
Creating REST Services

Version 2019.4
2020-01-28

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Creating REST Services
InterSystems IRIS Data Platform Version 2019.4 2020-01-28
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

1 Introduction to Creating REST Services .. 3
1.1 Introduction to REST ... 3
1.2 Introduction to InterSystems REST Services ... 3

1.2.1 Manually Coding REST Services .. 4
1.3 Introduction to InterSystems API Management Tools ... 4
1.4 Overview of Creating REST Services .. 4
1.5 A Closer Look at the REST Service Classes .. 5

1.5.1 Specification Class ... 5
1.5.2 Dispatch Class .. 6
1.5.3 Implementation Class ... 7

1.6 Enabling Logging for API Management Features .. 7

2 Using the /api/mgmnt Service .. 9
2.1 Using the /api/mgmnt Service to Create a REST Service .. 9

2.1.1 Using the /api/mgmnt Service to Generate the Classes ... 9
2.1.2 Creating the Web Application .. 10

2.2 Using the /api/mgmnt Service to Update a REST Service ... 10
2.2.1 How InterSystems Updates the Implementation Class .. 11

2.3 Using the /api/mgmnt Service to Delete a REST Service .. 11

3 Using the ^%REST Routine to Create REST Services .. 13
3.1 Using the ^%REST Routine ... 13
3.2 Using the ^%REST Routine to Create a REST Service ... 13
3.3 Using the ^%REST Routine to Delete a REST Service ... 14

4 Using the %REST.API Class to Create REST Services .. 17
4.1 Using the %REST.API Class to Create or Update a REST Service ... 17
4.2 Using the %REST.API Class to Delete a REST Service ... 18

5 Modifying the Implementation Class .. 19
5.1 Initial Method Definitions .. 19
5.2 Implementing the Methods ... 19
5.3 Exposing Details of Server Errors .. 20
5.4 Modifying the Error Response ... 20

6 Modifying the Specification Class ... 21
6.1 Overview .. 21
6.2 Overriding the Content Type, Response Character Set, or Input Stream Handling 22
6.3 Overriding the Name of a Service Method .. 22

7 Supporting CORS in REST Services .. 23
7.1 Overview .. 23

7.1.1 Introduction to CORS .. 23
7.1.2 Overview of Enabling a REST Service to Support CORS ... 24

7.2 Accepting the CORS Header .. 24
7.3 Defining How to Process the CORS Header .. 25

7.3.1 Defining OnHandleCorsRequest() ... 25
7.3.2 Modifying the Specification Class ... 26

Creating REST Services iii

8 Using Web Sessions with REST ... 27
8.1 Introduction .. 27
8.2 Enabling a REST Service to Use Web Sessions ... 27

9 Securing REST Services ... 29
9.1 Setting Up Authentication for REST Services ... 29

9.1.1 REST Applications and OAuth 2.0 .. 29
9.2 Specifying Privileges Needed to Use REST Services .. 30

9.2.1 Specifying Privileges .. 30
9.2.2 Using the SECURITYRESOURCE Parameter .. 31

10 Discovering and Documenting REST APIs .. 33
10.1 Using the /api/mgmnt Service to Discover REST Services ... 33

10.1.1 Discovering REST Services ... 33
10.1.2 Discovering REST-Enabled Web Applications .. 34

10.2 Using the %REST.API Class to Discover REST Services ... 34
10.2.1 Discovering REST Service Classes ... 34
10.2.2 Discovering REST-Enabled Web Applications .. 35

10.3 Providing Documentation for a REST Service .. 35

Reference for the /api/mgmnt API .. 37
DELETE /api/mgmnt/v2/:namespace/:application/ ... 38
GET /api/mgmnt/ .. 39
GET /api/mgmnt/v1/:namespace/restapps .. 41
GET /api/mgmnt/v1/:namespace/spec/:application/ .. 42
GET /api/mgmnt/v2/ .. 43
GET /api/mgmnt/v2/:namespace/ ... 44
GET /api/mgmnt/v2/:namespace/:application/ ... 45
POST /api/mgmnt/v2/:namespace/:application .. 46

Appendix A: OpenAPI Properties in Use .. 47
A.1 Swagger ... 47
A.2 Info Object ... 47
A.3 Path Item Object .. 48
A.4 Operation Object ... 48
A.5 Parameter Object ... 48
A.6 Items Object .. 49

Appendix B: Creating a REST Service Manually .. 51
B.1 Basics of Creating a REST Service Manually ... 51
B.2 Creating the URL Map .. 52

B.2.1 URLMap with <Route> Elements ... 52
B.2.2 URLMap with <Map> Elements ... 54

B.3 Specifying the Data Format ... 55
B.4 Localizing a REST Service .. 56
B.5 Using Web Sessions with REST .. 56
B.6 Supporting CORS .. 57

B.6.1 Modifying a REST Service to Use CORS ... 57
B.6.2 Overriding the CORS Header Processing ... 57

B.7 Variation: Accessing Query Parameters ... 58

iv Creating REST Services

About This Book

This book describes how to use the InterSystems API Management feature and how to create REST services.

This book describes how to create REST services. Before reading this book, you should read First Look: Developing REST
Interfaces in InterSystems IRIS, which provides an introduction. You may also want to take the online class Setting Up
RESTful Services. You need to be logged into learning.intersystems.com to take this course. If you do not have an account,
you can create one.

This book includes the following sections:

• Introduction to Creating REST Services

• Using the /api/mgmnt Service to Create REST Services

• Using the ^%REST Routine to Create REST Services

• Using the %REST.API Class to Create REST Services

• Modifying the Implementation Class

• Modifying the Specification Class

• Supporting CORS in REST Services

• Using Web Sessions with REST

• Securing REST Services

• Discovering and Documenting REST APIs

• Reference for the /api/mgmnt API

• OpenAPI 2.0 Properties in Use (appendix)

• Creating a REST Service Manually (appendix)

For a detailed outline, see the table of contents.

Creating REST Services 1

https://learning.intersystems.com/course/view.php?name=REST%20Services
https://learning.intersystems.com/course/view.php?name=REST%20Services
https://learning.intersystems.com

1
Introduction to Creating REST Services

This chapter introduces REST and REST services in InterSystems IRIS®.

1.1 Introduction to REST
REST, which is named from “Representational State Transfer,” has the following attributes:

• REST is an architectural style rather than a format. Although REST is frequently implemented using HTTP for trans-
porting messages and JSON for passing data, you can also pass data as XML or plain text. REST makes use of existing
web standards such as HTTP, URL, XML, and JSON.

• REST is resource oriented. Typically a resource is identified by a URL and uses operations based explicitly on HTTP
methods, such as GET, POST, PUT, and DELETE.

• REST typically has a small overhead. Although it can use XML to describe data, it more commonly uses JSON which
is a lightweight data wrapper. JSON identifies data with tags but the tags are not specified in a formal schema definition
and do not have explicit data types.

1.2 Introduction to InterSystems REST Services
There are two ways to define REST interfaces in InterSystems IRIS 2019.2 and later:

• Specification-first definition — you first create an OpenAPI 2.0 specification and then use the API Management tools
to generate the code for the REST interface.

• Manually coding the REST interface.

Using a specification-first definition, an InterSystems REST service formally consists of the following components:

• A specification class (a subclass of %REST.Spec). This class contains the OpenAPI 2.0 specification for the REST
service. InterSystems supports several extension attributes that you can use within the specification.

• A dispatch class (a subclass of %CSP.REST). This class is responsible for receiving HTTP requests and calling suitable
methods in the implementation class.

• An implementation class (a subclass of %REST.Impl). This class defines the methods that implement the REST calls.

Creating REST Services 3

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md

The API management tools generate a stub version of the implementation class, which you then expand to include the
necessary application logic. (Your logic can of course invoke code outside of this class.)

The %REST.Impl class provides methods that you can call in order to set HTTP headers, report errors, and so on.

• An InterSystems web application, which provides access to the REST service via the InterSystems Web Gateway. The
web application is configured to enable REST access and to use the specific dispatch class. The web application also
controls access to the REST service.

InterSystems follows a strict naming convention for these components. Given an application name (appname), the names
of the specification, dispatch, and implementation class are appname.spec, appname.disp, and appname.impl,
respectively. The web application is named /csp/appname by default but you can use a different name for that.

InterSystems supports the specification-first paradigm. You can generate initial code from the specification, and when the
specification changes (for example, by acquiring new end points), you can regenerate that code. Later sections provide
more details, but for now, note that you should never edit the dispatch class, but can modify the other classes. Also, when
you recompile the specification class, the dispatch class is regenerated automatically and the implementation class is updated
(preserving your edits).

1.2.1 Manually Coding REST Services

In releases before 2019.2, InterSystems IRIS did not support the specification-first paradigm. A REST service formally
consisted only of a dispatch class and a web application. This book refers to this way to define REST services as manually-
coded REST services. The distinction is that a REST service defined by newer REST service includes a specification class,
and a manually-coded REST service does not. The “Creating a REST Service Manually” appendix of this book describes
how to create REST services using the manual coding paradigm. Similarly, some of the API management utilities enable
you to work with manually-coded REST services.

1.3 Introduction to InterSystems API Management Tools
To help you create REST services more easily, InterSystems provides the following API management tools:

• A REST service named /api/mgmnt, which you can use to discover REST services on the server, generate OpenAPI
2.0 specifications for these REST services, and create, update, or delete REST services on the server.

• The ^%REST routine, which provides a simple command-line interface that you can use to list, create, and delete
REST services.

• The %REST.API class, which you can use to discover REST services on the server, generate OpenAPI 2.0 specifications
for these REST services, and create, update, or delete REST services on the server.

You can set up logging for these tools, as described later in this chapter.

Helpful third-party tools include REST testing tools such as PostMan (https://www.getpostman.com/) and the Swagger
editor (https://swagger.io/tools/swagger-editor/download/).

1.4 Overview of Creating REST Services
The recommended way to create REST services in InterSystems products is roughly as follows:

1. Obtain (or write) the OpenAPI 2.0 specification for the service.

4 Creating REST Services

Introduction to Creating REST Services

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://www.getpostman.com/
https://swagger.io/tools/swagger-editor/download/
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md

2. Use the API management tools to generate the REST service classes and the associated web application. See these
chapters:

• “Using the /api/mgmnt Service to Create REST Services”

• “Using the ^%REST Routine to Create REST Services”

• “Using the %REST.API Class to Create REST Services”

3. Modify the implementation class so that the methods contain the suitable business logic. See the chapter “Modifying
the Implementation Class.”

4. Optionally modify the specification class. See the chapter “Modifying the Specification Class.” For example, do this
if you need to support CORS or use web sessions.

5. If security is required, see the chapter “Securing REST Services.”

6. Using the OpenAPI 2.0 specification for the service, generate documentation as described in the chapter “Discovering
and Documenting REST APIs.”

For step 2, another option is to manually create the specification class (pasting the specification into it) and then compile
that class; this process generates the dispatch and stub implementation class. That is, it is not strictly necessary to use either
the /api/mgmnt service or the ^%REST routine. This book does not discuss this technique further.

1.5 A Closer Look at the REST Service Classes
This section provides a closer look at the specification, dispatch, and implementation classes.

