
InterSystems SQL
Optimization Guide

Version 2019.4
2020-01-28

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

InterSystems SQL Optimization Guide
InterSystems IRIS Data Platform Version 2019.4 2020-01-28
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

1 Introduction to SQL Performance Optimization .. 3
1.1 Table Definition Optimization .. 3
1.2 Table Data Optimization ... 3
1.3 Query Optimization .. 4
1.4 Configuration Optimization ... 4
1.5 Sharding ... 4
1.6 Fast Commands .. 5

2 Defining and Building Indices ... 7
2.1 Overview .. 8

2.1.1 Index Attributes .. 8
2.1.2 Storage Type and Indices ... 9
2.1.3 Index Global Names ... 9
2.1.4 Master Map .. 10

2.2 Automatically-Defined Indices .. 10
2.2.1 Bitmap Extent Index .. 11

2.3 Defining Indices ... 12
2.3.1 Defining Indices Using a Class Definition .. 12
2.3.2 Defining Indices Using DDL ... 19

2.4 Bitmap Indices .. 20
2.4.1 Bitmap Index Operation ... 21
2.4.2 Defining an IdKey Bitmap Index Using a Class Definition ... 23
2.4.3 Defining a %BID Bitmap Index Using a Class Definition .. 23
2.4.4 Defining Bitmap Indices Using DDL .. 23
2.4.5 Generating a Bitmap Extent Index ... 24
2.4.6 Choosing an Index Type ... 24
2.4.7 Restrictions on Bitmap Indices .. 25
2.4.8 Maintaining Bitmap Indices ... 25
2.4.9 SQL Manipulation of Bitmap Chunks ... 25

2.5 Bitslice Indices ... 27
2.6 Building Indices ... 28

2.6.1 Building Indices on an Inactive System ... 29
2.6.2 Building Indices on an Active System ... 30
2.6.3 Building Indices on a READONLY Active System ... 31
2.6.4 Building Indices on a READ and WRITE Active System ... 31

2.7 Validating Indices ... 32
2.7.1 Validating Indices by Name ... 33

2.8 Listing Indices .. 34
2.9 Open, Exists, and Delete Methods ... 34

2.9.1 Opening an Instance by Index Key .. 34
2.9.2 Checking If an Instance Exists ... 35
2.9.3 Deleting an Instance ... 35

3 Optimizing Tables ... 37
3.1 ExtentSize, Selectivity, and BlockCount .. 37

3.1.1 ExtentSize .. 38
3.1.2 Selectivity ... 38

InterSystems SQL Optimization Guide iii

3.1.3 BlockCount .. 39
3.2 Tune Table .. 40

3.2.1 When to Run Tune Table .. 40
3.2.2 Running Tune Table ... 41
3.2.3 Running Tune Table on a Sharded Table .. 42

3.3 Tune Table Calculated Values ... 43
3.3.1 Extent Size and the Row Count ... 43
3.3.2 Selectivity and Outlier Selectivity .. 44
3.3.3 CALCSELECTIVITY Parameter and Not Calculating Selectivity 45
3.3.4 Outlier Optimization .. 45
3.3.5 The Notes Column ... 46
3.3.6 Average Field Size .. 46
3.3.7 Map BlockCount Tab ... 47

3.4 Exporting and Re-importing Tune Table Statistics .. 47

4 Cached Queries ... 49
4.1 Cached Queries Improve Performance ... 50
4.2 Creating a Cached Query ... 50

4.2.1 Cached Query Names ... 51
4.2.2 Separate Cached Queries ... 52

4.3 Literal Substitution ... 52
4.3.1 DynamicSQLTypeList Comment Option ... 53
4.3.2 Literal Substitution and Performance .. 54
4.3.3 Suppressing Literal Substitution .. 54

4.4 Cosharding Comment Option ... 54
4.5 Runtime Plan Choice .. 54

4.5.1 Activating RTPC .. 55
4.5.2 Application of RTPC .. 56
4.5.3 Overriding RTPC ... 56

4.6 Cached Query Result Set .. 56
4.7 Listing Cached Queries .. 56

4.7.1 Counting Cached Queries .. 57
4.7.2 Displaying Cached Queries .. 57
4.7.3 Listing Cached Queries Using ^rINDEXSQL ... 57
4.7.4 Exporting Cached Queries to a File ... 58

4.8 Executing Cached Queries ... 59
4.9 Cached Query Lock .. 59
4.10 Purging Cached Queries ... 60

4.10.1 Remote Systems ... 60
4.11 SQL Commands That Are Not Cached .. 61

5 Optimizing Query Performance .. 63
5.1 Management Portal SQL Performance Tools ... 64

5.1.1 The %SYS.PTools Package .. 64
5.2 SQL Runtime Statistics .. 65

5.2.1 Runtime Statistics Interfaces .. 65
5.3 Using the SQL Runtime Statistics Tool .. 65

5.3.1 Settings ... 66
5.3.2 Query Test .. 66
5.3.3 View Stats ... 66
5.3.4 Runtime Statistics and Show Plan .. 67

5.4 Using Performance Statistics Methods .. 67

iv InterSystems SQL Optimization Guide

5.4.1 Activate the Gathering of Statistics .. 67
5.4.2 Get Statistics Settings ... 68
5.4.3 Export Query Performance Statistics ... 69
5.4.4 Delete Query Performance Statistics ... 70
5.4.5 Performance Statistics Examples ... 70

5.5 Using Indices .. 71
5.5.1 What to Index ... 71
5.5.2 Index Configuration Options .. 72
5.5.3 Index Usage Analysis ... 72
5.5.4 Index Analyzer ... 72
5.5.5 indexUsage() Method ... 74
5.5.6 Index Optimization Options ... 74

