
Creating Web Services and
Web Clients

Version 2019.4
2020-01-28

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Creating Web Services and Web Clients
InterSystems IRIS Data Platform Version 2019.4 2020-01-28
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

1 Introduction to Web Services and Web Clients in InterSystems IRIS .. 3
1.1 Introduction to InterSystems IRIS Web Services ... 3

1.1.1 Creating InterSystems IRIS Web Services ... 3
1.1.2 InterSystems IRIS Web Service as Part of a Web Application ... 4
1.1.3 The WSDL ... 4
1.1.4 Web Service Architecture ... 4

1.2 Introduction to InterSystems IRIS Web Clients ... 5
1.2.1 Creating InterSystems IRIS Web Clients ... 5
1.2.2 Web Client Architecture ... 6

1.3 Additional Features .. 7
1.4 Standards Supported in InterSystems IRIS .. 7

1.4.1 Basic Standards .. 7
1.4.2 WSDL Support in InterSystems IRIS .. 8

1.5 Key Points about the SAX Parser ... 8

2 Creating SOAP Web Services .. 11
2.1 Overview of InterSystems IRIS Web Services ... 11
2.2 Basic Requirements .. 11

2.2.1 Input and Output Objects That Do Not Need %XML.Adaptor 12
2.2.2 Using Result Sets as Input or Output ... 13

2.3 Simple Example ... 13
2.4 Creating a Web Service .. 14

2.4.1 Using the Web Service Wizard ... 14
2.4.2 Using the SOAP Wizard with an Existing WSDL ... 15
2.4.3 Subclassing an Existing InterSystems IRIS Web Service .. 16

2.5 Specifying Parameters of the Web Service ... 16
2.6 About the Catalog and Test Pages .. 17

2.6.1 Access to the Catalog and Test Pages ... 17
2.6.2 Displaying the Catalog and Test Pages .. 18
2.6.3 Notes on These Pages ... 18

2.7 Viewing the WSDL ... 18
2.7.1 Viewing the WSDL .. 19
2.7.2 Generating the WSDL .. 20
2.7.3 Suppressing Internal Web Methods from the WSDL ... 20

3 SOAP Message Variations .. 21
3.1 Overview .. 21

3.1.1 Binding Style .. 22
3.1.2 Encoding Format .. 22

3.2 How Message Variation Is Determined .. 22
3.3 Examples of Message Variations .. 22

3.3.1 Wrapped Document/Literal .. 23
3.3.2 Message/Unwrapped Document/Literal .. 23
3.3.3 RPC/Encoded ... 23
3.3.4 RPC/Literal .. 24

4 Creating Web Clients ... 25

Creating Web Services and Web Clients iii

4.1 Overview of the SOAP Wizard .. 26
4.2 Using the SOAP Wizard ... 26
4.3 Generating the Client Classes Programmatically ... 30
4.4 Modifying the Generated Client Classes .. 31

4.4.1 Adjusting the Generated Classes for Extremely Long Strings 31
4.4.2 Other Adjustments .. 32

4.5 Using the Generated Web Client Classes ... 32
4.5.1 Example 1: Using the Client That Uses Wrapped Messages ... 33
4.5.2 Example 2: Using the Client That Uses Unwrapped Messages 33

4.6 Adjusting Properties of a Web Client Instance ... 34
4.6.1 Changing the Endpoint for the Web Client .. 34
4.6.2 Configuring the Client to Use SSL .. 34
4.6.3 Specifying the SOAP Version .. 35
4.6.4 Other Adjustments .. 35

4.7 Using the HTTP Response ... 35

5 SOAP Fault Handling ... 37
5.1 Default Fault Handling in a Web Service ... 37
5.2 Returning Custom SOAP Faults in an InterSystems IRIS Web Service 37

5.2.1 Methods to Create Faults ... 38
5.2.2 Macros for SOAP Fault Codes ... 39

5.3 Creating a Fault Object Manually .. 40
5.3.1 SOAP 1.1 Faults ... 40
5.3.2 SOAP 1.2 Faults ... 41

5.4 Adding WS-Addressing Header Elements When Faults Occur ... 43
5.5 Adding Other Header Elements When Faults Occur .. 44
5.6 Handling SOAP Faults and Other Errors in an InterSystems IRIS Web Client 45

5.6.1 Example 1: Try-Catch .. 45
5.6.2 Example 2: $ZTRAP .. 46
5.6.3 SSL Handshake Errors ... 46

6 Using MTOM for Attachments .. 47
6.1 Attachments and SOAP Message Packaging ... 47

6.1.1 SOAP Messages with All-Inline Parts (Default) .. 48
6.1.2 SOAP Messages with MTOM Packaging .. 48
6.1.3 SOAP with Attachments ... 49

6.2 Default Behavior of InterSystems IRIS Web Services and Web Clients 50
6.3 Forcing Responses as MTOM Packages .. 50

6.3.1 Effect on the WSDL ... 50
6.4 Forcing Requests as MTOM Packages ... 51

6.4.1 Effect on the WSDL ... 51
6.5 Controlling the MTOM Packaging ... 51
6.6 Example .. 51

6.6.1 Web Service .. 51
6.6.2 Web Client .. 52

7 Using SOAP with Attachments .. 55
7.1 Sending Attachments .. 55
7.2 Using Attachments ... 56
7.3 Example .. 56

7.3.1 Web Service .. 56
7.3.2 Web Client .. 57

iv Creating Web Services and Web Clients

8 Adding and Using Custom Header Elements ... 59
8.1 Introduction to SOAP Header Elements in InterSystems IRIS .. 59

8.1.1 How InterSystems IRIS Represents SOAP Headers .. 60
8.1.2 Supported Header Elements ... 61
8.1.3 Header Elements and the WSDL ... 61
8.1.4 Required Header Elements ... 62

8.2 Defining Custom Header Elements .. 62
8.3 Adding a Custom Header Element to a SOAP Message .. 63
8.4 Specifying Supported Header Elements ... 64
8.5 Specifying the Supported Header Elements in an XData Block .. 64

8.5.1 Details .. 64
8.5.2 Inheritance of Custom Headers .. 65
8.5.3 Examples .. 65

8.6 Specifying the Supported Header Elements in the SOAPHEADERS Parameter 66
8.6.1 Inheritance of Custom Headers .. 66

8.7 Using Header Elements .. 67

9 Adding and Using WS-Addressing Header Elements ... 69
9.1 Overview .. 69
9.2 Effect on the WSDL ... 69
9.3 Default WS-Addressing Header Elements ... 70

9.3.1 Default WS-Addressing Header Elements in Request Messages 70
9.3.2 Default WS-Addressing Header Elements in Response Messages 70

9.4 Adding WS-Addressing Header Elements Manually ... 71
9.5 Handling WS-Addressing Header Elements .. 71

10 SOAP Session Management ... 73
10.1 Overview of SOAP Sessions .. 73
10.2 Enabling Sessions ... 74
10.3 Using Session Information ... 74

11 Using the InterSystems IRIS Binary SOAP Format ... 75
11.1 Introduction .. 75
11.2 Extending the WSDL for an InterSystems IRIS Web Service ... 76
11.3 Redefining an InterSystems IRIS Web Client to Use Binary SOAP 76
11.4 Specifying the Character Set .. 77
11.5 Details on the InterSystems IRIS Binary SOAP Format .. 77

12 Using Datasets in SOAP Messages .. 79
12.1 About Datasets .. 79
12.2 Defining a Typed Dataset ... 80
12.3 Controlling the Dataset Format .. 80
12.4 Viewing the Dataset and Schema as XML ... 81
12.5 Effect on the WSDL ... 82

13 Fine-Tuning a Web Service in InterSystems IRIS ... 83
13.1 Disabling Access to the Online WSDL .. 84
13.2 Requiring a Username and Password ... 84
13.3 Controlling the XML Types ... 84
13.4 Controlling the Namespaces of the Schema and Types .. 85

13.4.1 Controlling the Namespace of the Schema .. 85
13.4.2 Controlling the Namespace of the Types ... 85

13.5 Including Documentation for the Types ... 85

Creating Web Services and Web Clients v

13.6 Adding Namespace Declarations to the SOAP Envelope .. 86
13.7 Checking for Required Elements and Attributes .. 86
13.8 Controlling the Form of Null String Arguments .. 86
13.9 Controlling the Message Name of the SOAP Response .. 87
13.10 Overriding the HTTP SOAP Action and Request Message Name 87
13.11 Specifying Whether Elements Are Qualified ... 88
13.12 Controlling Whether Message Parts Use Elements or Types ... 88
13.13 Controlling Use of the xsi:type Attribute ... 88
13.14 Controlling Use of Inline References in Encoded Format ... 89
13.15 Specifying the SOAP Envelope Prefix ... 89
13.16 Restricting the SOAP Versions Handled by a Web Service ... 90
13.17 Sending Responses Compressed by gzip ... 90
13.18 Defining a One-Way Web Method ... 90

13.18.1 One-Way Web Methods and SOAP Headers ... 91
13.18.2 Dynamically Making a Web Method One Way ... 91

13.19 Adding Line Breaks to Binary Data ... 91
13.20 Adding a Byte-Order Mark to the SOAP Messages ... 91
13.21 Customizing the Timeout Period .. 92
13.22 Using Process-Private Globals to Support Very Large Messages .. 92
13.23 Customizing Callbacks of a Web Service .. 92
13.24 Specifying Custom Transport for a Web Service ... 93

13.24.1 Background .. 94
13.24.2 Defining Custom Transport for a Web Service .. 94

13.25 Defining Custom Processing in a Web Service .. 94
13.25.1 Overview .. 94
13.25.2 Implementing ProcessBodyNode() .. 95
13.25.3 Implementing ProcessBody() ... 96

14 Fine-Tuning a Web Client in InterSystems IRIS ... 99
14.1 Disabling Keep-Alive for a Web Client .. 100
14.2 Controlling the Form of Null String Arguments .. 100
14.3 Controlling the Client Timeout .. 100
14.4 Using a Proxy Server .. 101
14.5 Setting HTTP Headers ... 102
14.6 Specifying the HTTP Version to Use ... 102
14.7 Disabling SSL Server Name Checking .. 102
14.8 Controlling Use of the xsi:type Attribute ... 102
14.9 Controlling Use of Inline References for Encoded Format .. 103
14.10 Specifying the Envelope Prefix .. 103
14.11 Adding Namespace Declarations to the SOAP Envelope .. 103
14.12 Sending Responses Compressed by gzip ... 104
14.13 Quoting the SOAP Action (SOAP 1.1 Only) ... 104
14.14 Treating HTTP Status 202 Like Status 200 .. 105
14.15 Defining a One-Way Web Method ... 105
14.16 Adding Line Breaks to Binary Data ... 105
14.17 Adding a Byte-Order Mark to the SOAP Messages ... 105
14.18 Using Process-Private Globals When Parsing .. 106
14.19 Creating Custom SOAP Messages ... 106
14.20 Specifying Custom HTTP Requests ... 107
14.21 Customizing Callbacks of a Web Client ... 107
14.22 Specifying Custom Transport from a Web Client .. 108

vi Creating Web Services and Web Clients

14.22.1 Background .. 108
14.22.2 Defining Custom Transport for an InterSystems IRIS Web Client 109

14.23 Specifying Flags for the SAX Parser ... 109
14.24 Using the WS-Security Login Feature ... 109
14.25 Using HTTP Authentication ... 110

15 Troubleshooting SOAP Problems in InterSystems IRIS ... 111
15.1 Information Needed for Troubleshooting ... 111

15.1.1 InterSystems IRIS SOAP Log .. 112
15.1.2 HTTP Trace in the Web Gateway ... 113
15.1.3 Third-Party Tracing Tools .. 113

15.2 Problems Consuming WSDLs .. 114
15.3 Problems Sending Messages .. 116

Appendix A: Summary of Web Service URLs .. 119
A.1 Web Service URLs .. 119
A.2 Using a Password-Protected WSDL URL ... 119

Appendix B: Details of the Generated WSDLs ... 121
B.1 Overview of WSDL Documents .. 121
B.2 Sample Web Service .. 122
B.3 Namespace Declarations .. 123
B.4 <service> ... 123
B.5 <binding> .. 124
B.6 <portType> .. 125
B.7 <message> ... 125
B.8 <types> .. 127

B.8.1 Name Attributes ... 127
B.8.2 Namespaces in <types> ... 128
B.8.3 Other Possible Variations ... 129

B.9 WSDL Variations Due to Method Signature Variations .. 130
B.9.1 Returning Values by Reference or as Output Parameters .. 130

B.10 Other WSDL Variations for InterSystems IRIS Web Services .. 131
B.10.1 WSDL Differences for InterSystems IRIS SOAP Sessions 131
B.10.2 WSDL Differences for InterSystems IRIS Binary SOAP Format 132
B.10.3 WSDL Differences for One-Way Web Methods ... 133

Appendix C: Details of the Generated Classes ... 135
C.1 Overview of the Generated Classes ... 135
C.2 Keywords That Control Encoding and Binding Style ... 136
C.3 Parameters and Keywords That Control Namespace Assignment ... 136

C.3.1 Namespaces for the Messages ... 136
C.3.2 Namespaces for the Types ... 136

C.4 Creation of Array Properties .. 137
C.5 Additional Notes on Web Methods in the Generated Class ... 138

Creating Web Services and Web Clients vii

List of Tables

Table 5–1: ObjectScript Macros for SOAP Fault Codes ... 39
Table III–1: Namespaces for SOAP Messages Sent by Web Client or Service 136
Table III–2: Namespaces for Types Used By Web Clients and Web Services 137

viii Creating Web Services and Web Clients

About This Book

This book describes, to programmers, how to create web services and web clients. It includes the following sections:

• Introduction to Web Services and Web Clients in InterSystems IRIS®

• Creating Web Services

• SOAP Message Variations

• Creating Web Clients

• SOAP Fault Handling

• Using MTOM for Attachments

• Using SOAP with Attachments

• Adding and Using Custom Header Elements

• Adding and Using WS-Addressing Header Elements

• SOAP Session Management

• Using the InterSystems IRIS Binary SOAP Format

• Using Datasets in SOAP Messages

• Fine-Tuning a Web Service in InterSystems IRIS

• Fine-Tuning a Web Client in InterSystems IRIS

• Troubleshooting SOAP Problems in InterSystems IRIS

• Summary of Web Service URLs

• Details of the Generated WSDLs

• Details of the Generated Classes

For a detailed outline, see the table of contents.

For more information, try the following sources:

• Securing Web Services describes how to add security elements to InterSystems IRIS web services and web clients.

• Creating Web Services and Web Clients in Productions describes how to add web services and web clients to a produc-
tion, using them as business hosts.

• Projecting Objects to XML describes how to project InterSystems IRIS objects to XML and how to control that projection.

• Using XML Tools describes how to use InterSystems IRIS tools to work with XML-enabled objects and with general
XML documents and DOMs (Document Object Model).

• Using Internet Utilities includes information on using HTTP responses.

Creating Web Services and Web Clients 1

1
Introduction to Web Services and Web
Clients in InterSystems IRIS

InterSystems IRIS supports SOAP 1.1 and 1.2 (Simple Object Access Protocol). This support is easy to use, efficient, and
fully compatible with the SOAP specification. This support is built into InterSystems IRIS and is available on every platform
supported by InterSystems IRIS.

This chapter introduces the following:

• An introduction to InterSystems IRIS web services

• An introduction to InterSystems IRIS web clients

• Additional features you can add to your web services and clients

• Standards supported by InterSystems IRIS web services and clients

• Key points about the SAX parser

1.1 Introduction to InterSystems IRIS Web Services
This section introduces InterSystems IRIS web services.

1.1.1 Creating InterSystems IRIS Web Services

In InterSystems IRIS, you can create a web service in any of the following ways:

• By converting an existing class to a web service with a few small changes. You also need to modify any object classes
used as arguments so that they extend %XML.Adaptor and can be packaged in SOAP messages.

• By creating a new web service class from scratch.

• By using the InterSystems IRIS SOAP Wizard to read an existing WSDL document and generate a web service class
and all supporting type classes.

This technique (WSDL-first development) applies if the WSDL has already been designed and it is now necessary to
create a web service that complies with it.

Creating Web Services and Web Clients 3

1.1.2 InterSystems IRIS Web Service as Part of a Web Application

An InterSystems IRIS web service must run within a web application that you configure within the Management Portal.
Specifically, before you can use a web service class, you must define a web application that uses the namespace that contains
the class.

For details on defining and configuring this web application, see the chapter “Applications” in the Security Administration
Guide.

1.1.3 The WSDL

When the class compiler compiles a web service, it generates a WSDL for the service and publishes that via a web server,
for your convenience. This WSDL complies with the Basic Profile 1.0 established by the WS-I (Web Services Interoper-
ability Organization). In InterSystems IRIS, the WSDL document is served dynamically at a specific URL, and it automat-
ically reflects any changes you make to the interface of your web service class (apart from header elements added at runtime).
In most cases, you can use this document to generate web clients that interoperate with the web service.

For details and important notes, see “Viewing the WSDL,” in the next chapter.

1.1.4 Web Service Architecture

To understand how an InterSystems IRIS web service works by default, it is useful to follow the events that occur when
the web service receives a message it can understand: an HTTP request that includes a SOAP message.

First consider the contents of this HTTP request, which is directed to a specific URL:

• HTTP headers that indicate the HTTP version, character set, and other such information.

The HTTP headers must include the SOAP action, which is a URI that indicates the intent of the SOAP HTTP request.

For SOAP 1.1, the SOAP action is included as the SOAPAction HTTP header. For SOAP 1.2, it is included within
the Content-Type HTTP header.

The SOAP action is generally used to route the inbound SOAP message. For example, a firewall could use this header
to appropriately filter SOAP request messages in HTTP. SOAP places no restrictions on the format or specificity of
the URI or that it is resolvable.

• A request line, which includes a HTTP method such as GET, POST, or HEAD. This line indicates the action to take.

• The message body, which in this case is a SOAP message that contains a method call. More specifically, this SOAP
message indicates the name of the method to invoke and values to use for its arguments. The message can also include
a SOAP header.

Now let us examine what occurs when this request is sent:

1. The request is received by a third-party web server.

2. Because the request is directed to a URL that ends with .cls, the web server forwards the request to the Web Gateway.

3. The Web Gateway examines the URL. It interprets part of this URL as the logical name of a web application. The
Gateway forwards the request to the appropriate physical location (the page for the web service), within that web
application.

4. When the web service page receives the request, it invokes its OnPage() method.

5. The web service checks whether the request includes an InterSystems IRIS SOAP session header and if so, resumes
the appropriate SOAP session or starts a new one.

4 Creating Web Services and Web Clients

Introduction to Web Services and Web Clients in InterSystems IRIS

http://www.ws-i.org/
http://www.ws-i.org/

Note: This step refers to SOAP sessions as supported by InterSystems IRIS SOAP support. The SOAP specification
does not define a standard for sessions. However, InterSystems IRIS SOAP support provides a proprietary
InterSystems IRIS SOAP session header that you can use to maintain a session between a web client and a
web service, as described here.

6. The web service unpacks the message, validates it, and converts all input parameters to their appropriate InterSystems
IRIS representation. For each complex type, the conversion creates an object instance that represents the complex type
and uses that object as input for the web method.

The SOAP action from the HTTP header is used here to determine the method and hence the request object.

When the web service unpacks the message, it creates a new request object and imports the SOAP message into that
object. In this process, the web service uses a generated class (a web method handler class) that was created when you
compiled the web service.

7. The web service executes the requested InterSystems IRIS method, packages up the reply, and constructs a SOAP
response, including a SOAP header if appropriate.

8. The web service writes the SOAP response (an XML document) to the current output device.

The following figure shows the external parts of this flow:

1.2 Introduction to InterSystems IRIS Web Clients
This section introduces InterSystems IRIS web clients.

1.2.1 Creating InterSystems IRIS Web Clients

In InterSystems IRIS, you create a web client by using the InterSystems IRIS SOAP Wizard to read an existing WSDL
document. The wizard generates a web client class and all supporting type classes.

The generated web client interface includes a client class that contains a proxy method for each method defined by the web
service. Each proxy uses the same signature used by the corresponding web service method. The interface also includes
classes to define any XML types needed as input or output for the methods.

Creating Web Services and Web Clients 5

Introduction to InterSystems IRIS Web Clients

Typically you do not customize the generated classes. You instead create additional classes that control the behavior of
your web client and invoke its proxy methods.

1.2.2 Web Client Architecture

To understand how an InterSystems IRIS web client works, we follow the events that occur when a user or other agent
invokes a method within the web client.

1. First the web client creates a SOAP message that represents the method call and its argument values.

2. Next it creates an HTTP request that includes the SOAP message. The HTTP request includes a request line and HTTP
headers, as described earlier.

3. It issues the HTTP request, sending it to the appropriate URL.

4. It waits for the HTTP response and determines the status.

5. It receives the SOAP response from the web service.

6. It unpacks the SOAP response.

The following figure shows this flow:

6 Creating Web Services and Web Clients

Introduction to Web Services and Web Clients in InterSystems IRIS

1.3 Additional Features
You can add the following features to your InterSystems IRIS web services and web clients:

• Session support. As noted earlier, although the SOAP specification does not define a standard for sessions, with
InterSystems IRIS, you can create client-server SOAP sessions.

• Custom SOAP headers (including WS-Addressing headers), custom SOAP message bodies, and custom SOAP faults.

• MIME attachments.

• Use of MTOM (Message Transmission Optimization Mechanism).

• Authentication (user login) between a web client and a web service, as well as key parts of the WS-Security standard.

• Policies, which can control how the service or client do the following:

– Specify the WS-Security header elements to use or to require.

– Specify the use of MTOM.

– Specify the use of WS-Addressing.

See Securing Web Services.

• Options to fine-tune the generated WSDL document to meet most format requirements.

• Use of transport other than HTTP between the web client and web service.

For details on supported standards, see the next section.

1.4 Standards Supported in InterSystems IRIS
This section lists the basic standards and WSDL support details for InterSystems IRIS web services and web clients.

Additional standards are listed in Securing Web Services.

1.4.1 Basic Standards

InterSystems IRIS web services and clients support the following basic standards:

• SOAP 1.1 (see http://www.w3.org/TR/2000/NOTE-SOAP-20000508/), including encoded format.

• SOAP 1.2, including encoded format as specified in section 3 SOAP Version 1.2 Part 2: Adjuncts
(http://www.w3.org/TR/soap12-part2/).

• MTOM (Message Transmission Optimization Mechanism) 1.0 (http://www.w3.org/TR/soap12-mtom/).

• WSDL 1.1. InterSystems IRIS web services produce WSDL documents that comply with the Basic Profile 1.0 established
by the WS-I (Web Services Interoperability Organization). However, InterSystems IRIS web clients do work for more
general WSDL documents.

See “WSDL Support in InterSystems IRIS.”

• UDDI version 1.0 with client access only (no repository provided). See http://uddi.xml.org/

• Attachments handled as a multipart/related MIME message according to the SOAP with Attachments specification
(http://www.w3.org/TR/SOAP-attachments).

Creating Web Services and Web Clients 7

Additional Features

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/soap12-part2/
http://www.w3.org/TR/soap12-mtom/
http://www.ws-i.org/
http://uddi.xml.org/
http://www.w3.org/TR/SOAP-attachments

SOAP with Attachments is supported for SOAP 1.2 and SOAP 1.1.

• Transport via HTTP 1.1 or HTTP 1.0.

• Output from the web client is supported only in UTF-8.

For information on XML standards supported in InterSystems IRIS, see the book Using XML Tools.

1.4.2 WSDL Support in InterSystems IRIS

InterSystems IRIS does not support all possible WSDL documents. More flexibility is provided on the client side, because
it is frequently necessary to create web clients that work with specific WSDLs that cannot be changed. This section discusses
the details of the support.

1.4.2.1 Generated WSDL Documents

The WSDL documents generated by InterSystems IRIS web services do not include headers. Also, the web services that
you can create in InterSystems IRIS do not reflect all possible variations.

Note that the SOAP specifications do not require a web service to generate a WSDL at all.

1.4.2.2 Consuming WSDLs

The InterSystems IRIS SOAP Wizard cannot process all possible WSDL documents. In particular:

• It does not support the <fault> element. That is, if you include a <fault> element within the <operation> element
of the binding, the <fault> element is ignored.

• For the response messages, one of the following must be true:

– Each response message must be in the same namespace as the corresponding request message.

– The response messages must all be in the same namespace as each other (which can be different from the namespaces
used by request messages).

• The InterSystems IRIS SOAP Wizard does not process headers of the WSDL.

The SOAP Wizard does allow the use of the MIME binding in a WSDL (http://www.w3.org/TR/wsdl#_Toc492291084).
The MIME parts are ignored and the remainder of the WSDL is processed. When you create a web service or client based
on a WSDL that contains MIME binding, you must add explicit ObjectScript code to support the MIME attachments; this
task is beyond the scope of this book.

1.5 Key Points about the SAX Parser
The InterSystems IRIS SAX parser is used whenever InterSystems IRIS receives a SOAP message. It is useful to know its
default behavior. Among other tasks, the parser does the following:

• It verifies whether the XML document is well-formed.

• It attempts to validate the document, using the given schema or DTD.

Here it is useful to remember that a schema can contain <import> and <include> elements that refer to other
schemas. For example:

8 Creating Web Services and Web Clients

Introduction to Web Services and Web Clients in InterSystems IRIS

http://www.w3.org/TR/wsdl#_Toc492291084

<xsd:import namespace="target-namespace-of-the-importing-schema"
 schemaLocation="uri-of-the-schema"/>

<xsd:include schemaLocation="uri-of-the-schema"/>

The validation fails unless these other schemas are available to the parser. Especially with WSDL documents, it is
sometimes necessary to download all the schemas and edit the primary schema to use the corrected locations.

• It attempts to resolve all entities, including all external entities. (Other XML parsers do this as well.) This process can
be time-consuming, depending on their locations. In particular, Xerces uses a network accessor to resolve some URLs,
and the implementation uses blocking I/O. Consequently, there is no timeout and network fetches can hang in error
conditions, which have been rare in practice.

If needed, you can create custom entity resolvers; see “Customizing How the SAX Parser Is Used” in Using XML
Tools.

Creating Web Services and Web Clients 9

Key Points about the SAX Parser

2
Creating SOAP Web Services

This chapter describes the basics of how to create a web service in InterSystems IRIS. It includes the following topics:

• Overview of InterSystems IRIS web services

• Basic requirements for web services

• Example

• How to create web services

• How to specify parameters of the web service

• Catalog and test pages for the web service

• How to view the generated WSDL

See the first appendix for a table that summarizes the URLs related to your web service.

2.1 Overview of InterSystems IRIS Web Services
To create a web service in InterSystems IRIS, you create a class that extends %SOAP.WebService, which provides all the
functionality required to make one or more methods callable via the SOAP protocol. In addition, this class automates the
management of SOAP-related bookkeeping, such as maintaining a WSDL document that describes a service.

2.2 Basic Requirements
To create a web service in InterSystems IRIS, create and compile an InterSystems IRIS class that meets the following basic
requirements:

• The class must extend %SOAP.WebService.

• The class must define the SERVICENAME parameter. InterSystems IRIS does not compile the class unless it defines
this parameter.

• This class should define methods or class queries that are marked with the WebMethod keyword.

Creating Web Services and Web Clients 11

Important: In most cases, web methods should be instance methods. Within a web method, it is often necessary
to set properties of and invoke methods of the web service instance (as described in later chapters) to
fine-tune the behavior of the method. Because a class method cannot do these tasks, a class method
is usually not suitable as a web method.

• For any web methods, make sure that each value in the method signature has an XML projection. For example, suppose
that your method had the following signature:

Method MyWebMethod(myarg as ClassA) as ClassB [WebMethod]

In this case, both ClassA and ClassB must have an XML representation. In most cases, this means that their superclass
lists must include %XML.Adaptor; see Projecting Objects to XML. InterSystems IRIS SOAP support provides special
handling for collections and streams, as noted after this list.

The web method can specify the ByRef and Output keywords in the same way that ordinary methods do. (For information
on these keywords, see the chapter “Methods” in Defining and Using Classes.)

• Consider the values that are likely to be carried within these arguments and return values. XML does not permit non-
printing characters, specifically characters below ASCII 32 (except for carriage returns, line feeds, and tabs, which are
permitted in XML).

If you need to include any disallowed nonprinting character, specify the type as %Binary, %xsd.base64Binary (which
is equivalent), or a subclass. This value is automatically converted to base–64 encoding on export to XML (or automat-
ically converted from base–64 encoding on import).

• Do not rely on the method signature to specify the default value for an argument. If you do, the default value is ignored
and a null string is used instead. For example, consider the following method:

Method TestDefaults(val As %String = "Default String") As %String [WebMethod]

When you invoke this method as a web method, if you do not supply an argument, a null string is used, and the value
"Default String" is ignored.

Instead, at the start of the method implementation, test for a value and use the desired default if applicable. One technique
is as follows:

 if arg="" {
 set arg="Default String"
 }

You can indicate the default value in the method signature as usual, but this is purely for informational purposes and
does not affect the SOAP messages.

• For any required arguments in a web method, specify the REQUIRED property parameter within the method signature.
For example:

Method MyWebMethod(myarg as ClassA(REQUIRED=1)) as ClassB [WebMethod]

By default, any inherited methods are treated as ordinary methods, even if a superclass marks them as web methods (but
see “Subclassing an Existing InterSystems IRIS Web Services,” later in this chapter).

2.2.1 Input and Output Objects That Do Not Need %XML.Adaptor

In most cases, when you use an object as input or output to a web method, that object must extend %XML.Adaptor. The
exceptions are as follows:

• If the object is %ListOfDataTypes, %ListOfObjects, %ArrayOfDataTypes, %ArrayOfObjects, or a subclass, the InterSystems
IRIS SOAP support implicitly treats the object as if it included %XML.Adaptor. You do not need to subclass these
classes. However:

12 Creating Web Services and Web Clients

Creating SOAP Web Services

– You must specify ELEMENTTYPE within the method signature, as follows:

Method MyMethod() As %ListOfObjects(ELEMENTTYPE="MyApp.MyXMLType") [WebMethod]
{
 //method implementation
}

Or, in the case of an input argument:

Method MyMethod(input As %ListOfObjects(ELEMENTTYPE="MyApp.MyXMLType")) [WebMethod]
{
 //method implementation
}

– If the class that you name in ELEMENTTYPE is an object class, it must inherit from %XML.Adaptor.

• If the object is one of the stream classes, the InterSystems IRIS SOAP support implicitly treats the object as if it included
%XML.Adaptor. You do not need to subclass the stream class.

If it is a character stream, the InterSystems IRIS SOAP tools assume that the type is string. If it is a binary stream, the
tools treat it as base-64–encoded data. Thus it is not necessary to supply type information.

2.2.2 Using Result Sets as Input or Output

You can use result sets as input or output, but your approach depends on the intended web clients.

• If both the web service and client are based on InterSystems IRIS or one is based on .NET, you can use the specialized
result set class, %XML.DataSet, which is discussed in the chapter “Using Datasets in SOAP Messages.” Or you can
use a class query as a web method. The XML representation is automatically the same as for %XML.DataSet.

• To output results of a query so that a Java-based web client can work with it, use a %ListOfObjects subclass; there is
an example in SOAP.Demo in the SAMPLES namespace.

2.3 Simple Example
This section shows an example web service, as well as an example of a request message that it can recognize and the cor-
responding response message.

First, the web service is as follows:

/// MyApp.StockService
Class MyApp.StockService Extends %SOAP.WebService
{

/// Name of the WebService.
Parameter SERVICENAME = "StockService";

/// TODO: change this to actual SOAP namespace.
/// SOAP Namespace for the WebService
Parameter NAMESPACE = "http://tempuri.org";

/// Namespaces of referenced classes will be used in the WSDL.
Parameter USECLASSNAMESPACES = 1;

/// This method returns tomorrow's price for the requested stock
Method Forecast(StockName As %String) As %Integer [WebMethod]
{
 // apply patented, nonlinear, heuristic to find new price
 Set price = $Random(1000)
 Quit price
}
}

Creating Web Services and Web Clients 13

Simple Example

When you invoke this method from a web client, the client sends a SOAP message to the web service. This SOAP message
might look like the following (with line breaks and spaces added here for readability):

<?xml version="1.0" encoding="UTF-8" ?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xmlns:s='http://www.w3.org/2001/XMLSchema'>
 <SOAP-ENV:Body>
 <Forecast xmlns="http://tempuri.org">
 <StockName xsi:type="s:string">GZP</StockName>
 </Forecast>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Note that the message body (the <SOAP-ENV:Body> element) includes an element named <Forecast>, which is the
name of the method that the client is invoking. The <Forecast> includes one element, <StockName>, whose name is
based on the argument name of the web method that we are invoking. This element contains the actual value of this argument.