1.5.1 Specification Class

The specification class is meant to define the contract to be followed by the REST service. This class extends %REST.Spec

and contains an XData block that contains the OpenAPI 2.0 specification for the REST service. The following shows a
partial example:

Class petstore.spec Extends %REST.Spec [ProcedureBlock]
{

XData OpenAPI [MimeType = application/json]
{
{
 "swagger":"2.0",
 "info":{
 "version":"1.0.0",
 "title":"Swagger Petstore",
 "description":"A sample API that uses a petstore as an example to demonstrate features in the
swagger-2.0 specification",
 "termsOfService":"http://swagger.io/terms/",
 "contact":{
 "name":"Swagger API Team"
 },
 "license":{
 "name":"MIT"
 }
 },
...

You can modify this class by replacing or editing the specification within the XData block. You can also add class param-
eters, properties, and methods as needed. Whenever you compile the specification class, the compiler regenerates the dispatch
class and updates the implementation class (see “How InterSystems Updates the Implementation Class,” later in this book).

Creating REST Services 5

A Closer Look at the REST Service Classes

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md

1.5.2 Dispatch Class

The dispatch class is directly called when the REST service is invoked. The following shows a partial example:

/// Dispatch class defined by RESTSpec in petstore.spec
Class petstore.disp Extends %CSP.REST [GeneratedBy = petstore.spec.cls, ProcedureBlock]
{

/// The class containing the RESTSpec which generated this class
Parameter SpecificationClass = "petstore.spec";

/// Default the Content-Type for this application.
Parameter CONTENTTYPE = "application/json";

/// By default convert the input stream to Unicode
Parameter CONVERTINPUTSTREAM = 1;

/// The default response charset is utf-8
Parameter CHARSET = "utf-8";

XData UrlMap [XMLNamespace = "http://www.intersystems.com/urlmap"]
{
<Routes>
 <Route Url="/pets" Method="get" Call="findPets" />
 <Route Url="/pets" Method="post" Call="addPet" />
 <Route Url="/pets/:id" Method="get" Call="findPetById" />
 <Route Url="/pets/:id" Method="delete" Call="deletePet" />
</Routes>
}

/// Override %CSP.REST AccessCheck method
ClassMethod AccessCheck(Output pAuthorized As %Boolean) As %Status
{
 ...
}

...

Notice that the SpecificationClass parameter indicates the name of the associated specification class. The URLMap XData
block (the URL map) defines the calls within this REST service. It is not necessary for you to have a detailed understanding
of this part of the class.

After these items, the class contains the definitions of the methods that are listed in the URL map. Here is one example:

ClassMethod deletePet(pid As %String) As %Status
{
 Try {
 If '##class(%REST.Impl).%CheckAccepts("application/json") Do
##class(%REST.Impl).%ReportRESTError(..#HTTP406NOTACCEPTABLE,$$$ERROR($$$RESTBadAccepts)) Quit
 If ($number(pid,"I")="") Do
##class(%REST.Impl).%ReportRESTError(..#HTTP400BADREQUEST,$$$ERROR($$$RESTInvalid,"id",id)) Quit
 Set response=##class(petstore.impl).deletePet(pid)
 Do ##class(petstore.impl).%WriteResponse(response)
 } Catch (ex) {
 Do ##class(%REST.Impl).%ReportRESTError(..#HTTP500INTERNALSERVERERROR,ex.AsStatus())
 }
 Quit $$$OK
}

Notice the following points:

• This method invokes a method by the same name in the implementation class (petstore.impl in this example). It
gets the response from that method and calls %WriteResponse() to write the response back to the caller. The
%WriteResponse() method is an inherited method that is present in all implementation classes, which are all subclasses
of %REST.Impl.

• This method does other checking and in case of errors, invokes other methods of %REST.Impl.

Important: Because the dispatch class is a generated class, you should never edit it. InterSystems provides mechanisms
for overriding parts of the dispatch class without editing it.

6 Creating REST Services

Introduction to Creating REST Services

1.5.3 Implementation Class

The implementation class is meant to hold the actual internal implementation of the REST service. You can (and should)
edit this class. It initially looks like the following example:

/// A sample API that uses a petstore as an example to demonstrate features in the swagger-2.0
specification

/// Business logic class defined by RESTSpec in petstore.spec

Class petstore.impl Extends %REST.Impl [ProcedureBlock]
{

/// If ExposeServerExceptions is true, then details of internal errors will be exposed.
Parameter ExposeServerExceptions = 0;

/// Returns all pets from the system that the user has access to

/// The method arguments hold values for:

/// tags, tags to filter by

/// limit, maximum number of results to return

ClassMethod findPets(tags As %ListOfDataTypes(ELEMENTTYPE="%String"), limit As %Integer) As %Stream.Object
{
 //(Place business logic here)
 //Do ..%SetStatusCode(<HTTP_status_code>)
 //Do ..%SetHeader(<name>,<value>)
 //Quit (Place response here) ; response may be a string, stream or dynamic object
}

...

The rest of the implementation class contains additional stub methods that look similar to this one. In each case, these stub
methods have signatures that obey the contract defined by the specification of the REST service. Note that for the options
method, InterSystems does not generate a stub method for you to implement. Instead, the class %CSP.REST automatically
performs all options processing.

1.6 Enabling Logging for API Management Features
To enable logging for the API management features, enter the following in the Terminal:

 set $namespace="%SYS"
 kill ^ISCLOG
 set ^%ISCLOG=5
 set ^%ISCLOG("Category","apimgmnt")=5

Then the system adds entries to the ^ISCLOG global for any calls to the API management endpoints.

To write the log to a file (for easier readability), enter the following (still within the %SYS namespace):

 do ##class(%OAuth2.Utils).DisplayLog("filename")

Where filename is the name of the file to create. The directory must already exist. If the file already exists, it is overwritten.

To stop logging, enter the following (still within the %SYS namespace):

 set ^%ISCLOG=0
 set ^%ISCLOG("Category","apimgmnt")=0

Creating REST Services 7

Enabling Logging for API Management Features

2
Using the /api/mgmnt Service

This chapter describes how to use the /api/mgmnt service to create, update, and delete REST services. It discusses the fol-
lowing:

• How to create a REST service

• How to update a REST service

• How to delete a REST service

After you generate the classes, see “Modifying the Implementation Class” and the chapters after that.

The /api/mgmnt service also provides options you can use to discover and document web services as described later in this
book.

2.1 Using the /api/mgmnt Service to Create a REST
Service
The recommended way to create a REST service is to start with the OpenAPI 2.0 specification of the REST service and
use that to generate the REST service classes. The following subsections describe how to use the /api/mgmnt service to do
this.

2.1.1 Using the /api/mgmnt Service to Generate the Classes

In the first step, generate the REST service classes, as follows:

1. Obtain the OpenAPI 2.0 specification for the REST service, in JSON format.

2. Obtain a REST testing tool such as PostMan (https://www.getpostman.com/).

3. In the testing tool, create an HTTP request message as follows:

• For the HTTP action, select or specify POST.

• For the URL, specify a URL of the following form:

http://localhost:52773/api/mgmnt/v2/namespace/myapp

Where localhost is the name of the server, 52773 is the superserver port on which InterSystems IRIS is running,
namespace is the namespace where you want to create the REST service, and myapp is the name of the package
where you want to create the classes.

Creating REST Services 9

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://www.getpostman.com/

• For the request body, paste the OpenAPI 2.0 specification, in JSON format.

• Specify the request body type as JSON (application/json)

• Provide values for the IRISUsername and IRISPassword parameters. For IRISUsername, specify a user that is a
member of the %Developer role and that has read/write access to the given namespace.

4. Send the request message.

If the call is successful, InterSystems IRIS creates the disp, impl, and spec classes in the given package and namespace.

5. In the testing tool, check the response message. If the request was successful, the response message will look like the
following example:

{
 "msg": "New application myapp created"
}

To complete the basic REST service, create an InterSystems web application and define the implementation (see the
chapter “Modifying the Implementation Class”). You can do these steps in either order.

2.1.2 Creating the Web Application

In this step, you create a web application that provides access to your REST service. In the Management Portal, complete
the following steps:

1. Click System Administration > Security > Applications > Web Applications.

2. Click Create New Web Application.

3. Specify the following values:

• Name — Name for the web application; this must be unique within this instance of InterSystems IRIS. The most
common name is based on the namespace in which the web application runs: /csp/namespace

• Namespace — Select the namespace in which you generated the classes.

• Enable Application — Select this check box.

• Enable — Select REST.

• Dispatch Class — Type the fully qualified name of the dispatch class. This should always be package.disp
where package is the name of the package that contains the generated classes.

For information on other options on this page, see “Creating an Application” in the chapter “Applications” in the
Security Administration Guide.

4. Click Save.

2.2 Using the /api/mgmnt Service to Update a REST
Service
The InterSystems API management tools enable you to update the generated classes without making changes to your edits
in the implementation class. The class is regenerated if necessary, but your edits are preserved.

To update a REST service, use the steps listed in “Using the /api/mgmnt Service to Generate the Classes.”

10 Creating REST Services

Using the /api/mgmnt Service

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md

If the update was successful, InterSystems IRIS regenerates the disp and spec classes in the given package and updates the
impl class, preserving edits you made to that class. The response message will look like the following example:

{
 "msg": "Application myapp updated"
}

2.2.1 How InterSystems Updates the Implementation Class

If you previously edited the impl class, InterSystems preserves those edits as follows:

• The implementations of all methods are left as is.

• Any new class members you added are left as is.

However, InterSystems regenerates the description (the /// comments) of the class and of each generated method. If the
signature of any implementation method changes (for example, because the specification has changed), InterSystems updates
the signature and adds the following comment to that class method:

/// WARNING: This method's signature has changed.

2.3 Using the /api/mgmnt Service to Delete a REST Service
The InterSystems API management tools also enable you to delete a REST service easily. To do so:

1. Using a REST testing tool, create an HTTP request message as follows:

• For the HTTP action, select or specify DELETE.

• For the URL, specify a URL of the following form:

http://localhost:52773/api/mgmnt/v2/namespace/myapp/

Where localhost is the name of the server, 52773 is the superserver port on which InterSystems IRIS is running,
namespace is the namespace where you want to create the REST service, and myapp is the name of the package
that contains the REST service classes.

• Provide values for the IRISUsername and IRISPassword parameters. For IRISUsername, specify a user that is a
member of the %Developer role and that has read/write access to the given namespace.

2. Send the request message.

If the call is successful, InterSystems IRIS deletes the disp and spec classes within the given package and namespace.

InterSystems IRIS does not, however, delete the impl class.

3. In the testing tool, check the response message. If the request was successful, the response message will look like the
following example:

{
 "msg": "Application myapp deleted"
}

4. Manually delete the implementation class.

For safety, the /api/mgmnt service does not automatically delete the implementation class, because that class can
potentially contain a significant amount of customization.

5. Delete the web application you created previously (if any) for this REST service. To do so:

Creating REST Services 11

Using the /api/mgmnt Service to Delete a REST Service

a. In the Management Portal, click System Administration > Security > Applications > Web Applications.

b. Click Delete in the row that lists the web application.

c. Click OK to confirm the deletion.

12 Creating REST Services

Using the /api/mgmnt Service

3
Using the ^%REST Routine to Create
REST Services

This chapter describes how to use the ^%REST routine to create and delete REST services. It discusses the following:

• How to use the routine generally

• How to create a REST service

• How to delete a REST service

After you generate the classes, see “Modifying the Implementation Class” and the chapters after that.

Tip: You can also use this routine to update a REST service; simply delete the REST service and then create it again.

