
Scalability Guide

Version 2019.4
2020-01-28

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Scalability Guide
InterSystems IRIS Data Platform Version 2019.4 2020-01-28
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

1 InterSystems IRIS Scalability Overview .. 3
1.1 Scaling Matters ... 3
1.2 Vertical Scaling ... 4
1.3 Horizontal Scaling ... 5

1.3.1 Horizontal Scaling for User Volume .. 6
1.3.2 Horizontal Scaling for Data Volume .. 7
1.3.3 Using InterSystems Cloud Manager to Deploy Horizontally Scaled Configurations 9

1.4 Evaluating Your Workload for InterSystems IRIS Scaling Solutions .. 9

2 Vertically Scaling InterSystems IRIS .. 11
2.1 Memory Management and Scaling for InterSystems IRIS ... 11

2.1.1 Memory Overview ... 11
2.1.2 Calculating Initial Memory Requirements ... 12
2.1.3 Vertically Scaling for Memory ... 13
2.1.4 Configuring Large and Huge Pages ... 13

2.2 CPU Sizing and Scaling for InterSystems IRIS .. 14
2.2.1 Basic CPU Sizing ... 14
2.2.2 Balancing Core Count and Speed .. 15
2.2.3 Virtualization Considerations for CPU .. 15
2.2.4 Leveraging Core Count with Parallel Query Execution ... 15

2.3 General Performance Enhancement on InterSystems IRIS Platforms 16

3 Horizontally Scaling for User Volume with Distributed Caching .. 17
3.1 Overview of Distributed Caching ... 17

3.1.1 Distributed Caching Architecture ... 18
3.1.2 ECP Features .. 22
3.1.3 ECP Recovery .. 22
3.1.4 Distributed Caching and High Availability .. 22

3.2 Deploying a Distributed Cache Cluster .. 23
3.2.1 Data Server/Application Server Compatibility .. 23
3.2.2 Deploy the Cluster with InterSystems Cloud Manager .. 23
3.2.3 Deploy the Cluster Using the Management Portal ... 26
3.2.4 Distributed Cache Cluster Security .. 29

3.3 Monitoring Distributed Cache Applications ... 33
3.3.1 ECP Connection Information ... 33
3.3.2 ECP Connection States .. 34
3.3.3 ECP Connection Operations .. 37

3.4 Developing Distributed Cache Applications .. 37
3.4.1 ECP Recovery Protocol .. 38
3.4.2 Forced Disconnects .. 39
3.4.3 Performance and Programming Considerations .. 40
3.4.4 ECP-related Errors ... 42

3.5 ECP Recovery Process, Guarantees, and Limitations .. 42
3.5.1 ECP Recovery Guarantees ... 43
3.5.2 ECP Recovery Limitations ... 46

4 Horizontally Scaling for Data Volume with Sharding ... 51

Scalability Guide iii

4.1 Overview of InterSystems IRIS Sharding .. 51
4.1.1 Elements of Sharding .. 51
4.1.2 Evaluating the Benefits of Sharding .. 53
4.1.3 Namespace-level Sharding Architecture ... 54

4.2 Deploying the Sharded Cluster ... 54
4.2.1 Plan Data Nodes ... 55
4.2.2 Estimate the Database Cache and Database Sizes ... 55
4.2.3 Deploy the Cluster Using InterSystems Cloud Manager ... 56
4.2.4 Deploy the Cluster Using the %SYSTEM.Cluster API ... 59

4.3 Creating Sharded Tables and Loading Data ... 64
4.3.1 Evaluate Existing Tables for Sharding ... 64
4.3.2 Create Sharded Tables .. 65
4.3.3 Load Data Onto the Cluster ... 68
4.3.4 Create and Load Nonsharded Tables ... 69

4.4 Querying the Sharded Cluster .. 69
4.5 Additional Sharded Cluster Options ... 70

4.5.1 Add Data Nodes and Rebalance Data .. 70
4.5.2 Mirror Data Nodes for High Availability ... 72
4.5.3 Deploy Compute Nodes for Workload Separation and Increased Query Throughput 76
4.5.4 Install Multiple Data Nodes per System .. 78

4.6 InterSystems IRIS Sharding Reference .. 78
4.6.1 Planning an InterSystems IRIS Sharded Cluster .. 79
4.6.2 Coordinated Backup and Restore of Sharded Clusters .. 83
4.6.3 Sharding APIs .. 88
4.6.4 Deploying the Namespace-level Architecture .. 90
4.6.5 Reserved Names ... 95

iv Scalability Guide

List of Figures

Figure 1–1: Comparing Workloads ... 4
Figure 1–2: Vertical Scaling .. 5
Figure 1–3: Horizontal Scaling Addresses Vertical Scaling’s Limitations .. 6
Figure 1–4: Dividing the User Workload .. 6
Figure 1–5: InterSystems IRIS Distributed Cache Cluster .. 7
Figure 1–6: Partitioning the Data Workload .. 8
Figure 2–1: Parallel Query Execution ... 16
Figure 3–1: Distributed Cache Cluster .. 18
Figure 3–2: Local databases mapped to local namespaces on a single InterSystems IRIS instance 20
Figure 3–3: Remote databases on a data server mapped to namespaces on application servers in a distributed
cache cluster .. 21
Figure 4–1: Basic sharded cluster .. 52
Figure 4–2: Adding a Shard and Rebalancing Data .. 72
Figure 4–3: Sharded cluster with compute nodes .. 76

Scalability Guide v

List of Tables

Table 1–1: InterSystems IRIS Scaling Solutions ... 10
Table 3–1: ECP Connection States .. 34
Table 3–2: ECP Timeout Values .. 38
Table 4–1: Cluster Planning Variables ... 80
Table 4–2: Cluster Planning Guidelines .. 82

vi Scalability Guide

About This Book

Today’s data platforms are called on to handle a wide variety of workloads. As a workload of any type grows, a data platform
must be able to scale to meet its increasing demands, while at the same time maintaining the performance standards the
enterprise relies on and avoiding business disruptions.

This document describes the scaling capabilities of InterSystems IRIS® data platform. Read this document if you are:

• Actively planning and implementing InterSystems IRIS configurations to meet specific needs within the enterprise.

• Seeking to understand the scaling features of InterSystems IRIS as they relate to your enterprise’s existing and future
needs.

Chapters in this guide include the following:

• InterSystems IRIS Scalability Overview

• Vertically Scaling InterSystems IRIS

• Horizontally Scaling for User Volume with Distributed Caching

• Horizontally Scaling for Data Volume with Sharding

Scalability Guide 1

1
InterSystems IRIS Scalability Overview

This chapter reviews the scaling features of InterSystems IRIS data platform, and provides guidelines for a first-order
evaluation of scaling approaches for your enterprise data platform. Subsequent chapters cover each feature in more detail.

• Vertical Scaling

• Horizontal Scaling for User Volume

• Horizontal Scaling for Data Volume

• Using InterSystems Cloud Manager to Deploy Horizontally Scaled Configurations

• Evaluating Your Workload for InterSystems IRIS Scaling Solutions

1.1 Scaling Matters
What you do matters, and whether you care for ten million patients, process billions of financial orders a day, track a galaxy
of stars, or monitor a thousand factory engines, your data platform must not only support your current operations but enable
you to scale to meet increasing demands. Each business-specific workload presents a different challenge to the data platform
on which it operates — and as a business grows, that challenge becomes even more acute.

For example, consider the two situations in the following illustration:

Scalability Guide 3

Figure 1–1: Comparing Workloads

Both workloads are demanding, but it is hard to say which is more demanding — or how to scale to meet those demands.

We can better understand data platform workloads and what is required to scale them by decomposing them into components
that can be independently scaled. One simplified way to break down these workloads is to separate the components of user
volume and data volume. A workload can involve many users interacting frequently with a relatively small database, as in
the first example, or fewer requests from what could be a single user or process but against massive datasets, like the second.
By considering user volume and data as separate challenges, we can evaluate different scaling options. (This division is a
simplification, but one that is useful and easy to work with. There are many examples of complex workloads to which it is
not easily applied, such as one involving many small data writers and a few big data consumers.)

1.2 Vertical Scaling
The first and most straightforward way of addressing more demanding workloads is by scaling up — that is, taking
advantage of vertical scalability. In essence, this means making an individual server more powerful so it can keep up with
the workload.

4 Scalability Guide

InterSystems IRIS Scalability Overview

Figure 1–2:Vertical Scaling

In detail, vertical scaling requires expansion of the capacity of an individual server by adding hardware components that
alleviate the workload bottlenecks you are experiencing. For example, if your cache can’t handle the working set required
by your current user and data volume, you can add more memory to the machine.

Vertical scaling is generally well understood and architecturally straightforward; with good engineering support it can help
you achieve a finely tuned system that meets the workload’s requirements. It does have its limits, however:

• Today’s servers with their hundred-plus CPU cores and memory in terabytes are very powerful, but no matter what
its capacity, a system can simultaneously create and maintain only so many sockets for incoming connections.

• Premium hardware comes at a premium price, and once you’ve run out of sockets, replacing the whole system with a
bigger, more expensive one may be your only option.

• Effective vertical scaling requires careful sizing before the fact. This may be straightforward in a relatively static
business, but under dynamic circumstances with a rapidly growing workload it can be difficult to predict the future.

• Vertical scaling does not provide elasticity; having scaled up, you cannot scale down when changes in your workload
would allow it, which means you are paying for excess capacity..

• Vertical scaling stresses your software, which must be able to cope effectively and efficiently with the additional
hardware power. For example, scaling to 128 cores is of little use if your application can handle only 32 processes.

For more information on vertically scaling InterSystems IRIS data dlatform, see the chapter “Vertically Scaling InterSystems
IRIS”

1.3 Horizontal Scaling
When vertical scaling does not provide the complete solution — for example, when you hit the inevitable hardware (or
budget) ceiling — or as an alternative to vertical scaling, some data platform technologies can also be scaled horizontally
by clustering a number of smaller servers. That way, instead of adding specific components to a single expensive server,
you can add more modest servers to the cluster to support your workload as volume increases. Typically, this implies
dividing the single-server workload into smaller pieces, so that each cluster node can handle a single piece.

Scalability Guide 5

Horizontal Scaling

Horizontal scaling is financially advantageous both because you can scale using a range of hardware, from dozens of
inexpensive commodity systems to a few high-end servers to anywhere in between, and because you can do so gradually,
expanding your cluster over time rather than the abrupt decommissioning and replacement required by vertical scaling.
Horizontal scaling also fits very well with virtual and cloud infrastructure, in which additional nodes can be quickly and
easily provisioned as the workload grows, and decommissioned if the load decreases.

Figure 1–3: Horizontal Scaling Addresses Vertical Scaling’s Limitations

On the other hand, horizontal clusters require greater attention to the networking component to ensure that it provides suf-
ficient bandwidth for the multiple systems involved. Horizontal scaling also requires significantly more advanced software,
such as InterSystems IRIS, to fully support the effective distribution of your workload across the entire cluster. InterSystems
IRIS accomplishes this by providing the ability to scale for both increasing user volume and increasing data volume.

1.3.1 Horizontal Scaling for User Volume

How can you scale horizontally when user volume is getting too big to handle with a single system at an acceptable cost?
The short answer is to divide the user workload by connecting different users to different cluster nodes that handle their
requests.

Figure 1–4: Dividing the User Workload

6 Scalability Guide

InterSystems IRIS Scalability Overview

You can do this by using a load balancer to distribute users round-robin, but grouping users with similar requests (such as
users of a particular application when multiple applications are in use) on the same node is more effective due to distributed
caching, in which users can take advantage of each other’s caches.

InterSystems IRIS provides an effective way to accomplish this through distributed caching, an architectural solution sup-
ported by the Enterprise Cache Protocol (ECP) that partitions users across a tier of application servers sitting in front of
your data server. Each application server handles user queries and transactions using its own cache, while all data is stored
on the data server, which automatically keeps the application server caches in sync. Because each application server
maintains its own independent working set in its own cache, adding more servers allows you to handle more users.

Figure 1–5: InterSystems IRIS Distributed Cache Cluster

Distributed caching is entirely transparent to the user and the application code.

For more information on horizontally scaling InterSystems IRIS data platform for user volume, see the chapter “Horizontally
Scaling for User Volume with Distributed Caching”

1.3.2 Horizontal Scaling for Data Volume

The data volumes required to meet today’s enterprise needs can be very large. More importantly, if they are queried
repeatedly, the working set can get too big to fit into the server’s cache; this means that only part of it can be kept in the
cache and disk reads become much more frequent, seriously impacting query performance.

Scalability Guide 7

Horizontal Scaling

As with user volume, you can horizontally scale for data volume by dividing the workload among several servers. This is
done by partitioning the data.

Figure 1–6: Partitioning the Data Workload

InterSystems IRIS achieves this through its sharding capability. An InterSystems IRIS sharded cluster partitions data
storage, along with the corresponding caches, across a number of servers, providing horizontal scaling for queries and data
ingestion while maximizing infrastructure value through highly efficient resource utilization.

In a basic sharded cluster, a sharded table is partitioned horizontally into roughly equal sets of rows called shards, which
are distributed across a number of data nodes. For example, if a table with 100 million rows is partitioned across four data
nodes, each stores a shard containing about 25 million rows. Nonsharded tables reside wholly on the first data node configured.

Queries against a sharded table are decomposed into multiple shard-local queries to be run in parallel on the data nodes;
the results are then combined and returned to the user. This distributed data layout can further be exploited for parallel data
loading and with third party frameworks like Apache Spark.

In addition to parallel processing, sharding improves query performance by partitioning the cache. Each data node uses its
own cache for shard-local queries against the data it stores, making the cluster’s cache for sharded data roughly as large as
the sum of the caches of all the data nodes. Adding a data node means adding dedicated cache for more data.

As with application server architecture, sharding is entirely transparent to the user and the application.

Sharding comes with some additional options that greatly widen the range of solutions available, including the following:

• Mirroring

InterSystems IRIS mirroring can be used to provide high availability for data nodes.

• Compute nodes

8 Scalability Guide

InterSystems IRIS Scalability Overview

For advanced use cases in which low latencies are required, potentially at odds with a constant influx of data, compute
nodes can be added to provide a transparent caching layer for servicing queries. Compute nodes support query execution
only, caching the sharded data of the data nodes to which they are assigned (as well as nonsharded data when necessary).
When a cluster includes compute nodes, read-only queries are automatically executed on them, while all write operations
(insert, update, delete, and DDL operations) are executed on the data nodes. This separation of query workload and
data ingestion improves the performance of both, and assigning multiple compute nodes per data node can further
improve the query throughput and performance of the cluster.

For more information on horizontally scaling InterSystems IRIS data platform for data volume, see the chapter “Horizontally
Scaling for Data Volume with Sharding”

1.3.3 Using InterSystems Cloud Manager to Deploy Horizontally Scaled
Configurations

InterSystems recommends using InterSystems Cloud Manager (ICM) to deploy InterSystems IRIS, including both distributed
caching and sharded configurations. By combining plain text declarative configuration files, a simple command line interface,
the widely-used Terraform infrastructure as code tool, and InterSystems IRIS deployment in Docker containers, ICM provides
you with a simple, intuitive way to provision cloud or virtual infrastructure and deploy the desired InterSystems IRIS
architecture on that infrastructure, along with other services. ICM can significantly simplify the deployment process,
especially for complex horizontal cluster configurations.

ICM also allows you to conveniently add Apache Spark capabilities to an ICM-deployed sharded cluster and other Inter-
Systems IRIS configurations. In deploying Spark, ICM creates a Spark framework corresponding to the deployment by
starting Spark slaves on the DS nodes and a Spark master on the DM node, all preconfigured to connect to the InterSystems
IRIS containers running on those nodes.

For more information on using ICM to deploy InterSystems IRIS, see the InterSystems Cloud Manager Guide.

1.4 Evaluating Your Workload for InterSystems IRIS
Scaling Solutions
The subsequent chapters of this guide cover the individual scalability features of InterSystems IRIS in detail, and you should
consult these before beginning the process of scaling your data platform. However, the table below summarizes the overview
in this chapter, and provides some general guidelines concerning the scaling approach that might be of the most benefit in
your current circumstances.

Scalability Guide 9

Evaluating Your Workload for InterSystems IRIS Scaling Solutions

Table 1–1: InterSystems IRIS Scaling Solutions

Pros (+) and Cons (-)Possible SolutionsConditions
Scaling
Approach

+Add CPU cores.

Take advantage of parallel
query execution to leverage
high core counts for queries
spanning a large dataset.

High multiuser query volume:
insufficient computing power,
throughput inadequate for
query volume.

Vertical

• Architectural simplicity

• Hardware finely tuned to
workload

–
Add memory and increase
cache size to leverage larger
memory.

Take advantage of parallel
query execution to leverage
high core counts.

High data volume: insufficient
memory, database cache
inadequate for working set.

• Nonlinear price/perfor-
mance ratio

• Persistent hardware limita-
tions

• Careful initial sizing
required

Increase other resources that
may be causing bottlenecks.

Other insufficient capacity:
bottlenecks in other areas such
as network bandwidth.

• One-way scaling only

+Deploy application server con-
figuration (distributed caching).

High multiuser query volume:
frequent queries from large
number of users.

Horizon-
tal

• More linear price/perfor-
mance ratio

Deploy sharded cluster (parti-
tioned data and partitioned
caching), possibly adding
compute nodes to separate
queries from data ingestion and
increase query throughput (see
Deploy Compute Nodes)

High data volume: some combi-
nation of:

• Can leverage commodity,
virtual and cloud-based
systems

• High volume and/or high
rate of data ingestion • Elastic scaling

–• Large data sets

• Complex queries involving
large amounts of data pro-
cessing (see Evaluating
the Benefits of Sharding)

• Emphasis on networking

10 Scalability Guide

InterSystems IRIS Scalability Overview

2
Vertically Scaling InterSystems IRIS

Scaling a system vertically by increasing its capacity and resources is a common, well-understood practice. Recognizing
this, InterSystems IRIS includes a number of built-in capabilities that help you leverage the gains. Some operate transparently,
while others require specific adjustments on your part to take full advantage.

This chapter discusses how to calculate the memory and CPU requirements of a server hosting an InterSystems IRIS instance
and application, both initially and after collecting benchmarking and load testing results and information from existing
sites, and how to take the best advantage of vertically scaling by increasing system memory or the CPU core count. In some
cases, you may use these guidelines to evaluate whether a system that was chosen based on other criteria (such as corporate
standards and cloud budget limits) is roughly sufficient to handle your workload requirements, whereas in others you may
use them to plan the system you need based on those requirements. Additional actions that may improve performance are
also discussed.

• Memory Management and Scaling for InterSystems IRIS

• CPU Sizing and Scaling for InterSystems IRIS

• General Performance Enhancement on InterSystems IRIS Platforms

2.1 Memory Management and Scaling for InterSystems
IRIS
Memory management is a critical element in optimizing performance and availability. For procedures for allocating memory
within InterSystems IRIS, see Memory and Startup Settings in the “Configuring InterSystems IRIS” chapter of the System
Administration Guide.

• Memory Overview

• Calculating Initial Memory Requirements

• Vertically Scaling for Memory

• Configuring Large and Huge Pages

2.1.1 Memory Overview

The goal of memory planning and management is to provide enough memory to all of the entities that use it under all normal
operating circumstances. This is a critical factor in both performance and availability.

Scalability Guide 11

Generally, there are four main consumers of memory on a server hosting an InterSystems IRIS instance. At a high level,
you can calculate the amount of physical memory required by simply adding up the requirements of each of the items on
the following list:

• Operating system, including the file system cache

• Installed applications

• InterSystems IRIS and application processes

InterSystems IRIS is process-based. If you look at the operating system statistics while your application is running,
you will see numerous processes running as part of InterSystems IRIS.

• InterSystems IRIS shared memory, which includes

– The database and routine caches

– The generic memory heap (gmheap)

– Other shared memory structures

For the best possible performance, all four of these should be maintained in physical (system) memory under all normal
operating conditions. Virtual memory and mechanisms for using it such as swap space and paging are important because
they enable the system to continue operating during a transient memory capacity problem, but the highest priority is to
include enough physical memory to avoid the use of virtual memory.

2.1.2 Calculating Initial Memory Requirements

Of course, every application is different and any given system may require a series of adjustments to optimize memory
use. However, the following list provides general guidelines to use as a basis in sizing memory for your application.
Benchmarking and performance load testing the application will further influence your estimate of the ideal memory sizing
and parameters.

Important: When InterSystems IRIS is first installed, routine and database cache memory allocation is set to Automat-

ically, under which InterSystems IRIS allocates a conservative fraction of the available physical memory
for the database cache (global buffers), not to exceed 1 GB. This setting is not appropriate for production
use.

If you have not configured sufficient physical memory on a Linux system and thus regularly come close
to capacity, you run the risk that the out of memory killer may misidentify long-running InterSystems IRIS
processes that touch a lot of memory in normal operation, such as the write daemon and CSP server pro-
cesses, as the source of the problem and terminate them. This will result in an outage of the InterSystems
IRIS instance and require crash recovery at the subsequent startup. Disabling the out of memory killer is
not recommended, however, as this safety mechanism keeps your operating system from crashing when
memory runs short, giving you a chance to intervene and restore InterSystems IRIS to normal operation.
The recommended way to avoid this problem is to configure enough physical memory to avoid any chance
of the out of memory killer coming into play. (For a detailed discussion of process memory in InterSystems
IRIS, see Process Memory in InterSystems Products.)

General guidelines for sizing memory for your application are as follows:

• System memory to provision (install in a physical server or allocate to a virtual server)

Start with 4 to 8 GB per CPU core (physical or virtual). This core count does not include any threads such as Intel
HyperThreading (HT) or IBM Simultaneous Multi-Threading (SMT) (see General Performance Enhancement on
InterSystems IRIS Platforms). So, for example, if you have an IBM AIX LPAR with 8 cores allocated, the calculation
would be 4-8 GB * 8 = 32 to 64 GB of total RAM allocated to that LPAR, even with SMT-4 enabled (which would
appear as 32 logical processors).

12 Scalability Guide

Vertically Scaling InterSystems IRIS

• Shared memory to allocate within InterSystems IRIS

– On servers with less than 64 GB of RAM, allocate

• 50% of total memory to the database cache

• 256 MB minimum to the routine cache

• 256 MB minimum to the generic memory heap

– On servers with more than 64 GB of RAM, allocate

• 70% of total memory to the database cache

• 512 MB minimum to the routine cache

• 384 MB minimum to gmheap

• Swap space or page file to configure

As a general guideline, configure the smaller of a) 25 to 50% of your physical memory or b) 32 GB as virtual memory.
As noted in Memory Overview, swapping and paging degrade performance and should come into play only when
transient memory capacity problems require it. Further, you should configure alerts to notify operators when the system
uses virtual memory so they can take immediate action to avoid more severe consequences.

Note: When large and huge pages are configured, as is highly recommended, InterSystems shared memory segments
are pinned in physical memory and never swapped out; for more information, see Configuring Large and
Huge Pages.

For procedures for allocating memory to the routine and database caches, configuring the generic memory heap, and setting
the maximum memory per process, see Memory and Startup Settings in the “Configuring InterSystems IRIS” chapter of
the System Administration Guide.

Note: If you are configuring a data server in a distributed cache cluster, see Increase Data Server Database Caches for
ECP Control Structures in the “Horizontally Scaling for User Volume with Distributed Caching” chapter of this
guide for important information about adjustments to database cache sizes that may be necessary.

2.1.3 Vertically Scaling for Memory

Performance problems in production systems are often due to insufficient memory for application needs. Adding memory
to the server hosting one or more InterSystems IRIS instances lets you allocate more to the database cache, the routine
cache, generic memory, or some combination. A database cache that is too small to hold the workload’s working set forces
queries to fall back to disk, greatly increasing the number of disk reads required and creating a major performance problem,
so this is often a primary reason to add memory. Increases in generic memory and the routine cache may also be helpful
under certain circumstances.

2.1.4 Configuring Large and Huge Pages

Where supported, the use of large and huge memory pages can be of significant performance benefit and is highly recom-
mended, as described in the following:

• IBM AIX® — The use of large pages is highly recommended, especially when configuring over 16GB of shared
memory (the sum of the database cache, the routine cache, and the generic memory heaps, as discussed in Calculating
Initial Memory Requirements).

Scalability Guide 13

Memory Management and Scaling for InterSystems IRIS

By default, when large pages are configured, the system automatically uses them in memory allocation. If shared
memory cannot be allocated in large pages, it is allocated in standard (small) pages. However, you can use the memlock

parameter for finer-grained control over large pages.

For more information, see Configuring Large Pages on IBM AIX® in the “Preparing to Install” chapter of the
Installation Guide and memlock in the Configuration Parameter File Reference.

• Linux (all distributions) — The use of static huge pages (2MB) when available is highly recommended for either
physical (bare metal) servers or virtualized servers. Using static huge pages for the InterSystems IRIS shared memory
segments yields an average CPU utilization reduction of approximately 10-15% depending on the application.

By default, when huge pages are configured, InterSystems IRIS attempts to provision shared memory in huge pages
on startup. If there is not enough space, InterSystems IRIS reverts to standard pages and orphans the allocated huge
page space, potentially causing system paging. However, you can use the memlock parameter to control this behavior
and fail at startup if huge page allocation fails.

For more information, see Configuring Huge Pages on Linux in the “Preparing to Install” chapter of the Installation
Guide and memlock in the Configuration Parameter File Reference.

• Windows

The use of large pages is recommended to reduce page table entry (PTE) overhead.

By default, when large pages are configured, InterSystems IRIS attempts to provision shared memory in large pages
on startup. If there is not enough space, InterSystems IRIS reverts to standard pages. However, you can use the memlock

parameter to control this behavior and fail at startup if large page allocation fails.

For more information, see Configuring Large Pages on Windows in the “Preparing to Install” chapter of the Installation
Guide and memlock in the Configuration Parameter File Reference.

2.2 CPU Sizing and Scaling for InterSystems IRIS
InterSystems IRIS is designed to make the most of a system’s total CPU capacity. Keep in mind that not all processors or
processor cores are alike. There are variations at the surface such as clock speed, number of threads per core, and processor
architectures, and also the varying impact of virtualization.

• Basic CPU Sizing

• Balancing Core Count and Speed

• Virtualization Considerations for CPU

• Leveraging Core Count with Parallel Query Execution

2.2.1 Basic CPU Sizing

Applications vary significantly from one to another, and there is no better measurement of CPU resource requirements than
benchmarking and load testing your application and performance statistics collected from existing sites. If neither bench-
marking or existing customer performance data is available, start with one of the following calculations:

• 1-2 processor cores per 100 users.

• 1 processor core for every 200,000 global references per second.

14 Scalability Guide

Vertically Scaling InterSystems IRIS

Important: These recommendations are only starting points when application-specific data is not available, and may
not be appropriate for your application. It is very important to benchmark and load test your application
to verify its exact CPU requirements.

2.2.2 Balancing Core Count and Speed

Given a choice between faster CPU cores and more CPU cores, consider the following:

• The more processes your application uses, the greater the benefit of raising the core count to increase concurrency and
overall throughput.

• The fewer processes your application uses, the greater the benefit of the fastest possible cores.

For example, an application with a great many users concurrently running simple queries will benefit from a higher core
count, while one with relatively fewer users executing compute-intensive queries would benefit from faster but fewer cores.
In theory, both applications would benefit from many fast cores, assuming there is no resource contention when multiple
processes are running in all those cores simultaneously. As noted in Calculating Initial Memory Requirements, the number
of processor cores is a factor in estimating the memory to provision for a server, so increasing the core count may require
additional memory.

2.2.3 Virtualization Considerations for CPU

Production systems are sized based on benchmarks and measurements at live customer sites. Virtualization using shared
storage adds very little CPU overhead compared to bare metal, so it is valid to size virtual CPU requirements from bare
metal monitoring.

Note: For hyper-converged infrastructure (HCI) deployments, add 10% to your estimated host-level CPU requirements
to cover the overhead of HCI storage agents or appliances.

In determining the best core count for individual VMs, strike a balance between the number of hosts required for availability
and minimizing costs and host management overhead; by increasing core counts, you may be able to satisfy the former
requirement without violating the latter.

The following best practices should be applied to virtual CPU allocation:

• Production systems, especially database servers, are assumed to be highly utilized and should therefore be initially
sized based on assumed equivalence between a physical CPU and its virtual counterpart. If you need six physical CPUs,
assume you need six virtual CPUs.

• Do not allocate more vCPUs than required to optimize performance. Although large numbers of vCPUs can be allocated
to a virtual machine, there can be a (usually small) performance overhead for managing unused vCPUs. The key here
is to monitor your systems regularly to ensure that vCPUs are correctly allocated.

2.2.4 Leveraging Core Count with Parallel Query Execution

When you upgrade by adding CPU cores, an InterSystems IRIS feature called parallel query execution helps you take the
most effective advantage of the increased capacity.