The web service performs the requested action and then sends a SOAP message in reply. The response message might look
like the following:

<?xml version="1.0" encoding="UTF-8" ?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xmlns:s='http://www.w3.org/2001/XMLSchema'>
 <SOAP-ENV:Body>
 <ForecastResponse xmlns="http://www.myapp.org">
 <ForecastResult>799</ForecastResult>
 </ForecastResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

These examples do not include the HTTP headers that precede the SOAP message itself.

2.4 Creating a Web Service
You can create web services in any of the following ways:

• By creating a new class or editing an existing class to follow the requirements described earlier in this chapter

• By using the Web Service Wizard

• By using the SOAP Wizard with an existing WSDL

• By subclassing one or more InterSystems IRIS web services

2.4.1 Using the Web Service Wizard

The Web Service Wizard generates a simple stub.

1. Click File > New.

This displays the New dialog box.

2. Click the General tab.

3. Click New Web Service and then click OK.

This displays a wizard.

4. Enter values for the package name, class name, and web service name. These are required.

14 Creating Web Services and Web Clients

Creating SOAP Web Services

5. Optionally edit the namespace URI (or change this initial value later). This is the XML namespace, not the InterSystems
IRIS namespace.

6. Optionally type a list of method names, on separate lines.

7. Click OK.

Now, you have a new web service class that contains stubs for the web methods. For example:

/// MyApp.StockService
Class MyApp.StockService Extends %SOAP.WebService
{

/// Name of the WebService.
Parameter SERVICENAME = "StockService";

/// TODO: change this to actual SOAP namespace.
/// SOAP Namespace for the WebService
Parameter NAMESPACE = "http://tempuri.org";

/// Namespaces of referenced classes will be used in the WSDL.
Parameter USECLASSNAMESPACES = 1;

/// TODO: add arguments and implementation.
/// Forecast
Method Forecast() As %String [WebMethod]
{
 ;Quit "Forecast"
}

}

2.4.2 Using the SOAP Wizard with an Existing WSDL

In some cases, the WSDL has been designed already and it is necessary to create a web service that matches the WSDL;
this is known as “WSDL-first development.” In InterSystems IRIS, there are three steps to this development:

1. Use the SOAP Wizard to read the WSDL and to generate the web service and all supporting classes.

This wizard can also generate web client classes (which is more common).

For information on using this wizard, see “Using the SOAP Wizard,” later in this book. Follow the steps described
in that section and also select the Create Web Service option within the wizard.

Or use the %SOAP.WSDL.Reader class as described in “Using the %SOAP.WSDL.Reader Class.”

2. Examine the generated classes to see if you need to change any %String values in the method signatures.

When the wizard reads a WSDL, it assumes that any string-type input or output can be represented in InterSystems
IRIS as %String, which is not always true. In rare cases, some strings might exceed the maximum length string limit.

See “Adjusting the Generated Classes for Extremely Long Strings,” later in this book.

3. Edit the methods in the generated web service so that they perform the desired actions.

Each method is initially a stub like the following example:

Method Add(a As Test.ns2.ComplexNumber, b As Test.ns2.ComplexNumber) As Test.ns2.ComplexNumber
[Final, SoapAction = "http://www.mynamespace.org/GSOAP.AddComplexWS.Add",
SoapBindingStyle = document, SoapBodyUse = literal, WebMethod]
{
 // Web Service Method Implementation Goes Here.
}

The wizard includes compiler keywords such as Final and SoapBindingStyle. You should not change the values of
these keywords.

Creating Web Services and Web Clients 15

Creating a Web Service

If the WSDL includes WS-Policy elements, the wizard also generates a configuration class for the web service. The default
configuration class name is the web service name, with Config appended to it. For information on WS-Policy, see
Securing Web Services.

2.4.3 Subclassing an Existing InterSystems IRIS Web Service

You can create a web service by creating a subclass of an existing InterSystems IRIS web service class and then adding
the SOAPMETHODINHERITANCE parameter to your class as follows:

PARAMETER SOAPMETHODINHERITANCE = 1;

The default for this parameter is 0. If this parameter is 0, your class does not inherit the web methods as web methods. That
is, the methods are available as ordinary methods but cannot be accessed as web methods within the web service defined
by the subclass.

If you set this parameter to 1, then your class can use web methods defined in any superclasses that are web services.

2.5 Specifying Parameters of the Web Service
Make sure that your web service class uses appropriate values for the following parameters.

Note: If you use the SOAP wizard to generate a web service from an existing WSDL, do not modify any of these
parameters.

SERVICENAME

Name of the web service. This name must start with a letter and must contain only alphanumeric characters.

InterSystems IRIS does not compile the class unless the class defines this parameter.

NAMESPACE

URI that defines the target namespace for your web service, so that your service, and its contents, do not conflict
with another service. This is initially set to "http://tempuri.org" which is a temporary URI often used by
SOAP developers during development.

If you do not specify this parameter, the target namespace is "http://tempuri.org".

For an InterSystems IRIS web service, there is no way to put request messages in different namespaces. An
InterSystems IRIS web client, however, does not have this limitation; see “Namespaces for the Messages,” later
in this book.

RESPONSENAMESPACE

URI that defines the namespace for the response messages. By default, this is equal to the namespace given by
the NAMESPACE parameter.

For an InterSystems IRIS web service, there is no way to put response messages in different namespaces. An
InterSystems IRIS web client, however, does not have this limitation; see “Namespaces for the Messages,” later
in this book.

16 Creating Web Services and Web Clients

Creating SOAP Web Services

TYPENAMESPACE

Namespace for the schema for the types defined by the web service. If you do not specify this parameter, the
schema is in the target namespace of the web service (that is, either NAMESPACE or the default, which is
"http://tempuri.org").

For an InterSystems IRIS web service, there is no way to put the request message types in different namespaces.
An InterSystems IRIS web client does not have this limitation; see “Namespaces for Types,” later in this book.

RESPONSETYPENAMESPACE

URI that defines the namespace for types used by the response messages. By default, this is equal to the namespace
given by the TYPENAMESPACE parameter.

This parameter is used only if SoapBindingStyle equals "document" (the default).

For either an InterSystems IRIS web service or an InterSystems IRIS web client, the types for the response messages
must all be in the same namespace.

SOAPVERSION

Specifies the SOAP version or versions advertised in the WSDL of the web service. Use one of the following
values:

• "" — Use this value for SOAP 1.1 or 1.2.

• "1.1" — Use this value for SOAP 1.1. This is the default.

• "1.2" — Use this value for SOAP 1.2.

When the web service receives a SOAP request, the SoapVersion property of the web service is updated to equal
the SOAP version of that request.

See also “Restricting the SOAP Versions Handled by a Web Service,” later in this book.

For details on how these values affect the WSDL, see the appendix “Details of the Generated WSDLs.”

2.6 About the Catalog and Test Pages
When you compile a web service class, the class compiler generates a convenient catalog page that you can use to examine
the web service. This catalog page provides a link to a simple, limited test page (also generated). These pages are disabled
by default. Enable them only in a test environment.

2.6.1 Access to the Catalog and Test Pages

If there is no web application for the namespace you are using, you cannot access the catalog and test pages; see “InterSystems
IRIS Web Service as Part of a Web Application” in the previous chapter. Also, by default, these pages are inaccessible.
To enable access to them, open the Terminal, go to the %SYS namespace, and enter the following commands:

set ^SYS("Security","CSP","AllowClass",webapplicationname,"%SOAP.WebServiceInfo")=1
set ^SYS("Security","CSP","AllowClass",webapplicationname,"%SOAP.WebServiceInvoke")=1

Where webapplicationname is the web application name with a trailing slash, for example, "/csp/mynamespace/".

You can use these pages only if you are logged in as a user who has USE permission for the %Development resource.

Creating Web Services and Web Clients 17

About the Catalog and Test Pages

2.6.2 Displaying the Catalog and Test Pages

The URL for the catalog page is constructed as follows:

base/csp/app/web_serv.cls

Here base is the base URL for your web server (including port if necessary), /csp/app is the name of the web application
in which the web service resides, and web_serv is the class name of the web service. (Typically, /csp/app is
/csp/namespace.) For example:

http://localhost:52773/csp/samples/MyApp.StockService.cls

2.6.3 Notes on These Pages

The catalog page displays the class name, namespace, and service name, as well as the comments for the class and web
methods. The Service Description link displays the generated WSDL; for information, see the section “Viewing the WSDL,”
later in this chapter. The page then lists the web methods, with links (if you have the suitable permissions). The link for a
given method displays a test page where you can test that method in a limited fashion.

Notes about this test page:

• It does not enable you to see the SOAP request.

• It does not test the full SOAP pathway. This means, for example, it does not write to the SOAP log that is discussed
later in this chapter.

• It accepts only simple, literal inputs, so you cannot use it to call methods whose arguments are objects, collections, or
datasets.

This book does not discuss this page further. To test your web service more fully, generate and use a web client as described
later in this book.

2.7 Viewing the WSDL
When you use %SOAP.WebService to define a web service, the system creates and publishes a WSDL document that
describes this web service. Whenever you modify and recompile the web service, the system automatically updates the
WSDL correspondingly. This section discusses the following:

• Viewing the WSDL and the URL at which the WSDL is published

• Methods you can use to generate the WSDL as a static document

Also see “WSDL Support in InterSystems IRIS” in the first chapter.

18 Creating Web Services and Web Clients

Creating SOAP Web Services

Important: By definition, a web service and its web clients are required to comply to a common interface, regardless
of their respective implementations (and regardless of any underlying changes in technology). A WSDL
is a standards-compliant description of this interface. It is important to note the following:

• In practice, a single SOAP interface can often be correctly described by multiple, slightly different
WSDL documents.

Accordingly, the WSDL generated by InterSystems IRIS may have a slightly different form depending
on the version of InterSystems IRIS. It is beyond the scope of this documentation to describe any such
differences. InterSystems can commit only to the interoperability of web services and their respective
clients, as required in the W3C specifications.

• The W3C specifications do not require that either a web service or a web client be able to generate a
WSDL to describe the interface with which it complies.

The system generates the WSDL document and serves it at a specific URL, for convenience. However,
if the containing web application requires password authentication or requires an SSL connection, you
may find it impractical to access the WSDL in this way. In such cases, you should download the WSDL
to a file and use the file instead. Also, as noted previously, the generated WSDL does not contain any
information about SOAP headers added at runtime. If you need a WSDL document to contain infor-
mation about SOAP headers added at runtime, you should download the WSDL to a file, modify the
file as appropriate, and then use that file.

2.7.1 Viewing the WSDL

To view the WSDL for the web service, use the following URL:

base/csp/app/web_serv.cls?WSDL

Here base is the base URL for your web server (including port if necessary), /csp/app is the name of the web application
in which the web service resides, and web_serv is the class name of the web service. (Typically, /csp/app is
/csp/namespace.)

Note: Any percent characters (%) in your class name are replaced by underscore characters (_) in this URL.

For example:

http://localhost:52773/csp/samples/MyApp.StockService.cls?WSDL

The browser displays the WSDL document, for example:

Creating Web Services and Web Clients 19

Viewing the WSDL

Important: Not all browsers display the schema correctly. You might need to view the page source to see the actual
schema. For example, in Firefox, right-click and then select View Source.

2.7.2 Generating the WSDL

You can also generate the WSDL as a static document. The %SOAP.WebService class provides a method you can use for
this:

FileWSDL()

ClassMethod FileWSDL(fileName As %String, includeInternalMethods As %Boolean = 1) As %Status

Where fileName is the name of the file, and includeInternalMethods specifies whether the generated WSDL
includes any web methods that are marked as Internal.

2.7.3 Suppressing Internal Web Methods from the WSDL

If the web service has web methods that are marked as Internal, by default the WSDL includes these web methods. You
can prevent these methods from being included in the WSDL. To do so, do either of the following:

• Use the FileWSDL() method of the web service to generate the WSDL; see the previous section. This method provides
an argument that controls whether the WSDL includes internal web methods.

• Specify the SOAPINTERNALWSDL class parameter as 0 in the web service class. (The default for this class parameter
is 1.)

20 Creating Web Services and Web Clients

Creating SOAP Web Services

3
SOAP Message Variations

This chapter discusses the primary variations for SOAP messages and how they can be generated by InterSystems IRIS
web services and clients.

For an InterSystems IRIS web service or client, several keywords and one parameter specify the message variation used
by each web method. If you create a web service manually, the default values for these items are typically appropriate. If
you create a web service or client by using the SOAP Wizard, the system sets the values as required by the WSDL. On
some occasions, however, you may find it necessary to choose a specific message variation.

This chapter discusses the following:

• Overview of message variations

• How the message variation is determined for a given method

• Examples of the message variations

3.1 Overview
A SOAP message is in one of the following modes, determined formally by the WSDL:

• Document/literal — This is the default message mode in InterSystems IRIS web services and is the most commonly
used mode.

This message mode uses document-style binding and literal encoding format; bindings and encoding formats are discussed
briefly in subsections.

• RPC/encoded — This is the second most common mode.

• RPC/literal — This mode is widely used by IBM.

• Document/encoded — This mode is extremely rare and is not recommended. It is also not in compliance with the WS-
I Basic Profile 1.0.

Informally, document/literal messages can have an additional variation: they can be either wrapped (the default in InterSys-
tems IRIS) or unwrapped. In a wrapped message, the message contains a single part that contains subparts. This is relevant
in the case of methods that take multiple arguments. In a wrapped message, the arguments are subparts within this message.
In an unwrapped message, the message consists of multiple parts, one per argument.

RPC messages can have multiple parts.

Creating Web Services and Web Clients 21

3.1.1 Binding Style

Each web method has a binding style for the inputs and outputs of the web method. A binding style is either document or
RPC. The binding style determines how to translate a WSDL binding to a SOAP message. It also controls the format of
the body of the SOAP messages.

3.1.2 Encoding Format

Each web method also has an encoding format, which is either literal or encoded (meaning SOAP-encoded). The encoding
details are slightly different for SOAP 1.1 and SOAP 1.2. For details on the differences between literal format and SOAP-
encoded format, see the book Projecting Objects to XML.

3.2 How Message Variation Is Determined
For an InterSystems IRIS web service or web client, the details of the service or client class control the message mode used
by each web method. These details are as follows:

• The SoapBindingStyle class keyword and the SoapBindingStyle method keyword. The method keyword takes precedence.

• The SoapBodyUse class keyword and the SoapBodyUse method keyword. The method keyword takes precedence.

• The ARGUMENTSTYLE class parameter.

The following table summarizes how the message mode is determined for an InterSystems IRIS web method:

ARGUMENTSTYLESoapBodyUseSoapBindingStyleMessage Mode

wrapped (default)literal (default)document (default)wrapped document/literal

messageliteraldocumentunwrapped document/literal

Ignoredencodedrpcrpc/encoded

Ignoredliteralrpcrpc/literal

Ignoredencodeddocumentdocument/encoded

When you use the SOAP wizard to generate a web service or client class, the wizard sets the values for these keywords
and parameter as appropriate for the WSDL from which you started.

Important: For a web service that you create manually, the default values are usually suitable.

When you use the SOAP Wizard to create a web client or service from a WSDL, InterSystems IRIS sets
these keywords as appropriate for that WSDL. If you modify the values, your web client or service may
no longer work.

3.3 Examples of Message Variations
For reference, this section shows examples of the messages in the different modes (except for document/encoded, which
is not recommended).

22 Creating Web Services and Web Clients

SOAP Message Variations

Also see the section “<message>” in the appendix “Details of the Generated WSDLs.”

3.3.1 Wrapped Document/Literal

This is the most common message style (and is the default message style for InterSystems IRIS web services).

<SOAP-ENV:Envelope xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'
 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
 xmlns:s='http://www.w3.org/2001/XMLSchema'>
 <SOAP-ENV:Body>
 <MyMethod xmlns="http://www.demoservice.org">
 <A>stringA
 stringB
 <C>stringC</C>
 </MyMethod>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

3.3.2 Message/Unwrapped Document/Literal

This is a slight variation of the preceding style.

<SOAP-ENV:Envelope xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'
 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
 xmlns:s='http://www.w3.org/2001/XMLSchema'>
 <SOAP-ENV:Body>
 stringA
 <B xmlns="http://www.demoservice.org">stringB
 <C xmlns="http://www.demoservice.org">stringC</C>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

3.3.3 RPC/Encoded

This is the second most common style. The following shows an rpc/encoded message for SOAP 1.1:

<SOAP-ENV:Envelope xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'
 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
 xmlns:s='http://www.w3.org/2001/XMLSchema'
 xmlns:SOAP-ENC='http://schemas.xmlsoap.org/soap/encoding/'
 xmlns:tns='http://www.demoservice.org'
 xmlns:types='http://www.demoservice.org'>
 <SOAP-ENV:Body SOAP-ENV:encodingStyle='http://schemas.xmlsoap.org/soap/encoding/'>
 <types:MyMethod>
 <A>stringA
 stringB
 <C>stringC</C>
 </types:MyMethod>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

For SOAP 1.2, the rules for encoding are different, so the message is different:

<SOAP-ENV:Envelope xmlns:SOAP-ENV='http://www.w3.org/2003/05/soap-envelope'
 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
 xmlns:s='http://www.w3.org/2001/XMLSchema'
 xmlns:SOAP-ENC='http://www.w3.org/2003/05/soap-encoding'
 xmlns:tns='http://www.demoservice.org'
 xmlns:types='http://www.demoservice.org'>
 <SOAP-ENV:Body>
 <types:MyMethod SOAP-ENV:encodingStyle="http://www.w3.org/2003/05/soap-encoding">
 <A>stringA
 stringB
 <C>stringC</C>
 </types:MyMethod>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Creating Web Services and Web Clients 23

Examples of Message Variations

3.3.4 RPC/Literal

The following shows an example of an rpc/literal message:

<SOAP-ENV:Envelope xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'
 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
 xmlns:s='http://www.w3.org/2001/XMLSchema'
 xmlns:tns='http://www.demoservice.org'>
 <SOAP-ENV:Body>
 <tns:MyMethod>
 <tns:A>stringA</tns:A>
 <tns:B>stringB</tns:B>
 <tns:C>stringC</tns:C>
 </tns:MyMethod>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

24 Creating Web Services and Web Clients

SOAP Message Variations

4
Creating Web Clients

A web client is software that accesses a web service. A web client provides a set of proxy methods, each of which corresponds
to a method of the web service. A proxy method uses the same signature as the web service method to which it corresponds,
and it invokes the web service method when asked to do so. This chapter describes how to create and use web clients in
InterSystems IRIS:

• An overview of the SOAP Wizard

• How to use the SOAP Wizard

• How to generate the client classes programmatically

• When and how to modify the generated classes

• How to create a wrapper for the generated web client

• How to adjust basic properties of the web client instance

• How to access the HTTP response that the InterSystems IRIS web client receives

For information on logging SOAP calls to your InterSystems IRIS web clients, see “ InterSystems IRIS SOAP Log,” later
in this book.

Note: For an InterSystems IRIS web service, the automatically generated WSDL might not include information about
the SOAP header elements:

• If you add SOAP headers manually by setting the HeadersOut property, be sure to follow the instructions in
“Specifying Supported Header Elements,” in the chapter “Adding and Using Custom Header Elements.”
If you do, the WSDL contains all the applicable information. Otherwise, it does not, and you must save the
WSDL to a file and edit it manually as needed.

• If you add WS-Security header elements by setting the SecurityOut property (as described in Securing Web
Services), the WSDL does not include all needed information. (This is because the WSDL is generated at
compile time and the headers are added later, at runtime.) In this case, save the WSDL to a file and edit it
manually as needed.

For many reasons, it is simpler and easier to add WS-Security elements by using WS-Policy, as described in
the same book. With WS-Policy, the generated WSDL includes all needed information.

• In other cases, the generated WSDL includes all needed information.

Note that the W3C specifications do not require a web service to provide a generated WSDL.

Creating Web Services and Web Clients 25

4.1 Overview of the SOAP Wizard
To create an InterSystems IRIS web client, you can use the SOAP Wizard in Studio or the corresponding class method
provided by InterSystems IRIS. In either case, the input is a WSDL document. The tools generate a web client class and
all needed supporting classes.

You can use the tool with nearly any WSDL document; see “WSDL Support in InterSystems IRIS” in the first chapter.

You can provide either the URL or the file path for the WSDL.

Note: If the WSDL indicates support for both SOAP 1.1 and SOAP 1.2, then the SOAP Wizard generates two sets of
classes, if needed.

4.2 Using the SOAP Wizard
Studio provides the SOAP Wizard, which enables you to generate a client for a given web service, given the WSDL of that
service.

Note: When using templates such as the SOAP Wizard, Studio will use a proxy server, if it is enabled. For information
on specifying the proxy server and port, see “Using a Proxy Server” in Using Internet Utilities.

To use the SOAP wizard:

1. Examine the WSDL and check for the following items:

• Do the <message> elements contain multiple parts?

• Do the types used by the response messages belong to multiple namespaces?

In either case, if the answer is yes, then you will need to select the option Use unwrapped message format for document

style web methods, which is described in a later step.

2. Click Tools > Add-ins > SOAP Wizard.

3. On the first screen:

a. Click either URL or FILE, depending on the location of the WSDL.

b. Enter the location of the WSDL. Type either the entire URL or the complete path and filename for the WSDL.

c. If the WSDL is at a location that uses SSL (that is, if the URL starts with https), then select a suitable SSL
configuration from the SSL Configuration dropdown list. For information on creating and managing SSL/TLS
configurations, see the chapter “Using SSL/TLS with InterSystems IRIS” in the Security Administration Guide.

Important: This wizard specifies an SSL configuration to use when accessing the WSDL. This field is not
used in any other way.

d. If the WSDL is at a location that uses SSL, the wizard will (by default) checks whether the certificate server name
matches the DNS name used to connect to the server. If these names do not match, the connection is not permitted.
This default behavior prevents “man in the middle” attacks and is described in RFC 2818, section 3.1; also see
RFC 2595, section 2.4.

To disable this check, clear the check box When making an SSL connection check that the server identity in the

server certificate matches the name of the system being connected to.

26 Creating Web Services and Web Clients

Creating Web Clients

http://www.ietf.org/rfc/rfc2818
http://www.ietf.org/rfc/rfc2595

4. Click Next.

The wizard then attempts to access the WSDL and display it so that you can verify that you have chosen the correct
one.

If the wizard cannot access the WSDL, it displays a screen that displays the error and provides options that you can
use to provide a username and password. (Many WSDLs are at URLs that are protected by a username and password,
and this is a common reason for failing to access the WSDL.) In this scenario, first do one of the following:

• To provide an InterSystems IRIS username and password, select InterSystems IRIS user name and password

• To provide a username and password for HTTP Basic authentication, select HTTP authentication user name and

password

Then enter values in the Username and Username fields and press Try Again. Note that the wizard does not save your
entries for these items.

5. On the screen that displays the WSDL, specify options as follows:

• Create Client for Web Service — Select this if you want the wizard to generate web client classes.

• Create Web Service — Select this if you want the wizard to generate web service classes.

• Compile generated classes — Select this if you want the wizard to compile the classes after generating them.

• Compile flags — Specify flags to control how the compiler behaves. To get information about the compiler flags,
execute the following command:

 Do $System.OBJ.ShowFlags()

• Class Type — Choose a type to use for the generated type classes:

– Persistent — The type classes should inherit from %Persistent. Any collections should be defined as lists.

– Persistent using one-many relationships — The type classes should inherit from %Persistent and any collection
properties should be defined as one-to-many relationships.

– Persistent using indexed one-many relationships — The same as the preceding item except that InterSystems
IRIS also defines an index for the relationship.

– Persistent using parent-child for relationships — The type classes should inherit from %Persistent and any
collection properties should be defined as parent-child relationships.

– Serial — The type classes should inherit from %SerialObject.

– Registered — The type classes should inherit from %RegisteredObject.

• Add %OnDelete method to classes in order to cascade deletes — This option is displayed if you choose any per-
sistent class type. If you select this option, when the wizard generates class definitions, it includes an implementation
of the %OnDelete() callback method. The generated %OnDelete() method deletes all persistent objects that are
referenced by the class.

Note: Do not use this option if you select Persistent using parent-child for relationships.

If you modify the generated classes, be sure to modify the %OnDelete() callback method as needed.

• Proxy Class Package — Type a package name for the web client. This is also used as the base package for any
generated type classes. The default package name is the service name.

If this package is the same as an existing package, by default the tool overwrites any existing classes that have the
same name.

6. If you are creating these classes for use in a production, optionally provide values for the following additional fields:

Creating Web Services and Web Clients 27

Using the SOAP Wizard

• Create Business Operation — Select this to generate a business operation and related request and response message
classes.

• Business Operation Package — Specify the package for the business operation class.

• Request Package — Specify the package for the request message class.

• Response Package — Specify the package for the response message class.

For information on productions, see Introducing Interoperability Productions. Also see Creating Web Services and
Web Clients in Productions.

7. Click Next. The wizard then displays a screen like the following:

8. Specify the following options:

• Add NAMESPACE class parameter, which affects how generated type classes are assigned to namespaces:

– If the WSDL explicitly indicates the namespace to which a given type belongs, Add NAMESPACE Class

Parameter is selected and grayed out. In this case, the generated type class will include the NAMESPACE
class parameter set equal to that namespace.

– If the WSDL does not indicate the namespace for a given type, you can select or clear Add NAMESPACE Class

Parameter.

If you select this option, the generated type class will include the NAMESPACE class parameter set equal to
the namespace of the web service.

If you clear this option, the generated type class will not include the NAMESPACE class parameter.

• Use unwrapped message format for document style web methods, which affects the signature of the methods in
the generated web client. See the appendix “Details of the Generated Classes” and see “Using InterSystems IRIS
Web Client Classes,” later in this chapter.

Important: If the WSDL that you are using contains <message> elements with multiple parts, be sure to
select this option. If you do not, the wizard fails and displays a message like the following:

ERROR #6425: Element 'wsdl:binding:operation:msg:input' - message 'AddSoapOut'
Message Style must be used for document style message with 2 or more parts.

Similarly, if the types used by the response messages are in different namespaces than each other,
be sure to select this option.

This option affects only methods that have SoapBindingStyle equal to "document".

• Do not create array properties, which controls whether the wizard generates array properties. If you select this
option, the wizard does not generate array properties but instead generates another form. See “Creation of Array
Properties” in the appendix “Details of the Generated Classes.”

• Generate XMLNIL property parameter for nillable elements, which controls whether the wizard specifies the XMLNIL
property parameter for applicable properties in the generated classes.

This option applies to each property that corresponds to an XML element that is specified with nillable="true".
If you select this option, the wizard adds XMLNIL=1 to the property definition. Otherwise, it does not add this
parameter.

For details on this property parameter, see “Handling Empty Strings and Null Values” in Projecting Objects to
XML.

• Generate XMLNILNOOBJECT property parameter for nillable elements, which controls whether the wizard specifies
the XMLNILNOOBJECT property parameter for applicable properties in the generated classes.

28 Creating Web Services and Web Clients

Creating Web Clients

This option applies to each property that corresponds to an XML element that is specified with nillable="true".
If you select this option, the wizard adds XMLNILNOOBJECT=1 to the property definition. Otherwise, it does not
add this parameter. For details on this parameter, see “Handling Empty Strings and Null Values” in Projecting
Objects to XML.

• Set XMLSEQUENCE parameter to 0, which controls how the wizard sets the XMLSEQUENCE class parameter in
the generated classes.

By default, the wizard sets this parameter to 1 in the generated classes, which ensures that the classes respect the
order of elements as given in the schema in the WSDL; this value is useful when the schema has multiple elements
of the same name within a given parent. For details, see “Handling a Document with Multiple Tags with the Same
Name” in Projecting Objects to XML.

• Generate XMLIGNORENULL parameter set to 1, which controls whether the wizard specifies the XMLIGNORENULL
class parameter in the generated classes. If you select this option, the wizard adds XMLIGNORENULL=1 to the
class definitions, including the generated web client (or web service). Otherwise, it does not add this parameter.

For details on this class parameter, see “Handling Empty Strings and Null Values” in Projecting Objects to XML.

• Use Streams for Binary, which controls how the wizard handles any element of type xsd:base64Binary. If you
select this option, the corresponding property is of type %Stream.GlobalBinary. If this option is clear, the property
is of type %xsd.base64Binary instead.

Note that the wizard ignores any attributes of type xsd:base64Binary.

• Specify SECURITYIN class parameter, which controls the class parameter SECURITYIN in the generated client
class. If you are using Web-Services security, use REQUIRE or ALLOW, depending on whether you want the client
to require the elements or simply validate them. Otherwise, IGNORE or IGNOREALL is generally suitable. For
details, see “Validating WS-Security Headers” in Securing Web Services.

Important: The SECURITYIN parameter is ignored if there is a security policy in an associated (and compiled)
configuration class. See Securing Web Services.

9. Optionally edit the package names. The wizard uses the following rules for package names:

• The packages specified in Web Client Package or Web Service Package contain the main generated web client or
web service class. These values are initialized by your entry in the previous page of the wizard.

• If the wizard generates a policy class as well (because the WSDL contains WS-Policy information), that class is
in the same package by default. To specify a different package, specify a value for Configuration Sub-Package.

By default, the class name is the web client or service name, with Config appended to it. If you specify a value
for Configuration Sub-Package, then this generated class has the same name as the web client or service (but is in
the given subpackage instead).

For information on WS-Policy, see Securing Web Services.

• For any supporting classes that are generated, the wizard detects all the namespaces used in the WSDL. By default,
it organizes the generated classes into packages, with one package for each namespace.

Optionally edit these package names.

Not all namespaces necessarily correspond to generated classes. For example, the WSDL used in this example
uses the namespaces http://schemas.xmlsoap.org/wsdl,
http://schemas.xmlsoap.org/wsdl/mime, and http://schemas.xmlsoap.org/wsdl/soap. No
generated classes are in these namespaces in this case, and the corresponding packages are not generated.

10. Click Next. The wizard generates and compiles the classes and displays a list of these classes.

11. Click Finish.

Creating Web Services and Web Clients 29

Using the SOAP Wizard

Tip: If you use a WSDL URL and there are problems with the wizard, save the WSDL as a file and try again, using that
file as input.

If the WSDL contains references to externally defined entities, the wizard attempts to resolve those; for this task, the
timeout period is 10 seconds.

For properties of these classes, if the corresponding element in the schema has a name that starts with an underscore (_),
the name of the property starts with a percent sign (%).

4.3 Generating the Client Classes Programmatically
You can instead generate the client classes programmatically by using the %SOAP.WSDL.Reader class.

The resulting generated classes and their organization may not be the same as if you used the SOAP wizard, which provides
greater control over the packages for the generated classes.

To generate the client classes programmatically:

1. Create an instance of %SOAP.WSDL.Reader.

2. Optionally set properties to control the behavior of your instance. For details, see the class documentation for
%SOAP.WSDL.Reader.

Note that if the WSDL is at a location that uses SSL, %SOAP.WSDL.Reader will (by default) checks whether the cer-
tificate server name matches the DNS name used to connect to the server. If these names do not match, the connection
is not permitted. This default behavior prevents “man in the middle” attacks and is described in RFC 2818, section
3.1; also see RFC 2595, section 2.4.

To disable this check, set the SSLCheckServerIdentity property of the instance equal to 0.

3. If you need the ability to control the HTTP request in a way that is not directly supported by %SOAP.WSDL.Reader,
do this:

a. Create an instance of %Net.HttpRequest and set its properties as needed.

b. For your instance of %SOAP.WSDL.Reader, set the HttpRequest property equal to the instance of %Net.HttpRequest

that you just created.

For example, you might do this if the server requires authentication. See “Providing Login Credentials” in the chapter
“Sending HTTP Requests” in Using Internet Utilities.

4. Invoke the Process() method of your instance:

method Process(pLocationURL As %String, pPackage As %String = "") as %Status

• pLocationURL must be the URL of the WSDL of the web service or the name of the WSDL file (including its
complete path). Depending on the configuration of the web service, it may be necessary to append a string that
provides a suitable username and password; see the examples.

• pPackage is the name of the package in which to place the generated classes. If you do not specify a package,
InterSystems IRIS uses the service name as the package name.

Note: If this package is the same as an existing package, by default the tool overwrites any existing classes
that have the same name. To prevent the tool from overwriting a class definition, add the following to
that class definition:

Parameter XMLKEEPCLASS = 1;

30 Creating Web Services and Web Clients

Creating Web Clients

http://www.ietf.org/rfc/rfc2818
http://www.ietf.org/rfc/rfc2595

The following shows an example Terminal session:

set r=##class(%SOAP.WSDL.Reader).%New()
GSOAP>set url="http://localhost:52773/csp/gsop/GSOP.AddComplexWS.CLS?WSDL=1"

GSOAP>d r.Process(url)
Compilation started on 11/09/2009 12:53:52 with qualifiers 'dk'
Compiling class AddComplex.ns2.ComplexNumber
Compiling routine AddComplex.ns2.ComplexNumber.1
Compilation finished successfully in 0.170s.

