the variable
x within Demo2().

These variables have limited scope because that is the default behavior of InterSystems IRIS classes (and is the usual
behavior in other class languages).

Within class definitions, you pass values almost entirely by including them as arguments to methods. This is the convention
in class programming. This convention simplifies the job of determining the scope of variables.

In contrast, when you write routines, it is necessary to understand the rules that control scoping. These are discussed in
Using ObjectScript.

1.3 Class Constants (Parameters)
Sometimes it is useful for a class to have easy access to a constant value. In InterSystems IRIS classes, such a value is a
class parameter. Other languages use the term class constant instead. The following shows an example:

Parameter MYPARAMETER = "ABC" ; 

A class parameter acquires a value at compile time and cannot be changed later.

Your methods can refer to parameters; that is why you define parameters. For example:

 set myval=..#MYPARAMETER * inputvalue

1.4 Class Definitions and Types
The following shows an example of a class definition, which we will use to discuss types in class definitions:

Class MyClass Extends %Library.Persistent
{
Parameter MYPARAMETER = "ABC" ; 

Property DateOfBirth As %Library.Date; 

Property Home As Sample.Address; 

Method CurrentAge() As %Library.Integer 
{
 //details
}

ClassMethod Addition(x As %Library.Integer, y As %Library.Integer) As %Library.Integer
{
 //details
}

}

This class definition defines one parameter (MYPARAMETER), two properties (DateOfBirth and Home), one instance
method (CurrentAge()), and one class method (Addition()).

In class programming, you can specify types in the following key places:

• For the class itself. The element after Extends is a type.

Each type is the name of class.
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• For parameters. In this case and in the remaining cases, the element after As is a type.

• For properties. For the Home property, the type is a class that itself contains properties.

In this case, the type has an object value. In the example here, this is an object-valued property.

Object-valued properties can contain other object-valued properties.

• For the return value of a method.

• For the value of any arguments used by a method.

1.5 Inheritance
In most class-based languages, a major feature is inheritance: one class can inherit from other classes and thus acquire the
parameters, properties, methods, and other elements of those other classes. Collectively, the parameters, properties, methods,
and other elements are known as class members.

1.5.1 Terminology and Basics

When class A inherits from class B, we use the following terminology:

• Class A is a subclass of class B. Alternatively, class A extends class B.

Sometimes it is said that class A is a subtype of class B.

• Class B is a superclass of class A.

Sometimes it is said that class A is the child class and class B is the parent class. This terminology is common but can
be misleading, because the words parent and child are used in quite a different sense when discussing SQL tables.

When a class inherits from other classes, it acquires the class members of those other classes, including members that the
superclasses have themselves inherited. The subclass can override the inherited class members.

It is possible for multiple superclasses of one class to define methods with the same name, properties with the same name,
and so on. Therefore it is necessary to have rules for deciding which superclass contributes the definition that is used in
the subclass. (See “ Inheritance,”  in chapter “Defining and Compiling Classes.” )

In the InterSystems IRIS class library, superclasses usually have different purposes and have members with different names,
and conflicts of member names are not common.

1.5.2 Example

The following shows an example from InterSystems IRIS:

/// Finds files in a FilePath directory and submits all that match a FileSpec wildcard to 
/// an associated BusinessService for processing within InterSystems IRIS 
Class EnsLib.File.InboundAdapter Extends (Ens.InboundAdapter, EnsLib.File.Common) 

This example is presented solely to demonstrate how a class can combine logic from different superclasses. This
EnsLib.File.InboundAdapter class inherits from two classes that do quite different things:

• Ens.InboundAdapter, which contains the basic logic for something known as an “ inbound adapter,”  a concept in
InterSystems IRIS.

• EnsLib.File.Common, which contains logic for working with sets of files in a given directory.
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In EnsLib.File.InboundAdapter, the methods use logic from both of these classes, as well as their superclasses.

1.5.3 Use of Inherited Class Members

When you see the definition of a class in an editing tool, you do not see the inherited members that it contains but your
code can refer to them.

For example, suppose that class A has two properties, each of which has a default value, as follows:

Class Demo.A  
{
Property Prop1 as %Library.String [InitialExpression = "ABC"];

Property Prop2 as %Library.String [InitialExpression = "DEF"];
}

Class B could look like this:

Class Demo.B Extends Demo.A  
{
Method PrintIt()
{
 Write ..Prop1,! 
 Write ..Prop2,! 
}

}

As noted earlier, a subclass can override the inherited class members. For example, class C could also inherit from class
A but could override the default value of one of its properties:

Class Demo.C Extends Demo.A  
{
Property Prop2 as %Library.String [InitialExpression = "GHI"];

}

1.5.4 Use of Subclasses

If class B inherits from class A, you can use an instance of class B in any location where you can use an instance of class
A.

For example, suppose that you have a utility method like the following:

ClassMethod PersonReport(person as MyApp.Person) {
 //print a report that uses properties of the instance
}

You can use an instance of MyApp.Person as input to this method. You can also use an instance of any subclass of
MyApp.Person. For example:

 //id variable is set earlier in this program 
 set employee=##class(MyApp.Employee).%OpenId(id)
 do ##class(Util.Utils).PersonReport(employee)

Similarly, the return value of a method (if it returns a value) can be an instance of a subclass of the specified type. For
example, suppose that MyApp.Employee and MyApp.Patient are both subclasses of MyApp.Person. You could
define a method as follows:
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ClassMethod ReturnRandomPerson() as MyApp.Person
{
 Set randomnumber = $RANDOM(10)
 If randomnumber > 5 {
     set person=##class(MyApp.Employee).%New()
 }
 else {
     set person=##class(MyApp.Patient).%New()
 }
 quit person
}

1.6 Classes as Containers of Methods
As noted earlier, a class definition is often a template for objects. Another possibility is for a class to be a container for a
set of class methods that belong together. In this case, you never create an instance of this class. You only invoke class
methods in it.

For examples, see the classes in the InterSystems IRIS %SYSTEM package.

1.7 Abstract Classes
It is also useful to define abstract classes. An abstract class typically defines a generic interface and cannot be instantiated.
A method definition within the class declares the signature of the method, but not its implementation.

You define an abstract class to describe an interface. Then you or other developers create subclasses, and in those subclasses,
implement the methods. The implementation must match the signature specified in the abstract class. This system enables
you to develop multiple, parallel classes with slightly different purposes but identical interfaces. Many of the system classes
have common interfaces for this reason.

It is also possible to specify that a method is abstract even if the class is not.
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2
Defining and Compiling Classes

This chapter describes the basics of defining and compiling classes with the InterSystems IRIS® data platform. It discusses
the following topics:

• Introduction to terminology

• Kinds of classes

• Kinds of class members

• Basic information on defining a class

• Naming conventions

• Inheritance

• Compiler keywords

• How to create class documentation

• How to compile classes

• How to make classes deployed

When viewing this book online, use the preface of this book to quickly find other topics.

2.1 Introduction to Terminology
The following shows a simple InterSystems IRIS class definition, with some typical elements:

Class Demo.MyClass Extends %RegisteredObject
{

Property Property1 As %String;

Property Property2 As %Numeric;

Method MyMethod() As %String
{
   set returnvalue=..Property1_..Property2
   quit returnvalue
}

}

Note the following points:

• The full class name is Demo.MyClass, the package name is Demo, and the short class name is MyClass
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• This class extends the class %RegisteredObject. Equivalently, this class inherits from %RegisteredObject.

%RegisteredObject is the superclass of this class, or this class is a subclass of %RegisteredObject. An InterSystems
IRIS class can have multiple superclasses, as this chapter later discusses.

The superclass(es) of a class determine how the class can be used.

• This class defines two properties: Property1 and Property2. Property Property1 is of type %String, and Property
Property1 is of type %Numeric

• This class defines one method: MyMethod(), which returns a value of type %String.

This class refers to several system classes provided by InterSystems IRIS. These classes are %RegisteredObject (whose
full name is %Library.RegisteredObject), %String (%Library.String), and %Numeric (%Library.Numeric). %RegisteredObject

is a key class in InterSystems IRIS, because it defines the object interface. It provides the methods you use to create and
work with object instances. %String and %Numeric are data type classes. As a consequence, the corresponding properties
hold literal values (rather than other kinds of values).

2.2 Kinds of Classes
InterSystems IRIS provides a large set of class definitions that your classes can use in the following general ways:

• You can use InterSystems IRIS classes as superclasses for your classes.

• You can use InterSystems IRIS classes as values of properties, values of arguments to methods, values returned by
methods, and so on.

• Some InterSystems IRIS classes simply provide specific APIs. You typically do not use these classes in either of the
preceding ways. Instead you write code that calls methods of the API.

The most common choices for superclasses are as follows:

• %RegisteredObject — This class represents the object interface in its most generic form.

• %Persistent — This class represents a persistent object. In addition to providing the object interface, this class provides
methods for saving objects to the database and reading objects from the database.

• %SerialObject — This class represents an object that can be embedded in (serialized within) another object.

• Subclasses of any of the preceding classes.

• None — It is not necessary to specify a superclass when you create a class.

The most common choices for values of properties, values of arguments to methods, values returned by methods, and so
on are as follows:

• Object classes (the classes contained in the previous list)

• Data type classes

• Collection classes

• Stream classes

Later chapters of this book discuss these categories of classes.
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2.2.1 Object Classes

The phrase object class refers to any subclass of %RegisteredObject. With an object class, you can create an instance of
the class, specify properties of the instance, and invoke methods of the instance. A later chapter describes these tasks (and
provides information that applies to all object classes).

The generic term object refers to an instance of an object class.

There are three general categories of object classes:

• Transient object classes or registered object classes are subclasses of %RegisteredObject but not of %Persistent or
%SerialObject (see the following bullets).

For details, see “Working with Registered Objects.”

• Persistent classes are subclasses of %Persistent, which is a direct subclass of %RegisteredObject. The %Persistent class
includes the behavior of %RegisteredObject and adds the ability to save objects to disk, reopen them, and so on.

For details, see the chapter “ Introduction to Persistent Objects”  and the chapters that follow it.

• Serial classes are subclasses of %SerialObject, which is a direct subclass of %RegisteredObject. The %SerialObject

class includes the behavior of %RegisteredObject and adds the ability to create a string that represents the state of the
object, for inclusion as a property within another object (usually either a transient object or a persistent object). The
phrase serializing an object refers to the creation of this string.

For details, see the chapter “Defining and Using Object-Valued Properties.”

The following figure shows the inheritance relationship among these three classes. The boxes list some of the methods
defined in the classes:

Collection classes and stream classes are object classes with specialized behavior.

2.2.2 Data Type Classes

The phrase data type class refers to any class whose ClassType keyword equals datatype or any subclass of such a class.
These classes are not object classes (a data type class cannot define properties, and you cannot create an instance of the
class). The purpose of a data type class (more accurately a data type generator class) is to be used as the type of a property
of an object class.
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2.3 Kinds of Class Members
An InterSystems IRIS class definition can include the following items, all known as class members:

• Parameters — A parameter defines a constant value for use by this class. The value is set at compilation time, in most
cases.

• Methods — InterSystems IRIS supports two types of methods: instance methods and class methods. An instance
method is invoked from a specific instance of a class and performs some action related to that instance; this type of
method is useful only in object classes. A class method is a method that can be invoked whether or not an instance of
its class is in memory; this type of method is called a static method in other languages.

• Properties — A property contains data for an instance of the class. Properties are useful only in object classes. The
following subsection provides more information.

• Class queries — A class query defines an SQL query that can be used by the class and specifies a class to use as a
container for the query. Often (but not necessarily), you define class queries in a persistent class, to perform queries
on the stored data for that class. You can, however, define class queries in any class.

• Other kinds of class members that are relevant only for persistent classes:

– Storage definitions

– Indices

– Foreign keys

– SQL triggers

• XData blocks — An XData block is a named unit of data defined within the class, typically for use by a method in the
class. These have many possible applications.

• Projections — A class projection provides a way to extend the behavior of the class compiler.

The projection mechanism is used by the Java projections; hence the origin of the term projection.

2.3.1 Kinds of Properties

Formally, there are two kinds of properties: attributes and relationships.

Attributes hold values. Attribute properties are usually referred to simply as properties. Depending on the property definition,
the value that it holds can be any of the following:

• A literal value such as "MyString" and 1. Properties that hold literal values are based on data type classes and are
also called data type properties. See the chapter “Defining and Using Literal Properties.”

• A stream. A stream is an InterSystems IRIS object that contains a value that would be too long for a string. See the
chapter “Working with Streams.”

• A collection. InterSystems IRIS provides the ability to define a property as either a list or an array. The list or array
items can be literal values or can be objects. See the chapter “Working with Collections.”

• Some other kind of object. See the chapter “Defining and Using Object-Valued Properties.”

Relationships hold associations between objects. Relationship properties are referred to as relationships. Relationships are
supported only in persistent classes. See the chapter “Defining and Using Relationships.”
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2.4 Defining a Class:The Basics
This section discusses basic class definitions in more detail. It discusses the following topics:

• Choosing a superclass

• Specifying class keywords

• Include files

• Introduction to defining class parameters

• Introduction to defining properties

• Introduction to defining methods

Typically, you use Atelier to define classes. You can also define classes programmatically using the InterSystems IRIS
class definition classes or via an XML class definition file. If you define an SQL table using SQL DDL statements, the
system creates a corresponding class definition.

2.4.1 Choosing a Superclass

When you define a class, one of your earliest design decisions is choosing the class (or classes) which to base your class.
If there is only a single superclass, include Extends followed by the superclass name, at the start of the class definition.

Class Demo.MyClass Extends Superclass 
{

//...

}

If there are multiple superclasses, specify them as a comma-separated list, enclosed in parentheses.

Class Demo.MyClass Extends (Superclass1, Superclass2, Superclass3) 
{

//...

}

It is not necessary to specify a superclass when you create a class. It is common to use %RegisteredObject as the superclass
even if the class does not represent any kind of object, because doing so gives your class access to many commonly used
macros, but you can instead directly include the include files that contain them.

2.4.2 Include Files

When you create a class that does not extend %RegisteredObject or any of its subclasses, you might want to include the
following include files:

• %occStatus.inc, which defines macros to work with %Status values.

• %occMessages.inc, which defines macros to work with messages.

For details on the macros defined by these include files, see “Using System-supplied Macros”  in Using ObjectScript.

If your class does extend %RegisteredObject or any of its subclasses, these macros are available automatically.

You can also create your own include files and include them in class definitions as needed.
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To include an include file at the beginning of a class definition, use syntax of the following form. Note that you must omit
the .inc extension of the include file:

Include MyMacros

For example:

Include %occInclude

Class Classname 
{
}

To include multiple include files at the beginning of a class definition, use syntax of the following form:

Include (MyMacros, YourMacros) 

Note that this syntax does not have a leading pound sign (in contrast to the syntax required in a routine). Also, the Include
directive is not case-sensitive, so you could use INCLUDE instead, for example. The include file name is case-sensitive.

See also the reference section on #Include in Using ObjectScript.

2.4.3 Specifying Class Keywords

In some cases, it is necessary to control details of the code generated by the class compiler. For one example, for a persistent
class, you can specify an SQL table name, if you do not want to (or cannot) use the default table name. For another example,
you can mark a class as final, so that subclasses of it cannot be created. The class definitions support a specific set of keywords
for such purposes. If you need to specify class keywords, include them within square brackets after the superclass, as follows:

Class Demo.MyClass Extends Demo.MySuperclass [ Keyword1, Keyword2, ...]
{

//...

}

For example, the available class keywords include Abstract and Final. For an introduction, see “Compiler Keywords,”
later in this chapter. InterSystems IRIS also provides specific keywords for each kind of class member.

2.4.4 Introduction to Defining Class Parameters

A class parameter defines a constant value for all objects of a given class. To add a class parameter to a class definition,
add an element like one of the following to the class:

Parameter PARAMNAME as Type;

Parameter PARAMNAME as Type = value;

Parameter PARAMNAME as Type [ Keywords ] = value;

Keywords represents any parameter keywords. For an introduction to keywords, see “Compiler Keywords,”  later in this
chapter. For parameter keywords; see “Parameter Keywords”  in the Class Definition Reference. These are optional.

2.4.5 Introduction to Defining Properties

An object class can include properties.

To add a property to a class definition, add an element like one of the following to the class:

Property PropName as Classname;

Property PropName as Classname [ Keywords ] ;
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Property PropName as Classname(PARAM1=value,PARAM2=value) [ Keywords ] ;

Property PropName as Classname(PARAM1=value,PARAM2=value) ;

PropName is the name of the property, and Classname is an optional class name (if you omit this, the property is assumed
to be of type %String).

Keywords represents any property keywords. For an introduction to keywords, see “Compiler Keywords,”  later in this
chapter. For property keywords; see “Property Keywords”  in the Class Definition Reference. These are optional.

Depending on the class used by the property, you might also be able to specify property parameters, as shown in the third
and fourth variations.

Notice that the property parameters, if included, are enclosed in parentheses and precede any property keywords. Also
notice that the property keywords, if included, are enclosed in square brackets.

2.4.6 Introduction to Defining Methods

You can define two kinds of methods in InterSystems IRIS classes: class methods and instance methods.

To add a class method to a class definition, add an element like the following to the class:

ClassMethod MethodName(arguments) as Classname [ Keywords]
{
//method implementation
}

MethodName is the name of the method and arguments is a comma-separated list of arguments. Classname is an optional
class name that represents the type of value (if any) returned by this method. Omit the As Classname part if the method
does not return a value.

Keywords represents any method keywords. For an introduction to keywords, see “Compiler Keywords,”  later in this
chapter. For method keywords, see “Method Keywords”  in the Class Definition Reference. These are optional.

To add an instance method, use the same syntax with Method instead of ClassMethod:

Method MethodName(arguments) as Classname [ Keywords]
{
//method implementation
}

Instance methods are relevant only in object classes.

2.5 Naming Conventions
Class and class members follow specific naming conventions. These are detailed in this section.

2.5.1 Rules for Class and Class Member Names

This section describes the rules for class and member names, such as maximum length, allowed characters, and so on. A
full class name includes its package name, as described in the next section.

Every identifier must be unique within its context (that is, no two classes can have the same name). InterSystems IRIS has
the following limits on package, class, and member names:

• Each package name can have up to 189 unique characters.

• Each class name can have up to 60 unique characters.
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• Each method and property name can have up to 180 unique characters. See the section “Class Member Names”  for
more details.

• The combined length of the name of a property and of any indices on the property should be no longer than 180 char-
acters.

• The full name of each member (including the unqualified member name, the class name, the package name, and any
separators) must be 220 characters or fewer.

• Each name can include Unicode characters.

Identifiers preserve case: you must exactly match the case of a name; at the same time, two classes cannot have names that
differ only in case. For example, the identifiers “ id1”  and “ ID1”  are considered identical for purposes of uniqueness.

Identifiers must start with an alphabetic character, though they may contain numeric characters after the first position.
Identifiers cannot contain spaces or punctuation characters with the exception of package names which may contain the
“ .”  character.

Certain identifiers start with the “%”  character; this identifies a system item. For example, many of the methods and
packages provided with the InterSystems IRIS library start with the “%”  character.

Member names can be delimited, which allows them to include characters that are otherwise not permitted. To create a
delimited member name, use double quotes for the first and last characters of the name. For example:

Property "My Property" As %String;

For more details on system identifiers, see the appendix “Rules and Guidelines for Identifiers”  in the Orientation Guide
for Server-Side Programming.

2.5.2 Class Names

Every class has a name that uniquely identifies it. A full class name consists of two parts: a package name and a class name:
the class name follows the final “ .”  character in the name. A class name must be unique within its package; a package
name must be unique within an InterSystems IRIS namespace. For details on packages, see the chapter “Packages.”

Because persistent classes are automatically projected as SQL tables, a class definition must specify a table name that is
not an SQL reserved word; if the name of a persistent class is an SQL reserved word, then the class definition must also
specify a valid, non-reserved word value for its SQLTableName keyword.

2.5.3 Class Member Names

Every class member (such as a property or method) must have a name that is unique within its class and with a maximum
length of 180 characters. Further, a member of a persistent cannot use an SQL reserved word as its identifier. It can define
an alias, however, using the SQLName or SQLFieldName keyword of that member (as appropriate).

Important: InterSystems strongly recommends that you do not give two members the same name. This can have
unexpected results.

2.6 Inheritance
An InterSystems IRIS class can inherit from already existing classes. If one class inherits from another, the inheriting class
is known as a subclass and the class or classes it is derived from are known as superclasses.

The following shows an example class definition that uses two superclasses:
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Class User.MySubclass Extends (%Library.Persistent, %Library.Populate)
{
}

In addition to a class inheriting methods from its superclasses, the properties inherit additional methods from system
property behavior classes and, in the case of a data type attribute, from the data type class.

For example, if there is a class defined called Person:

Class MyApp.Person Extends %Library.Persistent
{
Property Name As %String;
Property DOB As %Date;
}

It is simple to derive a new class, Employee, from it:

Class MyApp.Employee Extends Person
{
Property Salary As %Integer;
Property Department As %String;
}

This definition establishes the Employee class as a subclass of the Person class. In addition to its own class parameters,
properties, and methods, the Employee class includes all of these elements from the Person class.

2.6.1 Use of Subclasses

You can use a subclass in any place in which you might use its superclass. For example, using the above defined Employee

and Person classes, it is possible to open an Employee object and refer to it as a Person:

 Set x = ##class(MyApp.Person).%OpenId(id)
 Write x.Name

We can also access Employee-specific attributes or methods:

 Write x.Salary // displays the Salary property (only available in Employee instances)

2.6.2 Primary Superclass

The leftmost superclass that a subclass extends is known as its primary superclass. A class inherits all the members of its
primary superclass, including applicable class keywords, properties, methods, queries, indices, class parameters, and the
parameters and keywords of the inherited properties and inherited methods. Except for items marked as Final, the subclass
can override (but not delete) the characteristics of its inherited members.

See the next section for more details about multiple inheritance.

2.6.3 Multiple Inheritance

By means of multiple inheritance, a class can inherit its behavior and class type from more than one superclass. To establish
multiple inheritance, list multiple superclasses within parentheses. The leftmost superclass is the primary superclass.

For example, if class X inherits from classes A, B, and C, its definition includes:

Class X Extends (A, B, C) 
{
}

The default inheritance order for the class compiler is from left to right, which means that differences in member definitions
among superclasses are resolved in favor of the leftmost superclass (in this case, A superseding B and C, and B superseding
C.)
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Specifically, for class X, the values of the class parameter values, properties, and methods are inherited from class A (the
first superclass listed), then from class B, and, finally, from class C. X also inherits any class members from B that A has
not defined, and any class members from C that neither A nor B has defined. If class B has a class member with the same
name as a member already inherited from A, then X uses the value from A; similarly, if C has a member with the same name
as one inherited from either A or B, the order of precedence is A, then B, then C.

Because left-to-right inheritance is the default, there is no need to specify this; hence, the previous example class definition
is equivalent to the following:

Class X Extends (A, B, C) [ Inheritance = left ]
{
}

To specify right-to-left inheritance among superclasses, use the Inheritance keyword with a value of right:

Class X Extends (A, B, C) [ Inheritance = right ]
{
}

With right-to-left inheritance, if multiple superclasses have members with the same name, the superclass to the right takes
precedence.

Note: Even with right-to-left inheritance, the leftmost superclass (sometimes known as the first superclass) is still the
primary superclass. This means that the subclass inherits only the class keyword values of its leftmost superclass
— there is no override for these.

For example, in the case of class X inheriting from classes A, B, and C with right-to-left inheritance, if there is a conflict
between a member inherited from class A and one from class B, the member from class B overrides (replaces) the previously
inherited member; likewise for the members of class C in relation to those of classes A and B. The class keywords for class
X come exclusively from class A. (This is why extending classes A and B — in that order — with left-to-right inheritance
is not the same as extending classes B and A — in that order — with right-to-left inheritance; the keywords are inherited
from the leftmost superclass in either definition, which makes the two cases different.)

2.6.4 Additional Topics

Also see “%ClassName() and the Most Specific Type Class (MSTC)”  in the chapter “Working with Registered Objects.”

2.7 Introduction to Compiler Keywords
As shown in “Defining a Class: The Basics,”  you can include keywords in a class definition or in the definition of a class
member. These keywords, also known as class attributes, generally affect the compiler. This section introduces some
common keywords and discusses how InterSystems IRIS presents them.

2.7.1 Example

The following example shows a class definition with some commonly used keywords:
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/// This sample persistent class represents a person.
Class MyApp.Person Extends %Persistent [ SqlTableName = MyAppPerson ]
{

/// Define a unique index for the SSN property.
Index SSNKey On SSN [ Unique ];

/// Name of the person.
Property Name As %String [ Required ];

/// Person's Social Security number.
Property SSN As %String(PATTERN = "3N1""-""2N1""-""4N") [ Required ];

}

This example shows the following keywords:

• For the class definition, the Extends keyword specifies the superclass (or superclasses) from which this class inherits.

Note that the Extends keyword has a different name when you view the class in other ways; see the next section.

• For the class definition, the SqlTableName keyword determines the name of the associated table, if the default name
is not to be used. This keyword is meaningful only for persistent classes, which are described later in this book.

• For the index definition, the Unique keyword causes InterSystems IRIS to enforce uniqueness on the property on which
the index is based (SSN in this example).

• For the two properties, the Required keyword causes InterSystems IRIS to require non-null values for the properties.

PATTERN is not a keyword but instead is a property parameter; notice that PATTERN is enclosed in parentheses, rather
than square brackets.

Later chapters of this book discuss many additional keywords, but not all of them. Apart from keywords related to storage
(which are not generally documented), you can find details on the keywords in the Class Definition Reference. The reference
information demonstrates the syntax that applies when you view a class in the usual edit mode.

2.8 Creating Class Documentation
InterSystems IRIS provides a web page called the InterSystems Class Reference, which displays automatically generated
reference information for the classes provided by InterSystems, as well as for classes you create. Informally, the Class
Reference is known as Documatic, because it is generated by the class %CSP.Documatic.

This section introduces the Class Reference and explains how to create your own documentation and how to include HTML
markup.

2.8.1 Introduction to the Class Reference

The purpose of the Class Reference is to advertise, to other programmers, which parts of a class can be used, and how to
use them. The following shows an example:
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This reference information shows the definitions of class members, but not their actual implementations. For example, it
shows method signatures but not their internal definitions. It includes links between elements so that you can rapidly follow
the logic of the code. There is also a search option.

2.8.2 Creating Documentation to Include in the Class Reference

To create documentation to include in the Class Reference, create comments within the class definitions — specifically
comments that start with ///. If you precede the class declaration with such comments, the comments are shown at the
top of the page for the class. If you precede a given class member with such comments, the comments are shown after the
generated information for that class member. Once you compile the class, you can view its generated class documentation
the next time you open the Class Reference documentation. If you add no Class Reference comments, items that you add
to a class or package appear appropriately in the lists of class or package contents, but without any explanatory text.

You can extend any existing Class Reference comments by modifying the class definition. The syntax rules for Class Ref-
erence comments are strict:

• All Class Reference comments that describe a class or class member must appear in a consecutive block immediately
before the declaration of the item that they describe.

• Each line in the block of comments must start with three slashes: ///

Tip: Note that, by default, the presentation combines the text of all the /// lines and treats the result as single
paragraph. You can insert HTML line breaks (<br>). Or you can use HTML formatting (such as <p> and </p>),
as discussed in the subsection.

• The three slashes must begin at the first (left-most) position in the line.

• No blank lines are allowed within Class Reference comments.

• No blank lines are allowed between the last line of the Class Reference comments and the declaration for the item that
they describe.

• The length of the Class Reference comment (all lines combined) must be less than the string length limit (which is
extremely long). See “String Length Limit”  in the Orientation Guide for Server-Side Programming.

Class Reference comments allow plain text, plus any standard HTML element and a small number of specialized elements.

2.8.3 Using HTML Markup in Class Documentation

You can use HTML tags within the comments in a class. With regard to the allowed HTML elements, adhere to as strict
an HTML standard as you can, for example XHTML. This ensures that your comments can be interpreted by any browser.
In addition to standard HTML, you can use the following tags: CLASS, METHOD, PROPERTY, PARAMETER, QUERY,
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and EXAMPLE. (As with standard HTML tags, the names of these tags are not case-sensitive.) The most commonly used
tags are described here. See the documentation for %CSP.Documatic for details of the others.

CLASS

Use to tag class names. If the class exists, the contents are displayed as a link to the class' documentation. For
example:

/// This uses the <CLASS>MyApp.MyClass</CLASS> class.

EXAMPLE

Use to tag programming examples. This tag affects the appearance of the text. Note that each /// line becomes
a separate line in the example (in contrast to the usual case, where the lines are combined into a single paragraph).
For example:

/// <EXAMPLE>
/// set o=..%New()
/// set o.MyProperty=42
/// set o.OtherProp="abc"
/// do o.WriteSummary()
/// </EXAMPLE>

METHOD

Use to tag method names. If the method exists, the contents are displayed as a link to the method's documentation.
For example:

/// This is identical to the <METHOD>Unique</METHOD> method.

PROPERTY

Use to tag property names. If the property exists, the contents are displayed as a link to the property's documentation.
For example:

/// This uses the value of the <PROPERTY>State</PROPERTY> property.

Here is a multi-line description using HTML markup:

/// The <METHOD>Factorial</METHOD> method returns the factorial
/// of the value specified by <VAR>x</VAR>.

2.9 Compiling Classes
InterSystems IRIS class definitions are compiled into application routines by the class compiler. Classes cannot be used in
an application before they are compiled.

The class compiler differs from the compilers available with other programming languages, such Java, in two significant
ways: first, the results of compilation are placed into a shared repository (database), not a file system. Second, it automatically
provides support for persistent classes.

Specifically, the class compiler does the following:

1. It generates a list of dependencies — classes that must be compiled first. Depending on the compile options used, any
dependencies that have been modified since last being compiled will also be compiled.

2. It resolves inheritance — it determines which methods, properties, and other class members are inherited from super-
classes. It stores this inheritance information into the class dictionary for later reference.

3. For persistent and serial classes, it determines the storage structure needed to store objects in the database and creates
the necessary runtime information needed for the SQL representation of the class.
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4. It executes any method generators defined (or inherited) by the class.

5. It creates one or more routines that contain the runtime code for the class. The class compiler groups methods according
to language (ObjectScript and Basic) and generates separate routines, each containing methods of one language or the
other.

6. It compiles all of the generated routines into executable code.

7. It creates a class descriptor. This is a special data structure (stored as a routine) that contains all the runtime dispatch
information needed to support a class (names of properties, locations of methods, and so on).

2.9.1 Invoking the Class Compiler

You can compile classes in Atelier (as documented elsewhere), and you can compile them in the Terminal. In the latter
case, using the Compile() method of the %SYSTEM.OBJ object:

 Do $System.OBJ.Compile("MyApp.MyClass")

2.9.2 Class Compiler Notes

2.9.2.1 Compilation Order

When you compile a class, the system also recompiles other classes if the class that you are compiling contains information
about dependencies. For example, the system compiles any subclasses of the class. On some occasions, you may need to
control the order in which the classes are compiled. To do so, use the System, DependsOn, and CompileAfter keywords.
For details, see the Class Definition Reference.

To find the classes that the compiler will recompile when you compile a given class, use the
$SYSTEM.OBJ.GetDependencies() method. For example:

TESTNAMESPACE>d $system.OBJ.GetDependencies("Sample.Address",.included)

TESTNAMESPACE>zw included
included("Sample.Address")=""
included("Sample.Customer")=""
included("Sample.Employee")=""
included("Sample.Person")=""
included("Sample.Vendor")=""

The signature of this method is as follows:

classmethod GetDependencies(ByRef class As %String, Output included As %String, qspec As %String) as 
%Status

Where:

• class is either a single class name (as in the example), a comma-separated list of class names, or a multidimensional
array of class names. (If it is a multidimensional array, be sure to pass this argument by reference.) It can also include
wildcards.

• included is a multidimensional array of the names of the classes that will be compiled when class is compiled.

• qspec is a string of compiler flags and qualifiers. See the next subsection. If you omit this, the method considers the
current compiler flags and qualifiers.

2.9.2.2 Viewing Class Compiler Flags and Qualifiers

The Compile() method also allows you to supply flags and qualifiers that affect the result. Their position in the argument
list is described in the explanation of the Compile() method. To view the applicable flags, execute the command:
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 Do $System.OBJ.ShowFlags()

This produces the following output:

    b - Include sub classes.
    c - Compile. Compile the class definition(s) after loading.
    d - Display. This flag is set by default.
    e - Delete extent.
    h - Generate help.
    i - Validate XML export format against schema on Load.
    k - Keep source.  When this flag is set, source code of
        generated routines will be kept.
    l - Lock classes while compiling.  This flag is set by default.
    p - Percent.  Include classes with names of the form %*.
    r - Recursive.  Compile all the classes that are dependency predecessors.
    s - Process system messages or application messages.
    u - Update only.  Skip compilation of classes that are already up-to-date.
    y - Include classes that are related to the current class in the way that
        they either reference to or are referenced by the current class in SQL usage.

These flags are deprecated a, f, g, o, q, v
Default flags for this namespace =dil
You may change the default flags with the SetFlags(flags,system) classmethod.

To view the full list of qualifiers, along with their description, type, and any associated values, execute the command:

 Do $System.OBJ.ShowQualifiers()

Qualifier information displays in a format similar to one of the following:

            Name: /checkschema
    Description: Validate imported XML files against the schema definition.
           Type: logical
           Flag: i
  Default Value: 1

           Name: /checksysutd
    Description: Check system classes for up-to-dateness
           Type: logical
  Default Value: 0

           Name: /checkuptodate
    Description: Skip classes or expanded classes that are up-to-date.
           Type: enum
           Flag: ll
      Enum List: none,all,expandedonly,0,1
  Default Value: expandedonly
  Present Value: all
  Negated Value: none

2.9.2.3 Compiling Classes that Include Bitmap Indices

When compiling a class that contains a bitmap index, the class compiler generates a bitmap extent index if no bitmap extent
index is defined for that class. Special care is required when adding a bitmap index to a class on a production system. For
more information, see the section “Generating a Bitmap Extent Index”  in the “Defining and Building Indices”  chapter
of SQL Optimization Guide.

2.9.2.4 Compiling When There Are Existing Instances of a Class in Memory

If the compiler is called while an instance of the class being compiled is open, there is no error. The already open instance
continues to use its existing code. If another instance is opened after compilation, it uses the newly compiled code.

2.10 Making Classes Deployed
You might want to make some of your classes deployed before you send them to customers; this process hides the source
code.
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For any class definitions that contain method definitions that you do not want customers to see, compile the classes and
then use $SYSTEM.OBJ.MakeClassDeployed(). For example:

 d $system.OBJ.MakeClassDeployed("MyApp.MyClass")

For an alternative approach, see the article Adding Compiled Code to Customer Databases.

2.10.1 About Deployed Mode

When a class is in deployed mode, its method and trigger definitions have been removed. (Note that if the class is a data
type class, its method definitions are retained because they may be needed at runtime by cached queries.)

You can open the class definition in Atelier, but it is read-only.

You cannot export or compile a deployed class, but you can compile its subclasses (if they are not deployed).

There is no way to reverse or undo deployment of a class. You can, however, replace the class by importing the definition
from a file, if you previously exported it. (This is useful if you accidentally put one of your classes into deployed mode
prematurely.)
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3
Package Options

This chapter discusses packages in more detail. Topics include:

• Overview

• Package names

• How to define packages

• How and why to define package mappings

• How to use packages when referring to classes

• How to import packages

When viewing this book online, use the preface of this book to quickly find other topics.

For persistent classes, the package is represented in SQL as an SQL schema. For details, see “Projection of Packages to
Schemas,”  later in this book.

Important: When InterSystems IRIS® encounters a reference to a class that does not include a package name and
where the class name starts with “%”, InterSystems IRIS assumes the class is in the “%Library”  package.

3.1 Overview of Packages
InterSystems IRIS supports packages, which group related classes within a specific database. Packages provide the following
benefits:

• They give developers an easier way to build larger applications and to share code with one another.

• They make it easier to avoid name conflicts between classes.

• They give a logical way to represent SQL schemas within the object dictionary in a clean, simple way: A package
corresponds to a schema.

A package is simply a way to group related classes under a common name. For example, an application could have an
“Accounting”  system and an “ Inventory”  system. The classes that make up these applications could be organized into an
“Accounting”  package and an “ Inventory”  package:
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Any of these classes can be referred to using their full name (which consists of package and class name):

 Do ##class(Accounting.Invoice).Method()
 Do ##class(Inventory.Item).Method()

If the package name can be determined from context (see below), then the package name can be omitted:

 Do ##class(Invoice).Method()

As with classes, a package definition exists within an InterSystems IRIS database. For information on mapping a package
from a database to a namespace, see the section “Package Mapping.”

3.2 Package Names
A package name is a string. It may contain “ .”  (period) characters, but no other punctuation. Each period-delimited piece
of the package name is a subpackage, and there can be multiple subpackages. If you give a class the name
Test.Subtest.TestClass, then this indicates that the name of the package is Test, the name of the subpackage is Subtest, and
the name of the class is TestClass.

There are several limitations on the length and usage of package names:

• A package name is subject to a length limit. See “Classes”  in Rules and Guidelines for Identifiers in the Orientation
Guide for Server-Side Programming.

• Within a namespace, each package name must be unique without regards to case. Hence, there cannot be both “ABC”
and “abc”  packages in a namespace, and the “abc.def”  package and subpackage are treated as part of the “ABC”
package.

For general information on identifiers, see the section “Naming Conventions”  in the chapter “Defining and Compiling
Classes.”

3.3 Defining Packages
Packages are implied by the name of the classes. When you create a class, the package is automatically defined. Similarly,
when the last class in a package is deleted, the package is also automatically deleted.

The following shows an example in which the package name is Accounting, the class name is Invoice, and the fully
qualified class name is Accounting.Invoice:

Class Accounting.Invoice 
{
}

28                                                                                                                                                  Defining and Using Classes

Package Options



3.4 Package Mapping
By definition, each package is part of a particular database. Frequently, each database is associated with a namespace,
where the database and the namespace share a common name. To make a package definition in a database available to a
namespace not associated with that database, use package mapping. This procedure is described in more detail in the in
the System Administration Guide; the following is an introduction. The database containing the package is the source
database and the namespace into which the package is being mapped as the target namespace. To map a package, the
procedure is:

1. From the Management Portal home page, go to the Namespaces page (System Administration > Configuration > System

Configuration > Namespaces).

2. On the Namespaces page, select the target namespace by clicking Package Mappings on that corresponding row in the
table. This displays the Package Mappings page for the target namespace.

3. On the Package Mappings page, click New. This displays a dialog for setting up the mapping.

4. In this dialog, complete the fields as follows:

• Package Database Location — The source database.

• Package Name — The package being mapped. If you plan to map a package that has not yet been created, you can
specify its name in advance by clicking Specify a New Package and entering the name of the package.

Click OK to use these values and dismiss the dialog.

5. The Package Mappings page should now display the mapping. Click Save Changes to save the mapping.

Mapping a package across namespace maps the package definition, not its data.

Important: When you map a package, be sure to identify all the code and data needed by the classes in that package,
and ensure that all that code and data is available in all the target namespaces. The mapped classes could
depend on the following items:

• Include files

• Routines

• Other classes

• Tables

• Globals

Use additional routine, package, and global mappings as needed to ensure that these items are available in
the target namespace. See “Add Global, Routine, and Package Mapping to a Namespace”  in the chapter
“Configuring InterSystems IRIS”  in the System Administration Guide.

When you map a package, the mapping applies to the class definitions in that package and to the generated routines, which
are in the same package.

3.4.1 Mapping a Package Across Multiple Namespaces

InterSystems IRIS also provides functionality to make a source package available in multiple target namespaces through
a single action.

To make a package available to multiple namespaces, the procedure is:
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1. Create a namespace called %ALL according the instructions in the “Create a Namespace”  section of the “Configuring
InterSystems IRIS”  chapter of the System Administration Guide.

2. Create a package mapping as described in this section and save it.

The classes in the mapped package are then visible and usable in the %SYS namespace, the USER namespace, and any
user-defined namespaces.

Note: Deleting the %ALL namespace removes its mappings.

3.5 Package Use When Referring to Classes
There are two ways to refer to classes:

• Use the fully qualified name (that is, Package.Class). For example:

 // create an instance of Lab.Patient
 Set patient = ##class(Lab.Patient).%New()

• Use the short class name and let the class compiler resolve which package it belongs to.

By default, when you use a short class name, InterSystems IRIS assumes that the class is either in the package of the
class whose code you are using (if any), or in the %Library package, or in the User package.

If you want the compiler to search for classes in other packages, import those packages as described in the next section.

Note: It is an error to use a short class that is ambiguous; that is, if you have the same short class name in two or
more packages and import all of them, you will get an error when the compiler attempts to resolve the package
name. To avoid this error, use full names.

3.6 Importing Packages
When you import packages, InterSystems IRIS looks for any short class names in those packages. In a class definition, you
can import a package via the class Import directive or the ObjectScript #IMPORT directive. This section explains these
directives, discusses the effect on the User package and the effect on subclasses, and presents some tips.

3.6.1 Class Import Directive

You can include the class Import directive at the top of a class definition, before the Class line. The syntax for this
directive is as follows:

Import packages

Class name {}

Where packages is either a single package or a comma-separated list of packages, enclosed in parentheses. The word
Import is not case-sensitive, but is usually capitalized as shown here.

Remember that in a class context, the current package is always implicitly imported.
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3.6.2 ObjectScript #IMPORT Directive

In ObjectScript method, an #IMPORT directive imports a package so that you can use short class names to refer to classes
in it. The syntax for this directive is as follows:

#import packagename

Where packagename is the name of the package. The word #import is not case-sensitive. For example:

#import Lab
 // Next line will use %New method of Lab.Patient, if that exists
 Set patient = ##class(Patient).%New()

You can have multiple #IMPORT directives:

#import Lab
#import Accounting

 // Look for "Patient" within Lab & Accounting packages.
 Set pat = ##class(Patient).%New()

 // Look for "Invoice" within Lab & Accounting packages.
 Set inv = ##class(Invoice).%New()

The order of #IMPORT directives has no effect on how the compiler resolves short class names.

3.6.3 Explicit Package Import Affects Access to User Package

Once your code imports any packages explicitly, the User package is not automatically imported. If you need that package,
you must import it explicitly as well. For example:

#import MyPackage
#import User

The reason for this logic is because there are cases where you may not want the User package to be imported.

3.6.4 Package Import and Inheritance

A class inherits any explicitly imported packages from the superclasses.

The name of a class is resolved in the context where it was first used and not with the current class name. For example,
suppose you define in User.MyClass a method MyMethod() and then you create a MyPackage.MyClass class that inherits
from User.MyClass and compile this. InterSystems IRIS compiles the inherited MyMethod() method in MyPackage.MyClass

— but resolves any class names in this method in the context of User.MyClass (because this is where this method was
defined).

3.6.5 Tips for Importing Packages

By importing packages, you can make more adaptable code. For example, you can create code such as:

#import Customer1
 Do ##class(Application).Run()

Now change App.MAC to:

#import Customer2
 Do ##class(Application).Run()

When you recompile App.MAC, you will be using the Customer2.Application class. Such code requires planning: you have
to consider code compatibility as well as the effects on your storage structures.
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4
Defining and Referring to Class
Parameters

This chapter describes how to define class parameters and how to refer to them programmatically. It discusses the following
topics:

• Introduction

• How to define class parameters

• Parameter types and values

• How to refer to parameters of a class

When viewing this book online, use the preface of this book to quickly find other topics.

4.1 Introduction to Class Parameters
A class parameter defines a special constant value available to all objects of a given class. When you create a class definition
(or at any point before compilation), you can set the values for its class parameters. By default, the value of each parameter
is the null string, but you can specify a non-null value as part of the parameter definition. At compile-time, the value of the
parameter is established for all instances of a class. With rare exceptions, this value cannot be altered at runtime.

Class parameters are typically used for the following purposes:

• To customize the behavior of the various data type classes (such as providing validation information).

• To define user-specific information about a class definition. A class parameter is simply an arbitrary name-value pair;
you can use it to store any information you like about a class.

• To define a class-specific constant value.

• To provide parameterized values for method generator methods to use. A method generator is a special type of method
whose implementation is actually a short program that is run at compile-time in order to generate the actual runtime
code for the method. Many method generators use class parameters.
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4.2 Defining Class Parameters
To add a class parameter to a class definition, add an element like one of the following to the class:

Parameter PARAMNAME;

Parameter PARAMNAME as Type;

Parameter PARAMNAME as Type = value;

Parameter PARAMNAME as Type [ Keywords ] = value;

Where

• PARAMNAME is the name of the parameter. Note that by convention, parameters in InterSystems IRIS® system classes
are nearly all in uppercase; this convention provides an easy way to distinguish parameters from other class members,
merely by name. There is no requirement for you to do the same.

• Type is a parameter type. See the next section.

• value is the value of the parameter. In most cases, this is a literal value such as 100 or "MyValue". For some types,
this can be an ObjectScript expression. See the next section.

• Keywords represents any parameter keywords. These are optional. For an introduction to keywords, see “Compiler
Keywords,”  earlier in this book. For parameter keywords; see “Parameter Keywords”  in the Class Definition Reference.

4.3 Parameter Types and Values
It is not necessary to specify a parameter type. If you do, note that this information is primarily meant for use by the
development environment.

The parameter types include BOOLEAN, STRING, and INTEGER. Note that these are not InterSystems IRIS class names.
For a complete list, see “Parameter Definitions”  in the Class Definition Reference.

Except for the types COSEXPRESSION and CONFIGVALUE (both described in subsections), the compiler ignores the
parameter types.

4.3.1 Class Parameter to Be Evaluated at Runtime (COSEXPRESSION)

You can define a parameter as an ObjectScript expression that it is evaluated at runtime. To do so, specify its type as
COSEXPRESSION and specify an ObjectScript expression as the value:

Parameter PARAMNAME As COSEXPRESSION = "ObjectScriptExpression";

where PARAMNAME is the parameter being defined and ObjectScriptExpression is the ObjectScript content that is evaluated
at runtime.

An example class parameter definition would be:

Parameter DateParam As COSEXPRESSION = "$H";

4.3.2 Class Parameter to Be Evaluated at Compile Time (Curly Braces)

You can define a parameter as an ObjectScript expression that it is evaluated at compile time. To do so, specify no type
and specify the value in curly braces:
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Parameter PARAMNAME = {ObjectScriptExpression};

where PARAMNAME is the parameter being defined and ObjectScriptExpression is the ObjectScript content that is evaluated
at runtime.

For example:

Parameter COMPILETIME = {$zdatetime($h)};

4.3.3 Class Parameter to Be Updated at Runtime (CONFIGVALUE)

You can define a parameter so that it can modified outside of the class definition. To do so, specify its type as CONFIG-
VALUE. In this case, you can modify the parameter via the $SYSTEM.OBJ.UpdateConfigParam() method. For example,
the following changes the value of the parameter MYPARM (in the class MyApp.MyClass) so that its new value is 42:

set sc=$system.OBJ.UpdateConfigParam("MyApp.MyClass","MYPARM",42)

Note that $SYSTEM.OBJ.UpdateConfigParam() affects the generated class descriptor as used by any new processes,
but does not affect the class definition. If you recompile the class, InterSystems IRIS regenerates the class descriptor, which
will now use the value of this parameter as contained in the class definition, thus overwriting the change made via
$SYSTEM.OBJ.UpdateConfigParam().