Scalability Guide 15

CPU Sizing and Scaling for InterSystems IRIS

Figure 2–1: Parallel Query Execution

Parallel query execution is built on a flexible infrastructure for maximizing CPU usage that spawns one process per CPU
core, and is most effective with large data volumes, such as analytical workloads that make large aggregations.

For more information on parallel query processing, see Parallel Query Processing in the “Optimizing Query Performance
“ chapter of the SQL Optimization Guide.

2.3 General Performance Enhancement on InterSystems
IRIS Platforms
The following information may be helpful in improving the performance of your InterSystems IRIS deployment.

• Simultaneous multithreading

In most situations, the use of Intel Hyper-Threading or AMD Simultaneous Multithreading (SMT) is recommended
for improved performance, either within a physical server or at the hypervisor layer in virtualized environments. There
may be situations in a virtualized environment in which disabling Hyper-Threading or SMT is warranted; however,
those are exceptional cases specific to a given application.

In the case of IBM AIX®, IBM Power processors offer multiple levels of SMT at 2, 4, and 8 threads per core. With
the latest IBM Power9 processors, SMT-8 is the level most commonly used with InterSystems IRIS. There may be
cases, however, especially with previous generation Power7 and Power8 processors, in which SMT-2 or SMT-4 is
more appropriate for a given application. Benchmarking the application is the best approach to determining the ideal
SMT level for a specific deployment.

• Semaphore allocation

By default, InterSystems IRIS allocates the minimum number of semaphore sets by maximizing the number of
semaphores per set (see Semaphores in InterSystems Products). However, this is some evidence that this is not ideal
for performance on Linux systems with non-uniform memory access (NUMA) architecture.

To address this, the semsperset parameter in the configuration parameter file (CPF) can be used to specify a lower
number of semaphores per set. By default, semsperset is set to 0, which specifies the default behavior. Determining
the most favorable setting will likely require some experimentation; if you have InterSystems IRIS deployed on a
Linux/NUMA system, InterSystems recommends that you try an initial value of 250.

16 Scalability Guide

Vertically Scaling InterSystems IRIS

3
Horizontally Scaling for User Volume with
Distributed Caching

When vertical scaling alone proves insufficient for scaling your InterSystems IRIS data platform to meet your workload’s
requirements, you can consider distributed caching, an architecturally straightforward, application-transparent, low-cost
approach to horizontal scaling.

• Overview of Distributed Caching

• Deploying a Distributed Cache Cluster

• Monitoring Distributed Cache Applications

• Developing Distributed Cache Applications

• ECP Recovery Process, Guarantees, and Limitations

3.1 Overview of Distributed Caching
The InterSystems IRIS distributed caching architecture scales horizontally for user volume by distributing both application
logic and caching across a tier of application servers sitting in front of a data server, enabling partitioning of users across
this tier. Each application server handles user requests and maintains its own database cache, which is automatically kept
in sync with the data server, while the data server handles all data storage and management. Interrupted connections between
application servers and data server are automatically recovered or reset, depending on the length of the outage.

Distributed caching allows each application server to maintain its own, independent working set of the data, which avoids
the expensive necessity of having enough memory to contain the entire working set on a single server and lets you add
inexpensive application servers to handle more users. Distributed caching can also help when an application is limited by
available CPU capacity; again, capacity is increased by adding commodity application servers rather than obtaining an
expensive processor for a single server.

Scalability Guide 17

Figure 3–1: Distributed Cache Cluster

This architecture is enabled by the use of the Enterprise Cache Protocol (ECP), a core component of InterSystems IRIS
data platform, for communication between the application servers and the data server.

The distributed caching architecture and application server tier are entirely transparent to the user and to application code.
You can easily convert an existing standalone InterSystems IRIS instance that is serving data into the data server of a
cluster by adding application servers.

The following sections provide more details about distibuted caching:

• Distributed Caching Architecture

• ECP Features

• ECP Recovery

• Distributed Caching and High Availability

3.1.1 Distributed Caching Architecture

To better understand distributed caching architecture, review the following information about how data is stored and
accessed by InterSystems IRIS:

• InterSystems IRIS stores data in a file in the local operating system called a database. An InterSystems IRIS instance
may (and usually does) have multiple databases.

• InterSystems IRIS applications access data by means of a namespace, which provides a logical view of the data stored
in one or more databases. A InterSystems IRIS instance may (and usually does) have multiple namespaces.

18 Scalability Guide

Horizontally Scaling for User Volume with Distributed Caching

• Each InterSystems IRIS instance maintains a database cache — a local shared memory buffer used to cache data
retrieved from the databases, so that repeated instances of the same query can retrieve results from memory rather than
storage, providing a very significant performance benefit.

The architecture of a distributed cache cluster is conceptually simple, using these elements in the following manner:

• An InterSystems IRIS instance becomes an application server by adding another instance as a remote server, and then
adding any or all of its databases as remote databases. This makes the second instance a data server for the first instance.

• Local namespaces on the application server are mapped to remote databases on the data server in the same way they
are mapped to local databases. The difference between local and remote databases is entirely transparent to an application
querying a namespace on the application server.

• The application server maintains its own database cache in the same manner as it would if using only local databases.
ECP efficiently shares data, locks, and executable code among multiple InterSystems IRIS instances, as well as syn-
chronizing the application server caches with the data server.

In practice, a distributed cache cluster of multiple application servers and a data server works as follows:

• The data server continues to store, update, and serve the data. The data server also synchronizes and maintains the
coherency of the application servers’ caches to ensure that users do not receive or keep stale data, and manages locks
across the cluster.

• Each query against the data is made in a namespace on one of the various application servers, each of which uses its
own individual database cache to cache the results it receives; as a result, the total set of cached data is distributed
across these individual caches. If there are multiple data servers, the application server automatically connects to the
one storing the requested data. Each application server also monitors its data server connections and, if a connection
is interrupted, attempts to recover it.

• User requests can be distributed round-robin across the application servers by a load balancer, but the most effective
approach takes full advantage of distributed caching by directing users with similar requests to the same application
server, increasing cache efficiency. For example, a health care application might group clinical users who run one set
of queries on one application server and front-desk staff running a different set on another. If the cluster handles mul-
tiple applications, each application's users can be directed to a separate application server. The illustrations that follow
compare a single InterSystems IRIS instance to a cluster in which user connections are distributed in this manner.
(Load balancing user requests can even be detrimental in some circumstances; for more information see Evaluate the
Effects of Load Balancing User Requests.)

• The number of application servers in a cluster can be increased (or reduced) without requiring other reconfiguration
of the cluster or operational changes, so you can easily scale as user volume increases.

Scalability Guide 19

Overview of Distributed Caching

Figure 3–2: Local databases mapped to local namespaces on a single InterSystems IRIS instance

20 Scalability Guide

Horizontally Scaling for User Volume with Distributed Caching

Figure 3–3: Remote databases on a data server mapped to namespaces on application servers in a distributed
cache cluster

In a distributed cache cluster, the data server is responsible for the following:

• Storing data in its local databases.

• Synchronizing the application server database caches with the databases so the application servers do not see stale
data.

• Managing the distribution of locks across the network.

• Monitoring the status of all application servers connections and taking action if a connection is interrupted for a specific
amount of time (see ECP Recovery).

Scalability Guide 21

Overview of Distributed Caching

In a distributed cache cluster, each application server is responsible for the following:

• Establishing connections to a specific data server whenever an application requests data that is stored on that server.

• Maintaining, in its cache, data retrieved across the network.

• Monitoring the status of all connections to the data server and taking action if a connection is interrupted for a specific
amount of time (see ECP Recovery).

Note: A distributed cache cluster can include more than one data server (although this is uncommon). An InterSystems
IRIS instance can simultaneously act as both a data server and an application server, but cannot act as a data server
for the data it receives as an application server.

3.1.2 ECP Features

ECP supports the distributed cache architecture by providing the following features:

• Automatic, fail-safe operation. Once configured, ECP automatically establishes and maintains connections between
application servers and data servers and attempts to recover from any disconnections (planned or unplanned) between
application server and data server instances (see ECP Recovery). ECP can also preserve the state of a running application
across a failover of the data server (see Distributed Caching and High Availability).

Along with keeping data available to applications, these features make a distributed cache cluster easier to manage;
for example, it is possible to temporarily take a data server offline or fail over as part of planned maintenance without
having to perform any operations on the application server instances.

• Heterogeneous networking. InterSystems IRIS systems in a distributed cache cluster can run on different hardware
and operating system platforms. ECP automatically manages any required data format conversions.

• A robust transport layer based on TCP/IP. ECP uses the standard TCP/IP protocol for data transport, making it easy
to configure and maintain.

• Efficient use of network bandwidth. ECP takes full advantage of high-performance networking infrastructures.

3.1.3 ECP Recovery

ECP is designed to automatically recover from interruptions in connectivity between an application server and the data
server. In the event of such an interruption, ECP executes a recovery protocol that differs depending on the nature of the
failure and on the configured timeout intervals. The result is that the connection is either recovered, allowing the application
processes to continue as though nothing had happened, or reset, forcing transaction rollback and rebuilding of the application
processes.

For more information on ECP connections, see Monitoring Distributed Applications; for more information on ECP recovery,
see ECP Recovery Protocol and ECP Recovery Process, Guarantees, and Limitations.

3.1.4 Distributed Caching and High Availability

While ECP recovery handles interrupted application server connections to the data server, the application servers in a dis-
tributed cache cluster are also designed to preserve the state of the running application across a failover of the data server.
Depending on the nature of the application activity and the failover mechanism, some users may experience a pause until
failover completes, but can then continue operating without interrupting their workflow.

Data servers can be mirrored for high availability in the same way as a stand-alone InterSystems IRIS instance, and appli-
cation servers can be set to automatically redirect connections to the backup in the event of failover. (It is not necessary or
even possible to mirror an application server, as it does not store any data.) For detailed information about the use of mir-

22 Scalability Guide

Horizontally Scaling for User Volume with Distributed Caching

roring in a distributed cache cluster, see Configuring ECP Connections to a Mirror the “Mirroring” chapter in the High
Availability Guide.

The other failover strategies detailed in the “System Failover Strategies” chapter of the High Availability Guide can also
be used in a distributed cache cluster. Regardless of the failover strategy employed for the data server, the application
servers reconnect and recover their states following a failover, allowing application processing to continue where it left off
prior to the failure.

3.2 Deploying a Distributed Cache Cluster
An InterSystems IRIS distributed cache cluster consists of a data server providing data to one or more application servers,
which in turn provide it to the application. This section describes procedures for deploying a distributed cache cluster.

Note: For an important discussion of performance planning, including memory management and scaling, CPU sizing
and scaling, and other considerations, see the “Vertical Scaling” chapter of this guide.

The recommended method for deploying InterSystems IRIS data platform is InterSystems Cloud Manager (ICM). By
combining plain text declarative configuration files, a simple command line interface, the widely-used Terraform infras-
tructure as code tool, and InterSystems IRIS deployment in Docker containers, ICM provides you with a simple, intuitive
way to provision cloud or virtual infrastructure and deploy the desired InterSystems IRIS architecture on that infrastructure,
along with other services. ICM can deploy distributed cache clusters and other InterSystems IRIS configurations on Amazon
Web Services, Google Cloud Platform, Microsoft Azure or VMware vSphere. ICM can also deploy InterSystems IRIS on
an existing physical or virtual cluster.

Deploy the Cluster with InterSystems Cloud Manager offers an overview of the process of using ICM to deploy the distributed
cache cluster.

Note: For a brief introduction to ICM including a hands-on exploration of deploying InterSystems IRIS, see First Look:
InterSystems Cloud Manager. For complete ICM documentation, see the InterSystems Cloud Manager Guide.

You can also deploy a distributed cluster by using the Management Portal to configure existing or newly installed InterSystems
IRIS instances; instructions for this procedure are provided in Deploy the Cluster Using the Management Portal.

Information about securing the cluster after deployment is provided in Distributed Cache Cluster Security.

Note: The most typical distributed cache cluster configuration involves one InterSystems IRIS instance per system, and
one cluster role per instance — that is, either data server or application server. When deploying using ICM, this
configuration is the only option. The provided procedure for using the Management Portal assumes this configu-
ration as well.

3.2.1 Data Server/Application Server Compatibility

While the data server and application server hosts can be of different operating systems and/or endianness, all InterSystems
IRIS instances in a distributed cache cluster must use the same locale (see Using the NLS Settings Page of the Management
Portal in the “Configuring InterSystems IRIS” chapter of the System Administration Guide).

3.2.2 Deploy the Cluster with InterSystems Cloud Manager

There are several stages involved in provisioning and deploying a containerized InterSystems IRIS configuration, including
a distributed cache cluster, with ICM. The ICM Guide provides complete documentation of ICM, including details of each
of the stages. This section briefly reviews the stages and provides links to the ICM Guide.

Scalability Guide 23

Deploying a Distributed Cache Cluster

• Launch ICM

• Obtain Security-Related Files

• Define the deployment

• Provision the infrastructure

• Deploy and manage services

• Unprovision the infrastructure

3.2.2.1 Launch ICM

ICM is provided as a Docker image. Everything required by ICM to carry out its provisioning, deployment, and management
tasks is included in the ICM container, including a /Samples directory that provides you with samples of the elements
required by ICM, customized to the four supported cloud providers. To launch ICM, on a system on which Docker is
installed, you use the docker run command with the ICM image from the InterSystems repository to start the ICM container.

For detailed information about launching ICM, see Launch ICM in the “Using ICM” chapter of the ICM Guide.

3.2.2.2 Obtain Security-Related Files

Before defining your deployment, you must obtain security-related files including cloud provider credentials and keys for
SSH and SSL/TLS. For more information about these files and how to obtain them, see Obtain Security-Related Files in
the “Using ICM” chapter.

3.2.2.3 Define the Deployment

ICM uses JSON files as both input and output. To provide the needed parameters to ICM, you must represent your target
configuration and the platform on which it is to be deployed in two of ICM’s JSON configuration files: the defaults.json

file, which contains information about the entire deployment, and the definitions.json file, which contains information about
the types and numbers of the nodes provisioned and deployed by ICM, as well as details specific to each node type. For
example, the defaults file determines which cloud provider your distributed cache cluster nodes are provisioned on and the
locations of the required security files and InterSystems IRIS license keys, while the definitions file determines how many
application servers are included in the sharded cluster and whether the data volume for the data server will be larger than
for the application servers. Most ICM parameters have defaults; a limited number of parameters can be specified on the
ICM command line as well as in the configuration file.

For sample defaults and definitions files for distributed cache cluster deployment, see Define the Deployment in the “Using
ICM” chapter of the ICM Guide. You can create your files by adapting the template defaults.json and definitions.json files
provided with ICM in the /Samples directory (for example, /Samples/AWS for AWS deployments), or start with the contents
of the samples provided in the documentation. For a complete list of the fields you can include in these files, see ICM
Configuration Parameters in the “ ICM Reference” chapter of the ICM Guide.

ICM includes the node types DM and AM for provisioning and deploying a cluster’s data and application servers, and such
types as WS (web server) and LB (load balancer) for associated systems. When the DM node is mirrored, you can deploy
an AR node as mirror arbiter. For detailed descriptions of the node types (for use in the Role field in the definitions file)
that ICM can provision, configure, and deploy services on, see ICM Node Types in the “ ICM Reference” chapter of the
ICM Guide.

Note: When deploying InterSystems IRIS containers with ICM, including those in a distributed cache cluster, you can
override one or more InterSystems IRIS configuration settings for all of the containers, or override different settings
for the InterSystems IRIS containers on different node types, such as the DM and AM nodes; for more information,
see Deploying with Customized InterSystems IRIS Configurations in the “ ICM Reference” chapter of the ICM
Guide.

24 Scalability Guide

Horizontally Scaling for User Volume with Distributed Caching

3.2.2.4 Provision the Infrastructure

When your definitions files are complete, begin the provisioning phase by issuing the command icm provision on the ICM
command line. This command allocates and configures the nodes specified in the definitions file. At completion, ICM also
provides a summary of the nodes and associated components that have been provisioned, and outputs a command line
which can be used to delete the infrastructure at a later date, for example:

Machine IP Address DNS Name
------- --------- -------
ACME-DM-TEST-0001 00.53.183.209 ec2-00-53-183-209.us-west-1.compute.amazonaws.com
ACME-AM-TEST-0002 00.56.59.42 ec2-00-56-59-42.us-west-1.compute.amazonaws.com
ACME-AM-TEST-0003 00.67.1.11 ec2-00-67-1-11.us-west-1.compute.amazonaws.com
ACME-AM-TEST-0004 00.193.117.217 ec2-00-193-117-217.us-west-1.compute.amazonaws.com
ACME-LB-TEST-0000 (virtual AM) ACME-AM-TEST-1546467861.amazonaws.com
To destroy: icm unprovision [-cleanUp] [-force]

Once your infrastructure is provisioned, you can use several infrastructure management commands. For detailed information
about these and the icm provision command, including reprovisioning an existing configuration to scale out or in or to
modify the nodes, see Provision the Infrastructure in the “Using ICM” chapter of the ICM Guide.

3.2.2.5 Deploy and Manage Services

ICM carries out deployment of InterSystems IRIS and other software services using Docker images, which it runs as con-
tainers by making calls to Docker. In addition to Docker, ICM also carries out some InterSystems IRIS-specific configuration
over JDBC. There are many container management tools available that can be used to extend ICM’s deployment and
management capabilities.

The icm run command downloads, creates, and starts the specified container on the provisioned nodes. The icm run
command has a number of useful options, and also lets you specify Docker options to be included, so there are many versions
on the command line depending on your needs. Here are just two examples:

• When deploying InterSystems IRIS images, you must set the password for the predefined accounts on the deployed
instances. The simplest way to do this is to omit a password specification from both the definitions files and the command
line, which causes ICM to prompt you for the password (with typing masked) when you execute icm run. But this
may not be possible in some situations, such as when running ICM commands with a script, in which case you need
either the -iscPassword command line option or the iscPassword field in the defaults file.

• You can deploy different containers on different nodes — for example, InterSystems IRIS on the DM and AM nodes
and the InterSystems Web Gateway on the WS nodes — by specifying different values for the DockerImage field (such
as intersystems/iris:stable and intersystems/webgateway:stable) in the different node definitions in the definitions.json

file. To deploy multiple containers on a node or nodes, however, you can run the icm run command more than once
— the first time to deploy the image(s) specified by the DockerImage field, and subsequent times using the -image and
-container options (and possibly the -role or -machine option) to deploy a custom container.

For a full discussion of the use of the icm run command, including redeploying services on an existing configuration, see
The icm run Command in the “Using ICM” chapter of the ICM Guide.

At deployment completion, ICM sends a link to the appropriate node’s Management Portal, for example:

Management Portal available at: http://ec2-00-153-49-109.us-west-1.compute.amazonaws.com:52773/csp/sys/UtilHome.csp

In the case of a distributed cache cluster, the provided link is for the data server instance.

Once your containers are deployed, you can use a number of ICM commands to manage the deployed containers and
interact with the containers and the InterSystems IRIS instances and other services running inside them; for more information,
see Container Management Commands and Service Management Commands in the “Using ICM” chapter of the ICM
Guide.

Scalability Guide 25

Deploying a Distributed Cache Cluster

3.2.2.6 Unprovision the Infrastructure

Because public cloud platform instances continually generate charges and unused instances in private clouds consume
resources to no purpose, it is important to unprovision infrastructure in a timely manner. The icm unprovision command
deallocates the provisioned infrastructure based on the state files created during provisioning. As described in Provision
the Infrastructure, the needed command line is provided in the icm provision output when the provisioning phase is complete,
and is also contained in the ICM log file, for example:

To destroy: icm unprovision [-cleanUp] [-force]

This command line includes any configuration file location override options (-definitions, -defaults, -instances, or -stateDir)
that you included in the icm provision command, as these are required to successfully unprovision.

For more detailed information about the unprovisioning phase, see Unprovision the Infrastructure in the “Using ICM”
chapter of the ICM Guide.

3.2.3 Deploy the Cluster Using the Management Portal

Once you have installed or identified the InterSystems IRIS instances you intend to include, and arranged network access
of sufficient bandwidth among their hosts, configuring a distributed cache cluster using the Management Portal involves
the following steps:

• Prepare the data server

• Configure the application servers

You perform these steps on the ECP Settings page of the Management Portal (System Administration > Configuration >
Connectivity > ECP Settings).

Important: InterSystems strongly recommends requiring SSL/TSL encryption for all ECP connections, including those
between nodes in a distributed cache cluster, as described in the procedures that follow. (ICM automatically
configures SSL/TLS for connections between nodes.)

3.2.3.1 Preparing the Data Server

An InterSystems IRIS instance cannot actually operate as the data server in a distributed cache cluster until it is configured
as such on the application servers. The procedure for preparing the instance to be a data server, however, includes one
required action and two optional actions.

To prepare an instance to be a data server, navigate to the ECP Settings page by selecting System Administration on the
Management Portal home page, then Configuration, then Connectivity, then ECP Settings, then do the following:

• In the This System as an ECP Data Server box on the right, enable the ECP service by clicking the Enable link for the
service. This opens an Edit Service dialog for %Service_ECP; select Service Enabled and click Save to enable the
service. (If the service is already enabled, as indicated by the presence of a Disable link in the box, go on to the next
step.)

Note: For a detailed explanation of InterSystems services, see the “Services” chapter of the Security Administration
Guide.

• If you want multiple application servers to be able to connect simultaneously to the data server, in the This System as

an ECP Data Server box, change the Maximum number of application servers setting to the number of application servers
you want to configure, then click Save and restart the instance. (If the number of simultaneous application server
connections becomes greater than the number you enter for this setting, the data server instance automatically restarts.)

26 Scalability Guide

Horizontally Scaling for User Volume with Distributed Caching

• The Time interval for Troubled state settings determines one of three timeouts used manage recovery of interrupted
connections between application servers and the data server; leave it at the default of 60 until you have some data about
the cluster’s operation over time. For more information on the ECP recovery timeouts, see ECP Recovery Protocol.

• To enable the use of SSL/TLS to secure connections from application servers, click the Set up SSL/TLS ‘%ECPServer’

link to create an ECP SSL/TLS configuration for the data server, then a ECP SSL/TLS support setting, as follows:

– Required — An application server can connect only if Use SSL/TLS is selected for this data server.

– Enabled — An application server can connect regardless of whether Use SSL/TLS is selected for this data server.

– Disabled — An application server cannot connect if Use SSL/TLS is selected (default) for this data server.

For more information on using SSL/TLS in a distributed cache cluster, including authorization of secured application
server connections on the data server, see Securing Application Server Connections to the Data Server with SSL/TLS.

Note: ECP uses some of the database cache on the data server to store various control structures; you may need to
increase the size of the database cache or caches to accommodate this. For more information, see Increase Data
Server Database Caches for ECP Control Structures.

The data server is now ready to accept connections from valid application servers.

3.2.3.2 Configuring an Application Server

Configuring an InterSystems IRIS instance as an application server in a distributed cache cluster involves two steps:

• Adding the data server instance as a data server on the application server instance.

• Add the desired databases on the data server as remote databases on the application server.

To add the data server to the application server, do the following:

1. As described for the data server in Preparing the Data Server, navigate to the ECP Settings page and enable the ECP
service. Leave the settings on the This System as an ECP Application Server side set to the defaults.

2. If the ECP SSL/TLS support setting for the data server you are adding is Enabled or Required, click the Set up SSL/TLS

‘%ECPClient’ link to create an ECP SSL/TLS configuration for the application server. (You can also do this in the ECP
Data Server dialog in a later step.) For more information, see the Use SSL/TLS setting in the next step.

3. Click Data Servers to display the ECP Data Servers page and click Add Server. In the ECP Data Server dialog, enter
the following information for the data server:

• Server Name — A descriptive name identifying the data server. (This name is limited to 64 characters.)

• Host DNS Name or IP Address — Specify the DNS name of the data server’s host or its IP address (in dotted-dec-
imal format or, if IPv6 is enabled, in colon-separated format). If you use the DNS name, it resolves to an actual
IP address each time the application server initiates a connection to that data server host. For more information,
see the IPv6 Support section in the “Configuring InterSystems IRIS” chapter of the System Administration Guide.

Important: When adding a mirror primary as a data server (see the Mirror Connection setting), do not enter
the virtual IP address (VIP) of the mirror, but rather the DNS name or IP address of the current
primary failover member.

• IP Port — The port number defaults to 51773, the default InterSystems IRIS superserver (IP) port; change it as
necessary to the superserver port of the InterSystems IRIS instance on the data server.

• Mirror Connection — Select this check box if the data server is the primary failover member in a mirror. (See
Configuring Application Server Connections to a Mirror in the “Mirroring” chapter of the High Availability Guide
for important information about configuring a mirror primary as a data server.)

Scalability Guide 27

Deploying a Distributed Cache Cluster

• Use SSL/TLS — Use this checkbox as follows:

– If the ECP SSL/TLS support setting for the data server you are adding is Disabled, it does not matter whether
you select this checkbox; SSL/TLS will not be not used to secure connections to the data server.

– If the ECP SSL/TLS support setting for the data server you are adding is Enabled, select this checkbox to use
SSL/TLS to secure connections to this data server; clear it to not use SSL/TLS.

– If the ECP SSL/TLS support setting for the data server you are adding is Required, you must select this
checkbox.

If the ECP SSL/TLS support setting for the data server you are adding is Enabled or Required and you have not yet
created an SSL/TLS configuration for the application server, click the Set up SSL/TLS ‘%ECPClient’ link to do so.
For more information on using SSL/TLS in a distributed cache cluster, , including authorization of secured appli-
cation server connections on the data server, see Securing Application Server Connections to the Data Server with
SSL/TLS.

4. Click Save. The data server appears in the data server list; you can remove or edit the data server definition, or change
its status (see Monitoring Distributed Applications) using the available links. You can also view a list of all application
servers connecting to a data server by going to the ECP Settings page on the data server and clicking the Application

Servers button.

To add each desired database on the data server as a remote database on the application server, you must create a namespace
on the application server and map it to that database, as follows:

1. Navigate to the Namespaces page by selecting System Administration on the Management Portal home page, then
Configuration, then System Configuration, then Namespaces. Click Create New Namespace to display the New
Namespace page.

2. Enter a name for the new namespace, which typically reflects the name of the remote database it is mapped to.

3. At The default database for Globals in this namespace is a, select Remote Database, then select Create New Database

to open the Create Remote Database dialog. In this dialog,

• Select the data server from the Remote Server drop-down.

• Leave Remote directory set to Select directory from a list and select the data server database you want to map to
the namespace using the Directory drop-down, which lists all of the database directories on the data server.

• Enter a local name for the remote database; this typically reflects the name of the database on the data server, the
local name of the data server as specified in the previous procedure, or both.

• Click Finish to add the remote database and map it to the new namepsace.

4. At The default database for Routines in this namespace is a, select Remote Database, then select the database you just
created from the drop-down.

5. The namespace does not need to be interoperability-enabled; to save time, you can clear the Enable namespace for

interoperability productions check box.

6. Select Save. The new namespace now appears in the list on the Namespaces list.

Once you have added a data server database as a remote database on the application server, applications can query that
database through the namespace it is mapped to on the application server.

28 Scalability Guide

Horizontally Scaling for User Volume with Distributed Caching

Note: Remember that even though a namespace on the application server is mapped to a database on the data server,
changes to the namespace mapped to that database on the data server are unknown to the application server. (For
information about mapping, see Global Mappings in the “Configuring InterSystems IRIS” chapter of the System
Administration Guide.) For example, suppose the namespace DATA on the data server has the default globals
database DATA; on the application server, the namespace REMOTEDATA is mapped to the same (remote) database,
DATA. If you create a mapping in the DATA namespace on the data server mapping the global ^DATA2 to the
DATA2 database, this mapping is not propagated to the application server. Therefore, if you do not add DATA2 as
a remote database on the application server and create the same mapping in the REMOTEDATA namespace, queries
the application server receives will not be able to read the ^DATA2 global.

3.2.4 Distributed Cache Cluster Security

All InterSystems instances in a distributed cache cluster need to be within the secured InterSystems IRIS perimeter (that
is, within an externally secured environment). This is because ECP is a basic security service, rather than a resource-based
service, so there is no way to regulate which users have access to it. (For more information on basic and resource-based
services, see the Available Services section of the “Services” chapter of the Security Administration Guide.)

However, the following security tools are available:

• Securing application server connections to the data server with SSL/TLS

• Restricting incoming access to a data server

• Controlling access to databases with roles and privileges

Note: When databases are encrypted on the data servers, you should also encrypt the IRISTEMP database on all connected
application servers. The same or different keys can be used. For more information on database encryption, see
the “Managed Key Encryption” chapter of the Security Administration Guide.