Compilation started on 11/09/2009 12:53:52 with qualifiers 'dk'
Compiling class AddComplex.AddComplexSoap
Compiling routine AddComplex.AddComplexSoap.1
Compiling class AddComplex.AddComplexSoap.Add
Compiling routine AddComplex.AddComplexSoap.Add.1
Compilation finished successfully in 0.363s.

The WSDL URL is part of a web application, which might be protected by password authentication. For details on using
the WSDL in this case, to generate InterSystems IRIS web clients or third-party web clients, see “Using a Password-Protected
WSDL URL,” later in this book.

In all cases, it is also possible to retrieve the WSDL from a browser after supplying the required username and password,
save it as a file, and use the file instead.

4.4 Modifying the Generated Client Classes
After you generate an InterSystems IRIS web client class, you do not usually edit the class. Instead you write code that
creates an instance of the web client and that provides provide client-side error handling. This section documents the notable
exceptions where you do modify the generated client class.

Also see the section “Additional Notes on Web Methods in the Generated Class” and the chapter “Fine-Tuning a Web
Client in InterSystems IRIS.”

Note: Do not create a subclass of the generated web client class. The compiler will not generate the supporting classes
that it would need in order to run properly, and your subclass would not be usable.

4.4.1 Adjusting the Generated Classes for Extremely Long Strings

In rare cases, you might need to edit the generated client class to accommodate extremely long strings or binary values —
values whose lengths exceed the string length limit.

When the SOAP Wizard reads a WSDL, it assumes that any string-type input or output can be represented in InterSystems
IRIS as %String, which is not always true. In rare cases, a string might exceed the string length limit. Similarly, the wizard
assumes that any input or output with XML type base64Binary can be represented in InterSystems IRIS as
%xsd.base64Binary), which is not always true, due to the same string length limitation. In neither case does the WSDL
contain any information to indicate that this input or output could exceed the string length limit.

When your web client encounters a string or a binary value that is too long, it throws one of the following errors:

• A <MAXSTRING> error

• A datatype validation error:

ERROR #6232: Datatype validation failed for tag your_method_name ...

(This error, of course, can also be caused by a datatype mismatch.)

The problem, however, is easy to correct: adjust the method signature in your generated web client class (specifically the
class that inherits from %SOAP.WebClient) to use an appropriate stream class:

Creating Web Services and Web Clients 31

Modifying the Generated Client Classes

• Use %GlobalCharacterStream instead of %String.

• Use %GlobalBinaryStream instead of %xsd.base64Binary.

For example, consider a web service (MyGiantStringService) that has one method (WriteIt), which takes no
arguments and returns a very long string. If you use the SOAP Wizard to generate the web client class, the web client class
originally looks something like this:

Class GetGiantString.MyServiceSoap Extends %SOAP.WebClient
{

Method WriteIt() As %String
[Final,SoapBindingStyle=document,SoapBodyUse=literal,WebMethod]
{
 Quit ..WebMethod("WriteIt").Invoke($this,"http://tempuri.org/MyApp.MyGiantStringService.WriteIt")
}

}

In this case, there is only one adjustment to make. Change the return type of WriteIt as follows:

Method WriteIt() As %GlobalCharacterStream
[Final,SoapBindingStyle=document,SoapBodyUse=literal,WebMethod]
{
 Quit ..WebMethod("WriteIt").Invoke($this,"http://tempuri.org/MyApp.MyGiantStringService.WriteIt")
}

When you compile this class, the system automatically regenerates the associated classes as needed.

You may also need to adjust property types within any generated type classes. For example, suppose the web service uses
an element called <Container>, which includes an element <ContainerPart> of type string. When you generate the
InterSystems IRIS web client classes, the system creates a Container class with a ContainerPart property of type
%String. If the web service sends a string longer than the string length limit in the <ContainerPart> element, your web
client throws an error. To avoid this error, change the type of the ContainerPart property to %GlobalCharacterStream.

4.4.2 Other Adjustments

If the WSDL does not specify the location of the web service, the SOAP Wizard does not specify the LOCATION parameter
of the web client. This is a rare scenario. In this scenario, edit the web client class to include the LOCATION parameter.
For example:

Parameter LOCATION = "http://localhost:52773/csp/gsop/GSOP.AddComplexWS.cls";

Or specify the Location property of your web client instance as shown later in this chapter.

You might need to adjust other parameters of the web client class to make other changes. See the chapter “Fine-Tuning a
Web Client in InterSystems IRIS” for details.

4.5 Using the Generated Web Client Classes
As noted in the previous section, after you generate an InterSystems IRIS web client class, you do not usually edit the
generated class. Instead you write code that creates an instance of that web client and that provides provide client-side error
handling. In this code, do the following:

1. Create an instance of the web client class.

2. Set its properties. Here you can control items such as the following:

• Endpoint of the web client (the URL of the web service it uses). To control this, set the Location property, which
overrides the LOCATION parameter of the web client class.

32 Creating Web Services and Web Clients

Creating Web Clients

• Settings that designate a proxy server.

• Settings that control HTTP Basic authentication.

See the next section in this chapter as well as the chapter “Fine-Tuning a Web Client in InterSystems IRIS.”

3. Invoke the methods of the web client as needed.

4. Perform client-side error handling. See the chapter “SOAP Fault Handling.”

5. Optionally examine the HTTP response received by the web client, as described later in this chapter.

The following shows a simple example, from a session in the Terminal:

GSOAP>set client=##class(Proxies.CustomerLookupServiceSoap).%New()

GSOAP>set resp=client.GetCustomerInfo("137")

GSOAP>w resp

11@Proxies.CustomerResponse

GSOAP>w resp.Name
Smith,Maria

4.5.1 Example 1: Using the Client That Uses Wrapped Messages

In this example, we create a wrapper class for a web client that uses wrapped messages. To use the example
GSOAPClient.AddComplex.AddComplexSoap shown previously, we could create a class like the following:

Class GSOAPClient.AddComplex.UseClient Extends %RegisteredObject
{

ClassMethod Add(arg1 As ComplexNumber, arg2 As ComplexNumber) As ComplexNumber
{
 Set client=##class(AddComplexSoap).%New()
 //uncomment the following to enable tracing
 //set client.Location="http://localhost:8080/csp/gsop/GSOP.AddComplexWS.cls"
 Set ans=client.Add(arg1,arg2)
 Quit ans
}

}

The client application would invoke this method in order to execute the web method.

4.5.2 Example 2: Using the Client That Uses Unwrapped Messages

In this example, we create a wrapper class for a web client that uses unwrapped messages. To use the example
GSOAPClient.AddComplex.AddComplexSoap shown previously, we could create a class like the following:

Class GSOAPClient.AddComplexUnwrapped.UseClient Extends %RegisteredObject
{

ClassMethod Add(arg1 As GSOAPClient.AddComplexUnwrapped.s0.ComplexNumber,
arg2 As GSOAPClient.AddComplexUnwrapped.s0.ComplexNumber)
As GSOAPClient.AddComplexUnwrapped.s0.ComplexNumber
{
 //create the Add message
 Set addmessage=##class(GSOAPClient.AddComplexUnwrapped.s0.Add).%New()
 Set addmessage.a = arg1
 Set addmessage.b = arg2

 Set client=##class(AddComplexSoap).%New()

 //send the Add message to client and get response
 Set addresponse=client.Add(addmessage)

 //get the result from the response message
 Set ans=addresponse.AddResult

Creating Web Services and Web Clients 33

Using the Generated Web Client Classes

 Quit ans

}

}

The method has the signature that would typically be expected; that is, it accepts two complex numbers and returns a
complex number. The method creates the message that the web client expects. The elements of this message are the two
complex numbers.

As you can see, when the web client uses unwrapped messages, it is necessary to write slightly more code to convert
arguments in a user-friendly form into the message used by the web client.

4.6 Adjusting Properties of a Web Client Instance
When you use an instance of your web client classes, you can specify properties of that instance to control its behavior.
This section discusses the properties that are most commonly set, as well as their default values.

4.6.1 Changing the Endpoint for the Web Client

The SOAP Wizard automatically sets the endpoint for the web client by setting the LOCATION parameter of the web client.
By default, it sets this parameter equal to the URL of the web service with which it communicates.

To override this, set the Location property of your web client instance. If Location is null, then the LOCATION parameter
is used.

A common usage is to set the Location property to use a different port, in order to enable tracing. For example, suppose
that in the generated web client class, the endpoint is defined as follows:

Parameter LOCATION = "http://localhost:52773/csp/gsop/GSOP.AddComplexWS.cls";

When you use this client, you can include the following line:

 Set client.Location="http://localhost:8080/csp/gsop/GSOP.AddComplexWS.cls"

Note: If the WSDL does not specify the location of the web service, the SOAP Wizard does not specify the LOCATION
parameter of the web client. This is a rare scenario. In this scenario, either edit the web client class to include the
LOCATION parameter or specify the Location property of your web client instance as shown here.

4.6.2 Configuring the Client to Use SSL

If the endpoint for a web client has HTTPS protocol, the web client must be configured to use SSL. Specifically:

• If you have not already done so, use the Management Portal to create an SSL/TLS configuration that contains the
details of the needed SSL connection. For information, see the chapter “Using SSL/TLS with InterSystems IRIS” in
the Security Administration Guide.

• Set the SSLConfiguration property of the web client equal to that SSL/TLS configuration name.

Note that if the client is connecting via a proxy server, you must also set the HttpProxySSLConnect property equal to 1 in
the web client. For information on configuring an InterSystems IRIS web client to use a proxy server, see the chapter “Fine-
Tuning the Web Client.”

34 Creating Web Services and Web Clients

Creating Web Clients

4.6.3 Specifying the SOAP Version

The SOAP Wizard automatically specifies the SOAP version to use in request messages, based on the SOAP version in
the WSDL of the web service. Specifically it sets the SOAPVERSION parameter.

To override this, set the SoapVersion property of your web client instance. Use one of the following values:

• "" — The client sends SOAP 1.1 messages.

• "1.1" — The client sends SOAP 1.1 messages.

• "1.2" — The client sends SOAP 1.2 messages.

If SoapVersion is null, then the SOAPVERSION parameter is used.

4.6.4 Other Adjustments

You might need to set other properties of the web client instance to make other changes. See the chapter “Fine-Tuning a
Web Client in InterSystems IRIS” for details.

4.7 Using the HTTP Response
By default, when you invoke a web client method, you do so via HTTP. The HTTP response is then available as the
HttpResponse property of the web client instance. This property is an instance of %Net.HttpResponse, which in turn has
properties like the following:

• Headers contains the headers of the HTTP response.

• Data is an InterSystems IRIS multidimensional array that contains any data in the HTTP response.

• StatusCode, StatusLine, and ReasonPhrase provide status information.

For details, see the book Using Internet Utilities. Or see the class documentation for %Net.HttpResponse.

Creating Web Services and Web Clients 35

Using the HTTP Response

5
SOAP Fault Handling

This chapter describes how to handle faults within a web service and within a web client.

• How InterSystems IRIS web services handle errors by default

• How to return custom SOAP faults in an InterSystems IRIS web service

• How to create fault objects manually

• How to add WS-Addressing header elements when faults occur

• How to add custom header elements when faults occur

• How to handle errors and SOAP faults in a web client

For a detailed discussion of error processing, see the chapter on errors in the book Using ObjectScript.

Note that the SOAPPREFIX parameter affects the prefix used in any SOAP faults; see “Specifying the SOAP Envelope
Prefix” in the chapter “Fine-Tuning a Web Service in InterSystems IRIS.”

5.1 Default Fault Handling in a Web Service
By default, when your InterSystems IRIS web service encounters an error, it returns a standard SOAP message containing
a fault. The following shows an example (for SOAP 1.1). The SOAP envelope is omitted in this example:

<SOAP-ENV:Body>
 <SOAP-ENV:Fault>
 <faultcode>SOAP-ENV:Server</faultcode>
 <faultstring>Server Application Error</faultstring>
 <detail>
 <error xmlns='http://www.myapp.org' >
 <text>ERROR #5002: ObjectScript error: <DIVIDE>zDivide^FaultEx.Service.1</text>
 </error>
 </detail>
</SOAP-ENV:Fault>
</SOAP-ENV:Body>

5.2 Returning Custom SOAP Faults in an InterSystems
IRIS Web Service
To create and return a custom SOAP fault, do the following within the appropriate area of your code that traps errors:

Creating Web Services and Web Clients 37

1. Create a fault object that contains the appropriate information. To do so, call one of the following methods of your
web service: MakeFault(), MakeFault12(), MakeSecurityFault(), or MakeStatusFault(). These are discussed in
the following subsection.

Or create a fault object manually, as described in later in this chapter.

2. Call the ReturnFault() method of the web service, passing the fault object as an argument. Note that ReturnFault())
does not return to its caller; it just sends the fault and terminates processing of the web method.

The following shows an example:

Method Divide(arg1 As %Numeric, arg2 As %Numeric) As %Numeric [WebMethod]
{
 Try {
 Set ans=arg1 / arg2
 } Catch {

 //<detail> element must contain element(s) or whitespace
 //specify this element by passing valid XML as string argument to MakeFault()
 set mydetail="<mymessage>Division error detail</mymessage>"

 set fault=..MakeFault($$$FAULTServer,"Division error",mydetail)

 // ReturnFault must be called to send the fault to the client.
 // ReturnFault will not return here.
 Do ..ReturnFault(fault)
 }
 Quit ans
}

5.2.1 Methods to Create Faults

MakeFault()

classmethod MakeFault(pFaultCode As %String,
 pFaultString As %String,
 pDetail As %String = "",
 pFaultActor As %String = "") as %SOAP.Fault

Returns a fault object suitable for SOAP 1.1. Here:

• pFaultCode is used within the <faultcode> element of the SOAP fault. Set this property equal to one of
the SOAP 1.1 macros listed in “Macros for SOAP Fault Codes,” later in this chapter.

• pFaultString is used within the <faultstring> element of the SOAP fault. Specify a string that indicates
the reason for the fault, as intended for users to see.

• pDetail is used within the <detail> element of the SOAP fault. Use this to specify information about the
cause of the fault.

If specified, this argument should be a string containing valid XML that can be used within the <detail>
element. InterSystems IRIS does not verify that the string you provide is valid; it is the responsibility of your
application to check this.

• pFaultActor specifies the URI of the SOAP node on the SOAP message path that caused the fault to happen.

This is useful if the SOAP message travels through several nodes in the SOAP message path, and the client
needs to know which node caused the error. It is beyond the scope of this book to discuss this advanced topic.

MakeFault12()

classmethod MakeFault12(pFaultCode As %String,
 pFaultString As %String,
 pDetail As %String = "",
 pFaultActor As %String = "") as %SOAP.Fault

38 Creating Web Services and Web Clients

SOAP Fault Handling

Returns a fault object suitable for SOAP 1.2. Use this method only the SoapVersion property of the web service
is "1.2". For a discussion of how InterSystems IRIS handles the SOAP versions of request messages, see
“Specifying Parameters of the Web Service,” earlier in this book.

For details on the arguments, see MakeFault().

MakeSecurityFault()

classmethod MakeSecurityFault(pFaultCode As %String,
 securityNamespace As %String) as %SOAP.Fault

Returns a fault object appropriate for a security failure. Specify FaultCode as one of the following:
"FailedAuthentication", "FailedCheck", "InvalidSecurity", "InvalidSecurityToken",
"SecurityTokenUnavailable", "UnsupportedAlgorithm", or "UnsupportedSecurityToken".

The namespace for this security fault is found in the SecurityNamespace property.

MakeStatusFault()

classmethod MakeStatusFault(pFaultCode As %String,
 pFaultString As %String,
 pStatus As %Status = "",
 pFaultActor As %String = "") as %SOAP.Fault

Returns a fault object based on a value in a %Status object.

pStatus is the %Status object to use.

For details on the other arguments, see MakeFault().

5.2.2 Macros for SOAP Fault Codes

The SOAP include file (%soap.inc) defines macros for some of the standard SOAP fault codes; these are listed in the fol-
lowing table. You can use these macros to specify SOAP fault codes. The table notes the version or versions of SOAP to
which each macro applies.

Table 5–1: ObjectScript Macros for SOAP Fault Codes

When to Use This MacroSOAP
Version(s)

Macro

When the web service receives a SOAP message that
contained an invalid element information item instead
of the expected envelope element information item.

A mismatch occurs if either the namespace or the local
name do not match.

1.1 and 1.2$$$FAULTVersionMismatch

When the web service receives a SOAP message that
contained an unexpected element that was marked with
mustUnderstand="true"

1.1 and 1.2$$$FAULTMustUnderstand

When other server-side errors occur.1.1$$$FAULTServer

When the client made an incomplete or incorrect
request.

1.1$$$FAULTClient

When the arguments are encoded in a data encoding
unknown to the receiver.

1.2$$$FAULTDataEncodingUnknown

Creating Web Services and Web Clients 39

Returning Custom SOAP Faults in an InterSystems IRIS Web Service

When to Use This MacroSOAP
Version(s)

Macro

When the sender made an incomplete, incorrect, or
unsupported request.

1.2$$$FAULTSender

When the receiver cannot handle the message because
of some temporary condition, for example, when it is out
of memory.

1.2$$$FAULTReceiver

5.3 Creating a Fault Object Manually
If you need more control than is given by the steps in the previous section, you can create and return a custom SOAP fault
as follows:

1. Create a fault object manually.

To do so, create an instance of %SOAP.Fault (for SOAP 1.1) or %SOAP.Fault12 (for SOAP 1.2) and then set its prop-
erties, as described in the following sections.

Note: You can use %SOAP.Fault in all cases. If a web service receives a SOAP 1.2 request and needs to return a
fault, the web service automatically converts the fault to SOAP 1.2 format.

2. Call the ReturnFault() method of the web service, passing the fault object as an argument. Note that ReturnFault())
does not return to its caller; it just sends the fault and terminates processing of the web method.

5.3.1 SOAP 1.1 Faults

This section provides information on %SOAP.Fault, which represents SOAP 1.1 faults. This section includes the following:

• Example SOAP 1.1 fault

• Information on for %SOAP.Fault, which represents SOAP 1.1 faults

5.3.1.1 Example SOAP Fault

For reference, here is an example of a SOAP 1.1 fault, including the SOAP envelope:

<SOAP-ENV:Envelope
xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xmlns:s='http://www.w3.org/2001/XMLSchema'
xmlns:flt="http://myfault.org" >
 <SOAP-ENV:Body>
 <SOAP-ENV:Fault>
 <faultcode>SOAP-ENV:Server</faultcode>
 <faultstring>Division error</faultstring>
 <detail><mymessage>Division error detail</mymessage></detail>
 </SOAP-ENV:Fault>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

5.3.1.2 %SOAP.Fault Properties

InterSystems IRIS represents a SOAP 1.1 fault as an instance of %SOAP.Fault, which has the following properties:

40 Creating Web Services and Web Clients

SOAP Fault Handling

detail

Used within the <detail> element of the SOAP fault. Use this to specify information about the cause of the
fault.

If specified, this argument should be a string containing valid XML that can be used within the <detail> element.
InterSystems IRIS does not verify that the string you provide is valid; it is the responsibility of your application
to check this.

faultcode

Used within the <faultcode> element of the SOAP fault. Set this property equal to one of the SOAP 1.1 macros
listed in “Macros for SOAP Fault Codes,” earlier in this chapter.

faultstring

Used within the <faultstring> element of the SOAP fault. Specify a string that indicates the reason for the
fault, as intended for users to see.

faultactor

Specifies the URI of the SOAP node on the SOAP message path that caused the fault to happen.

This is useful if the SOAP message travels through several nodes in the SOAP message path, and the client needs
to know which node caused the error. It is beyond the scope of this book to discuss this advanced topic.

faultPrefixDefinition

Specifies a namespace prefix declaration that is added to the envelope of the SOAP fault. Use a value of the fol-
lowing form:

xmlns:prefix="namespace"

Where prefix is the prefix and namespace is the namespace URI.

For example:

 set fault.faultPrefixDefinition = "xmlns:FLT=""http://myfault.com"""

The %SOAP.Fault class also provides the AsString() method, which returns the fault object as a string.

5.3.2 SOAP 1.2 Faults

This section provides information on %SOAP.Fault12 and related classes, which represent SOAP 1.2 faults. This section
includes the following:

• Example SOAP 1.2 fault

• %SOAP.Fault12, the main class that represents SOAP 1.2 faults

• %SOAP.Fault12.Code, a helper class

• %SOAP.Fault12.Text, another helper class

5.3.2.1 Example SOAP Fault

For reference, here is an example of a SOAP 1.2 fault, including the SOAP envelope:

Creating Web Services and Web Clients 41

Creating a Fault Object Manually

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://www.w3.org/2003/05/soap-envelope"
xmlns:flt="http://myfault.org">
 <SOAP-ENV:Body>
 <SOAP-ENV:Fault>
 <SOAP-ENV:Code>
 <SOAP-ENV:Value>SOAP-ENV:Receiver</SOAP-ENV:Value>
 </SOAP-ENV:Code>
 <SOAP-ENV:Reason>
 <SOAP-ENV:Text xml:lang="en">Division error</SOAP-ENV:Text>
 <SOAP-ENV:Text xml:lang="it">Errore di applicazione</SOAP-ENV:Text>
 <SOAP-ENV:Text xml:lang="es">Error del uso</SOAP-ENV:Text>
 </SOAP-ENV:Reason>
 <SOAP-ENV:Detail><mymessage>Division error detail</mymessage></SOAP-ENV:Detail>
 </SOAP-ENV:Fault>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

5.3.2.2 %SOAP.Fault12 Properties

The class %SOAP.Fault12 represents a SOAP 1.2 fault. This class has the following properties:

Code

An instance of %SOAP.Fault12.Code, discussed in the following section.

Detail

Used within the <detail> element of the SOAP fault. Use this to specify information about the cause of the
fault.

If specified, this argument should be a string containing valid XML that can be used within the <detail> element.
InterSystems IRIS does not verify that the string you provide is valid; it is the responsibility of your application
to check this.

Node

Specifies the URI of the SOAP node on the SOAP message path that caused the fault to happen; optional for the
destination node.

This is useful if the SOAP message travels through several nodes in the SOAP message path, and the client needs
to know which node caused the error. It is beyond the scope of this book to discuss this advanced use of SOAP.

Reason

A list of instances of %SOAP.Fault12.Text, discussed in a following section. Each instance contains a reason string
and a language code that indicates the language or locality of the reason string. These are used within the <Reason>
element.

Role

Role that the node was operating in. See the preceding remarks for Node.

faultPrefixDefinition

Specifies a namespace prefix declaration that is added to the envelope of the SOAP fault. Use a value of the fol-
lowing form:

xmlns:prefix="namespace"

Where prefix is the prefix and namespace is the namespace URI.

For example:

 set fault.faultPrefixDefinition = "xmlns:FLT=""http://myfault.com"""

42 Creating Web Services and Web Clients

SOAP Fault Handling

The %SOAP.Fault12 class also provides the AsString() method, which returns the fault object as a string.

5.3.2.3 %SOAP.Fault12.Code Properties

You use %SOAP.Fault12.Code as a value for the Code property of an instance of %SOAP.Fault12. The %SOAP.Fault12.Code

class has the following properties:

Subcode

An optional subcode.

Value

The value you provide depends on whether you have provided a subcode:

• If you used a subcode, specify Value as a qname.

• If you did not use a subcode, specify Value as one of the SOAP 1.2 macros listed in “Macros for SOAP Fault
Codes,” earlier in this chapter.

5.3.2.4 %SOAP.Fault12.Text Properties

You use %SOAP.Fault12.Text as a list element in the Reason property of an instance of %SOAP.Fault12. The
%SOAP.Fault12.Text class has the following properties:

Text

A string indicating the reason for the fault, as intended for users to see.

lang

A code that corresponds to the language or locality in which the fault text is phrased. For information, see the W3
web site (http://www.w3.org/).

5.4 Adding WS-Addressing Header Elements When Faults
Occur
Your InterSystems IRIS web service can add WS-Addressing header elements when faults occur. To do this, include the
following additional steps within the fault handling of your web service:

1. Choose a fault destination and a fault action to use in case of faults.

2. Using these as arguments, call the GetDefaultResponseProperties() class method of %SOAP.Addressing.Properties.
This returns an instance of %SOAP.Addressing.Properties that is populated with values as typically needed.

3. Optionally set other properties of the instance of %SOAP.Addressing.Properties, as needed.

For details, see the class documentation for %SOAP.Addressing.Properties.

4. Set the FaultAddressing property of your web service equal to the instance of %SOAP.Addressing.Properties.

Creating Web Services and Web Clients 43

Adding WS-Addressing Header Elements When Faults Occur

http://www.w3.org/

5.5 Adding Other Header Elements When Faults Occur
In addition to or instead of the options discussed in the previous section, your InterSystems IRIS web service can add custom
header elements when faults occur. To do this:

1. Create a subclass of %SOAP.Header. In this subclass, add properties to contain the additional data.

See the chapter “Adding and Using Custom Header Elements.”

2. Within the fault handling of your web service (as described earlier in this chapter), include the following additional
steps:

a. Create an instance of your header subclass.

Note: Despite the name of this class, this object is really a SOAP header element, not an entire header. A SOAP
message has one header, which contains multiple elements.

b. Set its properties as needed.

c. Insert this header element into the FaultHeaders array property of the web service. To do so, call the SetAt() of
that property. The key that you provide is used as the main header element name.

For example, consider the following custom header class:

Class Fault.CustomHeader Extends %SOAP.Header
{

Parameter XMLTYPE = "CustomHeaderElement";

Property SubElement1 As %String;

Property SubElement2 As %String;

Property SubElement3 As %String;

}

We could modify the web method shown previously as follows:

Method DivideAlt(arg1 As %Numeric, arg2 As %Numeric) As %Numeric [WebMethod]
{
 Try {
 Set ans=arg1 / arg2
 } Catch {

 //<detail> element must contain element(s) or whitespace
 //specify this element by passing valid XML as string argument to MakeFault()
 set mydetail="<mymessage>Division error detail</mymessage>"

 set fault=..MakeFault($$$FAULTServer,"Division error",mydetail)

 //Set fault header
 Set header=##class(CustomHeader).%New()
 Set header.SubElement1="custom fault header element"
 Set header.SubElement2="another custom fault header element"
 Set header.SubElement3="yet another custom fault header element"
 Do ..FaultHeaders.SetAt(header,"CustomFaultElement")

 // ReturnFault must be called to send the fault to the client.
 // ReturnFault will not return here.
 Do ..ReturnFault(fault)
 }
 Quit ans
}

When the web client invokes the Divide() web method and uses 0 as the denominator, the web service responds as follows:

44 Creating Web Services and Web Clients

SOAP Fault Handling

<?xml version='1.0' encoding='UTF-8' standalone='no' ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xmlns:s='http://www.w3.org/2001/XMLSchema' xmlns:flt="http://myfault.org" >
 <SOAP-ENV:Header>
<CustomHeaderElement xmlns:hdr="http://www.mynamespace.org">
 <SubElement1>custom fault header element</SubElement1>
 <SubElement2>another custom fault header element</SubElement2>
 <SubElement3>yet another custom fault header element</SubElement3>
</CustomHeaderElement>
</SOAP-ENV:Header>
 <SOAP-ENV:Body>
...

Here line breaks were added for readability.

5.6 Handling SOAP Faults and Other Errors in an
InterSystems IRIS Web Client
In an InterSystems IRIS web client, you can use the TRY-CATCH mechanism or the older $ZTRAP mechanism.

In either case, when an InterSystems IRIS web client receives an error, InterSystems IRIS sets the special variables
$ZERROR and %objlasterror:

• If the error is a SOAP fault, the value of $ZERROR starts with <ZSOAP>, and %objlasterror contains the status
error that is formed from the received SOAP fault.

In addition, the client instance has a property named SoapFault, which is an instance of %SOAP.Fault or %SOAP.Fault12

(depending on the SOAP version used in the web service). You can use the information in this property. For more
information on %SOAP.Fault and %SOAP.Fault12, see the previous sections.

• If the error is not a SOAP fault, use your normal error handling (typically using $ZERROR). It is your responsibility
to specify how to proceed.

5.6.1 Example 1:Try-Catch

The following method uses TRY-CATCH:

ClassMethod Divide(arg1 As %Numeric, arg2 As %Numeric) As %Numeric
{
 Set $ZERROR=""
 Set client=##class(FaultClient.DivideSoap).%New()

 Try {
 Set ans=client.Divide(arg1,arg2)
 }
 Catch {
 If $ZERROR["<ZSOAP>" {
 Set ans=%objlasterror
 }
 Else {
 Set ans=$$$ERROR($$$ObjectScriptError,$ZERROR)
 }
 }

 Quit ans
}

This method uses system macros defined in the %systemInclude include file, so the class that contains this method starts
with the following:

Include %systemInclude

Creating Web Services and Web Clients 45

Handling SOAP Faults and Other Errors in an InterSystems IRIS Web Client

5.6.2 Example 2: $ZTRAP

The following example uses the older $ZTRAP mechanism. In this case, when an InterSystems IRIS web client receives
an error, control is transferred to the label indicated by the $ZTRAP special variable (if that label is defined).

ClassMethod DivideWithZTRAP(arg1 As %Numeric = 1, arg2 As %Numeric = 2) As %Numeric
{
 Set $ZERROR=""
 Set $ZTRAP="ERRORTRAP"
 Set client=##class(FaultClient.DivideSoap).%New()
 Set ans=client.Divide(arg1,arg2)
 Quit ans

 //control goes here in case of error
ERRORTRAP
 if $ZERROR["<ZSOAP>"
 {
 quit client.SoapFault.Detail
 }
 else
 {
 quit %objlasterror
 }
}

5.6.3 SSL Handshake Errors

If an InterSystems IRIS web client uses an SSL connection and a SSL handshake error has occurred, then the SSLError

property of the client contains text that describes the SSL error.

46 Creating Web Services and Web Clients

SOAP Fault Handling

6
Using MTOM for Attachments

You can include attachments in SOAP request and response messages. The preferred way to do this is to use InterSystems
IRIS support for MTOM (Message Transmission Optimization Mechanism).

This chapter discusses the details:

• An overview of attachments and SOAP message packaging

• Default behavior of InterSystems IRIS web services and web clients (with regards to binary data)

• How to force an InterSystems IRIS web service to send responses as MTOM packages

• How to force an InterSystems IRIS web client to send requests as MTOM packages

• How to control the details of the MTOM package

• An example that sends MTOM messages between a web service and a web client

You can also specify MTOM use within a policy; see Securing Web Services.

You can also configure InterSystems IRIS web services and web clients to use gzip to compress their messages after per-
forming any packaging; see the chapters “Fine-Tuning a Web Service in InterSystems IRIS” and “Fine-Tuning a Web
Client in InterSystems IRIS.”

6.1 Attachments and SOAP Message Packaging
Attachments are generally used to carry binary data. InterSystems IRIS SOAP support provides three ways to package your
SOAP messages. Before discussing detailed options, it is worthwhile to review these kinds of packaging.

• Package the message with all parts inline (without attachments). Use base-64 encoding for any binary data.

This is the default behavior of InterSystems IRIS web services and web clients, except when a web service receives
an MTOM request (in which case, the service responds with an MTOM response).

• Package the message according to the MTOM (Message Transmission Optimization Mechanism) specification, which
results in a slightly more compact message than an all-inline message. This is now the preferred approach for SOAP
messages.

When you use this technique, the system automatically packages the SOAP messages appropriately. That is, the MIME
parts are created as needed and are added to the message without your intervention.

Also by default, when InterSystems IRIS creates an MTOM package, it outputs binary streams using an attachment,
and it outputs binary strings (%Binary or %xsd.base64Binary) inline; you can control this behavior.

Creating Web Services and Web Clients 47

For links to the specifications for MTOM, see “Standards Supported in InterSystems IRIS,” in the first chapter of this
book.

• Package the message according to the SOAP with Attachments specification, which results in a slightly more compact
message than an all-inline message.

When you use this technique, you must manually create MIME parts, populate them with data, specify the MIME
headers as appropriate, and attach the parts to the SOAP message. This usually requires more work than the MTOM
technique. See the next chapter, “Using SOAP with Attachments.”

6.1.1 SOAP Messages with All-Inline Parts (Default)

The default way to package a SOAP message is to include all its elements as inline parts (that is, without attachments).
Any binary data is included inline as base-64–encoded data. For example (with line breaks and spaces added for readability):

HTTP/1.1 200 OK
Date: Wed, 19 Nov 2008 21:57:50 GMT
Server: Apache
SET-COOKIE: CSPSESSIONID-SP-8080-UP-csp-gsoap-=003000010000248
guobl000000K7opwlDlY$XbvrGR1eYZsA--; path=/csp/gsop/;
CACHE-CONTROL: no-cache
EXPIRES: Thu, 29 Oct 1998 17:04:19 GMT
PRAGMA: no-cache
TRANSFER-ENCODING: chunked
Connection: close
Content-Type: text/xml; charset=UTF-8

1d7b
<?xml version="1.0" encoding="UTF-8" ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xmlns:s='http://www.w3.org/2001/XMLSchema'>
<SOAP-ENV:Body>
 <DownloadResponse xmlns="http://www.filetransfer.org">
 <DownloadResult><Filename>sample.pdf</Filename>
 <IsBinary>true</IsBinary>
 <BinaryContents>
 [very long binary content not shown here]
 </BinaryContents></attachment></Upload>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Notice that this packaging does not use MIME, and there are no message boundaries.