4.4 Referring to Parameters of a Class
To refer to a parameter of a class, you can do any of the following:

• Within a method of the associated class, use the following expression:

..#PARMNAME

You can use this expression with the DO and SET commands, or you can use it as part of another expression. The
following shows one possibility:

 set object.PropName=..#PARMNAME

In the next variation, a method in the class checks the value of a parameter and uses that to control subsequent processing:

 if ..#PARMNAME=1 { 
   //do something
 } else { 
   //do something else
 }

• To access a parameter in any class, use the following expression:

##class(Package.Class).#PARMNAME

where Package.Class is the name of the class and PARMNAME is the name of the parameter.

This syntax accesses the given class parameter and returns its value. You can use this expression with commands such
as DO and SET, or you can use it as part of another expression. The following shows an example:

 w ##class(%XML.Adaptor).#XMLENABLED

displays whether methods generated by the XML adaptor are XML enabled, which by default is set to 1.

• To access the parameter, where the parameter name is not determined until runtime, use the $PARAMETER function:

$PARAMETER(classnameOrOref,parameter)
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where classnameOrOref is either the fully qualified name of a class or an OREF of an instance of the class, and
parameter evaluates to the name of a parameter in the associated class.

For information on OREFs, see “Working with Registered Objects.”

For more information, see the $PARAMETER page in the ObjectScript Reference.
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5
Defining and Calling Methods

This chapter describes the rules and options for creating methods in InterSystems IRIS® classes and for calling those
methods. It discusses the following topics:

• Introduction to methods

• How to define methods

• How to specify method arguments

• How to indicate how arguments are to be passed

• How to specify a variable number of arguments

• How to return a value

• How to restrict access by using privilege checks

• How to specify the implementation language

• Types of methods (CodeMode keyword)

• How to project a method as a stored procedure

• How to call class methods

• How to cast a method

• How to override an inherited method

For information on calling instance methods, see the next chapter; such methods apply only to object classes.

When viewing this book online, use the preface of this book to quickly find other topics.

5.1 Introduction to Methods
A method is an executable element defined by a class. InterSystems IRIS supports two types of methods: instance methods
and class methods. An instance method is invoked from a specific instance of a class and typically performs some action
related to that instance. A class method is a method that can be invoked without reference to any object instance; these are
called static methods in other languages.

The term method usually refers to an instance method. The more specific phrase class method is used to refer to class
methods.
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Because you cannot execute an instance method without an instance of an object, instance methods are useful only when
defined in object classes. In contrast, you can define class methods in any kind of class.

5.2 Defining Methods
To add a class method to a class, add an element like the following to the class definition:

ClassMethod MethodName(Arguments) as Classname [ Keywords]
{
//method implementation
}

Where:

• MethodName is the name of the method. For rules, see “Naming Conventions,”  earlier in this book.

• Arguments is a comma-separated list of arguments. For details, see “Specifying Method Arguments.”

• Classname is an optional class name that represents the type of value (if any) returned by this method. Omit the As
Classname part if the method does not return a value.

The class can be a data type class, an object class, or (less commonly) a class of no type. The class name can be a
complete class name or a short class name. For details, see “Package Use When Referring to Classes,”  in the chapter
“Package Options.”

• Keywords represents any method keywords. These are optional. See “Compiler Keywords,”  earlier in this book. Later
sections of this chapter discuss additional keywords.

• The method implementation depends on the implementation language and type of method; see “Specifying the
Implementation Language”  and “Types of Methods.”  By default, the method implementation consists of zero or more
lines of ObjectScript.

To add an instance method to a class, use the same syntax with Method instead of ClassMethod:

Method MethodName(arguments) as Classname [ Keywords]
{
 //method implementation
}

Instance methods are relevant only in object classes.

5.3 Specifying Method Arguments: Basics
A method can take any number of arguments. The method definition must specify the arguments that it takes. It can also
specify the type and default value for each argument. (In this context, type refers to any kind of class, not specifically data
type classes.)

Consider the following generic class method definition:

ClassMethod MethodName(Arguments) as Classname [ Keywords]
{
 //method implementation
}

Here Arguments has the following general form:

argname1 as type1 = value1, argname2 as type2 = value2, argname3 as type3 = value3, [and so on]
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Where:

• argname1, argname2, argname3, and so on are the names of the arguments. These names must follow the rules for
variable names.

• type1, type2, type3, and so on are class names. This part of the method definition is intended to describe, to programmers
who might use this method, what type of value to pass for the corresponding argument. Generally it is a good idea to
explicitly specify the type of each method argument.

Typically the types are data type classes or object classes.

The class name can be a complete class name or a short class name. For details, see “Package Use When Referring to
Classes,”  in the chapter “Defining and Using Packages.”

You can omit this part of the syntax. If you do, also omit the as part.

• value1, value2, value3, and so on are the default values of the arguments. The method automatically sets the argument
equal to this value if the method is called without providing a value for the argument.

Each value can either be a literal value ("abc" or 42) or an ObjectScript expression enclosed in curly braces. For
example:

ClassMethod Test(flag As %Integer = 0)
{
 //method implementation
}

For another example:

ClassMethod Test(time As %Integer = {$horolog} )
{
 //method implementation
}

You can omit this part of the syntax. If you do, also omit the equals sign (=).

For instance, here is a Calculate() method with three arguments:

ClassMethod Calculate(count As %Integer, name, state As %String = "CA")
{
 // ...
}

where count and state are declared as %Integer and %String, respectively. By default, arguments are of the %String data
type, so that an argument of unspecified type is a %String. This is the case for name in the above example.

5.4 Indicating How Arguments Are to Be Passed
The method definition also indicates, to programmers who might use the method, how each argument is expected to be
passed. Arguments can be passed by value (the default technique) or by reference. See “Passing Arguments to a Method”
later in this chapter.

It may or may not be sensible to pass a specific argument by reference. The details depend upon the method implementation.
Consequently, when you define a method, you should use the method signature to indicate to other programmers how each
argument is meant to be used.

To indicate that an argument should be passed by reference, include the ByRef modifier in the method signature, before
the name of the argument. The following shows an example that uses ByRef for both its arguments:
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/// Swap value of two integers
Method Swap(ByRef x As %Integer, ByRef y As %Integer)
{
    Set temp = x
    Set x = y
    Set y = temp
}

Similarly, to indicate that an argument should be passed by reference and is intended to have no incoming value, include
the Output modifier in the method signature, before the name of the argument. For example:

Method CreateObject(Output newobj As MyApp.MyClass) As %Status
{
    Set newobj = ##class(MyApp.MyClass).%New()
    Quit $$$OK
}

5.5 Specifying a Variable Number of Arguments
You can define a method that accepts variable numbers of arguments. To do so, include ... after the name of the last
argument, as in the following example. This example also shows how this feature can be used.

ClassMethod MultiArg(Arg1... As %String)
{
 Write "Invocation has ",
     $GET(Arg1, 0),
     " element",
     $SELECT(($GET(Arg1, 0)=1):"", 1:"s"),
     !
 For i = 1 : 1 : $GET(Arg1, 0)
 {
     Write:($DATA(Arg1(i))>0) "Argument[", i , "]:", 
         ?15, $GET(Arg1(i), "<NULL>"), !
 }
 Quit
}

The following Terminal session shows how this method behaves:

MYNAMESPACE>do ##class(VarNumArg.Demo).MultiArg("scooby","shaggy","velma","daphne","fred")
Invocation has 5 elements
Argument[1]:   scooby
Argument[2]:   shaggy
Argument[3]:   velma
Argument[4]:   daphne
Argument[5]:   fred

For more details on this feature, see the “Variable Numbers of Arguments”  section of the “User-defined Code”  chapter
of Using ObjectScript.

5.6 Returning a Value
To define a method so that it returns a value, use either of the following in the method (if you implement the method in
ObjectScript):

 Return returnvalue

Or:

 Quit returnvalue

Where returnvalue is a suitable value for the method to return. This should be consistent with the declared return type of
the method. If the return type is a data type class, the method should return a literal value. If the return type is an object
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class, the method should return an instance of that class (specifically an OREF). For details, see the chapter “Working with
Registered Objects.”

For example:

ClassMethod Square(input As %Numeric) As %Numeric
{
    Set returnvalue = input * input
    Return person
}

For another example, this method returns an object instance:

ClassMethod FindPerson(id As %String) As Person
{
    Set person = ##class(Person).%OpenId(id)
    Return person
}

The syntax for returning a value is different depending on the implementation language of the method.

5.7 Restricting Access by Using Privilege Checks
You can restrict access to a method by using the Requires keyword. Only users or processes that have the specified privilege
(or privileges) can call the method.

Specify a privilege by naming a resource and the appropriate level of permission (Use, Read, or Write), separated with a
colon. Use a comma-delimited list to specify more than one privilege.

In the following example, the MyAction method requires the Use permission on the Service_FileSystem resource:

ClassMethod MyAction() [ Requires = "Service_FileSystem: Use" ] 
{
  write "You have access to this method."
}

Calling the method without the required privilege results in a <PROTECT> error:

<PROTECT> *Method MyAction' requires resource 'Service_FileSystem: Use' 

If a method inherits the Requires keyword from a superclass, you can add to the list of required privileges by setting a new
value for the keyword. You cannot remove required privileges in this manner.

For details, see “Privileges and Permissions”  in the Security Administration Guide and “Requires”  in the Class Definition
Reference.

5.8 Specifying the Implementation Language
You have the choice of implementation language when creating a method. In fact, within a single class, it is possible to
have multiple methods implemented in different languages. All methods interoperate regardless of implementation language.

By default, a method uses the language specified by the Language keyword of the class to which it belongs. For this keyword,
the default is objectscript (ObjectScript). The other option is tsql (TSQL).

You can override this for a specific method by setting the Language keyword for that method:
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Class MyApp.Test {

Method TestC() As %Integer [ Language = objectscript ]
{
    // This is ObjectScript
    Write "This is a test"
    Quit 1
}
}

5.9 Types of Methods (CodeMode Options)
InterSystems IRIS supports four types of methods, which the class compiler handles differently:

• Code methods (the most default and the most common)

• Expression methods

• Call methods

• Method generators

5.9.1 Code Methods

A code method is a method whose implementation is simply lines of code. This is the most typical type of method and is
the default.

The method implementation can contain any code that is valid for the implementation language.

Note: InterSystems IRIS comes with a set of system-defined methods that perform simple, common tasks. If a user-
defined method performs one of these tasks, then the compiler does not generate any executable code for it. Rather,
it associates the user-defined method with the system-defined method, so that invoking the user-defined method
results in a call to the system-defined method, with an associated performance benefit. Also, the debugger does
not step through such a system-defined method.

5.9.2 Expression Methods

An expression method is a method that may be replaced by the class compiler, in certain circumstances, with a direct in-
line substitution of a specified expression. Expression methods are typically used for simple methods (such as those found
in data type classes) that need rapid execution speed.

For example, it is possible to convert the Speak() method of the Dog class from the previous example into an expression
method:

Method Speak() As %String [CodeMode = expression]
{
    "Woof, Woof"
}

Assuming dog refers to a Dog object, this method could be used as follows:

 Write dog.Speak()

Which could result in the following code being generated:

 Write "Woof, Woof"

It is a good idea to give default values to all formal variables of an expression method. This prevents potential inline sub-
stitution problems caused by missing actual variables at runtime.
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Note: InterSystems IRIS does not allow macros or call-by-reference arguments within expression methods.

5.9.3 Call Methods

A call method is a special mechanism to create method wrappers around existing InterSystems IRIS routines. This is typically
useful when migrating legacy code to object-based applications.

Defining a method as a call method indicates that a specified routine is called whenever the method is invoked. The syntax
for a call method is:

Method Call() [ CodeMode = call ]
{
    Tag^Routine
}

where “Tag^Routine”  specifies a tag name within a routine.

5.9.4 Method Generators

A method generator is actually a small program that is invoked by the class compiler during class compilation. Its output
is the actual runtime implementation of the method. Method generators provide a means of inheriting methods that can
produce high performance, specialized code that is customized to the needs of the inheriting class or property. Within the
InterSystems IRIS library, method generators are used extensively by the data type and storage classes.

For details, see “Defining Method and Trigger Generators.”

5.10 Projecting a Method As an SQL Stored Procedure
You can define a class method (but not an instance method) so that it is also available as an SQL stored procedure. To do
so, include the SqlProc keyword in the method definition.

The default name of the procedure is as CLASSNAME_METHODNAME To specify a different name, specify the SqlName
keyword.

For details, see “Defining Stored Procedures”  in Using InterSystems SQL.

5.11 Calling Class Methods
This section discusses how to call class methods in ObjectScript. This section applies to all kinds of classes. Note that
instance methods are discussed in the next chapter, because they apply only to object classes.

• To call a class method of any class (if that method is not private), use the following expression:

##class(Package.Class).Method(Args)

Where Package.Class is the name of the class, Method is the name of the method, and Args is any arguments of the
method.

##class is not case-sensitive.

This expression invokes the given class method and obtains its return value (if any). You can use this expression with
commands such as DO and SET, or you can use it as part of another expression. The following shows some variations:
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 do ##class(Package.Class).Method(Args)
 set myval= ##class(Package.Class).Method(Args)
 write ##class(Package.Class).Method(Args) 
 set newval=##class(Package.Class).Method(Args)_##class(Package2.Class2).Method2(Args)

You can omit the package. If you do so, the class compiler determines the correct package name to use (this name
resolution is explained in the “Packages”  chapter).

• (Within a class method) to call another class method of that class (which could be an inherited method), use the following
expression:

..MethodName(args)

You can use this expression with the DO command. If the method returns a value, you can use SET, or you can use it
as part of another expression. The following shows some variations:

 do ..MethodName()
 set value=..MethodName(args)

Note: You cannot use this syntax in a class method to refer to a property or an instance method, because those ref-
erences require the instance context.

• To execute a class method, where the method name is not determined until runtime, use the $CLASSMETHOD function:

$CLASSMETHOD(classname, methodname, Arg1, Arg2, Arg3, ... )

where classname evaluates to the fully qualified name of a class, methodname evaluates to the name of a class method
in that class, and Arg1, Arg2, Arg3, and so on are any arguments to that method. For example:

 set cls="Sample.Person"
 set clsmeth="PrintPersons" 
 do $CLASSMETHOD(cls,clsmeth)

executes the PrintPersons method from the Sample.Person class.

For more information, see the $CLASSMETHOD page in the ObjectScript Reference.

If the given method does not exist or if it is an instance method instead, the system generates the <METHOD DOES NOT
EXIST> error. If the given method is private, the system generates the <PRIVATE METHOD> error.

5.11.1 Passing Arguments to a Method

The default way to pass arguments to methods is by value. In this technique, simply include the arguments as variables,
literal values, or other expressions within the method call, as shown in the preceding examples.

It is also possible to pass arguments by reference.

This works follows: the system has a memory location that contains the value of each local variable. The name of the
variable acts as the address to the memory location. When you pass a local variable to a method, you pass the variable by
value . This means that the system makes a copy of the value, so that the original value is not affected. You can pass the
memory address instead; this technique is known as calling by reference. It is also the only way to pass a multidimensional
array as an argument.

In ObjectScript, to pass an argument by reference, precede that argument with a period. For example:

 set MyArg(1)="value A"
 set MyArg(2)="value B"
 set status=##class(MyPackage.MyClass).MyMethod(.MyArg)

In this example, we pass a value (a multidimensional array) by reference so that the method could receive the value. In
other cases, it is useful to pass an argument by reference so that you can use its value after running the method. For example:
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 set status=##class(MyPackage.MyClass).GetList(.list)
 //use the list variable in subsequent logic

In other cases, you might specify a value for the variable, invoke a method that modifies it (and that returns it by reference),
and then use the changed value.

5.12 Casting a Method
To cast a method of one class as a method of another class, the syntax is either of the following (in ObjectScript):

Do ##class(Package.Class1)Class2Instance.Method(Args)
Set localname = ##class(Package.Class1)Class2Instance.Method(Args)

You can cast both class methods and instance methods.

For example, suppose that two classes, MyClass.Up and MyClass.Down, both have Go() methods. For MyClass.Up, this
method is as follows

Method Go()
{
    Write "Go up.",!
}

For MyClass.Down, the Go() method is as follows:

Method Go()
{
    Write "Go down.",!
}

You can then create an instance of MyClass.Up and use it to invoke the MyClass.Down.Go method:

>Set LocalInstance = ##class(MyClass.Up).%New()

>Do ##class(MyClass.Down)LocalInstance.Go()
Go down.

It is also valid to use ##class as part of an expression, as in

 Write ##class(Class).Method(args)*2

without setting a variable equal to the return value.

A more generic approach is to use the $METHOD and $CLASSMETHOD functions, which are for instance and class
methods, respectively. These are described in earlier sections of this chapter.

5.13 Overriding an Inherited Method
A class inherits methods (both class and instance methods) from its superclass or superclasses. Except for methods that are
marked Final, you can override these definitions by providing a definition within this class. If you do so, note the following
rules:

• If the method is a class method in the superclass, you cannot override it as an instance method in the subclass, and vice
versa.

• The return type of the subclass method must be either the same as the original return type or a subclass of the original
return type.
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• The method in the subclass can have more arguments than the method in the superclass. (Also see the “Number of
Arguments”  subsection.)

• The method in the subclass can specify different default values for the arguments.

• The types of the arguments in the subclass method must be consistent with the types of the arguments in the original
method. Specifically, any given argument must be either the same as the original type or a subclass of the original
type.

Note that if an argument has no specified type, the compiler treats the argument as %String. Thus if an argument in the
superclass method has no type, the corresponding argument of a subclass method can be %String, can be a subclass of
%String, or can have no type.

• The method in the subclass should receive argument values in the same way as the method in the superclass. For
example, if a given argument is passed by reference in the superclass, the same argument should be passed by reference
in the subclass.

If the method signatures are inconsistent in this regard, it is harder for other developers to know how to use the methods
appropriately. Note, however, that the compiler does not issue an error.

If your method implementation needs to call the method of the same name as defined in the superclass, you can use the
syntax ##super(), which is discussed in the subsections. This discussion applies to code that is written in ObjectScript.

5.13.1 ##super()

Within a method, use the following expression to call the method of the same name as defined in the nearest superclass:

##super()

You can use this expression with the DO command. If the method returns a value, you can use SET, or you can use it as
part of another expression. The following shows some variations:

 do ##super()
 set returnvalue=##super()_"additional string"

Note: ##super is not case-sensitive.

This is useful if you define a method that should invoke the existing method of the superclass and then perform some
additional steps such as modifying its returned value.

5.13.2 ##super and Method Arguments

##super also works with methods that accept arguments. If the subclass method does not specify a default value for an
argument, make sure that the method passes the argument by reference to the superclass.

For example, suppose the code for the method in the superclass (MyClass.Up.SelfAdd()) is:

ClassMethod SelfAdd(Arg As %Integer)
{
    Write Arg,!
    Write Arg + Arg
}

then its output is:

>Do ##Class(MyClass.Up).SelfAdd(2)
2
4
>

The method in the subclass (MyClass.Down.SelfAdd()) uses ##super and passes the argument by reference:
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ClassMethod SelfAdd(Arg1 As %Integer)
{
    Do ##super(.Arg1)
    Write !
    Write Arg1 + Arg1 + Arg1
}

then its output is:

>Do ##Class(MyClass.Down).SelfAdd(2)
2
4
6
>

In MyClass.Down.SelfAdd(), notice the period before the argument name. If we omitted this and we invoked the method
without providing an argument, we would receive an <UNDEFINED> error.

5.13.3 Calls That ##super Affects

##super only affects the current method call. If that method makes any other calls, those calls are relative to the current
object or class, not the superclass. For example, suppose that MyClass.Up has MyName() and CallMyName() methods:

Class MyClass.Up Extends %Persistent
{

ClassMethod CallMyName()
{
    Do ..MyName()
}

ClassMethod MyName()
{
    Write "Called from MyClass.Up",!
}

}

and that MyClass.Down overrides those methods as follows:

Class MyClass.Down Extends MyClass.Up
{

ClassMethod CallMyName()
{
    Do ##super()
}

ClassMethod MyName()
{
    Write "Called from MyClass.Down",!
}

}

then invoking the CallMyName() methods have the following results:

USER>d ##class(MyClass.Up).CallMyName()
Called from MyClass.Up

USER>d ##class(MyClass.Down).CallMyName()
Called from MyClass.Down

MyClass.Down.CallMyName() has different output from MyClass.Up.CallMyName() because its CallMyName() method
includes ##super and so calls the MyClass.Up.CallMyName() method, which then calls the uncast
MyClass.Down.MyName() method.
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5.13.4 Number of Arguments

In some cases, you might find it necessary to add new arguments to a method in a superclass, thus resulting in more arguments
than are defined in the method in a subclass. The subclasses will still compile, because (for convenience) the compiler
appends the added arguments to the method in the subclass. In most cases, you should still examine all the subclasses that
extend the method, and edit the signatures to account for the additional arguments, and decide whether you want to edit
the code also. Even if you do not want to edit signatures or code, you still must consider two points:

• Make sure that the added argument names are not the same as the names of any variables used in the method in the
subclass. The compiler appends the added arguments to the method in the subclass. If these arguments happen to have
the same names as variables used in the method of the subclass, unintended results will occur.

• If the method in the subclass uses the added arguments (because this method uses ##super), make sure that the method
in the superclass specifies default values for the added arguments.
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6
Working with Registered Objects

The %RegisteredObject class is the basic object API in InterSystems IRIS®. This chapter describes how to use this API.
Information in this chapter applies to all subclasses of %RegisteredObject.

• Introduction

• OREF basics

• How to create new objects

• How to view object contents

• Introduction to dot syntax

• How to validate an object

• How to determine an object type

• How to clone objects

• How to refer to properties of an instance

• How to call methods of an instance

• How to obtain the class name from an instance

• $this variable (current instance)

• i%PropertyName (instance variables)

Also see the chapter “Working with Persistent Objects.”

When viewing this book online, use the preface of this book to quickly find other topics.

6.1 Introduction to Object Classes
An object class is any class that inherits from %RegisteredObject. With an object class, you can do the following things:

• Create instances of the class. These instances are known as objects.

• Set properties of those objects.

• Invoke methods of those objects (instance methods).

These tasks are possible only with object classes.
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The classes %Persistent and %SerialObject are subclasses of %RegisteredObject. These classes are described in later chapters.
Also, for an overview, see “Object Classes”  in the chapter “Defining and Compiling Classes.”

6.2 OREF Basics
When you create an object, the system creates an in-memory structure, which holds information about that object, and also
creates an OREF (object reference), which is a pointer to that structure.

The object classes provide several methods that create OREFs. When you work with any of the object classes, you use
OREFs extensively. You use them when you specify values of properties of an object, access values of properties of the
object, and call instance methods of the object. Consider the following example:

MYNAMESPACE>set person=##class(Sample.Person).%New()

MYNAMESPACE>set person.Name="Carter,Jacob N."

MYNAMESPACE>do person.PrintPerson()

Name: Carter,Jacob N.

In the first step, we call the %New() method of a class named Sample.Person; this creates an object and returns an OREF
that points to that object. We set the variable person equal to this OREF. In the next step, we set the Name property of
object. In the third step, we invoke the PrintPerson() instance method of the object. (Note that the Name property and the
PrintPerson() method are both just examples—these are defined in the Sample.Person class but are not part of the general
object interface.)

An OREF is transient; the value exists only while the object is in memory and is not guaranteed to be constant over different
invocations.

CAUTION: An OREF is only valid within the namespace where it was created; hence, if there are existing OREFs and
the current namespace changes, any OREF from the previous namespace is no longer valid. If you attempt
to use OREFs from other namespaces, there might not be an immediate error, but the results cannot be
considered valid or usable, and may cause disastrous results in the current namespace.

6.2.1 INVALID OREF Error

In simple expressions, if you try to set a property, access a property, or invoke an instance method of a variable that is not
an OREF, you receive an <INVALID OREF> error. For example:

MYNAMESPACE>write p2.PrintPerson()

WRITE p2.PrintPerson()
^
<INVALID OREF>
MYNAMESPACE>set p2.Name="Dixby,Jase"

SET p2.Name="Dixby,Jase"
^
<INVALID OREF>

Note: The details are different when the expression has a chain of OREFs; see “ Introduction to Dot Syntax.”

6.2.2 Testing an OREF

InterSystems IRIS provides a function, $ISOBJECT, which you can use to test whether a given variable holds an OREF.
This function returns 1 if the variable contains an OREF and returns 0 otherwise. If there is an chance that a given variable

50                                                                                                                                                  Defining and Using Classes

Working with Registered Objects



might not contain an OREF, it is good practice to use this function before trying to set a property, access a property, or
invoke an instance method of the variable.

6.2.3 OREFs, Scope, and Memory

Any given OREF is a pointer to an in-memory object to which other OREFs might also point. That is, the OREF (which
is a variable) is distinct from the in-memory object (although, in practice, the terms OREF and object are often used inter-
changeably).

InterSystems IRIS manages the in-memory structure automatically as follows. For each in-memory object, InterSystems
IRIS maintains a reference count — the number of references to that object. Whenever you set a variable or object property
to refer to a object, its reference count is automatically incremented. When a variable stops referring to an object (if it goes
out of scope, is killed, or is set to a new value), the reference count for that object is decremented. When this count goes
to 0, the object is automatically destroyed (removed from memory) and its %OnClose() method (if present) is called.

For example, consider the following method:

Method Test()
{
    Set person = ##class(Sample.Person).%OpenId(1)

    Set person = ##class(Sample.Person).%OpenId(2)
}

This method creates an instance of Sample.Person and places a reference to it into the variable person. Then it creates
another instance of Sample.Person and replaces the value of person with a reference to it. At this point, the first object is
no longer referred to and is destroyed. At the end of the method, person goes out of scope and the second object is destroyed.

6.2.4 Removing an OREF

If needed, to remove an OREF, use the KILL command:

 kill OREF

Where OREF is a variable that contains an OREF. This command removes the variable. If there are no further references
to the object, this command also removes the object from memory, as discussed earlier.

6.2.5 OREFs, the SET Command, and System Functions

For some system functions (for example, $Piece, $Extract, and $List), InterSystems IRIS supports an alternative syntax
that you can use to modify an existing value. This syntax combines the function with the SET command as follows:

 SET function_expression = value

Where function_expression is a call to the system function, with arguments, and value is a value. For example, the following
statement sets the first part of the colorlist string equal to "Magenta":

 SET $PIECE(colorlist,",",1)="Magenta"

It is not supported to modify OREFs or their properties in this way.

6.3 Creating New Objects
To create a new instance of a given object class, use the class method %New() of that class. This method creates an object
and returns an OREF. The following shows an example:
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 Set person = ##class(MyApp.Person).%New()

The %New() method accepts an argument, which is ignored by default. If present, this argument is passed to %OnNew()
callback method of the class, if defined. If %OnNew() is defined, it can use the argument to initialize the newly created
object in some way. For details, see “ Implementing Callback Methods,”  later in this book.

If you have complex requirements that affect how you create new objects of given class, you can provide an alternative
method to be used to create instances of that class. Such a method would call %New() and then would initialize properties
of the object as needed. Such a method is sometimes called a factory method.

6.4 Viewing Object Contents
The WRITE command writes output of the following form for an OREF:

n@Classname

Where Classname is the name of the class, and n is an integer that indicates a specific instance of this class in memory.
For example:

MYNAMESPACE>write p
8@Sample.Person

If you use the ZWRITE command with an OREF, InterSystems IRIS displays more information about the associated object.

MYNAMESPACE>zwrite p
p=<OBJECT REFERENCE>[8@Sample.Person]
+----------------- general information ---------------
|      oref value: 1
|      class name: Sample.Person
|           %%OID: $lb("3","Sample.Person")
| reference count: 2
+----------------- attribute values ------------------
|       %Concurrency = 1  <Set>
|                DOB = 33589
|               Name = "Clay,George O."
|                SSN = "480-57-8360"
+----------------- swizzled references ---------------
|   i%FavoriteColors = ""  <Set>
|   r%FavoriteColors = ""  <Set>
|             i%Home = $lb("5845 Washington Blvd","St Louis","NM",55683)  <Set>
|             r%Home = ""  <Set>
|           i%Office = $lb("3413 Elm Place","Pueblo","WI",98532)  <Set>
|           r%Office = ""  <Set>
|           i%Spouse = ""
|           r%Spouse = ""
+-----------------------------------------------------

Notice that this information displays the class name, the OID, the reference count, and the current values (in memory) of
properties of the object. In the section swizzled references, the items with names starting i% are instance variables,
which are discussed later in this chapter. (The items with names starting r% are for internal use only.)

6.5 Introduction to Dot Syntax
With an OREF, you can use dot syntax to refer to properties and methods of the associated object. This section introduces
dot syntax, which is also discussed in later sections, along with alternative ways to refer to properties and methods of
objects.

The general form of dot syntax is as follows:

oref.membername
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For example, to specify the value of a property for an object, you can use a statement like this:

 Set oref.PropertyName = value

where oref is the OREF of the specific object, PropertyName is the name of the property that you want to set, and value is
an ObjectScript expression that evaluates to the desired value. This could be a constant or could be a more complex
expression.

We can use the same syntax to invoke methods of the object (instance methods). An instance method is invoked from a
specific instance of a class and typically performs some action related to that instance. In the following example, we invoke
the PrintPerson() method on the object whose Name property was just set:

 set person=##class(Sample.Person).%New() 
 set person.Name="Carter,Jacob N." 
 do person.PrintPerson()

If the method returns a value, you can use the SET command to assign the returned value to a variable:

SET myvar=oref.MethodName()

If the method does not return a value (or if you are uninterested in the return value), use either DO or JOB:

Do oref.MethodName()

If the method accepts arguments, specify them within the parentheses.

 Set value = oref.methodName(arglist)

6.5.1 Cascading Dot Syntax

Depending on the class definition, a property can be object-valued, meaning that its type is an object class. In such cases,
you can use a chain of OREFs to refer to a property of the properties (or to a method of the property). This is known as
cascading dot syntax. For example, the following syntax refers to the Street property of the HomeAddress property of
a Person object:

 set person.HomeAddress.Street="15 Mulberry Street"

In this example, the person variable is an OREF, and the expression person.HomeAddress is also an OREF.

Note: When referring to a class member generally, sometimes the following informal reference is used:
PackageName.ClassName.Member, for example, the Accounting.Invoice.LineItem property. This form never appears
in code.

6.5.2 Cascading Dot Syntax with a Null OREF

When you use a chain of OREFs to refer to a property, and an intermediate object has not been set, it is often desirable to
return a null string for the expression instead of receiving an <INVALID OREF> error on the intermediate object. Thus if
the intermediate object has not been set (is equal to a null string), the value returned for the chained property reference is
a null string.

For example, if pers is a valid instance of Sample.Person and pers.Spouse equals "", then the following statement sets the
name variable to "":

set name=pers.Spouse.Name

If this behavior is not appropriate in some context, then your code must explicitly check the intermediate object reference.
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6.6 Validating Objects
The %RegisteredObject class provides a way to validate the properties of an instance. An object is valid if all of the following
are true:

• All required properties have values.

(To make a property required, you use the Required keyword as described later in this book.

If a property is of type %Stream, the stream cannot be a null stream. That is, the property is considered to have a value
if the %IsNull() method returns 0.

• The value of each property, if not null, is valid for the associated property definition.

For example, if a property is of type %Boolean, the value "abc" is not valid, but the values 0 and 1 are.

• The value of each literal property, if not null, obeys all constraints defined by the property definition. The term constraint
refers to any property keyword that applies a constraint on a property value. For example, MAXLEN, MAXVAL, MINVAL,
VALUELIST, and PATTERN are all constraints; see the chapter “Defining and Using Literal Properties.”  For example,
for a property of type %String, the default value of MAXLEN, and this constraints the property to be no more than 50
characters in length.

• (For object-valued properties) All properties of the object obey the preceding rules.

• (For persistent objects) The object does not violate any SQL constraints, such as a uniqueness constraint on a given
field.

To determine whether a given object is valid, call its %ValidateObject() method. If this method returns 1, then the object
is valid. If it returns an error status, the object is not valid. The following shows an example:

    #Include %occStatus
    set person=##class(Sample.Person).%New()
    set person.DOB="December 12 1990"
    set status=person.%ValidateObject()
    write !, "First try"
    if $$$ISERR(status) {
        do $system.OBJ.DisplayError(status)
    } else {
        write !, "Object is valid"
    }

    set person.Name="Ellsworth,Myra Q."
    set person.SSN="000-00-0000"
    set person.DOB=$zdateh("December 12 1990",5)
    set status=person.%ValidateObject()
    write !!, "Second try"
    if $$$ISERR(status) {
        do $system.OBJ.DisplayError(status)
    } else {
        write !, "Object is valid"
    }

If you run this example, you will see the following output:

First try
ERROR #7207: Datatype value 'December 12 1990' is not a valid number
  > ERROR #5802: Datatype validation failed on property 'Sample.Person:DOB', with value equal to 
"December 12 1990"
ERROR #5659: Property 'Sample.Person::Name(1@Sample.Person,ID=)' required
ERROR #5659: Property 'Sample.Person::SSN(1@Sample.Person,ID=)' required
ERROR #7209: Datatype value '' does not match PATTERN '3N1"-"2N1"-"4N'
  > ERROR #5802: Datatype validation failed on property 'Sample.Person:SSN', with value equal to ""

Second try
Object is valid

Note that %ValidateObject() in turn calls the validation logic for each property; see “Using and Overriding Property
Methods”  later in this book.
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For persistent objects (introduced in the next chapter), when you save an object, the system automatically calls
%ValidateObject() method first. If the object is not valid, InterSystems IRIS does not save it.

6.7 Determining an Object Type
Given an object, the %RegisteredObject class provides methods to determine its inheritance. This section discusses them.

6.7.1 %Extends()

To check if an object inherits from a specific superclass, call its %Extends() method, and pass the name of that superclass
as the argument. If this method returns 1, then the instance inherits from that class. If it returns 0, the instance does not
inherit from that class. For example:

MYNAMESPACE>set person=##class(Sample.Person).%New()

MYNAMESPACE>w person.%Extends("%RegisteredObject")
1
MYNAMESPACE>w person.%Extends("Sample.Person")
1
MYNAMESPACE>w person.%Extends("Sample.Employee")
0

6.7.2 %IsA()

To check if an object has a specific class as its primary superclass, call its %IsA() method, and pass the name of that
superclass as the argument. If this method returns 1, the object does have the given class as its primary superclass.

6.7.3 %ClassName() and the Most Specific Type Class (MSTC)

Although an object may be an instance of more than one class, it always has a most specific type class (MSTC). A class is
said to be the most specific type of an object when that object is an instance of that class and is not an instance of any subclass
of that class.

For example, in the case of the GradStudent class inheriting from the Student class that inherits from the Person class, for
instances created by the commands:

 set MyInstance1 = ##class(MyPackage.Student).%New()
 set MyInstance2 = ##class(MyPackage.GradStudent).%New()

MyInstance1 has Student as its MSTC, since it is an instance of both Person and Student, but not of GradStudent. MyInstance2
has GradStudent as its MSTC, since it is an instance of GradStudent, Student, and Person.

The following rules also apply regarding the MSTC of an object:

• The MSTC of an object is based solely on primary inheritance.

• A non-instantiable class cannot ever be the MSTC of an object. An object class is non-instantiable if it is abstract.

To determine the MSTC of an object, use the %ClassName() method, which is inherited from %RegisteredObject

classmethod %ClassName(fullname As %Boolean) as %String

Where fullname is a boolean argument where 1 specifies that the method return a package name and class name and 0 (the
default) specifies that the method return only the class name.

For example:
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 write myinstance.%ClassName(1)

(Similarly, you can use %PackageName() to get just the name of the package.)

6.8 Cloning Objects
To clone an object, call the %ConstructClone() method of that object. This method creates a new OREF.

The following Terminal session demonstrates this:

MYNAMESPACE>set person=##class(Sample.Person).%OpenId(1)

MYNAMESPACE>set NewPerson=person.%ConstructClone()

MYNAMESPACE>w

NewPerson=<OBJECT REFERENCE>[2@Sample.Person]
person=<OBJECT REFERENCE>[1@Sample.Person]
MYNAMESPACE>

Here, you can see that the NewPerson variable uses a different OREF than the original person object. NewPerson is a
clone of person (or more precisely, these variables are pointers to separate but identical objects).

In contrast, consider the following Terminal session:

MYNAMESPACE>set person=##class(Sample.Person).%OpenId(1)

MYNAMESPACE>set NotNew=person

MYNAMESPACE>w

NotNew=<OBJECT REFERENCE>[1@Sample.Person]
person=<OBJECT REFERENCE>[1@Sample.Person]

Notice that here, both variables refer to the same OREF. That is, NotNew is not a clone of person.

For information on arguments to this method, see the InterSystems Class Reference for %Library.RegisteredObject.

6.9 Referring to Properties of an Instance
To refer to a property of an instance, you can do any of the following:

• Create an instance of the associated class, and use dot syntax to refer to the property of that instance, as described
previously.

• Within an instance method of the associated class, use relative dot syntax, as follows:

..PropName

You can use this expression with the SET command, or you can use it as part of another expression. The following
shows some variations:

 set value=..PropName
 write ..PropName

• To access the property, where the property name is not determined until runtime, use the $PROPERTY function. If
the property is multidimensional, the following arguments after the property name are used as indices in accessing the
value of the property. The signature is:

$PROPERTY (oref, propertyName, subscript1, subscript2, subscript3... )
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Where oref is an OREF, propertyName evaluates to the name of a property method in the associated class. Also,
subscript1, subscript2, subscript3 are values for any subscripts of the property; specify these only for a multidimensional
property.

For more information, see the $PROPERTY page in the ObjectScript Reference.

• (Within an instance method) use the variable $this, which is introduced later in this chapter.

• (Within an instance method) use instance variables, which are introduced later in this chapter.

• Use the applicable property accessor (getter and setter) methods. See the chapter “Using and Overriding Property
Methods.”

6.10 Calling Methods of an Instance
To call a method of an instance, you can do any of the following:

• Create an instance of the associated class, and use dot syntax to call the method of that instance, as described previously.

• (Within an instance method) to call another instance method of that class (which could be an inherited method), use
the following expression:

..MethodName(args)

You can use this expression with the DO command. If the method returns a value, you can use SET, or you can use it
as part of another expression. The following shows some variations:

 do ..MethodName()
 set value=..MethodName(args)

• To execute an instance method, where the method name is not determined until runtime, use the $METHOD function:

$METHOD(oref, methodname, Arg1, Arg2, Arg3, ... )

where oref is an OREF, methodname evaluates to the name of an instance method in the associated class, and Arg1,
Arg2, Arg3, and so on are any arguments to that method.

For more information, see the $METHOD page in the ObjectScript Reference.

• (Within an instance method) use the variable $this, which is introduced later in this chapter.

6.11 Obtaining the Class Name from an Instance
To obtain the name of a class, use the $CLASSNAME function:

$CLASSNAME(oref)

where oref is an OREF.

For more information, see the $CLASSNAME page in the ObjectScript Reference.
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6.12 $this Variable (Current Instance)
The $this syntax provides a handle to the OREF of the current instance, such as for passing it to another class or for another
class to refer to properties of methods of the current instance. When an instance refers to its properties or methods, the
relative dot syntax is faster and thus is preferred.

Note: $this is not case-sensitive; hence, $this, $This, $THIS, or any other variant all have the same value.

For example, suppose there is an application with an Accounting.Order class and an Accounting.Utils class. The
Accounting.Order.CalcTax() method calls the Accounting.Utils.GetTaxRate() and
Accounting.Utils.GetTaxableSubtotal() methods, passing city and state of the current instance to the GetTaxRate()
method and passing the list of items ordered and relevant tax-related information to GetTaxableSubtotal(). CalcTax()
then uses the values returned to calculate the sales tax for the order. Hence, its code is something like:

Method CalcTax() As %Numeric
{
    Set TaxRate = ##Class(Accounting.Utils).GetTaxRate($this)
    Write "The tax rate for ",..City,", ",..State," is ",TaxRate*100,"%",!
    Set TaxableSubtotal = ##class(Accounting.Utils).GetTaxableSubTotal($this)
    Write "The taxable subtotal for this order is $",TaxableSubtotal,!
    Set Tax = TaxableSubtotal * TaxRate
    Write "The tax for this order is $",Tax,!
}

The first line of the method uses the ##Class syntax (described earlier) to invoke the other method; it passes the current
object to that method using the $this syntax. The second line of the method uses the .. syntax (also described earlier) to get
the values of the City and State properties. The action on the third line is similar to that on the first line.

In the Accounting.Utils, the GetTaxRate() method can then use the handle to the passed-in instance to get handles to various
properties — for both getting and setting their values:

ClassMethod GetTaxRate(OrderBeingProcessed As Accounting.Order) As %Numeric
{
    Set LocalCity = OrderBeingProcessed.City
    Set LocalState = OrderBeingProcessed.State
    // code to determine tax rate based on location and set
    // the value of OrderBeingProcessed.TaxRate accordingly
    Quit OrderBeingProcessed.TaxRate
}

The GetTaxableSubtotal() method also uses the handle to the instance to look at its properties and set the value of its
TaxableSubtotal property.

Hence, if we invoke the CalcTax() method of MyOrder instance of the Accounting.Order class, we would see something
like this:

>Do MyOrder.CalcTax()
The tax rate for Cambridge, MA is 5%
The taxable subtotal for this order is $79.82
The tax for this order is $3.99

6.13 i%PropertyName (Instance Variables)
This section introduces instance variables. You do not need to refer to these variables unless you override an accessor
method for a property; see the chapter “Using and Overriding Property Methods.”

When you create an instance of any class, the system creates an instance variable for each non-calculated property of that
class. The instance variable holds the value of the property. For the property PropName, the instance variable is named
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i%PropName, and this variable name is case-sensitive. These variables are available within any instance method of the
class.

For example, if a class has the properties Name and DOB, then the instance variables i%Name and i%DOB are available
within any instance method of the class.

Internally, InterSystems IRIS also uses additional instance variables with names such as r%PropName and m%PropName,
but these are not supported for direct use.

Instance variables have process-private, in-memory storage allocated for them. Note that these variables are not held in the
local variable symbol table and are not affected by the Kill command.
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7
Introduction to Persistent Objects

This chapter presents the concepts that are useful to understand when working with persistent classes. It discusses the fol-
lowing topics:

• Introduction to persistent classes

• Introduction to the default SQL projection

• Identifiers for saved objects: ID and OID

• Class members specific to persistent classes

• Other class members

• Extents

• Globals

Also see the chapters “Working with Persistent Objects,” “Defining Persistent Classes,”  and “Other Options for Persistent
Classes.”

When viewing this book online, use the preface of this book to quickly find other topics.

Some of the examples shown in this chapter are from the Samples-Data sample (https://github.com/intersystems/Samples-
Data). InterSystems recommends that you create a dedicated namespace called SAMPLES (for example) and load samples
into that namespace. For the general process, see Downloading Samples for Use with InterSystems IRIS®.

7.1 Persistent Classes
A persistent class is any class that inherits from %Persistent. A persistent object is an instance of such a class.

The %Persistent class is a subclass of %RegisteredObject and thus is an object class. In addition to providing the methods
described in the previous chapter, the %Persistent class defines the persistence interface, a set of methods. Among other
things, these methods enable you to save objects to the database, load objects from the database, delete objects, and test
for existence.
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7.2 Introduction to the Default SQL Projection
For any persistent class, the compiler generates an SQL table definition, so that the stored data can be accessed via SQL
in addition to via the object interface described in this book.

The table contains one record for each saved object, and the table can be queried via InterSystems SQL. The following
shows the results of a query of the Sample.Person table:

The following table summarizes the default projection:

Table 7–1:The Object-SQL Projection

To (Relational Concept)
...

From (Object Concept) ...

SchemaPackage

TableClass

Identity fieldOID

FieldData type property

Reference fieldReference property

Set of fieldsEmbedded object

List fieldList property

Child tableArray property

BLOBStream property

IndexIndex

Stored procedureClass method

Later chapters provide more information and describe any changes you can make:

• For information on the table name and the name of the schema to which it belongs, see “Defining Persistent Classes” .

That chapter also has information on how you can control the projection of subclasses.
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• For information on the projection of literal properties, see “Defining and Using Literal Properties.”

• For information on the projection of collection properties, see “Working with Collections.”

• For information on the projection of stream properties, see “Working with Streams.”

• For information on the projection of object-valued properties, see “Defining and Using Object-Valued Properties.”

• For information on the projection of relationships, see “Defining and Using Relationships.”

7.3 Identifiers for Saved Objects: ID and OID
When you save an object for the first time, the system creates two permanent identifiers for it, either of which you can later
use to access or remove the saved objects. The more commonly used identifier is the object ID. An ID is a simple literal
value that is unique within the table. By default, the system generates an integer to use as an ID.

An OID is more general: it also includes the class name and is unique in the database. In general practice, an application
never needs to use the OID value; the ID value is usually sufficient.

The %Persistent class provides methods that use either the ID or the OID. You specify an ID when you use methods such
as %OpenId(), %ExistsId(), and %DeleteId(). You specify the OID as the argument for methods such as %Open(),
%Exists(), and %Delete(). That is, the methods that use ID as an argument include Id in their names. The methods that
use OID as the argument do not include Id in their names; these methods are used much less often.

When a persistent object is stored in the database, the values of any of its reference attributes (that is, references to other
persistent objects) are stored as OID values. For object attributes that do not have OIDs, the literal value of the object is
stored along with the rest of the state of the object.

7.3.1 Projection of Object IDs to SQL

The ID of an object is available in the corresponding SQL table. If possible, InterSystems IRIS uses the field name ID.
InterSystems IRIS also provides a way to access the ID if you are not sure what field name to use. The system is as follows:

• An object ID is not a property of the object and is treated differently from the properties.

• If the class does not contain a property named ID (in any case variation), then the table also contains the field ID, and
that field contains the object ID. For an example, see the previous section.

• If the class contains a property that is projected to SQL with the name ID (in any case variation), then the table also
contains the field ID1, and this field holds the value of the object ID.

Similarly, if the class contains properties that are projected as ID and ID1, then the table also contains the field ID2,
and this field holds the value of the object ID.

• In all cases, the table also provides the pseudo-field %ID, which holds the value of the object ID.

The OID is not available in the SQL table.

7.3.2 Object IDs in SQL

InterSystems IRIS enforces uniqueness for the ID field (whatever its actual name might be). InterSystems IRIS also prevents
this field from being changed. This means that you cannot perform SQL UPDATE or INSERT operations on this field.
For instance, the following shows the SQL needed to add a new record to a table:

INSERT INTO PERSON (FNAME, LNAME)VALUES (:fname, :lname)
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Notice that this SQL does not refer to the ID field. InterSystems IRIS generates a value for the ID field and inserts that
when it creates the requested record.