3.1 Using the ^%REST Routine
The ^%REST routine is a simple command-line interface. At any prompt, you can enter the following answers:

Causes the routine to skip back to the previous question.^

Causes the routine to display a message that lists all the current options.?

Ends the routine.q or quit (not
case-sensitive)

Also, each question displays, in parentheses, the default answer to that question.

3.2 Using the ^%REST Routine to Create a REST Service
The recommended way to create a REST service is to start with the OpenAPI 2.0 specification of the REST service and
use that to generate the REST service classes. To use the ^%REST routine to do this:

1. Obtain the OpenAPI 2.0 specification for the REST service, in JSON format. Either save the specification as a file or
make a note of the URL where the specification can be accessed.

Creating REST Services 13

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md

2. In the Terminal, change to the namespace where you want to define the REST service.

3. Enter the following command to start the ^%REST routine:

do ^%REST

4. At the first prompt, enter a name for the REST service. This name is used as the package name for the generated classes;
use a valid package name. If you want to use the name list, l, quit, or q (in any case variation), enclose the name
in double quotes. For example: "list"

5. At the next prompt, enter Y (not case-sensitive) to confirm that you want to create this service.

The routine then prompts you for the location of the OpenAPI 2.0 specification to use. Enter either a full pathname or
a URL.

6. At the next prompt, enter Y (not case-sensitive) to confirm that you want to use this specification.

The routine creates the disp, impl, and spec classes within the specified package in this namespace. The routine then
displays output like the following:

-----Creating REST application: myapp-----
CREATE myapp.spec
GENERATE myapp.disp
CREATE myapp.impl
REST application successfully created.

Next the routine asks if you also want to create a web application. You will use this web application to access the REST
service.

7. At this point, you can do the following:

• Enter Y (not case-sensitive) to create the web application now.

• Enter N (not case-sensitive) to end the routine.

You can create the web application separately as described in “Creating the Web Application,” in the previous
chapter.

8. If you entered Y, the routine then prompts you for the name of the web application.

The name must be unique within this instance of InterSystems IRIS. The default name is based on the namespace in
which the web application runs: /csp/namespace.

Enter the name of the web application or press return to accept the default name.

The routine then displays output like the following:

-----Deploying REST application: myapp-----
Application myapp deployed to /csp/myapp

9. Define the implementation as described in the chapter “Modifying the Implementation Class.”

3.3 Using the ^%REST Routine to Delete a REST Service
To use the ^%REST routine to delete a REST service:

1. In the Terminal, change to the namespace where the REST service can be found.

2. Enter the following command to start the ^%REST routine:

do ^%REST

14 Creating REST Services

Using the ^%REST Routine to Create REST Services

3. At the first prompt, enter a name for the REST service.

If you are not sure of the name of the REST service, enter L (not case-sensitive). The routine lists all the REST services
and then prompts you again for the name of the REST service.

4. If the routine finds a REST service with the given name, it displays a prompt like the following:

REST application found: petstore
Do you want to delete the application? Y or N (N):

5. Enter Y (not case-sensitive) to confirm that you want to delete this service.

6. (Optionally) Manually delete the implementation class.

For safety, the routine does not automatically delete the implementation class, because that class can potentially contain
a significant amount of customization.

Creating REST Services 15

Using the ^%REST Routine to Delete a REST Service

4
Using the %REST.API Class to Create
REST Services

This chapter describes how to use the %REST.API class to create, update, and delete REST services. It discusses the following:

• How to create or update a REST service

• How to delete a REST service

After you generate the classes, see “Modifying the Implementation Class” and the chapters after that.

4.1 Using the %REST.API Class to Create or Update a
REST Service
The recommended way to create a REST service is to start with the OpenAPI 2.0 specification of the REST service and
use that to generate the REST service classes. To use the %REST.API class to do this:

1. Obtain the OpenAPI 2.0 specification for the REST service, in JSON format, and save the specification as a file.

The file must be UTF-8 encoded.

2. In the namespace where you want to define the REST service, use the file to create an instance of %DynamicObject.

3. Then call the CreateApplication() method of the %REST.API class. This method has the following signature:

classmethod CreateApplication(applicationName As %String,
 swagger As %DynamicObject = "",
 ByRef features,
 Output newApplication As %Boolean,
 Output internalError As %Boolean)
 as %Status

Where:

• applicationName is the name of the package where you want to generate the classes.

• swagger is the instance of %DynamicObject that represents the OpenAPI 2.0 specification.

You can also specify this argument as the URL of a specification, the pathname of a file that contains a specification,
or as an empty string.

• features, which must be passed by reference, is a multidimensional array that holds any additional options:

Creating REST Services 17

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md

– If features("addPing") is 1 and if swagger is an empty string, then the generated classes include a ping()
method for testing purposes.

– If features("strict") is 1 (the default), then InterSystems checks all the properties in the specification. If
features("strict") is 0, then only the properties that are needed for code generation are checked.

• newApplication, which is returned as output, is a boolean value that indicates whether the method created a new
application (true) or updated an existing application.

• internalError, which is returned as output, is a boolean value that indicates whether an internal error occurred.

If the method generates a new application, InterSystems IRIS creates the disp, impl, and spec classes in the given
package.

If the method updates an existing application, InterSystems IRIS regenerates the disp and spec classes in the given
package and updates the impl class, preserving edits you made to that class.

If the OpenAPI 2.0 specification is invalid, the method does not make any change.

4. Create a web application that access the REST service, as described in “Creating the Web Application,” earlier in this
book.

5. Define the implementation as described in the chapter “Modifying the Implementation Class.”

The following shows an example of the first steps:

 set file="c:/2downloads/petstore.json"
 set obj = ##class(%DynamicAbstractObject).%FromJSON(file)
 do ##class(%REST.API).CreateApplication("petstore",.obj,,.new,.error)
 //examine error and decide how to proceed...
 ...

4.2 Using the %REST.API Class to Delete a REST Service
To use the %REST.API class to delete a REST service:

1. In the namespace where the REST service can be found, call the DeleteApplication() method of the %REST.API class.
This method has the following signature:

classmethod DeleteApplication(applicationName As %String) as %Status

Where applicationName is the name of the package that contains the REST service classes.

2. (Optionally) Manually delete the implementation class.

For safety, the class method does not automatically delete the implementation class, because that class can potentially
contain a significant amount of customization.

3. Delete the web application you created previously (if any) for this REST service. To do so:

a. In the Management Portal, click System Administration > Security > Applications > Web Applications.

b. Click Delete in the row that lists the web application.

c. Click OK to confirm the deletion.

18 Creating REST Services

Using the %REST.API Class to Create REST Services

5
Modifying the Implementation Class

This chapter discusses how to modify the implementation class for a REST service. It discusses the following topics:

• Initial method definitions

• How to implement the methods

• How to expose details of server errors

• How to modify the error response

This chapter assumes that you have previously generated REST service classes as described in the chapters “Using the
/api/mgmnt Service to Create REST Services,” “Using the ^%REST Routine to Create REST Services,” or “Using the
%REST.API Class to Create REST Services.”

5.1 Initial Method Definitions
The implementation class initially contains stub methods like the following example:

/// Returns all pets from the system that the user has access to

/// The method arguments hold values for:

/// tags, tags to filter by

/// limit, maximum number of results to return

ClassMethod findPets(tags As %ListOfDataTypes(ELEMENTTYPE="%String"), limit As %Integer) As %Stream.Object
{
 //(Place business logic here)
 //Do ..%SetStatusCode(<HTTP_status_code>)
 //Do ..%SetHeader(<name>,<value>)
 //Quit (Place response here) ; response may be a string, stream or dynamic object
}

In each case, these stub methods have signatures that obey the contract defined by the specification of the REST service.

5.2 Implementing the Methods
For each method in the implementation class, edit the method definition (specifically the implementation) as appropriate
for the REST call that uses it. Notice that the method is preceded by a comment that is a copy of the description of the
corresponding REST call. In the implementation:

• Return the appropriate value.

Creating REST Services 19

• Examine the request message. To do so, use the %CheckAccepts(), %GetContentType(), and %GetHeader()
methods of the implementation class. All methods mentioned here are inherited from %REST.Impl, the superclass of
your implementation class.

• Set the HTTP status code as needed to indicate, for example, whether the resource was available. To do so, use the
%SetStatusCode() method. For information on HTTP status codes, see http://www.faqs.org/rfcs/rfc2068.html.

• Set the HTTP response header. To do this, use the %SetHeader(), %SetHeaderIfEmpty(), and %DeleteHeader()
methods.

• Report errors if needed. To do so, use the %LogError() method.

For details on these methods, see the class reference for %REST.Impl.

5.3 Exposing Details of Server Errors
By default, if a REST service encounters an internal error, details of the error are not reported to the client. To change this,
add the following to the implementation class and then recompile it:

Parameter ExposeServerExceptions = 1;

Note that the default %ReportRESTError() method checks this parameter. If you override that method (see next heading),
you can choose whether your method uses this parameter or not.

5.4 Modifying the Error Response
If you need to format the error response in a non-default way, override the %ReportRESTError() method in the imple-
mentation class. In your method, use the %WriteResponse() method to return the error response.

For details on these methods, see the class reference for %REST.Impl.

20 Creating REST Services

Modifying the Implementation Class

http://www.faqs.org/rfcs/rfc2068.html

6
Modifying the Specification Class

This chapter summarizes how and why to modify the specification class for a REST service.

This chapter assumes that you have previously generated REST service classes as described in the chapters “Using the
/api/mgmnt Service to Create REST Services,” “Using the ^%REST Routine to Create REST Services,” or “Using the
%REST.API Class to Create REST Services.”

This chapter discusses the following topics:

• Overview of how and why to modify the specification class

• How to override the default content type, response character set, or input stream handling

• How to override the name of a service method

6.1 Overview
The following table lists reasons for modifying the specification class and briefly summarizes the needed changes:

ChangesReason

Modify the OpenAPI XData block manually or by regenerating the
specification class.

To update or replace the
specification

Modify the OpenAPI XData block manually; also add a class parameter
and create a custom dispatch superclass. See the chapter “Supporting
CORS in REST Services. ”

Enable REST service to support
CORS

Add a class parameter. See the chapter “Using Web Sessions with
REST. ”

Enable REST service to support
web session

Modify the OpenAPI XData block manually. See the chapter “Securing
REST Services. ”

Specify privileges needed to use
endpoints

Add class parameters. See the next section of this chapter.Override the default content type,
response character set, or input
stream handling

Modify the OpenAPI XData block manually. See “Overriding the Name
of a Service Method ” in this chapter.

Specify a non-default name for a
service method

Creating REST Services 21

Whenever you compile the specification class, the compiler regenerates the dispatch class in the same package and updates
the implementation class (see “How InterSystems Updates the Implementation Class,” earlier in this book).

6.2 Overriding the Content Type, Response Character
Set, or Input Stream Handling
You can override several key aspects of the REST service simply by adding class parameters to the specification class and
recompiling.

• By default, the REST service expects the application/json content type. To override this, add the following to
the specification class:

Parameter CONTENTTYPE = "some-content-type";

Where some-content-type is a MIME content type.

• By default, the response messages of the REST service are in UTF-8. To override this, add the following to the speci-
fication class:

Parameter CHARSET = "some-character-set";

Where some-content-type-here is the name of a character set.

• By default, the REST service converts input character streams to Unicode. To not do this, add the following to the
specification class:

Parameter CONVERTINPUTSTREAM = 0";

Then recompile. These changes are then copied to the dispatch class.