3.2.4.1 Securing Application Server Connections to a Data Server with SSL/TLS

If SSL/TLS is enabled on a data server, you can use it to secure connections from an application server to that data server.
This protection includes X.509 certificate-based encryption. For detailed information about SSL/TLS and its use with
InterSystems products, see the “Using SSL/TLS with InterSystems IRIS” chapter of the Security Administration Guide.

When configuring or editing a data server or at any time thereafter (see Preparing the Data Server), you can select Enabled

or Required as the ECP SSL/TLS support setting, rather than the default Disabled. These settings control the options for use
of the Use SSL/TLS checkbox, which secures connections to a data server with SSL/TLS, when adding a data server to an
application server (see Configuring an Application Server) or editing an existing data server. These settings have the fol-
lowing effect:

• Disabled — The use of SSL/TLS for application server connections to this data server is disabled, even for an application
server on which Use SSL/TLS is selected.

• Enabled — The use of SSL/TLS for application server connections is enabled on the data server; SSL/TLS is used for
connections from application servers on which Use SSL/TLS is selected, and is not used for connections from application
servers on which Use SSL/TLS is not selected.

• Required — The data server requires application server connections to use SSL/TLS; an application server can connect
to the data server only if Use SSL/TLS is selected for the data server, in which case SSL/TLS is used for all connections.

There are two requirements for establishing a connection from an application server to a data server using SSL/TLS, as
follows:

• Both instances must have an ECP SSL/TLS configuration.

Scalability Guide 29

Deploying a Distributed Cache Cluster

For this reason, both sides of the ECP Settings page (System Administration > Configuration > Connectivity > ECP

Settings) — This System as an ECP Application Server and This System as an ECP Data Server — include a Set Up

SSL/TLS link, which you can use to create the appropriate ECP SSL/TLS configuration for the instance. To do so,
follow this procedure:

1. On the ECP Settings page, click Set up SSL/TLS ‘%ECPClient’ link on the application server side or the Set up

SSL/TLS ‘%ECPServer’ link on the data server side.

2. Complete the fields on the form in the Edit SSL/TLS Configurations for ECP dialog, These are analogous to those
on the New SSL/TLS Configuration page, as described in the section Creating or Editing an SSL/TLS Configuration
in the “Using SSL/TLS with InterSystems IRIS” chapter of the Security Administration Guide. However, there
are no Configuration Name, Description, or Enabled fields; also, for the private key password, this page allows you
to enter or replace one (Enter new password), specify that none is to be used (Clear password), or leave an existing
one as it is (Leave as is).

Fields on this page are:

– File containing trusted Certificate Authority X.509 certificate(s)

The path and name of a file that contains the X.509 certificate(s) in PEM format of the Certificate Authority
(CA) or Certificate Authorities that this configuration trusts. You can specify either an absolute path or a path
relative to the install-dir/mgr/ directory. For detailed information about X.509 certificates and their generation
and use, see “Using SSL/TLS with InterSystems IRIS” chapter of the Security Administration Guide.

Note: This file must include the certificate(s) that can be used to verify the X.509 certificates belonging
to other mirror members. If the file includes multiple certificates, they must be in the correct order,
as described in Establishing the Required Certificate Chain in the “Using SSL/TLS with InterSystems
IRIS” chapter of the Security Administration Guide, with the current instance’s certificate first.

– File containing this configuration's X.509 certificate

The full location of the configuration’s own X.509 certificate(s), in PEM format. This can be specified as
either an absolute or a relative path.

Note: The certificate’s distinguished name (DN) must appear in the certificate’s subject field.

– File containing associated private key

The full location of the configuration’s private key file, specified as either an absolute or relative path.

– Private key type

The algorithm used to generate the private key, where valid options are DSA and RSA.

– Password

Select Enter new password when you are creating an ECP SSL/TLS configuration, so you can enter and confirm
the password for the private key associated with the certificate.

– Protocols

Those communications protocols that the configuration considers valid; TLSv1.1, and TLSv1.2 are enabled
by default.

– Enabled ciphersuites

The set of ciphersuites used to protect communications between the client and the server. Typically you can
leave this at the default setting.

Once you complete the form, click Save.

30 Scalability Guide

Horizontally Scaling for User Volume with Distributed Caching

• An application server must be authorized on a data server before it can connect using SSL/TLS.

The first time an application server attempts to connect to a data server using SSL/TLS, its SSL computer name (the
Subject Distinguished Name from its X.509 certificate) and the IP address of its host are displayed in a list of pending

ECP application servers to be authorized or rejected on the data server’s Application Servers page (System Administration

> Configuration > Connectivity > ECP Settings > Application Servers). Use the Authorize and Reject links to take action
on requests in the list. (If there are no pending requests, the list does not display.)

If one or more application servers have been authorized to connect using SSL/TLS, their SSL computer names are
displayed in a list of authorized SSL computer names for ECP application servers on the Application Servers page. You
can use the Delete link to cancel the authorization. (If there are no authorized application servers, the list does not display.)

3.2.4.2 Restricting Incoming Access to a Data Server

By default, any InterSystems IRIS instance on which the data server instance is configured as a data server (as described
in the previous section) can connect to the data server. However, you can restrict which instances can act as application
servers for the data server by specifying the hosts from which incoming connections are allowed; if you do this, hosts not
explicitly listed cannot connect to the data server. Do this by performing the following steps on the data server:

1. On the Services page (from the portal home page, select Security and then Services), click %Service_ECP. The Edit
Service dialog displays.

2. By default, the Allowed Incoming Connections box is empty, which means any application server can connect to this
instance if the ECP service is enabled; click Add and enter a single IP address (such as 192.9.202.55) or fully-qualified
domain name (such as mycomputer.myorg.com), or a range of IP addresses (for example,8.61.202–210.* or 18.68.*.*).
Once there are one or more entries on the list and you click Save in the Edit Service dialog, only the hosts specified
by those entries can connect.

You can always access the list as described and use a Delete to delete the host from the list or an Edit link to specify the
roles associated with the host, as described in Controlling Access with Roles and Privileges.

3.2.4.3 Controlling Access to Databases with Roles and Privileges

InterSystems uses a security model in which assets, including databases, are assigned to resources, and resources are
assigned permissions, such as read and write. A combination of a resource and a permission is called a privilege. Privileges
are assigned to roles, to which users can belong. In this way, roles are used to control user access to resources. For infor-
mation about this model, see Authorization: Controlling User Access in the “About InterSystems Security” chapter of the
Security Administration Guide.

To be granted access to a database on the data server, the role held by the user initiating the process on the application
server and the role set for the ECP connection on the data server must both include permissions for the same resource rep-
resenting that database. For example, if a user belongs to a role on an application server that grants the privilege of read
permission for a particular database resource, and the role set for the ECP connection on the data server also includes this
privilege, the user can read data from the database on the application server.

By default, InterSystems IRIS grants ECP connections on the data server the %All privilege when the data server runs on
behalf of an application server. This means that whatever privileges the user on the application server has are matched on
the data server, and access is therefore controlled only on the application server. For example, a user on the application
server who has privileges only for the %DB_USER resource but not the %DB_IRISLIB resource can access data in the
USER database on the data server, but attempting to access the IRISLIB database on the data server results in a <PROTECT>
error. If a different user on the application server has privileges for the %DB_IRISLIB resource, the IRISLIB database is
available to that user.

Note: InterSystems recommends the use of an LDAP server to implement centralized security. including user roles and
privileges, across the application servers of a distributed cache cluster. For information about using LDAP with
InterSystems IRIS, see the “Using LDAP” chapter of the Security Administration Guide.

Scalability Guide 31

Deploying a Distributed Cache Cluster

However, you can also restrict the roles available to ECP connections on the data server based on the application server
host. For example, on the data server you can specify that when interacting with a specific application server, the only
available role is %DB_USER. In this case, users on the application server granted the %DB_USER role can access the USER

database on the data server, but no users on the application server can access any other database on the data server regardless
of the roles they are granted.

CAUTION: InterSystems strongly recommends that you secure the cluster by specifying available roles for all application
servers in the cluster, rather than allowing the data server to continue to grant the %All privilege to all
ECP connections.

The following are exceptions to this behavior:

• InterSystems IRIS always grants the data server the %DB_IRISSYS role since it requires Read access to the IRISSYS

database to run. This means that a user on an application server with %DB_IRISSYS can access the IRISSYS database
on the data server.

To prevent a user on the application server from having access to the IRISSYS database on the data server, there are
two options:

– Do not grant the user privileges for the %DB_IRISSYS resource.

– On the data server, change the name of the resource for the IRISSYS database to something other than
%DB_IRISSYS, making sure that the user on the application server has no privileges for that resource.

• If the data server has any public resources, they are available to any user on the ECP application server, regardless of
either the roles held on the application server or the roles configured for the ECP connection.

To specify the available roles for ECP connections from a specific application server on the data server, do the following:

1. Go to the Services page (from the portal home page, select Security and then Services) and click %Service_ECP to
display the Edit Service dialog.

2. Click the Edit link for the application server host you want to restrict to display the Select Roles area.

3. To specify roles for the host, select roles from those listed under Available and click the right arrow to add them to the
Selected list.

4. To remove roles from the Selected list, select them and then click the left arrow.

5. To add all roles to the Selected list, click the double right arrow; to remove all roles from the Selected list, click the
double left arrow.

6. Click Save to associate the roles with the IP address.

By default, a listed host holds the %All role, but if you specify one or more other roles, these roles are the only roles that
the connection holds. Therefore, a connection from a host or IP range with the %Operator role has only the privileges
associated with that role, while a connection from a host with no associated roles (and therefore %All) has all privileges.

Changes to the roles available to application server hosts and to the public permissions on resources on the data server
require a restart of InterSystems IRIS before taking effect.

3.2.4.4 Security-Related Error Reporting

The behavior of security-related error reporting with ECP varies depending on whether the check fails on the application
server or the data server and the type of operation:

• If the check fails on the application server, there is an immediate <PROTECT> error.

• For synchronous operations on the data server, there is an immediate <PROTECT> error.

32 Scalability Guide

Horizontally Scaling for User Volume with Distributed Caching

• For asynchronous operations on the data server, there is a possibly delayed <NETWORK DATA UPDATE FAILED>
error. This includes Set operations.

3.3 Monitoring Distributed Cache Applications
A running distributed cache cluster consists of a data server instance — a data provider — connected to one or more
application server systems—data consumers. Between each application server and the data server, there is an ECP connection
— a TCP/IP connection that ECP uses to send data and commands.

You can monitor the status of the servers and connections in a distributed cache cluster on the ECP Settings page (System

Administration > Configuration > Connectivity > ECP Settings).

The ECP Settings page has two subsections:

1. This System as an ECP Data Server displays settings for the data server as well as the status of the ECP service.

2. This System as an ECP Application Server displays settings for the application server.

The following sections describe status information for connections:

• ECP Connection Information

• ECP Connection States

• ECP Connection Operations

3.3.1 ECP Connection Information

Click the Data Servers button on the ECP Data Servers Settings page (System Administration > Configuration > Connectivity

> ECP Settings) to display the ECP Data Servers page, which lists the current data server connections on the application
server. The ECP Application Servers page, which you can display by clicking the Application Servers button on the ECP
Settings page, contains a list of the current application server connections on the data server.

3.3.1.1 Data Server Connections

The ECP Data Servers page displays the following information for each data server connection:

Server Name

The logical name of the data server system on this connection, as entered when the server was added to the
application server configuration.

Host Name

The host name of the data server system, as entered when the server was added to the application server configu-
ration.

IP Port

The IP port number used to connect to the data server.

Status

The current status of this connection. Connection states are described in the ECP Connection States section.

Scalability Guide 33

Monitoring Distributed Cache Applications

Edit

If the current status of this connection is Not Connected or Disabled, you can edit the port and host information of
the data server.

Change Status

From each data server row you can change the status of an existing ECP connection with that data server; see the
ECP Connection Operations section for more information.

Delete

You can delete the data server information from the application server.

3.3.1.2 Application Server Connections

Click ECP Application Servers on the ECP Settings page (System Administration > Configuration > Connectivity > ECP

Settings) to view the ECP Application Servers page with a list of application server connections on this data server:

Client Name

The logical name of the application server on this connection.

Status

The current status of this connection. Connection states are described in the ECP Connection States section.

Client IP

The host name or IP address of the application server

IP Port

The port number used to connect to the application server.

3.3.2 ECP Connection States

In an operating cluster, an ECP connection can be in one of the following states:

Table 3–1: ECP Connection States

DescriptionState

The connection is defined but has not been used yet.Not Connected

The connection is in the process of establishing itself.This is a transitional
state that lasts only until the connection is established.

Connection in Progress

The connection is operating normally and has been used recently.Normal

The connection has encountered a problem. If possible, the connection
automatically corrects itself.

Trouble

The connection has been manually disabled by a system administrator.
Any application making use of this connection receives a <NETWORK>
error.

Disabled

The following sections describe each connection state as it relates to application servers or the data server:

• Application Server Connection States

34 Scalability Guide

Horizontally Scaling for User Volume with Distributed Caching

• Data Server Connection States

3.3.2.1 Application Server Connection States

The following sections describe the application server side of each of the connection states:

• Not Connected

• Connection in Progress

• Normal

• Trouble

• Transitional Recovery

• Disabled

Application Server Not Connected State

An application server-side ECP connection starts out in the Not Connected state. In this state, there are no ECP
daemons for the connection. If an application server process makes a network request, daemons are created for
the connection and the connection enters the Connection in Progress state.

Application Server Connection in Progress State

In the Connection in Progress state, a network daemon exists for the connection and actively tries to establish a
connection to the data server; when the connection is established, it enters the Normal state. While the connection
is in the Connection in Progress state, the user process must wait for up to 20 seconds for it to be established. If
the connection is not established within that time, the user process receives a <NETWORK> error.

The application server ECP daemon attempts to create a new connection to the data server in the background. If
no connection is established within 20 minutes, the connection returns to the Not Connected state and the daemon
for the connection goes away.

Application Server Normal State

After a connection completes, it enters the Normal (data transfer) state. In this state, the application server-side
daemons exist and actively send requests and receive answers across the network. The connection stays in the
Normal state until the connection becomes unworkable or until the application server or the data server requests
a shutdown of the connection.

Application Server Trouble State

If the connection from the application server to the data server encounters problems, the application server ECP
connection enters the Trouble state. In this state, application server ECP daemons exist and are actively try to
restore the connection. An underlying TCP connection may or may not still exist. The recovery method is similar
whether or not the underlying TCP connection gets reset and must be recreated, or if it stops working temporarily.

During the application server Time to wait for recovery timeout (default of 20 minutes), the application server
attempts to reconnect to the data server to perform ECP connection recovery. During this interval, existing network
requests are preserved, but the originating application server-side user process blocks new network requests,
waiting for the connection to resume. If the connection returns within the Time to wait for recovery timeout, it
returns to the Normal state and the blocked network requests proceed.

For example, if a data server goes offline, any application server connected to it has its state set to Trouble until
the data server becomes available. If the problem is corrected gracefully, a connection’s state reverts to Normal;
otherwise, if the trouble state is not recovered, it reverts to Not Connected.

Scalability Guide 35

Monitoring Distributed Cache Applications

Applications continue running until they require network access. All locally cached data is available to the appli-
cation while the server is not responding.

Application Server Transitional Recovery States

Transitional recovery states are part of the Trouble state. If there is no current TCP connection to the data server,
and a new connection is established, the application server and data server engage in a recovery protocol which
flushes the application server cache, recovers transactions and locks, and returns to the Normal state.

Similarly, if the data server shuts down, either gracefully or as a result of a crash, and then restarts, it enters a short
period (approximately 30 seconds) during which it allows application servers to reconnect and recover their
existing sessions. Once again, the application server and the data server engage in the recovery protocol.

If connection recovery is not complete within the Time to wait for recovery timeout, the application server gives
up on connection recovery. Specifically, the application server returns errors to all pending network requests and
changes the connection state to Not Connected. If it has not already done so, the data server rolls back all the
transactions and releases all the locks from this application server the next time this application server connects
to the data server.

If the recovery is successful, the connection returns to the Normal state and the blocked network requests proceed.

Application Server Disabled State

An ECP connection is marked Disabled if an administrator declares that it is disabled. In this state, no daemons
exist and any network requests that would use that connection immediately receive <NETWORK> errors.

3.3.2.2 Data Server Connection States

The following sections describe the data server side of each of the connection states:

• Free

• Normal

• Trouble

• Recovering

Data Server Free States

When an ECP server instance starts up, all incoming ECP connections are in an initial “unassigned” Free state
and are available for connections from any application server that is listed in the connection access control list. If
a connection from an application server previously existed and has since gone away, but does not require any
recovery steps, the connection is placed in the “ idle” Free state. The only difference between these two states is
that in the idle state, this connection block is already assigned to a particular application server, rather than being
available for any application server that passes the access control list.

Data Server Normal State

In the data server Normal state, the application server connection is normal. At any point in the processing of
incoming connections, whenever the application server disconnects from the data server (except as part of the data
server’s own shutdown sequence), the data server rolls back any pending transactions and releases any incoming
locks from that application server, and places the application server connection in the “ idle” Free state.

36 Scalability Guide

Horizontally Scaling for User Volume with Distributed Caching

Data Server Trouble States

If the application server is not responding, the data server shows a Trouble state. If the data server crashes or shuts
down, it remembers the connections that were active at the time of the crash or shutdown. After restarting, the
data server waits for a brief time (usually 30 seconds) for application servers to reclaim their sessions (locks and
open transactions). If an application server does not complete recovery during this awaiting recovery interval, all
pending work on that connection is rolled back and the connection is placed in the “ idle” state.

Data Server Recovering State

The data server connection is in a recovery state for a very short time when the application server is in the process
of reclaiming its session. The data server keeps the application server in trouble state for the Time interval for

Troubled state timeout (default is 60 seconds) for it to reclaim the connection; otherwise, it releases the application
resources (rolls back all open transactions and releases locks) and then sets the state to Free.

3.3.3 ECP Connection Operations

On the ECP Data Servers page (System Administration > Configuration > Connectivity > ECP Settings, click Data Servers

button) on an application server, you can change the status of the ECP connection. In each data server row, click Change

Status to display the connection information and perform the appropriate selection of the following choices:

Change to Disabled

Set the state of this connection to Disabled. This releases any locks held for the application server, rolls back any
open transactions involving this connection, and purges cached blocks from the data server. If this is an active
connection, the change in status sends an error to all applications waiting for network replies from the data server.

Change to Normal

Set the state of this connection to Normal.

Change to Not Connected

Set the state of this connection to Not Connected. As with changing the state to Disabled, this releases any locks
held for the application server, rolls back any open transactions involving this connection, and purges cached
blocks from the data server. If this is an active connection, the change in status sends an error to all applications
waiting for network replies from the data server.

3.4 Developing Distributed Cache Applications
This chapter discusses application development and design issues that are helpful if you would like to deploy your application
on a distributed cache cluster, either as an option or as its primary configuration.

With InterSystems IRIS, the decision to deploy an application as a distributed system is primarily a runtime configuration
issue (see Deploying a Distributed Cache Cluster). Using InterSystems IRIS configuration tools, map the logical names of
your data (globals) and application logic (routines) to physical storage on the appropriate system.

This chapter discusses the following topics:

• ECP Recovery Protocol

• Forced Disconnects

• Performance and Programming Considerations

• ECP-related Errors

Scalability Guide 37

Developing Distributed Cache Applications

3.4.1 ECP Recovery Protocol

ECP is designed to automatically recover from interruptions in connectivity between an application server and the data
server. In the event of such an interruption, ECP executes a recovery protocol that differs depending on the nature of the
failure. The result is that the connection is either recovered, allowing the application processes to continue as though
nothing had happened, or reset, forcing transaction rollback and rebuilding of the application processes. The main principles
are as follows:

• When the connection between an application server and data server is interrupted, the application server attempts to
reestablish its connection with the data server, repeatedly if necessary, at an interval determined by the Time between

reconnections setting (5 seconds by default).

• When the interruption is brief, the connection is recovered.

If the connection is reestablished within the data server’s configured Time interval for Troubled state timeout period
(60 seconds by default), the data server restores all locks and open transactions to the state they were in prior to the
interruption.

• If the interruption is longer, the data server resets the connection, so that it cannot be recovered when the interruption
ends.

If the connection is not reestablished within the Time interval for Troubled state, the data server unilaterally resets the
connection, allowing it to roll back transactions and release locks from the unresponsive application server so as not
to block functioning application servers. When connectivity is restored, the connection is disabled from the application
server point of view; all processes waiting for the data server on the interrupted connection receive a <NETWORK>

error and enter a rollback-only condition. The next request received by the application server establishes a new connection
to the data server.

• If the interruption is very long, the application server also resets the connection.

If the connection is not reestablished within the application server’s longer Time to wait for recovery timeout period (20
minutes by default), the application server unilaterally resets the connection; all processes waiting for the data server
on the interrupted connection receive a <NETWORK> error and enter a rollback-only condition. The next request received
by the application server establishes a new connection to the data server, if possible.

The ECP timeout settings are shown in the following table. Each is configurable on the System > Configuration > ECP

Settings page of the Management Portal, or in the ECP section of in the configuration parameter file (CPF); for more
information, see ECP in the Configuration Parameter File Reference.

Table 3–2: ECP Timeout Values

RangeDefaultCPF SettingManagement
Portal Setting

The interval at which an application makes
attempts to reconnect to the data server.

1–60
seconds

5
seconds

ClientReconnectIntervalTime between
reconnections

The length of time for which the data server
waits for contact from the application server
before resetting an interrupted connection.

20–65535
seconds

60
seconds

ServerTroubleDurationTime interval for
Troubled state

The length of time for which an application
server continues attempting to reconnect
to the data server before resetting an
interrupted connection.

10–65535
seconds

1200
seconds
(20
minutes)

ClientReconnectDurationTime to wait for
recovery

The default values are intended to do the following:

38 Scalability Guide

Horizontally Scaling for User Volume with Distributed Caching

• Avoid tying up data server resources that could be used for other application servers for a long time by waiting for an
application server to become available.

• Give an application server — which has nothing else to do when the data server is not available — the ability to wait
out an extended connection interruption for much longer by trying to reconnect at frequent intervals.

ECP relies on the TCP physical connection to detect the health of the instance at the other end without using too much of
its capacity. On most platforms,you can adjust the TCP connection failure and detection behavior at the system level.

While an application server connection becomes inactive, the data server maintains an active daemon waiting for new
requests to arrive on the connection, or for a new connection to be requested by the application server. If the old connection
returns, it can immediately resume operation without recovery. When the underlying heartbeat mechanism indicates that
the application server is completely unavailable due to a system or network failure, the underlying TCP connection is
quickly reset. Thus, an extended period without a response from an application server generally indicates some kind of
problem on the application server that caused it to stop functioning, but without interfering with its connections.

If the underlying TCP connection is reset, the data server puts the connection in an “awaiting reconnection” state in which
there is no active ECP daemon on the data server. A new pair of data server daemons are created when the next incoming
connection is requested by the application server.

Collectively, the nonresponsive state and the awaiting reconnection state are known as the data server Trouble state. The
recovery required in both cases is very similar.

If the data server fails or shuts down, it remembers the connections that were active at the time of the crash or shutdown.
After restarting, the data server has a short window (usually 30 seconds) during which it places these interrupted connections
in the awaiting reconnection state. In this state, the application server and data server can cooperate together to recover all
the transaction and lock states as well as all the pending Set and Kill transactions from the moment of the data server
shutdown.

During the recovery of an ECP-configured instance, InterSystems IRIS guarantees a number of recoverable semantics, and
also specifies limitations to these guarantees. ECP Recovery Process, Guarantees, and Limitations describes these in detail,
as well as providing additional details about the recovery process.

3.4.2 Forced Disconnects

By default, ECP automatically manages the connection between an application server and a data server. When an ECP-
configured instance starts up, all connections between application servers and data servers are in the Not Connected state
(that is, the connection is defined, but not yet established). As soon as an application server makes a request (for data or
code) that requires a connection to the data server, the connection is automatically established and the state changes to
Normal. The network connection between the application server and data server is kept open indefinitely.

In some applications, you may wish to close open ECP connections. For example, suppose you have a system, configured
as an application server, that periodically (a few times a day) needs to fetch data stored on a data server system, but does
not need to keep the network connection with the data server open afterwards. In this case, the application server system
can issue a call to the SYS.ECP.ChangeToNotConnected method to force the state of the ECP connection to Not Connected.

For example:

 Do OperationThatUsesECP()
 Do SYS.ECP.ChangeToNotConnected("ConnectionName")

The ChangeToNotConnected method does the following:

1. Completes sending any data modifications to the data server and waits for acknowledgment from the data server.

2. Removes any locks on the data server that were opened by the application server.

3. Rolls back the data server side of any open transactions. The application server side of the transaction goes into a
“ rollback only” condition.

Scalability Guide 39

Developing Distributed Cache Applications

4. Completes pending requests with a <NETWORK> error.

5. Flushes all cached blocks.

After completion of the state change to Not Connected, the next request for data from the data server automatically
reestablishes the connection.

Note: See Data Server Connections for information about changing data server connection status from the Management
Portal.

3.4.3 Performance and Programming Considerations

To achieve the highest performance and reliability from distributed cache cluster-based applications, you should be aware
of the following issues:

• Do Not Use Multiple ECP Channels

• Increase Data Server Database Caches for ECP Control Structures

• Evaluate the Effects of Load Balancing User Requests

• Restrict Transactions to a Single Data Server

• Locate Temporary Globals on the Application Server

• Avoid Repeated References to Undefined Globals

• The $Increment Function and Application Counters

3.4.3.1 Do Not Use Multiple ECP Channels

InterSystems strongly discourages establishing multiple duplicate ECP channels between an application server and a data
server to try to increase bandwidth. You run the dangerous risk of having locks and updates for a single logical transaction
arrive out-of-sync on the data server, which may result in data inconsistency.

3.4.3.2 Increase Data Server Database Caches for ECP Control Structures

In addition to buffering the blocks that are served over ECP, data servers use global buffers to store various ECP control
structures. There are several factors that go into determining how much memory these structures might require, but the
most significant is a function of the aggregate sizes of the clients' caches. To roughly approximate the requirements, so you
can adjust the data server’s database caches if needed, use the following guidelines:

RecommendationDatabase Block
Size

50 MB plus 1% of the sum of the sizes of all of the application servers’ 8 KB database
caches

8 KB

0.5% of the sum of the sizes of all of the application servers’ 16 KB database caches16 KB (if enabled)

0.25% of the sum of the sizes of all of the application servers’ 32 KB database caches32 KB (if enabled)

0.125% of the sum of the sizes of all of the application servers’ 64 KB database caches64 KB (if enabled)

For example, if the 16 KB block size is enabled in addition to the default 8 KB block size, and there are six application
servers, each with an 8 KB database cache of 2 GB and a 16 KB database cache of 4 GB, you should adjust the data server’s
8 KB database cache to ensure that 52 MB (50MB + [12 GB * .01]) is available for control structures, and the 16 KB cache
to ensure that 2 MB (24 GB * .005) is available for control structures (rounding up in both cases).

40 Scalability Guide

Horizontally Scaling for User Volume with Distributed Caching

For information about allocating memory to database caches, see Memory and Startup Settings in the “Configuring Inter-
Systems IRIS” chapter of the System Administration Guide.

3.4.3.3 Evaluate the Effects of Load Balancing User Requests

Connecting users to application servers in a round-robin or load balancing scheme may diminish the benefit of caching on
the application server. This is particularly likely if users work in functional groups that have a tendency to read the same
data. As these users are spread among application servers, each application server may end up requesting exactly the same
data from the data server, which not only diminishes the efficiency of distributed caching using multiple caches for the
same data, but can also lead to increased block invalidation as blocks are modified on one application server and refreshed
across other application servers. This is somewhat subjective, but someone very familiar with the application characteristics
should consider this possible condition.

3.4.3.4 Restrict Transactions to a Single Data Server

Restrict updates within a single transaction to either a single remote data server or the local server. When a transaction
includes updates to more than one server (including the local server) and the TCommit cannot complete successfully, some
servers that are part of the transaction may have committed the updates while others may have rolled them back. For details,
see Commit Guarantee in “ECP Recovery Guarantees and Limitations” .

Note: Updates to IRISTEMP are not considered part of the transaction for the purpose of rollback, and, as such, are not
included in this restriction.

3.4.3.5 Locate Temporary Globals on the Application Server

Temporary (scratch) globals should be local to the application server, assuming they do not contain data that needs to be
globally shared. Often, temporary globals are highly active and write-intensive. If temporary globals are located on the
data server, this may penalize other application servers sharing the ECP connection.

3.4.3.6 Avoid Repeated References to Undefined Globals

Repeated references to a global that is not defined (for example, $Data(^x(1)) where ^x is not defined) always requires
a network operation to test if the global is defined on the data server.