7.4 Class Members Specific to Persistent Classes
InterSystems IRIS classes can include several kinds of class members that are meaningful only in persistent classes. These
are storage definitions, indices, foreign keys, and triggers.

7.4.1 Storage Definitions

In most cases (as discussed later), each persistent class has a storage definition. The purpose of the storage definition is to
describe the global structure that InterSystems IRIS uses when it saves data for the class or reads saved data for the class.
Atelier displays the storage definition at the end of the class definition, when you view the class in edit mode. The following
shows a partial example:

<Storage name="Default">
<Data name="PersonDefaultData">
<Value name="1">
<Value>%%CLASSNAME</Value>
</Value>
<Value name="2">
<Value>Name</Value>
</Value>
<Value name="3">
<Value>SSN</Value>
</Value>
<Value name="4">
<Value>DOB</Value>
</Value>
<Value name="5">
<Value>Home</Value>
</Value>
<Value name="6">
<Value>Office</Value>
</Value>
<Value name="7">
<Value>Spouse</Value>
</Value>
<Value name="8">
<Value>FavoriteColors</Value>
</Value>
</Data>
<DataLocation>^Sample.PersonD</DataLocation>
<DefaultData>PersonDefaultData</DefaultData>
<ExtentSize>200</ExtentSize>
<IdLocation>^Sample.PersonD</IdLocation>
<IndexLocation>^Sample.PersonI</IndexLocation>
<Property name="%%CLASSNAME">
<Selectivity>50.0000%</Selectivity>
</Property>
...

Also in most cases, the compiler generates and updates the storage definition. For more information on the globals used
for persistent classes, see “Globals.”

7.4.2 Indices

As with other SQL tables, an InterSystems SQL table can have indices; to define these, you add index definitions to the
corresponding class definition.

An index can add a constraint that ensures uniqueness of a given field or combination of fields. For information on such
indices, see the chapter “Defining Persistent Classes.”

Another purpose of an index is to define a specific sorted subset of commonly requested data associated with a class, so
that queries can run more quickly. For example, as a general rule, if a query that includes a WHERE clause using a given
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field, the query runs more rapidly if that field is indexed. In contrast, if there is no index on that field, the engine must
perform a full table scan, checking every row to see if it matches the given criteria — an expensive operation if the table
is large. See the chapter “Other Options for Persistent Classes.”

7.4.3 Foreign Keys

An InterSystems SQL table can also have foreign keys. To define these, you add foreign key definitions to the corresponding
class definition.

Foreign keys establish referential integrity constraints between tables that InterSystems IRIS uses when new data is added
or when data is changed. If you use relationships, described later in this book, the system automatically treats these as foreign
keys. But you can add foreign keys if you do not want to use relationships or if you have other reasons to add them.

For more information on foreign keys, see the chapter “Other Options for Persistent Classes.”

7.4.4 Triggers

An InterSystems SQL table can also have triggers. To define these, you add trigger definitions to the corresponding class
definition.

Triggers define code to be executed automatically when specific events occur, specifically when a record is inserted,
modified, or deleted.

For more information on triggers, see the chapter “Other Options for Persistent Classes.”

7.5 Other Class Members
A class method or a class query can be defined so that it can be invoked as a stored procedure, which enables you to invoke
it from SQL.

For class members not discussed in this chapter, there is no projection to SQL. That is, InterSystems IRIS does not provide
a direct way to use them from SQL or to make them usable from SQL.

7.6 Extents
The term extent refers to all the records, on disk, for a given persistent class. As shown in the next chapter, the %Persistent

class provides several methods that operate on the extent of class.

InterSystems IRIS uses an unconventional and powerful interpretation of the object-table mapping. By default, the extent
of a given persistent class includes the extents of any subclasses. Therefore:

• If the persistent class Person has the subclass Employee, the Person extent includes all instances of Person and all
instances of Employee.

• For any given instance of class Employee, that instance is included in the Person extent and in the Employee extent.

Indices automatically span the entire extent of the class in which they are defined. The indices defined in Person contain
both Person instances and Employee instances. Indices defined in the Employee extent contain only Employee instances.

The subclass can define additional properties not defined in its superclass. These are available in the extent of the subclass,
but not in the extent of the superclass. For example, the Employee extent might include the Department field, which is not
included in the Person extent.
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The preceding points mean that it is comparatively easy in InterSystems IRIS to write a query that retrieves all records of
the same type. For example, if you want to count people of all types, you can run a query against the Person table. If you
want to count only employees, run the same query against the Employee table. In contrast, with other object databases, to
count people of all types, it would be necessary to write a more complex query that combined the tables, and it would be
necessary to update this query whenever another subclass was added.

Similarly, the methods that use the ID all behave polymorphically. That is, they can operate on different types of objects
depending on the ID value it is passed.

For example, the extent for Sample.Person objects includes instances of Sample.Person as well as instances of
Sample.Employee. When you call %OpenId() for the Sample.Person class, the resulting OREF could be an instance of
either Sample.Person or Sample.Employee, depending on what is stored within the database:

 // Open person "10"
 Set obj = ##class(Sample.Person).%OpenId(10)

 Write $ClassName(obj),!    // Sample.Person

 // Open person "110"
 Set obj = ##class(Sample.Person).%OpenId(110)

 Write $ClassName(obj),!    // Sample.Employee

Note that the %OpenId() method for the Sample.Employee class will not return an object if we try to open ID 10, because
the ID 10 is not the Sample.Employee extent:

 // Open employee "10"
 Set obj = ##class(Sample.Employee).%OpenId(10)

 Write $IsObject(obj),!  // 0

 // Open employee "110"
 Set obj = ##class(Sample.Employee).%OpenId(110)

 Write $IsObject(obj),!  // 1

7.6.1 Extent Management

7.6.1.1 Extent Definitions

For classes that use the default storage class (%Storage.Persistent), InterSystems IRIS maintains extent definitions and
globals that those extents have registered for use with its Extent Manager. The interface to the Extent Manager is through
the %ExtentMgr.Util class. This registration process occurs during class compilation.

If there are any errors or name conflicts, these cause the compile to fail. For example:

ERROR #5564: Storage reference: '^This.App.Global used in 'User.ClassA.cls' 
is already registered for use by 'User.ClassB.cls'

For compilation to succeed, resolve the conflicts; this usually involves either changing the name of the index or adding
explicit storage locations for the data.

Note: If an application has multiple classes intentionally sharing a global reference, specify that MANAGEDEXTENT
equals 0 for all the relevant classes, if they use default storage.

The MANAGEDEXTENT class parameter has a default value of 1; this value causes global name registration and
a conflicting use check. A value of 0 specifies that there is neither registration nor conflict checking.

Another possibility is that InterSystems IRIS contains obsolete extent definitions. For example, deleting a class does not
delete the extent definition by default.

Continuing with the example above, perhaps User.ClassA.cls was deleted, but its extent definition remains. Here, the solution
is to delete the obsolete extent definition with the following command:
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set st =
##class(%ExtentMgr.Util).DeleteExtentDefinition("User.ClassA", "cls")

Now, User.ClassB.cls can be compiled without a conflict.

To delete a class and its extent definition, use one of the following calls:

• $SYSTEM.OBJ.Delete(classname,qspec) where classname is the class to delete and qspec includes the flag
e or the qualifier /deleteextent.

• $SYSTEM.OBJ.DeletePackage(packagename,qspec) where packagename is the package to delete and qspec
includes the flag e or the qualifier /deleteextent.

• $SYSTEM.OBJ.DeleteAll(qspec) where qspec includes the flag e or the qualifier /deleteextent. This deletes
all classes in the namespace.

These calls are methods of the %SYSTEM.OBJ class.

7.6.1.2 Extent Indices

An extent index is an index of all extents and subextents defined in the current namespace. The class compiler maintains
this index for locally compiled classes that use the default storage class (%Storage.Persistent). Classes mapped from other
namespaces are not automatically added to or removed from the index when the mapping changes or when changes to the
class runtime occur in the original namespace. Instead, such changes must be updated in the local namespace's extent index
by using one of following calls:

• $SYSTEM.OBJ.RebuildExtentIndex(updatemode,lockmode) rebuilds the entire extent index for a given
namespace and returns a status value indicating success or failure. If updatemode is true then the index is not purged
and only detected differences are updated in the index. If updatemode is false then the index is purged and rebuilt
entirely. A lockmode of 1 causes an exclusive lock to be taken out on the entire index structure, a value of 2 causes
individual locks to be taken out on class nodes only for the duration of indexing that class, and a value of 3 causes a
shared lock to be taken out on the entire index structure. If the requested locks cannot be obtained then an error is
reported to the caller. A lockmode of 0 indicates no locking.

• $SYSTEM.OBJ.RebuildExtentIndexOne(classname,lockmode) rebuilds the extent index for a single class
and returns a status value indicating success or failure. This method updates the index nodes in the extent index for
the class indicated by classname. The values for lockmode are the same as for RebuildExtentIndex(), but values of
1, 2, and 3 are interpreted as locks on the individual class nodes.

These calls are methods of the %SYSTEM.OBJ class.

7.6.2 Extent Queries

Every persistent class automatically includes a class query called "Extent" that provides a set of all the IDs in the extent.

For general information on using class queries, see the chapter “Defining and Using Class Queries.” The following
example uses a class query to display all the IDs for the Sample.Person class:

 set query = ##class(%SQL.Statement).%New()
 set status= query.%PrepareClassQuery("Sample.Person","Extent")
 if 'status {
   do $system.OBJ.DisplayError(status)
 }
 set rset=query.%Execute()

 While (rset.%Next()) {
     Write rset.%Get("ID"),!
 }

The Sample.Person extent includes all instances of Sample.Person as well as its subclasses. For an explanation of this, see
the chapter “Defining Persistent Classes.”
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The "Extent" query is equivalent to the following SQL query:

SELECT %ID FROM Sample.Person

Note that you cannot rely on the order in which ID values are returned using either of these methods: InterSystems IRIS
may determine that it is more efficient to use an index that is ordered using some other property value to satisfy this request.
You can add an ORDER BY %ID clause to the SQL query if you need to.

7.7 Globals
Persistent classes allow you to save objects to the database and retrieve them as objects or via SQL. Regardless of how
they are accessed, these objects are stored in globals, which can be thought of as persistent multidimensional arrays. For
more information on working with globals, see Using Globals.

When you define a class that uses the default storage class (%Storage.Persistent), global names for your class are generated
when you compile the class. You can see these names in the storage definition at the bottom of the code in Atelier.

The following subsections describe the default global naming scheme, how to generate short global names for better per-
formance, and how to directly control global names.

7.7.1 Standard Global Names

When you define a class in Atelier, global names for your class are generated based on the class name.

For example, let’s define the following class, GlobalsTest.President:

Class GlobalsTest.President Extends %Persistent
{

/// President's name (last,first)
Property Name As %String(PATTERN="1U.L1"",""1U.L");

/// Year of birth
Property BirthYear As %Integer; 

/// Short biography
Property Bio As %Stream.GlobalCharacter;

/// Index for Name
Index NameIndex On Name;

/// Index for BirthYear
Index DOBIndex On BirthYear;

}

After compiling the class, we can see the following storage definition generated at the bottom of the class:

Storage Default
{
<Data name="PresidentDefaultData">
<Value name="1">
<Value>%%CLASSNAME</Value>
</Value>
<Value name="2">
<Value>Name</Value>
</Value>
<Value name="3">
<Value>BirthYear</Value>
</Value>
<Value name="4">
<Value>Bio</Value>
</Value>
</Data>
<DataLocation>^GlobalsTest.PresidentD</DataLocation>
<DefaultData>PresidentDefaultData</DefaultData>
<IdLocation>^GlobalsTest.PresidentD</IdLocation>
<IndexLocation>^GlobalsTest.PresidentI</IndexLocation>
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<StreamLocation>^GlobalsTest.PresidentS</StreamLocation>
<Type>%Storage.Persistent</Type>
}

Notice, in particular, the following storage keywords:

• The DataLocation is the global where class data will be stored. The name of the global is the complete class name
(including the package name) with a “D” appended to the name, in this case, ^GlobalsTest.PresidentD.

• The IdLocation (often the same as the DataLocation) is the global where the ID counter will be stored, at its
root.

• The IndexLocation is the global where the indices for the class will be stored. The name of the global is the complete
class name with an “I” appended to the name, or, ^GlobalsTest.PresidentI.

• The StreamLocation is the global where any stream properties will be stored. The name of the global is the complete
class name with an “S” appended to the name, or, ^GlobalsTest.PresidentS.

After creating and storing a few objects of our class, we can view the contents of these globals in the Terminal:

USER>zwrite ^GlobalsTest.PresidentD
^GlobalsTest.PresidentD=3
^GlobalsTest.PresidentD(1)=$lb("",1732,"1","Washington,George")
^GlobalsTest.PresidentD(2)=$lb("",1735,"2","Adams,John")
^GlobalsTest.PresidentD(3)=$lb("",1743,"3","Jefferson,Thomas")

USER>zwrite ^GlobalsTest.PresidentI
^GlobalsTest.PresidentI("DOBIndex",1732,1)=""
^GlobalsTest.PresidentI("DOBIndex",1735,2)=""
^GlobalsTest.PresidentI("DOBIndex",1743,3)=""
^GlobalsTest.PresidentI("NameIndex"," ADAMS,JOHN",2)=""
^GlobalsTest.PresidentI("NameIndex"," JEFFERSON,THOMAS",3)=""
^GlobalsTest.PresidentI("NameIndex"," WASHINGTON,GEORGE",1)=""

USER>zwrite ^GlobalsTest.PresidentS
^GlobalsTest.PresidentS=3
^GlobalsTest.PresidentS(1)=1
^GlobalsTest.PresidentS(1,0)=239
^GlobalsTest.PresidentS(1,1)="George Washington was born to a moderately prosperous family of planters
 in colonial ..."
^GlobalsTest.PresidentS(2)=1
^GlobalsTest.PresidentS(2,0)=195
^GlobalsTest.PresidentS(2,1)="John Adams was born in Braintree, Massachusetts, and entered Harvard 
College at age 1..."
^GlobalsTest.PresidentS(3)=1
^GlobalsTest.PresidentS(3,0)=202
^GlobalsTest.PresidentS(3,1)="Thomas Jefferson was born in the colony of Virginia and attended the 
College of Willi..."

The subscript of ^GlobalsTest.PresidentD is the IDKey. Since we did not define one of our indices as the IDKey,
the ID is used as the IDKey. For more information on IDs, see “Controlling How IDs Are Generated.”

The first subscript of ^GlobalsTest.PresidentI is the name of the index.

The first subscript of ^GlobalsTest.PresidentS is the ID of the bio entry, not the ID of the president.

You can also view these globals in the Management Portal (System Explorer > Globals).

Important: Only the first 31 characters in a global name are significant, so if a complete class name is very long, you
might see global names like ^package1.pC347.VeryLongCla4F4AD. The system generates names
such as these to ensure that all of the global names for your class are unique. If you plan to work directly
with the globals of a class, make sure to examine the storage definition so that you know the actual name
of the global. Alternatively, you can control the global names by using the DEFAULTGLOBAL parameter
in your class definition. See “User-Defined Global Names.”
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7.7.2 Hashed Global Names

The system will generate shorter global names if you set the USEEXTENTSET parameter to the value 1. (The default value
for this parameter is 0, meaning use the standard global names.) These shorter global names are created from a hash of the
package name and a hash of the class name, followed by a suffix. While the standard names are more readable, the shorter
names can contribute to better performance.

When you set USEEXTENTSET to 1, each index is also assigned to a separate global, instead of using a single index global
with different first subscripts. Again, this is done for increased performance.

To use hashed global names for the GlobalsTest.President class we defined earlier, we would add the following to the class
definition:

/// Use hashed global names
Parameter USEEXTENTSET = 1;

After deleting the storage definition and recompiling the class, we can see the new storage definition with hashed global
names:

Storage Default
{
...
<DataLocation>^Ebnm.EKUy.1</DataLocation>
<DefaultData>PresidentDefaultData</DefaultData>
<ExtentLocation>^Ebnm.EKUy</ExtentLocation>
<IdLocation>^Ebnm.EKUy.1</IdLocation>
<Index name="DOBIndex">
<Location>^Ebnm.EKUy.2</Location>
</Index>
<Index name="IDKEY">
<Location>^Ebnm.EKUy.1</Location>
</Index>
<Index name="NameIndex">
<Location>^Ebnm.EKUy.3</Location>
</Index>
<IndexLocation>^Ebnm.EKUy.I</IndexLocation>
<StreamLocation>^Ebnm.EKUy.S</StreamLocation>
<Type>%Storage.Persistent</Type>
}

Notice, in particular, the following storage keywords:

• The ExtentLocation is the hashed value that will be used to calculate global names for this class, in this case,
^Ebnm.EKUy.

• The DataLocation (equivalent to the IDKEY index), where class data will be stored, is now the hashed value with
a “.1” appended to the name, in this case, ^Ebnm.EKUy.1.

• Each index now has its own Location and thus its own separate global. The name of the IdKey index global is
equivalent to the hashed value with a ”.1” appended to the name, in this example, ^Ebnm.EKUy.1. The globals for
the remaining indices have “.2” to “.N” appended to the name. Here, the DOBIndex is stored in global ̂ Ebnm.EKUy.2
and the NameIndex is stored in ^Ebnm.EKUy.3.

• The IndexLocation is the hashed value with “.I” appended to the name, or ^Ebnm.EKUy.I, however, this global
is often not used.

• The StreamLocation is the hashed value with “.S” appended to the name, or ^Ebnm.EKUy.S.

After creating and storing a few objects, the contents of these globals might look as follows, again using the Terminal:

USER>zwrite ^Ebnm.EKUy.1
^Ebnm.EKUy.1=3
^Ebnm.EKUy.1(1)=$lb("","Washington,George",1732,"1")
^Ebnm.EKUy.1(2)=$lb("","Adams,John",1735,"2")
^Ebnm.EKUy.1(3)=$lb("","Jefferson,Thomas",1743,"3")

USER>zwrite ^Ebnm.EKUy.2
^Ebnm.EKUy.2(1732,1)=""
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^Ebnm.EKUy.2(1735,2)=""
^Ebnm.EKUy.2(1743,3)=""

USER>zwrite ^Ebnm.EKUy.3
^Ebnm.EKUy.3(" ADAMS,JOHN",2)=""
^Ebnm.EKUy.3(" JEFFERSON,THOMAS",3)=""
^Ebnm.EKUy.3(" WASHINGTON,GEORGE",1)="" 

USER>zwrite ^Ebnm.EKUy.S
^Ebnm.EKUy.S=3
^Ebnm.EKUy.S(1)=1
^Ebnm.EKUy.S(1,0)=239
^Ebnm.EKUy.S(1,1)="George Washington was born to a moderately prosperous family of planters in colonial
 Virginia..."
...

For classes defined using an SQL CREATE TABLE statement, the default for the USEEXTENTSET parameter is 1. For
more information on creating tables, see “Defining Tables”  in Using InterSystems SQL.

For example, let’s create a table using the Management Portal (System Explorer > SQL > Execute Query):

CREATE TABLE GlobalsTest.State (NAME CHAR (30) NOT NULL, ADMITYEAR INT)

After populating the table with some data, we see the globals ^Ebnm.BndZ.1 and ^Ebnm.BndZ.2 in the Management
Portal (System Explorer > Globals). Notice that the package name is still GlobalsTest, so the first segment of the global
names for GlobalsTest.State is the same as for GlobalsTest.President.

Using the Terminal, the contents of the globals might look like:

USER>zwrite ^Ebnm.BndZ.1
^Ebnm.BndZ.1=3
^Ebnm.BndZ.1(1)=$lb("Delaware",1787)
^Ebnm.BndZ.1(2)=$lb("Pennsylvania",1787)
^Ebnm.BndZ.1(3)=$lb("New Jersey",1787)

USER>zwrite ^Ebnm.BndZ.2
^Ebnm.BndZ.2(1)=$zwc(412,1,0)/*$bit(2..4)*/

The global ^Ebnm.BndZ.1 contains the States data and ^Ebnm.BndZ.2 is a bitmap extent index. See “Bitmap Extent
Index”  in the InterSystems SQL Reference.

If we wanted to use standard global names with a class created via SQL, we could set the USEEXTENTSET parameter to
the value 0:

CREATE TABLE GlobalsTest.State (%CLASSPARAMETER USEEXTENTSET 0, NAME CHAR (30) NOT NULL, ADMITYEAR INT)

This would generate the standard global names ^GlobalsTest.StateD and ^GlobalsTest.StateI.
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Note: You can change the default value used for the USEEXTENTSET parameter to 0 for classes created via a CREATE
TABLE statement by executing the command do $SYSTEM.SQL.SetDDLUseExtentSet(0, .oldval).
The previous default value is returned in oldval.

For classes created via XEP, the default for the USEEXTENTSET parameter is 1 and may not be changed. You
can read more about XEP in Persisting Java Objects with InterSystems XEP.

7.7.3 User-Defined Global Names

For finer control of the global names for a class, use the DEFAULTGLOBAL parameter. This parameter works in conjunction
with the USEEXTENTSET parameter to determine the global naming scheme.

For example, let’s add the DEFAULTGLOBAL parameter to set the root of the global names for the GlobalsTest.President

class to ^GT.Pres:

/// Use hashed global names
Parameter USEEXTENTSET = 1;

/// Set the root of the global names
Parameter DEFAULTGLOBAL = "^GT.Pres";

After deleting the storage definition and recompiling the class, we can see the following global names:

Storage Default
{
...
<DataLocation>^GT.Pres.1</DataLocation>
<DefaultData>PresidentDefaultData</DefaultData>
<ExtentLocation>^GT.Pres</ExtentLocation>
<IdLocation>^GT.Pres.1</IdLocation>
<Index name="DOBIndex">
<Location>^GT.Pres.2</Location>
</Index>
<Index name="IDKEY">
<Location>^GT.Pres.1</Location>
</Index>
<Index name="NameIndex">
<Location>^GT.Pres.3</Location>
</Index>
<IndexLocation>^GT.Pres.I</IndexLocation>
<StreamLocation>^GT.Pres.S</StreamLocation>
<Type>%Storage.Persistent</Type>
}

Likewise, we can use the DEFAULTGLOBAL parameter when defining a class using SQL:

CREATE TABLE GlobalsTest.State (%CLASSPARAMETER USEEXTENTSET 0, %CLASSPARAMETER DEFAULTGLOBAL = 
'^GT.State', 
NAME CHAR (30) NOT NULL, ADMITYEAR INT)

This would generate the global names ^GT.StateD and ^GT.StateI.

7.7.4 Redefining Global Names

If you edit a class definition in a way that redefines the previously existing global names, for example, by changing the
values of the USEEXTENTSET or DEFAULTGLOBAL parameters, you must delete the existing storage definition to allow
the compiler to generate a new storage definition. Note that any data in the existing globals is preserved. Any data to be
retained must be migrated to the new global structure.

For more information, see “Redefining a Persistent Class That Has Stored Data.”
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8
Working with Persistent Objects

The %Persistent class is the API for objects that can be saved (written to disk). This chapter describes how to use this API.
Information in this chapter applies to all subclasses of %Persistent. It discusses the following topics:

• How to save objects

• How to test the existence of saved objects

• How to open saved objects

• Swizzling

• How to reloading an object from disk

• How to read stored values

• How to delete saved objects

• How to access object identifiers

• Object concurrency options

• Version checking (alternative to concurrency argument)

Also see the chapters “Introduction to Persistent Objects,” “Defining Persistent Classes,”  and “Other Options for Persistent
Classes.”

When viewing this book online, use the preface of this book to quickly find other topics.

Most of the samples shown in this chapter are from the Samples-Data sample (https://github.com/intersystems/Samples-
Data). InterSystems recommends that you create a dedicated namespace called SAMPLES (for example) and load samples
into that namespace. For the general process, see Downloading Samples for Use with InterSystems IRIS®.

8.1 Saving Objects
To save an object to the database, invoke its %Save() method. For example:

 Set obj = ##class(MyApp.MyClass).%New()
 Set obj.MyValue = 10

 Set sc = obj.%Save()

The %Save() method returns a %Status value that indicates whether the save operation succeeded or failed. Failure could
occur, for example, if an object has invalid property values or violates a uniqueness constraint; see “Validating Objects”
in the previous chapter.
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Calling %Save() on an object automatically saves all modified objects that can be “ reached”  from the object being saved:
that is, all embedded objects, collections, streams, referenced objects, and relationships involving the object are automatically
saved if needed. The entire save operation is carried out as one transaction: if any object fails to save, the entire transaction
fails and rolls back (no changes are made to disk; all in-memory object values are what they were before calling %Save()).

When an object is saved for the first time, the default behavior is for the %Save() method to automatically assign it an
object ID value that is used to later find the object within the database. In the default case, the ID is generated using the
$Increment function; alternately, the class can use a user-provided object ID based on property values that have an idkey
index (and, in this case, the property values cannot include the string “ ||” ) . Once assigned, you cannot alter the object ID
value for a specific object instance (even if it is a user-provided ID).

You can find the object ID value for an object that has been saved using the %Id() method:

 // Open person "22"
 Set person = ##class(Sample.Person).%OpenId(22)
 Write "Object ID: ",person.%Id(),!

In more detail, the %Save() method does the following:

1. First it constructs a temporary structure known as a “SaveSet.” The SaveSet is simply a graph containing references
to every object that is reachable from the object being saved. (Generally, when an object class A has a property whose
value is another object class B, an instance of A can “ reach”  an instance of B.) The purpose of the SaveSet is to make
sure that save operations involving complex sets of related objects are handled as efficiently as possible. The SaveSet
also resolves any save order dependencies among objects.

As each object is added to the SaveSet, its %OnAddToSaveSet() callback method is called, if present.

2. It then visits each object in the SaveSet in order and checks if they are modified (that is, if any of their property values
have been modified since the object was opened or last saved). If an object has been modified, it will then be saved.

3. Before being saved, each modified object is validated (its property values are tested; its %OnValidateObject() method,
if present, is called; and uniqueness constraints are tested); if the object is valid, the save proceeds. If any object is
invalid, then the call to %Save() fails and the current transaction is rolled back.

4. Before and after saving each object, the %OnBeforeSave() and %OnAfterSave() callback methods are called, if
present.

These callbacks are passed an Insert argument which indicates whether an object is being inserted (saved for the first
time) or updated.

If either of these callback methods fails (returns an error code) then the call to %Save() fails and the current transaction
is rolled back.

If the current object is not modified, then %Save() does not write it to disk; it returns success because the object did not
need to be saved and, therefore, there is no way that there could have been a failure to save it. In fact, the return value of
%Save() indicates that the save operation either did all that it was asked or it was unable to do as it was asked (and not
specifically whether or not anything was written to disk).

Important: In a multi-process environment, be sure to use proper concurrency controls; see “Object Concurrency
Options.”

8.1.1 Rollback

The %Save() method automatically saves all the objects in its SaveSet as a single transaction. If any of these objects fail
to save, then the entire transaction is rolled back. In this rollback, InterSystems IRIS does the following:

1. It reverts assigned IDs.

2. It recovers removed IDs.
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3. It recovers modified bits.

4. It invokes the %OnRollBack() callback method, if implemented, for any object that had been successfully serialized.

InterSystems IRIS does not invoke this method for an object that has not been successfully serialized, that is, an object
that is not valid.

8.1.2 Saving Objects and Transactions

As noted previously, the %Save() method automatically saves all the objects in its SaveSet as a single transaction. If any
of these objects fail to save, then the entire transaction is rolled back.

If you wish to save two or more unrelated objects as a single transaction, however, you must enclose the calls to %Save()
within an explicit transaction: that is, you must start the transaction using the TSTART command and end it with the
TCOMMIT command.

For example:

 // start a transaction
 TSTART

 // save first object
 Set sc = obj1.%Save()

 // save second object (if first was save)
 If ($$$ISOK(sc)) {
     Set sc = obj2.%Save()
 }

 // if both saves are ok, commit the transaction
 If ($$$ISOK(sc)) {
     TCOMMIT
 }

There are two things to note about this example:

1. The %Save() method knows if it is being called within an enclosing transaction (because the system variable, $TLEVEL,
will be greater than 0).

2. If any of the %Save() methods within the transaction fails, the entire transaction is rolled back (the TROLLBACK
command is invoked). This means that an application must test every call to %Save() within a explicit transaction and
if one fails, skip calling %Save() on the other objects and skip invoking the final TCOMMIT command.

8.2 Testing the Existence of Saved Objects
There are two basic ways to test if a specific object instance is stored within the database:

• Using ObjectScript

• Using SQL

In these examples, the ID is an integer, which is how InterSystems IRIS generates IDs by default. The next chapter describes
how you can define a class so that the ID is instead based on a unique property of the object.

8.2.1 Testing for Object Existence with ObjectScript

The %ExistsId() class method checks a specified ID; it returns a true value (1) if the specified object is present in the
database and false (0) otherwise. It is available to all classes that inherit from %Persistent. For example:
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 Write ##class(Sample.Person).%ExistsId(1),!   // should be 1 
 Write ##class(Sample.Person).%ExistsId(-1),!  // should be 0

Here, the first line should return 1 because Sample.Person inherits from %Persistent and the SAMPLES database provides
data for this class.

You can also use the %Exists() method, which requires an OID rather than an ID.

8.2.2 Testing for Object Existence with SQL

To test for the existence of a saved object with SQL, use a SELECT statement that selects a row whose %ID field matches
the given ID. (The identity property of a saved object is projected as the %ID field.)

For example, using embedded SQL:

 &sql(SELECT %ID FROM Sample.Person WHERE %ID = '1')
 Write SQLCODE,!  // should be 0: success

 &sql(SELECT %ID FROM Sample.Person WHERE %ID = '-1')
 Write SQLCODE,!  // should be 100: not found

Here, the first case should result in an SQLCODE of 0 (meaning success) because Sample.Person inherits from %Persistent

and the SAMPLES database provides data for this class.

The second case should result in an SQLCODE of 100, which means that the statement successfully executed but returned
no data. This is expected because the system never automatically generates an ID value less than zero.

For more information on embedded SQL, see the chapter “Embedded SQL”  in Using InterSystems SQL. For more infor-
mation on SQLCODE, see “SQLCODE Values and Error Messages”  in the InterSystems IRIS Error Reference.

8.3 Opening Saved Objects
To open an object (load an object instance from disk into memory), use the %OpenId() method, which is as follows:

classmethod %OpenId(id As %String, 
                    concurrency As %Integer = -1, 
                    ByRef sc As %Status = $$$OK) as %ObjectHandle

Where:

• id is the ID of the object to open.

In these examples, the ID is an integer. The next chapter describes how you can define a class so that the ID is instead
based on a unique property of the object.

• concurrency is the concurrency level (locking) used to open the object.

• sc, which is passed by reference, is a %Status value that indicates whether the call succeeded or failed.

The method returns an OREF if it can open the given object. It returns a null value ("") if it cannot find or otherwise open
the object.

For example:

 // Open person "10"
 Set person = ##class(Sample.Person).%OpenId(10)

 Write "Person: ",person,!    // should be an object reference

 // Open person "-10"
 Set person = ##class(Sample.Person).%OpenId(-10)

 Write "Person: ",person,!    // should be a null string
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You can also use the %Open() method, which requires an OID rather than an ID.

8.3.1 Multiple Calls to %OpenId()

If %OpenId() is called multiple times within an InterSystems IRIS process for the same ID and the same, only one object
instance is created in memory: all subsequent calls to %OpenId() will return a reference to the object already loaded into
memory.

8.3.2 Concurrency

The %OpenId() method takes an optional concurrency argument as input. This argument specifies the concurrency level
(type of locks) that should be used to open the object instance.

For more information on the possible object concurrency levels, see “Object Concurrency Options,”  later in this chapter.

If the %OpenId() method is unable to acquire a lock on an object, it will fail.

To raise or lower the current concurrency setting for an object, reopen it with %OpenId() and specify a different concurrency
level. For example,

 Set person = ##class(Sample.Person).%OpenId(6,0)

opens person with a concurrency of 0 and the following effectively upgrades the concurrency to 4:

 Set person = ##class(Sample.Person).%OpenId(6,4)

8.4 Swizzling
If you open (load into memory) an instance of a persistent object, and use an object that it references, then this referenced
object is automatically opened. This process is referred to as swizzling; it is also sometimes known as “ lazy loading.”

For example, the following code opens an instance of Sample.Employee object and automatically swizzles (opens) its related
Sample.Company object by referring to it using dot syntax:

 // Open employee "101"
 Set emp = ##class(Sample.Employee).%OpenId(101)

 // Automatically open Sample.Company by referring to it:
 Write "Company: ",emp.Company.Name,!

When an object is swizzled, it is opened using the default concurrency value of the class it is a member of, not the concurrency
value of the object that swizzles it. See “Object Concurrency Options,”  later in this chapter.

A swizzled object is removed from memory as soon as no objects or variables refer to it.

8.5 Reloading an Object from Disk
To reload an in-memory object with the values stored within the database, call its %Reload() method.
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 // Open person "1"
 Set person = ##class(Sample.Person).%OpenId(1)
 Write "Original value: ",person.Name,!

 // modify the object
 Set person.Name = "Black,Jimmy Carl"
 Write "Modified value: ",person.Name,!

 // Now reload the object from disk
 Do person.%Reload()
 Write "Reloaded value: ",person.Name,!

8.6 Reading Stored Values
Suppose you have opened an instance of a persistent object, modified its properties, and then wish to view the original
value stored in the database before saving the object. The easiest way to do this is to use an SQL statement (SQL is always
executed against the database; not against objects in memory).

For example:

 // Open person "1"
 Set person = ##class(Sample.Person).%OpenId(1)
 Write "Original value: ",person.Name,!

 // modify the object
 Set person.Name = "Black,Jimmy Carl"
 Write "Modified value: ",person.Name,!

 // Now see what value is on disk
 Set id = person.%Id()
 &sql(SELECT Name INTO :name
         FROM Sample.Person WHERE %ID = :id)

 Write "Disk value: ",name,!

8.7 Deleting Saved Objects
The persistence interface includes methods for deleting objects from the database.

8.7.1 The %DeleteId() Method

The %DeleteId() method deletes an object that is stored within a database, including any stream data associated with the
object. This method is as follows:

classmethod %DeleteId(id As %String, concurrency As %Integer = -1) as %Status

Where:

• id is the of the object to open.

In these examples, the ID is an integer. The next chapter describes how you can define a class so that the ID is instead
based on a unique property of the object.

• concurrency is the concurrency level (locking) used when deleting the object.

For example:

 Set sc = ##class(MyApp.MyClass).%DeleteId(id)

%DeleteId() returns a %Status value indicating whether the object was deleted or not.
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%DeleteId() calls the %OnDelete() callback method (if present) before deleting the object. %OnDelete() returns a %Status

value; if %OnDelete() returns an error value, then the object will not be deleted, the current transaction is rolled back, and
%DeleteId() returns an error value.

Note that the %DeleteId() method has no effect on any object instances in memory.

You can also use the %Delete() method, which requires an OID rather than an ID.

8.7.2 The %DeleteExtent() Method

The %DeleteExtent() method deletes every object (and subclass of object) within its extent. Specifically it iterates through
the entire extent and invokes the %DeleteId() method on each instance.

8.7.3 The %KillExtent() Method

The %KillExtent() method directly deletes the globals that store an extent of objects (not including data associated with
streams). It does not invoke the %DeleteId() method and performs no referential integrity actions. This method is simply
intended to serve as a help to developers during the development process. (It is similar to the TRUNCATE TABLE command
found in older relational database products.) If you need to delete every object in an extent, including associated stream
data, use %DeleteExtent() instead.

CAUTION: %KillExtent() is intended for use only in a development environment and should not be used in a live
application. %KillExtent() bypasses constraints and user-implemented callbacks, potentially causing data
integrity problems.

8.8 Accessing Object Identifiers
If an object has been saved, it has an ID and an OID, the permanent identifiers that are used on disk. If you have an OREF
for the object, you can use that to obtain these identifiers.

To find the ID associated with an OREF, call the %Id() method of the object. For example:

 write oref.%Id()

To find the OID associated with an OREF, you have two options:

1. You can call the %Oid() method of the object. For example:

 write oref.%Oid()

2. you can access the %%OID property of the object. Because this property name contains % characters, you must enclose
the name in double quotes. For example:

 write oref."%%OID"

8.9 Object Concurrency Options
It is important to specify concurrency appropriately when you open or delete objects. You can specify concurrency at several
different levels:

1. You can specify the concurrency argument for the method that you are using.
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Many of the methods of the %Persistent class allow you to specify this argument, an integer. This argument determines
how locks are used for concurrency control. A later subsection lists the allowed values.

If you do not specify the concurrency argument, InterSystems IRIS uses the value of the DEFAULTCONCURRENCY
class parameter for the class you are working with; see the next item.

2. You can specify the DEFAULTCONCURRENCY class parameter for the associated class. All persistent classes inherit
this parameter from %Persistent, which defines the parameter as an expression that obtains the default concurrency
for the process; see the next item.

You could override this parameter in your class and specify a hardcoded value or an expression that determines the
concurrency via your own rules. In either case, the value of the parameter must be one of the allowed concurrency
values discussed later in this section.

3. You can set the default concurrency mode for a process. To do so, use the $system.OBJ.SetConcurrencyMode()
method (which is the SetConcurrencyMode() method of the %SYSTEM.OBJ class).

As in the other cases, you must use one of the allowed concurrency values. If you do not set the concurrency mode for
a process explicitly, the default value is 1.

The $system.OBJ.SetConcurrencyMode() method has no effect on any classes that specify an explicit value for the
DEFAULTCONCURRENCY class parameter.

8.9.1 Why Specify Concurrency?

The following scenario demonstrates why it is important to control concurrency appropriately when you read or write
objects. Consider the following scenario:

1. Process A opens an object without specifying the concurrency.

SAMPLES>set person = ##class(Sample.Person).%OpenId(5)

SAMPLES>write person
1@Sample.Person

2. Process B opens the same object with the concurrency value of 4.

SAMPLES>set person = ##class(Sample.Person).%OpenId(5, 4)

SAMPLES>write person
1@Sample.Person

3. Process A modifies a property of the object and attempts to save it using %Save() and receives an error status.

SAMPLES>do person.FavoriteColors.Insert("Green")

SAMPLES>set status = person.%Save()

SAMPLES>do $system.Status.DisplayError(status)

ERROR #5803: Failed to acquire exclusive lock on instance of 'Sample.Person'

This is an example of concurrent operations without adequate concurrency control. For example, if process A could possibly
save the object back to the disk, it should open the object with concurrency 3 or 4. (These values are discussed later in this
chapter.) In this case, Process B would then be denied access (failed with a concurrency violation) or would have to wait
until Process A releases the object.

8.9.2 Concurrency Values

This section describes the possible concurrency values. First, note the following details:

• Atomic writes are guaranteed when concurrency is greater than 0.
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• InterSystems IRIS acquires and releases locks during operations such as saving and deleting objects; the details depend
upon the concurrency value, what constraints are present, lock escalation status, and the storage structure.

• In all cases, when an object is removed from memory, any locks for it are removed.

The possible concurrency values are as follows; each value has a name, also shown in the list.

Concurrency Value 0 (No locking)

No locks are used.

Concurrency Value 1 (Atomic read)

Locks are acquired and released as needed to guarantee that an object read will be executed as an atomic operation.

InterSystems IRIS does not acquire any lock when creating a new object.

While opening an object, InterSystems IRIS acquires a shared lock for the object, if that is necessary to guarantee
an atomic read. InterSystems IRIS releases the lock after completing the read operation.

The following table lists the locks that are present in each scenario:

After save
operation is
complete

After object has
been opened

While object is
being opened

When object is
created

no lockN/AN/Ano lockNew object

no lockno lockshared lock, if
that is necessary
to guarantee an
atomic read

N/AExisting object

Concurrency Value 2 (Shared locks)

The same as 1 (atomic read) except that opening an object always acquires a shared lock (even if the lock is not
needed to guarantee an atomic read). The following table lists the locks that are present in each scenario:

After save
operation is
complete

After object has
been opened

While object is
being opened

When object is
created

no lockN/AN/Ano lockNew object

no lockno lockshared lockN/AExisting object

Concurrency Value 3 (Shared/retained locks)

InterSystems IRIS does not acquire any lock when creating a new object.

While opening an existing object, InterSystems IRIS acquires a shared lock for the object.

After saving a new object, InterSystems IRIS has a shared lock for the object.

The following table lists the scenarios:
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After save
operation is
complete

After object has
been opened

While object is
being opened

When object is
created

shared lockN/AN/Ano lockNew object

shared lockshared lockshared lockN/AExisting object

Concurrency Value 4 (Exclusive/retained locks)

When an existing object is opened or when a new object is first saved, InterSystems IRIS acquires an exclusive
lock.

The following table lists the scenarios:

After save
operation is
complete

After object has
been opened

While object is
being opened

When object is
created

exclusive lockN/AN/Ano lockNew object

exclusive lockexclusive lockexclusive lockN/AExisting object

8.9.3 Concurrency and Swizzled Objects

An object referenced by a property is swizzled on access using the default concurrency defined by the swizzled object’s
class. If the default is not defined for the class, the object is swizzled using the default concurrency mode of the process.
The swizzled object does not use the concurrency value of the object that swizzles it.

If the object being swizzled is already in memory, then swizzling does not actually open the object — it simply references
the existing in-memory object; in that case, the current state of the object is maintained and the concurrency is unchanged.

There are two ways to override this default behavior:

• Upgrade the concurrency on the swizzled object with a call to the %Open() method that specifies the new concurrency.
For example:

 Do person.Spouse.%OpenId(person.Spouse.%Id(),4,.status) 

where the first argument to %OpenId() specifies the ID, the second specifies the new concurrency, and the third
(passed by reference) receives the status of the method.

• Set the default concurrency mode for the process before swizzling the object. For example:

 Set olddefault = $system.OBJ.SetConcurrencyMode(4) 

This method takes the new concurrency mode as its argument and returns the previous concurrency mode.

When you no longer need a different concurrency mode, reset the default concurrency mode as follows:

 Do $system.OBJ.SetConcurrencyMode(olddefault)
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8.10 Version Checking (Alternative to Concurrency
Argument)
Rather than specifying the concurrency argument when you open or delete an object, you can implement version checking.
To do so, you specify a class parameter called VERSIONPROPERTY. All persistent classes have this parameter. When
defining a persistent class, the procedure for enabling version checking is:

1. Create a property of type %Integer that holds the updateable version number for each instance of the class.

2. For that property, set the value of the InitialExpression keyword to 0.

3. For the class, set the value of the VERSIONPROPERTY class parameter equal to the name of that property. The value
of VERSIONPROPERTY cannot be changed to a different property by a subclass.

This incorporates version checking into updates to instances of the class.

When version checking is implemented, the property specified by VERSIONPROPERTY is automatically incremented each
time an instance of the class is updated (either by objects or SQL). Prior to incrementing the property, InterSystems IRIS
compares its in-memory value to its stored value. If they are different, then a concurrency conflict is indicated and an error
is returned; if they are the same, then the property is incremented and saved.

Note: You can use this set of features to implement optimistic concurrency.

To implement a concurrency check in an SQL update statement for a class where VERSIONPROPERTY refers to a property
called InstanceVersion, the code would be something like:

 SELECT InstanceVersion,Name,SpecialRelevantField,%ID
     FROM my_table
     WHERE %ID = :myid

     // Application performs operations on the selected row

 UPDATE my_table
     SET SpecialRelevantField = :newMoreSpecialValue
     WHERE %ID = :myid AND InstanceVersion = :myversion

where myversion is the value of the version property selected with the original data.
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9
Defining Persistent Classes

A persistent class is a class that defines persistent objects. This chapter describes how to create such classes. It discusses
the following topics:

• Basics of defining a persistent class

• How packages are projected to SQL schemas

• How to specify the table name for a persistent class

• Storage definitions and storage classes

• Schema evolution

• How to reset the storage definition

• How to control how IDs are generated

• How to control the SQL projection of subclasses

• Comments on redefining a class that has stored data

Also see the chapters “ Introduction to Persistent Objects,” “Working with Persistent Objects,”  and “Other Options for
Persistent Classes.”

When viewing this book online, use the preface of this book to quickly find other topics.

The samples shown in this chapter are from the Samples-Data sample (https://github.com/intersystems/Samples-Data).
InterSystems recommends that you create a dedicated namespace called SAMPLES (for example) and load samples into
that namespace. For the general process, see Downloading Samples for Use with InterSystems IRIS®.

9.1 Defining a Persistent Class
To define a class that defines persistent objects, ensure that the primary (first) superclass of your class is either %Persistent

or some other persistent class.

For example:

Class MyApp.MyClass Extends %Persistent
{
}
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9.2 Projection of Packages to Schemas
For persistent classes, the package is represented in SQL as an SQL schema. For instance, if a class is called Team.Player

(the Player class in the “Team”  package), the corresponding table is “Team.Player”  (the Player table in the “Team”
schema).

The default package is “User” , which is represented in SQL as the “SQLUser”  schema. Hence, a class called User.Person

corresponds to a table called SQLUser.Person.

If a package name contains periods, the corresponding table name uses an underscore in the place of each. For example,
the class MyTest.Test.MyClass (the MyClass class in the “MyTest.Test”  package) becomes the table MyTest_Test.MyClass

(the MyClass table in the “MyTest_Test”  schema).

If an SQL table name is referenced without the schema name, the default schema name (SQLUser) is used. For instance,
the command:

Select ID, Name from Person

is the same as:

Select ID, Name from SQLUser.Person

9.3 Specifying the Table Name for a Persistent Class
For a persistent class, by default, the short class name becomes the table name.

To specify a different table name, use the SqlTableName class keyword. For example:

Class App.Products Extends %Persistent [ SqlTableName = NewTableName ]

Although InterSystems IRIS places no restrictions on class names, SQL tables cannot have names that are SQL reserved
words. Thus if you create a persistent class with a name that is a reserved word, the class compiler will generate an error
message. In this case, you must either rename the class or specify a table name for the projection that differs from the class
name, using the technique described here.

9.4 Storage Definitions and Storage Classes
The %Persistent class provides the high-level interface for storing and retrieving objects in the database. The actual work
of storing and loading objects is performed by what is called a storage class.

Every persistent object and every serial object uses a storage class to generate the actual methods used to store, load, and
delete objects in a database. These internal methods are referred to as the storage interface. The storage interface includes
methods such as %LoadData(), %SaveData(), and %DeleteData(). Applications never call these methods directly; instead
they are called at the appropriate time by the methods of the persistence interface (such as %OpenId() and %Save()).

The storage class used by a persistent class is specified by a storage definition. A storage definition contains a set of keywords
and values that define a storage class as well as additional parameters used by the storage interface.

A persistent class may contain more than one storage definition but only one can be active at a time. The active storage
definition is specified using the StorageStrategy keyword of the class. By default, a persistent class has a single storage
definition called “Default” .
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For information on the names of the globals that store the data for a class, see “Globals.”