6.3 Overriding the Name of a Service Method
By default, the compiler uses the operationId of an operation to determine the name of method invoked by the corre-
sponding REST call. You can specify a different name. To do so, add the following to the operation within the OpenAPI
XData block of the specification class:

"x-ISC_ServiceMethod":"alternatename"

For example:

 "/pets":{
 "get":{
 "description":"Returns all pets from the system that the user has access to",
 "operationId":"findPets",
 "x-ISC_ServiceMethod":"ReturnPets",
 "produces":[
 "application/json",
 "application/xml",
 "text/xml",
 "text/html"
],

Then recompile. The compiler then adds this new method to the dispatch and implementation classes. Be sure to edit the
implementation class and provide an implementation for this new method.

22 Creating REST Services

Modifying the Specification Class

7
Supporting CORS in REST Services

This chapter describes how to enable Cross-Origin Resource Sharing (CORS) in InterSystems IRIS REST services. This
chapter discusses the following topics:

• Overview

• How to accept the CORS header

• How to process the CORS header

This chapter assumes that you have previously generated REST service classes as described in the chapters “Using the
/api/mgmnt Service to Create REST Services,” “Using the ^%REST Routine to Create REST Services,” or “Using the
%REST.API Class to Create REST Services.”

7.1 Overview
This section provides overview of CORS and an overview of how to enable CORS in InterSystems IRIS REST services.

7.1.1 Introduction to CORS

Cross-Origin Resource Sharing (CORS) allows a script running in another domain to access a service.

Typically, when a browser is running a script from one domain, it allows XMLHttpRequest calls to that same domain but
disallows them when they are made to another domain. This browser behavior restricts someone from creating a malicious
script that can misuse confidential data. The malicious script could allow the user to access information in another domain
using permissions granted to the user, but then, unknown to the user, make other use of confidential information. To avoid
this security problem, browsers generally do not allow this kind of cross-domain call.

Without using Cross-Origin Resource Sharing (CORS), a web page with a script accessing REST services typically must
be in the same domain as the server providing the REST services. In some environments, it is useful to have the web pages
with scripts in a different domain than the servers providing the REST services. CORS enables this arrangement.

The following provides a simplified description of how a browser can handle an XMLHttpRequest with CORS:

1. A script in a web page in domain DomOne contains an XMLHttpRequest to an InterSystems IRIS REST service that
is in domain DomTwo. The XMLHttpRequest has a custom header for CORS.

2. A user views this web page and runs the script. The user’s browser detects the XMLHttpRequest to a domain different
from the one containing the web page.

Creating REST Services 23

3. The user’s browser sends a special request to the InterSystems IRIS REST service that indicates the HTTP request
method of the XMLHttpRequest and the domain of the originating web page, which is DomOne in this example.

4. If the request is allowed, the response contains the requested information. Otherwise, the response consists only of
headers indicating that CORS did not allow the request.

7.1.2 Overview of Enabling a REST Service to Support CORS

By default, InterSystems REST services do not allow the CORS header. You can, however, enable CORS support. There
are two parts to enabling support for CORS in a REST service:

• Enabling the REST service to accept the CORS header for some or all HTTP requests. See “Accepting the CORS
Header.”

• Writing code that causes the REST service to examine the CORS requests and decide whether to proceed. For example,
you can provide a white-list containing domains that contain only trusted scripts. InterSystems IRIS provides a simple
default implementation for documentation purposes; this default implementation allows any CORS request.

Important: The default CORS header processing is not suitable for REST services handling confidential data.

7.2 Accepting the CORS Header
To specify that a REST service accepts the CORS header:

1. Modify the specification class to include the HandleCorsRequest parameter.

To enable CORS header processing for all calls, specify the HandleCorsRequest parameter as 1:

Parameter HandleCorsRequest = 1;

Or, to enable CORS header processing for some but not calls, specify the HandleCorsRequest parameter as "" (empty
string):

Parameter HandleCorsRequest = "";

2. If you specified HandleCorsRequest parameter as "", edit the OpenAPI XData block in the specification class in order
to indicate which calls support CORS. Specifically, for the operation objects, add the following property name and
value:

"x-ISC_CORS":true

For example, the OpenAPI XData block might contain this:

 "post":{
 "description":"Creates a new pet in the store. Duplicates are allowed",
 "operationId":"addPet",
 "produces":[
 "application/json"
],
 ...

Add the x-ISC_CORS property as follows:

24 Creating REST Services

Supporting CORS in REST Services

 "post":{
 "description":"Creates a new pet in the store. Duplicates are allowed",
 "operationId":"addPet",
 "x-ISC_CORS":true,
 "produces":[
 "application/json"
],
 ...

3. Compile the specification class. This action regenerates the dispatch class, causing the actual change in behavior. It is
not necessary to understand the dispatch class in detail, but notice the following changes:

• It now contains your value for the HandleCorsRequest parameter.

• The URLMap XData block now includes Cors="true" for the <Route> element that corresponds to the oper-
ation you modified.

If the HandleCorsRequest parameter is 0 (the default), then CORS header processing is disabled for all calls. In this case,
if the REST service receives a request with the CORS header, the service rejects the request.

Important: An IRIS REST service supports the OPTIONS request (the CORS preflight request), which is used to
determine whether a REST service supports CORS. This request is always sent unauthenticated and is
executed by the CSPSystem user. This user should have READ permission on any databases used by the
REST service; if not, the service will respond with an HTTP 404 error.

7.3 Defining How to Process the CORS Header
When you enable a REST service to accept the CORS header, by default, the service accepts any CORS request. Your
REST service should examine the CORS requests and decide whether to proceed. For example, you can provide a white-
list containing domains that contain only trusted scripts. To do this, you need to:

• Create a subclass of %CSP.REST. In this class, implement the OnHandleCorsRequest() method as described in the
first subsection.

• Modify the specification class and recompile, regenerating the dispatch class.

The net result is that the dispatch class inherits from your custom class instead of from %CSP.REST and thus uses your
definition of OnHandleCorsRequest(), which overrides the default CORS header processing.

7.3.1 Defining OnHandleCorsRequest()

In your subclass of %CSP.REST, define the OnHandleCorsRequest() method, which needs to examine the CORS requests
and set the response header appropriately.

To define this method, you must be familiar with the details of the CORS protocol (not discussed here).

You also need to know how to examine the requests and set the response headers. For this, it is useful to examine the method
that is used by default, the HandleDefaultCorsRequest() method of %CSP.REST. This section explains how this method
handles the origin, credentials, header, and request method and suggests variations. You can use this information to write
your OnHandleCorsRequest() method.

The following code gets the origin and uses it to set the response header. One possible variation is to test the origin against
a white list. Then the domain is allowed, set the response header. If not, set the response header to an empty string.

Creating REST Services 25

Defining How to Process the CORS Header

 #; Get the origin
 Set tOrigin=$Get(%request.CgiEnvs("HTTP_ORIGIN"))

 #; Allow requested origin
 Do ..SetResponseHeaderIfEmpty("Access-Control-Allow-Origin",tOrigin)

The following lines specify that the authorization header should be included.

 #; Set allow credentials to be true
 Do ..SetResponseHeaderIfEmpty("Access-Control-Allow-Credentials","true")

The following lines get the headers and the request method from the incoming request. Your code should test if the headers
and request method are allowed. If they are allowed, use them to set the response headers. If not, set the response header
to an empty string.

 #; Allow requested headers
 Set tHeaders=$Get(%request.CgiEnvs("HTTP_ACCESS_CONTROL_REQUEST_HEADERS"))
 Do ..SetResponseHeaderIfEmpty("Access-Control-Allow-Headers",tHeaders)

 #; Allow requested method
 Set tMethod=$Get(%request.CgiEnvs("HTTP_ACCESS_CONTROL_REQUEST_METHOD"))
 Do ..SetResponseHeaderIfEmpty("Access-Control-Allow-Method",tMethod)

Important: The default CORS header processing is not suitable for REST services handling confidential data.

7.3.2 Modifying the Specification Class

After defining your custom subclass of %CSP.REST including an implementation of the OnHandleCorsRequest(), do the
following:

1. Edit the OpenAPI XData block in the specification class so that the info object contains a new property named
x-ISC_DispatchParent. The value of this property must be the fully qualified name of your custom class.

For example, suppose that the OpenAPI XData block looks like this:

 "swagger":"2.0",
 "info":{
 "version":"1.0.0",
 "title":"Swagger Petstore",
 "description":"A sample API that uses a petstore as an example to demonstrate features in the
 swagger-2.0 specification",
 "termsOfService":"http://swagger.io/terms/",
 "contact":{
 "name":"Swagger API Team"
 },
...

Suppose that the custom subclass of %CSP.REST is named test.MyDispatchClass. In this case, you would
modify the XData block as follows:

 "swagger":"2.0",
 "info":{
 "version":"1.0.0",
 "title":"Swagger Petstore",
 "description":"A sample API that uses a petstore as an example to demonstrate features in the
 swagger-2.0 specification",
 "termsOfService":"http://swagger.io/terms/",
 "x-ISC_DispatchParent":"test.MyDispatchClass",
 "contact":{
 "name":"Swagger API Team"
 },
...

2. Compile the specification class. This action regenerates the dispatch class. You will notice that the class now extends
your custom dispatch superclass. Thus it will use your OnHandleCorsRequest() method.

26 Creating REST Services

Supporting CORS in REST Services

8
Using Web Sessions with REST

You can enable your REST service to use web sessions. This chapter describes why and how to do this.

This chapter assumes that you have previously generated REST service classes as described in the chapters “Using the
/api/mgmnt Service to Create REST Services,” “Using the ^%REST Routine to Create REST Services,” or “Using the
%REST.API Class to Create REST Services.”

8.1 Introduction
One of the goals of REST is to be stateless; that is, no knowledge is stored on the server from one REST call to the next.
Having a web session preserved across REST calls breaks the stateless paradigm, but there are two reasons why you might
want to preserve a web session:

• Minimize InterSystems IRIS license usage — if each REST call creates a new web session, it requires a separate
InterSystems IRIS license. InterSystems IRIS frees the license after a brief timeout period. If you are making rare and
infrequent REST calls, this is usually not a problem, but if you are making many REST calls in a brief time period,
you can exceed the number of licenses available on your system. If you use the same web session for multiple REST
calls, the session only consumes one license.

• Preserve data across REST calls — in some cases, preserving data across REST calls may be necessary to efficiently
meet your business requirements.

8.2 Enabling a REST Service to Use Web Sessions
To enable using a single web session over multiple REST calls, set the UseSession parameter to 1 in the specification class.
For example:

Parameter UseSession As Integer = 1;

Then recompile this class.

If UseSession is 1, InterSystems IRIS preserves a web session across multiple REST service calls. If the parameter is 0 (the
default), InterSystems IRIS uses a new web session for each REST service call.

Note: When you recompile the specification class, the UseSession parameter is copied to the dispatch class, which causes
the actual change in behavior.

Creating REST Services 27

9
Securing REST Services

If your REST service is accessing confidential data, you should use authentication for the service. If you need to provide
different levels of access to different users, also specify privileges needed for the endpoints.

This chapter describes how to secure REST services. It discusses the following topics:

• How to set up authentication

• How to specify privileges

This chapter assumes that you have previously generated REST service classes as described in the chapters “Using the
/api/mgmnt Service to Create REST Services,” “Using the ^%REST Routine to Create REST Services,” or “Using the
%REST.API Class to Create REST Services.”