6.1.2 SOAP Messages with MTOM Packaging

Another way to package a SOAP message is to use MIME parts as described in the MTOM (Message Transmission Opti-
mization Mechanism) specification. Binary data can be placed into separate MIME parts without base-64 encoding. The
SOAP message includes references to the separate parts as needed. For example (with line breaks and spaces added for
readability):

HTTP/1.1 200 OK
Date: Wed, 19 Nov 2008 21:54:57 GMT
Server: Apache
SET-COOKIE: CSPSESSIONID-SP-8080-UP-csp-gsoap-=003000010
000247guhlx000000NW1KN5UtWg$CWY38$bbTOQ--; path=/csp/gsop/;
CACHE-CONTROL: no-cache
EXPIRES: Thu, 29 Oct 1998 17:04:19 GMT
MIME-VERSION: 1.0
PRAGMA: no-cache
TRANSFER-ENCODING: chunked
Connection: close
Content-Type: multipart/related; type="application/xop+xml";
boundary=--boundary388.5294117647058824932.470588235294118--;
start="<0.B1150656.EC8A.4B5A.8835.A932E318190B>"; start-info="text/xml"

1ddb
----boundary388.5294117647058824932.470588235294118--
Content-Type: application/xop+xml; type="text/xml"; charset="UTF-8"
Content-Transfer-Encoding: 8bit
Content-Id: <0.B1150656.EC8A.4B5A.8835.A932E318190B>

48 Creating Web Services and Web Clients

Using MTOM for Attachments

<?xml version="1.0" encoding="UTF-8" ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xmlns:s='http://www.w3.org/2001/XMLSchema'>
<SOAP-ENV:Body>
<DownloadResponse xmlns="http://www.filetransfer.org">
<DownloadResult>
 <Filename>sample.pdf</Filename>
 <IsBinary>true</IsBinary>
 <BinaryContents>
 <xop:Include href="cid:1.B1150656.EC8A.4B5A.8835.A932E318190B"
 xmlns:xop="http://www.w3.org/2004/08/xop/include"/>
 </BinaryContents></DownloadResult></DownloadResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
----boundary388.5294117647058824932.470588235294118--
Content-Id: <1.B1150656.EC8A.4B5A.8835.A932E318190B>
Content-Transfer-Encoding: binary
CONTENT-TYPE: application/octet-stream

[very long binary content not shown here]

Notice the following differences compared to the default package:

• The message has MIME parts and thus includes boundaries.

• The MIME part has a Content-ID attribute.

• In the SOAP body, the element BinaryContents consists of a reference to that content ID.

6.1.3 SOAP with Attachments

A third way to package SOAP messages is to use the SOAP with Attachments specification, which also uses MIME parts,
but packages the message somewhat differently from MTOM. An example follows (with line breaks and spaces added for
readability):

HTTP/1.1 200 OK
Date: Mon, 09 Nov 2009 17:47:36 GMT
Server: Apache
SET-COOKIE: CSPSESSIONID-SP-8080-UP-csp-gsoap-=
000000010000213eMwn70000004swjTo4cGuInLMU1n7jaPg--; path=/csp/gsop/;
CACHE-CONTROL: no-cache
EXPIRES: Thu, 29 Oct 1998 17:04:19 GMT
MIME-VERSION: 1.0
PRAGMA: no-cache
TRANSFER-ENCODING: chunked
Connection: close
Content-Type: multipart/related; type="text/xml";
 boundary=--boundary2629.3529411764705883531.411764705882353--

1ca2
----boundary2629.3529411764705883531.411764705882353--
Content-Type: text/xml; charset="UTF-8"
Content-Transfer-Encoding: 8bit

<?xml version="1.0" encoding="UTF-8" ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xmlns:s='http://www.w3.org/2001/XMLSchema'>
 <SOAP-ENV:Body><DownloadBinaryResponse xmlns="http://www.filetransfer.org">
<DownloadBinaryResult>MQ==</DownloadBinaryResult></DownloadBinaryResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
----boundary2629.3529411764705883531.411764705882353--
Content-Transfer-Encoding: binary
Content-Type: application/octet-stream

%PDF-1.4
%âãÏÓ
86 0 obj
<</Length 87 0 R
/Filter /FlateDecode
>>
stream
[stream not shown]

Creating Web Services and Web Clients 49

Attachments and SOAP Message Packaging

As with MTOM, there is a boundary string and the attachment is a MIME part. However, in contrast to MTOM, the MIME
part does not have a content ID, and the SOAP body does not include any references to the MIME part.

6.2 Default Behavior of InterSystems IRIS Web Services
and Web Clients
By default, an InterSystems IRIS web service behaves as follows:

• If it receives a request in an MTOM package, the web service sends the response as an MTOM package.

Also, the IsMTOM property of the web service instance is set to 1.

• If it receives a request not in an MTOM package, the web service sends the response not in an MTOM package.

By default, an InterSystems IRIS web client behaves as follows:

• It does not send requests as MTOM packages.

• It processes the response regardless of whether the response is in an MTOM package.

If the response is in an MTOM package, the IsMTOM property of the web client instance is set to 1. If the response is
not in an MTOM package, the IsMTOM property is not changed.

6.3 Forcing Responses as MTOM Packages
You can force an InterSystems IRIS web service to send every response as an MTOM package. To do, do any of the fol-
lowing:

• In your InterSystems IRIS web service class, set the MTOMREQUIRED parameter to 1.

• In your InterSystems IRIS web service instance, set the MTOMRequired property to 1. You can do this within the web
method or within the OnPreWebMethod() callback. For an introduction to this callback, see “Customizing Callbacks
of the Web Service,” later in this book.

• Attach a policy statement for the web service to send MTOM packages. To do so, you create and compile a configuration
class that refers to the web service class; in this policy, enable use of MTOM. See Securing Web Services.

If you attach such a policy statement, your values for MTOMREQUIRED is ignored, and MTOMRequired is set equal
to 1.

6.3.1 Effect on the WSDL

MTOMREQUIRED and MTOMRequired do not affect the WSDL of the web service.

A policy statement that refers to MTOM does affect the WSDL; if you add a policy statement, it is necessary to regenerate
any web clients. For an InterSystems IRIS web client, you can simply attach an MTOM policy statement to the client instead
of regenerating the client classes.

50 Creating Web Services and Web Clients

Using MTOM for Attachments

6.4 Forcing Requests as MTOM Packages
You can force an InterSystems IRIS web client to send every request as an MTOM package. To do, do either of the following:

• In your InterSystems IRIS web client class, set the MTOMREQUIRED parameter to 1.

• In your InterSystems IRIS web client instance, set the MTOMRequired property to 1.

• Attach a policy statement to the web client to send MTOM packages. To do so, you create and compile a configuration
class that refers to the web service client; in this policy, enable use of MTOM. See Securing Web Services.

If you attach such a policy statement, your values for MTOMREQUIRED is ignored, and MTOMRequired is set equal
to 1.

6.4.1 Effect on the WSDL

MTOMREQUIRED and MTOMRequired do not assume any change in the WSDL of the web service used by this web client.

A policy statement that refers to MTOM does affect the WSDL. That is, you would add an MTOM policy statement to a
client only if the web service required it.

6.5 Controlling the MTOM Packaging
By default, when InterSystems IRIS creates an MTOM package, it uses the following rules:

• It outputs binary strings (%Binary or %xsd.base64Binary) inline.

• It outputs binary streams using an attachment.

You can use the MTOM property parameter to change this default:

• 1 means output this property as an attachment.

• 0 means output this property inline.

The MTOM property parameter has no effect when a web service or web client is not using MTOM.

Also, this property parameter has no effect on the WSDL of a web service.

6.6 Example
This example shows an InterSystems IRIS web service that receives a binary file and sends it back to the caller.

The corresponding web client sends a file with a hardcoded filename, receives the same file from the web service, and then
saves it with a new name to prove that it has been successfully sent.

6.6.1 Web Service

The web service is as follows:

Creating Web Services and Web Clients 51

Forcing Requests as MTOM Packages

/// Receive an attachment and send it back
Class MTOM.RoundTripWS Extends %SOAP.WebService
{

/// Name of the web service.
Parameter SERVICENAME = "RoundTrip";

/// SOAP namespace for the web service
Parameter NAMESPACE = "http://www.roundtrip.org";

/// Receive an attachment and send it back
Method ReceiveFile(attachment As %GlobalBinaryStream) As %GlobalBinaryStream [WebMethod]
{
 Set ..MTOMRequired=1
 Quit attachment
}

}

6.6.2 Web Client

The generated web client (MTOMClient.RoundTripSoap) contains the method ReceiveFile(), which invokes the
web method of the same name. This method is originally as follows:

Method ReceiveFile(attachment As %xsd.base64Binary) As %xsd.base64Binary
[Final, SoapBindingStyle = document, SoapBodyUse = literal, WebMethod]
{
 Quit ..WebMethod("ReceiveFile").Invoke($this,"http://www.roundtrip.org/MTOM.RoundTripWS.ReceiveFile",

 .attachment)
}

Because the files we send might exceed the string length limit, we adjust the method signature as follows:

Method ReceiveFile(attachment As %GlobalBinaryStream) As %GlobalBinaryStream
[Final, SoapBindingStyle = document, SoapBodyUse = literal, WebMethod]
{
 Quit ..WebMethod("ReceiveFile").Invoke($this,"http://www.roundtrip.org/MTOM.RoundTripWS.ReceiveFile",

 .attachment)
}

MTOM is not required by default in the web client; that is, the MTOMREQUIRED parameter is not defined.

To use this proxy client, we create the following class:

Include %systemInclude

Class MTOMClient.UseClient
{

/// For this example, hardcode what we are sending
ClassMethod SendFile() As %GlobalBinaryStream
{
 Set client=##class(MTOMClient.RoundTripSoap).%New()
 Set client.MTOMRequired=1

 //reset location to port 8080 to enable tracing
 Set client.Location="http://localhost:8080/csp/gsop/MTOM.RoundTripWS.cls"

 //create file
 Set filename="c:\sample.pdf"
 Set file=##class(%Library.FileBinaryStream).%New()
 Set file.Filename=filename

 //create %GlobalBinaryStream
 Set attachment=##class(%GlobalBinaryStream).%New()
 Do attachment.CopyFrom(file)

 //call the web service
 Set answer=client.ReceiveFile(attachment)

 //save the received file to prove we made the round trip successfully
 Set newfilename="c:\roundtrip"_$h_"sample.pdf"
 Set newfile=##class(%Library.FileBinaryStream).%New()
 Set newfile.Filename=newfilename
 Do newfile.CopyFromAndSave(answer)

52 Creating Web Services and Web Clients

Using MTOM for Attachments

 Quit answer
}

}

Creating Web Services and Web Clients 53

Example

7
Using SOAP with Attachments

In your InterSystems IRIS web clients and web services, you can add and use attachments to SOAP messages by using the
InterSystems IRIS support for SOAP with Attachments, instead of using the InterSystems IRIS MTOM support, as described
in the previous chapter.

This method requires more work than using MTOM because your code must directly manage the MIME parts used as
attachments.

• How to send attachments from a web service or web client via SOAP with Attachments

• How to access sent attachments within a web service or web client

• An example that shows attachments sent in both directions

For a link to the specifications for the SOAP with Attachments standard, see “Standards Supported in InterSystems IRIS,”
in the first chapter of this book.

7.1 Sending Attachments
When you use the InterSystems IRIS support for the SOAP with Attachments standard, you use the following process to
send attachments:

1. Create the attachments. To create an attachment:

a. Use a stream object to represent the attachment data. The class you use depends on the exact interface you need
to obtain the stream data. For example, you might use %Library.FileCharacterStream to read the contents of a file
into a stream.

b. Create a MIME part, which is an instance of %Net.MIMEPart.

c. For the MIME part:

• Set the Body property equal to your stream object. Or set the Parts property, which must be a list of instances
of %Net.MIMEPart.

• Call the SetHeader() method to set the Content-Transfer-Encoding header of the MIME part. Be sure
to set this appropriately for the type of data you are sending.

2. Add the attachments to the web service or web client. To add a given attachment, you insert the MIME part into the
appropriate property as follows:

• If you are sending an attachment from a web client, update the Attachments property of your web client.

Creating Web Services and Web Clients 55

• If you are sending an attachment from a web service, update the ResponseAttachments property of the web service.

Each of these properties is a list with the usual list interface (for example, SetAt(), Count(), and GetAt() methods).

3. Update the appropriate properties of the web client or the web service to describe the attachment contents:

• ContentId

• ContentLocation

7.2 Using Attachments
When an InterSystems IRIS web service or web client receives a SOAP message that has attachments (as specified by the
SOAP with Attachments specification), the following happens:

• The attachments are inserted into the appropriate property:

– For a web service, the inbound attachments are placed in the Attachments property.

– For a web client, the inbound attachments are placed in the ResponseAttachments property.

Each of these properties is a list with the usual list interface (for example, SetAt(), Count(), and GetAt() methods).
Each list element is an instance of %Net.MIMEPart. Note that a MIME part can in turn contain other MIME parts. Your
code is responsible for determining the structure and contents of the attachments.

• The ContentID and ContentLocation properties are updated to reflect the Content-ID and Content-Location
headers of the inbound SOAP message.

The web service or web client can access these properties and thus access the attachments.

7.3 Example
This section provides an example web service and web client that send attachments to each other.

7.3.1 Web Service

The web service provides two methods:

• UploadAscii() receives an ASCII attachment and saves it.

• DownloadBinary() sends a binary attachment to the requestor.

The class definition is as follows:

Class GSOAP.FileTransferWS Extends %SOAP.WebService
{

/// Name of the web service.
Parameter SERVICENAME = "FileTransfer";

/// SOAP namespace for the web service
Parameter NAMESPACE = "http://www.filetransfer.org";

/// Namespaces of referenced classes will be used in the WSDL.
Parameter USECLASSNAMESPACES = 1;

/// Receive an attachment and save it

56 Creating Web Services and Web Clients

Using SOAP with Attachments

Method UploadAscii(filename As %String = "sample.txt") As %Status [WebMethod]
{
 //assume 1 attachment; ignore any others
 Set attach=..Attachments.GetAt(1)

 Set file=##class(%FileCharacterStream).%New()
 Set file.Filename="c:\from-client"_$H_filename

 //copy attachment into file
 Set status=file.CopyFrom(attach.Body)
 If $$$ISERR(status) {do $System.Status.DisplayError(status)}
 Set status= file.%Save()
 Quit status
}

/// Create an attachment and send it in response to the web client call
Method DownloadBinary(filename As %String = "sample.pdf") As %Status [WebMethod]
{
 //use a file-type stream to read file contents
 Set file=##class(%Library.FileBinaryStream).%New()
 Set file.Filename="c:\"_filename

 //create MIMEpart and add file to it
 Set mimepart=##class(%Net.MIMEPart).%New()
 Set mimepart.Body=file

 //set header appropriately for binary file
 Do mimepart.SetHeader("Content-Type","application/octet-stream")
 Do mimepart.SetHeader("Content-Transfer-Encoding","binary")

 //attach
 Set status=..ResponseAttachments.Insert(mimepart)
 Quit status
}

}

7.3.2 Web Client

The web client application provides two methods:

• UploadAscii() sends an ASCII file to the web service.

• DownloadBinary() calls the web service and receives an binary file in response.

The generated web client class (GSOAPClient.FileTransfer.FileTransferSoap) includes the methods
UploadAscii() and DownloadBinary(), which invoke the corresponding methods of the preceding web service.
This class is not shown.

The web client application also includes the following class, which uses this generated web client class:

Include %systemInclude

Class GSOAPClient.FileTransfer.UseClient
{

ClassMethod DownloadBinary(filename As %String = "sample.pdf") As %Status
{
 Set client=##class(GSOAPClient.FileTransfer.FileTransferSoap).%New()

 //call web method
 Set ans=client.DownloadBinary(filename)

 //get the attachment (assume only 1)
 Set attach=client.ResponseAttachments.GetAt(1)

 //create a file and copy stream contents into it
 Set file=##class(%FileBinaryStream).%New()
 //include $H in the filename to make filename unique
 Set file.Filename="c:\from-service"_$H_filename
 Set status=file.CopyFrom(attach.Body)
 If $$$ISERR(status) {do $System.Status.DisplayError(status)}
 Set status= file.%Save()
 Quit status
}

ClassMethod UploadAscii(filename As %String = "sample.txt") As %Status
{

Creating Web Services and Web Clients 57

Example

 Set client=##class(GSOAPClient.FileTransfer.FileTransferSoap).%New()

 //use a file-type stream to read file contents
 Set file=##class(%Library.FileCharacterStream).%New()
 Set file.Filename="c:\"_filename

 //create MIME part, add file as Body, and set the header
 Set mimepart=##class(%Net.MIMEPart).%New()
 Set mimepart.Body=file
 Do mimepart.SetHeader("Content-Transfer-Encoding","7bit")

 //attach to client and call web method
 Do client.Attachments.Insert(mimepart)
 Set status=client.UploadAscii(filename)
 Quit status
}

}

58 Creating Web Services and Web Clients

Using SOAP with Attachments

8
Adding and Using Custom Header
Elements

This chapter describes how to add and use custom SOAP header elements.

This chapter discusses the following:

• Introduction to SOAP headers in InterSystems IRIS

• How to define a custom header element

• How to add a header element to a SOAP message

• How to specify the supported header elements in general

• How to specify the supported header elements in an XData block

• How to specify the supported header elements in the SOAPHEADERS parameter

• How to use a header element received in a SOAP message

For information on adding header elements when faults occur, see the chapter “SOAP Fault Handling,” earlier in this
book.

A later chapter discusses WS-Addressing header elements. For information on WS-Security header elements, see Securing
Web Services.

8.1 Introduction to SOAP Header Elements in
InterSystems IRIS
A SOAP message can include a header (the <Header> element), which contains a set of header elements. For example:

<SOAP-ENV:Envelope>
 <SOAP-ENV:Header>
 <MyHeaderElement>
 <Subelement1>abc</Subelement1>
 <Subelement2>def</Subelement2>
 </MyHeaderElement>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
...
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Creating Web Services and Web Clients 59

Informally, each header element is often referred to as a “header.” This is not strictly accurate, because the message itself
can contain at most one header, which is always <Header>, with an appropriate namespace prefix. The header can contain
WS-Security header elements, WS-Addressing header elements, and your own custom header elements.

A header element carries additional information for possible use by the web service or web client that receives the SOAP
message. In the example shown here, this information is carried within XML elements. A header element can also include
XML attributes, although none are shown in the previous example. The SOAP standard specifies three standard attributes
(mustUnderstand, actor, and encodingStyle) to indicate how a recipient should process the SOAP message.

8.1.1 How InterSystems IRIS Represents SOAP Headers

InterSystems IRIS represents each header element as an instance of %SOAP.Header or one of its subclasses. %SOAP.Header

is an XML-enabled class with properties that correspond to the standard header element attributes (mustUnderstand,
actor, and encodingStyle).

InterSystems IRIS provides specialized subclasses of %SOAP.Header for use with WS-Addressing and WS-Security. To
represent custom header elements, you create your own subclasses of %SOAP.Header.

When an InterSystems IRIS web service or client receives a SOAP message, it imports and processes the message. During
this step, if the message contains a header with custom header elements, InterSystems IRIS compares the header elements
to the list of supported header elements (discussed in the next subsection).

Then the service or client creates an instance of each applicable header element class, inserts those into an array, and places
that array in its own HeadersIn property:

To use these header elements, your InterSystems IRIS web service or client can access the HeadersIn property. If the SOAP
message did not include a <Header> element, the Count() of the HeadersIn property is 0.

Similarly, before your InterSystems IRIS web service or client sends a SOAP message, it must update the HeadersOut

property so that it contains any custom elements you want to include in the outbound message. If the HeadersOut Count()
is 0, the outbound SOAP message does not include a <Header> element.

60 Creating Web Services and Web Clients

Adding and Using Custom Header Elements

For custom header elements, you always use the HeadersIn and HeadersOut properties.

The details are different for other (non-custom) header elements:

• For WS-Addressing, use the AddressingIn and AddressingOut properties rather than the HeadersIn and HeadersOut

properties. See the chapter “Adding and Using WS-Addressing Header Elements” later in this book.

• For WS-Security header elements, use the WS-Policy features, described in Securing Web Services.

Or directly use the SecurityIn and SecurityOut properties, discussed in the same book. This is generally more work.

(Note that the WS-Security header elements are also contained in the HeadersIn and HeadersOut properties, b´ut it is
not recommended to access them or to set them via those properties.)

• InterSystems IRIS SOAP session support uses the HeadersIn and HeadersOut properties. See the chapter “SOAP
Session Management,” later in this book.

8.1.2 Supported Header Elements

InterSystems IRIS web services and clients automatically support WS-Addressing and WS-Security headers, but do not
automatically support other headers.

To specify the supported header elements in an InterSystems IRIS web service or client, you add an XData block to the
class and specify the class parameter USECLASSNAMESPACES. The XData block lists the supported elements. The class
parameter causes the WSDL to include the applicable types. See “Specifying the Supported Header Elements.”

8.1.3 Header Elements and the WSDL

The WSDL for a web service advertises the header elements supported by that web service and permitted by web clients
that communicate with that web service.

For an InterSystems IRIS web service, the generated WSDL might not include information about the SOAP header elements:

• If you add SOAP headers manually by setting the HeadersOut property, be sure to declare them in an XData block as
described in “Specifying Supported Header Elements,” later in this chapter. Also specify the class parameter
USECLASSNAMESPACES as 1 in the web service class.

Creating Web Services and Web Clients 61

Introduction to SOAP Header Elements in InterSystems IRIS

If you follow these steps, the WSDL contains all the applicable information. Otherwise, it does not, and you must save
the WSDL to a file and edit it manually as needed.

• If you add WS-Security headers by setting the SecurityOut property (as described in Securing Web Services), the WSDL
does not include all needed information. (This is because the WSDL is generated at compile time and the headers are
added later, at runtime.) In this case, save the WSDL to a file and edit it manually as needed.

For many reasons, it is simpler and easier to add WS-Security elements by using WS-Policy, as described in the same
book. With WS-Policy, the generated WSDL includes all needed information.

• In other cases, the generated WSDL includes all needed information.

Note that the W3C specifications do not require a web service to provide a generated WSDL.

8.1.4 Required Header Elements

If a given header element specifies mustUnderstand=1, the element is considered mandatory, and the recipient must
support it. The recipient cannot process the message unless it recognizes all mandatory header element.

Following the SOAP standard, InterSystems IRIS rejects SOAP messages that contain required but unsupported header
elements. Specifically, if InterSystems IRIS web service or client receives a message that contains a header element that
includes mustUnderstand=1, and if that service or client does not support that header element, the service or client
issues a SOAP fault and then ignores the message.

8.2 Defining Custom Header Elements
If you use the SOAP Wizard to create an InterSystems IRIS web service or web client based on a given WSDL, the system
generates classes to represent any header elements as needed.

If you create a web service or client manually, you must manually define classes to represent any custom header elements.
To do so:

1. For each custom header element, create a subclass of %SOAP.Header.

2. Specify the NAMESPACE parameter to indicate the namespace of the header element.

3. Specify the XMLNAME parameter to indicate the name of the header element.

4. In the subclass, define properties to contain the header information you need. By default, your properties are projected
to elements within your <Header> element.

5. Optionally specify the XMLFORMAT parameter, which controls the format of this header element. By default, the
header elements are always in literal format (rather than SOAP-encoded).

For example:

Class Scenario1.MyHeaderElement Extends %SOAP.Header
{

Parameter NAMESPACE = "http://www.myheaders.org";

Parameter XMLNAME = "MyHeader";

Property Subelement1 As %String;

Property Subelement2 As %String;

}

This header element appears as follows within a SOAP message:

62 Creating Web Services and Web Clients

Adding and Using Custom Header Elements

<?xml version="1.0" encoding="UTF-8" ?>
<SOAP-ENV:Envelope [parts omitted]>
 <SOAP-ENV:Header>
 <MyHeader xmlns="http://www.myheaders.org"
 xmlns:hdr="http://www.myheaders.org">
 <Subelement1>abc</Subelement1>
 <Subelement2>def</Subelement2>
 </MyHeader>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 [omitted]
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

For details on customizing the XML projection of any given object class, see the book Projecting Objects to XML.

For information on the SOAP Wizard, see “Using the SOAP Wizard.”

8.3 Adding a Custom Header Element to a SOAP Message
To add custom header elements to a SOAP message (from either the web service or the web client), do the following before
sending the SOAP message.

1. Create an instance of your header object.

2. Set the properties of that object as appropriate, optionally including the actor and mustUnderstand properties.

3. Add the new header to the outbound header array, the HeadersOut property. This property is an array with the usual
array interface (for example, the SetAt(), Count(), and GetAt() methods).

Note: If you perform these steps in a utility method, note that the method must be an instance method and must be a
member of an instantiable class (not an abstract class, for example).

Then within your web service or client class, you could have a utility method that adds a header element:

Method AddMyHeaderElement(mustUnderstand=0)
{
 Set h=##class(MyHeaderElement).%New()
 Set h.Subelement1 = "abc"
 Set h.Subelement2 = "def"
 If mustUnderstand {Set h.mustUnderstand=1}
 Do ..HeadersOut.SetAt(h,"MyHeaderElement")
}

Finally, you could call this utility method from each web method where you wanted to use it. For example:

/// Divide arg1 by arg2 and return the result
Method Divide(arg1 As %Numeric, arg2 As %Numeric) As %Numeric [WebMethod]
{
 //main method code here
 //...

 do ..AddMyHeaderElement()

 Quit ans
}

When you invoke this web method, the header is added to the SOAP response.

Creating Web Services and Web Clients 63

Adding a Custom Header Element to a SOAP Message

8.4 Specifying Supported Header Elements
InterSystems IRIS web services and clients automatically support WS-Addressing and WS-Security header elements, but
do not automatically support other header elements.

To specify the header elements supported by an InterSystems IRIS web service or web client, do the following:

• Define classes to represent these header elements as described in “Defining Custom Header Elements.”

• Associate the header element classes with header elements for the web service or web client.

You can do this in either of two ways:

– Add an XData block to the web service or client class. In this XData block, specify an association between specific
header elements and the corresponding header element classes.

If the service or client class also sets the class parameter USECLASSNAMESPACES to 1 (the recommended value),
then this header information is used in the generated WSDL.

– In your web service or web client class, specify the SOAPHEADERS parameter. In this parameter, specify an
association between specific header elements and the corresponding header element classes.

Note: This technique is less flexible, does not affect the generated WSDL, and is now deprecated.

The following sections give the details.

8.5 Specifying the Supported Header Elements in an
XData Block
If you use the SOAP Wizard to create an InterSystems IRIS web service or web client based on a given WSDL, the system
generates an XData block in that class to represent any header elements supported in its SOAP messages. (For information
on the SOAP Wizard, see “Using the SOAP Wizard.”)

If you create a web service or client manually, you must manually specify this XData block.

The following is a simple example:

XData NewXData1
{
<parameters xmlns="http://www.intersystems.com/configuration">
 <request>
 <header name="ServiceHeader" class="NewHeaders.MyCustomHeader"/>
 </request>
 <response>
 <header name="ExpectedClientHeader" class="NewHeaders.MyCustomHeader"/>
 </response>
</parameters>
}

8.5.1 Details

The requirements for this XData block are as follows:

• The XData block can have any name. The name (NewXData1 in this case) is not used.

The SOAP Wizard uses the name parameters when it creates this block.

64 Creating Web Services and Web Clients

Adding and Using Custom Header Elements

• The top level element must be <parameters>

• The <parameters> element and all its child elements (and their children) must be in the namespace
"http://www.intersystems.com/configuration"

• The <parameters> element can have the following children:

– <request> — Determines the header elements associated with all request messages, for any header elements
that should be the same in all request messages.

This element should have a child element <header> for each applicable header element.

– <response> — Determines the header elements associated with all response messages, for any header elements
that should be the same in all response messages.

This element should have a child element <header> for each applicable header element.

– <methodname> — Determines the header elements associated with the web method whose name is methodname.

This element can have the following children:

• <header> — Determines the header elements associated with request and response messages for this web
method, for any header elements that should be the same in both cases.

• <request> — Determines the header elements associated with request messages for this web method.

This element should have a child element <header> for each applicable header element.

• <response> — Determines the header elements associated with response messages for this web method.

This element should have a child element <header> for each applicable header element.

• In this XData block, each <header> element associates a header element with the InterSystems IRIS class that should
be used to represent it. This element includes the following attributes:

PurposeAttribute

Name of the header element.name

InterSystems IRIS class that represents this header element.class

(Optional) Key for this header element in the HeadersIn array of the web service or
web client. The default is the value given for the name attribute.

alias

The position of a <header> element within the XData block indicates the messages to which it applies.

8.5.2 Inheritance of Custom Headers

If you create a subclass of this web service, that subclass inherits the header information that is not specific to a method —
the header information contained in the <request> or <response> elements that are direct child elements of
<parameters>. This is true even if SOAPMETHODINHERITANCE is 0.

8.5.3 Examples

Another example is as follows:

XData service
{
<parameters xmlns="http://www.intersystems.com/configuration">
 <response>
 <header name="Header2" class="User.Header4" alias="Header4"/>
 <header name="Header3" class="User.Header3"/>
 </response>

Creating Web Services and Web Clients 65

Specifying the Supported Header Elements in an XData Block

 <method name="echoBase64">
 <request>
 <header name="Header2" class="User.Header4" alias="Header4"/>
 <Action>http://soapinterop.org/Round2Base.Service.echoBase64Request</Action>
 </request>
 <response>
 <header name="Header2" class="User.Header2" alias="Header2"/>
 <header name="IposTransportHeader" class="ipos.IposTransportHeader"/>
 <Action>http://soapinterop.org/Round2Base.Service.echoBase64Result</Action>
 </response>
 </method>
 <method name="echoString">
 <request>
 <Action>http://soapinterop.org/Round2Base.Service.echoStringRequest</Action>
 </request>
 <response>
 <Action>http://soapinterop.org/Round2Base.Service.echoStringAnswer</Action>
 </response>
 </method>
</parameters>
}

8.6 Specifying the Supported Header Elements in the
SOAPHEADERS Parameter
The older way to specify supported header elements is to include the SOAPHEADERS parameter in the web service or web
client class.

This parameter must equal a comma-separated list of header specifications. Each header specification has the following
form:

headerName:headerPackage.headerClass

Where headerName is the element name of the supported header and headerPackage.headerClass is the complete package
and class name of a class that represents that header. For example:

Parameter SOAPHEADERS = "MyHeaderElement:Scenario1Client.MyHeaderElement"

This list identifies all headers supported in the SOAP requests to this web service or client and indicates the class to which
each one is mapped.

If you use this older technique, note the following points:

• For a web service, this technique does not affect the generated WSDL.

• It is not possible to specify different header elements for specific web methods.

• The SOAP Wizard no longer generates the SOAPHEADERS parameter in your generated web service and client classes.

• This technique is deprecated.

8.6.1 Inheritance of Custom Headers

If you create a subclass of this web service, that subclass inherits the SOAPHEADERS parameter. This is true even if
SOAPMETHODINHERITANCE is 0.

66 Creating Web Services and Web Clients

Adding and Using Custom Header Elements

8.7 Using Header Elements
To use specific SOAP header elements after receiving a request message, use the HeadersIn property of the service or client.

For each supported header element, the service or client creates an instance of the appropriate header class and adds the
header to the inbound header array, which is the HeadersIn property. This property is an array with the usual array interface
(for example, SetAt(), Count(), and GetAt() methods). The web service or web client can then act on these headers as
appropriate.

Note: The header element namespace is not used for matching the header element in the list. However, the header element
namespace in the SOAP message must be the same as specified by the NAMESPACE parameter in your header
element subclass; otherwise, an error occurs when the message is imported.

Creating Web Services and Web Clients 67

Using Header Elements

9
Adding and Using WS-Addressing Header
Elements

This chapter describes how to add and use WS-Addressing header elements.

For a link to details about this standard, see the section “Standards Supported by InterSystems IRIS” in the first chapter.

Also see the section “Adding WS-Addressing Header Elements When Faults Occur,” earlier in this book.

9.1 Overview
You can add WS-Addressing header elements to your SOAP messages, as specified by the WS-Addressing standards for
SOAP 1.1 and SOAP 1.2. To do so, do one of the following:

• Specify the WSADDRESSING parameter of your web service or client as "AUTO". This option adds a default set of
WS-Addressing header elements, discussed in a following subsection.

• Specify WSADDRESSING as "OFF" (the default) and add WS-Addressing header elements manually, as discussed in
a following subsection.