9.4.1 Updates to a Storage Definition

The storage definition for a class is created when the class is first compiled. Class projection, such as for SQL, occurs after
compilation. If a class compiles properly and then projection fails, InterSystems IRIS does not remove the storage definition.
Also, if a class is changed in such a way that might affect the storage definition, it is the responsibility of the application
developer to determine if the storage definition has been updated and, if necessary, to modify the storage definition to
reflect the change. See “Resetting the Storage Definition.”

9.4.2 The %Storage.Persistent Storage Class

%Storage.Persistent is the default storage class used by persistent objects. It automatically creates and maintains a default
storage structure for a persistent class.

New persistent classes automatically use the %Storage.Persistent storage class. The %Storage.Persistent class lets you
control certain aspects of the storage structure used for a class by means of the various keywords in the storage definition.

Refer to the Class Definition Reference for details on the various storage keywords.

Also see “Extent Management”  in the previous chapter for information on the MANAGEDEXTENT class parameter.

9.4.3 The %Storage.SQL Storage Class

The %Storage.SQL class is a special storage class that uses generated SQL SELECT, INSERT, UPDATE, and DELETE
statements to provide object persistence.

%Storage.SQL is typically used for:

• Mapping objects to preexisting global structures used by older applications.

• Storing objects within an external relational database using the SQL Gateway.

%Storage.SQL is more limited than %Storage.Persistent. Specifically, it does not automatically support schema evolution
or multi-class extents.

9.5 Schema Evolution
The %Storage.Persistent storage class supports automatic schema evolution.

When you compile a persistent (or serial) class that uses the default %Storage.Persistent storage class, the class compiler
analyzes the properties defined by the class and automatically adds or removes them.

9.6 Resetting the Storage Definition
During the development process, you may make many modifications to your persistent classes: adding, modifying, and
deleting properties. As a result, you may end up with a fairly convoluted storage definition as the class compiler attempts
to maintain a compatible structure. If you want the class compiler to generate a clean storage structure, delete the storage
definition from the class and then recompile the class.
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9.7 Controlling How IDs Are Generated
When you save an object for the first time, the system generates an ID for the object. IDs are permanent.

By default, InterSystems IRIS uses an integer for the ID, incremented by 1 from the last saved object.

You can define a given persistent class so that it generates IDs in either of the following ways:

• The ID can be based on a specific property of the class, if that property is unique per instance. For example, you could
use a drug code as the ID. To define a class this way, add an index like the following to the class:

Index IndexName On PropertyName [ IdKey ];

Or (equivalently):

Index IndexName On PropertyName [ IdKey, Unique ];

Where IndexName is the name of the index, and PropertyName is the name of the property.

If you define a class this way, when InterSystems IRIS saves an object for the first time, it uses the value of that
property as the ID. Furthermore, InterSystems IRIS requires a value for the property and enforces uniqueness of that
property. If you create another object with the same value for the designated property and then attempt to save the new
object, InterSystems IRIS issues this error:

ERROR #5805: ID key not unique for extent 

Also, InterSystems IRIS prevents you from changing that property in the future. That is, if you open a saved object,
change the property value, and try attempt to save the changed object, InterSystems IRIS issues this error:

ERROR #5814: Oid previously assigned

This message refers to the OID rather than the ID, because the underlying logic prevents the OID from being changed;
the OID is based on the ID.

• The ID can be based on multiple properties. To define a class this way, add an index like the following to the class:

Index IndexName On (PropertyName1,PropertyName2,...) [ IdKey, Unique ];

Or (equivalently):

Index IndexName On (PropertyName1,PropertyName2,...) [ IdKey ];

Where IndexName is the name of the index, and PropertyName1, PropertyName2, and so on are the property names.

If you define a class this way, when InterSystems IRIS saves an object for the first time, it generates an ID as follows:

PropertyName1||PropertyName2||...

Furthermore, InterSystems IRIS requires values for the properties and enforces uniqueness of the given combination
of properties. It also prevents you from changing any of those properties.

Important: If a literal property (that is, an attribute) contains a sequential pair of vertical bars (||), do not add an
IdKey index that uses that property. This restriction is imposed by the way in which the InterSystems SQL
mechanism works. The use of || in IdKey properties can result in unpredictable behavior.

The system generates an OID as well. In all cases, the OID has the following form:

$LISTBUILD(ID,Classname)

Where ID is the generated ID, and Classname is the name of the class.
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9.8 Controlling the SQL Projection of Subclasses
When several persistent classes are in superclass/subclass hierarchy, there are two ways in which InterSystems IRIS can
store their data. The default scenario is by far the most common.

9.8.1 Default SQL Projection of Subclasses

The class compiler projects a “flattened”  representation of a persistent class, such that the projected table contains all the
appropriate fields for the class, including those that are inherited. Hence, for a subclass, the SQL projection is a table
composed of:

• All the columns in the extent of the superclass

• Additional columns based on properties only in the subclass

• Rows that represent the saved instances of the subclass

Furthermore, in the default scenario, the extent of the superclass contains one record for each saved object of the superclass
and all its subclasses. The extent of each subclass is a subset of the extent of the superclass.

For example, consider the persistent classes Sample.Person and Sample.Employee in SAMPLES. The Sample.Employee

class inherits from Sample.Person and adds some additional properties. In the SAMPLES, both classes have saved data.

• The SQL projection of Sample.Person is a table that contains all the suitable properties of the Sample.Person class.
The Sample.Person table contains one record for each saved instance of the Sample.Person class and each saved
instance of the Sample.Employee class.

• The Sample.Employee table includes the same columns as Sample.Person and also includes columns that are specific
to the Sample.Employee class. The Sample.Employee table contains one record for each saved instance of the
Sample.Employee class.

To see this, use the following SQL queries. The first lists all instances of Sample.Person and shows their properties:

SELECT * FROM Sample.Person

The second query lists all instances of Sample.Employee and their properties:

SELECT * FROM Sample.Employee

Notice that the Sample.Person table contains records with IDs in the range 1 to 200. The records with IDs in the range 101
to 200 are employees, and the Sample.Employee table shows the same employees (with the same IDs and with additional
columns). The Sample.Person table is arranged in two apparent “groups” only because of the artificial way that the
SAMPLES database is built. The Sample.Person table is populated and then the Sample.Employee table is populated.

Typically, the table of a subclass has more columns and fewer rows than its parent. There are more columns in the subclass
because it usually adds additional properties when it extends the parent class; there are often fewer rows because there are
often fewer instances of the subclass than the parent.

9.8.2 Alternative SQL Projection of Subclasses

The default projection is the most convenient, but on occasion, you might find it necessary to use the alternative SQL pro-
jection. In this scenario, each class has its own extent. To cause this form of projection, include the following in the definition
of the superclass:

[ NoExtent ]
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For example:

Class MyApp.MyNoExtentClass [ NoExtent ] 
{
//class implementation
}

Each subclass of this class then receives its own extent.

If you create classes in this way and use them as properties of other classes, see “Variation: CLASSNAME Parameter”
in the chapter “Defining and Using Object-Valued Properties.”

9.9 Redefining a Persistent Class That Has Stored Data
During the development process, it is common to redefine your classes. If you have already created sample data for the
class, note the following points:

• The compiler has no effect on the globals that store the data for the class.

In fact, when you delete a class definition, its data globals are untouched. If you no longer need these globals, delete
them manually.

• If you add or remove properties of a class but do not modify the storage definition of the class, then all code that
accesses data for that class continues to work as before. See “Schema Evolution,”  earlier in this chapter.

• If you do modify the storage definition of the class, then code that accesses the data may or may not continue to work
as before, depending on the nature of the change.

• If you change the class from non-sharded to sharded or vice-versa, your existing data may become inaccessible.

• If you modify a property definition in a way that causes the property validation to be more restrictive, then you will
receive errors when you work with objects (or records) that no longer pass validation. For example, if you decrease
the MAXLEN parameter for a property, then you will receive validation errors when you work with an object that has
a value for that property that is now too long.
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10
Defining and Using Literal Properties

You can define literal properties in any object class. A literal property holds a literal value and is based on a data type class.
This chapter describes how to define and use such properties. It discusses the following topics:

• How to define literal properties

• How to define an initial expression for a property

• How to define a property as required (for persistent classes)

• How to define a computed property

• How to define a multidimensional property

• Common data type classes

• Core property parameters

• Class-specific property parameters

• How to define enumerated properties

• How to specify values for literal properties

• How to use property methods

• How to control the SQL projection of literal properties (for persistent classes)

Where noted, some topics also apply to properties of other kinds.

Also see the chapters “Working with Collections,” “Working with Streams,” “Defining and Using Object-Valued Prop-
erties,” “Defining and Using Relationships” , and “Using and Overriding Property Methods.”

When viewing this book online, use the preface of this book to quickly find other topics.

10.1 Defining Literal Properties
To add a literal property to a class definition, add an element like one of the following to the class:

Property PropName as Classname;

Property PropName as Classname [ Keywords ] ;

Property PropName as Classname(PARAM1=value,PARAM2=value) [ Keywords ] ;

Property PropName as Classname(PARAM1=value,PARAM2=value) ;
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Where:

• PropName is the name of the property.

• Classname is the class on which this property is based. If you omit this, Classname is assumed to be %String. To define
this property as a literal property, either omit Classname or specify Classname as the name of a data type class; see
“Common Data Type Classes”  later in this chapter. You could also use a custom data type class.

• Keywords represents any property keywords. See “Compiler Keywords,”  earlier in this book. Later sections of this
chapter discuss additional keywords.

• PARAM1, PARAM2, and so on are property parameters. The available parameter depend on the class used by the
property. Later sections of this chapter lists the most common property parameters.

Notice that the property parameters, if included, are enclosed in parentheses and precede any property keywords. The
property keywords, if included, are enclosed in square brackets.

10.1.1 Examples

For example, a class can define a Count property using the %Integer data type class:

Property Count As %Integer;

Because %Integer is a data type class, Count is a data type property.

You can use data type parameters to place constraints on the allowed values of data type properties. For example, for a
property of type %Integer, you can specify the MAXVAL parameter:

Property Count As %Integer(MAXVAL = 100);

To set a data type property value equal to the empty string, use code of the form:

 Set object.Property = $C(0)

Every property has a collation type, which determines how values are ordered (such as whether capitalization has effects
or not). The default collation type for strings is SQLUPPER. For more details on collations, see “Data Collation”  in the
chapter “ InterSystems IRIS® SQL Basics”  in Using InterSystems SQL.

10.2 Defining an Initial Expression for a Property
By default, when a new object is created, each property equals null. You can specify an ObjectScript expression to use as
the initial value for a given property instead. The expression is evaluated when the object is created.

To specify an initial expression for a property, include the InitialExpression keyword in the property definition:

Property PropName as Classname [ InitialExpression=expression ] ;

Where expression is an ObjectScript expression (note that you cannot use any other language for this expression). For
details, see InitialExpression in the Class Definition Reference.
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10.3 Defining a Property As Required
This option applies only to properties in persistent classes. (Note that this option applies to any kind of property, not just
literal ones.)

By default, when a new object is saved, InterSystems IRIS does not require it to have non-null values for its properties.
You can define a property so that a non-null value is required. To do so, include the Required keyword in the property
definition:

Property PropName as Classname [ Required ] ;

Then, if you attempt to save an object that has a null value for the property, InterSystems IRIS issues the following error:

ERROR #5659: Property required

The Required keyword also affects how you can insert or modify data for this class via SQL access. Specifically, an error
occurs if the value is missing when you attempt to insert or update a record.

10.4 Defining a Computed Property
In InterSystems IRIS, you can define computed properties, whose values are computed via ObjectScript, possibly based
on other properties. The generic phrase computed properties (or computed fields) includes both of the following variations:

• Always computed — The value of this property is calculated when it is accessed. It is never stored in the database.

• Triggered computed — The value of this property is recalculated when triggered (details given below).

If the property is defined in a persistent class, its value is stored in the database.

In both cases, the recalculation is performed whether you use object access or an SQL query.

There are five property keywords (SqlComputed, SqlComputeCode, SqlComputeOnChange, Transient, Calculated) that
control if and how a property is computed. The following table summarizes the possibilities:

SqlComputed is falseSqlComputed is true (and
SqlComputeCode is defined)

Property is not computedProperty is always computedTransient is either
true or false

Calculated is true

Transient is trueCalculated is false

Property is triggered computed
(SqlComputeOnChange can
also be specified in this case)

Transient is false

To define a computed property, do the following:

• Include the SqlComputed keyword in the property definition. (That is, specify the SqlComputed keyword as true.)

• Include the SqlComputeCode keyword in the property definition. For the value of this keyword, specify (in curly
braces) a line of ObjectScript code that sets the value of the property, according to rules given in “SqlComputeCode”
in the reference “Property Keywords”  in Class Definition Reference. For example:

Property FullName As %String [ SqlComputeCode = {set {*}={FirstName}_" "_{LastName}}, SqlComputed
 ];

Defining and Using Classes                                                                                                                                                  93

Defining a Property As Required



• If you want to make the property always computed, specify the Calculated keyword as true in the property definition.

Or, if you want to make the property triggered computed, do not include the Calculated and Transient keywords in the
property definition. (That is, make sure both keywords are false.)

• If the property is triggered computed, optionally specify SqlComputeOnChange.

This keyword can specify one or more properties. When any of these properties change in value, the triggered property
is recomputed. Note that you must use the property names rather than the names given by SqlFieldName, which is
discussed later in this chapter). For example (with artificial line breaks):

Property messageId As %Integer [ 
SqlComputeCode = { set 
{*}=$Select({Status}="":0,1:$List($List($Extract({Status},3,$Length({Status}))))) }, 
SqlComputed, SqlComputeOnChange = Status ];

For another example (with artificial line breaks):

Property Test2 As %String [ SqlComputeCode = { set {*}={Refprop1}_{Refprop2}}, SqlComputed, 
SqlComputeOnChange = (Refprop1, Refprop2) ];

The value of SqlComputeOnChange can also include the values %%INSERT or %%UPDATE; for details, see SqlCom-
puteOnChange.

If you intend to index this field, use deterministic code, rather than nondeterministic code. InterSystems IRIS cannot
maintain an index on the results of nondeterministic code because it is not possible to reliably remove stale index key values.
(Deterministic code returns the same value every time when passed the same arguments. So for example, code that returns
$h is nondeterministic, because $h is modified outside of the control of the function.)

Also see the Calculated keyword in the Class Definition Reference. And see “Controlling the SQL Projection of Computed
Properties,”  later in this chapter.

10.5 Defining a Multidimensional Property
You can define a property to be multidimensional, which means that you intend the property to act as a multidimensional
array. To do so, include the MultiDimensional keyword in the property definition:

Property PropName as Classname [ MultiDimensional ] ;

This property is different from other properties as follows:

• InterSystems IRIS does not provide property methods for it (see “Using and Overriding Property Methods,”  later in
this book).

• It is ignored when the object is validated or saved.

• It is not saved to disk, unless your application includes code to save it specifically.

• It cannot be exposed to clients such as Java.

• It cannot be stored in or exposed through SQL tables.

Multidimensional properties are rare but provide a useful way to temporarily contain information about the state of an
object.

Also see “Specifying Values for a Multidimensional Property,”  later in this chapter.
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10.6 Common Data Type Classes
InterSystems IRIS provides a large number of data type classes. Of these, the classes in most common use are as follows:

Table 10–1: Common Data Type Classes

NotesHoldsClass Name

This class is similar to %Integer except for its OdbcType and
ClientDataType.

A 64–bit integer%BigInt

The actual binary data is sent to and from the client without any
Unicode (or other) translations.

Binary data%Binary

The possible logical values are 0 (false) and 1 (true).A boolean value%Boolean

A fixed length
character field

%Char

Any property whose type class is %Counter will be assigned a
value when a new object is saved or a new record is inserted
via SQL, if no value is specified for that property. For details,
see %Counter in the InterSystems Class Reference.

An integer, meant
for use as a
unique counter

%Counter

This class is defined only for migrating from Sybase or SQL
Server to InterSystems IRIS.

A currency value%Currency

The logical value is in InterSystems IRIS $HOROLOG format.A date%Date

This class is used mainly for T-SQL migrations and maps
datetime/smalldatetime behavior to the %TimeStamp datatype.
In this class, the DisplayToLogical() and OdbcToLogical()
methods provide logic to handle imprecise datetime values that
are supported by T-SQL applications.

A date and time%DateTime

The logical value is a decimal format number. See “Numeric
Computing in InterSystems Applications ”  in the Orientation
Guide for Server-Side Programming.

A fixed point
number

%Decimal

The logical value is an IEEE floating-point number. See
“Numeric Computing in InterSystems Applications ”  in the
Orientation Guide for Server-Side Programming.

An IEEE
floating-point
number

%Double

This is a specialized subclass of %String that allows you to define
an enumerated set of possible values (using the DISPLAYLIST
and VALUELIST parameters). Unlike %String, the display values
for this property are used when columns of this type are queried
via ODBC.

A string%EnumString

A subclass of %String with the EXACT default collation.A string%ExactString

An integer%Integer

The logical value is data in $List format.Data in $List
format

%List
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NotesHoldsClass Name

The logical value is data in $List format.Data in $List
format, with each
list item as binary
data

%ListOfBinary

The %Name data type has special indexing support when used
in conjunction with the %Storage.Persistent class. For details, see
%Name in the InterSystems Class Reference.

A name in the
form
“Lastname,Firstname”

%Name

A fixed-point
number

%Numeric

The logical value of this data type is the number of seconds
since (or before) January 1, 1970 00:00:00, encoded as a 64-bit
integer. %PosixTime uses less disk space and memory than
%TimeStamp data type, and is better for performance than
%TimeStamp.

A value for a time
and date

%PosixTime

This class is the same as %Integer except for its OdbcType.A small integer
value

%SmallInt

Many methods in the InterSystems IRIS Class Library return
values of type %Status. For information on working with these
values, see %Status in the InterSystems Class Reference.

An error status
code

%Status

A string%String

The logical value is the number of seconds past midnight.A time value%Time

The logical value of the %TimeStamp data type is in
YYYY-MM-DD HH:MM:SS.nnnnnnnnn format. Note that if h is
a date/time value in $H format, then you can use the
$ZDATETIME as follows to obtain a valid logical value for a
%TimeStamp property: $ZDATETIME(h,3)
Also see the comments for %PosixTime.

A value for a time
and date

%TimeStamp

This class is the same as %Integer except for its OdbcType and
its maximum and minimum values.

A very small
integer value

%TinyInt

There are many additional data type classes, intended for specialized uses; most of these types are subclasses of the classes
listed here. See the InterSystems Class Reference for details.

Each data type class specifies several keywords that control how that data type is used in InterSystems SQL and how the
data type is projected to client systems:

• SqlCategory — Specifies the SQL category to use for the data type when the InterSystems SQL engine performs
operations upon it.

• OdbcType — Specifies the ODBC type used when the data type is accessed via ODBC.

• ClientDataType — Specifies the type used when the data type is accessed via client applications.

Therefore, when you choose a data type class, you should choose a class that has the appropriate client projection, if
applicable, for your needs. Use the following subsections to help choose a suitable data type class. If there is no suitable
class, you can create your own data type class, as described in the chapter “Defining Data Type Classes.”
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10.6.1 Data Type Classes Grouped by SqlCategory

For a data type class, the SqlCategory class keyword specifies the SQL category that InterSystems SQL uses when operating
on values of properties of that type. Operations controlled by SqlCategory include comparison operations (such as greater
than, less than, or equal to); other operations may also use it. The following table shows the SqlCategory values of the data
types listed in this chapter.

Table 10–2: Data Type Classes Grouped by SqlCategory

InterSystems IRIS Data TypeValue

%DateDATE

%DoubleDOUBLE

%BigInt, %Boolean, %Counter, %Integer, %SmallInt, %TinyIntINTEGER

%NameNAME

%Currency, %Decimal, %NumericNUMERIC

%PosixTimePOSIXTS

%Binary, %Char, %EnumString, %ExactString, %List, %ListOfBinary, %Status, %StringSTRING

%TimeTIME

%DateTime, %TimeStampTIMESTAMP

For further information on how literal properties are projected to SQL types, see “Data Types”  in the InterSystems SQL
Reference.

10.6.2 Data Type Classes Grouped by OdbcType

For a data type class, the OdbcType class keyword controls how InterSystems IRIS translates logical data values to and
from values used by the InterSystems SQL ODBC interface. The following table shows the OdbcType values of the data
types listed in this chapter.

Table 10–3: Data Type Classes Grouped by OdbcType

InterSystems IRIS Data TypeValue

%BigIntBIGINT

%BooleanBIT

%DateDATE

%DoubleDOUBLE

%Counter, %IntegerINTEGER

%Currency, %Decimal, %NumericNUMERIC

%TimeTIME

%DateTime, %PosixTime, %TimeStampTIMESTAMP

%BinaryVARBINARY

%Char, %EnumString, %ExactString, %List, %ListOfBinary, %Name, %Status, %StringVARCHAR
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10.6.3 Data Type Classes Grouped by ClientDataType

For a data type class, the ClientDataType class keyword controls how InterSystems IRIS projects a property (of that type)
to Java or Active X. The following table show the ClientDataType values of the data types listed in this chapter.

Table 10–4: Data Type Classes Grouped by ClientDataType

Used forValue

%BigIntBIGINT

%Binary (or any property requiring that there is no Unicode conversion of data)BINARY

%CurrencyCURRENCY

%DateDATE

%DoubleDOUBLE

%DecimalDECIMAL

%Counter, %Integer, %SmallInt, %TinyIntINTEGER

%List, %ListOfBinaryLIST

%NumericNUMERIC

%TimeTIME

%DateTime, %PosixTime, %TimeStampTIMESTAMP

%Char, %EnumString, %ExactString, %Name, %StringVARCHAR

10.7 Core Property Parameters
Depending on the property, you can specify parameters of that property, to affect its behavior. For example, parameters
can specify minimum and maximum values, formatting for use in display, collation, delimiters for use in specific scenarios,
and so on. You can specify parameters either in the Inspector or by directly typing into the class definition. The following
shows an example:

Property MyProperty as MyType (MYPARAMETER="some value");

Some parameters are available for all properties, of any type. These parameters are as follows:

• CALCSELECTIVITY — Controls whether the Tune Table facility calculates the selectivity for a property. Usually it
is best to leave this parameter as the default (1). For details, see “Tune Table”  in the SQL Optimization Guide.

• CAPTION — Caption to use for this property in client applications.

• EXTERNALSQLNAME — Used in linked tables, this parameter specifies the name of the field in the external table to
which this property is linked. The Link Table wizard specifies this parameter for each property when it generates a
class. The name of the SQL field on the remote database may need to differ from property name on the InterSystems
IRIS server for various reason, such as because the remote database field name is a reserved word in InterSystems
IRIS. For information on linked tables, see “The Link Table Wizard”  in Using the InterSystems IRIS SQL Gateway.

Note that the property parameter EXTERNALSQLNAME has a different purpose than the SQLFieldName compiler
keyword, and these items can have different values. SQLFieldName specifies the projected SQL field name in the
InterSystems IRIS database, and EXTERNALSQLNAME is the field name in the remote database.
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• EXTERNALSQLTYPE — Used in linked tables, this parameter specifies the SQL type of the field in the external table
to which this property is linked. The Link Table wizard specifies this parameter for each property when it generates a
class. See EXTERNALSQLNAME.

• JAVATYPE — The Java data type to which this property is projected.

Most property parameters are defined in data type classes and thus are class-specific; see the next section.

10.8 Class-Specific Property Parameters
The previous section lists the parameters that are available for all properties. The other available parameters depend on the
class used by the property. The following table lists the parameters supported by the data type classes listed in this chapter.
The parameters are grouped into three columns: 1) parameters that are found in many data type classes or that are otherwise
commonly encountered, 2) parameters that have meaning only in XML and SOAP contexts, and 3) parameters that occur
in only a few data type classes and that are rarely encountered.

Table 10–5: Supported Parameters for System Data Type Classes

Less Common
Parameters

Parameters for XML
and SOAP

Common ParametersData Type Class

XSDTYPEDISPLAYLIST, FORMAT, MAXVAL,
MINVAL, VALUELIST

%BigInt

CANONICALXML,
MTOM, XSDTYPE

MAXLEN, MINLEN%Binary

XSDTYPE%Boolean

XMLLISTPARAMETER,
XSDTYPE

COLLATION, CONTENT,
DISPLAYLIST, ESCAPE, MAXLEN,
MINLEN, PATTERN, TRUNCATE,
VALUELIST

%Char

XSDTYPEDISPLAYLIST, FORMAT, MAXVAL,
MINVAL, VALUELIST

%Counter

XSDTYPEDISPLAYLIST, FORMAT, MAXVAL,
MINVAL, SCALE, VALUELIST

%Currency
*

XSDTYPEDISPLAYLIST, FORMAT, MAXVAL,
MINVAL, VALUELIST

%Date

DATEFORMATXMLDEFAULTVALUE,
XMLTIMEZONE,
XSDTYPE

DISPLAYLIST, MAXVAL, MINVAL,
VALUELIST

%DateTime

XSDTYPEDISPLAYLIST, FORMAT, MAXVAL,
MINVAL, SCALE, VALUELIST

%Decimal

XSDTYPEDISPLAYLIST, FORMAT, MAXVAL,
MINVAL, SCALE, VALUELIST

%Double
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Less Common
Parameters

Parameters for XML
and SOAP

Common ParametersData Type Class

XSDTYPECOLLATION, CONTENT,
DISPLAYLIST, ESCAPE, MAXLEN,
MINLEN, PATTERN, TRUNCATE,
VALUELIST

%EnumString

XSDLISTPARAMETER,
XSDTYPE

COLLATION, CONTENT,
DISPLAYLIST, ESCAPE, MAXLEN,
MINLEN, PATTERN, TRUNCATE,
VALUELIST

%ExactString

STRICTXSDTYPEDISPLAYLIST, FORMAT, MAXVAL,
MINVAL, VALUELIST

%Integer

XSDTYPEODBCDELIMITER%List

XSDTYPEODBCDELIMITER%ListOfBinary

INDEXSUBSCRIPTSXSDTYPECOLLATION,MAXLEN%Name

XSDTYPEDISPLAYLIST, FORMAT, MAXVAL,
MINVAL, SCALE, VALUELIST

%Numeric

DATEFORMAT,
INDEXNULLMARKER

XMLDEFAULTVALUE,
XMLTIMEZONE,
XSDTYPE

MAXVAL, MINVAL%PosixTime

XSDTYPEDISPLAYLIST, FORMAT, MAXVAL,
MINVAL, VALUELIST

%SmallInt

XSDTYPE%Status

XMLLISTPARAMETER,
XSDTYPE

COLLATION, CONTENT,
DISPLAYLIST, ESCAPE, MAXLEN,
MINLEN, PATTERN, TRUNCATE,
VALUELIST

%String

PRECISIONXMLTIMEZONE,
XSDTYPE

DISPLAYLIST, FORMAT, MAXVAL,
MINVAL, VALUELIST

%Time

XMLDEFAULTVALUE,
XMLTIMEZONE,
XSDTYPE

DISPLAYLIST, MAXVAL, MINVAL,
VALUELIST

%TimeStamp

XSDTYPEDISPLAYLIST, FORMAT, MAXVAL,
MINVAL, VALUELIST

%TinyInt

*This special-purpose class is only for use in migrations to InterSystems IRIS.

Note: The term constraint refers to any keyword that applies a constraint on a property value. For example, MAXVAL,
MINVAL, DISPLAYLIST, VALUELIST, and PATTERN are all constraints.

10.8.1 Common Parameters

The common parameters from the preceding table are as follows:

• COLLATION — Specifies the manner in which property values are transformed for indexing.
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The allowable values for collation are discussed in “SQL Introduction”  in Using InterSystems SQL.

• CONTENT — Specifies the contents of the string, when the string is used in a context where it might be interpreted
as XML or HTML. Specify "STRING" (the default), "ESCAPE", or "MIXED".

For details, see Projecting Objects to XML.

• DISPLAYLIST — Used in conjunction with the VALUELIST parameter for enumerated (multiple-choice) properties.
For more information, see “Defining Enumerated Properties”

• ESCAPE — Specifies the type of escaping to be done, if the string is used in certain contexts. Use either "XML" (the
default) or "HTML".

By default, the less than, greater than, and ampersand characters are interpreted as &lt; &gt; and &amp; respectively.
For further details on "XML", see Projecting Objects to XML.

• FORMAT — Specifies the format for the display value. For the value of FORMAT, use a format string as specified in
the format argument of the $FNUMBER function. For properties of type %Numeric or %Decimal, you can also use the
option "AUTO", which suppresses any trailing zeroes.

• MAXLEN — Specifies the maximum number of characters the string can contain. The default is 50. As with many
other parameters, this parameter affects how InterSystems IRIS validates data. Note that it also affects how the field
is projected to xDBC clients.

• MAXVAL — Specifies the maximum allowed logical value for the data type.

• MINLEN — Specifies the minimum number of characters the string can contain.

• MINVAL — Specifies the minimum allowed logical value for the data type.

• ODBCDELIMITER — Specifies the delimiter character used to construct a %List value when it is projected via ODBC.

• PATTERN — Specifies a pattern that the string must match. The value of PATTERN must be a valid InterSystems IRIS
pattern-matching expression. For an overview of pattern matching, see the “Pattern Matching”  section in the “Oper-
ators”  chapter of Using ObjectScript.

• SCALE — Specifies the number of digits following the decimal point.

• TRUNCATE — Specifies whether to truncate the string to MAXLEN characters, where 1 is TRUE and 0 is FALSE.
This parameter is used by the Normalize() and IsValid() methods but is not used by xDBC clients.

• VALUELIST — Used for enumerated (multiple-choice) properties. For more information, see “Defining Enumerated
Properties”

10.8.2 Parameters for XML and SOAP

For information on parameters in the column “Parameters for XML and SOAP,”  see Projecting Objects to XML. Also see
Creating Web Services and Web Clients.

10.8.3 Less Common Parameters

The less common parameters in the preceding table are as follows:

• STRICT (for %Integer) requires that value be an integer. By default, if a property is of type %Integer, and you specify
a non-integer numeric value, InterSystems IRIS converts the value to an integer. If STRICT is 1 for a property, in such
a case, InterSystems IRIS does not convert the value; instead validation fails.

• DATEFORMAT.
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– For %DateTime, this parameter specifies the order of the date parts when a numeric date format is specified for
the display or ODBC input value. Valid parameters are mdy, dmy, ymd, ydm, myd, and dym. The default
DATEFORMAT is mdy.

– For %PosixTime, this parameter specifies the format for the display value. For allowed values, see the fformat
parameter of the $zdatetime and $zdatetimeh functions.

• PRECISION (for %Time) specifies the number of decimal places to retain. If the value is "" (the default), the system
retains the number of decimal places that are provided in the source value. If the value is 0, InterSystems IRIS rounds
the provided value to the nearest second.

• INDEXNULLMARKER (only for %PosixTime) declares the default null marker value to use in index subscripts for
properties of type %PosixTime. The default is –1E19. See “ Indexing a NULL”  in the chapter “Defining and Building
Indices”  in SQL Optimization Guide.

• INDEXSUBSCRIPTS (for %Name) specifies the number of subscripts used by the property in indices, using a comma
as a delimiter in the property value; the %Storage.Persistent class uses this number. A value of 2 specifies that the first
comma piece of the property value is stored as the first subscript and the second comma piece of the property value is
stored as the second subscript.

10.9 Defining Enumerated Properties
Many properties support the parameters VALUELIST and DISPLAYLIST. You use these to define enumerated properties.

To specify a list of valid values for a property, use its VALUELIST parameter. The form of VALUELIST is a delimiter-
separated list of logical values, where the delimiter is the first character. For instance:

Property Color As %String(VALUELIST = ",red,green,blue");

In this example, VALUELIST specifies that valid possible values are “ red” , “green” , and “blue” , with a comma as its
delimiter. Similarly,

Property Color As %String(VALUELIST = " red green blue");

specifies the same list, but with a space as its delimiter.

The property is restricted to values in the list, and the data type validation code simply checks to see if the value is in the
list. If no list is present, there are no special restrictions on values.

DISPLAYLIST is an additional list that, if present, represents the corresponding display values to be returned by the
LogicalToDisplay() method of the property.

For an example that shows how to obtain the display values, see the section “Using Property Methods,”  later in this
chapter.

10.10 Specifying Values for Literal Properties
To specify a value for a literal property, use the SET command, an OREF, and dot syntax as follows:

 SET oref.MyProp=value

Where oref is an OREF, MyProp is a property of the corresponding object, and value is an ObjectScript expression that
evaluates to a literal value. For example:
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 SET patient.LastName="Muggles"
 SET patient.HomeAddress.City="Carver"
 SET mrn=##class(MyApp.MyClass).GetNewMRN()
 set patient.MRN=mrn

The literal value must be a valid logical value for the property type. For example, use 1 or 0 for a property based on
%Boolean. For another example, for an enumerated property, the value must be one of the items specified by the VALUELIST
parameter.

10.10.1 Specifying Values for a Multidimensional Property

For a multidimensional property, you can specify values for any subscripts of the property. For example:

 set oref.MyStateProp("temp1")=value1
 set oref.MyStateProp("temp2")=value2
 set oref.MyStateProp("temp3")=value3

Multidimensional properties are useful for holding temporary information for use by the object. These properties are not
saved to disk.

10.11 Using Property Methods
Each property adds a set of generated class methods to the class. These methods include propnameIsValid(),
propnameLogicalToDisplay(), propnameDisplayToLogical(), propnameLogicalToODBC(),
propnameODBCToLogical(), and others, where propname is the property name. Some of these methods are inherited
from the %Property class and others are inherited from the data type class on which the property is based. For details and
a list of the methods, see the chapter “Defining Data Type Classes.”

InterSystems IRIS uses these methods internally, and you can call them directly as well. In each case, the argument is a
property value. For example, suppose that Sample.Person had a property named Gender with logical values M and F
(and display values Male and Female). You could display the logical and display values for this property for a given
record, as follows;

MYNAMESPACE>set p=##class(Sample.Person).%OpenId(1)

MYNAMESPACE>w p.Gender
M
MYNAMESPACE>w ##class(Sample.Person).GenderLogicalToDisplay(p.Gender)
Male

10.12 Controlling the SQL Projection of Literal Properties
A persistent class is projected as an SQL table, as described earlier in this book. For that class, all properties are projected
to SQL, aside from the following exceptions:

• Transient properties (but see the subsection “Controlling the SQL Projection of Computed Properties” )

• Calculated properties (but see the subsection “Controlling the SQL Projection of Computed Properties” )

• Private properties

• Multidimensional properties

This section discusses the details for literal properties.
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10.12.1 Specifying the Field Names

By default, a property (if projected to SQL) is projected as an SQL field with the same name as the property. To specify a
different field name, use the property keyword SqlFieldName. (Note that it is necessary to use this keyword if the property
name is an SQL reserved word). For instance, if there is a %String property called “select,” you would define its projected
name with the following syntax:

Property select As %String [ SqlFieldName = selectfield ];

If the name of a property is an SQL reserved word, you need to specify a different name for its projection.

10.12.2 Specifying the Column Numbers

The system automatically assigns a unique column number for each field. To control column number assignments, specify
the property keyword SqlColumnNumber, as in the following example:

Property RGBValue As %String [ SqlColumnNumber = 3 ];

The value you specify for SqlColumnNumber must be an integer greater than 1. If you use the SqlColumnNumber keyword
without an argument, InterSystems IRIS assigns a column number that is not preserved and that has no permanent position
in the table.

If any property has an SQL column number specified, then InterSystems IRIS assigns column numbers for the other prop-
erties. The starting value for the assigned column numbers is the number following the highest SQL column number spec-
ified.

The value of the SqlColumnNumber keyword is inherited.

10.12.3 Effect of the Data Type Class and Property Parameters

The data type class used by a given property has an effect on the SQL projection. Specifically, the SQL category of the
data type (defined with the SqlCategory keyword) control how the property is projected. Where applicable, the property
parameters also have an effect:

For example, consider the following property definition:

Property Name As %String(MAXLEN = 30);}

This property is projected as a string field with a maximum length of 30 characters.

10.12.4 Controlling the SQL Projection of Computed Properties

In InterSystems IRIS, you can define computed properties, whose values are computed via ObjectScript, possibly based
on other properties; for details, see “Defining Computed Properties,”  earlier in this chapter. The following table summarizes
the possibilities and indicates which variations are projected to SQL:
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SqlComputed is falseSqlComputed is true (and
SqlComputeCode is defined)

Property is not computed and
has no SQL projection

Property is always computed

and has an SQL projection*

Transient is true or
false

Calculated is true

Transient is trueCalculated is
false

Property is not computed but
does have an SQL projection

(this is the default)*

Property is triggered computed

and has an SQL projection*

Transient is false

*This table assumes that the property does not use other keywords that would prevent it from having an SQL projection.
For example, it assumes that the property is not private.
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11
Working with Collections

InterSystems IRIS® supports collections, which provide a way to work with a set of elements, all of the same type. The
elements can be literal values or can be objects.

You can define collection properties in any object class. You can also define stand-alone collections for other purposes,
such as for use as an method argument or return value. This chapter describes collections, especially collection properties.
It discusses the following topics:

• Introduction to collections

• How to define a collection property

• How to specify values for list properties

• How to specify values for array properties

• How to work with list properties

• How to work with array properties

• How to copy collection data

• How to control the SQL projection of collection properties (for persistent classes)

• How to create and use stand-alone collections

Also see the chapters “Defining and Using Literal Properties,” “Working with Streams,” “Defining and Using Object-
Valued Properties,” “Defining and Using Relationships” , and “Using and Overriding Property Methods.”

When viewing this book online, use the preface of this book to quickly find other topics.

11.1 Introduction to Collections
A collection contains a set of individual elements, all of the same type. There are two kinds of collections: lists and arrays.

Each item in a collection is called an element and its position within the collection is called a key. For list collections, the
system generates sequential integer keys. For arrays, keys can have arbitrary values, and you specify them for each element.

InterSystems IRIS uses a set of collection classes as an interface to collection properties; these are classes in the %Collection

package. InterSystems IRIS provides a different set of collection classes for use when you need a stand-alone collection,
for example, to pass as an argument to a method; these are classes in the %Library package.

Each set of classes provides methods and properties that you can use to add collection items, remove collection items, count
collection items, and so on. This chapter focuses on %Collection classes, but the details are similar for the %Library classes.
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Note that collection classes are object classes. Thus a collection is an object.

11.2 Defining Collection Properties
To define a list property, add a property as follows:

Property MyProp as List of Type;

Where MyProp is the property name, and Type is either a data type class or an object class.

Similarly, to define an array property, add a property as follows:

Property MyProp as Array of Type;

For example, the following property definition is a list of %String values:

Property Colors As List Of %String;

For another example, the following property definition is an array of Doctor values, where Doctor is the name of an object
class.

Property Doctors As Array Of Doctor;

Internally, InterSystems IRIS uses classes in the %Collection package to represent such properties, as follows:

• %Collection.ListOfDT (if the list element is a data type class)

• %Collection.ListOfObj (if the list element is an object class)

• %Collection.ArrayOfDT (if the array element is a data type class)

• %Collection.ArrayOfObj (if the array element is an object class)

This means that you use methods of these classes to add collection items, remove collection items, and so on. Later parts
of this chapter show how this is done.

Do not use the %Collection classes directly as the type of a property. For example, do not create a property definition like
this:

Property MyProp as %Collection.ArrayOfDT;

Instead use the syntax shown earlier in this section.

11.3 Adding Items to a List Property
Given a list property (as described in the previous section), use the following procedure to specify a value for the property:

1. If the list items are objects, create those objects as needed.

2. Add list items to the list as needed. To add one list item, call the Insert() instance method of the list property. This
method is as follows:

method Insert(listitem) as %Status

Or use other methods of the list property, such as InsertAt(). For an introduction, see “Working with List Properties.”

For details on the methods, see the class reference for %Collection.ListOfDT and %Collection.ListOfObj.
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For example, suppose that obj is an OREF, and Colors is a list property of the associated object. In that case, we could add
list items as follows:

 Do obj.Colors.Insert("Red")
 Do obj.Colors.Insert("Green")
 Do obj.Colors.Insert("Blue")

For another example, suppose that pat is an OREF, and Diagnoses is a list property of the associated object. This property
is defined as follows, where PatientDiagnosis is the name of a class:

Property Diagnoses as list of PatientDiagnosis;

In this case, we could add a list item as follows:

 Set patdiag=##class(PatientDiagnosis).%New()
 Set patdiag.DiagnosisCode=code
 Set patdiag.DiagnosedBy=diagdoc
 Set status=pat.Diagnoses.Insert(patdiag)

11.4 Adding Items to an Array Property
Given an array property (as described earlier in this chapter), use the following procedure to specify a value for the property:

1. If the array items are objects, create those objects as needed.

2. Add array items to the array as needed. To add one list item, call the SetAt() instance method of the array property.
This method is as follows:

method SetAt(element, key As %String) as %Status

Where element is the element to add, and key is the array key to associate with that element.

Important: Do not include a sequential pair of vertical bars (||) within the value that you use as the array key.
This restriction is imposed by the way in which the InterSystems SQL mechanism works.

For details on this method, see the class reference for %Collection.ArrayOfDT and %Collection.ArrayOfObj. (You will
notice that these classes define the same set of methods.)

Or use the other methods described in “Working with Array Properties.”

For example, to add a new color to an array of RGB values accessed by color name in a Palette object, use the following
code:

 Do palette.Colors.SetAt("255,0,0","red")

where palette is the OREF containing the array, Colors is the name of the array property, and “ red”  is the key to access
the value “255,0,0” .

11.5 Working with List Properties
When you create a list property as described earlier, the property itself is an object that provides the instance methods of
one of the following classes, depending on the property definition:

• %Collection.ListOfDT (if the list element is a data type class)

• %Collection.ListOfObj (if the list element is an object class)
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These classes provide instance methods such as GetAt(), Find(), GetPrevious(), GetNext(), and Remove(). The following
example shows how you might use these methods:

 set p=##class(Sample.Person).%OpenId(1)
 for i=1:1:p.FavoriteColors.Count() {
    write !, p.FavoriteColors.GetAt(i)
 }

Lists are ordered collections of information. Each list element is identified by its position (slot) in the list. You can set the
value for a slot or insert data at a slot. If you set a new value for a slot, that value is stored in the list. If you set the value
for an already existing slot, the new data overwrites the previous data and the slot assignments are not modified. If you
insert data at an already existing slot, the new list item increments the slot number of all subsequent slots. (Inserting a new
item in the second slot slides the data currently in the second slot to the third slot, the object currently in the third slot to
the fourth slot, and so on.)

You can modify data at slot n using the following syntax:

 Do oref.PropertyName.SetAt(data,n)

where oref is an OREF, PropertyName is the name of a list property of that object, and data is the actual data. For example,
suppose that person.FavoriteColors is a list of favorite colors and suppose that this list is initially “ red” ,“blue” , and
“green.” To change the second color in the list (so that the list is “ red” ,“yellow” , and “green” ), we can use the following
code:

 Do person.FavoriteColors.SetAt("yellow",2)

For other methods, such as Find(), RemoveAt(), and others, see the class reference for %Collection.ListOfDT and
%Collection.ListOfObj.

11.6 Working with Array Properties
When you create an array property as described earlier, the property itself is an object that provides the instance methods
of one of the following classes, depending on the property definition:

• %Collection.ArrayOfDT (if the array element is a data type class)

• %Collection.ArrayOfObj (if the array element is an object class)

These classes provide instance methods such as GetAt(), Find(), GetPrevious(), GetNext(), and Remove(). For details,
see the class reference for these classes. Note that the details are not the same as for the list classes.

11.7 Copying Collection Data
To copy the items in one collection into another collection, set the recipient collection equal to the source collection. This
copies the contents of the source into the recipient (not the OREF of the collection itself). Some examples of such a command
are:

 Set person2.Colors = person1.Colors
 Set dealer7.Inventory = owner3.cars

where person2, person1, dealer7, and owner3 are all instances of classes and Colors, Inventory, and cars are all collection
properties. The first line of code looks as it might for copying data between two instances of a single class and the second
line of code as it might for copying data from an instance of one class to an instance of a different class.
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If the recipient collection is a list and the source collection is an array, InterSystems IRIS copies only the data of the array
(not its key values). If the recipient collection is an array and the source collection is a list, the InterSystems IRIS generates
key values for the recipient array; these key values are integers based on the position of the item in the source list.

Note: There is no way to copy the OREF from one collection to another. It is only possible to copy the data.

11.8 Controlling the SQL Projection of Collection
Properties
As described earlier in this book, a persistent class is projected as an SQL table. This section describes how list and array
properties are projected by default and how you can modify those SQL projections.

11.8.1 Default Projection of List Properties

By default, a list property is projected to SQL as a $LIST in serialized form. This means that when you obtain such a value,
you should use functions suitable for $LIST in order to work with it. The following example obtains the value of a list
property via embedded SQL and then uses suitable functions to work with the value:

 &sql(SELECT favoritecolors INTO :FavCol FROM Sample.Person WHERE id=1)
 write !, $LISTVALID(FavCol)
 for i=1:1:$LISTLENGTH(FavCol) {
    write !, $LIST(FavCol,i)
 }

If the list for a particular instance contains no elements, it is projected as an empty string (and not an SQL NULL value).

11.8.2 Default Projection of Array Properties

By default, an array property is projected as a child table, which is in the same package as the parent table. The name of
this child table is as follows:

tablename_fieldname

Where

• tablename is the SqlTableName of the parent class (if specified) or the short name of the parent class (if SqlTableName
is not specified).

• fieldname is the SqlFieldName of the array property (if specified) or the name of the array property (if SqlFieldName
is not specified).

For example, a Person class with an array property called Siblings has a projection as a child table called “Person_Siblings” .

The child table contains the following three columns:

• One contains the ID of the corresponding instance of the parent class; the name of this column is that of the class
containing the array (Person, in the example).

• One contains the identifier for each array member; its name is always element_key.

• One contains array members for all the instances of the class; its name is that of array property (Siblings, in the example).

Continuing the example of the Person class with an array property called Siblings, the projection of Person includes a
Person_Siblings child table with the following entries:
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Table 11–1: Sample Projection of an Array Property

Siblingselement_keyPerson (ID)

ClaudiaC10

TomT10

BobbyB12

CindyC12

GregG12

MarshaM12

PeterP12

If an instance of the parent class holds an empty collection (one that contains no elements), the ID for that instance does
not appear in the child table, such as the instance above where ID equals 11.

Notice that there is no Siblings column in the parent table.

For the column(s) containing the array members, the number and contents of the column(s) depend on the kind of array:

• The projection of an array of data type properties is a single column of data.

• The projection of an array of reference properties is a single column of object references.

• The projection of an array of embedded objects is as multiple columns in the child table. The structure of these columns
is described in the section “Embedded Object Properties.”

Together, the ID of each instance and the identifier of each array member comprise a unique index for the child table. Also,
if a parent instance has no array associated with it, it has no associated entries in the child table.

Note: A serial object property is projected to SQL in the same way, by default.

Important: When a collection property is projected as an array, there are specific requirements for any index you might
add to the property. See “ Indexing Collections”  in SQL Optimization Guide. For an introduction to indices
in InterSystems IRIS persistent classes, see the chapter “Other Options for Persistent Classes.”