By contrast, repeated references to undefined nodes within a defined global (for example, $Data(^x(1)) where any other
node in ^x is defined) does not require a network operation once the relevant portion of the global (^x) is in the application
server cache.

This behavior differs significantly from that of a non-networked application. With local data, repeated references to the
undefined global are highly optimized to avoid unnecessary work. Designers porting an application to a networked environ-
ment may wish to review the use of globals that are sometimes defined and sometimes not. Often it is sufficient to make
sure that some other node of the global is always defined.

3.4.3.7 Use the $Increment Function for Application Counters

A common operation in online transaction processing systems is generating a series of unique values for use as record
numbers or the like. In a typical relational application, this is done by defining a table that contains a “next available”
counter value. When the application needs a new identifier, it locks the row containing the counter, increments the counter
value, and releases the lock. Even on a single-server system, this becomes a concurrency bottleneck: application processes
spend more and more time waiting for the locks on this common counter to be released. In a networked environment, it is
even more of a bottleneck at some point.

InterSystems IRIS addresses this by providing the $Increment function, which automatically increments a counter value
(stored in a global) without any need of application-level locking. Concurrency for $Increment is built into the InterSystems
IRIS database engine as well as ECP, making it very efficient for use in single-server as well as in distributed applications.

Scalability Guide 41

Developing Distributed Cache Applications

Applications built using the default structures provided by InterSystems IRIS objects (or SQL) automatically use $Increment
to allocate object identifier values. $Increment is a synchronous operation involving journal synchronization when executed
over ECP. For this reason, $Increment over ECP is a relatively slow operation, especially compared to others which may
or may not already have data cached (in either the application server database cache or the data server database cache). The
impact of this may be even greater in a mirrored environment due to network latency between the failover members. For
this reason, it may be useful to redesign an application to assign a batch of new values to each application server and use
$Increment with that local batch within each application server, involving the data server only when a new batch of values
is needed. (This approach cannot be used, however, when consecutive application counter values are required.) The
$Sequence function can also be helpful in this context, as an alternative to or used in combination with $Increment.

3.4.4 ECP-related Errors

There are several runtime errors that can occur on a system using ECP. An ECP-related error may occur immediately after
a command is executed or, in the case of commands that are asynchronous in nature, such as Kill, the error occurs a short
time after the command completes.

3.4.4.1 <NETWORK> Errors

A <NETWORK> error indicates an error that could not be handled by the normal ECP recovery mechanism.

In an application, it is always acceptable to halt a process or roll back any pending work whenever a <NETWORK> error is
received. Some <NETWORK> errors are essentially fatal error conditions. Others indicate a temporary condition that might
clear up soon; however, the expected programming practice is to always roll back any pending work in response to a
<NETWORK> error and start the current transaction over from the beginning.

A <NETWORK> error on a get-type request such as $Data or $Order can often be retried manually rather than simply rolling
back the transaction immediately. ECP tries to avoid giving a <NETWORK> error that would lose data, but gives an error
more freely for requests that are read-only.

3.4.4.2 Rollback Only Condition

The application-side rollback-only condition occurs when the data server detects a network failure during a transaction
initiated by the application server and enters a state in which all network requests are met with errors until the transaction
is rolled back.

3.5 ECP Recovery Process, Guarantees, and Limitations
The ECP recovery protocol is summarized in ECP Recovery Protocol. This section describes ECP recovery in detail,
including its guarantees and limitations.

The simplest case of ECP recovery is a temporary network interruption that is long enough to be noticed, but short enough
that the underlying TCP connection stays active during the outage. During the outage, the application server notices that
the connection is nonresponsive and blocks new network requests for that connection. Once the connection resumes, processes
that were blocked are able to send their pending requests.

If the underlying TCP connection is reset, the data server waits for a reconnection for the Time interval for Troubled state

setting (one minute by default). If the application server does not succeed in reconnecting during that interval, the data
server resets its connection, rolls back its open transactions, and releases its locks. Any subsequent connection from that
application server is converted into a request for a brand new connection and the application server is notified that its con-
nection is reset.

The application server keeps a queue of locks to remove and transactions to roll back once the connection is reestablished.
By keeping this queue, processes on the application server can always halt, whether or not the data server on which it has

42 Scalability Guide

Horizontally Scaling for User Volume with Distributed Caching

pending transactions and locks is currently available. ECP recovery completes any pending Set and Kill operations that
had been queued for the data server before the network outage was detected, before it completes the release of locks.

Any time a data server learns that an application server has reset its own connection (due to application server restart, for
example), even if it is still within the Time interval for Troubled state, the data server resets the connection immediately,
rolling back transactions and releasing locks on behalf of that application server. Since the application server’s state was
reset, there is no longer any state to be maintained by the data server on its behalf.

The final case is when the data server shut down, either gracefully or as a result of a crash. The application server maintains
the application state and tries to reconnect to the data server for the Time to wait for recovery setting (20 minutes by default).
The data server remembers the application server connections that were active at the time of the crash or shutdown; after
restarting, it waits up to thirty seconds for those application servers to reconnect and recover their connections. Recovery
involves several steps on the data server, some of which involve the data server journal file in very significant ways. The
result of the several different steps is that:

• The data server’s view of the current active transactions from each application server has been restored from the data
server’s journal file.

• The data server’s view of the current active Lock operations from each application server has been restored, by having
the application server upload those locks to the data server.

• The application server and the data server agree on exactly which requests from the application server can be ignored
(because it is certain they completed before the crash) and which ones should be replayed. Therefore, the last recovery
step is to simply let the pending network requests complete, but only those network requests that are safe to replay.

• Finally, the application server delivers to the data server any pending unlock or rollback indications that it saved from
jobs that halted while the data server was restarting. All guarantees are maintained, even in the face of sudden and
unanticipated data server crashes, as long as the integrity of the storage devices (for database, WIJ, and journal files)
are maintained.

During the recovery of an ECP-configured system, InterSystems IRIS guarantees a number of recoverable semantics which
are described in detail in ECP Recovery Guarantees. Limitations to these guarantees are described in detail in the ECP
Recovery Limitations section of the aforementioned appendix.

3.5.1 ECP Recovery Guarantees

During the recovery of an ECP-configured system, InterSystems IRIS guarantees the following recoverable semantics:

• In-order Updates Guarantee

• ECP Lock Guarantee

• Clusters Lock Guarantee

• Rollback Guarantee

• Commit Guarantee

• Transactions and Locks Guarantee

• ECP Rollback Only Guarantee

• ECP Transaction Recovery Guarantee

• ECP Lock Recovery Guarantee

• $Increment Ordering Guarantee

• ECP Sync Method Guarantee

Scalability Guide 43

ECP Recovery Process, Guarantees, and Limitations

In the description of each guarantee the first paragraph describes a specific condition. Subsequent paragraphs describe the
data guarantee applicable to that particular situation.

In these descriptions, Process A, Process B and so on refer to processes attempting update globals on a data server. These
processes may originate on the same or different application servers, or on the data server itself; in some cases the origins
of processes are specified, in others they are not germane.

3.5.1.1 In-order Updates Guarantee

Process A updates two data elements sequentially, first global ^x and next global ^y, where ^x and ^y are located on the
same data server.

If Process B sees the change to ̂ y, it also sees the change to ̂ x. This guarantee applies whether or not Process A and Process
B are on the same application server as long as the two data items are on the same data server and the data server remains
up.

Process B’s ability to view the data modified by Process A does not ensure that Set operations from Process B are restored
after the Set operations from Process A. Only a Lock or a $Increment operation can ensure proper ordering of competing
Set and Kill operations from two different processes during cluster failover or cluster recovery.

See the Loose Ordering in Cluster Failover or Restore limitation regarding the order in which competing Set and Kill
operations from separate processes are applied during cluster dejournaling and cluster failover.

Important: This guarantee does not apply if the data server crashes, even if ^x and ^y are journaled. See the Dirty Data
Reads for ECP Without Locking limitation for a case in which processes that fit this description can see
dirty data that never becomes durable before the data server crash.

3.5.1.2 ECP Lock Guarantee

Process B on DataDataServer S acquires a lock on global ^x, which was once locked by Process A.

Process B can see all updates on DataServer S done by Process A (while holding a lock on ^x). Also, if Process C sees the
updates done by Process B on DataServer S (while holding a lock on ^x), Process C is guaranteed to also see the updates
done by Process A on DataServer S (while holding a lock on ^x).

Serializability is guaranteed whether or not Process A, Process B, and Process C are located on the same application server
or on DataServer S itself, as long as DataServer S stays up throughout.

Important: The lock and the data it protects must reside on the same data server.

3.5.1.3 Clusters Lock Guarantee

Process B on a cluster member acquires a lock on global ^x in a clustered database; a lock once held by Process A.

Process B sees all updates to any clustered database done by Process A (while holding a lock on ^x).

Additionally, if Process C on a cluster member sees the updates on a clustered database made by Process B (while holding
a lock on ^x), Process C also sees the updates made by Process A on any clustered database (while holding a lock on ^x).

Serializability is guaranteed whether or not Process A, Process B, and Process C are located on the same cluster member,
and whether or not any cluster member crashes.

Important: See the Dirty Data Reads When Cluster Slave Crashes limitation regarding transactions on one cluster
member seeing dirty data from a transaction on a cluster member that crashes.

44 Scalability Guide

Horizontally Scaling for User Volume with Distributed Caching

3.5.1.4 Rollback Guarantee

Process A executes a TStart command, followed by a series of updates, and either halts before issuing a TCommit, or
executes a TRollback before executing a TCommit.

All the updates made by Process A as part of the transaction are rolled back in the reverse order in which they originally
occurred.

Important: See the rollback-related limitations: Conflicting, Non-Locked Change Breaks Rollback, Journal Disconti-
nuity Breaks Rollback, and Asynchronous TCommit Converts to Rollback for more information.

3.5.1.5 Commit Guarantee

Process A makes a series of updates on DataServer S and halts after starting the execution of a TCommit.

On each DataServer S that is part of the transaction, the data modifications on DataServer S are either committed or rolled
back. If the process that executes the TCommit has the Perform Synchronous Commit property turned on (SynchCommit=1,
in the configuration file) and the TCommit operation returns without errors, the transaction is guaranteed to have durably
committed on all the data servers that are part of the transaction.

Important: If the transaction includes updates to more than one server (including the local server) and the TCommit
cannot complete successfully, some servers that are part of the transaction may have committed the updates
while others may have rolled them back.

3.5.1.6 Transactions and Locks Guarantee

Process A executes a TStart for Transaction T, locks global ^x on DataServer S, and unlocks ^x (unlock does not specify
the “ immediate unlock” lock type).

InterSystems IRIS guarantees that the lock on ^x is not released until the transaction has been either committed or rolled
back. No other process can acquire a lock on ^x until Transaction T either commits or rolls back on DataServer S.

Once Transaction T commits on DataServer S, Process B that acquires a lock on ^x sees changes on DataServer S made
by Process A during Transaction T. Any other process that sees changes on DataServer S made by Process B (while holding
a lock on ^x) sees changes on DataServer S made by Process A (while executing Transaction T). Conversely, if Transaction
T rolled back on DataServer S, a Process B that acquires a lock on ^x, sees none of the changes made by Process A on
DataServer S.

Important: See the Conflicting, Non-Locked Change Breaks Rollback limitation for more information.

3.5.1.7 ECP Rollback Only Guarantee

Process A on AppServer C makes changes on DataServer S that are part of a Transaction T, and DataServer S unilaterally
rolls back those changes (which can happen in certain network outages or data server outages).

All subsequent network requests to DataServer S by Process A are rejected with <NETWORK> errors until Process A
explicitly executes a TRollback command.

Additionally, if any process on AppServer C completes a network request to DataServer S between the rollback on DataServer

S and the TCommit of Transaction T (AppServer C finds out about the rollback-only condition before the TCommit),
Transaction T is guaranteed to roll back on all data servers that are part of Transaction T.

3.5.1.8 ECP Transaction Recovery Guarantee

An data server crashes in the middle of an application server transaction, restarts, and completes recovery within the
application server recovery timeout interval.

Scalability Guide 45

ECP Recovery Process, Guarantees, and Limitations

The transaction can be completed normally without violating any of the described guarantees. The data server does not
perform any data operations that violate the ordering constraints defined by lock semantics. The only exception is the
$Increment function (see the ECP and Clusters $Increment Limitation section for more information). Any transactions
that cannot be recovered are rolled back in a way that preserves lock semantics.

Important: InterSystems IRIS expects but does not guarantee that in the absence of continuing faults (whether in the
network, the data server, or the application server hardware or software), all or most of the transactions
pending into a data server at the time of a data server outage are recovered.

3.5.1.9 ECP Lock Recovery Guarantee

DataServer S has an unplanned shutdown, restarts, and completes recovery within the recovery interval.

The ECP Lock Guarantee still applies as long as all the modified data is journaled. If data is not being journaled, updates
made to the data server before the crash can disappear without notice to the application server. InterSystems IRIS no longer
guarantees that a process that acquires the lock sees all the updates that were made earlier by other processes while holding
the lock.

If DataServer S shuts down gracefully, restarts, and completes recovery within the recovery interval, the ECP Lock Guar-
antee still applies whether or not data is being journaled.

Updates that are part of a transaction are always journaled; the ECP Transaction Recovery Guarantee applies in a stronger
form. Other updates may or may not be journaled, depending on whether or not the destination global in the destination
database is marked for journaling.

3.5.1.10 $Increment Ordering Guarantee

The $Increment function induces a loose ordering on a series of Set and Kill operations from separate processes, even if
those operations are not protected by a lock.

For example: Process A performs some Set and Kill operations on DataServer S and performs a $Increment operation to
a global ^x on DataServer S. Process B performs a subsequent $Increment to the same global ^x. Any process, including
Process B, that sees the result of Process B incrementing ^x, sees all changes on DataServer S that Process A made before
incrementing ^x.

Important: See the ECP and Clusters $Increment Limitation section for more information.

3.5.1.11 ECP Sync Method Guarantee

Process A updates a global located on Data Server S, and issues a $system.ECP.Sync() to S. Process B then issues a
$system.ECP.Sync() to S. Process B can see all updates performed by Process A on Data Server S prior to its
$system.ECP.Sync() call.

$system.ECP.Sync() is relevant only for processes running on an application server. If either process A or B are running
on DataServer S itself, then that process does not need to issue a $system.ECP.Sync(). If both are running on DataServer
S then neither needs $system.ECP.Sync, and this is simply the statement that global updates are immediately visible to
processes running on the same server.

Important: $system.ECP.Sync() does not guarantee durability; see the Dirty Data Reads in ECP without Locking
limitation.

3.5.2 ECP Recovery Limitations

During the recovery of an ECP-configured system, there are the following limitations to the InterSystems IRIS guarantees:

• ECP and Clusters $Increment Limitation

46 Scalability Guide

Horizontally Scaling for User Volume with Distributed Caching

• ECP Cache Liveness Limitation

• ECP Routine Revalidation Limitation

• Conflicting, Non-Locked Change Breaks Rollback

• Journal Discontinuity Breaks Rollback

• ECP Can Miss Error After Recovery

• Partial Set or Kill Leads to Journal Mismatch

• Loose Ordering in Cluster Failover or Restore

• Dirty Data Reads When Cluster Slave Crashes

• Dirty Data Reads in ECP without Locking

• Asynchronous TCommit Converts to Rollback

3.5.2.1 ECP and Clusters $Increment Limitation

If a data server crashes while the application server has a $Increment request outstanding to the data server and the global
is journaled, InterSystems IRIS attempts to recover the $Increment results from the journal; it does not re-increment the
reference.

3.5.2.2 ECP Cache Liveness Limitation

In the absence of continuing faults, application servers observe data that is no more than a few seconds out of date, but this
is not guaranteed. Specifically, if an ECP connection to the data server becomes nonfunctional (network problems, data
server shutdown, data server backup operation, and so on), the user process may observe data that is arbitrarily stale, up to
an application server connection-timeout value. To ensure that data is not stale, use the Lock command around the data-
fetch operation, or use $system.ECP.Sync. Any network request that makes a round trip to the data server updates the
contents of the application server ECP network cache.

3.5.2.3 ECP Routine Revalidation Limitation

If an application server downloads routines from a data server and the data server restarts (planned or unplanned), the routines
downloaded from the data server are marked as if they had been edited.

Additionally, if the connection to the data server suffers a network outage (neither application server nor data server shuts
down), the routines downloaded from the data server are marked as if they had been edited. In some cases, this behavior
causes spurious <EDITED> errors as well as <ERRTRAP> errors.

3.5.2.4 Conflicting, Non-Locked Change Breaks Rollback

In InterSystems IRIS, the Lock command is only advisory. If Process A starts a transaction that is updating global ^x under
protection of a lock on global ^y, and another process modifies ^x without the protection of a lock on ^y, the rollback of ^x
does not work.

On the rollback of Set and Kill operations, if the current value of the data item is what the operation set it to, the value is
reset to what it was before the operation. If the current value is different from what the specific Set or Kill operation set it
to, the current value is left unchanged.

If a data item is sometimes modified inside a transaction, and sometimes modified outside of a transaction and outside the
protection of a Lock command, rollback is not guaranteed to work. To be effective, locks must be used everywhere a data
item is modified.

Scalability Guide 47

ECP Recovery Process, Guarantees, and Limitations

3.5.2.5 Journal Discontinuity Breaks Rollback

Rollback depends on the reliability and completeness of the journal. If something interrupts the continuity of the journal
data, rollbacks do not succeed past the discontinuity. InterSystems IRIS silently ignores this type of transaction rollback.

A journal discontinuity can be caused by executing ^JRNSTOP while InterSystems IRIS is running, by deleting the Write
Image Journal (WIJ) file after an InterSystems IRIS shutdown and before restart, or by an I/O error during journaling on
a system that is not set to freeze the system on journal errors.

3.5.2.6 ECP Can Miss Error After Recovery

A Set or Kill operation completes on a data server, but receives an error. The data server crashes after completing that
packet, but before delivering that packet to the application server system.

ECP recovery does not replay this packet, but the application server has not found out about the error; resulting in the
application server missing Set or Kill operations on the data server.

3.5.2.7 Partial Set or Kill Leads to Journal Mismatch

There are certain cases where a Set or Kill operation can be journaled successfully, but receive an error before actually
modifying the database. Given the particular way rollback of a data item is defined, this should not ever break transaction
rollback; but the state of a database after a journal restore may not match the state of that database before the restore.

3.5.2.8 Loose Ordering in Cluster Failover or Restore

Cluster dejournaling is loosely ordered. The journal files from the separate cluster members are only synchronized wherever
a lock, a $Increment, or a journal marker event occurs. This affects the database state after either a cluster failover or a
cluster crash where the entire cluster must be brought down and restored. The database may be restored to a state that is
different from the state just before the crash. The $Increment Ordering Guarantee places additional constraints on how
different the restored database can be from its original form before the crash.

Process B’s ability to view the data modified by Process A does not ensure that Set operations from Process B are restored
after the Set operations from Process A. Only a Lock or a $Increment operation can ensure proper ordering of competing
Set and Kill operations from two different processes during cluster failover or cluster recovery.

3.5.2.9 Dirty Data Reads When Cluster Slave Crashes

A cluster slave Member A completes updates in Transaction T1, and that system commits that transaction, but in non-syn-
chronous transaction commit mode. Transaction T2 on a different cluster Member B acquires the locks once owned by
Transaction T1. Cluster slave Member A crashes before all the information from Transaction T1 is written to disk.

Transaction T1 is rolled back as part of cluster failover. However, Transaction T2 on Member B could have seen data from
Transaction T1 that later was rolled back as part of cluster failover, despite following the rules of the locking protocol.
Additionally, if Transaction T2 has modified some of the same data items as Transaction T1, the rollback of Transaction
T1 may fail because only some of the transaction data has rolled back.

A workaround is to use synchronous commit mode for transactions on the cluster slave Member A. When using synchronous
commit mode, Transaction T1 is durable on disk before its locks are released, so Transaction T1 is not rolled back once
the application sees that it is complete.

3.5.2.10 Dirty Data Reads in ECP Without Locking

If an incoming ECP transaction reads data without locking, it may see data that is not durable on disk which may disappear
if the data server crashes. It can only see such data when the data location is set by other ECP connections or by the local
data server system itself. It can never see nondurable data that is set by this connection itself. There is no possibility of
seeing nondurable data when locking is used both in the process reading the data and the process writing the data. This is
a violation of the In-order Updates Guarantee and there is no easy workaround other than to use locking.

48 Scalability Guide

Horizontally Scaling for User Volume with Distributed Caching

3.5.2.11 Asynchronous TCommit Converts to Rollback

If the data server side of a transaction receives an asynchronous error condition, such as a <FILEFULL>, while updating
a database, and the application server does not see that error until the TCommit, the transaction is automatically rolled
back on the data server. However, rollbacks are synchronous while TCommit operations are usually asynchronous because
the rollback will be changing blocks the application server should be notified of before the application server process sur-
renders any locks.

The data server and the database are fine, but on the application server if the locks get traded to another process he may
see temporarily see data that is about to be rolled back. However, the application server does not usually do anything that
causes asynchronous errors

Scalability Guide 49

ECP Recovery Process, Guarantees, and Limitations

4
Horizontally Scaling for Data Volume with
Sharding

This chapter describes the deployment and use of an InterSystems IRIS sharded cluster, and covers the following topics:

• Overview of InterSystems IRIS Sharding

• Deploying the Sharded Cluster

• Creating Sharded Tables and Loading Data

• Querying the Sharded Cluster

• Additional Sharded Cluster Options

• InterSystems IRIS Sharding Reference

4.1 Overview of InterSystems IRIS Sharding
Sharding is a significant horizontal scalability feature of InterSystems IRIS data platform. An InterSystems IRIS sharded
cluster partitions both data storage and caching across a number of servers, providing flexible, inexpensive performance
scaling for queries and data ingestion while maximizing infrastructure value through highly efficient resource utilization.
Sharding is easily combined with the considerable vertical scaling capabilities of InterSystems IRIS, greatly widening the
range of workloads for which InterSystems IRIS can provide solutions.

• Elements of Sharding

• Evaluating the Benefits of Sharding

• Namespace-level Sharding Architecture

Note: For a brief introduction to sharding that includes a hands-on exploration of deploying and using a sharded cluster,
see First Look: Scaling for Data Volume with an InterSystems IRIS Sharded Cluster.

4.1.1 Elements of Sharding

Horizontally scaling InterSystems IRIS through sharding can benefit a wide range of applications, but provides the greatest
gains in use cases involving one or both of the following:

Scalability Guide 51

• Large amounts of data retrieved from disk, complex processing of data, or both, for example as in analytic workloads

• High-volume, high-velocity data ingestion

Sharding horizontally partitions large database tables and their associated indexes across multiple InterSystems IRIS
instances, called data nodes, while allowing applications to access these tables through any one of those instances. Together,
the data nodes form a sharded cluster. This architecture provides the following advantages:

• Queries against a sharded table are run in parallel on all of the data nodes, with the results merged, aggregated, and
returned as full query results to the application.

• Because the data partitions are hosted by separate instances, each has a dedicated cache to serve its own partition of
the data set, rather than a single instance’s cache serving the entire data set.

With sharding, the performance of queries against large tables is no longer constrained by the resources of a single system.
By distributing both query processing and caching across multiple systems, sharding provides near-linear scaling of both
compute and memory resources, allowing you to design and maintain a cluster tailored to your workload. When you scale
out by adding data nodes, sharded data can be rebalanced across the cluster. The distributed data layout can be further
exploited for parallel data loading and with third party frameworks like Apache Spark.

A shard is a subset of a table's rows, with each row contained within exactly one shard, and all shards of a table containing
roughly the same number of rows. Each data node hosts a data shard, which is comprised of one shard of each sharded
table on the cluster. A federated software component called the sharding manager keeps track of which shards (and therefore
which table rows) are located on which data nodes and directs queries accordingly, as well as managing other sharded
operations. Each table is automatically horizontally partitioned across the data nodes by using one of its fields as a shard
key, which provides a deterministic method of distributing data evenly. A shard key is typically the table’s RowID (the
default), but can also be a user-defined field or set of fields.

While sharded data is physically partitioned across the data nodes, it is all logically visible from on any data node (as are
nonsharded data, metadata, and code). Each data node has a cluster namespace (identically named across the cluster) that
provides transparent access to all data and code on the cluster; applications can connect to any node's cluster namespace
and experience the full dataset as if it were local. Application connections can therefore be load balanced across all of the
data nodes in the cluster to take greatest advantage of parallel query processing and partitioned caching.

Figure 4–1: Basic sharded cluster

52 Scalability Guide

Horizontally Scaling for Data Volume with Sharding

Nonsharded data is stored only on the first data node configured (called node 1). This distinction is transparent to the user
except for the fact that more data is stored on node 1, but this difference is typically small. From the perspective of the
application SQL, the distinction between sharded and nonsharded tables is transparent.

InterSystems IRIS mirroring can be used to provide high availability for the data nodes in a sharded cluster; a mirrored
failover pair of InterSystems IRIS instances can be added to a cluster as easily as a single instance. For more information
on deploying a mirrored sharded cluster, see Mirror Data Nodes for High Availability.

For advanced use cases in which extremely low query latencies are required, potentially at odds with a constant influx of
data, compute nodes can be added to provide a transparent caching layer for servicing queries, separating the query and
data ingestion workloads and improving the performance of both. Assigning multiple compute nodes per data node can
further improve the cluster’s query throughput. For more information about compute nodes and instructions for deploying
them, see Deploy Compute Nodes for Workload Separation and Increased Query Throughput.

4.1.2 Evaluating the Benefits of Sharding

InterSystems IRIS sharding can benefit a wide range of applications, but provides the greatest gains in use cases involving
the following:

• Relatively large data sets, queries that return large amounts of data, or both.

Sharding scales caching capacity to match data size by partitioning the cache along with the data, leveraging the
memory resources of multiple systems. Each data node dedicates its database cache (global buffer pool) to a fraction
of the data set, as compared to a single instance’s database cache being available for all of the data. The resulting
improvement becomes most evident when the data in regular use is too big to fit in the database cache of a single
nonsharded instance.

• A high volume of complex queries doing large amounts of data processing.

Sharding scales query processing throughput by decomposing queries and executing them in parallel across multiple
data nodes, leveraging the computing resources of multiple systems. The resulting improvement is most evident when
queries against the cluster:

– Read large amounts of data from persistent storage, and in particular have a high ratio of data retrieved to results
returned.

– Involve significant compute work (including aggregation, grouping, and sorting)

• High-volume or high-speed data ingestion, or a combination.

Sharding scales data ingestion through the InterSystems IRIS JDBC driver’s use of direct connections to the data nodes
for parallel loading, distributing ingestion across multiple instances. If the data can be assumed to be validated and
uniqueness checking omitted, gains are enhanced.

Each of these factors on its own influences the potential gain from sharding, but the benefit may be enhanced where they
combine. For example, a combination of large amounts of data ingested quickly, large data sets, and complex queries that
retrieve and process a lot of data makes many of today’s analytic workloads very good candidates for sharding.

As previously noted, and discussed in more detail in Planning an InterSystems IRIS Sharded Cluster, combining InterSystems
IRIS sharding with the use of vertical scaling to address some of the factors described in the foregoing may be most bene-
ficial under many circumstances.

Note: In the current release, sharding does not support workloads involving complex transactions requiring atomicity,
and a sharded cluster cannot be used for such workloads.

Scalability Guide 53

Overview of InterSystems IRIS Sharding

4.1.3 Namespace-level Sharding Architecture

Previous versions of this document described a sharding architecture involving a larger and different set of node types
(shard master data server, shard data server, shard master application server, shard query server). This namespace-level
architecture remains in place as the transparent foundation of the new node-level architecture, and is fully compatible with
it. In the node-level architecture, the cluster namespace (identically named across the cluster) provides transparent access
to all sharded and nonsharded data and code on the cluster; the master namespace, now located on the first data node, still
provides access to metadata, nonsharded data, and code, but is fully available to all data nodes. This arrangement provides
a more uniform and straightforward model that is simpler and more convenient to deploy and use.

The %SYSTEM.Sharding API and the Sharding Configuration page of the Management Portal remain available for use in
sharded cluster deployment based on the namespace-level architecture; see Deploying the Namespace-level Architecture
for procedures.

4.2 Deploying the Sharded Cluster
This section provides procedures for deploying an InterSystems IRIS sharded cluster consisting of data nodes.

Note: For an important discussion of performance planning, including memory management and scaling, CPU sizing
and scaling, and other considerations, see the “Vertical Scaling” chapter of this guide.