• Create a policy for the web service or client to include WS-Addressing header elements. To do so, you create and
compile a configuration class that refers to the web service or client; in this policy, enable WS-Addressing. See
Securing Web Services.

If you attach such a policy, InterSystems IRIS uses the same set of default WS-Addressing header elements by default.
You can create and add WS-Addressing header elements manually instead.

If you attach such a policy, your value for WSADDRESSING is ignored.

9.2 Effect on the WSDL
For a web service, the WSADDRESSING parameter does not affect the generated WSDL. Similarly, if you specify this for
a web client, it is not necessary for the WSDL to change.

A policy statement that refers to WS-Addressing does affect the WSDL; if you add a policy statement, it is necessary to
regenerate any web clients. For an InterSystems IRIS web client, you can simply attach a WS-Addressing policy statement
to the client instead of regenerating the client classes.

Creating Web Services and Web Clients 69

9.3 Default WS-Addressing Header Elements
This section describes and shows examples of the default WS-Addressing header elements that InterSystems IRIS uses.

9.3.1 Default WS-Addressing Header Elements in Request Messages

If you enable WS-Addressing as described previously in this section, the web client includes the following WS-Addressing
header elements in its request messages:

• To:destination address

• Action: SoapAction

• MessageID: unique uuid

• ReplyTo: anonymous

For example:

<?xml version="1.0" encoding="UTF-8" ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'
 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
 xmlns:s='http://www.w3.org/2001/XMLSchema'
 xmlns:wsa='http://www.w3.org/2005/08/addressing'>
 <SOAP-ENV:Header>
 <wsa:Action>http://www.myapp.org/GSOAP.DivideAddressingWS.Divide</wsa:Action>
 <wsa:MessageID>urn:uuid:91576FE2-4533-43CB-BFA1-51D2B631453A</wsa:MessageID>
 <wsa:ReplyTo>
 <wsa:Address xsi:type="s:string">http://www.w3.org/2005/08/addressing/anonymous</wsa:Address>

 </wsa:ReplyTo>
 <wsa:To>http://localhost:8080/csp/gsop/GSOP.DivideAddressingWS.cls</wsa:To>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <Divide xmlns="http://www.myapp.org">
 <arg1 xsi:type="s:decimal">1</arg1>
 <arg2 xsi:type="s:decimal">7</arg2>
 </Divide>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

9.3.2 Default WS-Addressing Header Elements in Response Messages

If you enable WS-Addressing as described previously in this section and if the request message includes WS-Addressing
header elements, the web service includes the following WS-Addressing header elements in its response messages:

• To: anonymous

• Action: SoapAction_"Response"

• MessageID: unique uuid

• RelatesTo: MessageID of request

For example:

70 Creating Web Services and Web Clients

Adding and Using WS-Addressing Header Elements

<?xml version="1.0" encoding="UTF-8" ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'
 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
 xmlns:s='http://www.w3.org/2001/XMLSchema'
 xmlns:wsa='http://www.w3.org/2005/08/addressing'>
 <SOAP-ENV:Header>
 <wsa:Action>http://www.myapp.org/GSOAP.DivideAddressingWS.DivideResponse</wsa:Action>
 <wsa:MessageID>urn:uuid:577B5D65-D7E3-4EF7-9BF1-E8422F5CD739</wsa:MessageID>
 <wsa:RelatesTo>urn:uuid:91576FE2-4533-43CB-BFA1-51D2B631453A</wsa:RelatesTo>
 <wsa:To>http://www.w3.org/2005/08/addressing/anonymous</wsa:To>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <DivideResponse xmlns="http://www.myapp.org">
 <DivideResult>.1428571428571428571</DivideResult>
 </DivideResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

9.4 Adding WS-Addressing Header Elements Manually
Instead of using the default WS-Addressing header elements, you can create and add your own elements manually. To do
so:

1. Create an instance of %SOAP.Addressing.Properties and specify its properties as needed. For details, see the class ref-
erence.

2. Set the AddressingOut property of the web service or client equal to this instance of %SOAP.Addressing.Properties.

Note: If you set the AddressingOut property, the web service or web client uses the WS-Addressing header elements in
this property rather than any WS-Addressing elements specified in an attached policy.

9.5 Handling WS-Addressing Header Elements
When an InterSystems IRIS web service or client receives a message that includes WS-Addressing header elements, the
AddressingIn property of the service or client is updated to equal an instance of %SOAP.Addressing.Properties. Your web
service or client can then examine the details of its AddressingIn property.

For details on %SOAP.Addressing.Properties, see the class reference.

Creating Web Services and Web Clients 71

Adding WS-Addressing Header Elements Manually

10
SOAP Session Management

SOAP web services are inherently stateless and thus do not maintain sessions. However, it is often useful to maintain a
session between a web client and the web service that it uses. The InterSystems IRIS SOAP support provides a way for
you to do this. This chapter includes the following topics:

• Overview of how InterSystems IRIS SOAP sessions work

• How to enable session support

• How to use session support

Also see the section “Specifying Custom HTTP Requests” in the chapter “Fine-Tuning a Web Client in InterSystems
IRIS.”

And see “WSDL Differences for InterSystems IRIS Sessions” in the appendix “Details of the Generated WSDLs.”

10.1 Overview of SOAP Sessions
You can maintain a session between a web client and an InterSystems IRIS web service. This support consists of the fol-
lowing tools:

• Web session management (managed by InterSystems IRIS and by the InterSystems IRIS Web Gateway).

• The InterSystems IRIS SOAP session header, which is a simple proprietary header.

The overall flow is as follows:

1. The web client sends an initial message to the web service. This message does not include the InterSystems IRIS SOAP
session header.

2. The web service receives the message and starts a new web session.

3. When the web service sends its reply, it adds the InterSystems IRIS SOAP session header to the message.

4. When the web client receives the reply, it must detect the SOAP session header and extract the session cookie. Then
when the web client sends another message, it must use the cookie to create a SOAP session header in that message.

Note:

• If the client is an InterSystems IRIS web client, the session cookie is saved automatically in the SessionCookie

property of web client. Also, the client instance automatically creates the SOAP session header and includes it in
all messages that it sends.

Creating Web Services and Web Clients 73

• This step also happens automatically for .NET web clients, if the same client instance is used for all SOAP messages
in the session. You may need further code for other client platforms.

5. The web service receives the next reply, continues the web session, and includes the SOAP session header again when
it responds.

It is not necessary to include a method to log out. The web session times out after a brief interval (the timeout period for
the web application).

10.2 Enabling Sessions
In order to use InterSystems IRIS support for SOAP sessions, you must be using an InterSystems IRIS web service.

• If the web client is based on InterSystems IRIS, only one step is needed to enable SOAP session support. In your web
service class, set the SOAPSESSION parameter equal to 1.

• If you are using a third-party tool to create the web client, you are responsible for detecting the InterSystems IRIS
SOAP session header element in the initial response and ensuring that the web client includes this header element in
all requests during the life of the session. This header element has the following format:

<csp:CSPCHD xmlns:csp="http://www.intersystems.com/SOAPheaders"><id>value of CSPCHD
token</id></csp:CSPCHD>

10.3 Using Session Information
When sessions are enabled, the web service can use the variable %session, which is an instance of %CSP.Session. Properties
of this object contain system information and any information you choose to add. Some of the commonly used properties
are as follows:

• SessionID — Unique identifier of this session.

• EndSession — Normally this equals 0. Set this property to 1 in order to end the session.

• Data — InterSystems IRIS multidimensional array intended to hold any custom data.

• NewSession — Equals 1 if this is new session.

• AppTimeout — Specifies the timeout value for the session, in seconds.

The %session object provides many other properties, as well as some methods for tasks related to sessions. For further
details, see the class documentation for %CSP.Session.

74 Creating Web Services and Web Clients

SOAP Session Management

11
Using the InterSystems IRIS Binary SOAP
Format

InterSystems IRIS SOAP support provides an optional proprietary binary SOAP format, which is useful when you send
and receive large SOAP messages and want to minimize message size.

An InterSystems IRIS web service can receive SOAP requests either in InterSystems IRIS binary SOAP format or in the
usual SOAP format. No parameter is needed to enable this behavior. An InterSystems IRIS web client uses binary SOAP
format only if it is configured to do so.

This chapter discusses the following:

• An introduction to InterSystems IRIS binary SOAP

• How to extend the WSDL for an InterSystems IRIS web service to indicate that it supports this format

• How to redefine an existing InterSystems IRIS web client so that it uses InterSystems IRIS binary SOAP format

• How to specify the character set used

• Additional details on the API for this format

Also see “WSDL Differences for InterSystems IRIS Binary SOAP Format” in the appendix “Details of the Generated
WSDLs.”

Note: If an InterSystems IRIS web service or web client uses this proprietary binary SOAP format, you cannot use WS-
Security or WS-Policy features with this web service or client. See Securing Web Services.

11.1 Introduction
InterSystems IRIS binary SOAP is carried over HTTP messages as follows:

• The message uses the POST method.

• Content-Type is always "application/octet-stream".

• The body is a binary representation of objects using a proprietary protocol.

• A binary SOAP request includes an HTTP ISCSoap header of the following form:

ISCSoap: NAMESPACE/Package.Class.Method

Creating Web Services and Web Clients 75

• SOAP sessions are supported. The session information is maintained by using the normal web session cookie. However,
the SessionCookie property for SOAP web clients and web services is not supported, because binary SOAP does not
use the CSPCHD proprietary SOAP header.

The following example shows a binary SOAP request:

POST /csp/gsop/GSOP.WebServiceBinary.cls HTTP/1.1
User-Agent: Mozilla/4.0 (compatible; InterSystems IRIS;)
Host: localhost:8080
Connection: Close
ISCSoap: http://www.myapp.org/GSOAP.WebServiceBinary.Divide
Content-Type: application/octet-stream
Content-Length: 90

00085hdBinaryClient.MyAppSoap.Dividearg1arg2t

Notice that only the SOAP envelope and its contents are affected. The HTTP header is not affected.

11.2 Extending the WSDL for an InterSystems IRIS Web
Service
Any InterSystems IRIS web service can receive SOAP requests either in InterSystems IRIS binary SOAP format or in the
usual SOAP format. If an InterSystems IRIS web service receives a binary request, it sends a binary response. Otherwise,
it sends the usual response. No parameter is needed to enable this behavior.

You can extend the WSDL of a web service so that:

1. The WSDL publicly states that the web service supports the InterSystems IRIS binary SOAP format in addition to the
usual SOAP format.

2. The WSDL includes information on using the InterSystems IRIS binary SOAP format.

This allows any InterSystems IRIS web client to correctly send messages in this format if wanted.

To extend the WSDL of an InterSystems IRIS web service in this way, set the SOAPBINARY parameter to 1 for the web
service.

For details on the changes, see “WSDL Differences for InterSystems IRIS Binary SOAP Format” in the appendix “Details
of the Generated WSDLs.”

11.3 Redefining an InterSystems IRIS Web Client to Use
Binary SOAP
You can redefine an existing InterSystems IRIS web client so that it uses InterSystems IRIS binary SOAP format. To do
so, set the SOAPBINARY parameter or the SoapBinary property to 1 for the web client. You may need to make additional
changes; see “WSDL Differences for InterSystems IRIS Binary SOAP Format” in the appendix “Details of the Generated
WSDLs.”

76 Creating Web Services and Web Clients

Using the InterSystems IRIS Binary SOAP Format

11.4 Specifying the Character Set
The SoapBinaryCharset property of the web client specifies the InterSystems IRIS character set (for example: Unicode,
Latin1) of the web service. If the character set of the client machine and service machine are the same, strings are sent
RAW; otherwise they are sent encoded as UTF8.

The SoapBinaryCharset property defaults to the SOAPBINARYCHARSET parameter, which defaults to null, which always
converts strings to UTF8.

11.5 Details on the InterSystems IRIS Binary SOAP Format
The API for binary SOAP is different from XML SOAP as follows:

• For the InterSystems IRIS server:

– Binary SOAP is denoted by the presence of the ISCSoap HTTP header.

– The Initialize() method of the web service is not called.

– A normal %request.Content stream is used in the initial implementation.

– Login is via IRISUsername and IRISPassword query parameters attached to the URL. No login page is ever
returned for binary SOAP.

– If an invalid login occurs, then an instance of %SOAP.Fault is returned.

• For %Net.HttpRequest responses:

– A binary SOAP request is indicated by setting the SoapBinary property of the web client class for the method
being called.

– The request is sent using a normal EntityBody stream.

– The response is returned in the Data property of HttpResponse.

Creating Web Services and Web Clients 77

Specifying the Character Set

12
Using Datasets in SOAP Messages

This chapter discusses %XML.DataSet, which is an XML-enabled dataset that you can use in SOAP messages when both
the web service and client are based on InterSystems IRIS or when one side uses .NET. Other SOAP vendors do not support
datasets.

This chapter provides the details on the following:

• General introduction

• How to define a typed dataset

• How to control the format of datasets

• Utility methods that let you see datasets as XML

• Effect on the WSDL

12.1 About Datasets
A dataset is an XML-format result set defined by Microsoft (and used for .NET) and also supported in InterSystems IRIS.
If both the web service and client are based on InterSystems IRIS or when one side uses .NET, you can use datasets as
input to or output from a web method. Other SOAP technologies do not understand this format.

When you work with web services or clients in InterSystems IRIS, you use %XML.DataSet (or a custom subclass) to represent
a dataset. For details on using %XML.DataSet, see the class reference.

Note: The %XML.DataSet class supports only a single table. That is, the query it uses can return only a single table.

The sample web service SOAP.Demo (in the SAMPLES namespace) demonstrates datasets in InterSystems IRIS. Specifically,
the following web methods use datasets:

• GetByName()

• GetDataSetByName()

• QueryByName()

To output results of a query so that a Java-based web client can work with it, use a %ListOfObjects subclass; SOAP.Demo

shows an example.

Creating Web Services and Web Clients 79

12.2 Defining a Typed Dataset
Any dataset uses a query that specifies the data to retrieve. If the query is known at compile time, the dataset is typed; oth-
erwise it is untyped. Typed datasets are convenient in many cases; for example, in .NET, a typed dataset allows code
completion in Microsoft Visual Studio.

To define a typed dataset, create a subclass of %XML.DataSet and specify the QUERYNAME and CLASSNAME parameters.
Together, these parameters refer to a specific SQL query. When it generates the schema for the dataset, %XML.DataSet

considers the class and property metadata such as any LogicalToXSD() methods in custom data types.

Note: If you use %XML.DataSet as the return value for a method, the XML type for that value is DataSet. On the other
hand, if you use a subclass of %XML.DataSet as the return value, the XML type for the value is the name of that
subclass. This behavior is the same as that of other XML-enabled classes, and it affects the XML types that are
described in the WSDL. See the chapter “Controlling the Projection to XML Types” in Projecting Objects to
XML

12.3 Controlling the Dataset Format
By default, a dataset is written in Microsoft DiffGram format and is preceded by its XML schema. The following shows
an example:

<SOAP-ENV:Body>
 <Get0Response xmlns="http://www.myapp.org">
 <Get0Result>
 <s:schema id="DefaultDataSet" xmlns=""
 attributeFormDefault="qualified"
 elementFormDefault="qualified"
 xmlns:s="http://www.w3.org/2001/XMLSchema"
 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
 <s:element name="DefaultDataSet" msdata:IsDataSet="true">
 <s:complexType>
 <s:choice maxOccurs="unbounded">
 <s:element name="GetPeople">
 <s:complexType>
 <s:sequence>
 <s:element name="Name" type="s:string" minOccurs="0" />
 <s:element name="DOB" type="s:date" minOccurs="0" />
 </s:sequence>
 </s:complexType>
 </s:element>
 </s:choice>
 </s:complexType>
 </s:element>
 </s:schema>

 <diffgr:diffgram
 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
 xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1">
 <DefaultDataSet xmlns="">
 <GetPeople diffgr:id="GetPeople1" msdata:rowOrder="0">
 <Name>Quine,Howard Z.</Name>
 <DOB>1965-11-29</DOB>
 </GetPeople>
...
 </DefaultDataSet>
 </diffgr:diffgram>
 </Get0Result>
 </Get0Response>
</SOAP-ENV:Body>

The %XML.DataSet class provides the following options for controlling this format:

• The DATAONLY parameter and the DiffGram property control whether the output is in DiffGram format. By default,
the output is in DiffGram format, which is shown above. If you subclass %XML.DataSet and set DATAONLY equal to

80 Creating Web Services and Web Clients

Using Datasets in SOAP Messages

1, or if you set the DiffGram equal to 0, the output is not in DiffGram format. The body of the XML dataset is as follows
instead:

<SOAP-ENV:Body>
 <Get0Response xmlns="http://www.myapp.org">
 <Get0Result>
 <GetPeople xmlns="">
 <Name>Quine,Howard Z.</Name>
 <DOB>1965-11-29</DOB>
 </GetPeople>
 <GetPeople xmlns="">
...
 </Get0Result>
 </Get0Response>
</SOAP-ENV:Body>

In contrast to DiffGram format, notice that the schema is not output by default and that the output does not include the
<diffgram> element.

• The NeedSchema property controls whether the output includes the XML schema. If you are using DiffGram format,
the default is to output the schema; if you are not using DiffGram format, the default is not to output the schema. To
force output of the schema, set NeedSchema equal to 1, or to suppress output of the schema, set it equal to 0.

• If you use DiffGram format, the WriteEmptyDiffgram property controls the contents of the <diffgram> element in
the case when the dataset has no rows. By default (or if WriteEmptyDiffgram equals 0), the <diffgram> element
contains an empty element as follows:

...
<diffgr:diffgram xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1">
 <DefaultDataSet xmlns="">
 </DefaultDataSet>
</diffgr:diffgram>
...

In contrast, if WriteEmptyDiffgram equals 1, the <diffgram> element contains nothing:

...
<diffgr:diffgram xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
</diffgr:diffgram>
...

This property has no effect if you are not using DiffGram format.

• If you use DiffGram format, the DataSetName property controls the name of the element within the <diffgram>
element. By default, this element is named <DefaultDataSet>, as you can see in the example above. This property
has no effect if you are not using DiffGram format.

%XML.DataSet also provides the CaseSensitive property, which corresponds to the Microsoft dataset property of the same
name. The default is false, for compatibility reasons.

12.4 Viewing the Dataset and Schema as XML
A dataset that extends %XML.DataSet has utility methods that you can use to generate XML. All of these methods write to
the current device:

• WriteXML() writes the dataset as XML, optionally preceded by the XML schema. This method has optional arguments
to control the name of the top-level element, the use of namespaces, treatment of nulls, and so on. By default, this
method considers the format of the dataset, as specified by the settings in the previous section. You can override that
result by providing values for optional arguments that control whether the output is in DiffGram format and so on. For
details, see the class documentation for %XML.DataSet.

Creating Web Services and Web Clients 81

Viewing the Dataset and Schema as XML

• XMLExport() writes the XML schema for the dataset, followed by the dataset as XML.

• WriteSchema() writes just the XML schema for the dataset.

• XMLSchema() writes the Microsoft proprietary XML representation of its dataset class.

For information on generating XML schemas from XML-enabled objects, see Using XML Tools.

12.5 Effect on the WSDL
If an InterSystems IRIS web service uses %XML.DataSet as input or output to a web method, that affects the WSDL so that
clients other than InterSystems IRIS and .NET have difficulty consuming the WSDL.

For a typed dataset, the WSDL includes the following elements (within the <types> section):

<s:element name="GetDataSetByNameResponse">
 <s:complexType>
 <s:sequence>
 <s:element name="GetDataSetByNameResult" type="s0:ByNameDataSet" />
 </s:sequence>
 </s:complexType>
</s:element>
<s:complexType name="ByNameDataSet">
 <s:sequence>
 <s:any namespace="http://tempuri.org/ByNameDataSet" />
 </s:sequence>
</s:complexType>

For an untyped dataset, the WSDL includes the following:

<s:element name="GetByNameResponse">
 <s:complexType>
 <s:sequence>
 <s:element name="GetByNameResult" type="s0:DataSet" />
 </s:sequence>
 </s:complexType>
</s:element>
<s:complexType name="DataSet">
 <s:sequence>
 <s:element ref="s:schema" />
 <s:any />
 </s:sequence>
</s:complexType>

In the latter case, if you attempt to generate a web client within a tool other than InterSystems IRIS or .NET, an error occurs
because there is not enough information for that tool. For Metro, it is possible to load additional schema information before
attempting to consume the WSDL. To do so, you can use a command-line tool called wsimport. This technique can provide
enough information to generate the client.

In all cases, however, considerable work is necessary to write code so that the client can either interpret or generate messages
in the appropriate form.

82 Creating Web Services and Web Clients

Using Datasets in SOAP Messages

13
Fine-Tuning a Web Service in
InterSystems IRIS

This chapter discusses various ways to fine-tune an InterSystems IRIS web service. It discusses the following:

• How to disable access to the online WSDL

• How to require a username and password

• How to control the types used by a web service

• How to control the namespace of the schema and types used by a web service

• How to include the class documentation for the types as annotations within the WSDL

• How to add namespace declarations to the SOAP envelope

• How to check for required elements and attributes

• How to control the form of null string arguments in messages sent by a web service

• How to control the message name of the SOAP response

• How to override the SOAP action and SOAP request message name

• How to specify whether elements are qualified

• How to control whether the SOAP message parts use elements or types

• How to control the use of the xsi:type attribute in the SOAP messages

• How to control use of inline references in encoded format

• How to control the prefix used for the SOAP message envelope

• How to restrict the SOAP versions handled by a web service

• How to send responses compressed by gzip

• How to define a one-way web method

• How to add automatic line breaks to binary data

• How to add a UTF-8 BOM to the start of each message sent by a web service

• How to customize the timeout period for a web method

• How to force the use of process-private globals to support very large messages

• How to customize callbacks of a web service

Creating Web Services and Web Clients 83

• How to use custom transport to communicate with a web service

• How to define custom processing in a web service

For more basic information, see the section “Basic Settings of the Web Service” in the chapter “Basics of Creating Web
Services.”

Also see the information about the ALLOWREDUNDANTARRAYNAME web service class parameter in “Projection of
Collection Properties to XML Schemas” in the chapter “Controlling the Projection to XML Schemas” in Projecting
Objects to XML.

13.1 Disabling Access to the Online WSDL
By default, it is possible to view the WSDL for an InterSystems IRIS web service via a URL of the following form:

base/csp/app/web_serv.cls?WSDL

Here base is the base URL for your web server (including port if necessary), /csp/app is the name of the web application
in which the web service resides, and web_serv is the class name of the web service.

To disable the ability to access the WSDL in this way, specify the SOAPDISABLEWSDL parameter of the web service as
1. Note that even with SOAPDISABLEWSDL equal to 1, it is possible to use the FileWSDL() method to generate the WSDL
as a static file.

13.2 Requiring a Username and Password
To configure an InterSystems IRIS web service to require a password, you configure its parent web application to use
password authentication, and to disallow unauthenticated access.

13.3 Controlling the XML Types
The WSDL defines the XML types for the arguments and return values of all methods of the web service. For an InterSystems
IRIS web service, the types are determined as follows:

• If the InterSystems IRIS type corresponds to a simple type (such as %String), an appropriate corresponding XML type
is used.

• If the InterSystems IRIS type corresponds to an XML-enabled class, the XMLTYPE parameter of that class specifies
the name of the XML type. If that parameter is not specified, the class name (without the package) is used as the XML
type name.

Also, the WSDL defines this type, by using the information in the corresponding class definition.

• If the InterSystems IRIS type corresponds to some other class, the class name (without the package) is used as the
XML type name. Also, the WSDL does not define this type.

For further details, see the book Projecting Objects to XML.

Also see the section “WSDL Support in InterSystems IRIS” in the first chapter.

84 Creating Web Services and Web Clients

Fine-Tuning a Web Service in InterSystems IRIS

13.4 Controlling the Namespaces of the Schema and
Types
This section describes how to control the namespace for the schema of the WSDL, as well as the namespaces for any types
defined within it.

13.4.1 Controlling the Namespace of the Schema

The TYPENAMESPACE parameter (of your web service) controls the target namespace for the schema of your web service.

If TYPENAMESPACE is null, the schema is in the namespace given by the NAMESPACE parameter of the web service.
The WSDL might look as follows:

<?xml version='1.0' encoding='UTF-8' ?>
...
<types>
<s:schema elementFormDefault='qualified'
targetNamespace = 'http://www.myapp.org'>
...

If you set TYPENAMESPACE to a URI, that URI is used as the namespace for the types. In this case, the WSDL might
look as follows:

<?xml version='1.0' encoding='UTF-8' ?>
...
<types>
<s:schema elementFormDefault='qualified'
targetNamespace = 'http://www.mytypes.org'>
...

13.4.2 Controlling the Namespace of the Types

For any types referenced within the schema, the following rules govern how they are assigned to namespaces:

• If the USECLASSNAMESPACES parameter of the web service is 0 (the default), then the types are in the same
namespace as the schema; see the previous section.

• If the USECLASSNAMESPACES parameter of the web service is 1 (and if the web service uses the document binding
style), then each type is in the namespace given by the NAMESPACE parameter of the corresponding type class.

For a given type, if the NAMESPACE parameter is null for the type class, then the type is in the same namespace as
the schema; see the previous section.

For information on binding styles, see “Specifying the Binding Style for the SOAP Messages,” earlier in this book.

13.5 Including Documentation for the Types
By default, the WSDL for a web service does not include documentation for the types used by the web service.

To include the class documentation for the types within <annotation> elements in the schema of the WSDL, specify
the INCLUDEDOCUMENTATION parameter of the web service as 1.

This parameter does not cause the WSDL to include comments for the web service and its web methods; there is no option
to automatically include these comments in the WSDL.

Creating Web Services and Web Clients 85

Controlling the Namespaces of the Schema and Types

13.6 Adding Namespace Declarations to the SOAP
Envelope
To add a namespace declaration to the SOAP envelope (<SOAP-ENV:Envelope> element) of a SOAP message sent by
a given web service, modify each web method of that web service so that it invokes the %AddEnvelopeNamespace()
method of the web service. This method has the following signature:

Method %AddEnvelopeNamespace(namespace As %String,
 prefix As %String,
 schemaLocation As %String,
 allowMultiplePrefixes As %Boolean) As %Status

Where:

• namespace is the namespace to add.

• prefix is the optional prefix to use for this namespace. If you omit this argument, a prefix is generated.

• schemaLocation is the optional schema location for this namespace.

• allowMultiplePrefixes controls whether a given namespace can be declared multiple times with different prefixes. If
this argument is 1, then a given namespace can be declared multiple times with different prefixes. If this argument is
0, then if you add multiple declarations for the same namespace with different prefixes, only the last supplied prefix
is used.

13.7 Checking for Required Elements and Attributes
By default, an InterSystems IRIS web service does not check for the existence of elements and attributes that correspond
to properties that are marked as Required. To cause a web service to check for the existence of such elements and attributes,
set the SOAPCHECKREQUIRED parameter of the web service to 1. The default value for this parameter is 0, for compat-
ibility reasons.

13.8 Controlling the Form of Null String Arguments
Normally, if an argument is omitted, an InterSystems IRIS web service omits the corresponding element in the SOAP
message that it sends. To change this, set the XMLIGNORENULL parameter to 1 in the web service class; in this case, the
SOAP message includes an empty element.

Note: This parameter affects only web method arguments of type %String.

86 Creating Web Services and Web Clients

Fine-Tuning a Web Service in InterSystems IRIS

13.9 Controlling the Message Name of the SOAP
Response
You can control the message name used in the response received from a web method. By default, this message name is the
name of the web method with Response appended to the end. The following example shows a response from a web method
called Divide; the response message name is DivideResponse.

<SOAP-ENV:Body>
 <DivideResponse xmlns="http://www.myapp.org">
 <DivideResult>.5</DivideResult>
 </DivideResponse>
</SOAP-ENV:Body>

To specify a different response message name, set the SoapMessageName keyword within the web method definition.

Note that you cannot change the name of the SOAP message that invokes a given web method; this name of this message
is the name of the method. You can, however, override the SOAP action as given in the HTTP request; see the later section
“Overriding the Default HTTP SOAP Action.”

13.10 Overriding the HTTP SOAP Action and Request
Message Name
When you invoke a web method via HTTP, the HTTP headers must include the SOAP action, which is a URI that indicates
the intent of the SOAP HTTP request. For SOAP 1.1, the SOAP action is included as the SOAPAction HTTP header. For
SOAP 1.2, it is included within the Content-Type HTTP header.

The SOAP action indicates the intent of the SOAP HTTP request. The value is a URI identifying the intent; it is generally
used to route the inbound SOAP message. For example, a firewall could use this header to appropriately filter SOAP request
messages in HTTP.

For a web method created in InterSystems IRIS, the SOAPAction HTTP header has the following form by default (for
SOAP 1.1):

SOAPAction: NAMESPACE/Package.Class.Method

Where NAMESPACE is the value of the NAMESPACE parameter for the web service, and Package.Class.Method is the
name of the method that you are using as a web method. For example:

SOAPAction: http://www.myapp.org/GSOAP.WebService.GetPerson

To override this, specify a value for the SoapAction method keyword, within the definition of the web method. Specify a
quoted string that indicates that identifies the intent of the SOAP request. In the typical scenario, each web method in the
web service specifies a unique value (if any) for SoapAction.

If SoapAction is not unique within this web service, each method must have a unique value of the SoapRequestMessage
method keyword. This keyword specifies the name of the top element in the SOAP body of the request message. Note that
SoapRequestMessage has an effect only for wrapped document/literal messages.

Creating Web Services and Web Clients 87

Controlling the Message Name of the SOAP Response

13.11 Specifying Whether Elements Are Qualified
The ELEMENTQUALIFIED parameter (of your web service) controls the value of the elementFormDefault attribute
in the schema of the WSDL. Specifically:

• If ELEMENTQUALIFIED is 1, then elementFormDefault is "qualified".

• If ELEMENTQUALIFIED is 0, then elementFormDefault is "unqualified".

The default value for this parameter depends on the value of the SoapBodyUse class keyword. See the Class Definition
Reference. Normally SoapBodyUse is "literal", which means that ELEMENTQUALIFIED is 1.

For information on the differences between qualified and unqualified elements, as well as examples, see the book Projecting
Objects to XML.

13.12 Controlling Whether Message Parts Use Elements
or Types
Your web service has another parameter (XMLELEMENT) that controls the precise form of the message parts of the SOAP
messages. Specifically:

• If XMLELEMENT is 1, then the <part> element has attributes called name and element. In this case, the WSDL
contains a sample <message> element as follows:

<message name="GetPersonSoapOut">
 <part name="GetPersonResult" element="s0:Person" />
</message>

• If XMLELEMENT is 0, then the <part> element has attributes called name and type. In this case, the WSDL contains
a sample <message> element as follows:

<message name="GetPersonSoapOut">
 <part name="GetPersonResult" type="s0:Person" />
</message>

The default value for this parameter depends on the value of the SoapBodyUse class keyword. See the Class Definition
Reference. Normally SoapBodyUse is "literal", which means that XMLELEMENT is 1.

13.13 Controlling Use of the xsi:type Attribute
By default, InterSystems IRIS SOAP messages include the xsi:type attribute only for the top-level types. For example:

<?xml version="1.0" encoding="UTF-8" ?>
...
<types:GetPersonResponse>
<GetPersonResult href="#id1" />
</types:GetPersonResponse>
<types:Person id="id1" xsi:type="types:Person">
<Name>Yeats,Clint C.</Name>
<DOB>1944-12-04</DOB>
</types:Person>
...

88 Creating Web Services and Web Clients

Fine-Tuning a Web Service in InterSystems IRIS

In these examples, line breaks have been added for readability. To use this attribute for all types in the SOAP messages,
set the OUTPUTTYPEATTRIBUTE parameter or the OutputTypeAttribute property to 1. The same output would look like
this:

<?xml version="1.0" encoding="UTF-8" ?>
...
<types:GetPersonResponse>
<GetPersonResult href="#id1" />
</types:GetPersonResponse>
<types:Person id="id1" xsi:type="types:Person">
<Name xsi:type="s:string">Yeats,Clint C.</Name>
<DOB xsi:type="s:date">1944-12-04</DOB>
</types:Person>
...

This parameter has no effect on the WSDL of the web service.

13.14 Controlling Use of Inline References in Encoded
Format
With encoded format, any object-valued property is included as a reference, and the referenced object is written as a separate
element in the SOAP message.

To instead write the encoded objects inline, specify the REFERENCESINLINE parameter or the ReferencesInline property
as 1.

The property takes precedence over the parameter.