9.1 Setting Up Authentication for REST Services
You can use any of the following forms of authentication with IRIS REST services:

• HTTP authentication headers — This is the recommended form of authentication for REST services.

• Web session authentication — Where the username and password are specified in the URL following a question mark.

• OAuth 2.0 authentication — See the following subsection.

9.1.1 REST Applications and OAuth 2.0

To authenticate a REST application via OAuth 2.0, do all of the following:

• Configure the resource server containing the REST application as an OAuth 2.0 resource server.

• Allow delegated authentication for %Service.CSP.

• Make sure that the web application (for the REST application) is configured to use delegated authentication.

• Create a routine named ZAUTHENTICATE in the %SYS namespace. InterSystems provides a sample routine,
REST.ZAUTHENTICATE.mac, that you can copy and modify. This routine is part of the Samples-Security sample on
GitHub (https://github.com/intersystems/Samples-Security). You can download the entire sample as described in
“Downloading Samples for Use with InterSystems IRIS,” but it may be more convenient to simply open the routine
on GitHub and copy its contents.

In your routine, modify the value of applicationName and make other changes as needed.

Creating REST Services 29

https://github.com/intersystems/Samples-Security

Also see “Optionally Defining Delegated Authentication for the Web Client” in the chapter “Using an InterSystems IRIS
Web Application as an OAuth 2.0 Client” in Using OAuth 2.0 and OpenID Connect.

9.2 Specifying Privileges Needed to Use REST Services
To specify privileges needed to execute code or access data, InterSystems technologies use Role-Based Access Control
(RBAC). For details, see “Authorization: Controlling User Access” in the chapter “About InterSystems Security” in the
Security Administration Guide.

If you need to provide different levels of access to different users, do the following to specify the permissions:

• Modify the specification class to specify the privileges that are needed to use the REST service or specific endpoints
in the REST service; then recompile. A privilege is a permission (such as read or write), combined with the name of
a resource.

See the subsection.

• Using the Management Portal:

– Define the resources that you refer to in the specification class.

– Define roles that provide sets of privileges. For example, a role could provide read access to an endpoint or write
access to a different endpoint. A role can contain multiple sets of privileges.

– Place users into all the roles needed for their tasks.

Additionally, you can use the SECURITYRESOURCE parameter of the %CSP.REST class to perform authorization..

9.2.1 Specifying Privileges

You can specify a list of privileges for the entire REST service, and you can specify a list of privileges for each endpoint.
To do so:

1. To specify the privileges needed to access the service, edit the OpenAPI XData block in the specification class. For
the info object, add a new property named x-ISC_RequiredResource whose value is a comma-separated list of
defined resources and their access modes (resource:mode) which are required for access to any endpoint of the REST
service.

The following shows an example:

 "swagger":"2.0",
 "info":{
 "version":"1.0.0",
 "title":"Swagger Petstore",
 "description":"A sample API that uses a petstore as an example to demonstrate features in the
 swagger-2.0 specification",
 "termsOfService":"http://swagger.io/terms/",
 "x-ISC_RequiredResource":["resource1:read","resource2:read","resource3:read"],
 "contact":{
 "name":"Swagger API Team"
 },
...

2. To specify the privileges needed to access a specific endpoint, add the x-ISC_RequiredResource property to the
operation object that defines that endpoint, as in the following example:

30 Creating REST Services

Securing REST Services

 "post":{
 "description":"Creates a new pet in the store. Duplicates are allowed",
 "operationId":"addPet",
 "x-ISC_RequiredResource":["resource1:read","resource2:read","resource3:read"],
 "produces":[
 "application/json"
],
 ...

3. Compile the specification class. This action regenerates the dispatch class.

9.2.2 Using the SECURITYRESOURCE Parameter

As an additional authorization tool, dispatch classes that subclass %CSP.REST have a SECURITYRESOURCE parameter.
The value of SECURITYRESOURCE is either a resource and its permission or simply the resource (in which case the relevant
permission is Use). The system checks if a user has the required permission on the resource associated with
SECURITYRESOURCE.

Note: If the dispatch class specifies a value for SECURITYRESOURCE and the CSPSystem user is not sufficiently
privileged, then this may result in unexpected HTTP error codes for failed login attempts. To prevent this from
occurring, InterSystems recommends that you give permissions on the specified resource to the CSPSystem user.

Creating REST Services 31

Specifying Privileges Needed to Use REST Services

10
Discovering and Documenting REST APIs

This chapter discusses how to discover the REST services that are available on an instance and how to generate documen-
tation for REST services. It discusses the following topics:

• How to use the /api/mgmnt service to discover REST services

• How to use the %REST.API class to discover REST services

• How to provide documentation for a REST service

10.1 Using the /api/mgmnt Service to Discover REST
Services
The /api/mgmnt service includes calls you can use to discover REST service classes and REST-enabled web applications.

10.1.1 Discovering REST Services

To use the /api/mgmnt service to discover the REST services that are available on an instance, use the following REST call:

• For the HTTP action, select or specify GET.

• For the URL, specify a URL of the following form:

http://localhost:52773/api/mgmnt/v2/

Or, if you want to examine only one namespace:

http://localhost:52773/api/mgmnt/v2/:namespace

Where localhost is the name of the server, 52773 is the superserver port on which InterSystems IRIS is running, and
namespace is the namespace you want to examine.

(Note that these calls ignore manually-coded REST services. To discover manually-coded REST applications, use the calls
GET /api/mgmnt/ and GET /api/mgmnt/:v1/:namespace/restapps.)

If the call is successful, InterSystems IRIS returns an array that lists the REST services, in JSON format. For example:

Creating REST Services 33

[
 {
 "name": "%Api.Mgmnt.v2",
 "webApplications": "/api/mgmnt",
 "dispatchClass": "%Api.Mgmnt.v2.disp",
 "namespace": "%SYS",
 "swaggerSpec": "/api/mgmnt/v2/%25SYS/%Api.Mgmnt.v2"
 },
 {
 "name": "myapp",
 "webApplications": "/api/myapp",
 "dispatchClass": "myapp.disp",
 "namespace": "USER",
 "swaggerSpec": "/api/mgmnt/v2/USER/myapp"
 }
]

10.1.2 Discovering REST-Enabled Web Applications

To use the /api/mgmnt service to discover the REST-enabled web applications that are available on an instance, use the
following REST call:

• For the HTTP action, select or specify GET.

• For the URL, specify a URL of the following form:

http://localhost:52773/api/mgmnt

Or, if you want to examine only one namespace:

http://localhost:52773/api/mgmnt/v1/:namespace/restapps

Where localhost is the name of the server, 52773 is the superserver port on which InterSystems IRIS is running, and
namespace is the namespace you want to examine.

See the reference sections for GET /api/mgmnt/ and GET /api/mgmnt/:v1/:namespace/restapps.

10.2 Using the %REST.API Class to Discover REST
Services
The %REST.API class provides methods you can use to discover REST service classes and REST-enabled web applications.

10.2.1 Discovering REST Service Classes

To use the %REST.API class to discover the REST services that are available on an instance, use the following methods of
that class:

GetAllRESTApps()

GetAllRESTApps(Output appList As %ListOfObjects) as %Status

Returns, as output, a list of the REST services on this server. The output argument applist is an instance of
%ListOfObjects, and each item in the list is an instance of %REST.Application that contains information about the
REST service. This includes any REST services that do not have an associated web application. This method
ignores any manually-coded REST services.

34 Creating REST Services

Discovering and Documenting REST APIs

GetRESTApps()

GetRESTApps(namespace as %String,
 Output appList As %ListOfObjects) as %Status

Returns, as output, a list of the REST services in the namespace indicated by namepace. See
GetAllWebRESTApps(). See GetAllRESTApps().

10.2.2 Discovering REST-Enabled Web Applications

To use the %REST.API class to discover the REST-enabled web applications that are available on an instance, use the fol-
lowing methods of that class:

GetAllWebRESTApps()

GetAllWebRESTApps(Output appList As %ListOfObjects) as %Status

Returns, as output, a list of the REST-enabled web applications on this server. The output argument applist is an
instance of %ListOfObjects, and each item in the list is an instance of %REST.Application that contains information
about web application.

GetWebRESTApps()

GetWebRESTApps(namespace as %String,
 Output appList As %ListOfObjects) as %Status

Returns, as output, a list of the REST-enabled web applications in the namespace indicated by namepace. See
GetAllWebRESTApps().

10.3 Providing Documentation for a REST Service
It is useful to document any API so that developers can easily use the API. In the case of a REST API that follows the
OpenAPI 2.0 specification, you can use the Swagger open-source framework to provide interactive documentation for your
API, based upon the contents of the specification.

One option is to use Swagger UI and provide a hosted copy of the documentation. For a demo:

1. Go to https://swagger.io/tools/swagger-ui/

2. Click Live Demo.

3. In the box at the top of the page, enter the URL of the OpenAPI 2.0 specification for the REST service, in JSON format.

For example, use the GET /api/mgmnt/v2/:namespace/:application call on the InterSystems IRIS server.

4. Click Explore.

The lower part of the page then displays the documentation as shown in the following example:

Creating REST Services 35

Providing Documentation for a REST Service

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://swagger.io/
https://swagger.io/tools/swagger-ui/
https://swagger.io/tools/swagger-ui/
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md

Here you can view details about each call, try test calls and see the responses. For more details, see the Swagger web site.

Other third-party tools enable you to generate static HTML. InterSystems has no specific recommendations for this.

36 Creating REST Services

Discovering and Documenting REST APIs

https://swagger.io/

Reference for the /api/mgmnt API

This reference lists the endpoints in the /api/mgmnt service, all of which apply to newer REST services. The following table
summarizes the endpoints and indicates whether they also apply to manually-coded REST services.

Applies to
Manually-Coded
REST Services?

Applies to NEWER
REST Services?

SummaryEndpoint

noYESDeletes the REST serviceDELETE
/api/mgmnt/v2/:ns/:app

YESYESLists the REST-enabled web
applications on this server

GET /api/mgmnt

YESYESLists the REST-enabled web
applications in the namespace

GET
/api/mgmnt/v1/:ns/restapps

YESnoReturns the OpenAPI 2.0
specification for the REST service

GET
/api/mgmnt/v1/:ns/spec/:app

noYESLists the REST services on this
server (including any that do not
have an associated web
application)

GET /api/mgmnt/v2/

noYESLists the REST services in the
namespace (including any that do
not have an associated web
application)

GET /api/mgmnt/v2/:ns

YESYESReturns the OpenAPI 2.0
specification for the REST service

GET
/api/mgmnt/v2/:ns/:app

Here ns is a namespace, and app is the name of the package that contains the REST service classes.

Creating REST Services 37

DELETE /api/mgmnt/v2/:namespace/:application/
Deletes the classes for the given REST application. Note that this call looks for a newer REST service. It ignores any
manually-coded REST services.

URL Parameters
Required. Namespace name. This parameter is not case-sensitive.namespace

Required. Fully qualified name of the package that contains the spec, impl, and disp classes.
This parameter is not case-sensitive.

application

Permissions
To use this endpoint, you must be a member of the %Developer role and must have read/write access to the given namespace.

Example Request
• Request Method:

DELETE

• Request URL:

http://localhost:52773/api/mgmnt/v2/user/myapp/

Response
There is no response to this call.