The recommended method for deploying InterSystems IRIS data platform is InterSystems Cloud Manager (ICM). By
combining plain text declarative configuration files, a simple command line interface, the widely-used Terraform infras-
tructure as code tool, and InterSystems IRIS deployment in Docker containers, ICM provides you with a simple, intuitive
way to provision cloud or virtual infrastructure and deploy the desired InterSystems IRIS architecture on that infrastructure,
along with other services. Deploy the Cluster with InterSystems Cloud Manager offers an overview of the process of using
ICM to deploy the sharded cluster. (For a brief introduction to ICM that includes a hands-on exploration of deploying a
sharded cluster, see First Look: InterSystems Cloud Manager. For complete ICM documentation, see the InterSystems
Cloud Manager Guide.)

You can also manually deploy a sharded cluster using the %SYSTEM.Cluster API. For instructions, see Deploy the Cluster
Using the %SYSTEM.Cluster API.

Note: If you are considering deploying compute nodes, the best approach is typically to evaluate the operation of your
basic sharded cluster before deciding whether the cluster can benefit from their addition. Compute nodes be easily
added to an existing cluster by reprovisioning your ICM deployment or using the %SYSTEM.Cluster API. For
more information on planning and adding compute nodes, see Plan compute nodes and Deploy compute nodes.

The most typical sharded cluster configuration involves one InterSystems IRIS instance per node. When deploying
using ICM, this configuration is the only option. The provided procedure for using the Sharding API assumes
this configuration as well.

InterSystems recommends the use of an LDAP server to implement centralized security across the nodes of a
sharded cluster. For information about using LDAP with InterSystems IRIS, see the “Using LDAP” chapter of
the Security Administration Guide.

Regardless of the method you use to deploy the cluster, first decide how many data nodes are to be included in the cluster.
You can also plan the sizes of the database caches and globals databases on the cluster members.

This section covers the following topics:

• Plan data nodes

54 Scalability Guide

Horizontally Scaling for Data Volume with Sharding

• Estimate the database cache and database sizes

• Deploy the cluster using InterSystems Cloud Manager

• Deploy the cluster using the %SYSTEM.Cluster API

4.2.1 Plan Data Nodes

Depending on the anticipated working set of the sharded data you intend to store on the cluster and the nature of the queries
you will run against it, as few as four data nodes may be appropriate for your cluster. Since you can always add data nodes
to an existing cluster and rebalance the sharded data (see Add Data Nodes and Rebalance Data), erring on the conservative
side is reasonable.

A good basic method for an initial estimate of the ideal number of data nodes needed for a production configuration (subject
to resource limitations) is to calculate the total amount of database cache needed for the cluster and then determine which
combination of server count and memory per server is optimal in achieving that, given your circumstances and resource
availability. This is not unlike the usual sizing process, except that it involves dividing the resources required across multiple
systems. (For an important discussion of performance planning, including memory management and scaling, CPU sizing
and scaling, and other considerations, see the “Vertical Scaling” chapter of this guide.)

The size of the database cache required starts with your estimation of the total amount of sharded data you anticipate storing
on the cluster, and of the amount of nonsharded data on the cluster that will be frequently joined with sharded data. You
can then use these totals to estimate the working sets for both sharded data and frequently joined nonsharded data, which
added together represent the total database caching capacity needed for all the data nodes in the cluster. This calculation is
detailed in Planning an InterSystems IRIS Sharded Cluster.

Considering all your options regarding both number of nodes and memory per node, you can then configure enough data
nodes so that the database cache (global buffer pool) on each data node equals, or comes close to equalling, its share of
that capacity. Under many scenarios, you will be able to roughly determine the number of data nodes to start with simply
by dividing the total cache size required by the memory capacity of the systems you available to deploy as cluster nodes.

All data nodes in a sharded cluster should have identical or at least closely comparable specifications and resources; parallel
query processing is only as fast as the slowest data node. In addition, the configuration of all IRIS instances in the cluster
should be consistent; database settings such as collation and those SQL settings configured at instance level (default date
format, for example) should be the same on all nodes to ensure correct SQL query results. Standardized procedures and
tools like ICM can help ensure this consistency.

The general recommended best practice is to load balance application connections across all of the data nodes in a cluster.
ICM can automatically provision and configure a load balancer for the data nodes as needed when deploying in a public
cloud; if deploying a sharded cluster by other means, a load balancing mechanism is required.

4.2.2 Estimate the Database Cache and Database Sizes

Before deploying your sharded cluster, determine the size of the database cache to be allocated on each data node. It is also
useful to know the expected size of the data volume needed for the default globals database on each data node, so you can
ensure that there is enough free space for expected growth.

When you deploy a sharded cluster using ICM, you can specify these settings by including properties in the configuration
files. When you deploy manually using the Sharding API, you can specify database cache size before configuring the
sharded cluster, and specify database settings in your calls. Both deployment methods provide default settings.

Bear in mind that the sizes below are guidelines, not requirements, and that your estimates for these numbers are likely to
be adjusted in practice.

Scalability Guide 55

Deploying the Sharded Cluster

4.2.2.1 Database Cache Sizes

As described in Planning an InterSystems IRIS Sharded Cluster, the amount of memory that should ideally be allocated to
the database cache on a data node is that node’s share of the total of the expected sharded data working set, plus the overall
expected working set of nonsharded data frequently joined to sharded data.

4.2.2.2 Globals Database Sizes

As described in Planning an InterSystems IRIS Sharded Cluster, the target sizes of the default globals databases are as
follows:

• For the cluster namespace — Each server’s share of the total size of the sharded data, according to the calculation
described in that section, plus a margin for greater than expected growth.

• For the master namespace on node 1 — The total size of nonsharded data,plus a margin for greater than expected
growth.

All deployment methods configure the sizes of these databases by default, so there is no need for you to do so. However,
you should ensure that the storage on which these databases are located can accommodate their target sizes.

4.2.3 Deploy the Cluster Using InterSystems Cloud Manager

There are several stages involved in provisioning and deploying a containerized InterSystems IRIS configuration, including
a sharded cluster, with ICM. The ICM Guide provides complete documentation of ICM, including details of each of the
stages. This section briefly reviews the stages and provides links to the ICM Guide.

• Launch ICM

• Obtain Security-Related Files

• Define the deployment

• Provision the infrastructure

• Deploy and manage services

• Unprovision the infrastructure

4.2.3.1 Launch ICM

ICM is provided as a Docker image. Everything required by ICM to carry out its provisioning, deployment, and management
tasks is included in the ICM container, including a /Samples directory that provides you with samples of the elements
required by ICM, customized to the four supported cloud providers. To launch ICM, on a system on which Docker is
installed, you use the docker run command with the ICM image from the InterSystems repository to start the ICM container.

For detailed information about launching ICM, see Launch ICM in the “Using ICM” chapter of the ICM Guide.

4.2.3.2 Obtain Security-Related Files

Before defining your deployment, you must obtain security-related files including cloud provider credentials and keys for
SSH and SSL/TLS. For more information about these files and how to obtain them, see Obtain Security-Related Files in
the “Using ICM” chapter.

4.2.3.3 Define the Deployment

ICM uses JSON files as both input and output. To provide the needed parameters to ICM, you must represent your target
configuration and the platform on which it is to be deployed in two of ICM’s JSON configuration files: the defaults.json

file, which contains information about the entire deployment, and the definitions.json file, which contains information about

56 Scalability Guide

Horizontally Scaling for Data Volume with Sharding

the types and numbers of the nodes provisioned and deployed by ICM, as well as details specific to each node type. For
example, the defaults file determines which cloud provider your sharded cluster nodes are provisioned on and the locations
of the required security files and InterSystems IRIS license keys, while the definitions file determines how many data nodes
and compute nodes are included in the sharded cluster and the specifications of their hosts. Most ICM parameters have
defaults; a limited number of parameters can be specified on the ICM command line as well as in the configuration file.

For sample defaults and definitions files for sharded cluster deployment, see Define the Deployment in the “Using ICM”
chapter of the ICM Guide. You can create your files by adapting the template defaults.json and definitions.json files provided
with ICM in the /Samples directory (for example, /Samples/AWS for AWS deployments), or start with the contents of the
samples provided in the documentation. For a complete list of the fields you can include in these files, see ICM Configuration
Parameters in the “ ICM Reference” chapter of the ICM Guide.

For a complete list of the fields you can include in these files, see ICM Configuration Parameters in the “ ICM Reference”
chapter of the ICM Guide.

Note: All InterSystems IRIS instances in a sharded cluster must have sharding licenses.

ICM includes the node types DATA and COMPUTE for provisioning and deploying a cluster’s data and compute nodes,
and such types as WS (web server) and LB (load balancer) for associated systems. Node types representing nodes in the
namespace-level architecture are also included. For detailed descriptions of the node types (for use in the Role field in the
definitions file) that ICM can provision, configure, and deploy services on, see ICM Node Types in the “ ICM Reference”
chapter of the ICM Guide.

When creating your configuration files, bear in mind that they must represent not only the number of data nodes you want
to include but their database cache and database sizes, which you determined in Estimate the Database Cache and Database
Sizes. This can be accomplished as follows:

• Database cache size — Every InterSystems IRIS instance, including those running in the containers deployed by ICM,
is installed with a predetermined set of configuration settings, recorded in its configuration parameters file (CPF). The
UserCPF field specifies a CPF merge file containing one or more of these configuration settings; you can customize
all of the InterSystems IRIS instances you deploy by including it in your defaults file. You can also customize settings
for a specific node type by including it in the node definition. For example, to allocate a database cache of 150 GB of
8-kilobyte blocks on each data node, you would customize the value of the [config]/globals CPF setting (see globals
in the Configuration Parameter File Reference) by specifying in the DATA definition a CPF merge file containing
the following:

[config]
globals=0,0,150000,0,0,0

A sample CPF merge file, /Samples/cpf/iris.cpf, is included in the ICM container, and all of the sample defaults.json

files contain the UserCPF property, specifying this file. For information about using a merge file to override CPF settings,
see Deploying with Customized InterSystems IRIS Configurations in the “ ICM Reference” chapter of the ICM Guide.

Of course, the cloud nodes you provision as data nodes must have sufficient memory to accommodate the target database
cache size. The instance type you specify in the defaults file, or in the DATA node definition in the definitions file,
determines the characteristics of the provisioned cloud nodes that become data nodes, including memory. The name
of this field is different for each cloud provider; the equivalent fields for the four cloud providers are shown in the
table that follows (see Provider-Specific Parameters in the ICM Guide for more information).

Scalability Guide 57

Deploying the Sharded Cluster

For information seeFieldProvider

Amazon EC2 Instance Types in the AWS documentationInstanceTypeAWS

Machine types in the GCP documentationMachineTypeGCP

Sizes for Windows virtual machines in Azure in the Azure
documentation

SizeAzure

Instance Types in the Tencent documentationInstanceTypeTencent

Important: The larger a cloud instance type or storage volume is, the more it costs. It is therefore advisable to
size as accurately as possible, without wasting capacity.

When provisioning on vSphere, specify the amount of memory for a provisioned VM using the Memory field (see
Provider-Specific Parameters in the ICM Guide.)

• Database size — The DataVolumeSize property (see General Parameters in the “ ICM Reference” chapter of the ICM
Guide) determines the size of the deployed InterSystems IRIS instance’s storage volume for data, which is where the
default globals databases for the master and shard namespaces are located. This setting must be large enough to
accommodate the target size of the default globals database, as described in Estimate the Database Cache and Database
Sizes. In the case of AWS and GCP, this setting is limited by the field DataVolumeType (see Provider-Specific
Parameters in the ICM Guide).

Note: In some cases, it may be advisable to increase the size of the generic memory heap on the cluster members,
which can be done by using a CPF merge file to override the [config]/gmheap CPF setting. For information
about allocating memory to the generic memory heap, see gmheap in the Configuration Parameter File Ref-
erence.

It is important is that you determine their values for the database cache and globals database sizes based on your particular
situation, and include them as needed. In general, appropriate sizing of the data nodes in a sharded cluster and configuration
of the InterSystems IRIS instances on them is a complex matter influenced by many factors, including experience; as your
experience accumulates, you are likely to modify some of these settings.

4.2.3.4 Provision the Infrastructure

When your definitions files are complete, begin the provisioning phase by issuing the command icm provision on the ICM
command line. This command allocates and configures the nodes specified in the definitions file. At completion, ICM also
provides a summary of the nodes and associated components that have been provisioned, and outputs a command line
which can be used to delete the infrastructure at a later date, for example:

Machine IP Address DNS Name
------- --------- -------
ACME-DATA-TEST-0001 00.53.183.209 ec2-00-53-183-209.us-west-1.compute.amazonaws.com
ACME-DATA-TEST-0002 00.56.59.42 ec2-00-56-59-42.us-west-1.compute.amazonaws.com
ACME-DATA-TEST-0003 00.67.1.11 ec2-00-67-1-11.us-west-1.compute.amazonaws.com
ACME-DATA-TEST-0004 00.193.117.217 ec2-00-193-117-217.us-west-1.compute.amazonaws.com
ACME-LB-TEST-0000 (virtual DATA) ACME-LB-TEST-1546467861.amazonaws.com
To destroy: icm unprovision [-cleanUp] [-force]

Once your infrastructure is provisioned, you can use several infrastructure management commands. For detailed information
about these and the icm provision command, including reprovisioning an existing configuration to scale out or in or to
modify the nodes, see Provision the Infrastructure in the “Using ICM” chapter of the ICM Guide.

4.2.3.5 Deploy and Manage Services

ICM carries out deployment of InterSystems IRIS and other software services using Docker images, which it runs as con-
tainers by making calls to Docker. In addition to Docker, ICM also carries out some InterSystems IRIS-specific configuration

58 Scalability Guide

Horizontally Scaling for Data Volume with Sharding

https://aws.amazon.com/ec2/instance-types/
https://cloud.google.com/compute/docs/machine-types
https://docs.microsoft.com/en-us/azure/virtual-machines/virtual-machines-windows-sizes
https://intl.cloud.tencent.com/document/product/213/11518

over JDBC. There are many container management tools available that can be used to extend ICM’s deployment and
management capabilities.

The icm run command downloads, creates, and starts the specified container on the provisioned nodes. The icm run
command has a number of useful options, and also lets you specify Docker options to be included, so there are many versions
on the command line depending on your needs. Here are just two examples:

• When deploying InterSystems IRIS images, you must set the password for the predefined accounts on the deployed
instances. The simplest way to do this is to omit a password specification from both the definitions files and the command
line, which causes ICM to prompt you for the password (with typing masked) when you execute icm run. But this
may not be possible in some situations, such as when running ICM commands with a script, in which case you need
either the -iscPassword command line option or the iscPassword field in the defaults file.

• You can deploy different containers on different nodes — for example, InterSystems IRIS the DM and AM nodes and
the InterSystems Web Gateway on the WS nodes — by specifying different values for the DockerImage field (such as
intersystems/iris:stable and intersystems/webgateway:stable) in the different node definitions in the definitions.json file.
To deploy multiple containers on a node or nodes, however, you can run the icm run command more than once — the
first time to deploy the image(s) specified by the DockerImage field, and subsequent times using the -image and
-container options (and possibly the -role or -machine option) to deploy a custom container.

For a full discussion of the use of the icm run command, including redeploying services on an existing configuration, see
The icm run Command in the “Using ICM” chapter of the ICM Guide.

At deployment completion, ICM sends a link to the appropriate node’s Management Portal, for example:

Management Portal available at: http://ec2-00-153-49-109.us-west-1.compute.amazonaws.com:52773/csp/sys/UtilHome.csp

In the case of a sharded cluster, the provided link is for data node 1.

Once your containers are deployed, you can use a number of ICM commands to manage the deployed containers and
interact with the containers and the InterSystems IRIS instances and other services running inside them; for more information,
see Container Management Commands and Service Management Commands in the “Using ICM” chapter of the ICM
Guide.

4.2.3.6 Unprovision the Infrastructure

Because public cloud platform instances continually generate charges and unused instances in private clouds consume
resources to no purpose, it is important to unprovision infrastructure in a timely manner. The icm unprovision command
deallocates the provisioned infrastructure based on the state files created during provisioning. As described in Provision
the Infrastructure, the needed command line is provided when the provisioning phase is complete, and is also contained in
the ICM log file, for example:

To destroy: icm unprovision [-cleanUp] [-force]

For more detailed information about the unprovisioning phase, see Unprovision the Infrastructure in the “Using ICM”
chapter of the ICM Guide.

4.2.4 Deploy the Cluster Using the %SYSTEM.Cluster API

Use the following procedure to deploy a basic InterSystems IRIS sharded cluster of data nodes using the %SYSTEM.Cluster
API. You will probably find it useful to refer the %SYSTEM.Cluster class documentation in the InterSystems Class Reference.

Note: As with all classes in the %SYSTEM package, the %SYSTEM.Cluster methods are available through
$SYSTEM.Cluster.

Scalability Guide 59

Deploying the Sharded Cluster

This procedure does not cover the deployment of mirrored data nodes; that procedure is provided in Mirror for High
Availability. Similarly, see Deploy Compute Nodes for information about using the API to add compute nodes to a basic
cluster.

• Prerequisites for the %SYSTEM.Cluster API

• Provision or identify the infrastructure

• Install InterSystems IRIS on the data nodes

• Configure the data nodes

4.2.4.1 Prerequisites for the %SYSTEM.Cluster API

This procedure assumes that each data and compute node represents an InterSystems IRIS instance installed on its own
system, and that the prospective nodes meet the following requirements:

• They are mutually accessible through TCP/IP.

• The InterSystems IRIS instances have sharding-enabled licenses.

Important: Under some circumstances, the %SYSTEM.Cluster API may be unable to resolve the hostnames of one
or more nodes into IP addresses that are usable for interconnecting the nodes of a cluster. When this is the
case, you can call $SYSTEM.Sharding.SetNodeIPAddress() (see %SYSTEM.Sharding API) to specify
the IP address to be used for each node. To use $SYSTEM.Sharding.SetNodeIPAddress(), you must call
it on every intended cluster node before making any %SYSTEM.Cluster API calls on those nodes, for
example:

set status = $SYSTEM.Sharding.SetNodeIPAddress("00.53.183.209")

4.2.4.2 Provision or Identify the Infrastructure

Identify the needed number of networked host systems (physical, virtual, or cloud) — one host for each data node. If you
are planning compute nodes, you need one host system for each of those as well.

A minimum network bandwidth of 1 GB between all nodes is recommended, but 10 GB or more is preferred, if available;
greater network throughput increases the performance of the sharded cluster.

4.2.4.3 Deploy InterSystems IRIS on the Data Nodes

1. Deploy an instance of InterSystems IRIS on each system, either by creating a Docker container from an InterSystems-
provided image (as described in Running InterSystems Products in Containers) or by installing InterSystems IRIS
from a kit (as described in the Installation Guide).

Important: All InterSystems IRIS instances in a sharded cluster must be of the same version, and all must have
sharding licenses.

All data nodes in a sharded cluster should have identical or at least closely comparable specifications
and resources. (The same is true of compute nodes, although storage is not a consideration in their
case.)

This procedure instructs you to restart each instance after initializing it as a data node because the
$SYSTEM.Cluster.Initialize() method resets the

The InterSystems IRIS instances to be deployed as data nodes must have the ECP configuration parameters Maximum

number of application servers (MaxServerConn in the CPF) and Maximum number of data servers (MaxServers) set to
values at least as great as the anticipated number of nodes in the sharded cluster. Note that if these values are changed

60 Scalability Guide

Horizontally Scaling for Data Volume with Sharding

after installation, the instances must be restarted for the new values to take effect. Assuming you do not plan as many
as 64 data nodes, you have three options for ensuring that these settings are correct:

• On UNIX® and Linux platforms, deploy or install each instance using a CPF merge file to update the default
values of these settings to appropriate ones. When you do this, no restart is required after the
$SYSTEM.Cluster.Initialize() API call (although after the next restart both parameters will be set to 64 as a
result of the call). Use of the CPF merge file is described in the following documentation:

– Defining a CPF in a Deployment in the “ Introduction to the Configuration Parameter File” chapter of the
Configuration Parameter File Reference.

– Deploying Customized InterSystems IRIS Instances in Running InterSystems Products in Containers.

– Unattended Installation Parameters in the “ Installing InterSystems IRIS on UNIX, Linux, and macOS”
chapter of the Installation Guide.

• Change the settings to appropriate values using the Management Portal, as described in Deploy the Cluster Using
the Management Portal in the “Scaling for User Volume with Distributed Caching” chapter of this guide, after
deploying InterSystems IRIS but before configuring the cluster. This requires that you restart the instance after
making this call.

• Allow the $SYSTEM.Cluster.Initialize()and $SYSTEM.Cluster.AttachAsDataNode() API calls, used on node
1 and the remaining data nodes, respectively, and described in Configure the Data Nodes, to reset both of these
values to 64. This requires that you restart the instance after making each call.

2. Ensure that the storage device hosting each data node instance’s databases is large enough to accommodate the target
globals database size, as described in Estimate the Database Cache and Database Sizes.

Important: All instances should have database directories and journal directories located on separate storage
devices, if possible. This is particularly important when high volume data ingestion is concurrent with
running queries. For guidelines for file system and storage configuration, including journal storage,
see the “File System Recommendations” and “Storage Recommendations” chapters of the Installation
Guide and Journaling Best Practices in the “Journaling” chapter of the Data Integrity Guide.

3. Allocate the database cache (global buffer pool) for each instance, depending on its eventual role in the cluster,
according to the sizes you determined in Estimate the Database Cache and Database Sizes. For the Management Portal
procedure for allocating the database cache, see Memory and Startup Settings in the “Configuring InterSystems IRIS”
chapter of the System Administration Guide.

In some cases, it may be advisable to increase the size of the generic memory heap on the cluster members. For infor-
mation on how to allocate memory to the generic memory heap, see gmheap in the Configuration Parameter File
Reference.

Note: You can also allocate the database cache and increase the generic memory heap during instance deployment
by including the globals and gmheap settings, respectively, in a CPF merge file, as described in the first step
in this procedure.

For guidelines for allocating memory to an InterSystems IRIS instance’s routine and database caches as well as the
generic memory heap, see Calculating Initial Memory Requirements in the “Vertical Scaling” chapter.

4.2.4.4 Configure the Data Nodes

For each instance in the cluster and its host, perform the steps described for its role within the cluster.

• Initialize node 1

• Configure the remaining data nodes

Scalability Guide 61

Deploying the Sharded Cluster

Note: Remember that the calls described in this procedure do not work with mirrored nodes; for information on
deploying mirrored data nodes,see Mirror for High Availability.

Initialize Node 1
The first data node you add to the cluster, referred to as node 1, differs from the others in that it stores the cluster’s nonsharded
data, metadata, and code, and hosts the master namespace that provides all of the data nodes with access to that data. This
distinction is completely transparent to the user except for the fact that more data is stored on the first data node, a difference
that is typically small.

To initialize node 1, open the InterSystems IRIS Terminal for the instance and call the $SYSTEM.Cluster.Initialize()
method, for example:

set status = $SYSTEM.Cluster.Initialize()

Note: To see the return value (for example, 1 for success) for the each API call detailed in these instructions, enter:

w status

Reviewing status after each call is a good general practice, as a call might fail silently under some circumstances.
If a call does not succeed (status is not 1), display the user-friendly error message by entering:

do $SYSTEM.Status.DisplayError(status)

After calling $SYSTEM.Cluster.Initialize(), restart the instance, unless you had previously changed the values of the
MaxServerConn and MaxServers CPF settings as described in Deploy InterSystems IRIS on the Data Nodes.

The Initialize() call enables the required services, then creates the master and cluster namespaces (IRISCLUSTER and
IRISDM, respectively) and adds needed mappings. Node 1 serves as a template for the rest of the cluster; the name of the
cluster namespace, the characteristics of its default globals database (also called the shard database), and its mappings, are
directly replicated on the second data node you configure, and then directly or indirectly on all other data nodes. The SQL
configuration settings of the instance are replicated as well.

To control the names of the cluster and master namespaces and the characteristics of their globals databases, you can
specify existing namespaces as the cluster namespace, master namespace, or both by including one or both names as argu-
ments. For example:

set status = $SYSTEM.Cluster.Initialize("CLUSTER","MASTER",,)

When you do this, the existing default globals database of each namespace you specify remains in place. This allows you
to control the characteristics of the shard database, which are then replicated on other data nodes in the cluster.

By default, any host can become a cluster node; the third argument to Initialize() lets you specify which hosts can join the
cluster by providing a comma-separated list of IP addresses or hostnames. Any node not in the list cannot join the cluster.

By default, the hostname known to the InterSystems IRIS instance on node 1 is used to configure connections between it
and other nodes in the cluster. If you want to use the host’s IP address instead, include it as the fourth argument. (You
cannot supply a hostname as this argument, only an IP address.) In either case, you will use the host identifier (hostname
or IP address) to identify node 1 when configuring the second data node; you will also need the superserver (TCP) port of
the instance.

62 Scalability Guide

Horizontally Scaling for Data Volume with Sharding

Note: From the perspective of another node (which is what you need in this procedure), the superserver port of a con-
tainerized InterSystems IRIS instance depends on which host port the superserver port was published or exposed
as when the container was created. For details on and examples of this, see Running an InterSystems IRIS Container
with Durable %SYS and Running an InterSystems IRIS Container: Docker Compose Example in Running Inter-
Systems Products in Containers and Container networking in the Docker documentation.

The default superserver port number of a kit-installed InterSystems IRIS instance that is the only such on its host
is 51773. To see or set the instance’s superserver port number, select System Administration > Configuration >
System Configuration > Memory and Startup in the instance’s Management Portal. (For information about opening
the Management Portal for the instance, see InterSystems IRIS Connection Information in InterSystems IRIS
Basics: Connecting an IDE.)

The Initialize() method returns an error if the InterSystems IRIS instance is already a node in a sharded cluster, or is a
mirror member.

Configure the Remaining Data Nodes
To configure each additional data node, open the Terminal for the InterSystems IRIS instance and call the
$SYSTEM.Cluster.AttachAsDataNode() method, specifying the hostname of an existing cluster node (node 1, if you are
configuring the second node) and the superserver port of its InterSystems IRIS instance, for example:

set status = $SYSTEM.Cluster.AttachAsDataNode("IRIS://datanode1:51773")

If you supplied an IP address as the fourth argument to Initialize() when initializing node 1, use the IP address instead of
the hostname to identify node 1 in the first argument, for example:

set status = $SYSTEM.Cluster.AttachAsDataNode("IRIS://100.00.0.01:51773")

Note: For important information about determining the correct superserver port to specify, see the previous step, Initialize
Node 1.

After calling $SYSTEM.Cluster.AttachAsDataNode(), restart the instance, unless you had previously changed the values
of the MaxServerConn and MaxServers CPF settings as described in Deploy InterSystems IRIS on the Data Nodes.

The AttachAsDataNode() call does the following:

• Enables the ECP and sharding services

• Creates the cluster namespace and shard database, configuring them to match the settings on the template node (spec-
ified in the first argument), as described in Initialize Node 1, and creating the needed mappings, including those to the
globals and routines databases of the master namespace on node 1 (including any user-defined mappings).

• Sets all SQL configuration options to match the template node.

• Because this node may later be used as the template node for AttachAsDataNode(), sets the list of hosts eligible to
join the cluster to those you specified (if any) in the Initialize() call on node 1.

Note: If a namespace of the same name as the cluster namespace on the template node exists on the new data node, it
and its globals database are used as the cluster namespace and shard database, and only the mappings are replicated.
If the new node is subsequently used as the template node, the characteristics of these existing elements are
replicated.

The AttachAsDataNode() call returns an error if the InterSystems IRIS instance is already a node in a sharded cluster or
is a mirror member, or if the template node specified in the first argument is a mirror member.

If you want other cluster nodes to communicate with this node using its IP address instead of its hostname, supply the IP
address as the second argument.

Scalability Guide 63

Deploying the Sharded Cluster

https://docs.docker.com/config/containers/container-networking/

When you have configured all of the data nodes, you can call the $SYSTEM.Cluster.ListNodes() method to list them, for
example:

set status = $system.Cluster.ListNodes()
NodeId NodeType Host Port
1 Data datanode1 51773
2 Data datanode2 51773
3 Data datanode3 51773

As shown, data nodes are assigned numeric IDs representing the order in which they are attached to the cluster.

The recommended best practice is to load balance application connections across all of the data nodes in a cluster.

For information about adding compute nodes to your cluster, see Deploy Compute Nodes for Workload Separation and
Increased Query Throughput.

4.3 Creating Sharded Tables and Loading Data
Once the cluster is fully configured, you can plan and create the sharded tables and load data into them. The steps involved
are as follows:

• Evaluate existing tables for sharding

• Create sharded tables

• Load data onto the cluster

• Create and load nonsharded tables

4.3.1 Evaluate Existing Tables for Sharding

Although the ratio of sharded to nonsharded data on a cluster is typically high, when planning the migration of an existing
schema to a sharded cluster it is worth remembering that not every table is a good candidate for sharding. In deciding which
of your application’s tables to define as sharded tables and which to define as nonsharded tables, your primary considerations
should be improving query performance and/or the rate of data ingestion, based on the following factors (which are also
discussed in Evaluating the Benefits of Sharding). As you plan, remember that the distinction between sharded and nonsharded
tables is totally transparent to the application SQL; like index selection, sharding decisions have implications for performance
only.