13.15 Specifying the SOAP Envelope Prefix
By default, an InterSystems IRIS web service uses the prefix SOAP-ENV in the envelope of the SOAP messages it sends.
You can specify a different prefix. To do so, set the SOAPPREFIX parameter of the web service. For example, if you set
this parameter equal to MYENV, the web service includes this prefix in its messages, as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<MYENV:Envelope xmlns:MYENV='http://schemas.xmlsoap.org/soap/envelope/'
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xmlns:s='http://www.w3.org/2001/XMLSchema'>
 <MYENV:Body>
 <DivideResponse xmlns="http://www.myapp.org">
 <DivideResult>.5</DivideResult>
 </DivideResponse>
 </MYENV:Body>
</MYENV:Envelope>

The SOAPPREFIX parameter also affects the prefix used in any SOAP faults generated by the web service.

This parameter has no effect on the WSDL of the web service.

Creating Web Services and Web Clients 89

Controlling Use of Inline References in Encoded Format

13.16 Restricting the SOAP Versions Handled by a Web
Service
By default, an InterSystems IRIS web service can handle SOAP requests that use SOAP version 1.1 or 1.2. To modify the
web service so that it can handle only SOAP requests for a specific SOAP version, set the REQUESTVERSION parameter.
This parameter can equal "1.1", "1.2", or "". If this parameter is "", the web service has the default behavior.

Note that the SOAPVERSION parameter does not affect the versions supported by the web service; it only controls which
versions are advertised in the WSDL.

13.17 Sending Responses Compressed by gzip
An InterSystems IRIS web service can compress its response messages with gzip, a free compression program that is widely
available on the Internet. This compression occurs after any other message packaging (such as creating MTOM packages).
To cause a web service to do so, set the GZIPOUTPUT parameter equal to 1.

This parameter has no effect on the WSDL of the web service.

If you make this change, be sure that the web client can automatically decompress the message with gunzip, the corresponding
decompression program.

If the web client is an InterSystems IRIS web client, note that the Web Gateway automatically decompresses inbound
messages before sending them to the web client.

13.18 Defining a One-Way Web Method
Normally, when you execute a web method, a SOAP message is returned, even if the method has no return type and returns
nothing when executed in InterSystems IRIS. This SOAP response message has the following general form:

<?xml version="1.0" encoding="UTF-8" ?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'
xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'
xmlns:s='http://www.w3.org/2001/XMLSchema'>
 <SOAP-ENV:Body>
 <MethodNameResponse xmlns="http://www.myapp.org"></MethodNameResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

In rare cases, you might need to define a web method as being “one-way.” Such a method must return no value, and no
SOAP response is expected to the request message. To define a one-way web method, define the return type of the method
as %SOAP.OneWay. In this case:

• The WSDL does not define output defined for this web method.

• The web service does not return a SOAP message (unless the service adds a header element; see the subsection). That
is, the HTTP response message does not include any XML content.

Note: One-way methods should normally not be used. A request-response pair is much more common, supported, and
expected — even for a method that has no return type.

90 Creating Web Services and Web Clients

Fine-Tuning a Web Service in InterSystems IRIS

See “WSDL Differences for One-Way Web Methods” in the appendix “Details of the Generated WSDLs.”

13.18.1 One-Way Web Methods and SOAP Headers

If the web method adds a header element, then the HTTP response does include XML content as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/' ...
 <SOAP-ENV:Header>
 header elements as set by the web service
 </SOAP-ENV:Header>
 <SOAP-ENV:Body></SOAP-ENV:Body>
</SOAP-ENV:Envelope>

13.18.2 Dynamically Making a Web Method One Way

You can also dynamically redefine a web method to be one way. To do so, invoke the ReturnOneWay() of the web service
within the definition of the web method. For example:

Method HelloWorldDynamic(oneway as %Boolean = 0) As %String [WebMethod]
{
 If oneway {Do ..ReturnOneWay() }
 Quit "Hello world "
}

If the argument is 0, this web method returns a SOAP response whose body contains Hello world. If the argument is 1,
this method does not return a SOAP response.

13.19 Adding Line Breaks to Binary Data
You can cause the InterSystems IRIS web service to include automatic line breaks for properties of type %Binary or
%xsd.base64Binary. To do so, do either of the following:

• Set the BASE64LINEBREAKS parameter to 1 in the web service class.

• Set the Base64LineBreaks property to 1, for the web service class instance. The value of this property takes precedence
over the value set by the BASE64LINEBREAKS parameter.

For the parameter and the property, the default value is 0; by default, an InterSystems IRIS web service does not include
automatic line breaks for properties of type %Binary or %xsd.base64Binary.

13.20 Adding a Byte-Order Mark to the SOAP Messages
By default, a message sent by an InterSystems IRIS web service does not start with a BOM (byte-order mark).

The BOM is usually not needed because the message is encoded as UTF-8, which does not have byte order issues. However,
in some cases, it is necessary or desirable to include a BOM in a SOAP message; this BOM merely indicates that the message
is UTF-8.

To add a BOM to the messages sent by an InterSystems IRIS web service, set the RequestMessageStart property of the
service. This property must equal a comma-separated list of the parts to include at the start of a message. These parts are
as follows:

• DCL is the XML declaration:

Creating Web Services and Web Clients 91

Adding Line Breaks to Binary Data

<?xml version="1.0" encoding="UTF-8" ?>

• BOM is the UTF-8 BOM.

The default is "DCL".

In practice, RequestMessageStart can equal any of the following values:

• "DCL"

• "BOM"

• "BOM,DCL"

13.21 Customizing the Timeout Period
The Web Gateway waits for a fixed length of time (specified in the Web Gateway) for an InterSystems IRIS web service
to send a response message. For information on setting the timeout period, see the Web Gateway Configuration Guide.

In some cases, you might know that a given web method requires a longer period before it can complete. If so, you can
specify the timeout period for that method. To do so, near the start of the definition of that web method, add a line to set
the Timeout property of the web service. Specify a timeout period in seconds. For example, if the default timeout period is
three minutes and you need the timeout period to be five minutes, you might do the following:

Method LongRunningMethod(Input) as %Status [WebMethod]
{
 set ..Timeout=300; this method will not time out until 5 minutes
 //method implementation here
}

13.22 Using Process-Private Globals to Support Very
Large Messages
By default, an InterSystems IRIS web service usually uses local array memory when it parses requests or responses. You
can force it to use process-private globals instead; this enables the web service to process very large messages.

To do so, specify the USEPPGHANDLER parameter of the web service class as follows:

Parameter USEPPGHANDLER = 1;

If this parameter is 1, then the web service always uses process-private globals when it parses requests or responses. If this
parameter is 0, then the web service always uses local array memory for these purposes. If this parameter is not set, then
the web service uses the default, which is usually local array memory.

13.23 Customizing Callbacks of a Web Service
You can customize the behavior of an InterSystems IRIS web service by overriding its callback methods:

92 Creating Web Services and Web Clients

Fine-Tuning a Web Service in InterSystems IRIS

OnRequestMessage()

Called when the web service receives a request message, if there is no security error; this callback is not invoked
in the case of a security error. The system invokes this callback after performing security processing, after
checking the envelope for errors, and after processing the actions specified in the WS-Addressing header (if any).
This callback is useful for tasks such as logging raw SOAP requests.

This method has the following signature:

Method OnRequestMessage(mode As %String, action As %String, request As %Stream.Object)

Where:

• mode specifies the type of SOAP request. This is either "SOAP" or "binary".

• action contains the value of SOAPAction header.

• request contains the SOAP request message in a stream.

This method can use the object %request, which is an instance of %CSP.Session. In this object:

• The Content property contains the raw request message.

• The NextMimeData() instance method enables you to retrieve individual MIME parts (if this is a MIME
SOAP request).

This method can also use properties of the web service instance. The following properties are set during initialization:

• The ImportHandler property contains the DOM for parsed SOAP request message.

• The SecurityIn property contains the WS-Security header element. For details, see Securing Web Services.

• The SecurityNamespace property contains the namespace for the WS-Security header element.

• The SoapFault property is set if SOAP fault has been generated.

To return a fault within OnRequestMessage(), set the SoapFault property. Do not call the ReturnFault() method.

OnPreWebMethod()

Called just before a web method is executed; does nothing by default. This method takes no arguments and cannot
return a value. This method therefore cannot change the execution of the web service except by returning a SOAP
fault in the same way that a web method would do.

This method can use %request, %session, and the web service properties. Note that the MsgClass property of the
web service is the message descriptor class that contains the web method arguments.

OnPostWebMethod()

Called just after a web method is executed; does nothing by default. This method takes no arguments and cannot
return a value. This method therefore cannot change the execution or return value of the web method. You customize
this method primarily to clean up required structures created by OnPreWebMethod().

13.24 Specifying Custom Transport for a Web Service
By default, an InterSystems IRIS web service responds to transport in a specific way, described here. You can customize
this behavior.

Creating Web Services and Web Clients 93

Specifying Custom Transport for a Web Service

13.24.1 Background

When an InterSystems IRIS web service receives a SOAP message, it executes its OnSOAPRequest() class method. By
default, this method does the following:

1. Initializes the web service instance by calling its Initialize() method. This method parses the inbound SOAP message,
returns several pieces of information by reference, and processes the security header. See the documentation for the
%SOAP.WebService class.

2. Sets properties of the web service instance, such as SoapFault and others.

3. Initializes the response stream.

4. Invokes the Process() method of the web service, passing to it the SOAP action and the method to invoke.

5. Resets the web service instance by calling its Reset() method.

6. Copies the result into the response stream.

13.24.2 Defining Custom Transport for a Web Service

To implement a web service using your own transport, get the SOAP message as a stream using your transport, instantiate
the web service class and call its OnSOAPRequest() class method.

The OnSOAPRequest() method must transport the request to the web service and obtain the response. To indicate an error,
it must return a SOAP fault in the response stream. The signature of this method must be as follows:

Method OnSOAPRequest(action,requestStream, responseStream)

Here:

1. action is a %String that specifies the SOAP action. The piece of the action string after the last "." is used as the method
name for using the correct descriptor class. If action is null, then the element name from the first element (the wrapping
element) in the SOAP body is used as the method name.

2. requestStream is a stream that contains the SOAP request message encoded according to the encoding attribute of the
XML directive.

3. responseStream is a character stream produced as the SOAP response that contains the response SOAP message
encoded in UTF-8. You can create this argument before calling OnSOAPRequest() and passed it in with the method
call. Or this argument can be a variable passed by reference. In this case, OnSOAPRequest() must set it equal to an
instance of %FileCharacterStream that contains the response.

13.25 Defining Custom Processing in a Web Service
In rare scenarios, it may be useful to define an InterSystems IRIS web service that uses custom processing to handle inbound
messages and to build response messages. In these scenarios, you implement either the ProcessBodyNode() method or the
ProcessBody() method in the web service. This section provides the details.

13.25.1 Overview

In custom processing, you parse the inbound message and construct the response manually. The requirements are as follows:

94 Creating Web Services and Web Clients

Fine-Tuning a Web Service in InterSystems IRIS

• In the web service, you define web methods that have the desired signatures. You do this to establish the WSDL of
the web service. These web methods (or some of them) can be stubs. A method is executed only if ProcessBodyNode()
or ProcessBody() returns 0.

• Also in the web service, you implement one of the following methods:

– ProcessBodyNode() — This method receives the SOAP body as an instance of %XML.Node. You can use Inter-
Systems IRIS XML tools to work with this instance and build the response message. The SOAP envelope is
available in the Document property of this instance of %XML.Node.

– ProcessBody() — This method receives the SOAP Body as a stream. Because the SOAP body is an XML fragment
rather than an XML document, you cannot use the InterSystems IRIS XML tools to read it. Instead, you parse the
stream with ObjectScript functions and extract the needed parts.

If you define both of these methods, the ProcessBodyNode() method is ignored.

In either case, the response message that you construct must be consistent with the WSDL of the web service.

13.25.2 Implementing ProcessBodyNode()

The ProcessBodyNode() method has the following signature:

method ProcessBodyNode(action As %String, body As %XML.Node,
 ByRef responseBody As %CharacterStream) as %Boolean

Where:

• action is the SOAP action specified in the inbound message.

• body is an instance of %XML.Node that contains the SOAP <Body>.

• responseBody is the response body serialized as an instance of %Library.CharacterStream. This stream is passed by
reference and is initially empty.

If you implement this method in a web service, the method should do the following:

1. Examine the action and branch accordingly. For example:

 if action["action1" {
 //details
 }

2. If you need to access the SOAP <Envelope> (for example, to access its namespace declarations), use the Document

property of body. This equals an instance of %XML.Document, which represents the SOAP envelope as a DOM (Doc-
ument Object Model).

Otherwise, use body directly.

3. Now you have the following options:

• Use %XML.Writer to write the body as a string, which you can then manipulate. For example:

 set writer=##class(%XML.Writer).%New()
 do writer.OutputToString()
 do writer.DocumentNode(body)
 set request=writer.GetXMLString(.sc)
 // check returned status and continue

• Use methods of %XML.Document or %XML.Node, as appropriate, to navigate through the document. Similarly,
use properties of %XML.Document or %XML.Node to access information about the current part of the document.

• Use XPath expressions to extract data.

• Perform XSLT transformations.

Creating Web Services and Web Clients 95

Defining Custom Processing in a Web Service

For details, see Using XML Tools. Be sure to check the status returned by methods in these classes, to simplify trou-
bleshooting in the case of an error.

4. If an error occurs during the processing of the request, return a fault in the usual way using the ReturnFault() method.

5. Use the Write() method of the response stream to write the XML fragment which will become the child element of
<Body>.

6. If a response stream is created, return 1. Otherwise, return 0, which causes InterSystems IRIS to run the web method
associated with the given action.

For example:

 if action["action1" {
 //no custom processing for this branch
 quit 0
 } elseif action["action2" {
 //details
 //quit 1
 }

13.25.3 Implementing ProcessBody()

The ProcessBody() method has the following signature:

method ProcessBody(action As %String, requestBody As %CharacterStream,
 ByRef responseBody As %CharacterStream) as %Boolean

Where:

• action is the SOAP action specified in the inbound message.

• requestBody is an instance of %Library.CharacterStream that contains the SOAP <Body> element. The stream contains
an XML fragment, not a complete XML document.

• responseBody, is the response body serialized as an instance of %Library.CharacterStream. This stream is passed by
reference and is initially empty.

If you implement this method in a web service, the method should do the following:

1. Examine the action and branch accordingly. For example:

 if action["action1" {
 //details
 }

2. Use the Read() method of requestBody to obtain the SOAP <Body>. For example:

 set request=requestBody.Read()

3. Parse this stream by using tools such as $EXTRACT. For example:

 set in1="<echoString xmlns=""http://soapinterop.org/xsd""><inputString>"
 set in2="</inputString></echoString>"
 set contents=$extract(request,$length(in1)+1,*-$length(in2))

4. If an error occurs during the processing of the request, return a fault in the usual way using the ReturnFault() method.

5. Use the Write() method of the response stream to write the XML fragment that will become the child element of
<Body>. For example:

96 Creating Web Services and Web Clients

Fine-Tuning a Web Service in InterSystems IRIS

 set in1="<echoString xmlns=""http://soapinterop.org/xsd""><inputString>"
 set in2="</inputString></echoString>"
 set request=requestBody.Read()
 if ($extract(request,1,$length(in1))'=in1) || ($extract(request,*-$length(in2)+1,*)'=in2) {
 do responseBody.Write("Bad Request: "_request)
 quit 1
 }

 set out1="<echoStringResponse xmlns=""http://soapinterop.org/xsd""><echoStringResult>"
 set out2="</echoStringResult></echoStringResponse>"
 do responseBody.Write(out1)
 do responseBody.Write($extract(request,$length(in1)+1,*-$length(in2)))
 do responseBody.Write(out2)

6. If a response stream is created, return 1. Otherwise, return 0, which causes InterSystems IRIS to run the web method
associated with the given action.

Creating Web Services and Web Clients 97

Defining Custom Processing in a Web Service

14
Fine-Tuning a Web Client in InterSystems
IRIS

After you generate an InterSystems IRIS web client class, you do not usually edit the class. Instead you write code that
creates an instance of that class and that provides provide client-side error handling. This chapter discusses various ways
to fine-tune the InterSystems IRIS web client, either by modifying the web client instance or (less commonly) by modifying
the generated class. It discusses the following:

• How to disable keep-alive for a web client

• How to control the form of null string arguments in messages sent by a client

• How to control when an InterSystems IRIS web client times out

• How to enable your InterSystems IRIS web client to communicate via a proxy server

• How to set HTTP headers

• How to specify the HTTP version to use

• How to disable SSL server name checking

• How to control the use of the xsi:type attribute in the SOAP messages

• How to control use of inline references in encoded format

• How to control the prefix used for the SOAP message envelope

• How to add namespace declarations to the SOAP envelope

• How to send responses compressed by gzip

• How to quote the SOAP action for SOAP 1.1 requests

• How to treat the HTTP status 202 in the same way as HTTP status 200

• How to define one-way web methods

• How to add automatic line breaks to binary data

• How to add a UTF-8 BOM to the start of each message sent by a web client

• How to force the use of process-private globals to support very large messages

• How to create custom SOAP messages

• How to specify custom HTTP requests to carry SOAP messages from a web client

• How to customize callbacks of a web client

Creating Web Services and Web Clients 99

• How to use transport other than HTTP to carry the SOAP message from a web client

• How to specify flags for the SAX parser to use when a web client invokes a web service

• How to use the WS-Security login feature

• How to use HTTP authentication, as an alternative to WS-Security

Also see the section “Basic Settings of an InterSystems IRIS Web Client” in the chapter “Creating Web Clients.” This
section discusses parameters that control the namespace, the type namespace, and other basics of the web client.

Note: Do not create a subclass of the generated web client class. The compiler will not generate the supporting classes
that it would need in order to run properly, and your subclass would not be usable.

14.1 Disabling Keep-Alive for a Web Client
By default, if you reuse an InterSystems IRIS web client instance to send multiple request messages, InterSystems IRIS
sends all the messages in a single HTTP transmission (using a HTTP 1.1 keep-alive connection). Specifically, InterSystems
IRIS keeps the TCP/IP socket open so that InterSystems IRIS does not need to close and reopen it. To disable this keep-
alive behavior, do any of the following:

• Kill the web client instance and create and use a new one.

• Set the client’s HttpRequest.SocketTimeout property to 0 after you send the first message. For example:

Set client.HttpRequest.SocketTimeout=0

• Add the Connection: close HTTP header in the second request from the client. To do so, add code like the fol-
lowing after you send the first message:

Set sc=client.HttpRequest.SetHeader("Connection","close")

Note: If you are using WS-ReliableMessaging and you are using SSL/TLS to communicate with the web service, do
not disable keep-alive. For information on WS-ReliableMessaging, see Securing Web Services.

14.2 Controlling the Form of Null String Arguments
Normally, if an argument is omitted, an InterSystems IRIS web client omits the corresponding element in the SOAP message
that it sends. To change this, set the XMLIGNORENULL parameter to 1 in the web client class; in this case, the SOAP
message includes an empty element.

Note: This parameter affects only web method arguments of type %String.

14.3 Controlling the Client Timeout
You can control two separate timeout periods for an InterSystems IRIS web client:

100 Creating Web Services and Web Clients

Fine-Tuning a Web Client in InterSystems IRIS

• The Timeout property of the web client is the read timeout. This specifies how long, in seconds, the web client waits
for a response.

If this property is not specified, the web client uses the default value specified for the Timeout property of the
%Net.HttpRequest class. This default is 30 seconds.

If you are using a proxy server, this property controls how long the client waits for a response from the proxy.

• The OpenTimeout property specifies the open timeout, which is the number of seconds to wait for the TCP/IP connection
to open. If this property is not specified, the value specified by Timeout is used instead.

14.4 Using a Proxy Server
Your InterSystems IRIS web client can communicate with a web service via a proxy server. In order to set this up, specify
properties of your web client instance to indicate the proxy server to use. These properties are as follows:

HttpProxyServer

Specifies the host name of the proxy server to use. If this property is not null, the HTTP request is directed to this
machine.

For information on specifying the default proxy server, see “Using a Proxy Server” in Using Internet Utilities.

HttpProxyPort

Specifies the port to connect to, on the proxy server.

For information on specifying the default proxy port, see “Using a Proxy Server” in Using Internet Utilities.

HttpProxyHTTPS

Specify this as true if you are using a proxy server and if that proxy server supports HTTPS.

Note that if you are using HTTPS, you must also set the SSLConfiguration property of the client equal to the name
of the SSL/TLS configuration; for more details on security, see the section “Configuring the Client to Use SSL”
earlier in this book.

HttpProxyAuthorization

If the web client should authenticate itself with the proxy server, specify this as the required
Proxy-Authorization header field.

HttpProxyTunnel

Specify this as true if the web client should establish a tunnel through the proxy to the target HTTP server. If true,
the request uses the HTTP CONNECT command to establish a tunnel. The address of the proxy server is taken
from the HttpProxyServer and HttpProxyPort properties. If the endpoint URL has the https: protocol, then once the
tunnel is established, InterSystems IRIS negotiates the SSL connection. In this case, the HttpProxyHTTPS property
is ignored because the tunnel establishes a direct connection with the target system.

Creating Web Services and Web Clients 101

Using a Proxy Server

14.5 Setting HTTP Headers
If you need further control over the HTTP headers sent by a web client, you can use the following methods of
%SOAP.WebClient:

SetHttpHeader()

Adds a header to the HTTP request. Note that the Content-Type, Content-Encoding, and Content-Length
headers are part of the entity body rather than the HTTP main headers. You cannot set the Content-Length
header, which is read-only. Nor can you set the Connection header, because this class does not support persistent
connections.

ResetHttpHeaders()

Clear all HTTP headers.

Also see the section “Using HTTP User Authentication,” earlier in this chapter.

14.6 Specifying the HTTP Version to Use
By default, an InterSystems IRIS web client uses HTTP/1.1. You can instead use HTTP/1.0. To do so, set the HttpVersion

property of the client to "1.0".

14.7 Disabling SSL Server Name Checking
By default, when an InterSystems IRIS web client connects to a server via SSL, it checks that the certificate server name
matches the DNS name used to connect to the server. (This checking is described in RFC 2818 section 3.1. Wildcard support
is described in RFC 2595, but browsers generally do check the server name, and InterSystems has chosen to do the same.)

To disable this checking, set SSLCheckServerIdentity property of the client to 0.

14.8 Controlling Use of the xsi:type Attribute
By default, InterSystems IRIS SOAP messages include the xsi:type attribute only for the top-level types. For example:

<?xml version="1.0" encoding="UTF-8" ?>
...
<types:GetPersonResponse>
<GetPersonResult href="#id1" />
</types:GetPersonResponse>
<types:Person id="id1" xsi:type="types:Person">
<Name>Yeats,Clint C.</Name>
<DOB>1944-12-04</DOB>
</types:Person>
...

In these examples, line breaks have been added for readability. To use this attribute for all types in the SOAP messages,
do either of the following:

• Set the OutputTypeAttribute property equal to 1 in the web client instance.

102 Creating Web Services and Web Clients

Fine-Tuning a Web Client in InterSystems IRIS

http://tools.ietf.org/html/rfc2818
http://www.ietf.org/rfc/rfc2595.txt

• Set the OUTPUTTYPEATTRIBUTE parameter equal to 1 in the web client class.

The same output would look like this:

<?xml version="1.0" encoding="UTF-8" ?>
...
<types:GetPersonResponse>
<GetPersonResult href="#id1" />
</types:GetPersonResponse>
<types:Person id="id1" xsi:type="types:Person">
<Name xsi:type="s:string">Yeats,Clint C.</Name>
<DOB xsi:type="s:date">1944-12-04</DOB>
</types:Person>
...

The property takes precedence over the parameter.

14.9 Controlling Use of Inline References for Encoded
Format
With encoded format, any object-valued property is included as a reference, and the referenced object is written as a separate
element in the SOAP message.

To instead write the encoded objects inline, specify the REFERENCESINLINE parameter or the ReferencesInline property
as 1. The property takes precedence over the parameter.

14.10 Specifying the Envelope Prefix
By default, an InterSystems IRIS web client uses the prefix SOAP-ENV in the envelope of the SOAP messages it sends.
You can specify a different prefix. To do so, set the SOAPPREFIX parameter of the web client class. For example, if you
set this parameter equal to MYENV, the web client includes this prefix in its messages instead of SOAP-ENV.

14.11 Adding Namespace Declarations to the SOAP
Envelope
To add a namespace declaration to the SOAP envelope (<SOAP-ENV:Envelope> element) of the SOAP responses returned
by a given web client, call the %AddEnvelopeNamespace() method of the web client before calling the web method. This
method has the following signature:

Method %AddEnvelopeNamespace(namespace As %String,
 prefix As %String,
 schemaLocation As %String,
 allowMultiplePrefixes As %Boolean) As %Status

Where:

• namespace is the namespace to add.

• prefix is the optional prefix to use for this namespace. If you omit this argument, a prefix is generated.

• schemaLocation is the optional schema location for this namespace.

Creating Web Services and Web Clients 103

Controlling Use of Inline References for Encoded Format

• allowMultiplePrefixes controls whether a given namespace can be declared multiple times with different prefixes. If
this argument is 1, then a given namespace can be declared multiple times with different prefixes. If this argument is
0, then if you add multiple declarations for the same namespace with different prefixes, only the last supplied prefix
is used.

14.12 Sending Responses Compressed by gzip
An InterSystems IRIS web client can compress its response messages with gzip, a free compression program that is widely
available on the Internet. This compression occurs after any other message packaging (such as creating MTOM packages).
To cause a web client to do so, do either of t he following:

• Set the GzipOutput property equal to 1 in the web client instance.

• Set the GZIPOUTPUT parameter equal to 1 in the web client class.

If you do so, be sure that the web service can automatically decompress the message with gunzip, the corresponding
decompression program. (If the web service is an InterSystems IRIS web service, note that the Web Gateway automatically
decompresses inbound messages before sending them to the web service.)

14.13 Quoting the SOAP Action (SOAP 1.1 Only)
In SOAP 1.1 request messages, the HTTP header includes a SOAPAction line as follows:

POST /csp/gsop/GSOP.DivideWS.cls HTTP/1.1
User-Agent: Mozilla/4.0 (compatible; InterSystems IRIS;)
Host: localhost:8080
Connection: Close
Accept-Encoding: gzip
SOAPAction: http://www.mynamespace.org/GSOAP.DivideWS.Divide
Content-Length: 397
Content-Type: text/xml; charset=UTF-8

...

By default, the value for SOAPAction is not quoted. To place this value in quotes, specify SOAPACTIONQUOTED as 1
in the web client class. Then the HTTP header of the request message would be as follows:

POST /csp/gsop/GSOP.DivideWS.cls HTTP/1.1
User-Agent: Mozilla/4.0 (compatible; InterSystems IRIS;)
Host: localhost:8080
Connection: Close
Accept-Encoding: gzip
SOAPAction: "http://www.mynamespace.org/GSOAP.DivideWS.Divide"
Content-Length: 397
Content-Type: text/xml; charset=UTF-8

...

In SOAP 1.2, the SOAPACTIONQUOTED parameter has no effect. This is because the request messages do not have a
SOAPAction line. Instead the SOAP action is always quoted and is included within the Content-Type line as follows:

Content-Type: application/soap+xml;
 charset=UTF-8; action="http://www.mynamespace.org/GSOAP.DivideWS.Divide"

Note: This example shows an artificial line break, to ensure that the line fits on the page when this book is formatted as
PDF.

104 Creating Web Services and Web Clients

Fine-Tuning a Web Client in InterSystems IRIS

14.14 Treating HTTP Status 202 Like Status 200
By default, an InterSystems IRIS web client follows the standard WS-I Basic Profile, which uses the HTTP response status
202 only if the HTTP response does not contain a SOAP envelope.

If you want to treat HTTP status 202 in the same way as HTTP status 200, set the HttpAccept202 property of the client to
1. To see the actual return status, check the HttpResponse.StatusCode property of the client.

The WS-I Basic Profile supports but does not encourage this practice: “The Profile accepts both status codes because some
SOAP implementations have little control over the HTTP protocol implementation and cannot control which of these
response status codes is sent.”

14.15 Defining a One-Way Web Method
Normally, when a web client calls a web service, a SOAP message is returned, even if the method has no return type and
returns nothing when executed in InterSystems IRIS.

In rare cases, you might need to define a web method as being “one-way.” Such a method must return no value, and no
SOAP response is expected to the message.

Note: One-way methods should normally not be used. A request-response pair is much more common, supported, and
expected — even for a method that has no return type.

To define a one-way web method, define the return type of the method as %SOAP.OneWay. The WSDL does not define
output defined for this web method, and the web service does not return a SOAP message.

14.16 Adding Line Breaks to Binary Data
You can cause the InterSystems IRIS web service to include automatic line breaks for properties of type %Binary or
%xsd.base64Binary. To do so, do either of the following:

• Set the BASE64LINEBREAKS parameter to 1 in the web service class.

• Set the Base64LineBreaks property to 1, for the web service class instance. The value of this property takes precedence
over the value set by the BASE64LINEBREAKS parameter.

For the parameter and the property, the default value is 0; by default, an InterSystems IRIS web service does not include
automatic line breaks for properties of type %Binary or %xsd.base64Binary.

14.17 Adding a Byte-Order Mark to the SOAP Messages
By default, a message sent by an InterSystems IRIS web client does not start with a BOM (byte-order mark).

The BOM is usually not needed because the message is encoded as UTF-8, which does not have byte order issues. However,
in some cases, it is necessary or desirable to include a BOM in a SOAP message; this BOM merely indicates that the message
is UTF-8.

Creating Web Services and Web Clients 105

Treating HTTP Status 202 Like Status 200

To add a BOM to the messages sent by an InterSystems IRIS web client, set the RequestMessageStart property of the client.
This property must equal a comma-separated list of the parts to include at the start of a message. These parts are as follows:

• DCL is the XML declaration:

<?xml version="1.0" encoding="UTF-8" ?>

• BOM is the UTF-8 BOM.

The default is "DCL".

In practice, RequestMessageStart can equal any of the following values:

• "DCL"

• "BOM"

• "BOM,DCL"

14.18 Using Process-Private Globals When Parsing
By default, an InterSystems IRIS web client usually uses local array memory when it parses requests or responses. You
can force it to use process-private globals instead; this enables the web client to process very large messages.

To do so, specify the USEPPGHANDLER parameter of the web service class as follows:

Parameter USEPPGHANDLER = 1;

If this parameter is 1, then the web client always uses process-private globals when it parses requests or responses. If this
parameter is 0, then the web client always uses local array memory for these purposes. If this parameter is not set, then the
web client uses the default, which is usually local array memory.

You can override this parameter at runtime. To do so, set the UsePPGHandler property of the web client instance.

14.19 Creating Custom SOAP Messages
In special cases, you may want a web client to send a custom SOAP message. The essential requirements are as follows:

1. Create a subclass of %SOAP.WebRequest and set its LOCATION parameter or Location property.

2. In this subclass, create a method to send a SOAP message. This method must create an instance of
%Library.CharacterStream and place into it the SOAP message you want to send. It is your responsibility to ensure that
the message is correctly formed.

3. The method must next invoke the SendSOAPBody() method:

method SendSOAPBody(Action As %String,
 OneWay As %Boolean = 0,
 Request As %CharacterStream,
 ByRef Response) as %Status

• Action is a string that gives the name of SOAP action to perform.

• OneWay is a true/false flag that controls whether the message is one way.

• Request is an instance of %Library.CharacterStream that contains the body of the SOAP request in the character
set of the current locale.

106 Creating Web Services and Web Clients

Fine-Tuning a Web Client in InterSystems IRIS

• Response is the response, returned by reference either as a character stream or an instance of %XML.Node.

If Response is null when you invoke SendSOAPBody(), then the method sets Response equal to an instance of
%Library.CharacterStream. This stream contains the body of the SOAP response in the character set of the current
locale.

If Response is an instance of %Library.CharacterStream when you invoke SendSOAPBody(), then the method
updates Response to contain the body of the SOAP response in the character set of the current locale.

If Response is an instance of %XML.Node when you invoke SendSOAPBody(), then the method updates Response
to point to the body DOM.

%SOAP.WebRequest is a subclass of %SOAP.WebClient, so you may want to set other parameters and properties. You can
also add SOAP headers as described earlier in this book. See the class documentation for %SOAP.WebRequest for further
notes.

14.20 Specifying Custom HTTP Requests
By default, if you use an InterSystems IRIS web client, the web client uses HTTP to transport the SOAP message to the
web service and to receive the response. The web client automatically creates and sends an HTTP request, but you can
create a custom HTTP request. To do, you use the following procedure:

1. Create an instance of %Net.HttpRequest and set properties as needed. For information on this class, see the book Using
Internet Utilities or see the class documentation for %Net.HttpRequest.

2. Set the HttpRequest property of your web client equal to this instance.

This is useful in particular if you want to support multiple calls to a SOAP service within the same session. By default, the
InterSystems IRIS web client does not support multiple calls to a SOAP service using the same session. To work around
this, create a new instance of %Net.HttpRequest and use it as the HttpRequest property of your web client. This change
forces the same HTTP request to be reused for all calls, which returns all cookies in a response to the next request.