Important: There is no support for SQL triggers on child tables projected by array collections. However, if you update
the array property and then save the parent object using ObjectScript, any applicable triggers will fire.

11.8.3 Alternative Projections of Collections

This section discusses the STORAGEDEFAULT, SQLTABLENAME, and SQLPROJECTION property parameters, which
affect how collection properties are stored and projected to SQL.

11.8.3.1 STORAGEDEFAULT Parameter

You can store a list property as a child table, and you can store an array property as a $LIST. In both cases, you specify
the STORAGEDEFAULT parameter of the property:

• For a list property, STORAGEDEFAULT is "list" by default. If you specify STORAGEDEFAULT as "array",
then the property is store and projected as a child table. For example:

Property MyList as list of %String (STORAGEDEFAULT="array");
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For details on the resulting projection, see “Default Projection of Array Properties.”

• For an array property, STORAGEDEFAULT is "array" by default. If you specify STORAGEDEFAULT as "list",
then the property is stored and projected as a $LIST. For example:

Property MyArray as array of %String (STORAGEDEFAULT="list");

For details on the resulting projection, see “Default Projection of List Properties.”

Important: The STORAGEDEFAULT property parameter affects how the compiler generates storage for the class. If
the class definition already includes a storage definition for the given property, the compiler ignores this
property parameter.

11.8.3.2 SQLTABLENAME Parameter

If a collection property is projected as a child table, you can control the name of that table. To do so, specify the
SQLTABLENAME parameter of the property. For example:

Property MyArray As array Of %String(SQLTABLENAME = "MyArrayTable");

Property MyList As list Of %Integer(SQLTABLENAME = "MyListTable", STORAGEDEFAULT = "array");

The SQLTABLENAME parameter has no effect unless the property is projected as a child table.

11.8.3.3 SQLPROJECTION Parameter

By default, if a collection property is stored as a child table, it is also projected as a child table, but it is not available in the
parent table. To make such a property also available in the parent table, specify the SQLPROJECTION parameter of the
property as "table/column"

For example, consider the following class definition:

Class Sample.Sample Extends %Persistent
{

Property Property1 As %String;

Property Property2 As array Of %String(SQLPROJECTION = "table/column");

}

The system generates two tables for this class: Sample.Sample and Sample.Sample_Property2

The table Sample.Sample_Property2 stores the data for the array property Property2, as in the default scenario. Unlike the
default scenario, however, a query can refer to the Property2 field in the Sample.Sample table. For example:

MYNAMESPACE>>SELECT Property2 FROM Sample.Sample where ID=7
13.     SELECT Property2 FROM Sample.Sample where ID=7

Property2
"1     value 12       value 23       value 3"

The SELECT * query, however, does not return the Property2 field:

MYNAMESPACE>>SELECT * FROM Sample.Sample where ID=7
14.     SELECT * FROM Sample.Sample where ID=7

ID      Property1
7       abc
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11.9 Creating and Using Stand-Alone Collections
The following classes are meant for use as collections that are not class properties:

• %ListOfDataTypes (if the list element is a data type class)

• %ListOfObjects (if the list element is an object class)

• %ArrayOfDataTypes (if the array element is a data type class)

• %ArrayOfObjects (if the array element is an object class)

To create a stand-alone collection, call the %New() method of the suitable class to obtain an instance of that class. Then
use methods of that instance to add elements and so on. For example:

 set mylist=##class(%ListOfDataTypes).%New()
 do mylist.Insert("red")
 do mylist.Insert("green")
 do mylist.Insert("blue")
 write mylist.Count()

These classes provide methods with many of the same names as the other collection classes. For details, see the class reference.

114                                                                                                                                                Defining and Using Classes

Working with Collections



12
Working with Streams

Streams provide a way to store extremely large amounts of data (longer than the string length limit). You can define stream
properties in any object class. You can also define standalone stream objects for other purposes, such as for use as an method
argument or return value. This chapter describes streams and stream properties. It covers the following topics:

• Introduction to stream classes

• How to define stream properties

• How to use the stream interface

• Stream classes for use with gzip files

• How stream properties are projected to SQL (for persistent objects)

When viewing this book online, use the preface of this book to quickly find related topics.

12.1 Introduction to Stream Classes
InterSystems IRIS® data platform provides the following stream classes:

• %Stream.GlobalCharacter — use this to store character data in global nodes.

• %Stream.GlobalBinary — use this to store binary data in global nodes.

• %Stream.FileCharacter — use this to store character data in an external file.

• %Stream.FileBinary — use to store binary data in an external file.

• %Stream.TmpCharacter — use this when you need a stream to hold character data but do not need to save the data.

• %Stream.TmpBinary — use this when you need a stream to hold binary data but do not need to save the data.

These classes all inherit from %Stream.Object, which defines the common stream interface.

The %Library package also includes stream classes, but those are deprecated. The class library includes additional stream
classes, but those are not intended for general use.

Note that stream classes are object classes. Thus a stream is an object.

Important: Many of the methods of these classes return status values. In all cases, consult the class reference for details.
If a method returns a status value, your code should check that returned value and proceed appropriately.
Similarly, for %Stream.FileCharacter and %Stream.FileBinary, if you set the Filename property, you should
next check for an error by examining %objlasterror.
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12.2 Declaring Stream Properties
InterSystems IRIS supports both binary streams and character streams. Binary streams contain the same sort of data as type
%Binary, and are intended for very large binary objects such as pictures. Similarly, character streams contain the same sort
of data as type %String, and are intended for storing large amounts of text. Character streams, like strings, may undergo a
Unicode translation within client applications.

Stream data may be stored in an external file or an InterSystems IRIS global (or not at all), depending on how the stream
property is defined:

• The %Stream.FileCharacter and %Stream.FileBinary classes are used for streams stored as external files.

• The %Stream.GlobalCharacter and %Stream.GlobalBinary classes are used for streams stored as globals.

• The %Stream.TmpCharacter and %Stream.TmpBinary classes are used for streams that do not need to be saved.

The first four classes can use the optional LOCATION parameter to specify a default storage location.

In the following example, the JournalEntry class contains four stream properties (one for each of the first four stream classes),
and specifies a default storage location for two of them:

Class testPkg.JournalEntry Extends %Persistent
{
Property DailyText As %Stream.FileCharacter;

Property DailyImage As %Stream.FileBinary(LOCATION = "C:/Images");

Property Text As %Stream.GlobalCharacter(LOCATION = "^MyText");

Property Picture As %Stream.GlobalBinary;
}

In this example, data for DailyImage is stored in a file (with an automatically generated name) in the C:/Images directory,
while the data for the Text property is stored in a global named ^MyText.

12.3 Using the Stream Interface
All streams inherit a set of methods and properties used to manipulate the data they contain. The next section lists the
commonly used methods and properties, and the following sections provide concrete examples using them:

• Commonly used stream methods and properties

• How to instantiate a stream

• How to read and write stream data

• How to copy between streams

• How to insert stream data

• How to find literal values in a stream

• How to save a stream

• How to use streams in object applications
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Important: Many of the methods of these classes return status values. In all cases, consult the class reference for details.
If a method returns a status value, your code should check that returned value and proceed appropriately.
Similarly, for %Stream.FileCharacter and %Stream.FileBinary, if you set the Filename property, you should
next check for an error by examining %objlasterror.

12.3.1 Commonly Used Stream Methods and Properties

Some commonly used methods include the following:

• Read() — Read a specified number of characters starting at the current position in the stream.

• Write() — Append data to the stream, starting at the current position. Overwrites existing data if the position is not
set to the end of the stream.

• Rewind() — Move to the beginning of the stream.

• MoveTo() — Move to a given position in the stream.

• MoveToEnd() — Move to the end of the stream.

• CopyFrom() — Copy the contents of a source stream into this stream.

• NewFileName() — Specify a filename for a %Stream.FileCharacter or %Stream.FileBinary property.

Commonly used properties include the following:

• AtEnd — Set to true when a Read encounters the end of the data source.

• Id — The unique identifier for an instance of a stream within the extent specified by %Location.

• Size — The current size of the stream (in bytes or characters, depending on the type of stream).

For detailed information on individual stream methods and properties, see the InterSystems Class Reference entries for the
classes listed at the beginning of this chapter.

12.3.2 Instantiating a Stream

When you use a stream class as an object property, the stream is instantiated implicitly when you instantiate the containing
object.

When you use a stream class as a standalone object, use the %New() method to instantiate the stream.

12.3.3 Reading and Writing Stream Data

At the core of the stream interface are the methods Read(), Write(), and Rewind() and the properties AtEnd and Size.

The following example reads data from the Person.Memo stream and writes it to the console, 100 characters at a time. The
value of len is passed by reference, and is reset to 100 before each Read. The Read method attempts to read the number
of characters specified by len, and then sets it to the actual number of characters read:

  Do person.Memo.Rewind()
  While (person.Memo.AtEnd = 0) {
    Set len = 100
    Write person.Memo.Read(.len)
  }

Similarly, you can write data into the stream:

  Do person.Memo.Write("This is some text. ")
  Do person.Memo.Write("This is some more text.")
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12.3.3.1 Specifying a Translation Table

If you are reading or writing a stream of type %Stream.FileCharacter in any character set other than the native character set
of the locale, you must set the TranslateTable property of the stream. For an overview of translation tables, see “Default
I/O Tables”  in the chapter “Localization Support”  of the Orientation Guide for Server-Side Programming.

12.3.4 Copying Data between Streams

All streams contain a CopyFrom() method which allows one stream to fill itself from another stream. This can be used,
for example, to copy data from a file into a stream property. In this case, one uses the %Library.File class, which is a wrapper
around operating system commands and allows you to open a file as a stream. In this case, the code is:

  // open a text file using a %Library.File stream
  Set file = ##class(%File).%New("\data\textfile.txt")
  Do file.Open("RU") // same flags as the OPEN command

  // Open a Person object containing a Memo stream
  // and copy the file into Memo
  Set person = ##class(Person).%New()
  Do person.Memo.CopyFrom(file)

  Do person.%Save() // save the person object
  Set person = ""   // close the person object
  Set file = ""     // close the file

You can also copy data into a stream with the Set command:

  Set person2.Memo = person1.Memo

where the Memo property of the Person class holds an OREF for a stream and this command copies the contents of
person1.Memo into person2.Memo.

Note: Using Set with two streams in this manner does not copy the OREF of one stream to the other — it copies the
stream contents exclusively. This differs from the behavior of the deprecated stream classes in %Library,.

12.3.5 Inserting Stream Data

Apart from the temporary stream classes (whose data cannot be saved), streams have both a temporary and a permanent
storage location. All inserts go into the temporary storage area, which is only made permanent when you save the stream.
If you start inserting into a stream, then decide that you want to abandon the insert, the data stored in the permanent location
is not altered.

If you create a stream, start inserting, then do some reading, you can call MoveToEnd() and then continue appending to
the temporary stream data. When you save the stream, the data is moved to the permanent storage location.

For example:

    Set test = ##class(Test).%OpenId(5)
    Do test.text.MoveToEnd()
    Do test.text.Write("append text")
    Do test.%Save()

Here, the stream is saved to permanent storage when the test object is saved.

12.3.6 Finding Literal Values in a Stream

The stream interface includes the FindAt() method, which you can use to find the location of a given literal value. This
method has the following arguments:

method FindAt(position As %Integer, target, ByRef tmpstr, caseinsensitive As %Boolean = 0) as %Integer
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Where:

• position is the position at which to start searching.

• target is the literal value to search for.

• tmpstr, which is passed by reference, returns information that can be used in the next call to FindAt(). Use this when
you want to search the same stream repeatedly, starting from the last position where the target was found. In this scenario,
specify position as –1 and pass tmpstr by reference in every call. Then each successive call to FindAt() will start where
the last call left off.

• caseinsensitive specifies whether to perform a case-insensitive search. By default, the method does not consider case.

The method returns the position at this match starting at the beginning of the stream. If it does not find a match, it returns
-1.

12.3.7 Saving a Stream

When you use a stream class as an object property, the stream data is saved when you save the containing object.

When you use a stream class as a standalone object, use the %Save() method to save the stream data. (Note that for the
temporary stream classes — %Stream.TmpCharacter and %Stream.TmpBinary — this method returns immediately and does
not save any data.)

12.3.8 Using Streams in Object Applications

Stream properties are manipulated via a transient object that is created by the object that owns the stream property. Streams
act as literal values (think of them as large strings). Two object instances cannot refer to the same stream.

In the following class definition, the Person class has a Memo property that is a stream property:

Class testPkg.Person Extends %Persistent
{
Property Name As %String;

Property Memo As %Stream.GlobalCharacter;
}

The following ObjectScript fragment creates a new person object, implicitly instantiating the Memo stream. Then it writes
some text to the stream.

    // create object and stream
    Set p = ##class(testPkg.Person).%New()
    Set p.Name = "Mo"
    Do p.Memo.Write("This is part one of a long memo. ")
    Do p.Memo.Write("This is part two of a long memo. ")
    Do p.Memo.Write("This is part three of a long memo. ")
    Do p.Memo.Write("This is part four of a long memo. ")
    Do p.%Save()
    Set id = p.%Id() // remember ID for later
    Set p = ""

The following code fragment opens the person object and then writes the contents of the stream. Note that when you open
an object, the current position of any stream properties is set to the beginning of the stream. This code uses the Rewind()
method for illustrative purposes.

    // read object and stream
    Set p = ##class(testPkg.Person).%OpenId(id)
    Do p.Memo.Rewind() // not required first time

    // write contents of stream to console, 100 characters at a time
    While (p.Memo.AtEnd = 0) {
        Set len = 100
        Write p.Memo.Read(.len)
    }
    Set p = ""
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Note: If you want to replace the contents of a stream property, rewind the stream (if the current position of the stream
is not already at the beginning), and then use the Write() method to write the new data to the stream. Do not use
the %New() method to instantiate a new stream object and assign it to the stream property, for example, set
p.Memo = ##class(%Stream.GlobalCharacter).%New(), as this leaves the old stream object orphaned
in the database.

12.4 Stream Classes for Use with gzip Files
The %Stream package also defines the specialized stream classes %Stream.FileBinaryGzip and %Stream.FileCharacterGzip,
which you can use to read and write to gzip files. These use the same interface described earlier. Note the following points:

• For these classes, the Size property returns the uncompressed size. When you access the Size property, InterSystems
IRIS reads the data in order to calculate the size of the file and this can be an expensive operation

• When you access the Size property, InterSystems IRIS rewinds the stream and leaves you at its start.

12.5 Projection of Stream Properties to SQL and ODBC
As described earlier in this book, a persistent class is projected as an SQL table. For such classes, character stream properties
and binary stream properties are projected to SQL (and to ODBC clients) as BLOBs (binary large objects).

Stream properties are projected with the ODBC type LONG VARCHAR (or LONG VARBINARY). The ODBC driver/server
uses a special protocol to read/write BLOBs. Typically you have to write BLOB applications by hand, because the standard
reporting tools do not support them.

The following subsections describes how to use stream properties with SQL. It includes the following topics:

• How to read a stream via embedded SQL

• How to write a stream via embedded SQL

Stream fields have the following restrictions within SQL:

• You cannot use a stream value in a WHERE clause, with a few specific exceptions. For further details, refer to the
WHERE clause in the InterSystems SQL Reference.

• You cannot UPDATE/INSERT multiple rows containing a stream; you must do it row by row.

For information on indexing a stream value, contact the InterSystems Worldwide Response Center.

12.5.1 Reading a Stream via Embedded SQL

You can use embedded SQL to read a stream as follows:

1. Use embedded SQL to select the ID of the stream:

  &sql(SELECT Memo INTO :memo FROM Person WHERE Person.ID = 12345)

This fetches the ID of the stream and places it into the memo host variable.

2. Then open the stream and process it as usual.
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12.5.2 Writing a Stream via Embedded SQL

To write a stream via embedded SQL, you have several options. For the value to insert, you can use an object reference
(OREF) of a stream, the string version of such an OREF, or a string literal.

The following examples show all these techniques. For these examples, assume that you have a table named
Test.ClassWStream which has a column named Prop1, which expects a stream value.

The following example uses an object reference:

///use an OREF
ClassMethod Insert1()
{
    set oref=##class(%Stream.GlobalCharacter).%New()
    do oref.Write("Technique 1")

    //do the insert; this time use an actual OREF
    &sql(INSERT INTO Test.ClassWStreams (Prop1) VALUES (:oref))
}

The next example uses a string version of an object reference:

///use a string version of an OREF
ClassMethod Insert2()
{
    set oref=##class(%Stream.GlobalCharacter).%New()
    do oref.Write("Technique 2")

    //next line converts OREF to a string OREF
    set string=oref_""

    //do the insert
    &sql(INSERT INTO Test.ClassWStreams (Prop1) VALUES (:string))
}

The last example inserts a string literal into the stream Prop1:

///insert a string literal into the stream column
ClassMethod Insert3()
{
    set literal="Technique 3"

    //do the insert; use a string
    &sql(INSERT INTO Test.ClassWStreams (Prop1) VALUES (:literal))
}

Note: The first character of the string literal cannot be a number. If it is a number, then SQL interprets this as an OREF
and attempts to file it as such. Because the stream is not an OREF, this results in an SQL -415 error.

Defining and Using Classes                                                                                                                                                121

Projection of Stream Properties to SQL and ODBC





13
Defining and Using Object-Valued
Properties

This chapter describes how to define and use object-valued properties, including serial object properties. It discusses the
following topics:

• How to define object-valued properties

• Introduction to serial objects

• Possible combinations of objects

• How to specify the value of an object property

• How to save changes

• SQL projection of object-valued properties (for persistent classes)

Relationships provide another way to associate different persistent classes; see the chapter “Relationships.” Also see the
chapters “Defining and Using Literal Properties,” “Working with Collections,” “Working with Streams,”  and “Using
and Overriding Property Methods.”

When viewing this book online, use the preface of this book to quickly find other topics.

13.1 Defining Object-Valued Properties
The phrase object-valued property generally refers to a property that is defined as follows:

Property PropName as Classname;

Where Classname is the name of an object class other than a collection or a stream. (Collection properties and stream
properties are special cases discussed in earlier chapters.) In general, Classname is either a registered object class, a persistent
class, or a serial class (see the next section).

To define such a property, define the class to which the property refers and then add the property.

13.1.1 Variation: CLASSNAME Parameter

If a property is based on a persistent class, and that class uses the alternative projection of subclasses described in the
chapter “Defining Persistent Classes,”  an additional step is necessary. In this case, it is necessary to specify the CLASSNAME
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property parameter as 1 for that property. This step affects how InterSystems IRIS® stores this property and enables
InterSystems IRIS to retrieve the object to which it points.

For example, suppose that MyApp.Payment specifies NoExtent, and MyApp.CreditCard is a subclass of MyApp.Payment.
Suppose that MyApp.CurrencyOrder contains a property of type MyApp.CreditCard. That property should specify CLASSNAME
as 1:

Class MyApp.CurrencyOrder [ NoExtent ] 
{
Property Payment as MyApp.CreditCard (CLASSNAME=1);

//other class members
}

Note that SQL arrow syntax does not work in this scenario. (You can instead use a suitable JOIN.)

Important: Do not specify CLASSNAME =1 for a property whose type is a serial class. This usage is not supported.

13.2 Introduction to Serial Objects
Serial classes extend %SerialObject. The purpose of such classes is to serve as a property in another object class. The values
in a serial object are serialized into the parent object. Serial objects are also called embedded (or embeddable) objects.
InterSystems IRIS handles serial object properties differently from non-serial object properties. Two of the differences are
as follows:

• It is not necessary to call %New() to create the serial object before assigning values to properties in it.

• If the serial object property is contained in a persistent class, the properties of the serial object are stored within the
extent of the persistent class.

Later sections of this chapter show these points.

To define a serial class, simply define a class that extends %SerialObject, and add properties and other class members as
needed. The following shows an example:

Class Sample.Address Extends %SerialObject
{

/// The street address.
Property Street As %String(MAXLEN = 80);

/// The city name.
Property City As %String(MAXLEN = 80);

/// The 2-letter state abbreviation.
Property State As %String(MAXLEN = 2);

/// The 5-digit U.S. Zone Improvement Plan (ZIP) code.
Property Zip As %String(MAXLEN = 5);

}

13.3 Possible Combinations of Objects
The following table shows the possible combinations of a parent class and an object-valued property in that class:
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Property is a serial
class

Property is a persistent
class

Property is a registered
object class

SupportedSupported but not
common

SupportedParent class is a
registered object class

SupportedSupportedSupported but not
common

Parent class is a
persistent class

SupportedNot supportedNot supportedParent class is a serial
class

13.3.1 Terms for Object-Valued Properties

Within a persistent class, there are two terms for object-valued properties:

• Reference properties (properties based on other persistent objects)

• Embedded object properties (properties based on serial objects)

Relationships are another kind of property that associates different persistent classes; see the chapter “Relationships.”
Relationships are bidirectional, unlike the properties described in this chapter.

13.4 Specifying the Value of an Object Property
To set an object-valued property, set that property equal to an OREF of an instance of a suitable class.

Consider the scenario where ClassA contains a property PropB that is based on ClassB, where ClassB is an object class:

Class MyApp.ClassA
{

Property PropB as MyApp.ClassB;

//additional class members
}

And ClassB has a non-serial class with its own set of properties Prop1, Prop2, and Prop3.

Suppose that MyClassAInstance is an OREF for an instance of ClassA. To set the value of the PropB property for this
instance, do the following:

1. If ClassB is not a serial class, first:

a. Obtain an OREF for an instance of ClassB.

b. Optionally set properties of this instance. You can also set them later.

c. Set MyClassAInstance.PropB equal to that OREF.

You can skip this step if ClassB is a serial class.

2. Optionally use cascading dot syntax to set properties of the property (that is, to set properties of
MyClassAInstance.PropB).

For example:
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 set myclassBInstance=##class(MyApp.ClassB).%New()
 set myClassBInstance.Prop1="abc"
 set myClassBInstance.Prop2="def"
 set myClassAInstance.PropB=myclassBInstance
 set myClassAInstance.PropB.Prop3="ghi"

Notice that this example sets properties of the ClassB instance directly, right after the instance is created, and later more
indirectly via cascading dot syntax.

The following steps accomplish the same goal:

 set myClassAInstance.PropB=##class(MyApp.ClassB).%New()
 set myClassAInstance.PropB.Prop1="abc"
 set myClassAInstance.PropB.Prop2="def"
 set myClassAInstance.PropB.Prop3="ghi"

In contrast, if ClassB is a serial class, you can do the following, without ever calling %New() for ClassB:

 set myClassAInstance.PropB.Prop1="abc"
 set myClassAInstance.PropB.Prop2="def"
 set myClassAInstance.PropB.Prop3="ghi"

13.5 Saving Changes
In the case where you are using persistent classes, save the containing object (that is, the instance that contains the object
property). There is no need to save the object property directly, because that is saved automatically when the containing
object is saved.

The following examples demonstrate these principles. Consider the following persistent classes:

Class MyApp.Customers Extends %Persistent
{

Property Name As %String;

Property HomeStreet As %String(MAXLEN = 80);

Property HomeCity As MyApp.Cities;

}

And:

Class MyApp.Cities Extends %Persistent
{

Property City As %String(MAXLEN = 80);

Property State As %String;

Property ZIP As %String;

}

In this case, we could create an instance of MyApp.Customers and set its properties as follows:

    set customer=##class(MyApp.Customers).%New()
    set customer.Name="O'Greavy,N."
    set customer.HomeStreet="1234 Main Street"
    set customer.HomeCity=##class(MyApp.Cities).%New()
    set customer.HomeCity.City="Overton"
    set customer.HomeCity.State="Any State"
    set customer.HomeCity.ZIP="00000"
    set status=customer.%Save()
    if $$$ISERR(status) {
        do $system.Status.DisplayError(status)
    }

These steps add one new record to MyApp.Customers and one new record to MyApp.Cities.
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Instead of calling %New() for MyApp.Cities, we could open an existing record:

    set customer=##class(MyApp.Customers).%New()
    set customer.Name="Burton,J.K."
    set customer.HomeStreet="17 Milk Street"
    set customer.HomeCity=##class(MyApp.Cities).%OpenId(3)
    set status=customer.%Save()
    if $$$ISERR(status) {
        do $system.Status.DisplayError(status)
    }

In the following variation, we open an existing city and modify it, in the process of adding the new customer:

    set customer=##class(MyApp.Customers).%New()
    set customer.Name="Emerson,S."
    set customer.HomeStreet="295 School Lane"
    set customer.HomeCity=##class(MyApp.Cities).%OpenId(2)
    set customer.HomeCity.ZIP="11111"
    set status=customer.%Save()
    if $$$ISERR(status) {
        do $system.Status.DisplayError(status)
    }

This change would of course be visible to any other customers with this home city.

13.6 SQL Projection of Object-Valued Properties
As described earlier in this book, a persistent class is projected as an SQL table. This section describes how reference
properties and embedded object properties of such a class are projected to SQL.

13.6.1 Reference Properties

A reference property is projected as a field that contains the ID portion of the OID of the referenced object. For instance,
suppose a customer object has a Rep property that refers to a SalesRep object. If a particular customer has a sales represen-
tative with an ID of 12, then the entry in the Rep column for that customer is also 12. Because this value matches that of
the particular row of the ID column of the referenced object, you can use this value when performing any joins or other
processing.

Note that within InterSystems SQL, you can use a special reference syntax to easily use such references, as an alternative
to using a JOIN. For example:

SELECT Company->Name FROM Sample.Employee ORDER BY Company->Name

13.6.2 Embedded Object Properties

An embedded object property is projected as multiple columns in the table of the parent class. One column in the projection
contains the entire object in serialized form (including all delimiters and control characters). The rest of the columns are
each for one property of the object.

The name of the column for the object property is the same as that of the object property itself. The other column names
are made up of the name of the object property, an underscore, and the property within the embedded object. For instance,
suppose a class has a Home property containing an embedded object of type Address; Home itself has properties that include
Street and Country. The projection of the embedded object then includes the columns named “Home_Street”  and
“Home_Country” . (Note that the column names are derived from the property, Home, and not the type, Address.)

For example, the sample class Sample.Person, includes a Home property which is an embedded object of type Sample.Address.
You can use the component fields of Home via SQL as follows:
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SELECT Name, Home_City, Home_State FROM Sample.Person 
WHERE Home_City %STARTSWITH 'B'
ORDER BY Home_City

Embedded objects can also include other complex forms of data:

• The projection of a reference property includes a read-only field that includes the object reference as described in
“Reference Properties.”

• The projection of an array is as a single, non-editable column that is part of the table.

• The projection of a list is as a list field as one of its projected fields; the list field is as described in “Default Projection
of List Properties.”
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14
Defining and Using Relationships

This chapter describes relationships, which are a special kind of property that you can define only in persistent classes. It
discusses the following topics:

• Overview

• How to define relationships

• Examples

• How to connect objects in relationships

• How to remove a relationship between objects

• How to delete objects in relationships

• How to work with relationships

• SQL projection of relationships

• How to model many-to-many relationships

When viewing this book online, use the preface of this book to quickly find related topics.

14.1 Overview of Relationships
A relationship is an association between two persistent objects, each of a specific type. To create a relationship between
two objects, each must have a relationship property, which defines its half of the relationship. InterSystems IRIS® directly
supports two kinds of relationships: one-to-many and parent-child.

InterSystems IRIS relationships have the following characteristics:

• Relationships are binary — a relationship is defined either between two, and only two, classes or between a class and
itself.

• Relationships can only be defined for persistent classes.

• Relationships are bidirectional — both sides of a relationship must be defined.

• Relationships automatically provide referential integrity. They are visible to SQL as foreign keys. See “SQL Projection
of Relationships”  for more information on this topic.

• Relationships automatically manage their in-memory and on-disk behavior.

• Relationships provide superior scaling and concurrency over object collections.
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On the other hand, in an object collection, there is an inherent order of the objects; the same is not true for relationships.
If you insert objects A, B, and C, in that order, into a list of objects, that order is retained. If you insert objects A, B,
and C, in that order, into a relationship property, that order is not retained.

Note: It is also possible to define foreign keys between persistent classes, rather than adding relationships. With a foreign
key, you have a greater degree of control over what happens when an object in one class is added, updated, or
deleted. See “Using Triggers”  in Using InterSystems SQL.

Note: Relationships are not supported for sharded classes.

14.1.1 One-to-Many Relationships

In a one-to-many relationship between class A and class B, one instance of class A is associated with zero or more instances
of class B.

For example, a company class may define a one-to-many relationship with an employee class. In this case, there may be
zero or more employee objects associated with each company object.

These classes are independent of each other as follows:

• When an instance of either class is created, it may or may not be associated with an instance of the other class.

• If an instance of class B is associated with a given instance of class A, this association can be removed or changed.
The instance of class B can be associated with a different instance of class A. The instance of class B does not have
to have any association with an instance of class A (and vice versa).

There can be a one-to-many relationship within a single class. One instance of that class can be associated with zero or
more other instances of that class. For example, the Employee class might define a relationship between an employee and
any employees who directly report that employee.

14.1.2 Parent-Child Relationships

In a parent-child relationship between class A and class B, one instance of class A is associated with zero or more instances
of class B. Also, the child table is dependent on the parent table, as follows:

• When an instance of the class B is saved, it must be associated with an instance of class A. If you attempt to save the
instance, and that association is not defined, the save action fails.

• The association cannot be changed. That is, you cannot associate the instance of class B with a different instance of
class A.

• If the instance of class A is deleted, all associated instances of class B are deleted as well.

• You can delete an instance of class B. Class A is not required to have associated instances of class B.

For an example, an invoice class may define a parent-child relationship with a line item class. In this case, an invoice consists
of zero or more line items. Those line items cannot be moved to a different invoice. Nor do they have meaning on their
own.

Important: Also, in the child table (class B), the IDs are not purely numeric. As a consequence, it is not possible to
add a bitmap index to the relationship property in this class, although other forms of index are permitted
(and are useful, as shown later in this chapter).
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14.1.2.1 Parent-Child Relationships and Storage

If you define a parent-child relationship before compiling the classes, the data for both classes is stored in the same global.
The data for the children is subordinate to that of the parent, in a structure similar to the following:

^Inv(1)
^Inv(1, "invoice", 1)
^Inv(1, "invoice", 2)
^Inv(1, "invoice", 3)
...

As a result, InterSystems IRIS can read and write these related objects more quickly.

14.1.3 Common Relationship Terminology

This section explains, by example, phrases that are in common use for convenience when discussing relationships.

Consider a one-to-many relationship between a company and its employees; that is, one company has multiple employees.
In this scenario, the company is called the one side and the employee is called the many side.

Similarly, consider a parent-child relationship between a company and its products; that is, the company is the parent, and
the products are the children. In this scenario, the company is called the parent side and the employee is called the children
side or the child side.

14.2 Defining a Relationship
To create a relationship between the records of two classes, you create a pair of complementary relationship properties,
one in each class. To create a relationship between records of the same class, you create a pair of complementary relationship
properties in that class.

The following subsections describe the general syntax and then discuss how to define one-to-many relationships and parent-
child relationships.

14.2.1 General Syntax

The syntax for a relationship property is as follows:

Relationship Name As classname [ Cardinality = cardinality_type, Inverse = inverseProp ];

Where:

• classname is the class to which this relationship refers. This must be a persistent class.

• cardinality_type (required) defines how the relationship “appears”  from this side as well as whether it is an independent
relationship (one-to-many) or a dependent relationship (parent-child). cardinality_type can be one, many, parent,
or children.

• inverseProp (required) is the name of the complementary relationship property, which is defined in the other class.

In the complementary relationship property, the cardinality_type keyword must be the complement of the cardinality_type
keyword here. The values one and many are complements of each other. Similarly, the values parent and children
are complements of each other.

Because a relationship is a kind of property, other property keywords are available for use in them, including Final, Required,
SqlFieldName, and Private. Some property keywords, such as MultiDimensional, do not apply. See the Class Definition
Reference for more information.
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14.2.2 Defining a One-to-Many Relationship

This section describes how define a one-to-many relationship between classA and classB, where one instance of classA is
associated with zero or more instances of classB.

Note: It is possible to have a one-to-many relationship between records of a single class. That is, in the following dis-
cussion, classA and classB can be the same class.

Class A must have a relationship property of the following form:

Relationship manyProp As classB [ Cardinality = many, Inverse = oneProp ];

Where oneProp is the name of the complementary relationship property, which is defined in classB.

Class B must have a relationship property of the following form:

Relationship oneProp As classA [ Cardinality = one, Inverse = manyProp ];

Where manyProp is the name of the complementary relationship property, which is defined in classA.

Important: On the one side (class A), the relationship uses a query to populate the relationship object. You can improve
the performance of this query in almost all cases by adding an index on the complementary relationship
property (that is, adding an index on the many side, class B).

14.2.3 Defining a Parent-Child Relationship

This section describes how define a parent-child relationship between classA and classB, where one instance of classA is
the parent of zero or more instances of classB. These cannot be the same class.

Class A must have a relationship property of the following form:

Relationship childProp As classB [ Cardinality = children, Inverse = parentProp ];

Where parentProp is the name of the complementary relationship property, which is defined in classB.

Class B must have a relationship property of the following form:

Relationship parentProp As classA [ Cardinality = parent, Inverse = childProp ];

Where childProp is the name of the complementary relationship property, which is defined in classA.

Important: On the parent side (class A), the relationship uses a query to populate the relationship object. You can
improve the performance of this query in almost all cases by adding an index on the complementary rela-
tionship property (that is, adding an index on the child side, class B).

14.2.3.1 Parent-Child Relationships and Compilation

For a parent-child relationship, InterSystems IRIS can generate a storage definition that stores the data for the parent and
child objects within a single global, as shown earlier. Such a storage definition improves the speed with which you can
access these related objects.

If you add a relationship after compiling the classes, InterSystems IRIS does not generate this optimized storage definition.
In such a case, you can delete any test data you might have, delete the storage definitions of the two classes, and then
recompile.
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14.3 Examples
This section presents examples of a one-to-many relationship and a parent-child relationship.

14.3.1 Example One-to-Many Relationship

This example represents a one-to-many relationship between a company and its employees. The company class is as follows:

Class MyApp.Company Extends %Persistent
{

Property Name As %String;

Property Location As %String;

Relationship Employees As MyApp.Employee [ Cardinality = many, Inverse = Employer ];

}

And the employee class is as follows:

Class MyApp.Employee Extends (%Persistent, %Populate)
{

Property FirstName As %String;

Property LastName As %String;

Relationship Employer As MyApp.Company [ Cardinality = one, Inverse = Employees ];

Index EmployerIndex On Employer;

}

14.3.2 Example Parent-Child Relationship

This example represents a parent-child relationship between an invoice and its line items. The invoice class is as follows:

Class MyApp.Invoice Extends %Persistent
{

Property Buyer As %String;

Property InvoiceDate As %TimeStamp;

Relationship LineItems As MyApp.LineItem [ Cardinality = children, Inverse = Invoice ];

}

And the line item class is as follows:

Class MyApp.LineItem Extends %Persistent
{

Property ProductSKU As %String;

Property UnitPrice As %Numeric;

Relationship Invoice As MyApp.Invoice [ Cardinality = parent, Inverse = LineItems ];

Index InvoiceIndex On Invoice;

}
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14.4 Connecting Objects
A relationship is bidirectional. Specifically, if you update the value of the relationship property in one object, that immediately
affects the value of the corresponding relationship property in the related object. As a consequence, you can specify the
value for a relationship property in one object, and the effect appears in both objects.

Because the nature of the relationship property is different in the two classes, there are two general scenarios for updating
any relationship:

• Scenario 1: The relationship property is a simple reference property. Set the property equal to the appropriate object.

• Scenario 2: The relationship property is an instance of %RelationshipObject, which has an array-like interface. Use
methods of that interface to insert objects into the relationship. Note that the objects in the relationship are not ordered;
the relationship does not retain the order in which you inserted objects into it.

The following subsections give the details. The third subsection describes a variation of Scenario 1 that is especially suitable
when you have a large number of objects in the relationship.

The information here describes how to add objects to relationships. The process of modifying objects is similar, with an
important exception (by design) in the case of parent-child relationships: Once associated with a particular parent object
(and then saved), a child object can never be associated with a different parent.

14.4.1 Scenario 1: Updating the Many or Child Side

On the many side or the child side (ObjA), the relationship property is a simple reference property that points to ObjB. To
connect the objects from this side:

1. Obtain an OREF (ObjB) for an instance of the other class. (Either create a new object or open an existing object, as
appropriate.)

2. Set the relationship property of ObjA equal to ObjB.

For an example, consider the example parent-child classes shown earlier. The following steps would update the relationship
from the MyApp.LineItem side:

  //obtain an OREF to the invoice class
 set invoice=##class(MyApp.Invoice).%New()
 //...specify invoice date and so on

 set item=##class(MyApp.LineItem).%New()
 //...set some properties of this object such as the product name and sale price...

 //connect the objects
 set item.Invoice=invoice

When you call the %Save() method for the item object, the system saves both objects (item and invoice).

Also see the last subsection for a variation of this technique.

14.4.2 Scenario 2: Updating the One or Parent Side

On the one side or the parent side, the relationship property is an instance of %RelationshipObject. On this side, you can do
the following to connect the objects:

1. Obtain an OREF for an instance of the other object. (Either create a new object or open an existing object, as appropriate.)

2. Call the Insert() method of the relationship property on this side and pass that OREF as the argument.
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Consider the example parent-child classes shown earlier. For those classes, the following steps would update the relationship
from the MyApp.Invoice side:

 set invoice=##class(MyApp.Invoice).%OpenId(100034)
 //set some properties such as the customer name and invoice date

 set item=##class(MyApp.LineItem).%New()
 //...set some properties of this object such as the product name and sale price...

 //connect the objects
 do invoice.LineItems.Insert(item)

When you call the %Save() method for the invoice object, the system saves both objects (item and invoice).

Important: InterSystems IRIS does not maintain information about the order in which objects are added into the rela-
tionship. That is, if you open a previously saved object and use GetNext() or similar methods to iterate
through a relationship, the order of objects in that relationship is different from when the objects were
created.

14.4.3 Fastest Way to Connect Objects

When you need to add a comparatively large number of objects to a relationship, use a variation of the technique given in
Scenario 1. In this variation:

1. Obtain an OREF (ObjA) for Class A.

2. Obtain the ID for an instance of ClassB.

3. Use the property setter method of the relationship property of ObjA, passing the ID as the argument.

If the relationship property is named MyRel, the property setter method is named MyRelSetObjectId().

(For details on property setter methods, see the chapter “Using and Overriding Property Methods.”

Consider the example classes described in Scenario 1. For those classes, the following steps would insert a large number
of invoice items into an invoice (and would do so more rapidly than the technique given in that section):

 set invoice=##class(MyApp.Invoice).%New()
 //set some properties such as the customer name and invoice date
 do invoice.%Save()
 set id=invoice.%Id()
 kill invoice  //OREF is no longer needed

 for index = 1:1:(1000)
  {
    set Item=##class(MyApp.LineItem).%New()
    //set properties of the invoice item

    //connect to the invoice
    do Item.InvoiceSetObjectId(id)
    do Item.%Save()
  } 

14.5 Removing a Relationship
In the case of a one-to-many relationship, it is possible to remove a relationship between two objects. One way to do so is
as follows:

1. Open the instance of the child object (or the object on the many side).

2. Set the applicable property of this object equal to null.
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For example, there is a one-to-many relationship between Sample.Company and Sample.Employee. The following demon-
strates that the employee whose ID is 101 works for the company whose ID is 5. Notice that this company has four
employees:

MYNAMESPACE>set e=##class(Sample.Employee).%OpenId(101)

MYNAMESPACE>w e.Company.%Id()
5
MYNAMESPACE>set c=##class(Sample.Company).%OpenId(5)

MYNAMESPACE>w c.Employees.Count()
4

Next for this employee, we set the Company property equal to null. Notice that this company now has three employees:

MYNAMESPACE>set e.Company=""

MYNAMESPACE>w c.Employees.Count()
3

It is also possible to remove the relationship by modifying the other object. In this case, we use the RemoveAt() method
of the collection property. For example, the following demonstrates that for the company whose ID is 17, the first employee
is employee ID 102:

MYNAMESPACE>set e=##class(Sample.Employee).%OpenId(102)

MYNAMESPACE>w e.Company.%Id()
17
MYNAMESPACE>set c=##class(Sample.Company).%OpenId(17)

MYNAMESPACE>w c.Employees.Count()
4
MYNAMESPACE>w c.Employees.GetAt(1).%Id()
102

To remove the relationship between this company and this employee, we use the RemoveAt() method, passing the value
1 as the argument, to remove the first collection item. Notice that after we do so, this company has three employees:

MYNAMESPACE>do c.Employees.RemoveAt(1)

MYNAMESPACE>w c.Employees.Count()
3

In the case of a parent-child relationship, it is not possible to remove a relationship between two objects. You can, however,
delete a child object.

14.6 Deleting Objects in Relationships
For a one-to-many relationship, the following rules govern what occurs when you attempt to delete objects:

• The relationship prevents you from deleting an object on the one side, if there are any objects on the many side that
reference this object. For example, if you try to delete a company, and the employee table has records that point to that
company, the delete operation fails.

Thus it is necessary to first delete the records on the many side.

• The relationship does not prevent you from deleting an object on the many side (the employee table).

For a parent-child relationship, the rules are different:

• The relationship causes a deletion on the parent side to affect the child side. Specifically, if you delete an object on the
parent side, the associated objects on the child side are automatically deleted.

136                                                                                                                                                Defining and Using Classes

Defining and Using Relationships



For example, if there is a parent-child relationship between invoices and line items, if you delete an invoice, its line
items are deleted.

• The relationship does not prevent you from deleting an object on the child side (the line item table).

14.7 Working with Relationships
Relationships are properties. Relationships with a cardinality of one or parent behave like atomic (non-collection) reference
properties. Relationships with a cardinality of many or children are instances of the %RelationshipObject class, which has
an array-like interface.

For example, you could use the Company and Employee objects defined above in the following way:

 // create a new instance of Company
 Set company = ##class(MyApp.Company).%New()
 Set company.Name = "Chiaroscuro LLC"

 // create a new instance of Employee
 Set emp = ##class(MyApp.Employee).%New()
 Set emp.LastName = "Weiss"
 Set emp.FirstName = "Melanie"

 // Now associate Employee with Company
 Set emp.Employer = company

 // Save the Company (this will save emp as well)
 Do company.%Save()

 // Close the newly created objects 
 Set company = ""
 Set emp = ""

Relationships are fully bidirectional in memory; any operation on either side is immediately visible on the other side. Hence,
the code above is equivalent to the following, which instead operates on the company:

 Do company.Employees.Insert(emp)

 Write emp.Employer.Name 
 // this will print out "Chiaroscuro LLC"

You can load relationships from disk and use them as you would any other property. When you refer to a related object
from the one side, the related object is automatically swizzled into memory in the same way as a reference (object-valued)
property. When you refer to a related object from the many side, the related objects are not swizzled immediately; instead
a transient %RelationshipObject collection object is created. As soon as any methods are called on this collection, it builds
a list containing the ID values of the objects within the relationship. It is only when you refer to one of the objects within
this collection that the actual related object is swizzled into memory.

Here is an example that displays all Employee objects related to a specific Company:

 // open an instance of Company
 Set company = ##class(Company).%OpenId(id)

 // iterate over the employees; print their names
 Set key = ""

 Do {
    Set employee = company.Employees.GetNext(.key)
    If (employee '= "") {
        Write employee.Name,!
    }
 } While (key '= "")

In this example, closing company removes the Company object and all of its related Employee objects from memory. Note,
however, that every Employee object contained in the relationship will be swizzled into memory by the time the loop
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completes. To reduce the amount of memory that this operation uses—perhaps there are thousands of Employee objects—then
modify the loop to “unswizzle”  the Employee object after displaying the name, by calling the %UnSwizzleAt() method:

 Do {
    Set employee = company.Employees.GetNext(.key)
    If (employee '= "") {
        Write employee.Name,!
        // remove employee from memory
        Do company.Employees.%UnSwizzleAt(key)
    }
 } While (key '= "")

Important: Relationships do not support the list interface. That means you cannot get the count of related objects and
iterate over the relationship by incrementing a pointer from one (1) by one (1) up to the number of related
objects; instead, you must use array-collection style iteration. For more information on iterating through
objects in a relationship, see the reference page for %Library.RelationshipObject.

14.8 SQL Projection of Relationships
As described earlier in this book, a persistent class is projected as an SQL table. This section describes how relationships
of such a class are projected to SQL.

Note: Although you can modify the projection of the other properties of the classes involved, it is not possible to modify
the SQL projection of relationships per se. For example, it is not supported to specify the CLASSNAME property
parameter for the relationship. This parameter is mentioned in “Defining Object-Valued Properties”  earlier in
this book.

14.8.1 SQL Projection of One-to-Many Relationships

This section describes the SQL projection of a one-to-many relationship. As an example, consider the example one-to-many
classes shown earlier. In this case, the classes are projected as follows:

• On the one side (that is, in the company class), there is no field that represents the relationship. The company table has
fields for other properties, but there is no field that holds the employees.

• On the many side (that is, in the employee class), the relationship is a simple reference property, and that is projected
to SQL in the same way as other reference properties. The employee table has a field named Employer, which points
to the company table.

To query these tables together, you can query the employee table and use arrow syntax, as in the following example:

SELECT Employer->Name, LastName,FirstName FROM MyApp.Employee

Or you can perform an explicit join, as in the following example:

SELECT c.Name, e.LastName, e.FirstName FROM MyApp.Company c, MyApp.Employee e WHERE e.Employer = c.ID

Also, this pair of relationship properties implicitly adds a foreign key to the employee table; the foreign key has UPDATE
and DELETE both specified as NOACTION.

14.8.2 SQL Projection of Parent-Child Relationships

Similarly, consider the example parent-child classes shown earlier, which have a parent-child relationship between an
invoice and its line items. In this case, the classes are projected as follows:
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• On the parent side (that is, in the invoice class), there is no field that represents the relationship. The invoice table has
fields for other properties, but there is no field that holds the line items.

• On the child side (that is, in the line item class), the relationship is a simple reference property, and that is projected
to SQL in the same way as other reference properties. The line item table has a field named Invoice, which points
to the invoice table.

• Also on the child side, the IDs always include the ID of the parent record, even if you explicitly attempt to create an
IDKey based exclusively on the child. Also, if the definition of the IDKey in the child class explicitly includes the
parent relationship, the compiler recognizes this and does not add it again; this allows you to alter the sequence in
which the parent reference appears as a subscript in the generated global references.

As a consequence, it is not possible to add a bitmap index to this property, although other forms of index are permitted.

To query these tables together, you can query the invoice table and use arrow syntax, as in the following example:

SELECT 
Invoice->Buyer, Invoice->InvoiceDate, ID, ProductSKU, UnitPrice
FROM MyApp.LineItem

Or you can perform an explicit join, as in the following example:

SELECT 
i.Buyer, i.InvoiceDate, l.ProductSKU,l.UnitPrice 
FROM MyApp.Invoice i, MyApp.LineItem l 
WHERE i.ID = l.Invoice 

Also, for the class on the child side, the projected table is “adopted”  as a child table of the other table.