• Overall size — All other things being equal, the larger the table, the greater the potential gain.

• Data ingestion — Does the table receive frequent and/or large INSERT statements? Parallel data loading means
sharding can improve their performance.

• Query volume — Which tables are queried most frequently on an ongoing basis? Again, all other things being equal,
the higher the query volume, the greater the potential performance improvement.

• Query type — Among the larger tables with higher query volume, those that frequently receive queries that read a lot
of data (especially with a high ratio of data read to results returned) or do a lot of computing work are excellent candidates
for sharding. For example, is the table frequently scanned by broad SELECT statements? Does it receive many queries
involving aggregate functions?

Having identified some good candidates for sharding, review the following considerations:

• Frequent joins — As discussed in Choose a Shard Key, tables that are frequently joined can be sharded with equivalent
shard keys to enable cosharded joins, so that joining can be performed locally on individual shards, enhancing perfor-
mance. Review each frequently-used query that joins two large tables with an equality condition to evaluate whether

64 Scalability Guide

Horizontally Scaling for Data Volume with Sharding

it represents an opportunity for a cosharded join. If the queries that would benefit from cosharding the tables represent
a sizeable portion of your overall query workload, these joined tables are good candidates for sharding.

However, when a large table is frequently joined to a much smaller one, sharding the large one and making the small
one nonsharded may be most effective. Careful analysis of the frequency and query context of particular joins can be
very helpful in choosing which tables to shard.

• Unique constraints — A unique constraint on a sharded table can have a significant negative impact on insert/update
performance unless the shard key is a subset of the unique key; see Choose a Shard Key for more information.

Important: Regardless of other factors, tables that are involved in complex transactions requiring atomicity should
never be sharded.

4.3.2 Create Sharded Tables

Sharded tables (as well as nonsharded tables) can be created in the cluster namespace on any node, using a SQL CREATE
TABLE statement containing a sharding specification, which indicates that the table is to be sharded and with what shard
key — the field or fields that determine which rows of a sharded table are stored on which shards. Once the table is created
with the appropriate shard key, which provides a deterministic method of evenly distributing the table’s rows across the
shards, you can load data into it using INSERT and dedicated tools.

4.3.2.1 Choose a Shard Key

By default, when you create a sharded table and do not specify a shard key, data is loaded into it using the system-assigned
RowID as the shard key; for example, with two shards, the row with RowID=1 would go on one shard and the one with
RowID=2 would go on the other, and so on. This is called a system-assigned shard key, or SASK, and is often the simplest
and most effective approach because it offers the best guarantee of an even distribution of data and allows the most efficient
parallel data loading.

Note: By default, the RowID field is named ID and is assigned to column 1. If a user-defined field named ID is added,
the RowID field is renamed to ID1 when the table is compiled, and it is the user-defined ID field that is used by
default when you shard without specifying a key.

You also have the option of specifying one or more fields as the shard key when you create a sharded table; this is called
a user-defined shard key, or UDSK. You might have good opportunities to use UDSKs if your schema includes semantically
meaningful unique identifiers that do not correspond to the RowID, for example when several tables in a schema contain
an accountnumber field.

An additional consideration concerns queries that join large tables. Every sharded query is decomposed into shard-local
queries, each of which is run independently and locally on its shard and needs to see only the data that resides on that shard.
When the sharded query involves one or more joins, however, the shard-local queries typically need to see data from other
shards, which requires more processing time and uses more of the memory allocated to the database cache. This extra
overhead can be avoided by enabling a cosharded join, in which the rows from the two tables that will be joined are placed
on the same shard. When a join is cosharded, a query involving that join is decomposed into shard-local queries that join
only rows on the same shard and thus run independently and locally, as with any other sharded query.

You can enable a cosharded join using one of two approaches:

• Specify equivalent UDSKs for two tables.

• Use a SASK for one table and the coshard with keywords and the appropriate UDSK with another.

To use equivalent UDSKs, simply specify the frequently joined fields as the shard keys for the two tables. For example,
suppose you will be joining the CITATION and VEHICLE tables to return the traffic citations associated with each vehicle,
as follows:

Scalability Guide 65

Creating Sharded Tables and Loading Data

SELECT * FROM citation, vehicle where citation.vehiclenumber = vehicle.vin

To make this join cosharded, you would create both tables with the respective equivalent fields as the shard keys:

CREATE TABLE VEHICLE (make VARCHAR(30) not null, model VARCHAR(20) not null,
 year INT not null, vin VARCHAR(17) not null, shard key (vin))

CREATE TABLE CITATION(citationid VARCHAR(8) not null, date DATE not null,
 licensenumber VARCHAR(12) not null, plate VARCHAR(10) not null,
 vehiclenumber VARCHAR(17) not null, shard key (vehiclenumber))

Because the sharding algorithm is deterministic, this would result in both the VEHICLE row and the CITATION rows (if
any) for a given VIN (a value in the vin and vehiclenumber fields, respectively) being located on the same shard (although
the field value itself does not in any way determine which shard each set of rows is on). Thus, when the query cited above
is run, each shard-local query can execute the join locally, that is, entirely on its shard. A join cannot be cosharded in this
manner unless it includes an equality condition between the two fields used as shard keys. Likewise, you can use multiple-
field UDSKs to enable a cosharded join, as long as the shard keys for the respective tables have same number of fields, in
the same order, of types that allow the field values to be compared for equality.

The other approach, which is effective in many cases, involves creating one table using a SASK, and then another by
specifying the coshard with keywords to indicate that it is to be cosharded with the first table, and a shard key with values
that are equivalent to the system-assigned RowID values of the first table. For example, you might be frequently joining
the ORDER and CUSTOMER tables in queries like the following:

SELECT * FROM orders, customers where orders.customer = customers.%ID

In this case, because the field on one side of the join represents the RowID, you would start by creating that table, CUS-
TOMER, with a SASK, as follows:

CREATE TABLE CUSTOMER (firstname VARCHAR(50) not null, lastname VARCHAR(75) not null,
 address VARCHAR(50) not null, city VARCHAR(25) not null, zip INT, shard)

To enable the cosharded join, you would then shard the ORDER table, in which the customer field is defined as a reference
to the CUSTOMER table, by specifying a coshard with the CUSTOMER table on that field, as follows:

CREATE TABLE ORDER (date DATE not null, amount DECIMAL(10,2) not null,
 customer CUSTOMER not null, shard key (customer) coshard with CUSTOMER)

As with the UDSK example previously described, this would result in each row from ORDER being placed on the same
shard as the row from CUSTOMER with RowID value matching its customerid value (for example, all ORDER rows in
which customerid=427 would be placed on the same shard as the CUSTOMER row with ID=427). A cosharded join enabled
in this manner must include an equality condition between the ID of the SASK-sharded table and the shard key specified
for the table that is cosharded with it.

Generally, the most beneficial cosharded joins can be enabled using either of the following, as indicated by your schema:

• SASKs representing structural relationships between tables and the coshard with keywords, as illustrated in the
example, in which customerid in the ORDER table is a reference to RowID in the CUSTOMER table.

• UDSKs involving semantically meaningful fields that do not correspond to the RowID and so cannot be cosharded
using coshard with, as illustrated by the use of the equivalent vin and vehiclenumber fields from the VEHICLE and
CITATION tables. (UDSKs involving fields that happen to be used in many joins but represent more superficial or
adhoc relationships are usually not as helpful.)

Like queries with no joins and those joining sharded and nonsharded data, cosharded joins scale well with increasing
numbers of shards, and they also scale well with increasing numbers of joined tables. Joins that are not cosharded perform
well with moderate numbers of shards and joined tables, but scale less well with increasing numbers of either. For these
reasons, you should carefully consider cosharded joins at this stage, just as, for example, indexing is taken into account to
improve performance for frequently-queried sets of fields.

When selecting shard keys, bear in mind these general considerations:

66 Scalability Guide

Horizontally Scaling for Data Volume with Sharding

• The shard key of a sharded table cannot be changed, and its values cannot be updated.

• All other things being equal, a balanced distribution of a table’s rows across the shards is beneficial for performance,
and the algorithms used to distribute rows achieve the best balance when the shard key contains large numbers of dif-
ferent values but no major outliers (in terms of frequency); this is why the default RowID typically works so well. A
well-chosen UDSK with similar characteristics may also be effective, but a poor choice of UDSK may lead to an
unbalanced data distribution that does not significantly improve performance.

• When a large table is frequently joined to a much smaller one, sharding the large one and making the small one non-
sharded may be more effective than enabling a cosharded join.

4.3.2.2 Evaluate Unique Constraints

When a sharded table has a unique constraint (see Field Constraint and Unique Fields Constraint in the “Create Table”
entry in the InterSystems SQL Reference), uniqueness is guaranteed across all shards. Generally, this means uniqueness
must be enforced across all shards for each row inserted or updated, which substantially slows insert/update performance.
When the shard key is a subset of the fields of the unique key, however, uniqueness can be guaranteed across all shards by
enforcing it locally on the shard on which a row is inserted or updated, avoiding any performance impact.

For example, suppose an OFFICES table for a given campus includes the buildingnumber and officenumber fields. While
building numbers are unique within the campus, and office numbers are unique within each building, the two must be
combined to make each employee’s office address unique within the campus, so you might place a unique constraint on
the table as follows:

CREATE TABLE OFFICES (countrycode CHAR(3), buildingnumber INT not null, officenumber INT not null,
 employee INT not null, CONSTRAINT address UNIQUE (buildingname,officenumber))

If the table is to be sharded, however, and you want to avoid any insert/update impact on performance, you must use
buildingnumber, officenumber, or both as the shard key. For example, if you shard on buildingnumber (by adding shard
key (buildingnumber) to the statement above), all rows for each building are located on the same shard, so when
inserting a row for the employee whose address is “building 10, office 27” , the uniqueness of the address can be enforced
locally on the shard containing all rows in which buildingnumber=10; if you shard on officenumber, all rows in which
officenumber=27 are on the same shard, so the uniqueness of “building 10, office 27” can be enforced locally on that shard.
On the other hand, if you use a SASK, or employee as a UDSK, any combination of buildingnumber and officenumber may
appear on any shard, so the uniqueness of “building 10, office 27” must be enforced across all shards, impacting performance.

For these reasons, you may want to avoid defining unique constraints on a sharded table unless one of the following is true:

• All unique constraints are defined with the shard key as a subset (which may not be as effective generally as a SASK
or a different UDSK).

• Insert and update performance is considered much less important than query performance for the table in question.

Note: Enforcing uniqueness in application code (for example, based on some counter) can eliminate the need for unique
constraints within a table, simplifying shard key selection.

4.3.2.3 Create the Tables

Create the empty sharded tables using standard CREATE TABLE statements (see CREATE TABLE in the SQL Reference)
in the cluster namespace on any data node in the cluster. As shown in the examples in Choose a Shard Key, there are two
types of sharding specifications when creating a table:

• To shard on the system-assigned shard key (SASK), include the shard keyword in the CREATE TABLE statement.

• To shard on a user-defined shard key (UDSK), follow shard with the key keyword and the field or fields to shard on,
for example shard key (customerid, purchaseid).

Scalability Guide 67

Creating Sharded Tables and Loading Data

Note: If the PK_IS_IDKEY option is set when you create a table, as described in Defining the Primary Key in the
“Create Table” entry in the SQL Reference, the table’s RowID is the primary key; in such a case, using the default
shard key means the primary key is the shard key. The best practice, however, if you want to use the primary key
as the shard key, is to explicitly specify the shard key, so that there is no need to determine the state of this setting
before creating tables.

You can display a list of all of the sharded tables on a cluster, including their names, owners, and shard keys, by navigating
to the Sharding Configuration page of the Management Portal (System Administration > Configuration > System Configuration

> Sharding Configuration) on the shard master data server or a data node, selecting the namespace that belongs to the cluster
(master namespace on the shard master or shard namespace on a data shard), and selecting the Sharded Tables tab. For a
table you have loaded with data, you can click the Details link to see how many of the table’s rows are stored on each data
node in the cluster.

Sharded Table Creation Constraints
The following constraints apply to sharded table creation:

• You cannot use ALTER TABLE to make an existing nonsharded table into a sharded table (you can however use
ALTER TABLE to alter a sharded table).

• The SHARD KEY fields must be of numeric or string data types. The only collations currently supported for shard
key fields are exact, SQLString, and SQLUpper, with no truncation.

• All data types are supported except stream fields, the ROWVERSION field, and SERIAL (%Counter) fields.

• A sharded table cannot include %CLASSPARAMETER VERSIONPROPERTY.

For further details on the topics and examples in this section, see CREATE TABLE in the InterSystems SQL Reference.

Defining Sharded Tables Using Sharded Classes
In addition to using DDL to define sharded tables, you can define classes as sharded using the Sharded class keyword; for
details, see Defining a Sharded Table by Creating a Persistent Class in the “Defining Tables” chapter of Using InterSystems
SQL. The class compiler has been extended to warn against using class definition features incompatible with sharding (such
as customized storage definitions) at compile time. More developed workload mechanisms and support for some of these
incompatible features, such as the use of stream properties, will be introduced in upcoming versions of InterSystems IRIS.

4.3.3 Load Data Onto the Cluster

Data can be loaded into sharded tables by using INSERT statements through any InterSystems IRIS interface that supports
SQL, for example the Management Portal, the Terminal, or JDBC. Rapid bulk loading of data into sharded tables is supported
by the transparent parallel load capability built into the InterSystems IRIS JDBC driver, as well as by the InterSystems
IRIS Connector for Spark (see Deploy and Manage Services), which leverages the same capability. Java-based applications
also transparently benefit from the InterSystems IRIS JDBC driver’s parallel loading capability.

4.3.3.1 Load Data Using INSERT

You can verify that a sharded table was created as intended by loading data using an INSERT or INSERT SELECT FROM
through any InterSystems IRIS interface that supports SQL and then querying the table or tables in question.

4.3.3.2 Load Data Using the InterSystems IRIS Spark Connector

The InterSystems IRIS Spark Connector allows you to add Apache Spark capabilities to a sharded cluster. The recommended
configuration is to locate Spark slaves on the data node hosts and a Spark master on the shard master data server host,
connected to the corresponding InterSystems IRIS instances. When you deploy a sharded cluster using ICM, the Apache
Spark image provided by InterSystems lets you easily and conveniently create this configuration (see The icm run Command

68 Scalability Guide

Horizontally Scaling for Data Volume with Sharding

in the “Using ICM” chapter of the ICM Guide). For more information about the Spark Connector and using it to load data,
see Using the InterSystems IRIS Spark Connector.

4.3.3.3 Load Data Using the InterSystems IRIS JDBC Driver

Using the transparent parallel load capability of the InterSystems IRIS JDBC driver, you can construct a tool that retrieves
data from a data source and passes it to the target table on the sharded cluster by means of JDBC connections, as follows:

• Any database for which a suitable JDBC driver is available can act as the data source.

• The InterSystems IRIS JDBC driver, which has been optimized for the parallel insertion of large numbers of records
into the shards of a sharded table, is used to connect to the target table on the sharded cluster. (See Using Java JDBC
with InterSystems IRIS for complete information about the InterSystems IRIS JDBC driver.)

Note: For most data loading operations, including simple INSERTs, the JDBC driver uses direct connections to the
data shards brokered by the shard master. This requires the driver client to reach the data nodes at the IP
addresses or hostnames with which they were assigned to the master namespace (see Configure the Shard
Master Data Server), and means you cannot execute such queries if this is not possible. For example, when
connecting from a local client to a sharded cluster provisioned in the cloud by ICM, the data node IP addresses
known to and returned by the shard master will be on the cloud subnet and thus inaccessible from the local
machine.

For your convenience, InterSystems provides Simple Data Transfer, a JDBC-based utility that can be used to load large
amounts of data from a JDBC data source or flat CSV file into both sharded tables and nonsharded tables (in both sharded
and nonsharded namespaces). For more information about Simple Data Transfer, see the “Using the Simple Data Transfer
Utility” chapter of Using Java JDBC with InterSystems IRIS.

4.3.4 Create and Load Nonsharded Tables

You can create nonsharded tables in the master namespace on the shard master data server, and load data into them, using
your customary methods. These tables are immediately available to the cluster for both nonsharded queries and sharded
queries that join them to sharded tables. (This is in contrast to architectures in which nonsharded tables must be explicitly
replicated to each node that may need them.) See Evaluate Existing Tables for Sharding for guidance in choosing which
tables to load as nonsharded.

4.4 Querying the Sharded Cluster
The master namespace and the sharded tables it contains are fully transparent, and SQL queries involving any mix of
sharded and nonsharded tables in the master namespace, or the corresponding namespace on a shard master app server, are
no different from any SQL queries against any tables in an InterSystems IRIS namespace. No special query syntax is
required to identify sharded tables or shard keys. Queries can join multiple sharded tables, as well as sharded and nonsharded
tables. Everything is supported except what is specified in the following, which represent limitations and restrictions in the
initial version of the InterSystems IRIS sharded cluster; the goal is that they will all be removed.

• The only referential integrity constraints that are enforced for sharded tables are foreign keys when the two tables are
cosharded, and the only referential action supported is NO ACTION.

• Shard key fields must be of numeric or string data types. The only collations currently supported for shard key fields
are exact, SQLString, and SQLUpper, with no truncation.

• Row-level security for sharded tables is not currently supported.

• Linked tables sourcing their content through a SQL Gateway connection cannot be sharded.

Scalability Guide 69

Querying the Sharded Cluster

• Queries with stream fields in the SELECT list are not currently supported.

• Use of the following InterSystems IRIS SQL extensions is not currently supported:

– Aggregate function extensions including %FOREACH, and %AFTERHAVING.

– Nested aggregate functions.

– Queries with both a nonaggregated field and an aggregate function, unless the GROUP BY clause is used.

– The FOR SOME %ELEMENT predicate condition.

– The %INORDER keyword.

Note: If you want to explicitly purge cached queries on the data nodes, you can either purge all cached queries from the
master namespace, or purge cached queries for a specific table. Both of these actions propagate the purge to the
data nodes. Purging of individual cached queries is never propagated to the data nodes. For more information
about purging cached queries, see Purging Cached Queries in the “Cached Queries” chapter of the SQL Optimiza-
tion Guide.

4.5 Additional Sharded Cluster Options
Sharding offers many configurations and options, suitable to your needs. This section provides brief coverage of additional
options of interest, including:

• Add data nodes and rebalance data

• Mirror data nodes for high availability

• Deploy compute nodes for workload separation and increased query throughput

• Install multiple data nodes per system

For further assistance in evaluating the benefits of these options for your cluster, please contact the InterSystems Worldwide
Response Center (WRC).

4.5.1 Add Data Nodes and Rebalance Data

As described in Planning an InterSystems IRIS Sharded Cluster, the number of data nodes you include in a cluster when
first deployed is influenced by a number of factors, including but not limited to the estimated working set for sharded tables
and the compute resources you have available. Over time, you may want to increase the number of data nodes because the
size of your sharded data may grow significantly enough to make a higher shard count desirable, for example, or because
a resource constraint has been removed. Data nodes can be added by reprovisioning and redeploying the cluster using ICM
(see Reprovisioning the Infrastructure and Redeploying Services in the ICM Guide), or using the by repeating the steps
outlined in Configure the Shard Data Servers.

When you add data nodes to a cluster, there is no data stored on them. Sharded data that is already on the cluster and data
that is loaded onto the cluster after they are added is distributed as follows:

• Existing rows of all existing sharded tables remain (roughly) evenly distributed across the original set of data nodes.

• The rows of new sharded tables are evenly distributed across all of the shard servers.

• The distribution of rows added to existing sharded tables depends on whether the shard key is system-assigned or user-
defined, as follows:

70 Scalability Guide

Horizontally Scaling for Data Volume with Sharding

https://www.intersystems.com/support-learning/support/
https://www.intersystems.com/support-learning/support/

– Rows added to existing sharded tables with system-assigned shard keys are evenly distributed across all of the
shard servers.

– Rows added to existing sharded tables with user-defined shard keys are evenly distributed across the original set
of shard servers.

You can, however, use the $SYSTEM.Sharding.Rebalance() API call to rebalance existing sharded data across the
expanded set of data nodes. For example, if you go from four data nodes to eight, rebalancing takes you from four existing
data nodes with one fourth of the sharded data on each, plus four empty new servers, to eight servers with one eighth of
the data on each. Rebalancing also allows rows added to existing sharded tables with user-defined shard keys to be evenly
distributed across all of the shard servers. Thus, after you rebalance, all sharded data — including existing tables, rows
added to existing tables, and new tables — is evenly distributed across all shard servers.

Rebalancing cannot coincide with queries and updates, and so can take place only when the sharded cluster is offline and
no other sharded operations are possible. (In a future release, this limitation will be removed.) For this reason, the
$SYSTEM.Sharding.Rebalance() call places the sharded cluster in a state in which queries and updates of sharded tables
are not permitted to execute, and return an error if attempted.

Each rebalancing call can specify a time limit, however, so that the call can be scheduled in a maintenance window, move
as much data as possible within the window, and return the sharded cluster to a fully-usable state before the window ends.
By using this approach with repeated calls, you can fully rebalance the cluster over a series of scheduled maintenance outages
without otherwise interfering with its operation. You can also specify the minimum amount of data to be moved by the
call; if it is not possible to move that much data within the specified time limit, no rebalancing occurs.

Note: Query and update operations execute correctly before rebalancing is performed (when new shard servers are still
empty), in between the calls of a multicall rebalancing operation, and after rebalancing is complete, but they are
most efficient after all of the data has been rebalanced across all of the shard servers.

The illustration that follows show the process of adding shards and rebalancing data using a multicall rebalancing operation.

Scalability Guide 71

Additional Sharded Cluster Options

Figure 4–2: Adding a Shard and Rebalancing Data

4.5.2 Mirror Data Nodes for High Availability

An InterSystems IRIS mirror is a logical grouping of physically independent InterSystems IRIS instances simultaneously
maintaining exact copies of production databases, so that if the instance providing access to the databases becomes

72 Scalability Guide

Horizontally Scaling for Data Volume with Sharding

unavailable, another can take over. A mirror can provide high availability through automatic failover, in which a failure of
the InterSystems IRIS instance providing database access (or its host system) causes another instance to take over automat-
ically. The “Mirroring” chapter of the High Availability Guide contains detailed information about InterSystems IRIS
mirroring.

The data nodes in a sharded cluster can be mirrored; the recommended general best practice is that either all of these nodes
are mirrored, or that none are. Note that when data nodes are mirrored, sharded queries can transparently complete successfully
even if one or more data nodes fail over during query execution.

Because they do not store persistent data, compute nodes never require mirroring.

Note: This release does not support the use of async members in mirrors serving as data nodes in sharded clusters.

4.5.2.1 Deploy a Mirrored Cluster Using ICM

To deploy a fully mirrored using InterSystems Cloud Manager, refer to Define the Deployment and make the following
changes:

1. Add “Mirror”: “true” to the defaults file.

2. Define an even number of DATA nodes in the definitions file. (If you define an odd number of DATA nodes when
Mirror is set to true, provisioning fails.)

3. If you want to configure a mirror arbiter, include an AR node in the definitions file.

For more information on deploying mirrored configurations with ICM, see ICM Cluster Topology and Mirroring in the
“ ICM Reference” chapter of the ICM Guide.

4.5.2.2 Deploy a Mirrored Cluster Using the %SYSTEM.Cluster API

To deploy each data node in a mirrored cluster using the API, you can begin with either the primary failover member in
an existing mirror or a nonmirrored instance, as follows:

• If you start with an existing mirror primary, the API adds it to the cluster as a data node without any changes to its
mirror configuration.

• If you start with a nonmirrored instance, the API configures it as a mirror primary, based on the settings you provide
in arguments, before adding it to the cluster as a data node.

Either way, the primary of the mirrored data node is attached to the cluster, and requires the addition of a backup failover
member to complete the mirror, as follows:

• If you started with an existing mirror primary, you can add the existing backup to the cluster by specifying it as the
backup of that primary; the backup is attached to the cluster as a data node without any change to the mirror configu-
ration. (If the primary you added does not have a backup, you can add a nonmirrored instance as the backup and the
API automatically configures it as the backup before attaching it to the cluster.)

• If you started with a nonmirrored instance that the API configured as a mirror primary, add a nonmirrored instance by
specifying it as the backup of that primary; the API automatically configures it as the backup before attaching it to the
cluster.

The recommended best practice is that all mirrored data nodes be completed, with both members of the mirror attached to
the cluster, before any data is stored on the cluster.

After you provision or identify the infrastructure and install InterSystems IRIS on the cluster nodes, you may find it convenient
to configure all of the mirrors before deploying them as a sharded cluster. The Management Portal and %SYSTEM.MIRROR

API allow you to specify more settings than the %SYSTEM.Cluster calls described in the following procedure; see Config-
uring Mirroring in the “Mirroring” chapter of the High Availability Guide for details.

Scalability Guide 73

Additional Sharded Cluster Options

The procedure for deploying a mirrored cluster is similar to that for deploying a nonmirrored cluster, as described in Deploy
the Cluster Using the %SYSTEM.Cluster API. Before using it, review the mirror configuration procedures and settings in
Creating a Mirror in the “Mirroring” chapter.

To initialize the node 1 (first data node) mirror and configure the remaining mirrored data nodes, do the following:

1. On the intended node 1 primary, open the InterSystems IRIS Terminal for the instance and call the
$SYSTEM.Cluster.InitializeMirrored() method, for example:

set status = $SYSTEM.Cluster.InitializeMirrored()

Note: To see the return value (for example, 1 for success) for the each API call detailed in these instructions, enter:

w status

If a call does not succeed, display the user-friendly error message by entering:

do $SYSTEM.Status.DisplayError(status)

This call initializes the cluster on the node in the same way as $SYSTEM.Cluster.Initialize(), as described in Initialize
Node 1). The first four arguments (none required) are the same as for Initialize(). If the instance is not already a mirror
primary, you can use the next five arguments to configure it as one; if it is already a primary, these are ignored. The
mirror arguments are as follows:

• Arbiter host

• Arbiter port

• Directory containing the Certificate Authority certificate, local certificate, and private key file required to secure
the mirror with SSL/TLS, if desired. The call expects the files to be named CAFile.pem, CertificateFile.pem, and
PrivateKeyFile.pem, respectively.

• Name of the mirror.

• Name of this mirror member.

The InitializeMirrored() call returns an error if the InterSystems IRIS instance belongs to an existing sharded cluster
or is a mirror member other than primary.

2. On the intended node 1 backup, open the Terminal for the InterSystems IRIS instance and call
$SYSTEM.Cluster.AttachAsMirroredNode(), specifying the host and superserver port of the node 1 primary as the
cluster URL in the first argument, and the mirror role backup in the second, for example:

set status = $SYSTEM.Cluster.AttachAsMirroredNode("IRIS://node1prim:51773","backup")

If you supplied an IP address as the fourth argument to InitializeMirrored() when initializing the node 1 primary, use
the IP address instead of the hostname to identify node 1 in the first argument, for example:

set status = $SYSTEM.Cluster.AttachAsMirroredNode("IRIS://100.00.0.01:51773","backup")

Note: The default superserver port number of an InterSystems IRIS instance that is the only such on its host is
51773. To see or set the instance’s superserver port number, select System Administration > Configuration >
System Configuration > Memory and Startup in the instance’s Management Portal. (For information about
opening the Management Portal for the instance, see InterSystems IRIS Connection Information in InterSystems
IRIS Basics: Connecting an IDE.)

This call attaches the node as a data node in the same way as $SYSTEM.Cluster.AttachAsDataNode(), as described
in Configure the Remaining Data Nodes, and ensures that it is the backup member of the node 1 mirror. If the node is
backup to the node 1 primary before you issue the call — that is, you are initializing an existing mirror as node 1 —

74 Scalability Guide

Horizontally Scaling for Data Volume with Sharding

the mirror configuration is unchanged; if it is not a mirror member, it is added to the node 1 primary’s mirror as backup.
Either way, the namespace, database, and mappings configuration of the node 1 primary are replicated on this node.

3. To configure mirrored data nodes other than node 1, use $SYSTEM.Cluster.AttachAsMirroredNode() to attach both
the primary and the backup to the cluster, as follows:

a. When adding the primary, specify the node 1 primary in the cluster URL and primary as the second argument. If
the instance is not already the primary in a mirror, use the fourth argument and the four that follow to configure
it as one; the arguments are as listed for the InitializeMirrored() call in the preceding. If the instance is already
a mirror primary, the mirror arguments are ignored if provided.

b. When adding a backup, specify the intended primary in the cluster URL and backup as the second argument. If
the instance is already configured as backup in the mirror in which the node you specify is primary, its mirror
configuration is unchanged; if it is not yet a mirror member, it is configured as backup.