38 Creating REST Services

Reference for the /api/mgmnt API

GET /api/mgmnt/
Returns an array that contains information about REST-enabled web applications in all namespaces.

URL Parameters
None.

Permissions
To use this endpoint, you must have read access to the given namespace. If no namespace is specified, or if the specified
namespace is %SYS, you must have read access to the default namespace (USER). Note that you can set the default
namespace to a different namespace; to do so, set the global node ^%SYS("REST","UserNamespace") equal to the
desired namespace.

Example Request
• Request Method:

GET

• Request URL:

http://localhost:52773/api/mgmnt/

Response
The response is a JSON array; each object in the array represents a REST service on this server. Specifically, this call
retrieves information about all REST-enabled web applications configured on this server. It finds both newer and manually-
coded REST services. If there are REST service classes (newer or manually-coded) that have no associated REST-enabled
web application, those are not included in this response.

A given object has the following properties:

• name — Name of the REST-enabled web application.

• dispatchClass — Name of the dispatch class of the REST service. Specifically this is the class indicated by the
Dispatch Class configuration option of the web application.

• namespace — Namespace in which the dispatch class is defined.

• resource — Name of the InterSystems IRIS resource needed to use this REST service.

• swaggerSpec — Endpoint where you can obtain the OpenAPI 2.0 specification for this REST service.

• enabled — Specifies whether the REST service is enabled or not.

The following shows a sample response:

[
 {
 "name": "/api/atelier",
 "dispatchClass": "%Api.Atelier",
 "namespace": "%SYS",
 "resource": "%Development",
 "swaggerSpec": "/api/mgmnt/v1/%25SYS/spec/api/atelier",
 "enabled": true
 },
 {
 "name": "/api/deepsee",
 "dispatchClass": "%Api.DeepSee",
 "namespace": "%SYS",
 "resource": "",
 "swaggerSpec": "/api/mgmnt/v1/%25SYS/spec/api/deepsee",
 "enabled": true

Creating REST Services 39

GET /api/mgmnt/

 },
 {
 "name": "/api/docdb",
 "dispatchClass": "%Api.DocDB",
 "namespace": "%SYS",
 "resource": "",
 "swaggerSpec": "/api/mgmnt/v1/%25SYS/spec/api/docdb",
 "enabled": true
 },
 {
 "name": "/api/iknow",
 "dispatchClass": "%Api.iKnow",
 "namespace": "%SYS",
 "resource": "",
 "swaggerSpec": "/api/mgmnt/v1/%25SYS/spec/api/iknow",
 "enabled": true
 },
 {
 "name": "/api/mgmnt",
 "dispatchClass": "%Api.Mgmnt.v2.disp",
 "namespace": "%SYS",
 "resource": "",
 "swaggerSpec": "/api/mgmnt/v1/%25SYS/spec/api/mgmnt",
 "enabled": true
 },
 {
 "name": "/api/uima",
 "dispatchClass": "%Api.UIMA",
 "namespace": "%SYS",
 "resource": "",
 "swaggerSpec": "/api/mgmnt/v1/%25SYS/spec/api/uima",
 "enabled": true
 },
 {
 "name": "/webapp/simple2",
 "dispatchClass": "simple2.disp",
 "namespace": "USER",
 "resource": "",
 "swaggerSpec": "/api/mgmnt/v1/USER/spec/webapp/simple2",
 "enabled": true
 }
]

See Also
• GET /api/mgmnt/v2/

40 Creating REST Services

Reference for the /api/mgmnt API

GET /api/mgmnt/v1/:namespace/restapps
Returns an array that contains information about REST-enabled web applications in the given namespace.

URL Parameters
None.

Permissions
To use this endpoint, you must have read access to the given namespace. If no namespace is specified, or if the specified
namespace is %SYS, you must have read access to the default namespace (USER). Note that you can set the default
namespace to a different namespace; to do so, set the global node ^%SYS("REST","UserNamespace") equal to the
desired namespace.

Example Request
• Request Method:

GET

• Request URL:

http://localhost:52773/api/mgmnt/v1/user/restapps

Response
The response is a JSON array; each object in the array represents a REST-enabled web application. For details, see GET
/api/mgmnt/.

See Also
• GET /api/mgmnt/v2/:namespace

Creating REST Services 41

GET /api/mgmnt/v1/:namespace/restapps

GET /api/mgmnt/v1/:namespace/spec/:application/
Returns the OpenAPI 2.0 specification for the given REST service, which must be a manually-coded REST service.

URL Parameters
Required. Namespace name. This parameter is not case-sensitive.namespace

Required. Fully qualified name of the package that contains the REST service class.application

Permissions
To use this endpoint, you must have read access to the given namespace. If no namespace is specified, or if the specified
namespace is %SYS, you must have read access to the default namespace (USER). Note that you can set the default
namespace to a different namespace; to do so, set the global node ^%SYS("REST","UserNamespace") equal to the
desired namespace.

You must also have read access to the database that contains the dispatch class. The dispatch class namespace and the
endpoint namespace need to be the same (except in the case of a dispatch class in a package starting with %, which is
available to all namespaces).

Example Request
• Request Method:

GET

• Request URL:

http://localhost:52773/api/mgmnt/v1/user/spec/myapp/

Response
This call returns a Swagger (OpenAPI 2.0) specification as documented at https://github.com/OAI/OpenAPI-Specifica-
tion/blob/master/versions/2.0.md.

42 Creating REST Services

Reference for the /api/mgmnt API

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
http://
http://

GET /api/mgmnt/v2/
Returns an array that contains information about the newer REST services on the server (including any that do not have an
associated web application). This call ignores any manually-coded REST services.

URL Parameters
None.

Permissions
To use this endpoint, you must have read access to the given namespace. If no namespace is specified, or if the specified
namespace is %SYS, you must have read access to the default namespace (USER). Note that you can set the default
namespace to a different namespace; to do so, set the global node ^%SYS("REST","UserNamespace") equal to the
desired namespace.

Example Request
• Request Method:

GET

• Request URL:

http://localhost:52773/api/mgmnt/v2/

Response
The response is a JSON array; each object in the array represents a REST service. A given object has the following properties:

• name — Name of the REST service.

• webApplications — Name of the web application that provides access to the REST service.

• dispatchClass — Name of the dispatch class of the REST service.

• namespace — Namespace in which the dispatch class and other classes are defined.

• swaggerSpec — Endpoint where you can obtain the OpenAPI 2.0 specification for this REST service.

The following shows an example response:

[
 {
 "name": "%Api.Mgmnt.v2",
 "webApplications": "/api/mgmnt",
 "dispatchClass": "%Api.Mgmnt.v2.disp",
 "namespace": "%SYS",
 "swaggerSpec": "/api/mgmnt/v2/%25SYS/%Api.Mgmnt.v2"
 },
 {
 "name": "myapp",
 "webApplications": "/api/myapp",
 "dispatchClass": "myapp.disp",
 "namespace": "USER",
 "swaggerSpec": "/api/mgmnt/v2/USER/myapp"
 }
]

Creating REST Services 43

GET /api/mgmnt/v2/

GET /api/mgmnt/v2/:namespace/
Returns an array that contains information about the newer REST services in the given namespace (including any REST
services that do not have an associated web application). This call ignores any manually-coded REST services.

URL Parameters
Required. Namespace name. This parameter is not case-sensitive.namespace

Permissions
To use this endpoint, you must have read access to the given namespace. If no namespace is specified, or if the specified
namespace is %SYS, you must have read access to the default namespace (USER). Note that you can set the default
namespace to a different namespace; to do so, set the global node ^%SYS("REST","UserNamespace") equal to the
desired namespace.

Example Request
• Request Method:

GET

• Request URL:

http://localhost:52773/api/mgmnt/v2/%25sys/

Response
The response is a JSON array; each object in the array represents a REST service. For details, see “GET /api/mgmnt/v2/.”

The following shows an example response:

[
 {
 "name": "%Api.Mgmnt.v2",
 "webApplications": "/api/mgmnt",
 "dispatchClass": "%Api.Mgmnt.v2.disp",
 "namespace": "%SYS",
 "swaggerSpec": "/api/mgmnt/v2/%25SYS/%Api.Mgmnt.v2"
 }
]

44 Creating REST Services

Reference for the /api/mgmnt API

GET /api/mgmnt/v2/:namespace/:application/
Returns the OpenAPI 2.0 specification for the given REST service. The REST service can be either a newer REST service
or a manually-coded REST service.

URL Parameters
Required. Namespace name. This parameter is not case-sensitive.namespace

Required. Fully qualified name of the package that contains the spec, impl, and disp classes.
This parameter is not case-sensitive.

application

Permissions
To use this endpoint, you must have read access to the given namespace. If no namespace is specified, or if the specified
namespace is %SYS, you must have read access to the default namespace (USER). Note that you can set the default
namespace to a different namespace; to do so, set the global node ^%SYS("REST","UserNamespace") equal to the
desired namespace.

You must also have read access to the database that contains the dispatch class. The dispatch class namespace and the
endpoint namespace need to be the same (except in the case of a dispatch class in a package starting with %, which is
available to all namespaces).

Example Request
• Request Method:

GET

• Request URL:

http://localhost:52773/api/mgmnt/v2/user/myapp/

Response
This call returns a Swagger (OpenAPI 2.0) specification as documented at https://github.com/OAI/OpenAPI-Specifica-
tion/blob/master/versions/2.0.md. In the returned specification:

• host is always set to the server:port of the server that you called.

• basePath is set to the first web application that dispatches to this REST application. If no web application dispatches
to this REST application, then basePath is returned as in the .spec class.

Creating REST Services 45

GET /api/mgmnt/v2/:namespace/:application/

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
http://
http://

POST /api/mgmnt/v2/:namespace/:application
Given a Swagger (OpenAPI 2.0) specification, this call generates the scaffolding for the REST application.

URL Parameters
Required. Namespace name. This parameter is not case-sensitive.nam/espace

Required. Fully qualified name of the package that contains the spec, impl, and disp classes.
This parameter is not case-sensitive.

application

Request Body
The request body must be a Swagger (OpenAPI 2.0) specification in JSON format.

Permissions
To use this endpoint, you must be a member of the %Developer role and must have read/write access to the given namespace.

Example Request
• Request Method:

POST

• Request URL:

http://localhost:52773/api/mgmnt/v2/user/myapp

• Request Body:

A Swagger (OpenAPI 2.0) specification in JSON format.

46 Creating REST Services

Reference for the /api/mgmnt API

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md

A
OpenAPI Properties in Use

This appendix lists the properties of the OpenAPI 2.0 specification that the API management tools use when generating
the REST service classes. Properties not listed here are ignored. There are several extension properties; these have names
that start with x-ISC.

A.1 Swagger
• basePath

• consumes

• host

• produces

• definitions (note that the API management tools do not use any properties of the Schema object when generating
code)

• parameters (for details, see “Parameter Object”)

• paths (for details, see “Path Item Object”)

• info (for details, see “ Info Object”)

• swagger (must be "2.0")

For details on these properties, see https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#swagger-
object.

A.2 Info Object
• title

• description

• x-ISC_RequiredResource (a comma-separated list of defined resources and their access modes (resource:mode)
that are required for access to any endpoint of the REST service)

• version

Creating REST Services 47

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#swagger-object
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#swagger-object

For details on the standard properties, see https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#info-
object.