14.9 Creating Many-to-Many Relationships
InterSystems IRIS does not directly support many-to-many relationships, but this section describes how to model such a
relationship indirectly.

To establish a many-to-many relationship between class A and class B, do the following:

1. Create a intermediate class that will define each relationship.

2. Define a one-to-many relationship between that class and class A.

3. Define a one-to-many relationship between that class and class B.

Then, create a record in the intermediate class for each relationship between an instance of class A and an instance of class
B.

For example, suppose that class A defines doctors; this class defines the properties Name and Specialty. Class B defines
patients; this class defines the properties Name and Address. To model the many-to-many relationship between doctors
and patients, we could define an intermediate class as follows:

/// Bridge class between MN.Doctor and MN.Patient
Class MN.DoctorPatient Extends %Persistent
{

Relationship Doctor As MN.Doctor [ Cardinality = one, Inverse = Bridge ];

Index DoctorIndex On Doctor;

Relationship Patient As MN.Patient [ Cardinality = one, Inverse = Bridge ];

Index PatientIndex On Patient;
}

Then the doctor class looks like this:
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Class MN.Doctor Extends %Persistent
{

Property Name;

Property Specialty;

Relationship Bridge As MN.DoctorPatient [ Cardinality = many, Inverse = Doctor ];

}

And the patient class looks like this:

Class MN.Patient Extends %Persistent
{

Property Name;

Property Address;

Relationship Bridge As MN.DoctorPatient [ Cardinality = many, Inverse = Patient ];

}

The easiest way to query both doctors and patients is to query the intermediate table. The following shows an example:

SELECT top 20 Doctor->Name as Doctor, Doctor->Specialty, Patient->Name as Patient 
FROM MN.DoctorPatient order by doctor

Doctor  Specialty       Patient
Davis,Joshua M. Dermatologist   Wilson,Josephine J.
Davis,Joshua M. Dermatologist   LaRocca,William O.
Davis,Joshua M. Dermatologist   Dunlap,Joe K.
Davis,Joshua M. Dermatologist   Rotterman,Edward T.
Davis,Joshua M. Dermatologist   Gibbs,Keith W.
Davis,Joshua M. Dermatologist   Black,Charlotte P.
Davis,Joshua M. Dermatologist   Dunlap,Joe K.
Davis,Joshua M. Dermatologist   Rotterman,Edward T.
Li,Umberto R.   Internist       Smith,Wolfgang J.
Li,Umberto R.   Internist       Ulman,Mo O.
Li,Umberto R.   Internist       Gibbs,Keith W.
Li,Umberto R.   Internist       Dunlap,Joe K.
Quixote,William Q.      Surgeon Black,Charlotte P.
Quixote,William Q.      Surgeon LaRocca,William O.
Quixote,William Q.      Surgeon Black,Charlotte P.
Quixote,William Q.      Surgeon Smith,Wolfgang J.
Quixote,William Q.      Surgeon LaRocca,William O.
Quixote,William Q.      Surgeon LaRocca,William O.
Quixote,William Q.      Surgeon Black,Charlotte P.
Salm,Jocelyn Q. Allergist       Tsatsulin,Mark S.

As a variation, you can use a parent-child relationship in place of one of the one-to-many relationships. This provides the
physical clustering of the data as described earlier in this chapter, but it means that you cannot use a bitmap index on that
relationship.

14.9.1 Variation with Foreign Keys

Rather than defining relationships between the intermediate class and classes A and B, you can use reference properties
and foreign keys, so that the intermediate class MN.DoctorPatient looks like this instead of the version shown previously:

Class MN.DoctorPatient Extends %Persistent
{

Property Doctor As MN.Doctor;

ForeignKey DoctorFK(Doctor) References MN.Doctor();

Property Patient As MN.Patient;

ForeignKey PatientFK(Patient) References MN.Patient();

}

Foreign keys are discussed in more detail in “Using Foreign Keys”  in Using InterSystems SQL. Also see “Foreign Key
Definitions”  in the reference “Class Definitions”  in the Class Definition Reference.
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One advantage to using a simple foreign key model is that no inadvertent swizzling of large numbers of objects will occur.
One disadvantage is that no automatic swizzling is available.
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15
Other Options for Persistent Classes

This chapter describes other options that are available for persistent classes. It discusses the following topics:

• How to define a sharded class

• How to define a read-only class

• How to add indices

• How to add foreign keys

• How to add triggers

• How to refer to fields from ObjectScript

• How to add row-level security

Also see the chapters “ Introduction to Persistent Objects” , “Working with Persistent Objects” , and “Defining Persistent
Classes,”  as well as the appendix “Using the Object Synchronization Feature.”

When viewing this book online, use the preface of this book to quickly find other topics.

15.1 Defining a Sharded Class
If you are using sharding for horizontal scaling of data storage, you can define a sharded class by using the Sharded class
keyword in the class definition. A sharded class is a persistent class where the data is spread among the data nodes of a
sharded cluster, while the application accesses the data as if it were local.

Set Sharded = 1 to create a sharded class, as in the following example:

Class MyApp.Person Extends (%Persistent, %Populate) [ Sharded = 1 ]

Until sharded classes are fully implemented, InterSystems recommends creating sharded tables from SQL, not from the
object side.

For more information on sharding, see “Horizontally Scaling InterSystems IRIS for Data Volume with Sharding”  in the
Scalability Guide.
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15.2 Defining a Read-Only Class
It is possible to define a persistent class whose objects can be opened but not saved or deleted. To do this, specify the
READONLY parameter for the class as 1:

Parameter READONLY = 1;

This is only useful for cases where you have objects that are mapped to preexisting storage (such as existing globals or an
external database). If you call the %Save() method on a read-only object, it will always return an error code.

15.3 Adding Indices
Indices provide a mechanism for optimizing searches across the instances of a persistent class; they define a specific sorted
subset of commonly requested data associated with a class. They are very helpful in reducing overhead for performance-
critical searches.

Indices automatically span the entire extent of the class in which they are defined. If a Person class has a subclass Student,
all indices defined in Person contain both Person objects and Student objects. Indices defined in the Student class contain
only Student objects.

Indices can be sorted on one or more properties belonging to their class. This allows you a great deal of specific control of
the order in which results are returned.

In addition, indices can store additional data that is frequently requested by queries based on the sorted properties. By
including additional data as part of an index, you can greatly enhance the performance of the query that uses the index;
when the query uses the index to generate its result set, it can do so without accessing the main data storage facility. (See
the Data keyword below.)

For additional information on indices, refer to the “Defining and Building Indices”  chapter in SQL Optimization Guide;
of particular interest may be the section “Properties That Can Be Indexed.” Also see “ Index Definitions”  in the Class
Definition Reference.

15.4 Adding Foreign Keys
To enforce referential integrity between tables you can define foreign keys in the corresponding persistent classes. When
a table containing a foreign key constraint is modified, the foreign key constraints are checked. One way to add foreign
keys is to add relationships between classes; see the chapter “Defining and Using Relationships.” You can also add explicit
foreign keys to classes. For information, see “Using Foreign Keys”  in Using InterSystems SQL. Also see “Foreign Key
Definitions”  in the Class Definition Reference.

15.5 Adding Triggers
Because InterSystems SQL supports the use of triggers, any trigger associated with a persistent class is included as part of
the SQL projection of the class.
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Triggers are code segments executed when specific events occur in InterSystems SQL. InterSystems IRIS® supports triggers
based on the execution of INSERT, UPDATE, and DELETE commands. The specified code will be executed either
immediately before or immediately after the relevant command is executed, depending on the trigger definition. Each event
can have multiple triggers as long as they are assigned an execution order.

If a trigger is defined with Foreach = row/object, then the trigger is also called at specific points during object access.
See “Triggers and Transactions”  in “Using Triggers”  in Using InterSystems SQL.

Triggers are also fired by the persistence methods used by the legacy storage class, %Storage.SQL because it uses SQL
statements internally to implement its persistent behavior.

For more information on triggers, see “Triggers”  in Using InterSystems SQL. Also see “Trigger Definitions”  in the Class
Definition Reference.

15.6 Referring to Fields from ObjectScript
Within a class definition, there are several places that may include ObjectScript code used in SQL. For example, SQL
computed field code and trigger code is executed from within SQL. In these cases, there is no concept of a current object,
so it is not possible to use dot syntax to access or set data within a specific instance. Instead, you can access the same data
as fields within the current row using field syntax.

To reference a specific field of the current row, use the {fieldname} syntax where fieldname is the name of the field.

For example, the following code checks if the salary of an employee is less than 50000:

 If {Salary} < 50000 {
    // actions here...
 }

Note: In UPDATE trigger code, {fieldname} denotes the updated field value. In DELETE trigger code, {fieldname}
denotes the value of the field on disk.

To refer to the current field in a SQL computed field, use the {*} syntax.

For example, the following code might appear in the computed code for a Compensation field to compute its value based
on the values of Salary and Commission fields:

 Set {*} = {Salary} + {Commission}

For trigger-specific syntax, see the “Special Trigger Syntax”  section in the “Defining Triggers”  chapter in Using Inter-
Systems SQL.

15.7 Adding Row-Level Security
In addition to its general security, InterSystems IRIS provides SQL security with a granularity of a single row. This is called
row-level security. With row-level security, each row holds a list of authorized viewers, which can be either users or roles.
For more information on users and roles, see the “Users”  and “Roles”  chapters of the Security Administration Guide.

Typically, SQL security is controlled by granting SELECT privilege on a table or view to a user or role. The use of roles
simplifies access control when the number of security roles is substantially fewer than the number of users. In most cases,
view-level security provides adequate control over which rows each user can select; however, when the number of views
required to achieve the desired control becomes very large, another alternative for fine-grained access control is needed.
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For example, a hospital may make patient-specific data available online to each patient. Creating a separate view for each
patient is not a practical alternative; instead, fine-grained access control, in conjunction with the InterSystems IRIS role-
based authentication model, enables this type of application to be created efficiently and securely through row-level security.

The following are constraints on the use of row-level security:

• Row-level security is only available for persistent classes.

• Row-level security is only available for tables instantiated on the InterSystems IRIS server. It is not available for link
tables (that is, those that are instantiated on foreign servers).

• Row-level security is only enforced when accessing rows from SQL. It is not enforced when directly accessing globals
or when accessing globals via the object interface.

15.7.1 Setting Up Row-Level Security

To enable row-level security for a table, edit the definition of the class from which the table is projected.

1. In the class definition code, set the value of ROWLEVELSECURITY to 1, such as:

ROWLEVELSECURITY = 1;

This definition for the parameter means that row-level security is active and that the class uses the generated
%READERLIST property to store information about users and roles with authorized access to the row.

Alternatively, you can define the parameter as follows:

ROWLEVELSECURITY = rlsprop;

Where rlsprop is the name of a property in the same class. This alternative means that row-level security is active and
that the class uses the given property to store information about users and roles with authorized access to the row. In
this case, also add an index to the class as follows:

Index %RLI On rlsprop;

2. Define a %SecurityPolicy() class method, which determines and specifies the role and usernames that are permitted
to select the row, subject to view and table SELECT privileges.

The structure of the %SecurityPolicy() method is:

ClassMethod %SecurityPolicy() As %String [ SqlProc ]
{
    QUIT ""
}

Its characteristics are:

• It is a class method with the required name “%SecurityPolicy” .

• It returns a string (type %String).

• It takes zero or more arguments. If this method takes any arguments, each must match a property name in the class
and they must all be distinct from each other.

• The SqlProc keyword specifies that the method can be invoked as a stored procedure.

• The QUIT statement of the method returns the users or roles that may view the row. If there is more than one user
or role, QUIT must return a comma-separated list of their names. Returning the null string (as in the example)
specifies that the row is visible to all users who hold the SELECT privilege on the table.
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Important: A user who is assigned to the %All role does not automatically have access to rows in a table that are
protected with row-level security. If %All is to have access to such a row, the %SecurityPolicy()
method must explicitly specify this.

3. Compile the class and any dependent classes.

15.7.2 Adding Row-Level Security to a Table with Existing Data

To add row-level security to a table with existing data, first follow the procedure described in the previous section, “Setting
Up Row-Level Security.” Then:

1. Rebuild the indices for the table.

2. Update the value of the property that lists the users and roles who can view each row.

15.7.2.1 Rebuilding the Indices

CAUTION: Do not rebuild indices while users are accessing the data for this table. Doing so may result in inaccurate
query results.

The procedure to rebuild the indices for a table is:

1. If the table has any views defined that have the WITH CHECK OPTION clause, remove these views with the DROP
VIEW command. (You can re-create these views after updating who has access to each row).

2. From the Management Portal home page, go to the SQL page (System Explorer > SQL) page.

3. Select the namespace that contains the table.

4. Under Tables, select the name of the table. This displays the Catalog Details for the table.

5. On the Actions drop-down list, click Rebuild Table’s Indices.

For more information on rebuilding indices, see “Defining Indices”  in the chapter “Defining and Building Indices”  in
InterSystems SQL Optimization Guide.

15.7.2.2 Updating Who Can View Each Row

The procedure to do this is:

1. From the Management Portal home page, go to the SQL page (System Explorer > SQL) page.

2. Select the namespace that contains the table.

3. Click Execute Query.

4. In the editable area, issue a statement to update the table. It should have the following form:

UPDATE MySchema.MyClass SET rlsprop = 
                MySchema.SecurityPolicy(MySQLColumnName1, ...)

where

• MySchema is the schema (package) containing the class.

• MyClass is the name of the class.

• rlsprop is the field containing the list of users and roles who can read the row. This is %READERLIST by default
and the property name specified in the declaration of the ROWLEVELSECURITY parameter otherwise.
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• SecurityPolicy is value specified by the SqlName value in the definition of the %SecurityPolicy() method. If
there is no explicit SQL name for the %SecurityPolicy() method and its class is MySchema.MyClass, then its
default name is myClass_sys_SecurityPolicy (with a fully qualified form of
MySchema.MyClass_sys_SecurityPolicy).

• MySQLColumnName1, ... is the set of SQL column names corresponding to the arguments, if any, defined in the
%SecurityPolicy() class method.

5. Click Execute.

6. If desired, re-create any view that you initially removed.

15.7.3 Performance Tips and Information

The %READERLIST property is a calculated field and its value is determined by the %SecurityPolicy() method. Whenever
an INSERT or UPDATE occurs, %SecurityPolicy() is invoked for that row and populates the value of %READERLIST.

A collection index on the %READERLIST property is defined, and can be exploited by the query optimizer to minimize the
performance impact when row-level security is enabled.

By default, when you set ROWLEVELSECURITY equal to 1, a collection index is defined for the %READERLIST property
(column) because the security policy can, in general, return more than one comma-separated role or username. If your
security policy never returns more than one user or role name, then you can override the ROWLEVELSECURITY parameter
and explicitly define the %RLI index as an ordinary (non-collection) bitmap index. This generally provides optimal perfor-
mance.

15.7.4 Security Tips and Information

Keep in mind the following security factors when using row-level security:

• Row-level security operates in addition to table-level security. To execute a SELECT, INSERT, UPDATE, or
DELETE statement, a user must have been granted both table-level access and row-level access for the relevant row.

• User privileges are checked dynamically at runtime — when there is an attempt to execute an SQL command.

• If you create an updateable view and specify WITH CHECK OPTION, then an INSERT operation on that view
checks if the row to be inserted passes the WHERE clause that is specified in the view. Further, if you are creating
the view from a table with row-level security, then the INSERT fails if either the WHERE clause of the view or the
implicit row-level security predicate would cause that row to not be visible if you were to issue a command of SELECT
* FROM on the view.

• If you have access to a row, it is possible to change the value of the %READERLIST field (or whatever field holds the
list of users and roles who can view the row). This means that you can perform an action that, directly or indirectly,
removes your access to the row.

• If you attempt to insert a row that would have violated a UNIQUE constraint if row-level security had not been defined,
then it will still violate the constraint if row-level security is defined, regardless of whether the row causing the constraint
failure is visible to the updating transaction.
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16
Defining Method and Trigger Generators

A method generator is a specific kind of method that generates its own runtime code. Similarly, a trigger generator is a
trigger that generates its own runtime code. This chapter discusses them and covers the following topics:

• Introduction

• Basics

• How generators work

• Values available to method generators

• Values available to trigger generators

• How to define method generators

• Generators and INT code

• Generator methods and subclasses

This chapter primarily discusses method generators, but the details are similar for trigger generators.

Also see the chapter “Defining and Calling Methods”  and see “Adding Triggers”  in the chapter “Other Options for Per-
sistent Classes.”

When viewing this book online, use the preface of this book to quickly find other topics.

16.1 Introduction
A powerful feature of InterSystems IRIS® is the ability to define method generators: small programs that are invoked by
the class compiler to generate the runtime code for a method. Similarly a trigger generator is invoked by the class compiler
and generates the runtime code for a trigger.

Method generators are used extensively within the InterSystems IRIS class library. For example, most of the methods of
the %Persistent class are implemented as method generators. This makes it possible to give each persistent class customized
storage code, instead of less efficient, generic code. Most of the InterSystems IRIS data type class methods are also
implemented as method generators. Again, this gives these classes the ability to provide custom implementations that
depend on the context in which they are used.

You can use method and trigger generators within your own applications. For method generators, a common usage is to
define one or more utility superclasses that provide specialized methods for the subclasses that use them. The method
generators within these utility classes create special code based on the definition (properties, methods, parameter values,

Defining and Using Classes                                                                                                                                                149



etc.) of the class that uses them. Good examples of this technique are the %Populate and %XML.Adaptor classes provided
within the InterSystems IRIS library.

16.2 Basics
A method generator is simply a method of an InterSystems IRIS class that has its CodeMode keyword set to “objectgener-
ator” :

Class MyApp.MyClass Extends %RegisteredObject
{
Method MyMethod() [ CodeMode = objectgenerator ]
    {
        Do %code.WriteLine(" Write """ _ %class.Name _ """")
        Do %code.WriteLine(" Quit")
        Quit $$$OK
    }
}

When the class MyApp.MyClass is compiled, it ends up with a MyMethod method with the following implementation:

 Write "MyApp.MyClass"
 Quit

You can also define trigger generators. To do so, use CodeMode = “objectgenerator”  in the definition of a trigger. The
values available within your trigger are slightly different than those in a method generator.

16.3 How Generators Work
A method generator takes effect when you compile a class. The operation of a method generator is straightforward. When
you compile a class definition, the class compiler does the following:

1. It resolves inheritance for the class (builds a list of all inherited members).

2. It makes a list of all methods specified as method generators (by looking at the CodeMode keyword of each method).

3. It gathers the code from all method generators, copies it into one or more temporary routines, and compiles them (this
makes it possible to execute the method generator code).

4. It creates a set of transient objects that represent the definition of the class being compiled. These objects are made
available to the method generator code.

5. It executes the code for every method generator.

If present, the compiler will arrange the order in which it invokes the method generators by looking at the value of the
GenerateAfter keyword for each of the methods. This keyword gives you some control in cases where there may be
compiler timing dependencies among methods.

6. It copies the results of each method generator (lines of code plus any changes to other method keywords) into the
compiled class structure (used to generate the actual code for the class).

Note that the original method signature (arguments and return type), as well as any method keyword values, are used
for the generated method. If you specify a method generator as having a return type of %Integer, then the actual method
will have a return type of %Integer.

7. It generates the executable code for the class by combining the code generated by the method generators along with
the code from all the non-method generator methods.
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The details are similar for trigger generators.

16.4 Values Available to Method Generators
The key to implementing method generators is understanding the context in which method generator code is executed. As
described in the previous section, the class compiler invokes the method generator code at the point after it has resolved
class inheritance but before it has generated code for the class. When it invokes method generator code, the class compiler
makes the following variables available to the method generator code:

Table 16–1:Variables Available to Method Generators

DescriptionVariable

An instance of the %Stream.MethodGenerator class. This is a stream into which you
write the code for the method.

%code

An instance of the %Dictionary.ClassDefinition class. It contains the original definition
of the class.

%class

An instance of the %Dictionary.MethodDefinition class. It contains the original definition
of the method.

%method

An instance of the %Dictionary.CompiledClass class. It contains the compiled definition
of the class being compiled. Thus, it contains information about the class after
inheritance has been resolved (such as the list of all properties and methods,
including those inherited from superclasses).

%compiledclass

An instance of the %Dictionary class for the compiled method, for
example,%Dictionary.CompiledMethod, %Dictionary.CompiledPropertyMethod

or%Dictionary.CompiledIndexMethod. It contains the compiled definition of the method
being generated.

%compiledmethod or
%objcompiledmethod

An array that contains the values of any class parameters indexed by parameter
name. For example, %parameter("MYPARAM"), contains the value of the MYPARAM
class parameter for the current class.This variable is provided as an easier alternative
to using the list of parameter definitions available via the %class object.

%parameter

For member methods, the kind of class member that relates to this method, for
example, a for property methods or i for index methods.

%kind or
%membertype

The type of method, for example, method, propertymethod, or indexmethod.%mode

For member methods, the name of the class member that relates to this method.%pqname or
%member

16.5 Values Available to Trigger Generators
Like methods, triggers can be defined as generators. That is, you can use CodeMode = “objectgenerator”  in the definition
of a trigger. The following variables are available within the trigger generator:
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Table 16–2: Added Variables Available to Trigger Generators

DescriptionVariable

See the preceding section.%code, %class,
%compiledclass, and
%parameter

An instance of the %Dictionary.TriggerDefinition class. It contains the original definition
of the trigger.

%trigger

An instance of the %Dictionary.CompiledTrigger class. It contains the compiled definition
of the trigger being generated.

%compiledtrigger or
%objcompiledmethod

For triggers, this is the value t.%kind or
%membertype

For triggers, this is the value trigger.%mode

The name of this trigger.%pqname or
%member

16.6 Defining Method Generators
To define a method generator, do the following:

1. Define a method and set its CodeMode keyword to “objectgenerator” .

2. In the body of the method, write code that generates the actual method code when the class is compiled. This code
uses the %code object to write out the code. It will most likely use the other available objects as inputs to decide what
code to generate.

The following is an example of a method generator that creates a method that lists the names of all the properties of the
class it belongs to:

ClassMethod ListProperties() [ CodeMode = objectgenerator ]
{
    For i = 1:1:%compiledclass.Properties.Count() {
        Set prop = %compiledclass.Properties.GetAt(i).Name
        Do %code.WriteLine(" Write """ _ prop _ """,!")
    }
    Do %code.WriteLine(" Quit")
    Quit $$$OK
}

This generator will create a method with an implementation similar to:

 Write "Name",!
 Write "SSN",!
 Quit

Note the following about the method generator code:

1. It uses the WriteLine method of the %code object to write lines of code to a stream containing the actual implementation
for the method. (You can also use the Write method to write text without an end-of-line character).

2. Each line of generated code has a leading space character. This is required because ObjectScript does not allow commands
within the first space of a line. This would not be the case if our method generator is creating Basic or Java code.

3. As the lines of generated code appear within strings, you have to be very careful about escaping quotation mark char-
acters by doubling them up ("").
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4. To find the list of properties for the class, it uses the %compiledclass object. It could use the %class object, but then
it would only list properties defined within the class being compiled; it would not list inherited properties.

5. It returns a status code of $$$OK, indicating that the method generator ran successfully. This return value has nothing
to do with the actual implementation of the method.

16.6.1 Specifying CodeMode within a Method Generator

By default, a method generator will create a “code”  method (that is, the CodeMode keyword for the generated method is
set to “code” ). You can change this using the CodeMode property of the %code object.

For example, the following method generator will generate an ObjectScript expression method:

Method Double(%val As %Integer) As %Integer [ CodeMode = objectgenerator ]
{
    Set %code.CodeMode = "expression"
    Do %code.WriteLine("%val * 2")
}

16.7 Generators and INT Code
For method and trigger generators, it can be very useful to display the corresponding INT code after compiling the class.
See the Atelier documentation for how to do this.

Note that if the generator is simple enough to be implemented in the kernel, there is no generated .INT code for it.

16.8 Generator Methods and Subclasses
This section discusses topics specific to generator methods in subclasses of the class in which they were defined.

It is necessary, of course, to compile any subclasses after compiling the superclass.

16.8.1 Method Regeneration in Subclasses

When you subclass a class that defines generator methods, InterSystems IRIS uses the same compilation rules that are
described earlier in this chapter. InterSystems IRIS does not, however, recompile a method in a subclass if the generated
code looks the same as the superclass generated code. This logic does not consider whether the include files are the same
for both classes. If the method uses a macro that is defined in an include file and if the subclass uses a different include
file, InterSystems IRIS would not recompile the method in the subclass. You can, however, force the generator method to
be recompiled in every class. To do so, specify the method keyword ForceGenerate for that method. There may be additional
scenarios where this keyword is needed.

16.8.2 Invoking the Method in the Superclass

If you need a subclass to use the method generated for the superclass, rather than a locally generated method, do the following
in the subclass: define the generator method so that it just returns $$$OK, as in the following example:

ClassMethod Demo1() [ CodeMode = objectgenerator ]
{
    quit $$$OK
}
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16.8.3 Removing a Generated Method

You can remove a generated method from a subclass, so that it cannot be invoked in that class. To do so, when you define
the generator method in the superclass, include logic that examines the name of the current class and generates code only
in the desired scenarios. For example:

ClassMethod Demo3() [ CodeMode = objectgenerator ]
{
    if %class.Name="RemovingMethod.ClassA" {
        Do %code.WriteLine(" Write !,""Hello from class: " _ %class.Name _ """")
    }
    quit $$$OK
}

If you try to invoke this method in any subclass, you receive the error <METHOD DOES NOT EXIST>.

Note that this logic is subtly different from that described in the previous section. If a generator method in a given class
exists but has a null implementation, the method of the superclass, if any, is used instead. But if a generator method in a
given class does not generate code for a given subclass, the method does not exist in that subclass and cannot be invoked.
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17
Defining and Using Class Queries

This chapter discusses class queries, which act as named queries that are part of a class structure and that can be accessed
via dynamic SQL. It discusses the following topics:

• Introduction

• How to use class queries

• How to define basic class queries

• How to define custom class queries

• How to define parameters for custom queries

• Uses of custom queries

• SQL cursors and class queries

When viewing this book online, use the preface of this book to quickly find related topics.

17.1 Introduction to Class Queries
A class query is a tool — contained in a class and meant for use with dynamic SQL — to look up records that meet specified
criteria. With class queries, you can create predefined lookups for your application. For example, you can look up records
by name, or provide a list of records that meet a particular set of conditions, such as all the flights from Paris to Madrid.

By creating a class query, you can avoid having to look up a particular object by its internal ID. Instead, you can create a
query that looks based on any class properties that you want. These can even be specified from user input at runtime.

If you define a custom class query, your lookup logic can use ObjectScript and can be arbitrarily complex.

There are two kinds of class queries:

• Basic class queries, which use the class %SQLQuery and an SQL SELECT statement.

• Custom class queries, which use the class %Query and custom logic to execute, fetch, and close the query.

Note that you can define class queries within any class; there is no requirement to contain them within persistent classes.

Important: Do not define a class query that depends upon the results of another class query. Such a dependency is not
supported.
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17.2 Using Class Queries
Before looking at how to define class queries, it is useful to see how you can use them. In server-side code, you can use a
class query as follows:

1. Use %New() to create an instance of %SQL.Statement.

2. Call the %PrepareClassQuery() method of that instance. As arguments, use the following, in order:

a. Fully qualified name of the class that defines the query that you want to use.

b. Name of the query in that class.

This method returns a %Status value, which you should check.

3. Call the %Execute() method of the %SQL.Statement instance. This returns an instance of %SQL.StatementResult.

4. Use methods of %SQL.StatementResult to retrieve data from the result set. For details, see “Dynamic SQL”  in Using
InterSystems SQL.

The following shows a simple example that you can use. This example uses the ByName query of Sample.Person:

 // classquerydemo

#include %occInclude

 set statement=##class(%SQL.Statement).%New()
 set status=statement.%PrepareClassQuery("Sample.Person","ByName")
 if $$$ISERR(status) { do $system.OBJ.DisplayError(status) }
 set resultset=statement.%Execute()
 while resultset.%Next() {
    write !, resultset.%Get("Name")
 }

If the query is marked with SqlProc, which defines it as an ODBC or JDBC stored procedure, you can invoke it as a stored
procedure from an SQL context. See “Defining and Using Stored Procedures” in Using InterSystems SQL.

17.3 Defining Basic Class Queries
To define a basic class query, define a query as follows:

• (For simple class queries) The type should be %SQLQuery.

• In the argument list, specify any arguments that the query should accept.

• In the body of the definition, write an SQL SELECT statement.

In this statement, to refer to an argument, precede the argument name with a colon (:).

This SELECT statement should not include an INTO clause.

• Specify the ROWSPEC parameter of the query (in parentheses, after the query type). This parameter provides information
on the names, data types, headings, and order of the fields in each row of the result set of the query. The second sub-
section provides the details.

• Optionally specify the CONTAINID parameter of the query (in parentheses, after the query type). This parameter
specifies the column number of the field, if any, that contains the ID for a particular row; the default is 1. The third
subsection provides the details.

Together, the ROWSPEC and CONTAINID parameters are known as the query specification.
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• Include the SqlProc keyword in the query definition.

If you plan to use %SQL.Statement to invoke the query, you must specify the SqlProc keyword.

• Optionally specify the SqlName keyword in the query definition, if you want the name of the stored procedure to be
other than the default name.

These are compiler keywords, so include them in square brackets after any parameters, after the query type (%SQLQuery).

The following subsection shows an example.

17.3.1 Example

The following shows a simple example:

Query ListEmployees(City As %String = "") 
   As %SQLQuery (ROWSPEC="ID:%Integer,Name:%String,Title:%String", CONTAINID = 1) [SqlProc, 
SqlName=MyProcedureName]
{
SELECT ID,Name,Title FROM Employee
 WHERE (Home_City %STARTSWITH :City)
 ORDER BY Name
}

Note: If you call a class query using ADO.NET, ODBC, or JDBC, any string parameters will be truncated to 50 characters
by default. To increase the maximum string length for a parameter, specify a MAXLEN in the signature, as in the
following example:

Query MyQuery(MyParm As %String(MAXLEN = 200)) As %SQLQuery [SqlProc]

This truncation does not occur if you call the query from the Management Portal or from ObjectScript.

17.3.2 About ROWSPEC

The ROWSPEC parameter for a query provides information on the names, data types, headings, and order of the fields in
each row. It is a quoted and comma-separated list of variable names and data types of the form:

ROWSPEC = "Var1:%Type1,Var2:%Type2[:OptionalDescription],Var3"

The ROWSPEC specifies the order of fields as a comma-separated list. The information for each field consists of a colon-
separated list of its name, its data type (if it is different than the data type of the corresponding property), and an optional
heading.

The number of elements in the ROWSPEC parameter must match the number of fields in the query. Otherwise, InterSystems
IRIS® returns a “Cardinality Mismatch”  error.

For an example, the ByName query of the Sample.Person class is as follows:

Query ByName(name As %String = "") 
    As %SQLQuery(CONTAINID = 1, ROWSPEC = "ID:%Integer,Name,DOB,SSN", SELECTMODE = "RUNTIME") 
   [ SqlName = SP_Sample_By_Name, SqlProc ]
{
        SELECT ID, Name, DOB, SSN
            FROM Sample.Person
            WHERE (Name %STARTSWITH :name)
            ORDER BY Name
}

Here, the CONTAINID parameter specifies that the row ID is the first field (the default); note that the first field specified
in the SELECT statement is ID. The ROWSPEC parameter specifies that the fields are ID (treated as an integer), Name,
DOB, and SSN; similarly, the SELECT statement contains the fields ID, Name, DOB, and SSN, in that order.
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17.3.3 About CONTAINID

CONTAINID should be set to the number of the column returning the ID (1, by default) or to 0 if no column returns the
ID.

Note: The system does not validate the value of CONTAINID. If you specify a non-valid value for this parameter, there
is no error message. This means that if your query processing logic depends on this information, you may experience
inconsistencies if the CONTAINID parameter is set improperly.

17.3.4 Other Parameters of the Query Class

In addition to ROWSPEC and CONTAINID, you can specify the following parameters of the query. These are class
parameters for %SQLQuery:

• SELECTMODE

• COMPILEMODE

For details, see the class reference for %Library.SQLQuery and %Library.Query (its superclass).

17.4 Defining Custom Class Queries
Although simple %SQLQuery queries perform all result set management for you, this is not sufficient for certain applications.
For such situations, InterSystems IRIS allows you to write custom queries, which are defined in methods (which by default
are written in ObjectScript). To define a custom query, use the instructions given earlier in this chapter, with the following
changes:

• Specify %Query for the query type.

• Leave the body of the query definition empty. For example:

Query All() As %Query(CONTAINID = 1, ROWSPEC = "Title:%String,Author:%String")
{
}

• Define the following class methods in the same class:

– querynameExecute — This method must perform any one-time setup.

– querynameFetch — This method must return a row of the result set; each subsequent call returns the next row.

– querynameClose — This method must perform any cleanup operations.

Where queryname is the name of the query.

Each of these methods accepts an argument (qHandle), which is passed by reference. You can use this argument to
pass information among these methods.

These methods define the query. The following subsections provide details on them.

For basic demonstration purposes, the first three subsections show a simple example that could also be implemented as a
basic class query. These methods implement the code for the following query:

Query AllPersons() As %Query(ROWSPEC = "ID:%String,Name:%String,DOB:%String,SSN:%String")
{
}
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The next section shows a more complex example. Also see “Uses of Custom Queries,”  for information on other use cases.

17.4.1 Defining the querynameExecute() Method

The querynameExecute() method must provide all the setup logic needed. The name of the method must be
querynameExecute, where queryname is the name of the query. This method must have the following signature:

ClassMethod queryNameExecute(ByRef qHandle As %Binary, 
                             additional_arguments) As %Status

Where:

• qHandle is used to communicate with the other methods that implement this query.

This method should set qHandle as needed by the querynameFetch method.

Although qHandle is formally of type %Binary, it can hold any value, including an OREF or a multidimensional array.

• additional_arguments is any runtime parameters that the query can use.

Within this implementation of method, use the following general logic:

1. Perform any one-time setup steps.

For queries using SQL code, this method typically includes declaring and opening a cursor.

2. Set qHandle as needed by the querynameFetch method.

3. Return a status value.

The following shows a simple example, the AllPersonsExecute() method for the AllPersons query introduced earlier:

ClassMethod AllPersonsExecute(ByRef qHandle As %Binary) As %Status
{
    set statement=##class(%SQL.Statement).%New()
    set status=statement.%PrepareClassQuery("Sample.Person","ByName")
    if $$$ISERR(status) { quit status }
    set resultset=statement.%Execute()
    set qHandle=resultset
    Quit $$$OK
}

In this scenario, the method sets qHandle equal to an OREF, specifically an instance of %SQL.StatementResult, which is
the value returned by the %Execute() method.

As noted earlier, this class query could also be implemented as a basic class query rather than a custom class query. Some
custom class queries do, however, use dynamic SQL as a starting point.

17.4.2 Defining the querynameFetch() Method

The querynameFetch() method must return a single row of data in $List format. The name of the method must be
querynameFetch, where queryname is the name of the query. This method must have the following signature:

ClassMethod queryNameFetch(ByRef qHandle As %Binary, 
                           ByRef Row As %List,
                           ByRef AtEnd As %Integer = 0) As %Status [ PlaceAfter = querynameExecute ]

Where:

• qHandle is used to communicate with the other methods that implement this query.

When InterSystems IRIS starts executing this method, qHandle has the value established by the querynameExecute
method or by the previous invocation (if any) of this method. This method should set qHandle as needed by subsequent
logic.
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Although qHandle is formally of type %Binary, it can hold any value, including an OREF or a multidimensional array.

• Row must be either a %List of values representing a row of data being returned or a null string if no data is returned.

• AtEnd must be 1 when the last row of data has been reached.

• The PlaceAfter method keyword controls the position of this method in the generated routine code. For
querynameExecute, substitute the name of the specific querynameExecute() method. Be sure to include this if your
query uses SQL cursors. (The ability to control this order is an advanced feature that should be used with caution.
InterSystems does not recommend general use of this keyword.)

Within this implementation of method, use the following general logic:

1. Check to determine if it should return any more results.

2. If appropriate, retrieve a row of data and create a %List object and place that in the Row variable.

3. Set qHandle as needed by subsequent invocations (if any) of this method or needed by the querynameClose() method.

4. If no more rows exist, set Row to a null string and set AtEnd to 1.

5. Return a status value.

For the AllPersons example, the AllPersonsFetch() method could be as follows:

ClassMethod AllPersonsFetch(ByRef qHandle As %Binary, ByRef Row As %List, ByRef AtEnd As %Integer = 0)
 As %Status 
[ PlaceAfter = AllPersonsExecute ]
{
    set rs=$get(qHandle)
    if rs="" quit $$$OK

    if rs.%Next() {
        set Row=$lb(rs.%GetData(1),rs.%GetData(2),rs.%GetData(3),rs.%GetData(4))
        set AtEnd=0
    } else {
        set Row=""
        set AtEnd=1
    }
    Quit $$$OK
}

Notice that this method uses the qHandle argument, which provides a %SQL.StatementResult object. The method then uses
methods of that class to retrieve data. The method builds a $List and places that in the Row variable, which is returned as
a single row of data. Also notice that the method contains logic to set the AtEnd variable when no more data can be retrieved.

As noted earlier, this class query could also be implemented as a basic class query rather than a custom class query. The
purpose of this example is to demonstrate setting the Row and AtEnd variables.

17.4.3 The querynameClose() Method

The querynameClose() method must perform any needed clean up, after data retrieval has finished. The name of the
method must be querynameClose, where queryname is the name of the query. This method must have the following signature:

ClassMethod queryNameClose(ByRef qHandle As %Binary) As %Status [ PlaceAfter = querynameFetch ]

Where:

• qHandle is used to communicate with the other methods that implement this query.

When InterSystems IRIS starts executing this method, qHandle has the value established by the last invocation of the
querynameFetch method.

• The PlaceAfter method keyword controls the position of this method in the generated routine code. For querynameFetch,
substitute the name of the specific querynameFetch() method. Be sure to include this if your query uses SQL cursors.
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(The ability to control this order is an advanced feature that should be used with caution. InterSystems does not recom-
mend general use of this keyword.)

Within this implementation of method, remove variables from memory, close any SQL cursors, or perform any other
cleanup as needed. The method must return a status value.

For the AllPersons example, the AllPersonsClose() method could be as follows:

For example, the signature of a ByNameClose() method might be:

ClassMethod AllPersonsClose(ByRef qHandle As %Binary) As %Status [ PlaceAfter = AllPersonsFetch ]
{
        Set qHandle=""
        Quit $$$OK
}

17.4.4 Generated Methods for Custom Queries

The system automatically generates the querynameGetInfo() and querynameFetchRows(). Your application does not
call any of these methods directly.

17.5 Defining Parameters for Custom Queries
If the custom query should accept parameters, do the following:

• Include them in the argument list of the query class member. The following example uses a parameter named MyParm:

Query All(MyParm As %String) As %Query(CONTAINID = 1, ROWSPEC = "Title:%String,Author:%String")
{
}

• Include the same parameters in the argument list for querynameExecute method, in the same order as in the query
class member.

• In the implementation of the querynameExecute method, use the parameters as appropriate for your needs.

Note: If you call a class query using ADO.NET, ODBC, or JDBC, any string parameters will be truncated to 50 characters
by default. To increase the maximum string length for a parameter, specify a MAXLEN in the signature, as in the
following example:

Query MyQuery(MyParm As %String(MAXLEN = 200)) As %Query [SqlProc]

This truncation does not occur if you call the query from the Management Portal or from ObjectScript.

17.6 When to Use Custom Queries
The following list suggests some scenarios when custom queries are appropriate:

• If it is necessary to use very complex logic to determine whether to include a specific row in the returned data. The
querynameFetch() method can contain arbitrarily complex logic.

• If you have an API that returns data in format that is inconvenient for your current use case. In such a scenario, you
would define the querynameFetch() method so that converts data from that format into a $List, as needed by the Row
variable.
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• If the data is stored in a global that does not have a class interface.

• If access to the data requires role escalation. In this scenario, you can perform the role escalation within the
querynameExecute() method.

• If access to the data requires calling out to the file system (for example, when building a list of files). In this scenario,
you can perform the callout within the querynameExecute() method and then stash the results either in qHandle or
in a global.

• If it is necessary to perform a security check, check connections, or perform some other special setup work before
retrieving data. You would do such work within the querynameExecute() method.

Note: Custom class queries are not supported for sharded classes.

17.7 SQL Cursors and Class Queries
If a class query uses an SQL cursor, note the following points:

• Cursors generated from queries of type %SQLQuery automatically have names such as Q14.

You must ensure that your cursors are given distinct names.

• Error messages refer to the internal cursor name, which typically has an extra digit. Therefore an error message for
cursor Q140 probably refers to Q14.

• The class compiler must find a cursor declaration before making any attempt to use the cursor. This means that you
must take extra care when defining a custom query that uses cursors.

The DECLARE statement (usually in querynameExecute() method) must be in the same MAC routine as the Close
and Fetch and must come before either of them. As shown earlier in this chapter, use the method keyword PlaceAfter
in both the querynameFetch() and querynameClose() method definitions to make sure this happens.
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18
Defining and Using XData Blocks

An XData block is a class member that consists of a name and a unit of data that you include in a class definition for use
by the class after compilation. This chapter discusses XData blocks and covers the following topics:

• Basics

• Using XData (XML example)

• Using XData (JSON example)

• Using XData (YAML example)

When viewing this book online, use the preface of this book to quickly find related topics.

18.1 Basics
An XData block is a named unit of data that you include in a class definition, typically for use by a method in the class.
Most frequently, it is a well-formed XML document, but it could consist of other forms of data, such as JSON or YAML.

You can create an XData block by typing it directly in Atelier.

An XData block is a named class member (like properties, methods, and so on). The available XData block keywords
include:

• SchemaSpec — Optionally specifies an XML schema against which the XData can be validated.

• XMLNamespace — Optionally specifies the XML namespace to which the XData block belongs. You can also, of
course, include namespace declarations within the XData block itself.

• MimeType — The MIME type (more formally, the Internet media type) of the contents of the XData block. The default
is text/xml.

If used to store XML, the XData block must consist of one root XML element, with any valid contents.

18.2 Using XData (XML Example)
To access an XML document in an arbitrary XData block programmatically, you use %Dictionary.CompiledXData and other
classes in the %Dictionary package.
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An XData block is useful if you want to define a small amount of system data. For example, suppose that the
EPI.AllergySeverity class includes the properties Code (for internal use) and Description (for display to the
users). This class could include an XData block like the following:

XData LoadData
{
<table>
 <row>1^Minor</row>
 <row>2^Moderate</row>
 <row>3^Life-threatening</row>
 <row>9^Inactive</row>
 <row>99^Unable to determine</row>
</table>
}

The same class could also include a class method that reads this XData block and populates the table, as follows:

/// called by EPI.Utils.GenerateData
ClassMethod Setup() As %Status
{
   //first kill extent
   do ..%KillExtent()

   // Get a stream of XML from the XData block contained in this class
   Set xdataID="EPI.AllergySeverity||LoadData"
   Set compiledXdata=##class(%Dictionary.CompiledXData).%OpenId(xdataID)
   Set tStream=compiledXdata.Data
   If '$IsObject(tStream) Set tSC=%objlasterror Quit

   set status=##class(%XML.TextReader).ParseStream(tStream,.textreader)
   //check status
   if $$$ISERR(status) do $System.Status.DisplayError(status) quit

   //iterate through document, node by node
   while textreader.Read()
   {
       if (textreader.NodeType="chars")
       {
           set value=textreader.Value
           set obj=..%New()
           set obj.Code=$Piece(value,"^",1)
           set obj.Description=$Piece(value,"^",2)
           do obj.%Save()
       }
   }
}

Notice the following:

• The XML within the XData is minimal. That it, instead of presenting the allergy severities as XML element with their
own elements or attributes, the XData block simply presents rows of data as delimited strings. This approach allows
you to write the setup data in a visually compact form.

• The EPI.AllergySeverity class is not XML-enabled and does not need to be XML-enabled.

18.3 Using XData (JSON Example)
A class could also include an XData block containing JSON content, like the following:

XData LoadJSONData [MimeType = "application/json"]
{
   {
      "person":"John", 
      "age":30, 
      "car":"Ford"
   }
}

The same class could also include a class method that reads this XData block and populates a dynamic object, as follows:
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/// Reads a JSON XData block
ClassMethod SetupJSON() As %Status
{

   // Get a stream of JSON from the XData block contained in this class
   Set xdataID="Demo.XData||LoadJSONData"
   Set compiledXdata=##class(%Dictionary.CompiledXData).%OpenId(xdataID)
   Set tStream=compiledXdata.Data
   If '$IsObject(tStream) Set tSC=%objlasterror Quit

   // Create a dynamic object from the JSON content and write it as a string
   Set dynObject = {}.%FromJSON(tStream)
   Write dynObject.%ToJSON()

}

18.4 Using XData (YAML Example)
A class could also include an XData block containing YAML content, like the following Swagger API specification:

XData SampleAPI [mimetype = "application/yaml"] 
{
swagger: "2.0"
info:
  title: Sample API
  description: API description in Markdown.
  version: 1.0.0
host: api.example.com
basePath: /v1
schemes:
  - https
paths:
  /users:
    get:
      summary: Returns a list of users.
      description: Optional extended description in Markdown.
      produces:
        - application/json
      responses:
        200:
          description: OK
}

This class method reads the XData block and writes its content, line by line:

/// Reads a YAML XData block
ClassMethod SetupYAML() As %Status
{

   // Get a stream of YAML from the XData block contained in this class
   Set xdataID="Demo.XData||SampleAPI"
   Set compiledXdata=##class(%Dictionary.CompiledXData).%OpenId(xdataID)
   Set tStream=compiledXdata.Data
   If '$IsObject(tStream) Set tSC=%objlasterror Quit

   // Write the content from the stream, line by line
   While 'tStream.AtEnd { 
      Write tStream.ReadLine(,.sc,.eol) 
      If eol { Write ! } 
   }
}

Defining and Using Classes                                                                                                                                                165

Using XData (YAML Example)





19
Defining Class Projections

This chapter discusses class projections, which provide a way to customize what happens when a class is compiled or
removed. It discusses the following topics:

• Introduction

• How to add a projection to a class

• How to define a new projection class

When viewing this book online, use the preface of this book to quickly find related topics.

19.1 Introduction
Class projections provide a way to customize what happens when a class is compiled or removed. A class projection associates
a class definition with a projection class. The projection class (derived from the %Projection.AbstractProjection class) provides
methods that InterSystems IRIS® uses to automatically generate additional code at two times:

• When the class is compiled

• When the class is deleted

This mechanism is used by the Java projections (hence the origin of the term projection) to automatically generate the
necessary client binding code whenever a class is compiled.