In all cases, the node is attached to the cluster in the same way as a nonmirrored node is attached by
$SYSTEM.Cluster.AttachAsMirroredNode(), as described in Configure the Remaining Data Nodes. The third
argument for AttachAsMirroredNode() is the same as for AttachAsDataNode(), that is, the IP address of the
host, included if you want the other cluster members to use it in communicating with this node.

4. When you have configured all of the data nodes, you can call the $SYSTEM.Cluster.ListNodes() method to list them.
When a cluster is mirrored, the list indicates the mirror name and role for each member of a mirrored data node, for
example:

set status = $system.Cluster.ListNodes()
NodeId NodeType Host Port Mirror Failover
1 Data node1prim 51773 MIRROR1 Primary
1 Data node1back 51773 MIRROR1 Backup
2 Data node2prim 51773 MIRROR2 Primary
2 Data node2back 51773 MIRROR2 Backup

Note: The recommended best practice is to load balance application connections across all of the mirrored data nodes
in the cluster.

The InitializeMirrored() call returns an error if

• The current InterSystems IRIS instance is already a node of a sharded cluster.

• The current instance is already a mirror member, but not the primary.

• You specify (in the first two arguments) a cluster namespace or master namespace that already exists, and
its globals database is not mirrored.

The AttachAsMirroredNode() call returns an error if

• The current InterSystems IRIS instance is already a node in a sharded cluster.

• The role primary is specified and the cluster node specified in the first argument is not the node 1 primary,
or the current node is not either primary in a mirror or nonmirrored.

• The role backup is specified and the cluster node specified in the first argument is not a primary mirror
member, or is primary in a mirror that already has a backup failover member.

• The cluster namespace (or master namespace, when adding the node 1 backup) already exists on the current
instance and its globals database is not mirrored.

Scalability Guide 75

Additional Sharded Cluster Options

4.5.3 Deploy Compute Nodes for Workload Separation and Increased Query
Throughput

For advanced use cases in which extremely low query latencies are required, potentially at odds with a constant influx of
data, compute nodes can be added to provide a transparent caching layer for servicing queries. Each compute node caches
the sharded data on the data node it is associated with, as well as nonsharded data when necessary. When a cluster includes
compute nodes, read-only queries are automatically executed in parallel on the compute nodes, rather than on the data
nodes; all write operations (insert, update, delete, and DDL operations) continue to be executed on the data nodes. This
division of labor separates the query and data ingestion workloads while maintaining the advantages of parallel processing
and distributed caching, improving the performance of both. Assigning multiple compute nodes per data node can further
improve the query throughput and performance of the cluster.

When compute nodes are added to a cluster, they are automatically distributed as evenly as possible across the data nodes.
Adding compute nodes yields significant performance improvement only when there is at least one compute node per data
node. Because compute nodes support query execution only and do not store any data, their hardware profile can be tailored
to suit those needs, for example by emphasizing memory and CPU and keeping storage to the bare minimum.

Figure 4–3: Sharded cluster with compute nodes

For information about planning compute nodes and load balancing application connections to clusters with compute nodes,
see Plan Compute Nodes.

76 Scalability Guide

Horizontally Scaling for Data Volume with Sharding

4.5.3.1 Deploy Compute Nodes Using ICM

To include compute nodes in the sharded cluster when deploying using InterSystems Cloud Manager (ICM), include the
desired number of COMPUTE nodes in the definitions file, covered in Define the Deployment. As described in that section,
you can use the instance type field to define the compute nodes’ total memory and a CPF merge file to determine their
database cache size. Compute nodes are automatically assigned to data shards in round robin fashion, distributing them as
evenly as possible. The recommend best practice is to deploy the same number of compute nodes per data shard, so define
the same number of COMPUTE nodes as DATA nodes, or twice as many, or three times as many, and so on.

To add compute nodes to an existing cluster of data nodes, add a COMPUTE node definition to the definitions.json file and
then reprovision and redeploy, as described in Reprovisioning the Infrastructure and Redeploying Services in the “Using
ICM” chapter of the ICM Guide).

Note: If the number of DATA nodes in the definitions file is greater than the number of COMPUTE nodes, ICM issues
a warning.

4.5.3.2 Deploy Compute Nodes Using the Sharding API

To add an instance on a networked system to your cluster as compute nodes, open the InterSystems IRIS Terminal for the
instance and call the $SYSTEM.Cluster.AttachAsComputeNode() method specifying the hostname of an existing cluster
node and the superserver port of its InterSystems IRIS instance, for example:

set status = $SYSTEM.Cluster.AttachAsComputeNode("IRIS://datanode2:51773")

Note: To see the return value (for example, 1 for success) for the each API call detailed in these instructions, enter:

w status

If a call does not succeed, display the user-friendly error message by entering:

do $SYSTEM.Status.DisplayError(status)

If you provided the IP address of the template node when configuring it (see Deploy the Cluster Using the %SYSTEM.Cluster
API), use the IP address instead of the hostname.

set status = $SYSTEM.Cluster.AttachAsComputeNode("IRIS://100.00.0.01:51773")

Note: From the perspective of another node (which is what you need in this procedure), the superserver port of a con-
tainerized InterSystems IRIS instance depends on which host port the superserver port was published or exposed
as when the container was created. For details on and examples of this, see Running an InterSystems IRIS Container
with Durable %SYS and Running an InterSystems IRIS Container: Docker Compose Example in Running Inter-
Systems Products in Containers and Container networking in the Docker documentation.

The default superserver port number of a kit-installed InterSystems IRIS instance that is the only such on its host
is 51773. To see or set the instance’s superserver port number, select System Administration > Configuration >
System Configuration > Memory and Startup in the instance’s Management Portal. (For information about opening
the Management Portal for the instance, see InterSystems IRIS Connection Information in InterSystems IRIS
Basics: Connecting an IDE.)

After calling $SYSTEM.Cluster.AttachAsComputeNode(), restart the instance, unless you had previously changed the
values of the MaxServerConn and MaxServers CPF settings as described in Deploy InterSystems IRIS on the Data Nodes
in the procedure for deploying a sharded cluster using the %SYSTEM.Cluster API.

If the cluster node you identify in the first argument is a data node, it is used as the template; if it is a computer node, the
data node to which it is assigned is used as the template. The AttachAsComputeNode() call does the following:

• Enables the ECP and sharding services

Scalability Guide 77

Additional Sharded Cluster Options

https://docs.docker.com/config/containers/container-networking/

• Associates the new compute node with a data node that previously had the minimum number of associated compute
nodes, so as to automatically balance compute nodes across the data nodes.

• Creates the cluster namespace, configuring it to match the settings on the template node (specified in the first argument),
as described in Initialize Node 1, and creating all needed mappings.

• Sets all SQL configuration options to match the template node.

If a namespace of the same name as the cluster namespace already exists on the new compute node, it is used as the cluster
namespace, and only the mappings are replicated.

If you want other cluster nodes to communicate with this node using its IP address instead of its hostname, supply the IP
address as the second argument.

The AttachAsComputeNode() call returns an error if the InterSystems IRIS instance is already a node in a sharded cluster.

When you have configured all of the compute nodes, you can call the $SYSTEM.Cluster.ListNodes() method to list them,
for example:

set status = $system.Cluster.ListNodes()
NodeId NodeType DataNodeId Host Port
1 Data datanode1 51773
2 Data datanode2 51773
3 Data datanode3 51773
1001 Compute 1 computenode1 51773
1002 Compute 2 computenode2 51773
1003 Compute 3 computenode3 51773

When compute nodes are deployed, the list indicates the node ID of the data node that each compute node is assigned to.
You can also use the $SYSTEM.Cluster.GetMetadata() retrieve metadata for the cluster, including the names of the
cluster and master namespaces and their default globals databases and settings for the node on which you issue the call.

4.5.4 Install Multiple Data Nodes per System

With a given number of systems hosting data nodes, configuring multiple data node instances per system using the
%SYSTEM.Sharding API can significantly increase data ingestion throughput. Therefore, when achieving the highest data
ingestion throughput at the lowest cost is a concern, this may be achieved by attaching two or three data node instances per
host. The gain achieved will depend on server type, server resources, and overall workload. While adding to the total
number of systems might achieve the same throughput gain, or more (without dividing a host system’s memory among
multiple database caches), adding instances is less expensive than adding systems.

4.6 InterSystems IRIS Sharding Reference
This section contains additional information about planning, deploying, and using a sharded configuration, including the
following:

• Planning an InterSystems IRIS Sharded Cluster

• Coordinated Backup and Restore of Sharded Clusters

• Sharding APIs

• Deploying the Namespace-level Architecture

• Reserved Names

78 Scalability Guide

Horizontally Scaling for Data Volume with Sharding

4.6.1 Planning an InterSystems IRIS Sharded Cluster

This section provides some first-order guidelines for planning a basic sharded cluster, and for adding compute nodes if
appropriate. It is not intended to represent detailed instructions for a full-fledged design and planning process. The following
tasks are addressed:

• Combine sharding with vertical scaling

• Plan a basic cluster of data nodes

• Plan compute nodes

4.6.1.1 Combine Sharding with Vertical Scaling

Planning for sharding typically involves considering the tradeoff between resources per system and number of systems in
use. At the extremes, the two main approaches can be stated as follows:

• Scale vertically to make each system and instance as powerful as feasible, then scale horizontally by adding additional
powerful nodes.

• Scale horizontally using multiple affordable but less powerful systems as a cost-effective alternative to one high-end,
heavily-configured system.

In practice, in most situations, a combination of these approaches works best. Unlike other horizontal scaling approaches,
InterSystems IRIS sharding is easily combined with InterSystems IRIS’s considerable vertical scaling capacities. In many
cases, a cluster hosted on reasonably high-capacity systems with a range of from 4 to 16 shard servers will yield the greatest
benefit.

4.6.1.2 Plan a Basic Cluster of Data Nodes

To use these guidelines, you need to estimate several variables related to the amount of data to be stored on the cluster.

1. First, review the data you intend to store on the cluster to estimate the following:

a. Total size of all the sharded tables to be stored on the cluster, including their indexes.

b. Total size of the nonsharded tables (including indexes) to be stored on the cluster that will be frequently joined
with sharded tables.

c. Total size of all of the nonsharded tables (including indexes) to be stored on the cluster. (Note that the previous
estimate is a subset of this estimate.)

2. Translate these totals into estimated working sets, based on the proportion of the data that is regularly queried.

Estimating working sets can be a complex matter. You may be able to derive useful information about these working
sets from historical usage statistics for your existing database cache(s). In addition to or in place of that, divide your
tables into the three categories and determine a rough working set for each by doing the following:

• For significant SELECT statements frequently made against the table, examine the WHERE clauses. Do they
typically look at a subset of the data that you might be able to estimate the size of based on table and column
statistics? Do the subsets retrieved by different SELECT statements overlap with each other or are they additive?

• Review significant INSERT statements for size and frequency. It may be more difficult to translate these into
working set, but as a simplified approach, you might estimate the average hourly ingestion rate in MB (records
per second * average record size * 3600) and add that to the working set for the table.

• Consider any other frequent queries for which you may be able to specifically estimate results returned.

Scalability Guide 79

InterSystems IRIS Sharding Reference

• Bear in mind that while queries joining a nonsharded table and a sharded table count towards the working set
NonshardSizeJoinedWS, queries against that same nonsharded data table that do not join it to a sharded table count
towards the working set NonshardSizeTotalWS; the same nonsharded data can be returned by both types of queries,
and thus would count towards both working sets.

You can then add these estimates together to form a single estimate for the working set of each table, and add those
estimates to roughly calculate the overall working sets. These overall estimates are likely to be fairly rough and may
turn out to need adjustment in production. Add a safety factor of 50% to each estimate, and then record the final total
data sizes and working sets as the following variables:

Table 4–1: Cluster Planning Variables

ValueVariable

Total size and working set of sharded tables (plus safety factor)ShardSize, ShardSizeWS

Total size and working set of nonsharded tables that are frequently joined
to sharded tables (plus safety factor)

NonshardSizeJoined,
NonshardSizeJoinedWS

Total size and working set of nonsharded tables (plus safety factor)NonshardSizeTotal,
NonshardSizeTotalWS

Number of data node instancesNodeCount

In reviewing the guidelines in the table that follows, bear the following in mind:

• Generally speaking and all else being equal, more shards will perform faster due to the added parallelism, up to a point
of diminishing returns due to overhead, which typically occurs at around 16 data nodes.

• The provided guidelines represent the ideal or most advantageous configuration, rather than the minimum requirement.

For example, as noted in Evaluating the Benefits of Sharding, sharding improves performance in part by caching data
across multiple systems, rather than all data being cached by a single nonsharded instance, and the gain is greatest
when the data in regular use is too big to fit in the database cache of a nonsharded instance. As indicated in the guidelines,
for best performance the database cache of each data node instance in a cluster would equal at least the combined size
of the sharded data working set and the frequently joined nonsharded data working set, with performance decreasing
as total cache size decreases (all else being equal). But as long as the total of all the data node caches is greater than
or equal to the cache size of a given single nonsharded instance, the sharded cluster will outperform that nonsharded
instance. Therefore, if it is not possible to allocate database cache memory on the shard servers equal to what is recom-
mended, for example, get as close as you can. Furthermore, your initial estimates may turn out to need adjustment in
practice.

• Database cache refers to the database cache (global buffer pool) memory allocation that must be made for each instance.
The manual procedure is described in Memory and Startup Settings in the “Configuring InterSystems IRIS” chapter
of the System Administration Guide; when deploying with ICM, you can override the globals setting in the instance’s
configuration parameters file (CPF) by specifying a CPF merge file, as described in Deploying with Customized
InterSystems IRIS Configurations in the “ ICM Reference” chapter of the ICM Guide. For guidelines for allocating
memory to an InterSystems IRIS instance’s routine and database caches as well as the generic memory heap, see Cal-
culating Initial Memory Requirements in the “Vertical Scaling” chapter of this book.

• Default globals database indicates the target size of the database in question, which is the maximum expected size
plus a margin for greater than expected growth. The file system hosting the database should be able to accommodate
this total, with a safety margin there as well. For general information about InterSystems IRIS database size and
expansion and the management of free space relative to InterSystems IRIS databases, and procedures for specifying

80 Scalability Guide

Horizontally Scaling for Data Volume with Sharding

database size and other characteristics when configuring instances manually, see Configuring Databases in the “Con-
figuring InterSystems IRIS” chapter and Maintaining Local Databases in the “Managing InterSystems IRIS” chapter
of the System Administration Guide.

When deploying using ICM, you can use the DataVolumeSize parameter (see General Parameters in the ICM Guide)
to determine the size of the instance’s storage volume for data, which is where the default globals databases for the
master and cluster namespaces are located; this must be large enough to accommodate the target size of the default
globals database. On some platforms, this setting is limited by the field DataVolumeType (see Provider-Specific
Parameters in the ICM Guide).

Important: When deploying manually, ensure that all instances have database directories and journal directories
located on separate storage devices (ICM arranges this automatically). This is particularly important
when high volume data ingestion is concurrent with running queries. For guidelines for file system
and storage configuration, including journal storage, see the “File System Recommendations” and
“Storage Recommendations” chapters of the Installation Guide and Journaling Best Practices in the
“Journaling” chapter of the Data Integrity Guide.

• The number of data nodes (NodeCount) and the database cache size on each data node are both variables. The desired
relationship between the sum of the data nodes’ database cache sizes and the total working set estimates can be created
by varying the number of shards and the database cache size per shard server. This choice can be based on factors such
as cost tradeoffs between system costs and memory costs; where more systems with lower memory resources are
available, you can allocate smaller amounts of memory to the database caches, and when memory per system is higher,
you can configure fewer servers. Generally speaking and all else being equal, more shards will perform faster due to
the added parallelism, up to a point of diminishing returns (caused in part by increased sharding manager overhead).
The most favorable configuration is typically in the 4-16 shard range, so other factors aside, for example, 8 data nodes
with M memory each are likely to perform better than 64 shards with M/8 memory each.

• Bear in mind that if you need to add data nodes after the cluster has been loaded with data, you can automatically
redistribute the sharded data across the new servers (although this must be done with the cluster offline); see Add Data
Nodes and Rebalance Data for more information. On the other hand, you cannot remove a data node with sharded data
on it, and a server’s sharded data cannot be automatically redistributed to other data nodes, so adding data nodes to a
production cluster involves considerably less effort than reducing the number of data nodes, which requires dropping
all sharded tables before removing the data nodes, then reloading the data after.

• Parallel query processing is only as fast as the slowest data node, so the best practice is for all data nodes in a sharded
cluster to have identical or at least closely comparable specifications and resources. In addition, the configuration of
all IRIS instances in the cluster should be consistent; database settings such as collation and those SQL settings configured
at instance level (default date format, for example) should be the same on all nodes to ensure correct SQL query results.
Standardized procedures and tools like ICM can help ensure this consistency.

Note: The recommended best practice is to load balance application connections across all of the data nodes in a cluster.
ICM can automatically provision and configure a load balancer for the data nodes as needed when deploying in
a public cloud; if deploying a sharded cluster by other means, a load balancing mechanism is required.

The recommendations in the following table assume that you have followed the procedures for estimating total data and
working set sizes described in the foregoing, including adding a 50% safety factor to the results of your calculations for
each variable.

Scalability Guide 81

InterSystems IRIS Sharding Reference

Table 4–2: Cluster Planning Guidelines

Notesshould be at least ...Size of ...

This recommendation assumes that
your application requires 100%
in-memory caching. Depending on
the extent to which reads can be
made from fast storage such as
solid-state drives instead, the size of
the cache can be reduced.

(ShardSizeWS / NodeCount) +
NonshardSizeJoinedWS

Database cache on data nodes

When data ingestion performance is
a major consideration, consider
configuring initial size of the
database to equal the expected
maximum size, thereby avoiding the
performance impact of automatic
database expansion. However, if
running in a cloud environment, you
should also consider the cost impact
of paying for storage you are not
using.

ShardSize / NodeCount plus space
for expected growth

Default globals database for
cluster namespace on each
data node

Nonsharded data is likely to grow
less over time than sharded data,
but of course this depends on your
application.

NonshardSizeTotal and possibly
space for expected growth

Default globals database for
master namespace on node 1
(see Configuring Namespaces)

Ensure that the database is located
on the fastest possible storage, with
plenty of space for significant
expansion. T

No specific guideline.The ideal initial
size depends on your data set,
workload, and query syntax, but will
probably be in excess of 100 GB and
could be considerably more.

IRISTEMP database on shard
master data server

All InterSystems IRIS servers can
benefit by greater numbers of CPUs,
whether or not sharding is involved.
Vertical scaling of CPU, memory,
and storage resources can always
be used in conjunction with sharding
to provide additional benefit, but is
not specifically required, and is
governed by the usual
cost/performance tradeoffs.

No specific recommendations.CPU

All data nodes in a sharded cluster should have identical or at least closely comparable specifications and resources; parallel
query processing is only as fast as the slowest data node. In addition, the configuration of all IRIS instances in the cluster
should be consistent; database settings such as collation and those SQL settings configured at instance level (default date
format, for example) should be the same on all nodes to ensure correct SQL query results. Standardized procedures and
tools like ICM can help ensure this consistency.

82 Scalability Guide

Horizontally Scaling for Data Volume with Sharding

4.6.1.3 Plan Compute Nodes

As described in Overview of InterSystems IRIS Sharding, compute nodes cache the data stored on data nodes and automat-
ically process read-only queries, while all write operations (insert, update, delete, and DDL operations) are executed on
the data nodes. The scenarios most likely to benefit from the addition of compute nodes to a cluster are as follows:

• When high volume data ingestion is concurrent with high query volume, one compute node per data node can improve
performance by separating the query workload (compute nodes) from the data ingestion workload (data nodes)

• When high multiuser query volume is a significant performance factor, multiple compute nodes per data node increases
overall query throughput (and thus performance) by permitting multiple concurrent sharded queries to run against the
data on each underlying data node. (Multiple compute nodes do not increase the performance of individual sharded
queries running one at a time, which is why they are not beneficial unless multiuser query workloads are involved.)
Multiple compute nodes also maintain workload separation when a compute node fails, as queries can still be processed
on the remaining compute nodes assigned to that data node.

When planning compute nodes, consider the following factors:

• If you are considering deploying compute nodes, the best approach is typically to evaluate the operation of your basic
sharded cluster before deciding whether the cluster can benefit from their addition. Compute nodes be easily added to
an existing cluster by reprovisioning your ICM deployment or using the %SYSTEM.Cluster API. For information
adding compute nodes, see Deploy Compute Nodes for Workload Separation and Increased Query Throughput.

• When compute nodes are added to a cluster, they are automatically distributed as evenly as possible across the data
nodes. Bear in mind that adding compute nodes yields significant performance improvement only when there is at least
one compute node per data node. (If your definitions file specifies fewer COMPUTE nodes than DATA nodes, ICM
issues a warning.)

• The recommended best practice is to assign the same number of compute nodes to each data node. Therefore, if you
are planning eight data nodes, for example, recommended choices for the number of compute nodes include zero, eight,
sixteen, and so on.

• Because compute nodes support query execution only and do not store any data, their hardware profile can be tailored
to suit those needs, for example by emphasizing memory and CPU and keeping storage to the bare minimum. All
compute nodes in a sharded cluster should have closely comparable specifications and resources.

• Follow the data node database cache size recommendations (see Plan a Basic Cluster of Data Nodes) for compute
nodes; ideally, each compute node should have the same size database cache as the data node to which it is assigned.

The distinction between data and compute nodes is completely transparent to applications, which can connect to any node's
cluster namespace. Application connections can therefore be load balanced across all of the data and compute nodes in a
cluster, and under most applications scenarios this is the most advantageous approach. What is actually best for a particular
scenario depends on whether you would prefer to optimize query processing or data ingestion. If sharded queries are most
important, you can prioritize them by load balancing across the data nodes, so applications are not competing with shard-
local queries for compute node resources; if high-speed ingestion using parallel load is most important, load balance across
the compute nodes to avoid application activity on the data nodes. If queries and data ingestion are equally important, or
you cannot predict the mix, load balance across all nodes.

ICM allows you to automatically add a load balancer to your DATA node or COMPUTE node definitions; to load balance
across all DATA and COMPUTE nodes, you can provision WS nodes (see ICM Node Types in the “ ICM Reference”
chapter of the ICM Guide), which automatically add all DATA and COMPUTE nodes to their remote server lists. You can
also create your own load balancing arrangement.

4.6.2 Coordinated Backup and Restore of Sharded Clusters

When data is distributed across multiple systems, as in an InterSystems IRIS sharded cluster, backup and restore procedures
may involve additional complexity. Where strict consistency of the data across a sharded cluster is required, independently

Scalability Guide 83

InterSystems IRIS Sharding Reference

backing up and restoring individual nodes is insufficient, because the backups may not all be created at the same logical
point in time. This makes it impossible to be certain, when the entire cluster is restored following a failure, that ordering
is preserved and the logical integrity of the restored databases is thereby ensured.

For example, suppose update A of data on data node S1 was committed before update B of data on data node S2. Following
a restore of the cluster from backup, logical integrity requires that if update B is visible, update A must be visible as well.
But if backups of S1 and S2 are taken independently, it is impossible to guarantee that the backup of S1 was made after A
was committed, even if the backup of S2 was made after B was committed, so restoring the backups independently could
lead to S1 and S2 being inconsistent with each other.

If, on the other hand, the procedures used coordinate either backup or restore and can therefore guarantee that all systems
are restored to the same logical point in time — in this case, following update B — ordering is preserved and the logical
integrity that depends on it is ensured. This is the goal of coordinated backup and restore procedures.

To greatly reduce the chances of having to use any of the procedures described here to restore your sharded cluster, you
can deploy it with mirrored data servers, as described in Mirror for High Availability. Even if the cluster is unmirrored,
most data errors (data corruption, for example, or accidental deletion of data) can be remedied by restoring the data server
on which the error occurred from the latest backup and then recovering it to the current logical point in time using its
journal files. The procedures described here are for use in much rarer situations requiring a cluster-wide restore.

This section covers the following topics:

• Coordinated backup and restore approaches for sharded clusters

• Coordinated backup and restore API calls

• Procedures for coordinated backup and restore

4.6.2.1 Coordinated Backup and Restore Approaches for Sharded Clusters

Coordinated backup and restore of a sharded cluster always involves all of the data servers in the cluster — that is, the
shard master data server and the data nodes. The InterSystems IRIS Backup API includes a Backup.ShardedCluster class
that supports three approaches to coordinated backup and restore of a sharded cluster’s data servers.

Bear in mind that the goal of all approaches is to restore all data servers to the same logical point in time, but the means
of doing so varies. In one, it is the backups themselves that share a logical point in time, but in the others, InterSystems
IRIS database journaling provides the common logical point in time, called a journal checkpoint, to which the databases
are restored. The approaches include:

• Coordinated backups

• Uncoordinated backups followed by coordinated journal checkpoints

• A coordinated journal checkpoint included in uncoordinated backups

To understand how these approaches work, it is important that you understand the basics of InterSystems IRIS data integrity
and crash recovery, which are discussed in the “ Introduction to Data Integrity” chapter of the Data Integrity Guide.
Database journaling, a critical feature of data integrity and recovery, is particularly significant for this topic. Journaling
records all updates made to an instance’s databases in journal files. This makes it possible to recover updates made between
the time a backup was taken and the moment of failure (or another selected point) by restoring updates from the journal
files following restore from backup. Journal files are also used to ensure transactional integrity by rolling back transactions
that were left open by the failure. For detailed information about journaling, see the “Journaling” chapter of the Data
Integrity Guide.

Considerations when selecting an approach to coordinated backup and restore include the following:

• The degree to which activity is interrupted by the backup procedure.

• The complexity of the required restore procedure.

84 Scalability Guide

Horizontally Scaling for Data Volume with Sharding

• The frequency with which the backup procedure should be performed to guarantee sufficient recoverability.

These issues are discussed in detail later in this section.

4.6.2.2 Coordinated Backup and Restore API Calls

The methods in the Backup.ShardedCluster class can be invoked on a sharded cluster’s shard master data server or on one
of its shard master application servers (if they exist). All of the methods take a ShardMasterNamespace argument; this is
the name of either the master namespace on the shard master data server, or the namespace on a shard master application
server that is mapped to the default globals database of the master namespace. (For information about how this relationship
is configured with the API, see Configure the Shard Master App Servers; ICM creates this configuration automatically,
but the result is the same.)

The available methods are as follows:

• Backup.ShardedCluster.Quiesce()

Blocks all activity on all data servers of the sharded cluster, and waits until all pending writes have been flushed to
disk. Backups of the cluster’s data servers taken under Quiesce() represent a logical point in time.

• Backup.ShardedCluster.Resume()

Resumes activity on the data servers after they are paused by Quiesce().

• Backup.ShardedCluster.JournalCheckpoint()

Creates a coordinated journal checkpoint and switches each data server to a new journal file, then returns the checkpoint
number and the names of the precheckpoint journal files. The precheckpoint files are the last journal files on each data
server that should be included in a restore; later journal files contain data that occurred after the logical point in time
represented by the checkpoint.

• Backup.ShardedCluster.ExternalFreeze

Freezes physical database writes, but not application activity, across the cluster, and then creates a coordinated journal
checkpoint and switches each data server to a new journal file, returning the checkpoint number and the names of the
precheckpoint journal files. The backups taken under ExternalFreeze() do not represent a logical point in time, but
they include the precheckpoint journal files, thus enabling restore to the logical point in time represented by the
checkpoint.

• Backup.ShardedCluster.ExternalThaw

Resumes disk writes after they are suspended by ExternalFreeze().

You can review the technical documentation of these calls in the InterSystems Class Reference.

4.6.2.3 Procedures for Coordinated Backup and Restore

The steps involved in the three coordinated backup and restore approaches provided by the Sharding API are described in
the following sections.

• Create coordinated backups

Quiesces all database activity for a period of time.

• Create uncoordinated backups followed by coordinated journal checkpoints

Zero downtime required.

• Include a coordinated journal checkpoint in uncoordinated backups

Zero downtime required.

Scalability Guide 85

InterSystems IRIS Sharding Reference

Data server backups should, in general, include not only database files but all files used by InterSystems IRIS, including
the journal directories, write image journal, and installation data directory, as well as any needed external files. The locations
of these files depend in part on how the cluster was deployed (see Deploying the Sharded Cluster); the measures required
to include them in backups may have an impact on your choice of approach.