A.3 Path Item Object
• $ref

• get, put, and so on (all methods listed in OpenAPI 2.0 specification are supported)

Note that for the options method, InterSystems does not generate a stub method for you to implement. Instead, the
class %CSP.REST automatically performs all options processing.

• parameters (for details, see “Parameter Object”)

For details on these properties, see https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#pathIte-
mObject.

A.4 Operation Object
• operationId

• summary

• description

• consumes

• produces

• parameters (for details, see “Parameter Object”)

• x-ISC_CORS (a flag to indicate that CORS requests for this endpoint/method combination should be supported)

• x-ISC_RequiredResource (a comma-separated list of defined resources and their access modes (resource:mode)
that are required for access to this endpoint of the REST service)

• x-ISC_ServiceMethod (name of the class method called on the back end to service this operation; default is
operationId, which is normally suitable)

• responses (note that within the response object, status may be HTTP status code or "default")

For details on the standard properties, see https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#oper-
ationObject.

A.5 Parameter Object
• name

• in

• description

• required

48 Creating REST Services

OpenAPI Properties in Use

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#info-object
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#info-object
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#pathItemObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#pathItemObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#operationObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#operationObject

• $ref

• type (cannot be "formData"; other types are permitted)

• format

• allowEmptyValue

• maxLength

• minLength

• pattern

• maximum

• minimum

• exclusiveMaximum

• exclusiveMinimum

• multipleOf

• collectionFormat

• minItems

• maxItems

• uniqueItems

• items (for details, see “ Items Object”)

For details on these properties, see https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#parameter-
object.

A.6 Items Object
• type

• format

• allowEmptyValue

• maxLength

• minLength

• pattern

• maximum

• minimum

• exclusiveMaximum

• exclusiveMinimum

• multipleOf

• collectionFormat

• minItems

Creating REST Services 49

Items Object

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#parameter-object
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#parameter-object

• maxItems

• uniqueItems

For details on these properties, see https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#items-
object.

50 Creating REST Services

OpenAPI Properties in Use

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#items-object
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/2.0.md#items-object

B
Creating a REST Service Manually

This appendix describes how to manually create an InterSystems IRIS® REST service by subclassing the %CSP.REST

class; this procedure creates a manually-coded REST service that does not work with all the API management tools. This
appendix contains the following sections:

• Basics of Creating a REST Service Manually

• Creating the URL Map

• Specifying the Data Format

• Localizing a REST Service

• Using Web Sessions with REST

• Supporting CORS

• Variation: Accessing Query Parameters

Also see “Setting Up Authentication for REST Services” in the chapter “Securing REST Services.”

B.1 Basics of Creating a REST Service Manually
To define a REST service manually, do the following:

• Create a REST service class — subclass of %CSP.REST. In your subclass:

– Define a URL map that specifies the InterSystems IRIS method that is executed for a REST URL and HTTP
method.

– Optionally specify the UseSession parameter. This parameter controls whether each REST call is executed under
its own web session or shares a single session with other REST calls.

– Optionally, override error handling methods.

If you want to separate the implementation code from the dispatch code, you can define the methods implementing
the REST services in separate class and invoke those methods from the URL map.

• Define a web application that uses the REST service class as its dispatch class.

To define the web application and its security, go to the Web Application page (click System Administration > Security

> Applications > Web Applications).

When you define the web application, you set the Dispatch Class to the name of your REST service class.

Creating REST Services 51

Also, specify the name of the application as the first part of the URL for the REST calls. An example name is
/csp/mynamespace or /csp/myapp, but you can specify any text that is allowed in a URL.

You can define more than one REST service class in a namespace. Each REST service class that has its own entry point
must have its own web application.

B.2 Creating the URL Map
In the REST service class, define an XData block named UrlMap that associates the REST call with the method that
implements the service. It can either directly send the call to a method based on the contents of the URL or it can forward
the call to another REST service class based on the URL. If the web application is handling a small number of related services,
you can send the call directly to the method that implements it. However, if the web application is handling a large number
of disparate services, you can define separate REST service classes, each of which handles a set of related services. Then
configure the web application to use a central REST service class that forwards the REST calls to other REST service
classes as appropriate.

If the subclass of %CSP.REST is sending the call directly to the methods, the URLMap contains a <Routes> definition
that contains a series of <Route> elements. Each <Route> element specifies a class method to be called for the specified
URL and HTTP operation. Typically REST uses the GET, POST, PUT, or DELETE operations, but you can specify any
HTTP operation. The URL can optionally include parameters that are specified as part of the REST URL and passed to the
specified method as parameters.

If the subclass of %CSP.REST is forwarding the calls to other subclasses of %CSP.REST, the UrlMap contains a <Routes>
definition that contains a series of <Map> elements. The <Map> element forwards all calls with the specified prefix to
another REST service class, which will then implement the behavior. It can implement the behavior by sending the call
directly to a method or by forwarding it to another subclass.

Important: InterSystems IRIS compares the incoming REST URL with the URL property of each <Route> and the
Prefix property of each <Map>, starting with the first item in the URL map, and stopping at the first
possible match that uses the same HTTP request method. Thus the order of the elements in the <Routes>
is significant. If an incoming URL could match multiple elements of the URL map, InterSystems IRIS
uses the first matching element and ignores any subsequent possible matches.

B.2.1 URLMap with <Route> Elements

InterSystems IRIS compares the incoming URL and the HTTP request method to each <Route> element in the URL map.
It calls the method specified in the first matching <Route> element. The <Route> element has three parts:

• Url — specifies the format of the last part of the REST URL to call the REST service. The Url consists of text elements
and parameters prefaced by : (colon).

• Method — specifies the HTTP request method for the REST call: typically these are GET, POST, PUT, or DELETE,
but any HTTP request method can be used. You should choose the request method that is appropriate for the function
being performed by the service, but the %CSP.REST class does not perform any special handling of the different
method. You should specify the HTTP request method in all uppercase letters.

• Call — specifies the class method to call to perform the REST service. By default, this class method is defined in
your REST service class, but you can explicitly specify any class method.

For example, consider the following <Route>:

<Route Url="/echo" Method="POST" Call="Echo" Cors="false" />

52 Creating REST Services

Creating a REST Service Manually

This specifies that the REST call will end with /echo and use the POST method. It will call the Echo class method in the
REST.DocServer class that defines the REST service. The Cors property is optional; see “Modifying a REST Service to
Use CORS” for details.

The complete REST URL consists of the following pieces:

• Server name and port of the InterSystems IRIS server. In this chapter, the server name and port
http://localhost:52773/ is used in the examples.

• The name of the web application as defined on the Web Application page (click System Administration > Security >
Applications > Web Applications). (For example, /csp/samples/docserver)

• The Url property of the <Route> element. If a segment of the Url property is preceded by a : (colon), it represents
a parameter. A parameter will match any value in that URL segment. This value is passed to the method as a parameter.

For the preceding example, the complete REST call as shown by a TCP tracing utility is:

POST /csp/samples/docserver/echo HTTP/1.1
Host: localhost:52773

If you want to separate the code implementing the REST services from the %CSP.REST dispatch code, you can define the
methods implementing the REST services in another class and specify the class and method in the Call element.

B.2.1.1 Specifying Parameters

The following <Route> definition defines two parameters, namespace and class, in the URL:

<Route Url="/class/:namespace/:classname" Method="GET" Call="GetClass" />

A REST call URL starts with /csp/samples/docserver/class/ and the next two elements of the URL specify the
two parameters. The GetClass() method uses these parameters as the namespace and the class name that you are querying.
For example, consider this REST call:

http://localhost:52773/csp/samples/docserver/class/samples/Cinema.Review

This REST call invokes the GetClass() method and passes the strings "samples" and "Cinema.Review" as the
parameter values. The GetClass() method has the following signature:

/// This method returns the class text for the named class
ClassMethod GetClass(pNamespace As %String,
 pClassname As %String) As %Status
{

B.2.1.2 Specifying Multiple Routes for a Single URL

For a given URL, you can support different HTTP request methods. You can do either by defining separate ObjectScript
methods for each HTTP request, or by using a single ObjectScript method that examines the request.

The following example uses different methods for each HTTP request method for a single URL:

<Route Url="/request" Method="GET" Call="GetRequest" />
<Route Url="/request" Method="POST" Call="PostRequest" />

With these routes, if the URL /csp/samples/docserver/request is called with an HTTP GET method, the
GetRequest() method is invoked. If it is called with an HTTP POST method, the PostRequest() method is invoked.

In contrast, you could use the following <Route> definitions:

<Route Url="/request" Method="GET" Call="Request" />
<Route Url="/request" Method="POST" Call="Request" />

In this case, the Request() method handles the call for either a GET or a POST operation. The method examines the %request
object, which is an instance of %CSP.Request. In this object, the URL property contains the text of the URL.

Creating REST Services 53

Creating the URL Map

B.2.1.3 Regular Expressions in the Route Map

You can use regular expressions within the route map. InterSystems suggests that you do so only if there is no other way
to define the REST service to meet your needs. This section provides the details. (For information on regular expressions
in ObjectScript, see “Regular Expressions” in Using ObjectScript.)

Internally, the :parameter-name syntax for defining parameters in the URL is implemented using regular expressions. Each
segment specified as :parameter-name is converted to a regular expression that contains a repeating matching group,
specifically to the ([^/]+) regular expression. This syntax matches any string (of non-zero length), as long as that string
does not include the / (slash) character. So the GetClass() sample, which is Url="/class/:namespace/:classname",
is equivalent to:

<Route Url="/class/([^/]+)/([^/]+)" Method="GET" Call="GetClass" />

where there are two matching groups that specify two parameters.

In most cases this format provides enough flexibility to specify the REST URL, but advanced users can use the regular
expression format directly in the route definition. The URL must match the regular expression, and each matching group,
which is specified by a pair of parentheses, defines a parameter to be passed to the method.

For example, consider the following route map:

<Routes>
<Route Url="/Move/:direction" Method="GET" Call="Move" />
<Route Url="/Move2/(east|west|north|south)" Method="GET" Call="Move" />
</Routes>

For the first route, the parameter can have any value. No matter what value the parameter has, the Move() method is called.
For the second route, the parameter must be one of east west north or south; if you call the second route with a
parameter value other than those, the Move() method is not called, and REST service returns a 404 error because the
resource cannot be found.

This simple example is meant only to demonstrate the difference between the usual parameter syntax and a regular
expression. In the case discussed here, there is no need for a regular expression because the Move() method can (and should)
check the value of the parameter and respond appropriately. In the following cases, however, a regular expression is helpful:

• If a parameter is optional. In this case, use the regular expression ([^/]*) instead of the :parameter-name syntax.
For example:

<Route Url="/Test3/([^/]*)" Method="GET" Call="Test"/>

Of course, the method being called must also be able to handle having a null value for the parameter.

• If the parameter is the last parameter and its value can include a slash. In this case, if the parameter is required, use
the regular expression ((?s).+) instead of the :parameter-name syntax. For example:

<Route Url="/Test4/((?s).+)" Method="GET" Call="Test"/>

Or, if this parameter is optional, use the regular expression ((?s).*) instead of the :parameter-name syntax. For
example:

<Route Url="/Test5/((?s).*)" Method="GET" Call="Test"/>

B.2.2 URLMap with <Map> Elements

InterSystems IRIS compares the incoming URL to the prefix in each <Map> element in the URL map. It forwards the
incoming REST call to the REST service class specified in the first matching <Map> element. That class processes the
remainder of the URL, typically calling the method that implements the service. The <Map> element has two attributes:

54 Creating REST Services

Creating a REST Service Manually

• Prefix — specifies the segment of the URL to match. The incoming URL typically has other segments after the
matching segment.