19.2 Adding a Projection to a Class
To add a projection to a class definition, use the Projection statement within a class definition:

class MyApp.Person extends %Persistent
{
Projection JavaClient As %Projection.Java(ROOTDIR="c:\java");
}

This example defines a projection named JavaClient that will use the %Projection.Java projection class. When the
methods of the projection class are called, they will receive the value of the ROOTDIR parameter.

A class can have multiple uniquely named projections. In the case of multiple projections, the methods of each projection
class will be invoked when a class is compiled or deleted. The order in which multiple projections are handled is undefined.
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InterSystems IRIS provides the following projection classes:

DescriptionClass

Generates a Java client class to enable access to the class from
Java.

%Projection.Java

Registers this class as a routine that works with Log Monitor.
Metadata is written to Monitor.Application, Monitor.Alert, Monitor.Item and
Monitor.ItemGroup. A new persistent class is created called
Monitor.Sample.

%Projection.Monitor

Generates an MV class that enables access to the class from MV.%Projection.MV

Registers this class as a routine that works with Studio.%Projection.StudioDocument

Projects the XData menu block to the menu table.%Studio.Extension.Projection

You can also create your own projection classes and use them in the same way as you would any built-in projection class.

19.3 Creating a New Projection Class
To create a new projection class, create a subclass of the %Projection.AbstractProjection class, implement the projection
interface methods (see the subsection), and define any needed class parameters. For example:

Class MyApp.MyProjection Extends %Projection.AbstractProjection
{

Parameter MYPARAM;

/// This method is invoked when a class is compiled
ClassMethod CreateProjection(cls As %String, ByRef params) As %Status
{
    // code here...
    QUIT $$$OK 
}

/// This method is invoked when a class is 'uncompiled'
ClassMethod RemoveProjection(cls As %String, ByRef params, recompile as %Boolean) As %Status
{
    // code here...
    QUIT $$$OK 
  }
}

19.3.1 The Projection Interface

Every projection class implements the projection interface, a set of methods that are called in response to certain events
during the life cycle of a class. This interface consists of the following methods:

CreateProjection()

The CreateProjection() method is a class method that is invoked by the class compiler after it completes the
compilation of a class definition. This method is passed the name of the class being compiled as well as an array
containing the parameter values (subscripted by parameter name) defined for the projection.

RemoveProjection()

The RemoveProjection() method is a class method that is invoked either:

• When a class definition is deleted
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• At the start of a recompilation of the class

This method is passed the name of the class being removed, an array containing the parameter values (subscripted
by parameter name) defined for the projection, and a flag indicating whether the method is being called as part of
a recompilation or because the class definition is being deleted.

When a class definition containing a projection is compiled, the following events occur:

1. If the class has been compiled previously, it will be uncompiled before the new compile begins; that is, all the results
of the previous compilation are removed. At this time, the compiler invokes the RemoveProjection() method for every
projection with a flag indicating that a recompilation is about to occur.

Note that you cannot call methods of the associated class from within the RemoveProjection() method, because the
class does not exist at this point.

Also note that if you add a new projection definition to a class that had been previously compiled (without the projection),
then the compiler will call the RemoveProjection() method on the next compilation even though the CreateProjection()
method has never been called. Implementers of the RemoveProjection() method must plan for this possibility.

2. After the class is completely compiled (that is, it is ready for use), the compiler will invoke the CreateProjection()
method for every projection.

When a class definition is deleted, the RemoveProjection() method is invoked for every projection with a flag indicating
that a deletion has occurred.
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20
Defining Callback Methods

Callback methods are called by system methods to allow additional user-supplied processing. Callback methods are identi-
fiable by having names that begin with %On or On, typically followed by the name of the method that invokes them.

If a system method has an implemented callback method, then when the system method runs, that method invokes the
callback method. For example, %Delete() invokes %OnDelete(), if %OnDelete() is implemented.

Important: Do not execute callback methods directly.

Table 20–1: Callback Methods

Private Method?Method TypeImplemented forCallback Name

YesInstance%RegisteredObject%OnAddToSaveSet()

YesClass%Persistent%OnAfterBuildIndices()

YesClass%Persistent%OnAfterDelete()

YesClass%Persistent%OnAfterPurgeIndices()

YesInstance%Persistent%OnAfterSave()

YesClass%Persistent%OnBeforeBuildIndices()

YesClass%Persistent%OnBeforePurgeIndices()

YesInstance%Persistent%OnBeforeSave()

YesInstance%RegisteredObject%OnClose()

YesInstance%RegisteredObject%OnConstructClone()

YesClass%Persistent%OnDelete()

YesInstance%RegisteredObject%OnNew()

YesInstance%Persistent, %SerialObject%OnOpen()

YesInstance%Persistent%OnReload

YesInstance%Persistent%OnRollBack

YesInstance%RegisteredObject%OnValidateObject()

NoClass%Storage.Persistent%OnDetermineClass()
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Note: For all callbacks that are private methods, documentation for them is only visible in the Class Reference if the
Private check box in the upper-right corner of the Class Reference is selected.

20.1 Callbacks and Triggers
For an application that uses both SQL and object access, if you implement a trigger, it is generally desirable to call the
same logic at an equivalent point in object access. For example, if you insert an audit record when a row is deleted, you
should probably also insert an audit record if an object is deleted.

If a trigger is defined with Foreach = row/object, then the trigger is also called at specific points during object access.
See “Triggers and Transactions”  in “Using Triggers”  in Using InterSystems SQL.

If, however, you cannot create such triggers, and if you want the SQL and object behavior to be synchronized in the sense
described previously, then it is necessary to implement one or more callbacks. In these implementations, use logic equivalent
to that used in the trigger definitions. Note that the following callback methods have functionality equivalent to that of SQL
triggers:

• %OnBeforeSave() — BEFORE INSERT, BEFORE UPDATE

• %OnAfterSave() — AFTER INSERT, AFTER UPDATE

• %OnDelete() — BEFORE DELETE

For more information on triggers, see the “Using Triggers”  chapter in Using InterSystems SQL or the CREATE TRIGGER
page in the InterSystems SQL Reference.

20.2 %OnAddToSaveSet()
This instance method is called whenever the current object is being added to a SaveSet by %AddToSaveSet().
%AddToSaveSet() can be called by:

• %Save() for an instance of %Persistent

• %GetSwizzleObject() for an instance of %SerialObject

• %AddToSaveSet() for a referencing object

If %OnAddToSaveSet() modifies another object, then it is the responsibility of %OnAddToSaveSet() to invoke
%AddToSaveSet() on that modified object. When calling %AddToSaveSet() from %OnAddToSaveSet(), pass the depth
as the first argument and 1 (literal one) as the second argument.

When you invoke %Save() on an object, called, for example, MyPerson, the system generates a list of objects that MyPerson
references. A SaveSet is the list of objects consisting of the object to be saved and all the objects that it references. In the
example, the SaveSet might include referenced objects MySpouse, MyDoctor, and so on. For a fuller discussion, see
“Saving Objects”  in the chapter “Working with Persistent Objects.”

The signature of %OnAddToSaveSet() is:

Method %OnAddToSaveSet(depth As %Integer,
                       insert As %Integer,
                       callcount As %Integer)
                        As %Status [ Private, ServerOnly = 1 ] 
{
    // body of method here...
}
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where:

An integer value passed in from %AddToSaveSet() that represents the internal state of
SaveSet construction. If you use %OnAddToSaveSet() to add any other objects to the
SaveSet, pass this value to %AddToSaveSet() without change.

depth

A flag indicating if the object being saved is being inserted into the extent (1) or that it is
already part of the extent (0).

insert

The number of times that %OnAddToSaveSet has been called for this object. Due to the
networked nature of object references, it is possible that %AddToSaveSet can be invoked
on the same object multiple times.

callcount

The method returns a %Status code, where a failure status causes the save to fail and the transaction to be rolled back.

You can update objects, create new objects, delete objects and ask objects to include themselves in the current SaveSet by
calling %AddToSaveSet(). If you modify the current instance or any of its descendants, you must let the system know
that you have done this; to do so, call %AddToSaveSet() for the modified instance(s) and specify the Refresh argument
as 1.

None of the modification restrictions imposed on %OnAfterSave(), %OnBeforeSave(), or %OnValidateObject() are
in place for %OnAddToSaveSet().

If you delete an object using %OnAddToSaveSet(), be sure to call %RemoveFromSaveSet() to clean up any dangling
references to it.

This method can be overridden in any subclass of %Library.RegisteredObject.

20.3 %OnAfterBuildIndices()
This class method is called by the %BuildIndices() method after that method builds the indices and executes $SortEnd
and just before the method releases the extent lock (if one had been requested).

Its signature is:

ClassMethod %OnAfterBuildIndices(indexlist As %String(MAXLEN="") = "") As %Status [ Abstract, Private,
 ServerOnly = 1 ] 
{
    // body of method here...
}

where:

A $List of the index names.indexlist

20.4 %OnAfterDelete()
This class method is called by the %Delete() method just after a specified object is deleted (immediately after a successful
call to %DeleteData()). This method allows you to perform actions outside the scope of the object being saved, such as
queuing a later notification action.

Its signature is:
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ClassMethod %OnAfterDelete(oid As %ObjectIdentity) As %Status [ Private, ServerOnly = 1 ]  
{
    // body of method here...
}

where:

The object being deleted.oid

The method returns a %Status code, where a failure status causes %Delete() to fail and, if there is an active transaction, to
roll it back. If %Delete() returns an error (either its own error or one originating in %DeleteData()), then there is no call
to %OnAfterDelete().

Subclasses of %Library.Persistent have the option of overriding this method.

20.5 %OnAfterPurgeIndices()
This class method is called by the %PurgeIndices() method after that method has completed all its processing.

Its signature is:

ClassMethod %OnAfterPurgeIndices(indexlist As %String(MAXLEN="") = "") As %Status [ Abstract, Private,
 ServerOnly = 1 ] 
{
    // body of method here...
}

where:

A $List of the index names.indexlist

20.6 %OnAfterSave()
This instance method is called by the %Save() method just after an object is saved. This method allows you to perform
actions outside the scope of the object being saved, such as queueing a later notification action. An example is a bank using
the deposit in excess of a certain amount to cause it to send the customer an explanation of its deposit policies.

Its signature is:

Method %OnAfterSave(insert as %Boolean)As %Status [ Private, ServerOnly = 1 ] 
{
    // body of method here...
}

where:

A flag indicating if the object being saved is being inserted into the extent (1) or that it is
an update of an existing object (0).

insert

The method returns a %Status code, where a failure status causes %Save() to fail and ultimately roll back the transaction.

Subclasses of %Library.Persistent have the option of overriding this method.
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20.7 %OnBeforeBuildIndices()
This class method is called by the %BuildIndices() method after that method acquires the extent lock (if one had been
requested) and before that method starts to build indices.

Its signature is:

ClassMethod %OnBeforeBuildIndices(ByRef indexlist As %String(MAXLEN="") = "") As %Status [ Abstract, 
Private, ServerOnly = 1 ]
{
    // body of method here...
}

where:

A $List of the index names. This parameter is passed by reference. If the implementation
of %OnBeforeBuildIndices() alters this value, then %BuildIndices() receives the changed
value.

indexlist

20.8 %OnBeforePurgeIndices()
This class method is called by the %PurgeIndices() method before that method starts work. If this method returns an error,
then %PurgeIndices() will exit immediately without purging any index structures, returning the error to the caller of
%PurgeIndices().

Its signature is:

ClassMethod %OnBeforePurgeIndices(ByRef indexlist As %String(MAXLEN="") = "") As %Status [ Abstract, 
Private, ServerOnly = 1 ] 
{
    // body of method here...
}

where:

A $List of the index names. This parameter is passed by reference. If the implementation
of %OnBeforePurgeIndices() alters this value, then %PurgeIndices() receives the
changed value.

indexlist

20.9 %OnBeforeSave()
This instance method is called by the %Save() method just before an object is saved. This method allows you to request
user confirmation before completing an action before saving the instance to disk.

Important: It is not valid to modify the current object in %OnBeforeSave(). If you wish to modify the object before
saving it, implement the %OnAddToSaveSet() callback instead and include your logic in that method.

Its signature is:

Method %OnBeforeSave(insert as %Boolean) As %Status [ Private, ServerOnly = 1 ] 
{
    // body of method here...
}
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where:

A flag indicating if the object being saved is being inserted into the extent (1) or that it is
already part of the extent (0).

insert

The method returns a %Status code, where a failure status causes the save to fail.

Subclasses of %Library.Persistent have the option of overriding this method.

20.10 %OnClose()
This instance method is called immediately before an object is destructed, thereby providing the user with an opportunity
to perform operations on any ancillary items, such as releasing locks or removing temporary data structures.

Its signature is:

Method %OnClose() As %Status [ Private, ServerOnly = 1 ]
{
    // body of method here...
}

The method returns a %Status code, where a failure status is only informational and does nothing to prevent the object
from being destructed.

Subclasses of %Library.RegisteredObject have the option of overriding this method.

20.11 %OnConstructClone()
This instance method is called by the %ConstructClone() method immediately after the structures have been allocated
for the cloned object and all the data has been copied into it. The method allows you to perform any additional actions
related to the cloned object, such as taking out a lock or resetting any of the property values of the clone.

Its signature is:

Method %OnConstructClone(object As %RegisteredObject,
                        deep As %Boolean,
                        ByRef cloned As %String)
                        As %Status [ Private, ServerOnly = 1 ] 
{
    // body of method here...
}

where:

The OREF of the object that was cloned.object

How “deep ”  the cloning process is, where 0 specifies that the clone points to the same
related objects as the original; 1 causes objects related to the object being cloned to also
be cloned, so that the clone gets its own set of related objects.

deep

An argument whose use varies according to how %OnConstructClone() is being invoked.
See class documentation on %Library.RegisteredObject for details.

cloned

The method returns a %Status code, where a failure status prevents the clone from being created.

Subclasses of %Library.RegisteredObject have the option of overriding this method.
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20.12 %OnDelete()
This class method is called by the %Delete() method just before an object is deleted. This method can be used to ensure
that deleting an object does not corrupt data integrity, such as by ensuring that an object designed to contain other objects
is only deleted when it is empty.

Its signature is:

ClassMethod %OnDelete(oid As %ObjectIdentity) As %Status [ Private, ServerOnly = 1 ] 
{
    // body of method here...
}

where:

An object identifier for the object being deleted.oid

The method returns a %Status code, where a failure status stops the deletion.

Subclasses of %Library.Persistent have the option of overriding this method.

20.13 %OnNew()
This instance method is called by the %New() method at the point when the memory for an object has been allocated and
properties are initialized.

Its signature is:

Method %OnNew(initvalue As %String) As %Status [ Private, ServerOnly = 1 ] 
{
    // body of method here...
}

where:

A string that the method uses in setting up the object, unless being overridden, as described
in the next note.

initvalue

Important: The arguments for %OnNew() must match those of %New(). When customizing this method, override
the arguments with whatever variables and types that you expect to receive from %New(). For example,
if %New() accepts two arguments — dob for a date of birth and name for a first name and surname, the
signature of %OnNew() might be:

Method %OnNew(dob as %Date = "", name as %Name = "") as %Status [ Private, ServerOnly =
 1 ] 
{
 // body of method here...
}

The method returns a %Status code, where a failure status stops the creation of the object.

For example, with a class whose instances must have a value for their Name property, the callback might be of the form:
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Method %OnNew(initvalue As %String) As %Status
{
    If initvalue="" Quit $$$ERROR($$$GeneralError,"Must supply a name")
    Set ..Name=initvalue
    Quit $$$OK
}

Subclasses of %Library.RegisteredObject have the option of overriding this method.

20.14 %OnOpen()
This instance method is called by the %Open() method just before an object is opened. It allows you to verify the state of
an instance compared to any relevant entities.

Its signature is:

Method %OnOpen() As %Status [ Private, ServerOnly = 1 ] 
{
    // body of method here...
}

The method returns a %Status code, where a failure status stops the opening of the object.

Subclasses of %Library.Persistent and %SerialObject have the option of overriding this method.

20.15 %OnReload
This instance method is called by the %Reload method to provide notification that the object specified by oid was reloaded.
Note that %Open calls %Reload when the object identified by oid is already in memory. If this method returns an error,
the object is not opened.

Its signature is:

Method %OnReload() As %Status [ Private, ServerOnly = 1 ]
  {
    // body of method here...
  }

The method returns a %Status code, where a failure status stops the rollback operation.

Subclasses of %Library.Persistent have the option of overriding this method.

20.16 %OnRollBack()
InterSystems IRIS® calls this instance method when it rolls back an object that it had previously successfully serialized as
part of a SaveSet. (See “Saving Objects”  in the chapter “Working with Persistent Objects.” )

When you invoke %Save() for a persistent object or a stream or when you invoke %GetSwizzleObject() for a serial object,
the system starts a save transaction which includes all the objects in the SaveSet. If the %Save() fails (because properties
do not pass validation, for example), InterSystems IRIS rolls back all objects that it had previously successfully serialized
as part of a SaveSet. That is, for each of these objects, InterSystems IRIS invokes %RollBack(), which calls %OnRollBack().

InterSystems IRIS does not invoke this method for an object that has not been successfully serialized, that is, an object that
is not valid.
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%RollBack() restores the on-disk state of data for that object to its pre-transaction state, but does not affect the in-memory
state of any properties of that object that you have set, apart from its ID assignment. (For more details, see “Saving Objects”
in the chapter “Working with Persistent Objects.” ) If you want to revert in-memory changes, do so in %OnRollBack().

The signature of this method is:

Method %OnRollBack() As %Status [ Private, ServerOnly = 1 ] 
{
    // body of method here...
}

The method returns a %Status code, where a failure status stops the rollback operation.

Subclasses of %Library.Persistent have the option of overriding this method.

20.17 %OnValidateObject()
This instance method is called by the %ValidateObject() method just after all validation has occurred. This allows you
to perform custom validation, such as where valid values for one property vary according to the value of another property.

Its signature is:

Method %OnValidateObject() As %Status [ Private, ServerOnly = 1 ] 
{
    // body of method here...
}

The method returns a %Status code, where a failure status causes the validation to fail.

Subclasses of %Library.RegisteredObject have the option of overriding this method.

20.18 %OnDetermineClass()
The %OnDetermineClass() class method returns the most specific type class of that object. (For an introduction to the
most specific type class, see “%ClassName() and the Most Specific Type Class (MSTC)”  in the chapter “Working with
Registered Objects.” ) %OnDetermineClass() is implemented by the default storage class. If you use custom storage or
SQL storage, there is no default implementation for this method, but you can implement it.

Its signature is:

ClassMethod %OnDetermineClass(
        oid As %ObjectIdentity, 
        ByRef class As %String) 
    As %Status [ ServerOnly = 1 ]

where:

• oid is the object identity of an object.

• class is the most specific type class of the instance identified by oid. The most specific type class of an object is the
class of which the object is an instance and the object is not an instance of any subclass of that class.

The return value is a status value indicating success or failure.

Subclasses of %Library.SwizzleObject can override this method.
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20.18.1 Invoking %OnDetermineClass()

%OnDetermineClass() can be invoked in either of two ways:

Set status = ##class(APackage.AClass).%OnDetermineClass(myoid, .myclass)
Set status = myinstance.%OnDetermineClass(myoid, .myclass)

where myoid is the object whose most specific type class is being determined and myclass is the class identified.
APackage.AClass is the class from which the method is being invoked and myinstance is the instance from which the method
is being invoked.

In this case, the method is computing the most specific type class for myoid and setting myclass equal to that value. If myoid
is not an instance of the current class, an error is returned.

Consider the example of using %OnDetermineClass() with Sample.Employee, which is a subclass of Sample.Person. If
there is a call of the form

Set status = ##class(Sample.Employee).%OnDetermineClass(myoid, .class)

and myoid refers to an object whose most specific type class is Sample.Person, then the call returns an error.

20.18.2 An Example of Results of Calls to %OnDetermineClass()

Suppose there is a MyPackage.GradStudent class that extends a MyPackage.Student class that extends a MyPackage.Person

class. The following shows the results of invoking %OnDetermineClass(), passing in the OID of an object whose most
specific type class is MyPackage.Student:

• ##class(MyPackage.Person).%OnDetermineClass(myOid,.myClass)

– Return value: $$$OK

– myClass set to: MyPackage.Student

• ##class(MyPackage.Student).%OnDetermineClass(myOid,.myClass)

– Return value: $$$OK

– myClass set to: MyPackage.Student

• ##class(MyPackage.GradStudent).%OnDetermineClass(myOid,.myClass)

– Return value: error status

– myClass set to: ""
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21
Using and Overriding Property Methods

This chapter describes property methods, which are the actual methods that InterSystems IRIS® uses when you use OREFs
to work with the properties of objects. It discusses the following topics:

• Introduction

• Property accessors for literal properties

• Property accessors for object-valued properties

• How to override a property getter method

• How to override a property setter method

• How to define an object-valued property with a custom accessor method

When viewing this book online, use the preface of this book to quickly find related topics.

21.1 Introduction to Property Methods
Properties have a number of methods associated with them automatically. These methods are not inherited via standard
inheritance. Rather, they use a special property behavior mechanism to generate a series of methods for each property.

Each property inherits a set of methods from two places:

• The %Property class, which provides certain built-in behavior, such as Get(), Set(), and validation code.

• The data type class used by the property, if applicable. Many of these methods are method generators.
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Figure 21–1: Property Behavior

The property behavior classes are system classes. You cannot specify or modify property behavior.

For example, if we define a class Person with three properties:

Class MyApp.Person Extends %Persistent
{
Property Name As %String;
Property Age As %Integer;
Property DOB As %Date;
}

The compiled Person class has a set of methods automatically generated for each of its properties. These methods are
inherited from the system Property class as well as the data type class associated with the property. The names of these
generated methods are the property name concatenated with the name of the method from the inherited class. For example,
some of the methods associated with the DOB property are:

 Set x = person.DOBIsValid(person.DOB)
 Write person.DOBLogicalToDisplay(person.DOB)

where IsValid() is a method of the property class and LogicalToDisplay() is a method of the %Date data type class.

21.2 Property Accessors for Literal Properties
The InterSystems IRIS dot syntax for referring to object properties is an interface for a set of accessor methods to retrieve
and set values. For each non-calculated property, whenever the code refers to oref.Prop (where oref is an object and Prop

is a property), it is executed as if a system-supplied PropGet() or PropSet() method were invoked. For example:

 Set person.DOB = x

acts as if the following method was called:

 Do person.DOBSet(x)

while:

 Write person.Name
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acts like:

 Write person.NameGet()

In most cases, you cannot see the actual PropGet() and PropSet() methods; access for simple properties is implemented
directly within the InterSystems IRIS virtual machine for optimal performance. You can, however, provide PropGet() and
PropSet() methods for a specific property, as long as that property is not object-typed or multidimensional. If you define
these methods, the system automatically invokes them at runtime. The following sections describe how to define these
accessor methods. Within the custom methods, you can perform any special processing that your application requires.

Note that the last screen of the New Property Wizard in Studio provides options for creating a custom Get() method, Set(),
or both. If you use these options, Studio defines stub methods with suitable signatures.

Accessing the properties of an object by using the PropGet() and PropSet() methods requires that the object be loaded
into memory. On the other hand, the PropGetStored() method allows you to retrieve the property value of a stored object
directly from disk, without having to load the entire object into memory. For example, to write the name of the person with
ID 44, you could use:

 Write ##class(MyApp.Person).NameGetStored(44)

21.3 Property Accessors for Object-Valued Properties
For every reference property there are SetObject() (using OID value) and SetObjectId() (using ID value) methods. For
example, to assign a particular saved Person object as the owner of a Car object, use the following code:

 Do car.OwnerSetObjectId(PersonId)

where car is the OREF of the Car object and PersonId is the ID of the saved Person object.

There are also GetObject() and GetObjectId() methods, which get the OID or ID associated with the reference property,
respectively. Taken all together, the various methods are:

• GetObject() — Gets the OID associated with the property. For a property named prop, the method name is
propGetObject().

• GetObjectId() — Gets the ID associated with the property. For a property named prop, the method name is
propGetObjectId().

• SetObject() — Sets the OID associated with the property. For a property named prop, the method name is
propSetObject().

• SetObjectId() — Sets the ID associated with the property. For a property named prop, the method name is
propSetObjectId().

21.4 Overriding a Property Getter Method
To override the getter method for a property, modify the class that contains the property and add a method as follows:

• It must have the name PropertyNameGet, where PropertyName is the name of the corresponding property.

• It takes no arguments.

• Its return type must be the same as the type of the property.

• It must return the value of the property.
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• To refer to the value of this property, this method must use the variable i%PropertyName. This name is case-sensitive.

Important: Within this getter method for a given property, do not use ..PropertyName syntax to refer to the
value of that property. If you attempt to do so, the result is a <FRAMESTACK> error, caused by a
recursive series of references. You can, however, use ..PropertyName to refer to other properties,
because doing so does not cause any recursion.

The variable i%PropertyName is an instance variable. For more information on instance variables, see “ i%Property-
Name”  in the chapter “Working with Registered Objects.”

Note: Note that it is not supported to override accessor methods for object-typed properties or for multidimensional
properties. Also because the maximum length of a method name is 220 characters, it is not possible to create
accessor methods for properties that are 218, 219, or 220 characters long.

The following shows an example, a setter method for a property named HasValue, which is of type %Boolean:

Method HasValueGet() As %Boolean 
{
  If ((i%NodeType="element")||(i%NodeType="")) Quit 0
  Quit 1
}

21.5 Overriding a Property Setter Method
To override the setter method for a property, modify the class that contains the property and add a method as follows:

• It must have the name PropertyNameSet, where PropertyName is the name of the corresponding property.

• It takes one argument, which contains the value of the property.

Specifically, this is the value specified in the SET command, when the property is being set.

• It must return a %Status value.

• To set the value of this property, this method must set the variable i%PropertyName. This name is case-sensitive.

Important: Within this setter method for a given property, do not use ..PropertyName syntax to refer to the value
of that property. If you attempt to do so, the result is a <FRAMESTACK> error, caused by a recursive
series of references. You can, however, use ..PropertyName to refer to other properties, because
doing so does not cause any recursion.

The variable i%PropertyName is an instance variable. For more information on instance variables, see “ i%Property-
Name”  in the chapter “Working with Registered Objects.”

Note: Note that it is not supported to override accessor methods for object-typed properties or for multidimensional
properties. Also because the maximum length of a method name is 220 characters, it is not possible to create
accessor methods for properties that are 218, 219, or 220 characters long.

For example, suppose that MyProp is of type %String. We could define the following setter method:

Method MyPropSet(value as %String) As %Status
{
    if i%MyProp="abc" {
        set i%MyProp="corrected value"
    }
    quit $$$OK
}
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The following shows another example, a setter method for a property named DefaultXmlns, which is of type %String:

Method DefaultXmlnsSet(value As %String) As %Status
{
    set i%DefaultXmlns = value
    If ..Namespaces'="" Set ..Namespaces.DefaultXmlns=value
    quit $$$OK
}

Notice that this example refers to the Namespaces property of the same object by using the ..PropertyName syntax. This
usage is not an error, because it does not cause any recursion.

21.6 Defining an Object-Valued Property with a Custom
Accessor Method
As noted earlier, it is not supported to override accessor methods for object-typed properties. If you need to define a property
that holds object values and you need to define custom accessor methods, define the property with the type %RawString..
This is not an object class but is rather a generic class, and it is permitted to override the accessor methods for this property.
When using the property, set it equal to an instance of the desired class.

For example, the following class includes the property Zip, whose formal type is %RawString. The property description
indicates that the property is meant to be an instance of Sample.USZipCode. The class also defines the ZipGet() and ZipSet()
property methods.

Class PropMethods.Demo Extends %Persistent
{

/// Timestamp for viewing Zip
Property LastTimeZipViewed As %TimeStamp;

/// Timestamp for changing Zip
Property LastTimeZipChanged As %TimeStamp;

/// When setting this property, set it equal to instance of Sample.USZipCode.
/// The type is %RawString rather than Sample.USZipCode, so that it's possible 
/// to override ZipGet() and ZipSet().
Property Zip As %RawString;

Method ZipGet() As %RawString [ ServerOnly = 1 ]
{
    // get id, swizzle referenced object
    set id = i%Zip
    if (id '= "") {
        set zip = ##class(Sample.USZipCode).%OpenId(id)
        set ..LastTimeZipViewed = $zdt($zts)
    }
    else {
        set zip = ""
    }
    return zip
}

Method ZipSet(zip As %RawString) As %Status [ ServerOnly = 1 ]
{
    // set i% for new zip
    if ($isobject(zip) && zip.%IsA("Sample.USZipCode")) {
        set id = zip.%Id()
        set i%Zip = id
        set ..LastTimeZipChanged = $zdt($zts)
    }
    else {
        set i%Zip = ""
    }
    quit $$$OK
}

}

The following Terminal session demonstrates the use of this class:

Defining and Using Classes                                                                                                                                                185

Defining an Object-Valued Property with a Custom Accessor Method



SAMPLES>set demo=##class(PropMethods.Demo).%New()

SAMPLES>write demo.LastTimeZipChanged

SAMPLES>set zip=##class(Sample.USZipCode).%OpenId(10001)

SAMPLES>set demo.Zip=zip

SAMPLES>w demo.LastTimeZipChanged
10/14/2015 19:21:08
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22
Defining Data Type Classes

This chapter describes how data type classes work and describes how to define them. It discusses the following topics:

• Overview

• How to define a data type class

• Class methods in data type classes

• Instance methods in data type classes

Also see the chapter “Defining and Using Literal Properties.”

When viewing this book online, use the preface of this book to quickly find other topics.

22.1 Overview of Data Type Classes
The purpose of a data type class is to be used as the type of a literal property in an object class. Data type classes provide
the following features:

• They provide for SQL and client interoperability by providing SQL logical operation, client data type, and translation
information.

• They provide validation for literal data values, which you can extend or customize by using data type class parameters.

• They manage the translation of literal data for its stored (on disk), logical (in memory), and display formats.

See the chapter “Property Methods”  for information on how the compiler uses a data type class to generate code for a
property.

Data type classes differ from other classes in a number of ways:

• They cannot be instantiated or stored independently.

• They cannot contain properties.

• They support a specific set of methods (called the data type interface), which is described below.

Because it is useful to be aware of some internal details, this section briefly discusses how data type classes work.

As noted previously, the purpose of a data type class is to be used as the type of a property, particularly within a class that
extends one of the core object classes. The following shows an example object class that has three properties. Each property
uses a data type class as its type.
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Class Datatypes.Container Extends %RegisteredObject
{

Property P1 As %String;

Property P2 As %Integer;

Property P3 As %Boolean;

}

22.1.1 Property Methods

When you add literal properties to a class and compile the class, InterSystems IRIS® adds property methods to that class.
For reference, let us use the term container class to refer to the class that contains the properties. The property methods
control how the container class handles the data for those properties. This system works as follows:

• Each data type class provides a set of methods, more specifically method generators, that InterSystems IRIS uses when
it compiles a class that uses them. A method generator is a method that generates its own runtime code. (For details
on method generators, see “Defining Method and Trigger Generators,”  later in this book.)

In the example shown here, when we compile the Datatypes.Container, the compiler uses the method generators of the
%String, %Integer, and %Boolean data type classes. These method generators create methods for each property and
add these methods to the container class. As noted above, these methods are called property methods. Their names
start with the name of the property to which they apply. For example, for the P1 property, the compiler generates
methods such as P1IsValid(), P1Normalize(), P1LogicalToDisplay(), P1ToDisplayToLogical() and others.

• The container class automatically calls the property methods at suitable points in processing. For example, when you
call the %ValidateObject() instance method for an instance of the class shown above, the method in turn calls
P1IsValid(), P2IsValid(), and P3IsValid() — that is, it calls the IsValid() method for each property. For another
example, if the container class is persistent, and you use InterSystems SQL to access all the fields in the associated
table, and the SQL runtime mode is ODBC, InterSystems IRIS calls the LogicalToODBC() method for each property,
so that the query returns results in ODBC format.

Note that the property methods are not visible in the class definition.

22.1.2 Data Formats

Many of the property methods translate data from one format to another, for example when displaying data in a human-
readable format or when accessing data via ODBC. The formats are:

• Display — The format in which data can be input and displayed. For instance, a date in the form of “April 3, 1998”
or “23 November, 1977.”

• Logical — The in-memory format of data, which is the format upon which operations are performed. While dates have
the display format described above, their logical format is integer; for the sample dates above, their values in logical
format are 57436 and 50000, respectively.

• Storage — The on-disk format of data — the format in which data is stored to the database. Typically this is identical
to the logical format.

• ODBC — The format in which data can be presented via ODBC or JDBC. This format is used when data is exposed
to ODBC/SQL. The available formats correspond to those defined by ODBC.

• XSD — SOAP-encoded format. This format is used when you export to or import from XML. This applies only to
classes that are XML-enabled.
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22.1.3 Parameters in Data Type Classes

Class parameters have a special behavior when used with data type classes. With data type classes, class parameters are
used to provide a way to customize the behavior of any properties based on the data type.

For example, the %Integer data type class has a class parameter, MAXVAL, which specifies the maximum valid value for
a property of type %Integer. If you define a class with the property NumKids as follows:

Property NumKids As %Integer(MAXVAL=10);

This specifies that the MAXVAL parameter for the %Integer class will be set to 10 for the NumKids property.

Internally, this works as follows: the validation methods for the standard data type classes are all implemented as method
generators and use their various class parameters to control the generation of these validation methods. In this example,
this property definition generates content for a NumKidsIsValid() method that tests whether the value of NumKids exceeds
10. Without the use of class parameters, creating this functionality would require the definition of an IntegerLessThanTen

class.

22.2 Defining a Data Type Class
To easily define a data type class, first identify an existing data type class that is close to your needs. Create a subclass of
this class. In your subclass:

• Specify suitable values for the keywords SqlCategory, ClientDataType, and OdbcType.

• Override any class parameters as needed. For example, you might override the MAXLEN parameter so that there is no
length limit for the property.

If needed, add your own class parameters as well.

• Override the methods of the data type class as needed. In your implementations, refer to the parameters of this class
as needed.

If you do not base your data type class on an existing data type class, be sure to add [ ClassType=datatype ] to the
class definition. This declaration is not needed if you do base your class on another data type class.

Note: When defining a data type class, do not extend %Persistent, %RegisteredObject, or other object classes, as data
type classes cannot contain properties.

22.3 Defining Class Methods in Data Type Classes
Depending on your needs, you should define some or all of the following class methods in your data type classes:

• IsValid() — performs validation of data for the property, using property parameters if appropriate. As noted earlier,
the %ValidateObject() instance method of any object class invokes the IsValid() method for each property. This
method has the following signature:

ClassMethod IsValid(%val) As %Status 

Where %val is the value to be validated. This method should return an error status if the value is invalid and should
otherwise return $$$OK.
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Note: It is standard practice in InterSystems IRIS not to invoke validation logic for null values.

• Normalize() — converts the data for the property into a standard form or format. The %NormalizeObject() instance
method of any object class invokes the Normalize() method for each property. This method has the following signature:

ClassMethod Normalize(%val) As Type 

Where %val is the value to be validated and Type is a suitable type class.

• DisplayToLogical() — converts a display value into a logical value. (For information on formats, see “Data Formats” .)
This method has the following signature:

ClassMethod DisplayToLogical(%val) As Type 

Where %val is the value to be converted and Type is a suitable type class.

The other format conversion methods have the same general form.

• LogicalToDisplay() — converts a logical value to a display value.

• LogicalToOdbc() — converts a logical value into an ODBC value.

Note that the ODBC value must be consistent with the ODBC type specified by the OdbcType class keyword of the
data type class.

• LogicalToStorage() — converts a logical value into a storage value.

• LogicalToXSD() — converts a logical value into the appropriate SOAP-encoded value.

• OdbcToLogical() — converts an ODBC value into a logical value.

• StorageToLogical() — converts a database storage value into a logical value.

• XSDToLogical() — converts a SOAP-encoded value into a logical value.

If the data type class includes the DISPLAYLIST and VALUELIST parameters, these methods must first check for the
presence of these class parameters and include code to process these lists if present. The logic is similar for other methods.

In most cases, many of these methods are method generators. See “Defining Method and Trigger Generators,”  later in this
book.

Note: Note that the data format and translation methods cannot include embedded SQL. If you need to call embedded
SQL within this logic, then you can place the embedded SQL in a separate routine, and the method can call this
routine.

22.4 Defining Instance Methods in Data Type Classes
You can also add instance methods to the data type class, and these methods can use the variable %val, which contains the
current value of the property. The compiler uses these to generate the associated property methods in any class that uses
the data type class. For example, consider the following example data type class:

Class Datatypes.MyDate Extends %Date
{

Method ToMyDate() As %String [ CodeMode = expression ]
{
$ZDate(%val,4)
}
}

Suppose that we have another class as follows:
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Class Datatypes.Container Extends %Persistent
{

Property DOB As Datatypes.MyDate;

/// additional class members
}

When we compile these classes, InterSystems IRIS adds the instance method DOBToMyDate() to the container class.
Then when we create an instance of the container class, we can invoke this method. For example:

TESTNAMESPACE>set instance=##class(Datatypes.Container).%New()

TESTNAMESPACE>set instance.DOB=+$H

TESTNAMESPACE>write instance.DOBToMyDate()
30/10/2014
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23
Implementing Dynamic Dispatch

This chapter discusses dynamic dispatch in InterSystems IRIS® classes. Topics in this chapter include:

• Introduction

• Content of methods that implement dynamic dispatch

• The dynamic dispatch methods

When viewing this book online, use the preface of this book to quickly find other topics.

23.1 Introduction to Dynamic Dispatch
InterSystems IRIS classes can include support for what is called dynamic dispatch. If dynamic dispatch is in use and a
program references a property or method that is not part of the class definition, then a method (called a dispatch method)
is called that attempts to resolve the undefined method or property. For example, dynamic dispatch can return a value for
a property that is not defined or it can invoke a method for a method that is not implemented. The dispatch destination is
dynamic in that it does not appear in the class descriptor and is not resolved until runtime.

InterSystems IRIS makes a number of dispatch methods available that you can implement. Each method attempts to resolve
an element that is missing under different circumstances.

If you implement a dispatch method, it has the following effects:

• During application execution, if InterSystems IRIS encounters an element that is not part of the compiled class, it
invokes the dispatch method to try to resolve the encountered element.

• The application code that uses the class does not do anything special to make this happen. InterSystems IRIS automat-
ically checks for the existence of the dispatch method and, if that method is present, invokes it.

23.2 Content of Methods Implementing Dynamic Dispatch
As the application developer, you have control over the content of dispatch methods. The code within them can be whatever
is required to implement the methods or properties that the class is attempting to resolve.

Code for dynamic dispatch might include attempts to locate a method based on other classes in the same extent, package,
database, on the same file system, or by any other criteria. If a dispatch method provides a general case, it is recommended
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that the method also create some kind of log for this action, so that there is a record of any continued operation that includes
this general resolution.

For example, the following implementation of %DispatchClassMethod() allows the application user to invoke a method
to perform whatever action was intended:

ClassMethod %DispatchClassMethod(Class As %String, Method As %String, args...)
{
    WRITE "The application has attempted to invoke the following method: ",!,!
    WRITE Class,".",Method,!,!
    WRITE "This method does not exist.",!
    WRITE "Enter the name of the class and method to call",!
    WRITE "or press Enter for both to exit the application.",!,!

    READ "Class name (in the form 'Package.Class'): ",ClassName,!
    READ "Method name: ",MethodName,!

    IF ClassName = "" && MethodName = "" {
        // return a null string to the caller if a return value is expected
        QUIT:$QUIT "" QUIT
    } ELSE {
        // checking $QUIT ensures that a value is returned 
        // if and only if it is expected
        IF $QUIT {
            QUIT $CLASSMETHOD(ClassName, MethodName, args...)
        } ELSE {
            DO $CLASSMETHOD(ClassName, MethodName, args...)
            QUIT
        }
    }
}

By including this method in a class that is a secondary superclass of all classes in an application, you can establish application-
wide handling of calls to nonexistent class methods.

23.2.1 Return Values

None of the dispatch methods have specified return values. This is because each should provide output that is of the same
type of the call that originally created the need for the dispatch.

If the dispatch method cannot resolve the method or property, it can use $SYSTEM.Process.ThrowError() to throw a
<METHOD DOES NOT EXIST> or <PROPERTY DOES NOT EXIST> error — or whatever else may be appropriate.

23.3 The Dynamic Dispatch Methods
The following methods may be implemented to resolve unknown methods and properties:

• %DispatchMethod()

• %DispatchClassMethod()

• %DispatchGetProperty()

• %DispatchSetProperty()

• %DispatchSetMultidimProperty()

23.3.1 %DispatchMethod()

This method implements an unknown method call. Its syntax is:

Method %DispatchMethod(Method As %String, Args...)
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where its first argument is the name of the referenced method and the second argument is an array that holds all the arguments
passed to the original method. Since the number of arguments and their types can vary depending on the method being
resolved, the code in %DispatchMethod() needs to handle them correctly (since the class compiler cannot make any
assumptions about the type). The Args... syntax handles this flexibly.

Because %DispatchMethod() attempts to resolve any unknown instance method associated with the class, it has no spec-
ified return value; if successful, it returns a value whose type is determined by the method being resolved and whether the
caller expects a return value.

%DispatchMethod() can also resolve an unknown multidimensional property reference — that is, to get the value of a
property. However, only direct multidimensional property references are supported for dynamic dispatch. $DATA, $ORDER,
and $QUERY are not supported, nor is a SET command with a list of variables.

23.3.2 %DispatchClassMethod()

This method implements an unknown class method call. Its syntax is:

ClassMethod %DispatchClassMethod(Class As %String, Method As %String, Args...)

where its first two arguments are the name of the referenced class and the name of the referenced method. Its third argument
is an array that holds all the arguments passed to the original method. Since the number of arguments and their types can
vary depending on the method being resolved, the code in %DispatchClassMethod() needs to handle them correctly (since
the class compiler cannot make any assumptions about the type). The Args... syntax handles this flexibly.

Because %DispatchClassMethod() attempts to resolve any unknown class method associated with the class, it has no
specified return value; if successful, it returns a value whose type is determined by the method being resolved and whether
the caller expects a return value.

23.3.3 %DispatchGetProperty()

This method gets the value of an unknown property. Its syntax is:

Method %DispatchGetProperty(Property As %String)

where its argument is the referenced property. Because %DispatchGetProperty() attempts to resolve any unknown
property associated with the class, it has no specified return value; if successful, it returns a value whose type is that of the
property being resolved

23.3.4 %DispatchSetProperty()

This method sets the value of an unknown property. Its syntax is:

Method %DispatchSetProperty(Property As %String, Value)

where its arguments are the name of the referenced property and the value to set for it.

23.3.5 %DispatchSetMultidimProperty()

This method sets the value of an unknown multidimensional property. Its syntax is:

Method %DispatchSetMultidimProperty(Property As %String, Value, Subs...)

where its first two arguments are the name of the referenced property and the value to set for it. The third argument, Subs,
is an array that contains the subscript values. Subs has an integer value that specifies the number of subscripts, Subs(1) has
the value of the first subscript, Subs(2) has the value of the second, and so on. If no subscripts are given, then Subs is
undefined.
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Only direct multidimensional property references are supported for dynamic dispatch. $DATA, $ORDER, and $QUERY
are not supported, nor is a SET command with a list of variables.

Note: Note that there is no %DispatchGetMultidimProperty() dispatch method. This is because a multidimensional
property reference is identical to a method call. Thus, such a reference invokes %DispatchMethod(), which must
include code to differentiate between method names and multidimensional property names.

196                                                                                                                                                Defining and Using Classes

Implementing Dynamic Dispatch



A
Object-Specific ObjectScript Features

ObjectScript includes features specific to working with classes and objects. These are:

• Relative Dot Syntax (..) — For accessing a property or calling a method of the current object.

• ##Class syntax — For invoking a class method, for casting an object reference as another class to call a method, or
for accessing the value of a class parameter.

• $this syntax — For getting a handle to the OREF of the current instance, such as for passing it to another class or for
another class to refer to properties or methods of the current instance.

• ##super syntax — For invoking a superclass method from within a subclass method.

• Dynamically Accessing Objects — For invoking class methods and instance methods, and for referring to object
properties.

• i%<PropertyName> syntax — For referencing an instance variable from within its own Get or Set accessor method,
or bypassing its Get or Set method.

• ..#<Parameter> syntax — For referencing the value of a class parameter within methods of the same class.

When viewing this book online, use the preface of this book to quickly find related topics.

A.1 Relative Dot Syntax (..)
The relative dot syntax (..) provides a mechanism for referencing a method or property in the current context. The context
for an instance method or a property is the current instance; the context for a class method is the class in which the method
is implemented. You cannot use relative dot syntax in a class method to reference properties or instance methods, because
these require the instance context.

For example, suppose there is a Bricks property of type %Integer:

Property Bricks As %Integer;

A CountBricks() method can then refer to Bricks with relative dot syntax:

Method CountBricks()
{
    Write "There are ",..Bricks," bricks.",!
}

Similarly, a WallCheck() method can refer to CountBricks() and Bricks:
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Method WallCheck()
{
    Do ..CountBricks()
    If ..Bricks < 100 {
        Write "Your wall will be small."
    }
}

A.2 ##Class Syntax
The ##class syntax allows you to:

• Invoke a class method when there is no existing or open instance of a class.

• Cast a method from one class as a method from another.

• Access a class parameter

Note: ##class is not case-sensitive.

A.2.1 Invoking a Class Method

To invoke a class method, the syntax is either of the following:

>Do ##class(Package.Class).Method(Args)
>Set localname = ##class(Package.Class).Method(Args)

It is also valid to use ##class as part of an expression, as in

 Write ##class(Class).Method(args)*2

without setting a variable equal to the return value.

A frequent use of this syntax is in the creation of new instances:

>Set LocalInstance = ##class(Package.Class).%New()

A.2.2 Casting a Method

To cast a method of one class as a method of another class, the syntax is either of the following:

>Do ##class(Package.Class1)Class2Instance.Method(Args)
>Set localname = ##class(Package.Class1)Class2Instance.Method(Args)

You can cast both class methods and instance methods.

For example, suppose that two classes, MyClass.Up and MyClass.Down, both have Go() methods. For MyClass.Up, this
method is as follows

Method Go()
{
    Write "Go up.",!
}

For MyClass.Down, the Go() method is as follows:

Method Go()
{
    Write "Go down.",!
}
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You can then create an instance of MyClass.Up and use it to invoke the MyClass.Down.Go method:

>Set LocalInstance = ##class(MyClass.Up).%New()

>Do ##class(MyClass.Down)LocalInstance.Go()
Go down.

It is also valid to use ##class as part of an expression, as in

 Write ##class(Class).Method(args)*2

without setting a variable equal to the return value.

A more generic way to refer to other methods are the $METHOD and $CLASSMETHOD functions, which are for instance
and class methods, respectively; these are described in the “Dynamically Accessing Objects”  section, later in this chapter.
These provide a mechanism for referring to packages, classes, and methods programmatically.