Important: The restore procedures described here assume that the data server being restored has no mirror failover
partner available, and would be used with a mirrored data server only in a disaster recovery situation in
which mirror recovery procedures (see Disaster Recovery Procedures in the “Mirroring” chapter of the
High Availability Guide) are insufficient. If the data server being restored is part of a mirror, remove it
from the mirror, complete the restore procedure described, and then rebuild it as described in Rebuilding
a Mirror Member in the “Mirroring” chapter.

Create Coordinated Backups

1. Call Backup.ShardedCluster.Quiesce, which pauses activity on all data servers in the cluster (and thus all application
activity) and waits until all pending writes have been flushed to disk. When this process is completed and the call
returns, all databases and journal files across the cluster are at the same logical point in time.

2. Create backups of all data servers in the cluster. Although the database backups are coordinated, they may include
open transactions; when the data servers are restarted after being restored from backup, InterSystems IRIS recovery
uses the journal files to restore transactional integrity by rolling back these back.

3. When backups are complete, call Backup.ShardedCluster.Resume to restore normal data server operation.

Important: Resume() must be called within the same job that called Quiesce(). A failure return may indicate that
the backup images taken under Quiesce() were not reliable and may need to be discarded.

4. Following a failure, on each data server:

a. Restore the backup image.

b. Verify that the only journal files present are those in the restored image from the time of the backup.

CAUTION: This is critically important because at startup, recovery restores the journal files and rolls back
any transactions that were open at the time of the backup. If journal data later than the time of the
backup exists at startup, it could be restored and cause the data server to be inconsistent with the
others.

c. Restart the data server.

The data server is restored to the logical point in time at which database activity was quiesced.

Note: As an alternative to the first three steps in this procedure, you can gracefully shut down all data servers in the
cluster, create cold backups, and restart the data servers.

Create Uncoordinated Backups Followed by Coordinated Journal Checkpoints

1. Create backups of the databases on all data servers in the cluster while the data servers are in operation and application
activity continues. These backups may be taken at entirely different times using any method of your choice and at any
intervals you choose.

2. Call Backup.ShardedCluster.JournalCheckpoint() on a regular basis, preferably as a scheduled task. This method
creates a coordinated journal checkpoint and returns the names of the last journal file to include in a restore on each
data server in order to reach that checkpoint. Bear in mind that it is the time of the latest checkpoint and the availability
of the precheckpoint journal files that dictate the logical point in time to which the data servers can be recovered, rather
than the timing of the backups.

86 Scalability Guide

Horizontally Scaling for Data Volume with Sharding

Note: Before switching journal files, JournalCheckpoint() briefly quiesces all data servers in the sharded cluster
to ensure that the precheckpoint files all end at the same logical moment in time; as a result, application
activity may be very briefly paused during execution of this method.

3. Ensure that for each data server, you store a complete set of journal files from the time of its last backup to the time
at which the most recent coordinated journal checkpoint was created, ending with the precheckpoint journal file, and
that all of these files will remain available following a server failure (possibly by backing up the journal files regularly).
The databases backups are not coordinated and may also include partial transactions, but when the data servers are
restarted after being restored from backup, recovery uses the coordinated journal files to bring all databases to the same
logical point in time and to restore transactional integrity.

4. Following a failure, identify the latest checkpoint available as a common restore point for all data servers. This requires
means that for each data server you have a database backup that preceding the checkpoint and all intervening journal
files up to the precheckpoint journal file.

CAUTION: This is critically important because at startup, recovery restores the journal files and rolls back any
transactions that were open at the time of the backup. If journal files later than the precheckpoint
journal file exist at startup, they could be restored and cause the data server to be inconsistent with
the others.

5. On each data server, restore the databases from the backup preceding the checkpoint, restoring journal files up to the
checkpoint. Ensure that no journal data after that checkpoint is applied. The simplest way to ensure that is to check if
the server has any later journal files, and if so move or delete them, and then delete the journal log.

The data server is now restored to the logical point in time at which the coordinated journal checkpoint was created.

Include a Coordinated Journal Checkpoint in Uncoordinated Backups

1. Call Backup.ShardedCluster.ExternalFreeze(). This method freezes all activity on all data servers in the sharded
cluster by suspending their write daemons; application activity continues, but updates are written to the journal files
only and are not committed to disk. Before returning, the method creates a coordinated journal checkpoint and switches
each data server to a new journal file, then returns the checkpoint number and the names of the precheckpoint journal
files. At this point, the precheckpoint journal files represent a single logical point in time.

2. Create backups of all data servers in the cluster. The databases backups are not coordinated and may also include partial
transactions, but when restoring the data servers you will ensure that they are recovered to the journal checkpoint,
bringing all databases to the same logical point in time and to restoring transactional integrity.

Note: By default, when the write daemons have been suspended by Backup.ShardedCluster.ExternalFreeze()
for 10 minutes, application processes are blocked from making further updates (due to the risk that journal
buffers may become full). However, this period can be extended using an optional argument to
ExternalFreeze() if the backup process requires more time.

3. When all backups are complete, call Backup.ShardedCluster.ExternalThaw() to resume the write daemons and
restore normal data server operation.

Important: A failure return may indicate that the backup images taken under ExternalFreeze() were not reliable
and may need to be discarded.

4. Following a failure, on each data server:

a. Restore the backup image.

b. Remove any journal files present in the restored image that are later than the precheckpoint journal file returned
by ExternalFreeze().

Scalability Guide 87

InterSystems IRIS Sharding Reference

c. Follow the instructions in Starting InterSystems IRIS Without Automatic WIJ and Journal Recovery in the “Backup
and Restore” chapter of the Data Integrity Guide to manually recover the InterSystems IRIS instance. When you
restore the journal files, start with the journal file that was switched to by ExternalFreeze() and endi with the
precheckpoint journal file returned by ExternalFreeze(). (Note that these may be the same file, in which case this
is the one and only journal file to restore.)

Note: If you are working with containerized InterSystems IRIS instances, see Upgrading When Manual Startup
is Required in Running InterSystems Products in Containers for instructions for doing a manual recovery
inside a container.

The data server is restored to the logical point in time at which the coordinated journal checkpoint was created by the
ExternalFreeze() method.

Note: This approach requires that the databases and journal files on each data server be located such that a single backup
can include them both.

4.6.3 Sharding APIs

At this release, InterSystems IRIS provides two APIs for use in configuring and managing a sharded cluster:

• The %SYSTEM.Cluster API is for use in deploying and managing the current architecture (see Elements of Sharding).

• The %SYSTEM.Sharding API is for use in deploying and managing the namespace-level architecture of previous
versions (see Namespace-level Sharding Architecture).

4.6.3.1 %SYSTEM.Cluster API

For more detail on the %SYSTEM.Cluster API methods and instructions for calling them, see the %SYSTEM.Cluster class
documentation in the InterSystems Class Reference.

Use the %SYSTEM.Cluster API methods in the following ways:

• Set up an InterSystems IRIS instance as the first node of a new sharded cluster by calling Initialize.

• Add an instance to a cluster as a data node by calling AttachAsDataNode on the instance being added.

• Add an instance to a cluster as a compute node by calling AttachAsComputeNode on the instance being added.

• Display a list of a cluster's nodes by calling ListNodes.

• Retrieve an overview of a cluster's metadata by calling GetMetaData.

• Get the name of the cluster namespace for the current instance by calling ClusterNamespace.

%SYSTEM.Cluster methods include the following:

• $SYSTEM.Cluster.Initialize()

Automatically and transparently performs all steps needed to enable the current InterSystems IRIS instance as the first
node of a cluster

• $SYSTEM.Cluster.AttachAsDataNode()

Attaches the current InterSystems IRIS instance to a specified cluster as a data node.

• $SYSTEM.Cluster.AttachAsComputeNode()

Attaches the current InterSystems IRIS instance to a specified cluster as a compute node.

• $SYSTEM.Cluster.ListNodes()

88 Scalability Guide

Horizontally Scaling for Data Volume with Sharding

Lists the nodes of the cluster to which the current InterSystems IRIS instance belongs to the console or to a specified
output file.

• $SYSTEM.Cluster.GetMetaData()

Retrieves an overview of the metadata of the cluster to which the current InterSystems IRIS instance belongs.

• $SYSTEM.Cluster.ClusterNamespace()

Gets the name of the cluster namespace on the current InterSystems IRIS instance.

4.6.3.2 %SYSTEM.Sharding API

For more detail on the %SYSTEM.Sharding API methods and instructions for calling them, see the %SYSTEM.Sharding

class documentation in the InterSystems Class Reference.

Use the %SYSTEM.Sharding API methods in the following ways:

• Enable an InterSystems IRIS instance to act as a shard master or shard server by calling the EnableSharding method.

• Define the set of shards belonging to a master namespace by making repeated calls to AssignShard in the master
namespace, one call for each shard.

• Once shards have been assigned, verify that they are reachable and correctly configured by calling VerifyShards.

• If additional shards are assigned to a namespace that already contains sharded tables, and the new shards can't be
reached for automatic verification during the calls to AssignShard, you can call ActivateNewShards to activate them
once they are reachable.

• List all the shards assigned to a master namespace by calling ListShards.

• Rebalance existing sharded data across the cluster after adding data nodes/shard data servers with
$SYSTEM.Sharding.Rebalance() (see Add Shard Data Servers and Rebalance Data).

• Assign a shard data server to a different shard namespace at a different address by calling ReassignShard.

• Remove a shard from the set belonging to a master namespace by calling DeassignShard.

• Set sharding configuration options by calling SetOption, and retrieve their current values by calling GetOption.

%SYSTEM.Sharding methods include the following:

• $SYSTEM.Sharding.EnableSharding()

Enables the current InterSystems IRIS instance to act as a shard master or shard server.

• $SYSTEM.Sharding.AssignShard()

Assigns a shard to a master namespace.

• $SYSTEM.Sharding.VerifyShards()

Verifies that assigned shards are reachable and are correctly configured.

• $SYSTEM.Sharding.ListShards()

Lists the shards assigned to a specified master namespace, to the console or current device.

• $SYSTEM.Sharding.ActivateNewShards()

Activates shards that could not be activated by prior calls to AssignShard.

• $SYSTEM.Sharding.Rebalance()

Rebalances existing sharded data across the cluster after adding data nodes/shard data servers.

• $SYSTEM.Sharding.ReassignShard()

Scalability Guide 89

InterSystems IRIS Sharding Reference

Reassigns a shard by assigning its shard number to a different shard namespace at a different address.

• $SYSTEM.Sharding.DeassignShard()

Deassigns (unassigns) a shard from a master namespace to which it had previously been assigned. This removes the
shard from the set of shards belonging to the master namespace.

• $SYSTEM.Sharding.SetOption()

Sets a specified sharding configuration option to a specified value within the scope of a specified master namespace.

• $SYSTEM.Sharding.GetOption()

Gets the value of a specified sharding configuration option within the scope of a specified master namespace.

• $SYSTEM.Sharding.SetNodeIPAddress()

Configures a specified IP address rather than a node’s hostname as its address for cluster communications (must be
used on all nodes).

• $SYSTEM.Sharding.Help()

Displays a summary of the methods of %SYSTEM.Sharding.

4.6.4 Deploying the Namespace-level Architecture

Use the following procedure to deploy an InterSystems IRIS sharded cluster with the older namespace-level architecture,
consisting of a shard master, shard data servers, and optionally shard master application servers using the %SYSTEM.Sharding
API. Instructions are also provided for deploying the cluster using the Sharding Configuration page in the Management
Portal (System Administration > Configuration > System Configuration > Sharding Configuration).

Note: As with all classes in the %SYSTEM package, the %SYSTEM.Sharding methods are available through
$SYSTEM.Sharding.

This procedure assumes each InterSystems IRIS instance is installed on its own system.

• Provision or identify the infrastructure

• Install InterSystems IRIS on the cluster nodes

• Configure the cluster nodes

– Configure IP addresses for cluster communications (optional)

– Configure the shard data servers

– Configure the shard master data server

– Configure the shard master app servers

4.6.4.1 Provision or Identify the Infrastructure

Identify the needed number of networked host systems (physical, virtual, or cloud) — one host each for the shard master,
shard data servers, and shard master app servers (if any).

A minimum network bandwidth of 1 GB is recommended, but 10 GB or more is preferred, if available; greater network
throughput increases the performance of the sharded cluster.

4.6.4.2 Install InterSystems IRIS on the Cluster Nodes

1. Install an instance of InterSystems IRIS on each system, as described in the Installation Guide.

90 Scalability Guide

Horizontally Scaling for Data Volume with Sharding

Note: All InterSystems IRIS instances in a sharded cluster must be of the same version.

All InterSystems IRIS instances in a sharded cluster must have sharding licenses.

2. Ensure that the storage device hosting each instance’s databases is large enough to accommodate the target globals
database size, as described in Estimate the Database Cache and Database Sizes.

All instances should have database directories and journal directories located on separate storage devices, if possible.
This is particularly important when high volume data ingestion is concurrent with running queries. For guidelines for
file system and storage configuration, including journal storage, see the “File System Recommendations” and
“Storage Recommendations” chapters of the Installation Guide and Journaling Best Practices in the “Journaling”
chapter of the Data Integrity Guide.

3. Allocate the database cache (global buffer pool) for each instance, depending on its eventual role in the cluster,
according to the sizes you determined in Estimate the Database Cache and Database Sizes. For the procedure for allo-
cating the database cache, see Memory and Startup Settings in the “Configuring InterSystems IRIS” chapter of the
System Administration Guide.

Note: In some cases, it may be advisable to increase the size of the generic memory heap on the cluster members.
For information on how to allocate memory to the generic memory heap, see gmheap in the Configuration
Parameter File Reference.

For guidelines for allocating memory to an InterSystems IRIS instance’s routine and database caches as well as the
generic memory heap, see Calculating Initial Memory Requirements in the “Vertical Scaling” chapter.

4.6.4.3 Configure the Cluster Nodes

Perform the following steps on the instances with each role in the cluster.

Configure IP Addresses for Cluster Communications (Optional)
Under some circumstances, the API may be unable to resolve the hostnames of one or more nodes into IP addresses that
are usable for interconnecting the nodes of a cluster. When this is the case, you can call
$SYSTEM.Sharding.SetNodeIPAddress() (see %SYSTEM.Sharding API) to specify the IP address to be used for each
node. To use $SYSTEM.Sharding.SetNodeIPAddress(), you must call it on every intended cluster node before making any
other %SYSTEM.Sharding API calls on those nodes, for example:

set status = $SYSTEM.Sharding.SetNodeIPAddress("00.53.183.209")

When this call is used, you must use the IP address you specify for each node, rather than the hostname, as the shard-host
argument when calling $SYSTEM.Sharding.AssignShard() on the shard master to assign the node to the cluster, as
described in the following procedure.

Configure the Shard Data Servers
On each shard data server instance:

1. Create the shard namespace using the Management Portal, as described in Create/Modify a Namespace in the “Config-
uring InterSystems IRIS” chapter of the System Administration Guide. (The namespace need not be interoperability-
enabled.)

Create a new database for the default globals database, making sure that it is located on a device with sufficient free
space to accommodate its target size, as described in Estimate the Database Cache and Database Sizes. If data ingestion
performance is a significant consideration, set the initial size of the database to its target size.

Select the globals database you created for the namespace’s default routines database.

Scalability Guide 91

InterSystems IRIS Sharding Reference

Note: As noted in the Estimate the Database Cache and Database Sizes, the shard master data server and shard data
servers all share a single default globals database physically located on the shard master and known as the
master globals database. The default globals database created when a shard namespace is created remains
on the shard, however, becoming the local globals database, which contains the data stored on the shard.
Because the shard data server does not start using the master globals database until assigned to the cluster,
for clarity, the planning guidelines and instructions in this document refer to the eventual local globals database
as the default globals database of the shard namespace.

A new namespace is automatically created with IRISTEMP configured as the temporary storage database;
do not change this setting for the shard namespace.

2. For a later step, record the DNS name or IP address of the host system, the superserver (TCP) port of the instance, and
the name of the shard namespace you created.

Note: From the perspective of another node (which is what you need in this procedure), the superserver port of a
containerized InterSystems IRIS instance depends on which host port the superserver port was published or
exposed as when the container was created. For details on and examples of this, see Running an InterSystems
IRIS Container with Durable %SYS and Running an InterSystems IRIS Container: Docker Compose Example
in Running InterSystems Products in Containers and Container networking in the Docker documentation.

The default superserver port number of a kit-installed InterSystems IRIS instance that is the only such on its
host is 51773. To see or set the instance’s superserver port number, select System Administration > Configu-

ration > System Configuration > Memory and Startup in the instance’s Management Portal. (For information
about opening the Management Portal for the instance, see InterSystems IRIS Connection Information in
InterSystems IRIS Basics: Connecting an IDE.)

3. In an InterSystems IRIS Terminal window, in any namespace, call $SYSTEM.Sharding.EnableSharding (see
%SYSTEM.Sharding API) to enable the instance to participate in a sharded cluster, as follows:

set status = $SYSTEM.Sharding.EnableSharding()

No arguments are required.

Note: To see the return value (for example, 1 for success) for the each API call detailed in these instructions, enter:

w status

Reviewing status after each call is a good general practice, as a call might fail silently under some circum-
stances. If a call does not succeed (status is not 1), display the user-friendly error message by entering:

do $SYSTEM.Status.DisplayError(status)

After making this call, restart the instance, unless you had previously changed the values of the MaxServerConn and
MaxServers CPF settings as described in Deploy InterSystems IRIS on the Data Nodes in the procedure for deploying
a sharded cluster using the %SYSTEM.Cluster API.

Management Portal
Take the following steps to deploy using the Management Portal instead of the API:

• Create the shard namespace by following the instructions in step 1, and make sure you have recorded the needed
information about the instance as detailed in step 2.

• Navigate to the Sharding Configuration page (System Administration > Configuration > System Configuration >

Sharding Configuration) and use the Enable Sharding button to enable sharding. Then restart the instance, unless you
had previously changed the values of the MaxServerConn and MaxServers CPF settings as described in Deploy Inter-
Systems IRIS on the Data Nodes in the procedure for deploying a sharded cluster using the %SYSTEM.Cluster API.

92 Scalability Guide

Horizontally Scaling for Data Volume with Sharding

https://docs.docker.com/config/containers/container-networking/

Configure the Shard Master Data Server
On the shard master data server instance:

1. Create the master namespace using the Management Portal, as described in Create/Modify a Namespace in the “Con-
figuring InterSystems IRIS” chapter of the Administration Guide. (The namespace need not be interoperability-enabled.)

Ensure that the default globals database you create is located on a device with sufficient free space to accommodate
its target size, as described in Estimate the Database Cache and Database Sizes. If data ingestion performance is a
significant consideration, set the initial size of the database to its target size.

Select the globals database you created for the namespace’s default routines database.

Note: A new namespace is automatically created with IRISTEMP configured as the temporary storage database;
do not change this setting for the master namespace. Because the intermediate results of sharded queries are
stored in IRISTEMP, this database should be located on the fastest available storage with significant free space
for expansion, particularly if you anticipate many concurrent sharded queries with large result sets.

2. In an InterSystems IRIS Terminal window, in any namespace, do the following:

a. Call $SYSTEM.Sharding.EnableSharding() (see %SYSTEM.Sharding API) to enable the instance to participate
in a sharded cluster (no arguments are required), as follows:

set status = $SYSTEM.Sharding.EnableSharding()

After making this call, restart the instance, unless you had previously changed the values of the MaxServerConn

and MaxServers CPF settings as described in Deploy InterSystems IRIS on the Data Nodes in the procedure for
deploying a sharded cluster using the %SYSTEM.Cluster API.

b. Call $SYSTEM.Sharding.AssignShard() (see %SYSTEM.Sharding API) once for each shard data server, to
assign the shard to the master namespace you created, as follows:

set status = $SYSTEM.Sharding.AssignShard("master-namespace","shard-host",shard-superserver-port,

 "shard_namespace")

where the arguments represent the name of the master namespace you created and the information you recorded
for that shard data server in the previous step, for example:

set status = $SYSTEM.Sharding.AssignShard("master","shardserver3",51773,"shard3")

c. To verify that you have assigned the shards correctly, you can issue the following command and verify the hosts,
ports, and namespace names:

do $SYSTEM.Sharding.ListShards()
Shard Host Port Namespc Mirror Role VIP
1 shard1.internal.acme.com 56775 SHARD1
2 shard2.internal.acme.com 56777 SHARD2
...

Note: For important information about determining the superserver port of an InterSystems IRIS instance, see
step 2 of the procedure in Configure the Shard Data Servers.

d. To confirm that the ports are correct and all needed configuration of the nodes is in place so that the shard master
can communicate with the shard data servers, call $SYSTEM.Sharding.VerifyShards() (see %SYSTEM.Sharding
API) as follows:

do $SYSTEM.Sharding.VerifyShards()

The $SYSTEM.Sharding.VerifyShards() call identifies a number of errors. For example, if the port provided in
a $SYSTEM.Sharding.AssignShard() call is a port that is open on the shard data server host but not the superserver

Scalability Guide 93

InterSystems IRIS Sharding Reference

port for an InterSystems IRIS instance, the shard is not correctly assigned; the $SYSTEM.Sharding.VerifyShards()
call indicates this.

After configuring shard master application servers as described in the next section, you can call
$SYSTEM.Sharding.VerifyShards() on each of them as well to confirm that they can communicate with the
shard master data server and the shards.

Management Portal:
Take the following steps to deploy using the Management Portal instead of the API:

• Create the master namespace by following the instructions in step 1.

• Navigate to the Sharding Configuration page (System Administration > Configuration > System Configuration >

Sharding Configuration) and use the Enable Sharding button to enable sharding, Then restart the instance, unless you
had previously changed the values of the MaxServerConn and MaxServers CPF settings as described in Deploy Inter-
Systems IRIS on the Data Nodes in the procedure for deploying a sharded cluster using the %SYSTEM.Cluster API.

• Return to the Sharding Configuration page (reloading if necessary) and for each shard data server,

– Click the Assign Shard button and enter the shard data server’s host, the instance’s superserver port, and the name
of the shard namespace in the Assign Shard dialog. Leave the drop-down set to Data Shard, and leave the Mirrored

checkbox cleared. Click Finish to assign the shard data server to the cluster.

– Click the Verify Shards button to verify that the shards have been correctly configured and that the shard master
can communicate with them. If the operation reports an error, you can use the Edit link to review and if necessary
correct the information you entered, or the Deassign link to deassign the shard data server and repeat the Assign

Shard operation.

Note: If you have many shard data servers to assign, you can make the verification operation automatic by
clicking the Advanced Settings button and selecting the Automatically verify shards on assignment in the
Advanced Settings dialog. Other settings in this dialog should be left at the defaults when you deploy a
sharded cluster.

Configure the Shard Master App Servers
On each shard master app server (if you are configuring them):

1. In a Terminal window, in any namespace, call $SYSTEM.Sharding.EnableSharding() (see %SYSTEM.Sharding API)
to enable the instance to participate in a sharded cluster, as follows:

set status = $SYSTEM.Sharding.EnableSharding()

No arguments are required. After making this call, restart the instance, unless you had previously changed the values
of the MaxServerConn and MaxServers CPF settings as described in Deploy InterSystems IRIS on the Data Nodes in
the procedure for deploying a sharded cluster using the %SYSTEM.Cluster API.

2. As described in Configuring an Application Server in the “Horizontally Scaling Systems for User Volume with Inter-
Systems Distributed Caching” chapter of this guide:

• Add the shard master data server as a data server.

Note: Do not change the Maximum number of data servers and Maximum number of application servers settings
on the ECP Settings page, which were specified by the $SYSTEM.Sharding.EnableSharding() call.

• Create a namespace on the shard master data server and configure the default globals and routines databases of
the master namespace on the shard master data server as the default globals and routines databases of the namespace
on the shard master app server, thereby adding them as remote databases. This will be the namespace in which to
execute queries, rather than the master namespace on the shard master data server.

94 Scalability Guide

Horizontally Scaling for Data Volume with Sharding

If you have configured shard master app servers, configure the desired mechanism to distribute application connections
across them.

Management Portal:
Take the following steps to deploy using the Management Portal instead of the API:

• Navigate to the Sharding Configuration page (System Administration > Configuration > System Configuration >

Sharding Configuration) and use the Enable Sharding button to enable sharding. Then restart the instance, unless you
had previously changed the values of the MaxServerConn and MaxServers CPF settings as described in Deploy Inter-
Systems IRIS on the Data Nodes in the procedure for deploying a sharded cluster using the %SYSTEM.Cluster API.

• Add the shard master data server as a data server, create a namespace, and configure the master namespace’s globals
and routines databases as the databases for the new namespace, as described in step 2.

4.6.5 Reserved Names

The following names are used by InterSystems IRIS and should not be used in the names of user-defined elements:

• The package name IRIS.Shard is reserved for system-generated shard-local classnames and should not be used for user-
defined classes.

• The schema name IRIS_Shard is reserved for system-generated shard-local table names and should not be used for
user-defined tables.

• The prefixes IRIS.Shard., IS., and BfVY. are reserved for globals of shard-local tables, and in shard namespaces are
mapped to the shard’s local databases. User-defined global names and global names for nonsharded tables should not
begin with these prefixes. Using these prefixes for globals other than those of shard-local tables can result in unpredictable
behavior.

Scalability Guide 95

InterSystems IRIS Sharding Reference

	Table of Contents
	About This Book
	1 InterSystems IRIS Scalability Overview
	1.1 Scaling Matters
	1.2 Vertical Scaling
	1.3 Horizontal Scaling
	1.3.1 Horizontal Scaling for User Volume
	1.3.2 Horizontal Scaling for Data Volume
	1.3.3 Using InterSystems Cloud Manager to Deploy Horizontally Scaled Configurations

	1.4 Evaluating Your Workload for InterSystems IRIS Scaling Solutions

	2 Vertically Scaling InterSystems IRIS
	2.1 Memory Management and Scaling for InterSystems IRIS
	2.1.1 Memory Overview
	2.1.2 Calculating Initial Memory Requirements
	2.1.3 Vertically Scaling for Memory
	2.1.4 Configuring Large and Huge Pages

	2.2 CPU Sizing and Scaling for InterSystems IRIS
	2.2.1 Basic CPU Sizing
	2.2.2 Balancing Core Count and Speed
	2.2.3 Virtualization Considerations for CPU
	2.2.4 Leveraging Core Count with Parallel Query Execution

	2.3 General Performance Enhancement on InterSystems IRIS Platforms

	3 Horizontally Scaling for User Volume with Distributed Caching
	3.1 Overview of Distributed Caching
	3.1.1 Distributed Caching Architecture
	3.1.2 ECP Features
	3.1.3 ECP Recovery
	3.1.4 Distributed Caching and High Availability

	3.2 Deploying a Distributed Cache Cluster
	3.2.1 Data Server/Application Server Compatibility
	3.2.2 Deploy the Cluster with InterSystems Cloud Manager
	3.2.3 Deploy the Cluster Using the Management Portal
	3.2.4 Distributed Cache Cluster Security

	3.3 Monitoring Distributed Cache Applications
	3.3.1 ECP Connection Information
	3.3.2 ECP Connection States
	3.3.3 ECP Connection Operations

	3.4 Developing Distributed Cache Applications
	3.4.1 ECP Recovery Protocol
	3.4.2 Forced Disconnects
	3.4.3 Performance and Programming Considerations
	3.4.4 ECP-related Errors

	3.5 ECP Recovery Process, Guarantees, and Limitations
	3.5.1 ECP Recovery Guarantees
	3.5.2 ECP Recovery Limitations

	4 Horizontally Scaling for Data Volume with Sharding
	4.1 Overview of InterSystems IRIS Sharding
	4.1.1 Elements of Sharding
	4.1.2 Evaluating the Benefits of Sharding
	4.1.3 Namespace-level Sharding Architecture

	4.2 Deploying the Sharded Cluster
	4.2.1 Plan Data Nodes
	4.2.2 Estimate the Database Cache and Database Sizes
	4.2.3 Deploy the Cluster Using InterSystems Cloud Manager
	4.2.4 Deploy the Cluster Using the %SYSTEM.Cluster API

	4.3 Creating Sharded Tables and Loading Data
	4.3.1 Evaluate Existing Tables for Sharding
	4.3.2 Create Sharded Tables
	4.3.3 Load Data Onto the Cluster
	4.3.4 Create and Load Nonsharded Tables

	4.4 Querying the Sharded Cluster
	4.5 Additional Sharded Cluster Options
	4.5.1 Add Data Nodes and Rebalance Data
	4.5.2 Mirror Data Nodes for High Availability
	4.5.3 Deploy Compute Nodes for Workload Separation and Increased Query Throughput
	4.5.4 Install Multiple Data Nodes per System

	4.6 InterSystems IRIS Sharding Reference
	4.6.1 Planning an InterSystems IRIS Sharded Cluster
	4.6.2 Coordinated Backup and Restore of Sharded Clusters
	4.6.3 Sharding APIs
	4.6.4 Deploying the Namespace-level Architecture
	4.6.5 Reserved Names