• Forward — specifies another REST service class that will process the URL segments that follow the matching segment.

Consider the following URLMap that contains three <Map> elements.

XData UrlMap
{
 <Routes>
 <Map Prefix="/coffee/sales" Forward="MyLib.coffee.SalesREST"/>
 <Map Prefix="/coffee/repairs" Forward="MyLib.coffee.RepairsREST"/>
 <Map Prefix="/coffee" Forward="MyLib.coffee.MiscREST"/>
 </Routes>
}

This UrlMap forwards the REST call to one of three REST service classes: MyLib.coffee.SalesREST,
MyLib.coffee.RepairsREST, or MyLib.coffee.MiscREST.

The complete REST URL to call one of these REST services consists of the following pieces:

• Server name and port of the InterSystems IRIS server, such as http://localhost:52773/

• Name of the web application as defined on the Web Application page (click System Administration > Security > Appli-

cations > Web Applications). For example, the web application for these REST calls could be named /coffeeRESTSvr

• The Prefix for a <Map> element.

• The remainder of the REST URL. This is the URL that will be processed by the REST service class that receives the
forwarded REST request.

For example, the following REST call:

http://localhost:52773/coffeeRESTSvr/coffee/sales/reports/id/875

matches the first <Map> with the prefix /coffee/sales and forwards the REST call to the MyLib.coffee.SalesREST

class. That class will look for a match for the remainder of the URL, "/reports/id/875".

As another example, the following REST call:

http://localhost:52773/coffeeRESTSvr/coffee/inventory/machinetype/drip

matches the third <Map> with the prefix /coffee and forwards the REST call to the MyLib.coffee.MiscREST class. That
class will look for a match for the remainder of the URL, "/inventory/machinetype/drip".

Note: In this URLMap example, if the <Map> with the prefix="/coffee" was the first map, all REST calls with /coffee
would be forwarded to the MyLib.coffee.MiscREST class even if they matched one of the following <Map> elements.
The order of the <Map> elements in <Routes> is significant.

B.3 Specifying the Data Format
You can define your REST service to handle data in different formats, such as JSON, XML, text, or CSV. A REST call
can specify the form that it expects data it is sending by specifying a ContentType element in the HTTP request and can
request the return data format by specifying an Accept element in the HTTP request.

In the DocServer sample, the GetNamespaces() method checks if the REST call requested JSON data with the following:

If $Get(%request.CgiEnvs("HTTP_ACCEPT"))="application/json"

Creating REST Services 55

Specifying the Data Format

B.4 Localizing a REST Service
Any string value returned by a REST service can be localized, so that the server stores multiple versions of the strings in
different languages. Then when the service receives an HTTP request that includes the HTTP Accept-Language header,
the service responds with the appropriate version of the string.

To localize a REST service:

1. Within your implementation code, rather than including a hardcoded literal string, use an instance of the $$$Text
macro, providing values for the macro arguments as follows:

• The default string

• (Optional) The domain to which this string belongs (localization is easier to manage when the strings are grouped
into domains)

• (Optional) The language code of the default string

For example, instead of this:

 set returnvalue="Hello world"

Include this:

 set returnvalue=$$$TEXT("Hello world","sampledomain","en-us")

2. If you omit the domain argument to $$$Text macro, also include the DOMAIN class parameter within the REST
service class. For example:

Parameter DOMAIN = "sampledomain"

3. Compile the code. When you do so, the compiler generates entries in the message dictionary for each unique instance
of the $$$Text macro.

The message dictionary is a global and so can be easily viewed (for example) in the Management Portal. There are
class methods to help with common tasks.

4. When development is complete, export the message dictionary for that domain or for all domains.

The result is one or more XML message files that contain the text strings in the original language.

5. Send these files to translators, requesting translated versions.

6. When you receive the translated XML message files, import them into the same namespace from which the original
was exported.

Translated and original texts coexist in the message dictionary.

7. At runtime, the REST service chooses which text to return, based on the HTTP Accept-Language header.

For more information, see the article String Localization and Message Dictionaries.

B.5 Using Web Sessions with REST
For an introduction, see “Using Web Sessions with REST,” earlier in this book.

56 Creating REST Services

Creating a REST Service Manually

To enable your REST service to use a single web session over multiple REST calls, set the UseSession parameter to 1 in
your REST service class:

Parameter UseSession As Integer = 1;

B.6 Supporting CORS
For an introduction, see “ Introduction to CORS,” earlier in this book. Note that the details of supporting CORS are slightly
different when you create a web service manually as described in this appendix.

B.6.1 Modifying a REST Service to Use CORS

To specify that your REST service supports CORS, modify the REST service class as follows and then recompile it.

1. Specify a value for the HandleCorsRequest parameter.

To enable CORS header processing for all calls, specify the HandleCorsRequest parameter as 1:

Parameter HandleCorsRequest = 1;

Or, to enable CORS header processing for some but not calls, specify the HandleCorsRequest parameter as "" (empty
string):

Parameter HandleCorsRequest = "";

(If HandleCorsRequest is 0, then CORS header processing is disabled for all calls. In this case, if the REST service
receives a request with CORS headers, the service rejects the request. This is the default.)

2. If you specified HandleCorsRequest parameter as "", edit the URLMap XData block to indicate which calls support
CORS. Specifically, for any <Route> that should support CORS, add the following property name and value:

Cors="true"

Or specify Cors="false" in a <Route> element to disable CORS processing.

If a REST service class forwards a REST request to another REST service class, the behavior of the CORS processing is
determined by the class that contains the <Route> element that matches the given request.

B.6.2 Overriding the CORS Header Processing

Important: The default CORS header processing is not suitable for REST services handling confidential data.

The default CORS header processing does not do any filtering and simply passes the CORS header to the external server
and returns the response. You may want to restrict access to origins in a domain white list or restrict the allowed request
methods. You do this by overriding the OnHandleCorsRequest() method in your REST service class.

For information on implementing the OnHandleCorsRequest() method, see “Defining OnHandleCorsRequest(),” earlier
in this book.

Note that all URL requests that match <Route> elements in the UrlMap are processed with the single
OnHandleCorsRequest() method that is defined in the class. If you need different implementations of the
OnHandleCorsRequest() method for different REST URL requests, you should use Forward to send the requests to other
REST service classes.

Creating REST Services 57

Supporting CORS

B.7 Variation: Accessing Query Parameters
The recommended way to pass parameters to a REST service is to pass them as part of the URL path used to invoke the
service (for example, /myapi/someresource/parametervalue). In some cases, however, it may be more convenient
to pass the parameters as query parameters (for example, /myapi/someresource?parameter=value). In such cases,
you can use the %request variable to retrieve the parameter values. Within a REST service, the %request variable is an
instance of %CSP.Request that holds the entire URL query. To retrieve the value of a given query parameter, use the fol-
lowing syntax:

$GET(%request.Data(name,1),default)

Where name is the name of the query parameter and default is the default value to return. Or, if the same URL holds mul-
tiple copies of the same query parameter, use the following syntax:

$GET(%request.Data(name,index),default)

Where index is the numeric index of the copy you want to retrieve. For further details, see the class reference for %CSP.REST.

58 Creating REST Services

Creating a REST Service Manually

	Table of Contents
	About This Book
	1 Introduction to Creating REST Services
	1.1 Introduction to REST
	1.2 Introduction to InterSystems REST Services
	1.2.1 Manually Coding REST Services

	1.3 Introduction to InterSystems API Management Tools
	1.4 Overview of Creating REST Services
	1.5 A Closer Look at the REST Service Classes
	1.5.1 Specification Class
	1.5.2 Dispatch Class
	1.5.3 Implementation Class

	1.6 Enabling Logging for API Management Features

	2 Using the /api/mgmnt Service
	2.1 Using the /api/mgmnt Service to Create a REST Service
	2.1.1 Using the /api/mgmnt Service to Generate the Classes
	2.1.2 Creating the Web Application

	2.2 Using the /api/mgmnt Service to Update a REST Service
	2.2.1 How InterSystems Updates the Implementation Class

	2.3 Using the /api/mgmnt Service to Delete a REST Service

	3 Using the ^%REST Routine to Create REST Services
	3.1 Using the ^%REST Routine
	3.2 Using the ^%REST Routine to Create a REST Service
	3.3 Using the ^%REST Routine to Delete a REST Service

	4 Using the %REST.API Class to Create REST Services
	4.1 Using the %REST.API Class to Create or Update a REST Service
	4.2 Using the %REST.API Class to Delete a REST Service

	5 Modifying the Implementation Class
	5.1 Initial Method Definitions
	5.2 Implementing the Methods
	5.3 Exposing Details of Server Errors
	5.4 Modifying the Error Response

	6 Modifying the Specification Class
	6.1 Overview
	6.2 Overriding the Content Type, Response Character Set, or Input Stream Handling
	6.3 Overriding the Name of a Service Method

	7 Supporting CORS in REST Services
	7.1 Overview
	7.1.1 Introduction to CORS
	7.1.2 Overview of Enabling a REST Service to Support CORS

	7.2 Accepting the CORS Header
	7.3 Defining How to Process the CORS Header
	7.3.1 Defining OnHandleCorsRequest()
	7.3.2 Modifying the Specification Class

	8 Using Web Sessions with REST
	8.1 Introduction
	8.2 Enabling a REST Service to Use Web Sessions

	9 Securing REST Services
	9.1 Setting Up Authentication for REST Services
	9.1.1 REST Applications and OAuth 2.0

	9.2 Specifying Privileges Needed to Use REST Services
	9.2.1 Specifying Privileges
	9.2.2 Using the SECURITYRESOURCE Parameter

	10 Discovering and Documenting REST APIs
	10.1 Using the /api/mgmnt Service to Discover REST Services
	10.1.1 Discovering REST Services
	10.1.2 Discovering REST-Enabled Web Applications

	10.2 Using the %REST.API Class to Discover REST Services
	10.2.1 Discovering REST Service Classes
	10.2.2 Discovering REST-Enabled Web Applications

	10.3 Providing Documentation for a REST Service

	Reference for the /api/mgmnt API
	DELETE /api/mgmnt/v2/:namespace/:application/
	GET /api/mgmnt/
	GET /api/mgmnt/v1/:namespace/restapps
	GET /api/mgmnt/v1/:namespace/spec/:application/
	GET /api/mgmnt/v2/
	GET /api/mgmnt/v2/:namespace/
	GET /api/mgmnt/v2/:namespace/:application/
	POST /api/mgmnt/v2/:namespace/:application

	Appendix A: OpenAPI Properties in Use
	A.1 Swagger
	A.2 Info Object
	A.3 Path Item Object
	A.4 Operation Object
	A.5 Parameter Object
	A.6 Items Object

	Appendix B: Creating a REST Service Manually
	B.1 Basics of Creating a REST Service Manually
	B.2 Creating the URL Map
	B.2.1 URLMap with <Route> Elements
	B.2.2 URLMap with <Map> Elements

	B.3 Specifying the Data Format
	B.4 Localizing a REST Service
	B.5 Using Web Sessions with REST
	B.6 Supporting CORS
	B.6.1 Modifying a REST Service to Use CORS
	B.6.2 Overriding the CORS Header Processing

	B.7 Variation: Accessing Query Parameters