14.21 Customizing Callbacks of a Web Client
You can customize the behavior of an InterSystems IRIS web client by overriding its callback methods:

%OnSOAPRequest()

Method %OnSOAPRequest(mode As %String,
 client As %SOAP.WebClient,
 action As %String,
 oneWay As %Boolean,
 method As %String,
 requestStream As %BinaryStream)

Called just before the web client invokes the DoSOAPRequest() method of the transport class (which makes the
actual SOAP request). The default DoSOAPRequest() method is included in %SOAP.WebClient and uses HTTP
for request/response.

• mode specifies the type of SOAP request ("SOAP" or "binary").

• client is the OREF of the web client instance.

• action contains the value of the SOAPAction header.

Creating Web Services and Web Clients 107

Specifying Custom HTTP Requests

• oneWay is true if no body is to be sent.

• method argument is the name of the web method that is being invoked.

• requestStream argument contains the SOAP request message in a stream.

%OnSOAPResponse()

Method %OnSOAPResponse(mode As %String,
 client As %SOAP.WebClient,
 action As %String,
 oneWay As %Boolean,
 method As %String,
 requestStream As %BinaryStream,
 responseStream As %BinaryStream,
 sc As %Status)

Called after the web client has invoked the DoSOAPRequest() method of the transport class. The sc argument is
the status returned by the DoSOAPRequest() method of the transport class. The other arguments are the same as
for %OnSOAPRequest().

%OnSOAPFinished()

Method %OnSOAPFinished(mode As %String, client As %SOAP.WebClient, method As %String, sc As
%Status)

Called after the web client has performed all its processing. The sc argument is the status returned by the web
method that was invoked. The mode, client, and method arguments are the same as for the other callback methods.

14.22 Specifying Custom Transport from a Web Client
By default, if you use an InterSystems IRIS web client, the web client uses HTTP to transport the SOAP message to the
web service and to receive the response. You can define and use your own transport class.

14.22.1 Background

To communicate with the web service that it uses, an InterSystems IRIS web client requires a transport class. The transport
class contains parameters, properties, and methods related to communication. The overall communication works as follows:

1. When a web client proxy method is run, the web client instance checks the value of its Transport property.

If this property is null, the web client instance uses itself as the transport class instance. You can instead set the Transport

property equal to an instance of some other suitable class, if you have defined such a class.

2. The web client instance executes the DoSOAPRequest() method of the transport class, passing the following arguments:

a. The OREF of the web client class.

b. A string that specifies the SOAP action.

c. A stream containing the request encoded in UTF-8.

d. (By reference) A stream containing the response.

3. The web client instance checks the status of the result and acts accordingly.

For HTTP transport, the DoSOAPRequest() method includes the following logic:

108 Creating Web Services and Web Clients

Fine-Tuning a Web Client in InterSystems IRIS

1. Create a request object (an instance of %Net.HttpRequest) and set its properties. Here, the method uses values of the
properties of the web client instance, in particular HttpRequestHeaderCharset and other HTTP-related properties.

2. Go through the headers in the SOAP request and initialize the headers in the request object.

3. Execute the Post() method of the request object, which is a suitable action for HTTP transport.

4. Get the response and return that.

Important: Do not directly use the DoSOAPRequest() method of %SOAP.WebClient. No guarantee is made about its
behavior or future operation. The preceding summary is provided only as a general tip.

14.22.2 Defining Custom Transport for an InterSystems IRIS Web Client

To enable an InterSystems IRIS web client to use custom transport, define a custom transport class. Then after you create
an instance of the web client, set its Transport property equal to an instance of the transport class.

The requirements for the transport class are as follows:

• The class must be instantiable (that is, non-abstract).

• The class must implement the DoSOAPRequest() method as described below.

The DoSOAPRequest() method should transport the request to the web service and obtain the response. The signature of
this method must be as follows:

Method DoSOAPRequest(webClient,action,requestStream, responseStream) As %Status

• webClient is the OREF of the web client class.

• action is a %String that specifies the SOAP action.

• requestStream is a stream containing the request encoded in UTF-8.

• responseStream is a %FileBinaryStream argument that DoSOAPRequest() uses to write the response. This stream must
contain data in the character set specified by the encoding attribute of the ?xml directive. UTF-8 is recommended.

14.23 Specifying Flags for the SAX Parser
When an InterSystems IRIS web client invokes a web service, it internally uses the SAX parser, a third-party product that
is shipped with InterSystems IRIS. You can set the SAXFlags property of the web client in order to set the flags for the
parser to use.

For information on the parser flags themselves, see the book Using XML Tools.

14.24 Using the WS-Security Login Feature
If your InterSystems IRIS web client is using a web service that requires authentication, and if do not want to use the newer
WS-Security features, you can use the older and simpler WS-Security login feature.

To use the WS-Security login feature:

Creating Web Services and Web Clients 109

Specifying Flags for the SAX Parser

1. Ensure that you are using SSL between the web client and the web server that hosts the web service. The WS-Security
header is sent in clear text, so this technique is not secure unless SSL is used. See the section “Configuring the Client
to Use SSL,” earlier in this book.

2. Invoke the WSSecurityLogin() method of the web client. This method accepts the username and password, generates
a WS-Security username token with clear text password, and adds a WS-Security header to the web request.

3. Invoke the web method.

This technique adds the security token only to the next SOAP message.

For information on the newer WS-Security features, see Securing Web Services.

14.25 Using HTTP Authentication
Some web services require HTTP authentication instead of using WS-Security (which is described in Securing Web Services).
For these web services, IRIS supports the following HTTP authentication schemes:

1. Negotiate (SPNEGO and Kerberos, per RFC 4559 and RFC 4178)

2. NTLM (NT LAN Manager Authentication Protocol)

3. Basic (Basic Access Authentication as described in RFC 2617)

Note that on HTTP 1.0, only Basic authentication is used; the other authentication schemes require multiple round trips
within a single connection, which is not permitted in HTTP 1.0.

To use HTTP authentication:

• Set the HttpUsername and HttpPassword properties of the web client before invoking the web method.

• If you want the client to send an initial header indicating the scheme to use (and you know that the server permits the
scheme), set the HttpInitiateAuthentication property before invoking the web method. For the value of this property,
specify an authentication scheme name, as given in “Providing Login Credentials” in the chapter “Sending HTTP
Requests” in Using Internet Utilities.

• If you want to customize the list of schemes that the client tries, set the HttpInitiateAuthentication property before
invoking the web method. For the value of the property, use a comma-separated list of names, as given in “Providing
Login Credentials” in the chapter “Sending HTTP Requests” in Using Internet Utilities.

Important: If there is a chance that Basic authentication will be used, ensure that you are using SSL between the web
client and the web server that hosts the web service. In Basic authentication, the credentials are sent in
base-64 encoded form and thus can be easily read. See the section “Configuring the Client to Use SSL,”
earlier in this book.

110 Creating Web Services and Web Clients

Fine-Tuning a Web Client in InterSystems IRIS

https://tools.ietf.org/html/rfc4559
https://tools.ietf.org/html/rfc4178
https://tools.ietf.org/html/rfc2617

15
Troubleshooting SOAP Problems in
InterSystems IRIS

This chapter provides information to help you identify causes of SOAP problems in InterSystems IRIS. It discusses the
following topics:

• Information needed for troubleshooting

• Problems consuming WSDLs (problems using the SOAP Wizard)

• Problems sending SOAP messages

For information on problems that are obviously related to security, see “Troubleshooting Security Problems” in Securing
Web Services. In the rare case that your SOAP client is using HTTP authentication, note that you can enable logging for
the authentication; see “Providing Login Credentials” in the chapter “Sending HTTP Requests” in Using Internet Utilities.

15.1 Information Needed for Troubleshooting
To identify the cause of a SOAP problem, you typically need the following information:

• The WSDL and all external documents to which it refers.

• (In the case of message-related problems) Some form of message logging or tracing. You have the following options:

CommentsShows HTTP
headers?

Usable with
SSL/TLS?

Option

For security errors, this log shows
more detail than is contained in the
SOAP fault.

NoYesInterSystems IRIS SOAP
log

For problems with SOAP messages
that use MTOM (MIME attachment),
it is crucial to see HTTP headers.

YesYesWeb Gateway trace

Some tracing tools also show
lower-level details such as the
actual packets being sent, which
can be critical when you are
troubleshooting.

Depends on
the tool

NoThird-party tracing tools

Creating Web Services and Web Clients 111

These options are discussed in the following subsections.

It is also extremely useful to handle faults correctly so that you receive the best possible information. See the chapter
“SOAP Fault Handling.”

15.1.1 InterSystems IRIS SOAP Log

To log the SOAP calls made to or from an InterSystems IRIS namespace, set the following nodes of the ^ISCSOAP global
in that namespace:

PurposeNode

Specifies kind of logging. Use one of the following values
(case-sensitive):

^ISCSOAP("Log")

• "i" — Log inbound messages

• "o" — Log outbound messages

• "s" — Log security information. Note that this option provides more
detail than is generally contained in the SOAP fault, which is inten-
tionally vague to prevent follow-on security attacks.

• "h" — Headers only (no SOAP body). If you use "h" with "i" and/or
"o", then the log includes only the SOAP Envelope element and
SOAP headers (if any).

You can also use a string that contains any combination of these values,
for example: "iosh"

Specifies the complete path and filename of the log file to create.^ISCSOAP("LogFile")

The log indicates the sender or the recipient as appropriate, so that you can see which web service or client participated in
the exchange.

The following shows a partial example of a log file with line breaks added for readability:

01/05/2010 13:27:02 *********************
Output from web client with SOAP action = http://www.mysecureapp.org/GSOAP.AddComplexSecureWS.Add
<?xml version="1.0" encoding="UTF-8" ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV='http://schemas.xmlsoap.org/soap/envelope/'
...
 <SOAP-ENV:Header>
 <Security xmlns="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">

 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
...
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

01/05/2010 13:27:33 *********************
Input to web client with SOAP action = http://www.mysecureapp.org/GSOAP.AddComplexSecureWS.Add

ERROR #6059: Unable to open TCP/IP socket to server localhost:8080
string

Note the following points:

• With InterSystems IRIS XML tools, you can validate signatures of signed XML documents and decrypt encrypted
XML documents. If you perform these tasks in this namespace, the log contains details for them as well. See Using
XML Tools.

112 Creating Web Services and Web Clients

Troubleshooting SOAP Problems in InterSystems IRIS

• The InterSystems IRIS SOAP log captures SOAP calls even when no message is sent on the wire (that is, when the
service and client are both on a single machine).

• If a severe error occurs, the system stops writing to the SOAP log. See the messages log instead. For information, see
“Monitoring Log Files” in the Monitoring Guide.

15.1.2 HTTP Trace in the Web Gateway

The CSP Web Gateway Management page enables you to trace HTTP requests and responses. See “Viewing HTTP Trace”
in the Web Gateway Configuration Guide.

15.1.3 Third-Party Tracing Tools

To test your web service, you can use tracing tools such as Wireshark, ProxyTrace, tcpTrace, XMLSpy, soapUI, or Web
Service Studio Express. Some of these tools are free and others are licensed. Note that InterSystems does not make any
specific recommendations about these tools; they are listed here for your general information.

Tracing tools enable you to see the actual method call, as well as the response. A tracing session listens on a certain port,
shows you the messages it receives there, forwards those messages to a destination port, shows the responses, and forwards
the responses to the listening port.

For example, suppose you have a web service at http://localhost:52773/csp/gsop/GSOP.Divide.CLS

And suppose you have a web client that you created to talk to that service. The web client has a LOCATION parameter
equal to "http://localhost:52773/csp/gsop/GSOP.Divide.CLS"

To trace messages between the client and service, you need to do two things:

• In the tracing tool, start a tracing session that listens on port 8080 (for example) and that uses the destination port
52773.

• In the web client, edit the LOCATION parameter to use port 8080 instead of 52773. Then recompile.

Or, in your code that invokes the web client, change the Location property of the web client:

 //reset location to port 8080 to enable tracing
 set client.Location="http://localhost:8080/csp/gsop/GSOP.DivideWS.cls"

Now when you use the web client, the tracing tool intercepts and displays messages between the client and the web service,
as shown in the following example:

Creating Web Services and Web Clients 113

Information Needed for Troubleshooting

The top area shows the request sent by the client. The bottom area shows the response sent by the web service.

15.2 Problems Consuming WSDLs
If you have a problem using the SOAP Wizard (or the %SOAP.WSDL.Reader class, which the wizard uses), the problem
is likely to be one of the following:

• The WSDL is protected by SSL. In this case, the wizard issues the following error:

ERROR #6301: SAX XML Parser Error: invalid document structure
while processing Anonymous Stream at line 1 offset 1

You can specify an SSL configuration when using the wizard, but if you have done so, and you receive the preceding
error, your SSL configuration is incorrect. You can try accessing the WSDL in another way, downloading it to a file,
and using the file WSDL instead.

• The WSDL is password protected. In this case, the wizard issues an error like the following (notice that the line and
offset vary but are different from the previous scenario):

ERROR #6301: SAX XML Parser Error: Expected entity name for reference
while processing Anonymous Stream at line 10 offset 27

114 Creating Web Services and Web Clients

Troubleshooting SOAP Problems in InterSystems IRIS

If you receive this error, check whether a password is required; see the comments in “Using the SOAP Wizard,” earlier
in this book.

• The WSDL uses elements that are currently inaccessible. In this case, the wizard issues an error like the following:

ERROR #6416: Element 'wsdl:definitions' - unrecognized wsdl element 'porttype'

The key word is unrecognized; this indicates that the WSDL refers to an element that is currently inaccessible. Carefully
check the WSDL for <import> and <include> directives.

An import directive might look like this:

<import namespace="http://example.com/stockquote/definitions"
 location="http://example.com/stockquote/stockquote.wsdl"/>

In this case, the workaround is as follows:

– Download the primary WSDL to a file.

– Download the referenced WSDL to a file.

– Edit the primary WSDL to refer to the new location of the referenced WSDL.

Similarly, it is possible for a WSDL to refer to other documents via a relative URL. For example:

xmlns:acme="urn:acme.com.:acme:service:ServiceEndpointInterface"

If you have downloaded the WSDL to a file, this relative reference cannot work. In this case, you must also download
the referenced document and edit the WSDL to use its new location.

• The WSDL contains <message> elements with multiple parts and uses document-style binding. In this case, the
wizard issues the following error:

ERROR #6425: Element 'wsdl:binding:operation:msg:input' - message 'AddSoapOut'
Message Style must be used for document style message with 2 or more parts.

In this case, select the Use unwrapped message format for document style web methods option when you use the wizard.

• The WSDL is invalid. In such cases, the SOAP wizard issues an error to indicate the problem. The following shows
one example:

ERROR #6419: Element 'wsdl:binding:operation' - inconsistent
soap:namespace for operation getWidgetInfo

This error message indicates a problem with an <operation> element. The following shows a partial example of
the invalid WSDL that produced this error:

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://acme.acmecorp.biz:9999/widget/services"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" =
 [parts omitted]>
 <wsdl:message name="getWidgetInfoRequest">
 </wsdl:message>
 <wsdl:message name="getWidgetInfoResponse">
 <wsdl:part name="getWidgetInfoReturn" type="xsd:string"/>
 </wsdl:message>
 <wsdl:portType name="Version">
 <wsdl:operation name="getWidgetInfo">
 <wsdl:input message="impl:getWidgetInfoRequest" name="getWidgetInfoRequest"/>
 <wsdl:output message="impl:getWidgetInfoResponse" name="getWidgetInfoResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="VersionSoapBinding" type="impl:Version">
 <wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="getWidgetInfo">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="getWidgetInfoRequest">
 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://acmesubsidiary.com"
 use="encoded"/>

Creating Web Services and Web Clients 115

Problems Consuming WSDLs

 </wsdl:input>
 <wsdl:output name="getWidgetInfoResponse">
 <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

 namespace="http://acme.acmecorp.biz:9999/widget/services"
 use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 [parts omitted]

In this case, the problem is that the <input> part of <operation> states that the request message
(getVersionRequest) is in the namespace "http://acmesubsidiary.com", but the earlier part of the WSDL
shows that this message is the target namespace of the web service:
"http://acme.acmecorp.biz:9999/widget/services".

Note that an invalid WSDL document can be a valid XML document, so using a pure XML tool to validate the WSDL
is not a sufficient test. Some third-party WSDL validation tools are available, and you can also examine the WSDL
directly, using information returned by the SOAP wizard.

• The WSDL contains features that are not supported in InterSystems IRIS. See the section “Consuming WSDLs” in
the first chapter.

15.3 Problems Sending Messages
If you have problems when sending SOAP messages to or from an InterSystems IRIS web service or client, consider this
list of common scenarios:

• The SOAP message might include an extremely long string or binary value, exceeding the string length limit. In this
case, InterSystems IRIS throws one of the following errors:

– A <MAXSTRING> error

– A datatype validation error (which can have other causes as well):

ERROR #6232: Datatype validation failed for tag your_method_name ...

When the wizard reads a WSDL, it assumes that any string-type input or output can be represented in InterSystems
IRIS as %String. Similarly, it assumes that any input or output with XML type base64Binary can be represented in
InterSystems IRIS as %xsd.base64Binary). There is no information in a WSDL to inform the SOAP Wizard that this
input or output could exceed the string length limit.

See “Adjusting the Generated Classes for Extremely Long Strings,” earlier in this book; this information applies to
both web clients and services.

• The web service or client might receive WS-Security headers, but not yet be configured to recognize them. This can
result in a generic error like the following:

<ZSOAP>zInvokeClient+269^%SOAP.WebClient.1

An error like this can also have other causes. If you receive an error like this, first check whether the messages include
WS-Security headers; if so, add the following to the web service or client and recompile it:

Parameter SECURITYIN="REQUIRE";

Also, if InterSystems IRIS generated a security policy (in a configuration class), you might need to edit that policy to
provide missing details; see the section “Editing the Generated Policy” in Securing Web Services. If you do not do
so, you can receive generic errors as given above.

116 Creating Web Services and Web Clients

Troubleshooting SOAP Problems in InterSystems IRIS

• The web service or client might require a more specific message form than should be required, according to the SOAP
specifications. (This can occur for a service or client that is not in InterSystems IRIS.) InterSystems has encountered
the following scenarios, listed here from (approximately) most common to least common:

– The web service or client requires the message to specify the xsi:type attribute for all elements in the message.
To specify use of this attribute, see “Controlling Use of the xsi:type Attribute,” which applies to both web services
and clients.

– For a null string value, the web service or client requires a null element (rather than omitting the element). To
work around this, you can control the form of null string arguments, see “Controlling the Form of Null String
Arguments,” which applies to both web services and clients.

– The web service or client requires specific namespace prefixes. InterSystems IRIS does not provide a way to
specify the namespace prefixes in general.

For the SOAP envelope, however, you can specify the prefix to use. See “Specifying the SOAP Envelope Prefix,”
which applies to both web services and clients.

– The web client requires the SOAP action to be quoted. To work around this, see “Quoting the SOAP Action
(SOAP 1.1 Only).”

– The web service or client requires a BOM (byte-order mark) at the start of each SOAP message. The BOM should
not be needed because a SOAP message is encoded as UTF-8, which does not have byte order issues. See “Adding
a Byte-Order Mark to the SOAP Messages,” which applies to both web services and clients.

The symptoms of these problems depend upon the third-party product in use.

• The web service or client might not comply with the WSDL. This should not be possible for an InterSystems IRIS
web service or client, but can occur in other scenarios. InterSystems has seen the following scenarios:

– An element in the message is not in the namespace required by the WSDL.

– The message does not have elements in the same order as the WSDL.

To determine whether the service or client complies with the WSDL, compare the messages to the WSDL.

Or, for a third-party web service, to determine whether the web service complies with the WSDL, it is useful to do the
following:

1. Generate a web client using a third-party tool.

2. Send messages from that web client:

– If this is successful, it is likely that the web service does expect and send messages that are consistent with
its WSDL, and the cause of the problem is elsewhere. In this case, compare the messages sent by this client
to the messages sent by the InterSystems IRIS client.

– If this is not successful, it is likely that the web service does not expect or send messages that are consistent
with its WSDL.

• The web service or client might send messages of a form not supported in InterSystems IRIS. It is useful to examine
the WSDL in use and make sure it is supported in InterSystems IRIS; see the section “Consuming WSDLs” in the
first chapter. Note that these details have changed in InterSystems IRIS over time.

Creating Web Services and Web Clients 117

Problems Sending Messages

A
Summary of Web Service URLs

This appendix summarizes the URLs related to an InterSystems web service.

A.1 Web Service URLs
The URLs related to an InterSystems IRIS web service are as follows:

end point for the web service

base/csp/namespace/web_serv.cls

Where:

• base is the base URL for your web server (including port if necessary).

• /csp/namespace is the name of the web application in which the web service resides.

• web_serv is the class name of the web service.

For example:

http://localhost:52773/csp/samples/MyApp.StockService.cls

WSDL

base/csp/app/web_serv.cls&WSDL

For example:

http://localhost:52773/csp/samples/MyApp.StockService.cls?WSDL

Note that both of these URLs are part of the /csp/namespace web application.

A.2 Using a Password-Protected WSDL URL
When you use the WSDL URL to generate a web client, if the underlying web application is protected by password
authentication, it is necessary to append a string like the following (using the username _SYSTEM and password SYS as an
example):

Creating Web Services and Web Clients 119

&IRISUsername=_SYSTEM&IRISPassword=SYS

If you use a third-party tool to create a web client, make sure that you understand how that tool handles its logins. For
example, .NET performs a URL redirect after logging in. In this case, it is necessary to also append the following string to
the URL:

&IRISNoRedirect=1

In all cases, you can also retrieve the WSDL from a browser after supplying the required username and password, save it
as a file, and use the file instead. Or you could create a non-password-protected web application to serve the WSDL to
consumers as needed, if it is necessary to have continuous access to the WSDL.

120 Creating Web Services and Web Clients

Summary of Web Service URLs

B
Details of the Generated WSDLs

For reference, this appendix shows the parts of a sample WSDL document for an InterSystems IRIS web service, along
with information about how keywords and parameters affect these parts. It discusses the following topics:

• Overview of WSDL documents

• Sample web service used for the central WSDL shown in this appendix

• Namespace declarations at the start of the <definitions> element

• The <service> element

• The <binding> element

• The <portType> element

• The <message> elements

• The <types> element

• WSDL variations due to differences in method signatures

• Other WSDL variations

The signatures of your web methods also affect the WSDL, but this appendix does not discuss the details.

The WSDL is also affected by the XML projections of all XML-enabled classes used by the web service. See the book
Projecting Objects to XML.

Note: If the web service has a compiled policy configuration class, the <binding> section also includes elements of
the form <wsp:Policy>. This book does not discuss how policies affect the WSDL, because the effects are
determined by the WS-SecurityPolicy and other specifications.

For information on policy configurations, see Securing Web Services.

The system generates WSDL documents for convenience, but this is not required by the W3C specifications. For important
notes on this topic, see “Viewing the WSDL,” earlier in this book.

B.1 Overview of WSDL Documents
A web service has a WSDL document, a machine-readable interface definition. A WSDL document is written in XML,
following the standard for the Web Services Description Language. It defines the contract for how the web service and its
clients interact.

Creating Web Services and Web Clients 121

A WSDL has a root <definitions> element that contains additional elements that define the following:

• Definition of any XML types or elements needed for inputs or outputs of the web service, defined in terms of base
XML types. The <types> element includes one or more <schema> elements, which define the XML types, elements,
or both as needed.

• Definition of messages used by the web service. Each web method requires one or two messages: a request message
to call the web method, and a response message to use in reply. Each message is defined in terms of XML types or
elements.

• Definition of port types used by the web service. Each port defines one or more operations. An operation corresponds
to a web method and uses the corresponding message or messages.

In general, a WSDL can contain multiple <portType> elements, but the WSDL for an InterSystems IRIS web service
contains only one.

• The bindings of the web service, which defines the message format and protocol details for operations and messages
defined by a particular port type.

In general, a WSDL can contain multiple <binding> elements, but the WSDL for an InterSystems IRIS web service
contains only one.

• Formal definition of the web service, in terms of the preceding components. This includes a URL for invoking the web
service.

The service, any schemas, and the messages are all associated with XML namespaces; these can all be in a single namespace
or can be in different namespaces. Note that InterSystems IRIS support for SOAP does not support all possible variations.
See the section “Standards Supported by InterSystems IRIS,” earlier in this book.

B.2 Sample Web Service
This appendix shows parts of the WSDL of the following sample web service:

Class WSDLSamples.BasicWS Extends %SOAP.WebService
{

Parameter SERVICENAME = "MyServiceName";

Parameter NAMESPACE = "http://www.mynamespace.org";

Parameter USECLASSNAMESPACES = 1;

/// adds two complex numbers
Method Add(a As ComplexNumber, b As ComplexNumber) As ComplexNumber [WebMethod]
{
 Set sum = ##class(ComplexNumber).%New()
 Set sum.Real = a.Real + b.Real
 Set sum.Imaginary = a.Imaginary + b.Imaginary

 Quit sum
}
}

This web service refers to the following class:

/// A complex number
Class WSDLSamples.ComplexNumber Extends (%RegisteredObject, %XML.Adaptor)
{

/// real part of the complex number
Property Real As %Double;

/// imaginary part of the complex number
Property Imaginary As %Double;

}

122 Creating Web Services and Web Clients

Details of the Generated WSDLs

Except where noted, the appendix shows parts of the WSDL for this web service. (In some cases, the appendix uses variations
of this web service.)

B.3 Namespace Declarations
Before we examine the rest of the WSDL in detail, it is useful to see the namespace declarations used by the rest of the
WSDL. The <definitions> element contains one namespace declaration for each namespace used in the WSDL. For
the sample web service shown earlier in this appendix, these declarations are as follows:

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:s="http://www.w3.org/2001/XMLSchema"
xmlns:s0="http://www.mynamespace.org"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
targetNamespace="http://www.mynamespace.org">

The following parameters affect the namespace declarations:

• The NAMESPACE parameter in the web service.

This parameter is used for the targetNamespace attribute, which indicates the target namespace of the web service.

If the NAMESPACE parameter is not specified, targetNamespace is "http://tempuri.org"

• The SOAPVERSION parameter in the web service.

This affects the SOAP namespaces that are automatically included.

By default, SOAPVERSION is 1.1.

For SOAPVERSION equal to 1.2, the WSDL would instead include the following:

<definitions ...
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
...

For SOAPVERSION equal to "", the WSDL would instead include the following:

<definitions
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
...

• Other namespace keywords and parameters in the web service and in any XML-enabled classes used by the web service.

These items are discussed in the following sections.

These namespaces are declared as needed, for consistency with the rest of the WSDL.

Also, other namespaces (such as http://schemas.xmlsoap.org/wsdl/soap/) are included automatically as
appropriate.

The namespace prefixes are all chosen automatically and cannot be customized.

B.4 <service>
When you examine a WSDL, it is useful to read it from the end to the beginning.

Creating Web Services and Web Clients 123

Namespace Declarations

The final element within a WSDL is the <service> element, which defines the web service. For the sample web service
shown earlier in this appendix, this element is as follows:

<service name="MyServiceName">
 <port name="MyServiceNameSoap" binding="s0:MyServiceNameSoap">
 <soap:address location="http://localhost:52773/csp/gsop/WSDLSamples.BasicWS.cls"/>
 </port>
</service>

This element is specified as follows:

• The SERVICENAME parameter of the web service is used as the name attribute of the <service> element. See
“Specifying the Service Name and Namespaces of the Web Service.”

This parameter also affects the name and binding attributes of the <port> element; no separate control is provided.

• The binding attribute refers to a binding in the s0 namespace, which is listed in the namespace declarations. This
namespace is specified by the NAMESPACE parameter of the web service.

• The URL of the web service class controls the location attribute of the <soap:address> element.

B.5 <binding>
Before the <service> element, the WSDL contains <binding> elements, each of which defines message format and
protocol details for operations and messages defined by a particular <portType> element.

In general, a WSDL can contain multiple <binding> elements, but the WSDL for an InterSystems IRIS web service
contains only one.

For the sample web service shown earlier in this appendix, this element is as follows:

<binding name="MyServiceNameSoap" type="s0:MyServiceNameSoap">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"
 style="document"/>
 <operation name="Add">
 <soap:operation soapAction="http://www.mynamespace.org/WSDLSamples.BasicWS.Add"
 style="document"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
</binding>

This element is specified as follows:

• The name attribute of the <binding> element is automatically kept consistent with the <service> element (and
would not be meaningful to change).

<binding name="MyServiceNameSoap" ...

• The type attribute of the <binding> element refers to a <portType> element in the s0 namespace, which is listed
in the namespace declarations. This namespace is specified by the NAMESPACE parameter of the web service.

• The name attribute of each <operation> element is based on the name of the web method (and would not be
meaningful to change).

<operation name="Add"> ...

• If you specify the SoapAction keyword for the web method, that value is used for the soapAction attribute of the
operation. For example:

124 Creating Web Services and Web Clients

Details of the Generated WSDLs

...
<operation name="Add">
 <soap:operation soapAction="mysoapaction" style="document"/>
...

• If the return type of a method is defined as %SOAP.OneWay, the affects this element as described in “WSDL Differences
for One-Way Web Methods,” later in this appendix.

• If the SOAPBINARY parameter is 1 for the web service, that affects this element as described in “WSDL Differences
for InterSystems IRIS Binary SOAP Format,” later in this appendix.

• If the SOAPSESSION parameter is 1 for the web service, that affects this element as described in “WSDL Differences
for InterSystems IRIS SOAP Sessions,” later in this appendix.

• The SoapBindingStyle class keyword, SoapBindingStyle method keyword, and SoapBindingStyle query keyword
affect the <binding> element as described in the Class Definition Reference. These keywords can have the values
document and rpc.

• The SoapBodyUse class keyword, SoapBodyUse method keyword, and SoapBodyUse query keyword affect the
<binding> element as described in the Class Definition Reference. These keywords can have the values literal
and encoded.

Note: If the web service has a compiled policy configuration class, the <binding> section also includes elements of
the form <wsp:Policy>. This book does not discuss how policies affect the WSDL, because the effects are
determined by the WS-SecurityPolicy and other specifications.

For information on policy configurations, see Securing Web Services.

B.6 <portType>
Before the <binding> section, a WSDL contains <portType> elements, each of which defines an individual endpoint
by specifying a single address for a <binding> element. A <portType> element is a named set of abstract operations
and the abstract messages involved.

In general, a WSDL can contain multiple <portType> elements, but the WSDL for an InterSystems IRIS web service
contains only one.

For the sample web service shown earlier in this appendix, the <portType> element is as follows:

<portType name="MyServiceNameSoap">
 <operation name="Add">
 <input message="s0:AddSoapIn"/>
 <output message="s0:AddSoapOut"/>
 </operation>
</portType>

All aspects of this element are automatically kept consistent with other parts of the WSDL; there is no independent control
of it.

B.7 <message>
Before the <portType> element, the <message> elements define the messages used in the operations. The WSDL typically
contains two <message> elements for each web method. For the sample web service shown earlier in this appendix, these
elements are as follows:

Creating Web Services and Web Clients 125

<portType>

<message name="AddSoapIn">
 <part name="parameters" element="s0:Add"/>
</message>
<message name="AddSoapOut">
 <part name="parameters" element="s0:AddResponse"/>
</message>

This element is specified as follows:

• The name attribute of a <message> element is based on the name of the web method.

• The binding style of a method is determined by the <binding> element shown previously. This determines whether
a message can have multiple parts:

– If the binding style is "document", the message has only one part by default. For example:

<message name="AddSoapIn">
 <part name="parameters" .../>
</message>

If the ARGUMENTSTYLE parameter is "message", then the message can have multiple parts. For example:

<message name="AddSoapIn">
 <part name="a" .../>
 <part name="b" .../>
</message>

– If the binding style is "rpc", the message can have multiple parts. For example:

<message name="AddSoapIn">
 <part name="a" .../>
 <part name="b" .../>
</message>

• The use attribute of the <soap:body> element, as specified in the <binding> element shown previously, determines
the contents of a message <part> element:

– If the use attribute is "literal", the <part> element includes an element attribute. For example:

<part name="parameters" element="s0:Add"/>

For another example:

<part name="b" element="s0:b"/>

– If the use attribute is "encoded", the <part> element includes a type attribute rather than an element
attribute. For example:

<part name="a" type="s0:ComplexNumber"/>

• The names of the elements or types to which the messages refer are determined as described in the next section of this
appendix.

• The namespaces to which those elements and types belong are determined as described in the next section of this
appendix.

• Also see “WSDL Differences for One-Way Web Methods,” later in this appendix.

• If the SOAPSESSION parameter is 1 for the web service, that affects this element as described in “WSDL Differences
for InterSystems IRIS SOAP Sessions,” later in this appendix.