A.2.3 Accessing a Class Parameter

To access a class parameter, you can use the following expression:

##class(Package.Class).#PARMNAME

Where Package.Class is the name of the class and PARMNAME is the name of the parameter. For example:

 w ##class(%XML.Adaptor).#XMLENABLED

displays whether methods generated by the XML adaptor are XML enabled, which by default is set to 1.

You can also use the $PARAMETER functions, which is described in the “Dynamically Accessing Objects”  section, later
in this chapter.

A.3 $this Syntax
The $this variable provides a handle to the OREF of the current instance, such as for passing it to another class or for
another class to refer to the properties or methods of the current instance. When an instance refers to its own properties or
methods, relative dot syntax is faster and thus is preferred.

Note: $this is not case-sensitive; hence, $this, $This, $THIS, or any other variant all have the same value.

For example, suppose there is an application with an Accounting.Order class and an Accounting.Utils class. The
Accounting.Order.CalcTax() method calls the Accounting.Utils.GetTaxRate() and
Accounting.Utils.GetTaxableSubtotal() methods, passing the city and state values of the current instance to the
GetTaxRate() method and passing the list of items ordered and relevant tax-related information to GetTaxableSubtotal().
CalcTax() then uses the values returned to calculate the sales tax for the order. Hence, its code is something like:

Method CalcTax() As %Numeric
{
    Set TaxRate = ##Class(Accounting.Utils).GetTaxRate($this)
    Write "The tax rate for ",..City,", ",..State," is ",TaxRate*100,"%",!
    Set TaxableSubtotal = ##class(Accounting.Utils).GetTaxableSubTotal($this)
    Write "The taxable subtotal for this order is $",TaxableSubtotal,!
    Set Tax = TaxableSubtotal * TaxRate
    Write "The tax for this order is $",Tax,!
}

The first line of the method uses the ##Class syntax (described above) to invoke the other method of the class; it passes
the current object to that method using the $this syntax. The second line of the method uses relative dot syntax to get the
values of the City and State properties. The action on the third line is similar to that on the first line.
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In the Accounting.Utils class, the GetTaxRate() method can then use the handle to the passed-in instance to get handles to
various properties — for both getting and setting their values:

ClassMethod GetTaxRate(OrderBeingProcessed As Accounting.Order) As %Numeric
{
    Set LocalCity = OrderBeingProcessed.City
    Set LocalState = OrderBeingProcessed.State
    // code to determine tax rate based on location and set
    // the value of OrderBeingProcessed.TaxRate accordingly
    Quit OrderBeingProcessed.TaxRate
}

The GetTaxableSubtotal() method also uses the handle to the instance to look at its properties and set the value of its
TaxableSubtotal property.

Hence, the output at the Terminal from invoking the CalcTax() method for MyOrder instance of the Accounting.Order class
would be something like:

>Do MyOrder.CalcTax()
The tax rate for Cambridge, MA is 5%
The taxable subtotal for this order is $79.82
The tax for this order is $3.99

A.4 ##super Syntax
Suppose that a subclass method overrides a superclass method. From within the subclass method, you can use the ##super()
syntax to invoke the overridden superclass method.

Note: ##super is not case-sensitive. Also note that, unlike other features in this chapter, ##super() is available within
Basic methods as well as within ObjectScript methods.

For example, suppose that the class MyClass.Down extends MyClass.Up and overrides the Simple class method. If the code
for MyClass.Up.Simple() is:

ClassMethod Simple()
{
    Write "Superclass.",!
}

and the code for MyClass.Down.Simple() is:

ClassMethod Simple()
{
    Write "Subclass.",!
    Do ##super()
}

then the output for subclass method, MyClass.Down.Simple(), is:

>Do ##Class(MyClass.Down).Simple()
Subclass.
Superclass.
>

A more generic way to refer to other methods are the $METHOD and $CLASSMETHOD functions, which are for instance
and class methods, respectively; these are described in the “Dynamically Accessing Objects”  section, later in this chapter.
These provide a mechanism for referring to packages, classes, and methods programmatically.

A.4.1 Calls That ##super Affects

##super only affects the current method call. If that method makes any other calls, those calls are relative to the current
object or class, not the superclass. For example, suppose that MyClass.Up has MyName() and CallMyName() methods:

200                                                                                                                                                Defining and Using Classes

Object-Specific ObjectScript Features



Class MyClass.Up Extends %Persistent
{

ClassMethod CallMyName()
{
    Do ..MyName()
}

ClassMethod MyName()
{
    Write "Called from MyClass.Up",!
}

}

and that MyClass.Down overrides those methods as follows:

Class MyClass.Down Extends MyClass.Up
{

ClassMethod CallMyName()
{
    Do ##super()
}

ClassMethod MyName()
{
    Write "Called from MyClass.Down",!
}

}

then invoking the CallMyName() methods have the following results:

USER>d ##class(MyClass.Up).CallMyName()
Called from MyClass.Up

USER>d ##class(MyClass.Down).CallMyName()
Called from MyClass.Down

MyClass.Down.CallMyName() has different output from MyClass.Up.CallMyName() because its CallMyName() method
includes ##super and so calls the MyClass.Up.CallMyName() method, which then calls the uncast
MyClass.Down.MyName() method.

A.4.2 ##super and Method Arguments

##super also works with methods that accept arguments. If the subclass method does not specify a default value for an
argument, make sure that the method passes the argument by reference to the superclass.

For example, suppose the code for the method in the superclass (MyClass.Up.SelfAdd()) is:

ClassMethod SelfAdd(Arg As %Integer)
{
    Write Arg,!
    Write Arg + Arg
}

then its output is:

>Do ##Class(MyClass.Up).SelfAdd(2)
2
4
>

The method in the subclass (MyClass.Down.SelfAdd()) uses ##super and passes the argument by reference:

ClassMethod SelfAdd(Arg1 As %Integer)
{
    Do ##super(.Arg1)
    Write !
    Write Arg1 + Arg1 + Arg1
}
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then its output is:

>Do ##Class(MyClass.Down).SelfAdd(2)
2
4
6
>

In MyClass.Down.SelfAdd(), notice the period before the argument name. If we omitted this and we invoked the method
without providing an argument, we would receive an <UNDEFINED> error.

A.5 Dynamically Accessing Objects
InterSystems IRIS® supplies several functions that support generalized processing of objects. They do this by allowing a
reference to a class and one of its methods or properties to be computed at runtime. (This is known as reflection in Java.)
These functions are:

• $CLASSNAME — Returns the name of a class.

• $CLASSMETHOD — Supports calls to a class method.

• $METHOD — Supports calls to an instance method.

• $PARAMETER — Returns the value of a class parameter of the specified class.

• $PROPERTY — Supports references to a particular property of an instance.

The function names are shown here in all uppercase letters, but they are, in fact, not case-sensitive.

A.5.1 $CLASSNAME

This function returns the name of a class. The signature is:

$CLASSNAME(Instance)

where Instance is an OREF.

For more information, see the $CLASSNAME page in the ObjectScript Reference.

A.5.2 $CLASSMETHOD

This function executes a named class method in the designated class. The signature is:

$CLASSMETHOD (Classname, Methodname, Arg1, Arg2, Arg3, ... )

where

An existing class.Classname

A method of the class specified by the first argument.Methodname

A series of expressions to be substituted for the arguments to the designated method.Arg1, Arg2, Arg3, ...

For more information, see the $CLASSMETHOD page in the ObjectScript Reference.
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A.5.3 $METHOD

This function executes a named instance method for a specified instance of a designated class. The signature is:

$METHOD (Instance, Methodname, Arg1, Arg2, Arg3, ... )

where

An OREF of instance of a class.Instance

A method of the class specified by the instance in the first argument.Methodname

A series of expressions to be substituted for the arguments to the designated method.Arg1, Arg2, Arg3, ...

For more information, see the $METHOD page in the ObjectScript Reference.

A.5.4 $PARAMETER

This function returns the value of a class parameter of the designated class. The signature is:

$PARAMETER(Instance,Parameter)

where:

Either the fully qualified name of a class or an OREF of an instance of the class.Instance

A parameter of the given class.Parameter

For more information, see the $PARAMETER page in the ObjectScript Reference.

A.5.5 $PROPERTY

This function gets or sets the value of a property in an instance of the designated class. If the property is multidimensional,
the following arguments after the property name are used as indices in accessing the value of the property. The signature
is:

$PROPERTY (Instance, PropertyName, Index1, Index2, Index3... )

where:

An OREF of instance of a class.Instance

A property of the class specified by the instance in the first argument.PropertyName

For multidimensional properties, indices into the array represented by the property.Index1, Index2,
Index3, ...

For more information, see the $PROPERTY page in the ObjectScript Reference.

A.6 i%<PropertyName> Syntax
This section provides some additional information on instance variables. You do not need to refer to these variables unless
you override an accessor method for a property; see the chapter “Using and Overriding Property Methods.”

Defining and Using Classes                                                                                                                                                203

i%<PropertyName> Syntax



When you create an instance of any class, the system creates an instance variable for each non-calculated property of that
class. The instance variable holds the value of the property. For the property PropName, the instance variable is named
i%PropName, and this variable name is case-sensitive. These variables are available within any instance method of the
class.

For example, if a class has the properties Name and DOB, then the instance variables i%Name and i%DOB are available
within any instance method of the class.

Internally, InterSystems IRIS also uses additional instance variables with names such as r%PropName and m%PropName,
but these are not supported for direct use.

Instance variables have process-private, in-memory storage allocated for them. Note that these variables are not held in the
local variable symbol table and are not affected by the Kill command.

A.7 ..#<Parameter> Syntax
The ..#<Parameter> syntax allows for references to class parameters from within methods of the same class.

For example, if a class definition include the following parameter and method:

Parameter MyParam = 22;

and the following method:

ClassMethod WriteMyParam()
{
    Write ..#MyParam
}

Then the WriteMyParam() method invokes the Write command with the value of the MyParam parameter as its argument.
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B
Using the Populate Utility

InterSystems IRIS® includes a utility for creating pseudo-random test data for persistent classes. The creation of such data
is known as data population; the utility for doing this, known as the InterSystems IRIS populate utility, is useful for testing
persistent classes before deploying them within a real application. It is especially helpful when testing how various parts
of an application will function when working against a large set of data.

The populate utility takes its name from its principal element — the %Populate class, which is part of the InterSystems
IRIS class library. Classes that inherit from %Populate contain a method called Populate(), which allows you to generate
and save class instances containing valid data. You can also customize the behavior of the %Populate class to provide data
for your needs.

Along with the %Populate class, the populate utility uses %PopulateUtils. %Populate provides the interface to the utility,
while %PopulateUtils is a helper class.

This appendix covers the following topics:

• Basics

• Default behavior

• How to specify the POPSPEC parameter

• How to base one generated property on another

• How %Populate works

• How to implement the OnPopulate() Method (for custom data population)

• Alternative approach to data population

When viewing this book online, use the preface of this book to quickly find related topics.

Note that the Samples-Data sample (https://github.com/intersystems/Samples-Data) uses the populate utility. InterSystems
recommends that you create a dedicated namespace called SAMPLES (for example) and load samples into that namespace.
For the general process, see Downloading Samples for Use with InterSystems IRIS.

B.1 Data Population Basics
To use the populate utility, do the following:

1. Modify each persistent and each serial class that you want to populate with data. Specifically, add %Populate to the
end of the list of superclasses, so that the class inherits the interface methods. For example, if a class inherits directly
from %Persistent, its new superclass list would be:
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Class MyApp.MyClass Extends (%Persistent,%Populate) {}

Do not use %Populate as a primary superclass; that is, do not list it as the first class in the superclass list.

Or when using the New Class Wizard within Studio, check Data Population on the last screen. This is equivalent to
adding the %Populate class to the superclass list.

2. In those classes, optionally specify the POPSPEC and POPORDER parameters of each property, to control how the
populate utility generates data for those properties, if you want to generate custom data rather than the default data,
which is described in the next section.

Later sections of this appendix provide information on these parameters.

3. Recompile the classes.

4. To generate the data, call the Populate() method of each persistent class. By default, this method generates 10 records
for the class (including any serial objects that it references):

 Do ##class(MyApp.MyClass).Populate()

If you prefer, you can specify the number of objects to create:

 Do ##class(MyApp.MyClass).Populate(num)

where num is the number of objects that you want.

Do this in the same order in which you would add records manually for the classes. That is, if Class A has a property
that refers to Class B, use the following table to determine which class to populate first:

Populate this
class first...

And Class B
inherits from...

If the property in Class A has this form...

ClassA (this
populates ClassB
automatically)

%SerialObjectProperty PropertyName as ClassB;

Property PropertyName as List of ClassB;

Property PropertyName as Array of ClassB;

ClassB%PersistentProperty PropertyName as ClassB;

Property PropertyName as List of ClassB;

Property PropertyName as Array of ClassB;

eitherRelationship PropertyName as ClassB [ Cardinality = one
...];

Relationship PropertyName as ClassB [ Cardinality = parent
...];

ClassAeitherRelationship PropertyName as ClassB [ Cardinality =
many...];

Relationship PropertyName as ClassB [ Cardinality = child
...];

Later, to remove the generated data, use either the %DeleteExtent() method (safe) or the %KillExtent() method (fast) of
the persistent interface. For more information, see “Deleting Saved Objects”  in the chapter “Working with Persistent
Objects.”

Tip: In practice, it is often necessary to populate classes repeatedly, as you make changes to your code. Thus it is useful
to write a method or a routine to populate classes in the correct order, as well as to remove the generated data.
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B.1.1 Populate() Details

Formally, the Populate() class method has the following signature:

classmethod Populate(count As %Integer = 10, 
                     verbose As %Integer = 0, 
                     DeferIndices As %Integer = 1, 
                     ByRef objects As %Integer = 0, 
                     tune As %Integer = 1,
                     deterministic As %Integer = 0) as %Integer

Where:

• count is the desired number of objects to create.

• verbose specifies whether the method should print progress messages to the current device.

• DeferIndices specifies whether to sort indices after generating the data (true) or while generating the data.

• objects, which is passed by reference, is an array that contains the generated objects.

• tune specifies whether to run $SYSTEM.SQL.TuneTable() after generating the data. If this is 0, the method does not
run $SYSTEM.SQL.TuneTable(). If this is 1 (the default), the method runs $SYSTEM.SQL.TuneTable() for this
table. If this is any value higher than 1, the method runs $SYSTEM.SQL.TuneTable() for this table and for any tables
projected by persistent superclasses of this class.

• deterministic specifies whether to generate the same data each time you call the method. By default, the method gen-
erates different data each time you call it.

Populate() returns the number of objects actually populated:

 Set objs = ##class(MyApp.MyClass).Populate(100)
 // objs is set to the number of objects created.
 // objs will be less than or equal to 100

In cases with defined constraints, such as a minimum or maximum length, some of the generated data may not pass validation,
so that individual objects will not be saved. In these situations, Populate() may create fewer than the specified number of
objects.

If errors prevent objects from being saved, and this occurs 1000 times sequentially with no successful saves, Populate()
quits.

B.2 Default Behavior
This section describes how the Populate() method generates data, by default, for the following kinds of properties:

• Literal properties

• Collection properties

• Properties that refer to serial objects

• Properties that refer to persistent objects

• Relationship properties

The Populate() method ignores stream properties.
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B.2.1 Literal Properties

This section describes how the Populate() method, by default, generates data for properties of the forms:

Property PropertyName as Type;
Property PropertyName;

Where Type is a datatype class.

For these properties, the Populate() method first looks at the name. Some property names are handled specially, as follows:

Populate() invokes the
following method to generate
data for it

If the property name is any
case variation of the
following

Name()NAME

SSN()SSN

Company()COMPANY

Title()TITLE

USPhone()PHONE

City()CITY

Street()STREET

USZip()ZIP

Mission()MISSION

USState()STATE

Color()COLOR

Product()PRODUCT

If the property does not have one of the preceding names, then the Populate() method looks at the property type and gen-
erates suitable values. For example, if the property type is %String, the Populate() method generates random strings
(respecting the MAXLEN parameter of the property). For another example, if the property type is %Integer, the Populate()
method generates random integers (respecting the MINVAL and MAXVAL parameters of the property).

If the property does not have a type, InterSystems IRIS assumes that it is a string. This means that the Populate() method
generates random strings for its values.

B.2.1.1 Exceptions

The Populate() method does not generate data for a property if the property is private, is multidimensional, is calculated,
or has an initial expression.

B.2.2 Collection Properties

This section describes how the Populate() method, by default, generates data for properties of the forms:

Property PropertyName as List of Classname;
Property PropertyName as Array of Classname;

For such properties:
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• If the referenced class is a data type class, the Populate() method generates a list or array (as suitable) of values, using
the logic described earlier for data type classes.

• If the referenced class is a serial object, the Populate() method generates a list or array (as suitable) of serial objects,
using the logic described earlier for serial objects.

• If the referenced class is a persistent class, the Populate() method performs a random sample of the extent of the ref-
erenced class, randomly selects values from that sample, and uses those to generate a list or array (as suitable).

B.2.3 Properties That Refer to Serial Objects

This section describes how the Populate() method, by default, generates data for properties of the form:

Property PropertyName as SerialObject;

Where SerialObject is a class that inherits from %SerialObject.

For such properties:

• If the referenced class inherits from %Populate, the Populate() method creates an instance of the class and generates
property values as described in the preceding section.

• If the referenced class does not inherit from %Populate, the Populate() method does not generate any values for the
property.

B.2.4 Properties That Refer to Persistent Objects

This section describes how the Populate() method, by default, generates data for properties of the following form:

Property PropertyName as PersistentObject;

Where PersistentObject is a class that inherits from %Persistent.

For such properties:

• If the referenced class inherits from %Populate, the Populate() method performs a random sample of the extent of the
referenced class and then randomly selects one value from that sample.

Note that this means you must generate data for the referenced class first. Or create data for the class in any other way.

• If the referenced class does not inherit from %Populate, the Populate() method does not generate any values for the
property.

For information on relationships, see the next section.

B.2.5 Relationship Properties

This section describes how the Populate() method, by default, generates data for properties of the following form:

Relationship PropertyName as PersistentObject;

Where PersistentObject is a class that inherits from %Persistent.

For such properties:

• If the referenced class inherits from %Populate:

– If the cardinality of the relationship is one or parent, then the Populate() method performs a random sample
of the extent of the referenced class and then randomly selects one value from that sample.
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Note that this means you must generate data for the referenced class first. Or create data for the class in any other
way.

– If the cardinality of the relationship is many or children, then the Populate() method ignores this property
because the values for this property are not stored in the extent for this class.

• If the referenced class does not inherit from %Populate, the Populate() method does not generate any values for the
property.

B.3 Specifying the POPSPEC Parameter
For a given property in a class that extends %Populate, you can customize how the Populate() method generates data for
that property. To do so, do the following:

• Find or create a method that returns a random, but suitable value for this property.

The %PopulateUtils class provides a large set of such methods; see the Class Reference for details.

• Specify the POPSPEC parameter for this property to refer to this method. The first subsection gives the details.

The POPSPEC parameter provides additional options for list and array properties, discussed in later subsections.

For a literal, non-collection property, another technique is to identify an SQL table column that contains values to use for
this property; then specify the POPSPEC parameter to refer to this property; see the last subsection.

Note: There is also a POPSPEC parameter defined at the class level that controls data population for an entire class.
This is an older mechanism (included for compatibility) that is replaced by the property-specific POPSPEC
parameter. This appendix does not discuss it further.

B.3.1 Specifying the POPSPEC Parameter for Non-Collection Properties

For a literal property that is not a collection, use one of the following variations:

• POPSPEC="MethodName()" — In this case, Populate() invokes the class method MethodName*( of the
%PopulateUtils class.

• POPSPEC=".MethodName()" — In this case, Populate() invokes the instance method MethodName() of the
instance that is being generated.

• POPSPEC="##class(ClassName).MethodName()" — In this case, Populate() invokes the class method
MethodName() of the ClassName class.

For example:

Property HomeCity As %String(POPSPEC = "City()");

If you need to pass a string value as an argument to the given method, double the starting and closing quotation marks
around that string. For example:

Property PName As %String(POPSPEC = "Name(""F"")");

Also, you can append a string to the value returned by the specified method. For example:

Property JrName As %String(POPSPEC = "Name()_"" jr."" "); 
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Notice that it is necessary to double the starting and closing quotation marks around that string. It is not possible to prepend
a string, because the POPSPEC is assumed to start with a method.

Also see “Specifying the POPSPEC Parameter via an SQL Table”  for a different approach.

B.3.2 Specifying the POPSPEC Parameter for List Properties

For a property that is a list of literals or objects, you can use the following variation:

POPSPEC="basicspec:MaxNo"

Where

• basicspec is one of the basic variations shown in the preceding section. Leave basicspec empty if the property is a list
of objects.

• MaxNo is the maximum number of items in the list; the default is 10.

For example:

Property MyListProp As list Of %String(POPSPEC = ".MyInstanceMethod():15");

You can omit basicspec. For example:

Property Names As list of Name(POPSPEC=":3");

In the following examples, there are lists of several types of data. Colors is a list of strings, Kids is a list of references to
persistent objects, and Addresses is a list of embedded objects:

Property Colors As list of %String(POPSPEC="ValueList("",Red,Green,Blue"")");

Property Kids As list of Person(POPSPEC=":5");

Property Addresses As list of Address(POPSPEC=":3");

To generate data for the Colors property, the Populate() method calls the ValueList() method of the PopulateUtils class.
Notice that this example passes a comma-separated list as an argument to this method. For the Kids property, there is no
specified method, which results in automatically generated references. For the Addresses property, the serial Address class
inherits from %Populate and data is automatically populated for instances of the class.

B.3.3 Specifying the POPSPEC Parameter for Array Properties

For a property that is an array of literals or objects, you can use the following variation:

POPSPEC="basicspec:MaxNo:KeySpecMethod"

Where:

• basicspec is one of the basic variations shown earlier. Leave basicspec empty if the property is a array of objects.

• MaxNo is the maximum number of items in the array. The default is 10.

• KeySpecMethod is the specification of the method that generates values to use for the keys of the array. The default is
String(), which means that InterSystems IRIS invokes the String() method of %PopulateUtils.

The following examples show arrays of several types of data and different kinds of keys:

Property Tix As array of %Integer(POPSPEC="Integer():20:Date()");

Property Reviews As array of Review(POPSPEC=":3:Date()");

Property Actors As array of Actor(POPSPEC=":15:Name()");
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The Tix property has its data generated using the Integer() method of the PopulateUtils class; its keys are generated using
the Date() method of the PopulateUtils class. The Reviews property has no specified method, which results in automatically
generated references, and has its keys also generated using the Date() method. The Actors property has no specified method,
which results in automatically generated references, and has its keys generated using the Name() method of the PopulateUtils

class.

B.3.4 Specifying the POPSPEC Parameter via an SQL Table

For POPSPEC, rather than specifying a method that returns a random value, you can specify an SQL table name and an
SQL column name to use. If you do so, then the Populate() method constructs a dynamic query to return the distinct column
values from that column of that table. For this variation of POPSPEC, use the following syntax:

POPSPEC=":MaxNo:KeySpecMethod:SampleCount:Schema_Table:ColumnName"

Where:

• MaxNo and KeySpecMethod are optional and apply only to collection properties (see earlier the subsections on lists
and arrays).

• SampleCount is the number of distinct values to retrieve from the given column, to use as a starting point. If this is
larger than the number of existing distinct values in that column, then all values are possibly used.

• Schema_Table is the name of the table.

• ColumnName is the name of the column.

For example:

Property P1 As %String(POPSPEC=":::100:Wasabi_Data.Outlet:Phone");  

In this example, the property P1 receives a random value from a list of 100 phone numbers retrieved from the
Wasabi_Data.Outlet table.

B.4 Basing One Generated Property on Another
In some cases, the set of suitable value for one property (A) might depend upon the existing value of another property (B).
In such a case:

• Create an instance method to generate values for property A. In this method, use instance variables to obtain the value
of property B (and any other properties that should be considered). For example:

Method MyMethod() As %String
{
    if (i%MyBooleanProperty) {
        quit "abc"
    } else {
        quit "def"
    }
}

For more information on instance variables, see “ i%PropertyName”  in the chapter “Working with Registered Objects.”

Use this method in the POPSPEC parameter of the applicable property. See “Specifying the POPSPEC Parameter” ,
earlier in this appendix.

• Specify the POPORDER parameter of any properties that must be populated in a specific order. This parameter should
equal an integer. InterSystems IRIS populates properties with lower values of POPORDER before properties with
higher values of POPORDER. For example:
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Property Name As %String(POPORDER = 2, POPSPEC = ".MyNameMethod()");

Property Gender As %String(POPORDER = 1, VALUELIST = ",1,2"); 

B.5 How %Populate Works
This section describes how %Populate works internally. The %Populate class contains two method generators: Populate()
and PopulateSerial(). Each persistent or serial class inheriting from %Populate has one or the other of these two methods
included in it (as appropriate).

We will describe only the Populate method here. The Populate() method is a loop, which is repeated for each of the
requested number of objects.

Inside the loop, the code:

1. Creates a new object

2. Sets values for its properties

3. Saves and closes the object

A simple property with no overriding POPSPEC parameter has a value generated using code with the form:

 Set obj.Description = ##class(%PopulateUtils).String(50)

While using a library method from %PopulateUtils via a “Name:Name()”  specification would generate:

 Set obj.Name = ##class(%PopulateUtils).Name()

An embedded Home property might create code like:

 Do obj.HomeSetObject(obj.Home.PopulateSerial())

The generator loops through all the properties of the class, and creates code for some of the properties, as follows:

1. It checks if the property is private, is calculated, is multidimensional, or has an initial expression. If any of these are
true, the generator exits.

2. If the property is has a POPSPEC override, the generator uses that and then exits.

3. If the property is a reference, on the first time through the loop, the generator builds a list of random IDs, takes one
from the list, and then exits. For the subsequent passes, the generator simply takes an ID from the list and then exits.

4. If the property name is one of the specially handled names, the generator then uses the corresponding library method
and then exits.

5. If the generator can generate code based on the property type, it does so and then exits.

6. Otherwise, the generator sets the property to an empty string.

Refer to the %PopulateUtils class for a list of available methods.
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B.6 Custom Populate Actions and the OnPopulate()
Method
For additional control over the generated data, you can define an OnPopulate() method. If an OnPopulate() method is
defined, then the Populate() method calls it for each object it generates. The method is called after assigning values to the
properties but before the object is saved to disk. Each call to the Populate() method results in a check for the existence of
the OnPopulate() method and a call to OnPopulate() it for each object it generates.

This instance method is called by the Populate method after assigning values to properties but before the object is saved
to disk. This method provides additional control over the generated data. If an OnPopulate() method exists, then the
Populate method calls it for each object that it generates.

Its signature is:

Method OnPopulate() As %Status 
{
    // body of method here...
}

Note: This is not a private method.

The method returns a %Status code, where a failure status causes the instance being populated to be discarded.

For example, if you have a stream property, Memo, and wish to assign a value to it when populating, you can provide an
OnPopulate() method:

Method OnPopulate() As %Status
{
    Do ..Memo.Write("Default value")
    QUIT $$$OK
}

You can override this method in subclasses of %Library.Populate.

B.7 Alternative Approach: Creating a Utility Method
There is another way to use the methods of the %Populate and %PopulateUtils classes. Rather than using %Populate as a
superclass, write a utility method that generates data for your classes.

In this code, for each class, iterate a desired number of times. In each iteration:

1. Create a new object.

2. Set each property using a suitable random (or nearly random) value.

To generate data for a property, call a method of %Populate or %PopulateUtils or use your own method.

3. Save the object.

As with the standard approach, it is necessary to generate data for independent classes before generating it for the dependent
classes.
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B.7.1 Tips for Building Structure into the Data

In some cases, you might want to include certain values for only a percentage of the cases. You can use the $RANDOM
function to do this. For example, use this function to define a method that returns true or false randomly, depending on a
cutoff percentage that you provide as an argument. So, for example, it can return true 10% of the time or 75% of the time.

When you generate data for a property, you can use this method to determine whether or not to assign a value:

 If ..RandomTrue(15) {
    set ..property="something"
 } 

In the example shown here, approximately 15 percent of the records will have the given value for this property.

In other cases, you might need to simulate a distribution. To do so, set up and use a lottery system. For example, suppose
that 1/4 of the values should be A, 1/4 of the values should be B, and 1/2 the values should be C. The logic for the lottery
can go like this:

1. Choose an integer from 1 to 100, inclusive.

2. If the number is less than 25, return value A.

3. If the number is between 25 and 49, inclusive, return value B.

4. Otherwise, return value C.
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C
Using the %Dictionary Classes

This appendix discusses the class definition classes, a set of persistent classes that provide object and SQL access to all
class definitions. This appendix discusses the following topics:

• Introduction

• How to browse class definitions

• How to modify class definitions

When viewing this book online, use the preface of this book to quickly find other topics.

C.1 Introduction to Class Definition Classes
The class definition classes provide object and SQL access to all class definitions. Using these classes, you can program-
matically examine class definitions, modify class definitions, create new classes, and even write programs that automatically
generate documentation. These classes are contained within the %Dictionary package.

Note: There is an older set of class definition classes defined within the %Library package. These are maintained for
compatibility with existing applications. New code should make use of the classes within the %Dictionary package.
Make sure that you specify the correct package name when using these classes or you may inadvertently use the
wrong class.

There are two parallel sets of class definition classes: those that represent defined classes and those that represent compiled
classes.

A defined class definition represents the definition of a specific class. It includes only information defined by that class; it
does not include information inherited from superclasses. In addition to providing information about classes in the dictionary,
these classes can be used to programmatically alter or create new class definitions.

A compiled class definition includes all of the class members that are inherited from superclasses. A compiled class definition
object can only be instantiated from a class that has been compiled. You cannot save a compiled class definition.

This appendix discusses defined class definitions exclusively, though the operation of the compiled class definitions is
similar.

The family of class definition classes that represent defined classes includes:
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DescriptionClass

Represents a class definition. Contains class keywords as well as
collections containing class member definitions.

%Dictionary.ClassDefinition

Represents a foreign key definition within a class.%Dictionary.ForeignKeyDefinition

Represents an index definition within a class.%Dictionary.IndexDefinition

Represents a method definition within a class.%Dictionary.MethodDefinition

Represents a parameter definition within a class.%Dictionary.ParameterDefinition

Represents a property definition within a class.%Dictionary.PropertyDefinition

Represents a query definition within a class.%Dictionary.QueryDefinition

Represents an SQL trigger definition within a class.%Dictionary.TriggerDefinition

Important: To reiterate, the content of an uncompiled class definition (as an instance of the %Dictionary.ClassDefinition)
is not necessarily the same as the content of a compiled class definition (as an instance of
%Dictionary.CompiledClass). The %Dictionary.ClassDefinition class provides an API to inspect or change
the definition of the class — it does not ever represent the compiled class with inheritance resolved;
%Dictionary.CompiledClass, on the other hand, does represent the compiled class with inheritance resolved.

For example, if you are trying to determine the value of a particular keyword in a class definition, use the
keywordnameIsDefined() method from %Dictionary.ClassDefinition (such as OdbcTypeIsDefined() or
ServerOnlyIsDefined()). If this boolean method returns false, then the keyword is not explicitly defined
for the class. If you check the value of the keyword for the class definition, it will be the default value.
However, after compilation (which includes inheritance resolution), the value of the keyword is determined
by inheritance and may differ from the value as defined.

C.2 Browsing Class Definitions
You can use the SQL pages of the Management Portal to browse the class definition classes.

Similarly, you can programmatically browse through the class definitions using the same techniques you would use to
browse any other kind of data: you can use dynamic SQL and you can instantiate persistent objects that represent specific
class definitions.

For example, from within an InterSystems IRIS® process, you can get a list of all classes defined within the dictionary for
the current namespace by using the %Dictionary.ClassDefinition:Summary() query:

    set stmt=##class(%SQL.Statement).%New()
    set status = stmt.%PrepareClassQuery("%Dictionary.ClassDefinition","Summary")
    if $$$ISERR(status) { 
        do $System.Status.DisplayError(status)
        quit
    }

    set rset=stmt.%Execute()
    While (rset.%Next()) {
        Write rset.%Get("Name"),!
    }

This sample method will write the names of all the classes visible in the current namespace (including classes in the system
library). You can filter out unwanted classes using the various columns returned by the
%Dictionary.ClassDefinition:Summary() query.
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You can get detailed information about a specific class definition by opening a %Dictionary.ClassDefinition object for the
class and observing its properties. The ID used to store %Dictionary.ClassDefinition objects is the class name:

 Set cdef = ##class(%Dictionary.ClassDefinition).%OpenId("Sample.Person")
 Write cdef.Name,!

 // get list of properties
 Set count = cdef.Properties.Count()
 For i = 1:1:count {
     Write cdef.Properties.GetAt(i).Name,!
 }

Note that you must fully qualify class names with their package name or the call to %OpenId() will fail.

C.3 Altering Class Definitions
You can modify an existing class definition by opening a %Dictionary.ClassDefinition object, making the desired changes,
and saving it using the %Save() method.

You can create a new class by creating a new %Dictionary.ClassDefinition object, filling in its properties and saving it. When
you create %Dictionary.ClassDefinition object, you must pass the name of the class via the %New() command. When you
want to add a member to the class (such as a property or method), you must create the corresponding definition class
(passing its %New() command a string containing "class_name.member_name") and add the object to the appropriate
collection within the %Dictionary.ClassDefinition object.

For example:

 Set cdef = ##class(%Dictionary.ClassDefinition).%New("MyApp.MyClass")
 If $SYSTEM.Status.IsError(cdef)  {
     Do $system.Status.DecomposeStatus(%objlasterror,.Err)
     Write !, Err(Err)
 }
 Set cdef.Super = "%Persistent,%Populate"

 // add a Name property
 Set pdef = ##class(%Dictionary.PropertyDefinition).%New("MyClass:Name")
 If $SYSTEM.Status.IsError(pdef)  {
     Do $system.Status.DecomposeStatus(%objlasterror,.Err) 
     Write !,Err(Err)
 }

 Do cdef.Properties.Insert(pdef)

 Set pdef.Type="%String"

 // save the class definition object
 Do cdef.%Save()
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D
Using the Object Synchronization Feature

This appendix describes the object synchronization feature, which you can use to synchronize specific tables in databases
that are on “occasionally connected”  systems. This appendix includes the following sections:

• Introduction

• How to modify the classes to support synchronization

• How to perform the synchronization

• How to translate between GUIDs and OIDs

• How to manually update a SyncTime table

When viewing this book online, use the preface of this book to quickly find other topics.

D.1 Introduction to Object Synchronization
Object synchronization is a set of tools available with InterSystems IRIS® objects that allows application developers to
set up a mechanism to synchronize databases on “occasionally connected”  systems. By this process, each database updates
its objects. Object synchronization offers complementary functionality to InterSystems IRIS system tools that provide high
availability. Object synchronization is not designed to provide support for real-time updates; rather, it is most useful for a
system that needs updates at discrete intervals.

For example, a typical object synchronization application would be in an environment where there is a master copy of a
database on a central server and secondary copies on client machines. Consider the case of a sales database, where each
sales representative has a copy of the database on a laptop computer. When Mary, a sales representative, is off site, she
makes updates to her copy of the database. When she connects her machine to the network, the central and remote copies
of the database are synchronized. This can occur hourly, daily, or at any interval.

Object synchronization between two databases involves updating each of them with data from the other. However, Inter-
Systems IRIS does not support bidirectional synchronization as such. Rather, updates from one database are posted to the
other; then updates are posted in the opposite direction. For a typical application, if there is a main database and one or
more local databases (as in the previous sales database example), it is recommended that updates are from the local to the
main database first, and then from the main database to the local one.

For object synchronization, the idea of client and server is by convention only. For any two databases, you can perform
bidirectional updates; if there are more than two databases, you can choose what scheme you use to update all of them
(such as local databases synchronizing with a main database independently).

This section addresses the following topics:
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• The GUID

• How updates work

• The SyncSet and SyncTime objects

D.1.1 The GUID

To ensure that updates work properly, each object in a database should be uniquely distinguishable. To provide this func-
tionality, InterSystems IRIS gives each individual object instance a GUID — a globally unique ID. The GUID makes each
object universally unique.

The GUID is optionally created, based on the value of the GUIDENABLED parameter. If GUIDENABLED has a value of
1, then a GUID is assigned to each new object instance.

Consider the following example. Two databases are synchronized and each has the same set of objects in it. After synchro-
nization, each database has a new object added to it. If the two objects share a common GUID, object synchronization
considers them the same object in two different states; if each has its own GUID, object synchronization considers them
to be different objects.

D.1.2 How Updates Work

Each update from one database to another is sent as a set of transactions. This ensures that all interdependent objects are
updated together. The content of each transaction depends on the contents of the journal for the “source”  database. The
update can include one or more transactions, up to all transactions that have occurred since the last synchronization.

Resolution of the following conditions is the responsibility of the application:

• If two instances that share a unique key have different GUIDs. This requires determining if the two records describe
a single object or two unique objects.

• If two changes require reconciliation. This requires determining if the two changes were to a common property or to
non-intersecting sets of properties.

D.1.3 The SyncSet and SyncTime Objects

When two databases are to be synchronized, each has transactions in it that the other lacks. This is illustrated in the following
diagram:
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Figure IV–1:Two Unsynchronized Databases

Here, database A and database B have been synchronized at transaction 536 for database A and transaction 112 for database
B. The subsequent transactions for each database need to be updated from each to the other. To do this, InterSystems IRIS
uses what is called a SyncSet object. This object contains a list of transactions that are used to update a database. For
example, when synchronizing database B with database A, the default contents of the SyncSet object are transactions 547,
555, 562, and 569. Analogously, when synchronizing database A with database B, the default contents of the SyncSet object
are transactions 117, 124, 130, and 136. (The transactions do not use a continuous set of numbers, because each transaction
encapsulates multiple inserts, updates, and deletes — which themselves use the intermediate numbers.)

Each database holds a record of its synchronization history with the other. This record is called a SyncTime table. For
database, its contents are of the form:

Database     Namespace     Last Transaction Sent     Last Transaction Received
------------------------------------------------------------------------------
B            User          536                       112

Note: The numbers associated with each transaction do not provide any form of a time stamp. Rather, they indicate the
sequence of filing for transactions within an individual database.

Once database B has been synchronized with database A, the two databases might appear as follows:
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Figure IV–2:Two Databases,Where One Has Been Synchronized with the Other

Because the transactions are being added to database B, they result in new transaction numbers in that database.

Analogously, the synchronization of database B with database A results in 117, 124, 130, and 136 being added to database
A (and receiving new transaction numbers there):
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Figure IV–3:Two Synchronized Databases

Note that the transactions from database B that have come from database A (140 through 162) are not updated back to
database A. This is because the update from B to A uses a special feature that is part of the synchronization functionality.
It works as follows:

1. Each transaction in a database is labeled with what can be called “a database of origin.”  In this example, transaction
140 in database B would be marked as originating in database A, while its transaction 136 would be marked as origi-
nating in itself (database B).

2. The SyncSet.AddTransactions() method, which bundles a set of transactions for synchronization, allows you to
exclude transactions that originate in a particular database. Hence, when updating from B to A, AddTransactions()
excludes all transactions that originate in database A — because those have already been added to the transaction list
for database B.

This functionality prevents creating infinite loops in which two databases continually update each other with the same set
of transactions.

D.2 Modifying the Classes to Support Synchronization
Object synchronization requires that the sites have data with matching sets of GUIDs. If you are starting with an already
existing database that does not yet have GUIDs assigned for its records, you need to assign a GUID to each instance (record)
in the database, and then make sure there are matching copies of the database on each site. In detail, the process is:
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1. For each class being synchronized, set the value of the OBJJOURNAL parameter to 1.

Parameter OBJJOURNAL = 1;

This activates the logging of filing operations (that is, insert, update, or delete) within each transaction; this information
is stored in the ^OBJ.JournalT global. An OBJJOURNAL value of 1 specifies that the property values that are changed
in filing operations are stored in the system journal file; during synchronization, data that needs to be synchronized is
retrieved from that file.

Note: OBJJOURNAL can also have a value of 2, though the possible use of this value is restricted to special cases.
It is never for classes using the default storage mechanism (%Storage.Persistent). A value of 2 specifies that
property values that are changed in filing operations are stored in the ^OBJ.Journal global; during synchro-
nization, data that needs to be synchronized is retrieved from that global. Also, storing information in the
global increases the size of the database very quickly.

2. Optionally also set the value of the JOURNALSTREAM parameter to 1.

Parameter JOURNALSTREAM = 1; 

By default, object synchronization does not support synchronization of file streams. The JOURNALSTREAM parameter
controls whether or not streams are journaled when OBJJOURNAL is true:

• If JOURNALSTREAM is false and OBJJOURNAL is true, then objects are journaled but the streams are not.

• If JOURNALSTREAM is true and OBJJOURNAL is true, then streams are journaled. Object synchronization tools
will process journaled streams when the referencing object is processed.

3. For each class being synchronized, set the value of its GUIDENABLED parameter to 1; this tells InterSystems IRIS
to allow the class to be stored with GUIDs.

Parameter GUIDENABLED = 1;

Note that if this value is not set, the synchronization does not work properly. Also, you must set GUIDENABLED for
serial classes, but not for embedded objects.

4. Recompile the class.

5. For each class being synchronized, give each object instance its own GUID by running the AssignGUID() method:

 Set Status = ##Class(%Library.GUID).AssignGUID(className,displayOutput)

where:

• className is the name of class whose instances are receiving GUIDs, such as "Sample.Person".

• displayOutput is an integer where zero specifies that no output is displayed and a nonzero value specifies that
output is displayed.

The method returns a %Status value, which you should check.

6. Put a copy of the database on each site.

D.3 Performing the Synchronization
This section describes how to perform the synchronization. The database providing the updates is known as the source
database; and the database receiving the updates is the target database. To perform the actual synchronization, the process
is:
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1. Each time you wish to synchronize the two databases, go to the instance with the source database. On the source
database, create a new SyncSet using the %New() method of the %SYNC.SyncSet class:

 Set SrcSyncSet = ##class(%SYNC.SyncSet).%New("unique_value")

The integer argument to %New(), unique_value, should be an easily identified, unique value. This ensures that each
addition to the transaction log on each site can be differentiated from the others.

2. Call the AddTransactions() method of the SyncSet instance:

 Do SrcSyncSet.AddTransactions(FirstTransaction,LastTransaction,ExcludedDB)

Where:

• FirstTransaction is the first transaction number to synchronize.

• LastTransaction is the last transaction number to synchronize.

• ExcludedDB specifies a namespace within a database whose transactions are not included in the SyncSet.

This method collects the synchronization data and puts it in a global, ready for export.

Or, to synchronize all transactions since the last synchronization, omit the first and second arguments:

 Do SrcSyncSet.AddTransactions(,,ExcludedDB)

This gets all transactions, beginning with the first unsynchronized transaction to the most recent transaction. The
method uses information in the SyncTime table to determine the values.

ExcludedDB is a $LIST created as follows:

 Set ExcludedDB = $ListBuild(GUID,namespace)

Where:

• GUID is the system GUID of the target system. This value is available through the %SYS.System.InstanceGUID
class method; to invoke this method, use the ##class(%SYS.System).InstanceGUID() syntax.

• namespace is the namespace on the target system.

3. Call the ErrCount() method to determine how many errors were encountered. If there have been errors, the Sync-
Set.Errors query provides more detailed information.

4. Export the data to a local file using the ExportFile() method:

 Do SrcSyncSet.ExportFile(file,displaymode,bUpdate)

Where:

• file is the file to which the transactions are being exported; it is a name with a relative or absolute path.

• displaymode specifies whether or not the method writes output to the current device. Specify “d”  for output or
“ -d”  for no output.

• bUpdate is a boolean value that specifies whether or not the SyncTime table is updated (where the default is 1,
meaning True). It may be helpful to explicitly set this to 0 at this point, and then set it to 1 after the source receives
assurance that the target has indeed received the data and performed the synchronization.

5. Move the exported file from the source machine to the target machine.

6. Create a SyncSet object on the target machine using the SyncSet.%New() method. Use the same value for the argument
of %New() as on the source machine — this is what identifies the source of the synchronized transactions.

7. Read the SyncSet object into the InterSystems IRIS instance on the target machine using the Import() method:
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 Set Status = TargetSyncSet.Import(file,lastSync,maxTS,displaymode,errorlog,diag)

Where:

• file is the file containing the data for import.

• lastSync is the last synchronized transaction number (default from synctime table).

• maxTS is the last transaction number in the SyncSet object.

• displaymode specifies whether or not the method writes output to the current device. Specify “d”  for output or
“ -d”  for no output.

• errorlog provides a repository for any error information (and is called by reference to provide information for the
application).

• diag provides more detailed diagnostic information about what is happening when importing

This method puts data into the target database. It behaves as follows:

a. If the method detects that the object has been modified on both the source and target databases since the last syn-
chronization, it invokes the %ResolveConcurrencyConflict() callback method; like other callback methods, the
content of %ResolveConcurrencyConflict() is user-supplied. (Note that this can occur if either the two changes
both modified a common property or the two changes each modified non-intersecting sets of properties.) If the
%ResolveConcurrencyConflict() method is not implemented, then the conflict remains unresolved.

b. If, after the Import() method executes, there are unsuccessfully resolved conflicts, these remain in the SyncSet

object as unresolved items. Be sure to take the appropriate action regarding the remaining conflicts; this may
involve resolution, leaving the items in an unresolved state, and so on.

Important: The Import() method returns a status value but that status value simply indicates that the method
completed without encountering an error that prevented the SyncSet from being processed. It does
not indicate that every object in the SyncSet was processed successfully without encountering any
errors. For information on synchronization error reporting, see Import() in the class reference for
%SYNC.SyncSet.

8. Once the first database updates the second database, perform the same process in the other direction so that the second
database can update the first one.

D.4 Translating Between GUIDs and OIDs
To determine the OID of an object from its GUID or vice versa, there are two methods available:

• %GUIDFind() is a class method of the %GUID class that takes a GUID of an object instance and returns the OID
associated with that instance.

• %GUID() is a class method of the %Persistent class that takes an OID of an object instance and returns the GUID
associated with that instance; the method can only be run if the GUIDENABLED parameter is TRUE for the correspond-
ing class. This method dispatches polymorphically and determines the most specific type class if the OID does not
contain that information. If the instance has no GUID, the method returns an empty string.
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D.5 Manually Updating a SyncTime Table
To perform a manual update on the SyncTime table for a database, invoke the SetlTrn() method, which sets the last trans-
action number:

 Set Status=##class(%SYNC.SyncTime).SetlTrn(syncSYSID, syncNSID, ltrn)

Where:

• syncSYSID is the system GUID of the target system. This value is available through the %SYS.System.InstanceGUID
class method; to invoke this method, use the ##class(%SYS.System).InstanceGUID() syntax.

• syncNSID is the namespace on the target system, which is held in the $Namespace variable.

• ltrn is the highest transaction number known to have been imported. You can get this value by invoking the
GetLastTransaction() method of the SyncSet.

The SetlTrn() method sets the highest transaction number synchronized on the target system instead of the default behavior
(which is to set the highest transaction number exported from the source system). Either approach is fine and is a choice
available during application development.
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