126 Creating Web Services and Web Clients

Details of the Generated WSDLs

B.8 <types>
Before the <message> elements, the WSDL includes a <types> element, which defines the schema or schemas used by
the messages. The <types> element includes one or more <schema> elements, and these define the elements, types, or
both used by the web service and its clients. For the sample web service shown earlier in this appendix, this element is as
follows:

<types>
 <s:schema elementFormDefault="qualified" targetNamespace="http://www.mynamespace.org">
 <s:element name="Add">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" name="a" type="s0:ComplexNumber"/>
 <s:element minOccurs="0" name="b" type="s0:ComplexNumber"/>
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:complexType name="ComplexNumber">
 <s:sequence>
 <s:element minOccurs="0" name="Real" type="s:double"/>
 <s:element minOccurs="0" name="Imaginary" type="s:double"/>
 </s:sequence>
 </s:complexType>
 <s:element name="AddResponse">
 <s:complexType>
 <s:sequence>
 <s:element name="AddResult" type="s0:ComplexNumber"/>
 </s:sequence>
 </s:complexType>
 </s:element>
 </s:schema>
</types>

The following subsections discuss the primary variations:

• Name attributes in <types>

• Use of namespaces in <types>

• Other possible variations for the <types> section

Note: The <types> section is also influenced by the XML projections defined for all XML-enabled classes used by
the web service. The XML projections determine issues such as namespace use, null handling, and handling of
special characters. See the book Projecting Objects to XML.

The SoapBindingStyle and SoapBodyUse keywords affect other parts of the WSDL, which in turn determine the
structure of the <types> section.

B.8.1 Name Attributes

Each <schema> element can consist of elements, types, or both, depending on the message style. Each of element or type
has a name attribute, which is specified as follows:

• If the item corresponds to the web method, its name attribute equals the name of that web method (for example, Add)
and cannot be changed.

• If the item corresponds to an XML-enabled class used as an argument or return value, its name attribute is determined
by the XML projection of that class. For details, see the book Projecting Objects to XML.

• If the item corresponds to the response message, by default its name attribute has the form method_nameResponse
(for example, AddResponse).

For web methods that use document-style binding, you can override this by specifying the SoapMessageName keyword
of the web method.

Creating Web Services and Web Clients 127

<types>

• For lower-level items within <schema>, the name attributes are set automatically and cannot be independently con-
trolled.

For example, suppose that we edited the sample web method as follows:

Method Add(a As ComplexNumber, b As ComplexNumber)
As ComplexNumber [WebMethod, SoapMessageName = MyResponseMessage]
{
 Set sum = ##class(ComplexNumber).%New()
 Set sum.Real = a.Real + b.Real
 Set sum.Imaginary = a.Imaginary + b.Imaginary

 Quit sum
}

In this case, the <types> section would be as follows:

<types>
 <s:schema elementFormDefault="qualified" targetNamespace="http://www.mynamespace.org">
 <s:element name="Add">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" name="a" type="s0:ComplexNumber"/>
 <s:element minOccurs="0" name="b" type="s0:ComplexNumber"/>
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:complexType name="ComplexNumber">
 <s:sequence>
 <s:element minOccurs="0" name="Real" type="s:double"/>
 <s:element minOccurs="0" name="Imaginary" type="s:double"/>
 </s:sequence>
 </s:complexType>
 <s:element name="MyResponseMessage">
 <s:complexType>
 <s:sequence>
 <s:element name="AddResult" type="s0:ComplexNumber"/>
 </s:sequence>
 </s:complexType>
 </s:element>
 </s:schema>
</types>

For more information, see “Controlling the Message Name of the SOAP Response.” Also see the book Projecting Objects
to XML.

B.8.2 Namespaces in <types>

The following parameters of the web service affect the use of namespaces within the <types> section:

• If it is specified, TYPENAMESPACE controls the targetNamespace attribute of the <schema> element.

• If TYPENAMESPACE is not specified, the targetNamespace attribute is specified by the NAMESPACE parameter.

• RESPONSETYPENAMESPACE controls the targetNamespace attribute of the type used by the response.

• USECLASSNAMESPACES controls whether <types> also uses the namespaces specified in the supporting type
classes.

The NAMESPACE parameter of each XML-enabled class also affects the <types> element of the WSDL.

Consider the following variation of the web service shown earlier:

Class WSDLSamples.Namespaces Extends %SOAP.WebService
{

Parameter SERVICENAME = "MyServiceName";

Parameter NAMESPACE = "http://www.mynamespace.org";

Parameter RESPONSENAMESPACE = "http://www.myresponsenamespace.org";

Parameter TYPENAMESPACE = "http://www.mytypes.org";

128 Creating Web Services and Web Clients

Details of the Generated WSDLs

Parameter RESPONSETYPENAMESPACE = "http://www.myresponsetypes.org";

Parameter USECLASSNAMESPACES = 1;

/// adds two complex numbers
Method Add(a As ComplexNumberNS, b As ComplexNumberNS) As ComplexNumberNS [WebMethod]
{
 Set sum = ##class(ComplexNumberNS).%New()
 Set sum.Real = a.Real + b.Real
 Set sum.Imaginary = a.Imaginary + b.Imaginary

 Quit sum
}

}

The class WSDLSamples.ComplexNumberNS is as follows:

/// A complex number
Class WSDLSamples.ComplexNumberNS Extends (%RegisteredObject, %XML.Adaptor)
{

Parameter NAMESPACE = "http://www.complexnumbers.org";

Property Real As %Double;

Property Imaginary As %Double;

}

For the WSDL of this web service, the <types> part is as follows:

<types>
 <s:schema elementFormDefault="qualified" targetNamespace="http://www.mytypes.org">
 <s:import namespace="http://www.complexnumbers.org"/>
 <s:element name="Add">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" name="a" type="ns2:ComplexNumberNS"/>
 <s:element minOccurs="0" name="b" type="ns2:ComplexNumberNS"/>
 </s:sequence>
 </s:complexType>
 </s:element>
 </s:schema>
 <s:schema elementFormDefault="qualified" targetNamespace="http://www.complexnumbers.org">
 <s:complexType name="ComplexNumberNS">
 <s:sequence>
 <s:element minOccurs="0" name="Real" type="s:double"/>
 <s:element minOccurs="0" name="Imaginary" type="s:double"/>
 </s:sequence>
 </s:complexType>
 </s:schema>
 <s:schema elementFormDefault="qualified" targetNamespace="http://www.myresponsetypes.org">
 <s:import namespace="http://www.complexnumbers.org"/>
 <s:element name="AddResponse">
 <s:complexType>
 <s:sequence>
 <s:element name="AddResult" type="ns2:ComplexNumberNS"/>
 </s:sequence>
 </s:complexType>
 </s:element>
 </s:schema>
</types>

B.8.3 Other Possible Variations

The following additional parameters also affect the <types> element:

• If the INCLUDEDOCUMENTATION parameter is 1 in the web service. the <types> section includes <annotation>
elements that contain any comments that you include in the type classes. (These comments must be preceded by three
slashes.)

By default, INCLUDEDOCUMENTATION is 0.

For example, suppose that we edit the sample web service to add the following:

Creating Web Services and Web Clients 129

<types>

Parameter INCLUDEDOCUMENTATION = 1;

In this case, the <types> section includes the following:

...
<s:complexType name="ComplexNumber">
 <s:annotation>
 <s:documentation>A complex number</s:documentation>
 </s:annotation>
 <s:sequence>
 <s:element minOccurs="0" name="Real" type="s:double">
 <s:annotation>
 <s:documentation>real part of the complex number</s:documentation>
 </s:annotation>
 </s:element>
 <s:element minOccurs="0" name="Imaginary" type="s:double">
 <s:annotation>
 <s:documentation>imaginary part of the complex number</s:documentation>
 </s:annotation>
 </s:element>
 </s:sequence>
</s:complexType>
...

• If the SOAPBINARY parameter is 1 for the web service, that affects the <types> element as described in “WSDL
Differences for InterSystems IRIS Binary SOAP Format,” later in this appendix.

• If the SOAPSESSION parameter is 1 for the web service, that affects this element as described in “WSDL Differences
for InterSystems IRIS SOAP Sessions,” later in this appendix.

• If specified, the SoapTypeNameSpace keyword affects this part of the WSDL. See the Class Definition Reference.

• If the REQUIRED parameter is 1 for an argument, the WSDL includes minOccurs=1 for that argument. For information
on this parameter, see “Basic Requirements.”

• If the SoapRequestMessage keyword is specified for a method, the name of the corresponding element is the value of
the SoapRequestMessage keyword, rather than the name of the method.

• For information on the effect of the ALLOWREDUNDANTARRAYNAME parameter, see “Projection of Collection
Properties to XML Schemas” in the chapter “Controlling the Projection to XML Schemas” in Projecting Objects to
XML.

B.9 WSDL Variations Due to Method Signature Variations
This section shows some WSDL variations caused by variations in the method signature.

B.9.1 Returning Values by Reference or as Output Parameters

To return values by reference or as output parameters, use the ByRef or Output keyword, as appropriate, within the signature
of the web method. This change affects the schema and the SOAP response message.

For example, consider the following web method signatures, from methods in two different web services:

//from web service 1
Method HelloWorld() As %String [WebMethod]

//from web service 2
Method HelloWorld(ByRef myarg As %String) [WebMethod]

For the first web service, the <types> section is as follows:

130 Creating Web Services and Web Clients

Details of the Generated WSDLs

<types>
 <s:schema elementFormDefault="qualified" targetNamespace="http://www.helloworld.org">
 <s:element name="HelloWorld1">
 <s:complexType>
 <s:sequence/>
 </s:complexType>
 </s:element>
 <s:element name="HelloWorld1Response">
 <s:complexType>
 <s:sequence>
 <s:element name="HelloWorld1Result" type="s:string"/>
 </s:sequence>
 </s:complexType>
 </s:element>
 </s:schema>
</types>

For the second web service, which returns the value by reference, the <types> section has a variation for the type that
corresponds to the response message:

<types>
...
 <s:element name="HelloWorld2Response">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" name="myarg" type="s:string"/>
...

This indicates that the element contained in the <HelloWorld2Response> message is <myarg>, which corresponds to
the name of the argument in the message signature. In contrast, this element is usually <methodnameResult>.

If you use the ByRef keyword instead of Output, that has the same effect on the WSDL.

For information on these keywords, see the chapter “Methods” in Defining and Using Classes.

B.10 Other WSDL Variations for InterSystems IRIS Web
Services
This section discusses other possible variations for WSDLs for InterSystems IRIS web services.

B.10.1 WSDL Differences for InterSystems IRIS SOAP Sessions

If the SOAPSESSION parameter is 1 for the web service, that affects the WSDL as follows:

• Within the <binding> element, the <input> and <output> elements of each <operation> include the following
additional subelement:

<soap:header message="s0:IRISSessionHeader" part="CSPCHD" use="literal"/>

For example:

<operation name="Add">
 <soap:operation soapAction="http://www.mynamespace.org/WSDLSamples.BasicWS.Add" style="document"/>

 <input>
 <soap:body use="literal"/>
 <soap:header message="s0:IRISSessionHeader" part="CSPCHD" use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 <soap:header message="s0:IRISSessionHeader" part="CSPCHD" use="literal"/>
 </output>
</operation>

• The WSDL includes the following additional <message> element:

Creating Web Services and Web Clients 131

Other WSDL Variations for InterSystems IRIS Web Services

<message name="IRISSessionHeader">
 <part name="CSPCHD" element="chead:CSPCHD"/>
</message>

• The <types> element includes the following additional item:

<s:schema elementFormDefault="qualified" targetNamespace="http://www.intersystems.com/SOAPheaders">

 <s:element name="CSPCHD">
 <s:complexType>
 <s:sequence>
 <s:element name="id" type="s:string"/>
 </s:sequence>
 </s:complexType>
 </s:element>
</s:schema>

• The namespace declarations include the following additional item:

xmlns:chead="http://www.intersystems.com/SOAPheaders"

B.10.2 WSDL Differences for InterSystems IRIS Binary SOAP Format

For an InterSystems IRIS web service that has the SOAPBINARY parameter specified as 1, the WSDL is enhanced as follows:

• The <binding> element includes an extension child element that indicates SOAP binary support:

<isc:binding charset="isc_charset">

Where isc_charset is the InterSystems IRIS character set (for example: Unicode, Latin1) of the InterSystems IRIS
namespace for the web service.

For example:

<isc:binding charset="Unicode">

• Within the <types> section of the WSDL, each <complexType> element includes an extension attribute as follows:

<complexType isc:classname="service_name:class_name" ...>

Where service_name is the web service name and class_name is the InterSystems IRIS class name that corresponds
to this complex type. For example:

<s:complexType isc:classname="AddComplex:GSOAP.ComplexNumber" name="ComplexNumber">
 <s:sequence>
 <s:element minOccurs="0" name="Real" type="s:double"/>
 <s:element minOccurs="0" name="Imaginary" type="s:double"/>
 </s:sequence>
</s:complexType>

• Also within the <types> section, the <element> and <simpleContent> elements include an extension attribute
of the following form (as needed):

<element isc:property="property_name">
<simpleContent isc:property="property_name">

Where property_name is the name of the InterSystems IRIS property that maps to that element. (Note that the WSDL
includes a <simpleContent> element for a property with XMLPROJECTION equal to "content".)

For example:

<s:element minOccurs="0" name="RealType" isc:property="Real" type="s:double"/>

This attribute is set only when the property uses the XMLNAME property parameter, which enables the XML name to
be different from the property name. The preceding example is taken from a WSDL for a web service that uses a class
that contains the following property:

132 Creating Web Services and Web Clients

Details of the Generated WSDLs

Property Real As %Double (XMLNAME = "RealType");

The isc:property attribute allows the property names to be the same in the generated client classes as in the service
classes. Current exceptions are any choice or substitutionGroup usage or wrapped elements where the type class
has an XMLNAME parameter.

• The namespace declarations include the following additional item:

xmlns:isc="http://www.intersystems.com/soap/"

These WSDL extensions are valid according to the XML Schema, WSDL, and WS-I Basic Profile specifications and are
expected to be ignored by all conforming web client toolkits.

Note: If an InterSystems IRIS web service or web client uses the InterSystems IRIS binary SOAP format, you cannot
use WS-Security or WS-Policy features with this web service or client. See Securing Web Services.

B.10.3 WSDL Differences for One-Way Web Methods

If the return type of a method is defined as %SOAP.OneWay, the WSDL is different from the default in the following ways:

• Within the <binding> element, the <operation> element for that method does not include an <output> element.

• Within the <portType> element, the <operation> element for that method does not include an <output> element.

• The WSDL does not include a <message> element for the response message.

Creating Web Services and Web Clients 133

Other WSDL Variations for InterSystems IRIS Web Services

C
Details of the Generated Classes

For reference, this appendix provides information on the classes generated by the SOAP Wizard. It discusses the following:

• Overview of the generated classes

• Keywords that control encoding and binding style

• Parameters and keywords that control namespace assignment

• How array properties are handled

• Additional notes on web methods in the generated client

C.1 Overview of the Generated Classes
The SOAP Wizard generates classes as follows:

• It generates the web client class, the web service class, or both, according to your selections in the SOAP Wizard. If
created, the web client class extends %SOAP.WebClient. If created, the web service class extends %SOAP.WebService.

In each of these classes, there is one web method for each web method defined in the WSDL. For a web client, the
method looks like the following example:

Method DemoMethod() As %String [Final, SoapBindingStyle = document,
SoapBodyUse = literal, WebMethod]
{
 Quit ..WebMethod("DemoMethod").Invoke($this,"http://tempuri.org/Demo.MyService.DemoMethod")
}

For a web service, the method looks like the following:

Method DemoMethod() As %String [Final,
SoapAction = "http://tempuri.org/Demo.MyService.DemoMethod",
SoapBindingStyle = document, SoapBodyUse = literal, WebMethod]
{
 // Web Service Method Implementation Goes Here.
}

• For each complex type that is used as input or output to a web method, the SOAP wizard generates an XML-enabled
class.

• For each complex type that is a component of the preceding types, the SOAP wizard generates an XML-enabled class.

The SOAP wizard does this recursively so that the properties of the least complex type are simple datatype properties,
which correspond directly to XSD types.

Creating Web Services and Web Clients 135

In these classes, the SOAP Wizard specifies the class and method keywords and parameters as needed to specify encoding
and binding style, namespace assignment, and other items.

C.2 Keywords That Control Encoding and Binding Style
In the generated web client and web service classes, the SOAP Wizard specifies the following keywords, which control
the encoding and message style needed to work with the given WSDL:

• SoapBodyUse class keyword

• SoapBodyUse method keyword

• SoapBindingStyle class keyword

• SoapBindingStyle method keyword

You should not modify these keywords, because the web client or web service would no longer obey the WSDL. For details
on them, see the Class Definition Reference.

C.3 Parameters and Keywords That Control Namespace
Assignment
In the generated classes, the SOAP wizard uses parameters and keywords to control namespace assignments. The following
subsections discuss namespaces for messages and namespaces for types.

You should not modify these values, because the web client or web service would no longer obey the WSDL. For details
on SoapNameSpace and SoapTypeNameSpace, see the Class Definition Reference.

C.3.1 Namespaces for the Messages

The SOAP Wizard specifies the following values to control the namespaces used for the SOAP messages:

Table III–1: Namespaces for SOAP Messages Sent by Web Client or Service

Value Given by SOAP WizardItem

Namespace of the request messages, if all request messages use the
same namespace.

NAMESPACE (class parameter)

Namespace of a given request message, if request messages use different
namespaces.

SoapNameSpace (method
keyword)

Namespace of the response messages. If this is not specified, the response
messages are in the namespace given by the NAMESPACE parameter.
Note that the SoapNameSpace keyword has no effect on the namespaces
of the response messages.

RESPONSENAMESPACE
(class parameter)

C.3.2 Namespaces for the Types

The SOAP Wizard automatically assigns the message types to namespaces as follows:

136 Creating Web Services and Web Clients

Details of the Generated Classes

Table III–2: Namespaces for Types Used By Web Clients and Web Services

Value Given by SOAP WizardItem

The SOAP Wizard sets this parameter if all methods refer to types in
the same namespace.

TYPENAMESPACE (class
parameter)

The SOAP Wizard sets this parameter if the WSDL uses
document-style binding and the response messages use types in a
different namespace than the request messages. This parameter
applies to all methods in the class. Note that all response types are
assumed to be in the same namespace as each other.

RESPONSETYPENAMESPACE
(class parameter)

Value of the targetNamespace attribute of the <s:schema> element.
The SOAP Wizard sets this keyword per method if methods use types
from different namespaces.

This keyword does not override the RESPONSETYPENAMESPACE
parameter.

SoapTypeNameSpace (method
keyword)

C.4 Creation of Array Properties
By default, the SOAP Wizard creates array-type properties in certain scenarios. You can use the Create No Array Properties

option to create properties with a different structure if needed.

Specifically, consider a WSDL that includes the following types:

<s:complexType name="Obj">
 <s:sequence>
 <s:element minOccurs="0" name="MyProp" type="test:Array"/>
 </s:sequence>
</s:complexType>
<s:complexType name="Array">
 <s:sequence>
 <s:element maxOccurs="unbounded" minOccurs="0" name="Item" nillable="true" type="test:Item"/>
 </s:sequence>
</s:complexType>
<s:complexType name="Item">
 <s:simpleContent>
 <s:extension base="s:string">
<s:attribute name="Key" type="s:string" use="required"/>
 </s:extension>
 </s:simpleContent>
</s:complexType>

By default, the SOAP Wizard generates the following class:

Class testws.Obj Extends (%RegisteredObject, %XML.Adaptor)
{

Parameter ELEMENTQUALIFIED = 1;

Parameter NAMESPACE = "http://testws.org";

Parameter XMLNAME = "Obj";

Parameter XMLSEQUENCE = 1;

Property MyProp As array Of %String(MAXLEN = "", XMLITEMNAME = "Item",
XMLKEYNAME = "Key", XMLNAME = "MyProp", XMLPROJECTION = "COLLECTION");

}

If you select Create No Array Properties when you use the SOAP Wizard, the property MyProp in generated Obj class is
defined as follows instead:

Creating Web Services and Web Clients 137

Creation of Array Properties

Property MyProp As list Of testws.Item(XMLITEMNAME = "Item", XMLNAME = "MyProp", XMLPROJECTION =
"COLLECTION");

This property refers to the following class, which the SOAP Wizard also generates:

Class testws.Item Extends (%SerialObject, %XML.Adaptor)
{

Parameter ELEMENTQUALIFIED = 1;

Parameter NAMESPACE = "http://testws.org";

Parameter XMLNAME = "Item";

Parameter XMLSEQUENCE = 1;

Property content As %String(MAXLEN = "", XMLNAME = "content", XMLPROJECTION = "CONTENT");

Property Key As %String(MAXLEN = "", XMLNAME = "Key", XMLPROJECTION = "ATTRIBUTE")
[Required, SqlFieldName = _Key];

}

C.5 Additional Notes on Web Methods in the Generated
Class
This section contains additional notes on the web methods in the generated web client classes.

• InterSystems IRIS ensures that each method name is shorter than the limit on method names and is unique. (For
information on the length of method names, see “General System Limits” in the Orientation Guide for Server-Side
Programming,) This means that if the method names in the WSDL are longer than this limit, the names of the generated
web methods are not the same as in the WSDL.

The algorithm used is not documented and is subject to change without notice.

• If the soapAction attribute equals "" for a given method in the WSDL (which is valid), it is necessary to make one
of the following changes to the generated client class so that this method will work:

– Set the SOAPACTIONQUOTED parameter equal to 1.

– Edit the web method in the generated client class. Originally it includes the following contents:

 Quit ..WebMethod("HelloWorld").Invoke($this,"")

Edit this to the following:

 Quit ..WebMethod("HelloWorld").Invoke($this,"""")

Alternatively, edit the WSDL before generating the web client. If you do so, edit the soapAction attribute to equal
"""" instead of ""

138 Creating Web Services and Web Clients

Details of the Generated Classes

	Table of Contents
	About This Book
	1 Introduction to Web Services and Web Clients in InterSystems IRIS
	1.1 Introduction to InterSystems IRIS Web Services
	1.1.1 Creating InterSystems IRIS Web Services
	1.1.2 InterSystems IRIS Web Service as Part of a Web Application
	1.1.3 The WSDL
	1.1.4 Web Service Architecture

	1.2 Introduction to InterSystems IRIS Web Clients
	1.2.1 Creating InterSystems IRIS Web Clients
	1.2.2 Web Client Architecture

	1.3 Additional Features
	1.4 Standards Supported in InterSystems IRIS
	1.4.1 Basic Standards
	1.4.2 WSDL Support in InterSystems IRIS

	1.5 Key Points about the SAX Parser

	2 Creating SOAP Web Services
	2.1 Overview of InterSystems IRIS Web Services
	2.2 Basic Requirements
	2.2.1 Input and Output Objects That Do Not Need %XML.Adaptor
	2.2.2 Using Result Sets as Input or Output

	2.3 Simple Example
	2.4 Creating a Web Service
	2.4.1 Using the Web Service Wizard
	2.4.2 Using the SOAP Wizard with an Existing WSDL
	2.4.3 Subclassing an Existing InterSystems IRIS Web Service

	2.5 Specifying Parameters of the Web Service
	2.6 About the Catalog and Test Pages
	2.6.1 Access to the Catalog and Test Pages
	2.6.2 Displaying the Catalog and Test Pages
	2.6.3 Notes on These Pages

	2.7 Viewing the WSDL
	2.7.1 Viewing the WSDL
	2.7.2 Generating the WSDL
	2.7.3 Suppressing Internal Web Methods from the WSDL

	3 SOAP Message Variations
	3.1 Overview
	3.1.1 Binding Style
	3.1.2 Encoding Format

	3.2 How Message Variation Is Determined
	3.3 Examples of Message Variations
	3.3.1 Wrapped Document/Literal
	3.3.2 Message/Unwrapped Document/Literal
	3.3.3 RPC/Encoded
	3.3.4 RPC/Literal

	4 Creating Web Clients
	4.1 Overview of the SOAP Wizard
	4.2 Using the SOAP Wizard
	4.3 Generating the Client Classes Programmatically
	4.4 Modifying the Generated Client Classes
	4.4.1 Adjusting the Generated Classes for Extremely Long Strings
	4.4.2 Other Adjustments

	4.5 Using the Generated Web Client Classes
	4.5.1 Example 1: Using the Client That Uses Wrapped Messages
	4.5.2 Example 2: Using the Client That Uses Unwrapped Messages

	4.6 Adjusting Properties of a Web Client Instance
	4.6.1 Changing the Endpoint for the Web Client
	4.6.2 Configuring the Client to Use SSL
	4.6.3 Specifying the SOAP Version
	4.6.4 Other Adjustments

	4.7 Using the HTTP Response

	5 SOAP Fault Handling
	5.1 Default Fault Handling in a Web Service
	5.2 Returning Custom SOAP Faults in an InterSystems IRIS Web Service
	5.2.1 Methods to Create Faults
	5.2.2 Macros for SOAP Fault Codes

	5.3 Creating a Fault Object Manually
	5.3.1 SOAP 1.1 Faults
	5.3.2 SOAP 1.2 Faults

	5.4 Adding WS-Addressing Header Elements When Faults Occur
	5.5 Adding Other Header Elements When Faults Occur
	5.6 Handling SOAP Faults and Other Errors in an InterSystems IRIS Web Client
	5.6.1 Example 1: Try-Catch
	5.6.2 Example 2: $ZTRAP
	5.6.3 SSL Handshake Errors

	6 Using MTOM for Attachments
	6.1 Attachments and SOAP Message Packaging
	6.1.1 SOAP Messages with All-Inline Parts (Default)
	6.1.2 SOAP Messages with MTOM Packaging
	6.1.3 SOAP with Attachments

	6.2 Default Behavior of InterSystems IRIS Web Services and Web Clients
	6.3 Forcing Responses as MTOM Packages
	6.3.1 Effect on the WSDL

	6.4 Forcing Requests as MTOM Packages
	6.4.1 Effect on the WSDL

	6.5 Controlling the MTOM Packaging
	6.6 Example
	6.6.1 Web Service
	6.6.2 Web Client

	7 Using SOAP with Attachments
	7.1 Sending Attachments
	7.2 Using Attachments
	7.3 Example
	7.3.1 Web Service
	7.3.2 Web Client

	8 Adding and Using Custom Header Elements
	8.1 Introduction to SOAP Header Elements in InterSystems IRIS
	8.1.1 How InterSystems IRIS Represents SOAP Headers
	8.1.2 Supported Header Elements
	8.1.3 Header Elements and the WSDL
	8.1.4 Required Header Elements

	8.2 Defining Custom Header Elements
	8.3 Adding a Custom Header Element to a SOAP Message
	8.4 Specifying Supported Header Elements
	8.5 Specifying the Supported Header Elements in an XData Block
	8.5.1 Details
	8.5.2 Inheritance of Custom Headers
	8.5.3 Examples

	8.6 Specifying the Supported Header Elements in the SOAPHEADERS Parameter
	8.6.1 Inheritance of Custom Headers

	8.7 Using Header Elements

	9 Adding and Using WS-Addressing Header Elements
	9.1 Overview
	9.2 Effect on the WSDL
	9.3 Default WS-Addressing Header Elements
	9.3.1 Default WS-Addressing Header Elements in Request Messages
	9.3.2 Default WS-Addressing Header Elements in Response Messages

	9.4 Adding WS-Addressing Header Elements Manually
	9.5 Handling WS-Addressing Header Elements

	10 SOAP Session Management
	10.1 Overview of SOAP Sessions
	10.2 Enabling Sessions
	10.3 Using Session Information

	11 Using the InterSystems IRIS Binary SOAP Format
	11.1 Introduction
	11.2 Extending the WSDL for an InterSystems IRIS Web Service
	11.3 Redefining an InterSystems IRIS Web Client to Use Binary SOAP
	11.4 Specifying the Character Set
	11.5 Details on the InterSystems IRIS Binary SOAP Format

	12 Using Datasets in SOAP Messages
	12.1 About Datasets
	12.2 Defining a Typed Dataset
	12.3 Controlling the Dataset Format
	12.4 Viewing the Dataset and Schema as XML
	12.5 Effect on the WSDL

	13 Fine-Tuning a Web Service in InterSystems IRIS
	13.1 Disabling Access to the Online WSDL
	13.2 Requiring a Username and Password
	13.3 Controlling the XML Types
	13.4 Controlling the Namespaces of the Schema and Types
	13.4.1 Controlling the Namespace of the Schema
	13.4.2 Controlling the Namespace of the Types

	13.5 Including Documentation for the Types
	13.6 Adding Namespace Declarations to the SOAP Envelope
	13.7 Checking for Required Elements and Attributes
	13.8 Controlling the Form of Null String Arguments
	13.9 Controlling the Message Name of the SOAP Response
	13.10 Overriding the HTTP SOAP Action and Request Message Name
	13.11 Specifying Whether Elements Are Qualified
	13.12 Controlling Whether Message Parts Use Elements or Types
	13.13 Controlling Use of the xsi:type Attribute
	13.14 Controlling Use of Inline References in Encoded Format
	13.15 Specifying the SOAP Envelope Prefix
	13.16 Restricting the SOAP Versions Handled by a Web Service
	13.17 Sending Responses Compressed by gzip
	13.18 Defining a One-Way Web Method
	13.18.1 One-Way Web Methods and SOAP Headers
	13.18.2 Dynamically Making a Web Method One Way

	13.19 Adding Line Breaks to Binary Data
	13.20 Adding a Byte-Order Mark to the SOAP Messages
	13.21 Customizing the Timeout Period
	13.22 Using Process-Private Globals to Support Very Large Messages
	13.23 Customizing Callbacks of a Web Service
	13.24 Specifying Custom Transport for a Web Service
	13.24.1 Background
	13.24.2 Defining Custom Transport for a Web Service

	13.25 Defining Custom Processing in a Web Service
	13.25.1 Overview
	13.25.2 Implementing ProcessBodyNode()
	13.25.3 Implementing ProcessBody()

	14 Fine-Tuning a Web Client in InterSystems IRIS
	14.1 Disabling Keep-Alive for a Web Client
	14.2 Controlling the Form of Null String Arguments
	14.3 Controlling the Client Timeout
	14.4 Using a Proxy Server
	14.5 Setting HTTP Headers
	14.6 Specifying the HTTP Version to Use
	14.7 Disabling SSL Server Name Checking
	14.8 Controlling Use of the xsi:type Attribute
	14.9 Controlling Use of Inline References for Encoded Format
	14.10 Specifying the Envelope Prefix
	14.11 Adding Namespace Declarations to the SOAP Envelope
	14.12 Sending Responses Compressed by gzip
	14.13 Quoting the SOAP Action (SOAP 1.1 Only)
	14.14 Treating HTTP Status 202 Like Status 200
	14.15 Defining a One-Way Web Method
	14.16 Adding Line Breaks to Binary Data
	14.17 Adding a Byte-Order Mark to the SOAP Messages
	14.18 Using Process-Private Globals When Parsing
	14.19 Creating Custom SOAP Messages
	14.20 Specifying Custom HTTP Requests
	14.21 Customizing Callbacks of a Web Client
	14.22 Specifying Custom Transport from a Web Client
	14.22.1 Background
	14.22.2 Defining Custom Transport for an InterSystems IRIS Web Client

	14.23 Specifying Flags for the SAX Parser
	14.24 Using the WS-Security Login Feature
	14.25 Using HTTP Authentication

	15 Troubleshooting SOAP Problems in InterSystems IRIS
	15.1 Information Needed for Troubleshooting
	15.1.1 InterSystems IRIS SOAP Log
	15.1.2 HTTP Trace in the Web Gateway
	15.1.3 Third-Party Tracing Tools

	15.2 Problems Consuming WSDLs
	15.3 Problems Sending Messages

	Appendix A: Summary of Web Service URLs
	A.1 Web Service URLs
	A.2 Using a Password-Protected WSDL URL

	Appendix B: Details of the Generated WSDLs
	B.1 Overview of WSDL Documents
	B.2 Sample Web Service
	B.3 Namespace Declarations
	B.4 <service>
	B.5 <binding>
	B.6 <portType>
	B.7 <message>
	B.8 <types>
	B.8.1 Name Attributes
	B.8.2 Namespaces in <types>
	B.8.3 Other Possible Variations

	B.9 WSDL Variations Due to Method Signature Variations
	B.9.1 Returning Values by Reference or as Output Parameters

	B.10 Other WSDL Variations for InterSystems IRIS Web Services
	B.10.1 WSDL Differences for InterSystems IRIS SOAP Sessions
	B.10.2 WSDL Differences for InterSystems IRIS Binary SOAP Format
	B.10.3 WSDL Differences for One-Way Web Methods

	Appendix C: Details of the Generated Classes
	C.1 Overview of the Generated Classes
	C.2 Keywords That Control Encoding and Binding Style
	C.3 Parameters and Keywords That Control Namespace Assignment
	C.3.1 Namespaces for the Messages
	C.3.2 Namespaces for the Types

	C.4 Creation of Array Properties
	C.5 Additional Notes on Web Methods in the Generated Class

	Index