5.6 Show Plan ... 74
5.6.1 Displaying an Execution Plan .. 75
5.6.2 Execution Plan: Statement Text and Query Plan .. 75

5.7 Alternate Show Plans .. 76
5.7.1 Stats .. 77

5.8 Writing Query Optimization Plans to a File ... 78
5.9 Comment Options .. 79

5.9.1 Syntax ... 79
5.9.2 Display ... 80

5.10 Parallel Query Processing .. 80
5.10.1 System-Wide Parallel Query Processing .. 80
5.10.2 Parallel Query Processing for a Specific Query ... 81
5.10.3 Parallel Query Processing Ignored ... 81
5.10.4 Shared Memory Considerations ... 82
5.10.5 Cached Query Considerations .. 83
5.10.6 SQL Statements and Plan State .. 83

5.11 Generate Report .. 83

6 Interpreting an SQL Query Plan .. 85
6.1 Tables Stored In Maps .. 85
6.2 Developing the Plan ... 85
6.3 Reading the Plan ... 86

6.3.1 Accessing Maps .. 86
6.3.2 Conditions and Expressions ... 86
6.3.3 Loops .. 86
6.3.4 Temporary Files .. 86
6.3.5 Modules .. 87
6.3.6 Queries Sent for Processing ... 87
6.3.7 Sub-Queries, JOINs and UNIONs ... 87

6.4 Plan Analysis .. 87
6.4.1 Adding an Index ... 87
6.4.2 Adding Fields to Index Data .. 87
6.4.3 Adding a Join Index ... 88

7 SQL Statements .. 89
7.1 Operations that Create SQL Statements ... 89

7.1.1 Other SQL Statement Operations .. 90
7.2 Listing SQL Statements ... 90

7.2.1 Listing Columns ... 91
7.2.2 Plan State .. 91

InterSystems SQL Optimization Guide v

7.2.3 SQL Statement Text ... 92
7.3 Data Management (DML) SQL Statements ... 92

7.3.1 Modifying a Routine Containing Embedded SQL ... 93
7.3.2 SELECT Commands .. 93

7.4 SQL Statement Details ... 94
7.4.1 Statement Details Section .. 94
7.4.2 Compile Settings Section ... 96
7.4.3 Routines and Relations Sections .. 96

7.5 Data Definition (DDL) SQL Statements .. 97
7.6 Delete Table and SQL Statements .. 98
7.7 Querying the SQL Statements .. 98
7.8 Exporting and Importing SQL Statements ... 99

7.8.1 Exporting SQL Statements ... 99
7.8.2 Importing SQL Statements ... 100
7.8.3 Viewing and Purging Background Tasks .. 100

8 Frozen Plans .. 101
8.1 How to Use Frozen Plans ... 101
8.2 Software Version Upgrade Automatically Freezes Plans ... 101
8.3 Frozen Plans Interface .. 102

8.3.1 Privileges .. 103
8.3.2 Frozen Plan Different ... 103
8.3.3 Frozen Plan in Error ... 105

8.4 %NOFPLAN Keyword .. 105
8.5 Exporting and Importing Frozen Plans .. 106

vi InterSystems SQL Optimization Guide

List of Figures

Figure 2–1: Person Table ... 21
Figure 2–2: State Bitmap Index ... 21
Figure 2–3: Age Bitmap Index .. 22
Figure 2–4: Using Multiple Indices ... 22

InterSystems SQL Optimization Guide vii

About This Book

This book describes how to optimize performance of InterSystems SQL. InterSystems SQL provides standard relational
access to data stored within an InterSystems IRIS® data platform database.

The book addresses the following topics:

• “Defining and Building Indices” describes how to define and build indices.

• “Optimizing SQL Tables” describes ways that you can optimize access to the data in your InterSystems SQL tables.

• “Cached Queries” describes how InterSystems SQL retains recent queries in a cache, enabling rapid execution and
sharing of defined queries.

• “Optimizing SQL Queries” describes ways that you can optimize the performance of your InterSystems SQL queries.

• “ Interpreting an SQL Query Plan” gives tips on understanding the results of a “show plan” for an SQL query.

• “SQL Statements” describes how you can view all executed SQL statements; queries provide performance statistics.

• “Frozen Plans” describes how you can view and freeze SQL query plans.

For a detailed outline, see the Table of Contents.

This book supplements the following:

• Using InterSystems SQL provides in-depth material on SQL components and features, how to execute SQL queries,
and support for error and transaction processing.

• The InterSystems SQL Reference provides details on individual SQL commands and functions, as well as information
on the InterSystems SQL data types and reserved words.

• Orientation Guide for Server-Side Programming is an orientation guide for programmers who are new to InterSystems
or who are familiar with only some kinds of InterSystems IRIS® programming.

• In Defining and Using Classes, the chapter “ Introduction to Persistent Objects” summarizes how InterSystems IRIS®
object technology interoperates with SQL. Later chapters provide additional detail.

• Using Java with the InterSystems JDBC Driver describes how to access InterSystems IRIS® tables from external
applications via JDBC.

• Using the InterSystems ODBC Driver describes how to access InterSystems IRIS® tables from external applications
via ODBC.

• Configuration Parameter File Reference describes the SQL and Object Settings.

• InterSystems Error Reference lists the SQLCODE error messages.

InterSystems SQL Optimization Guide 1

1
Introduction to SQL Performance
Optimization

InterSystems SQL supports several features that optimize SQL performance for InterSystems IRIS® data platform.

1.1 Table Definition Optimization
SQL performance is fundamentally dependent upon good data architecture. Dividing your data into multiple tables and
establishing relationships between those tables is essential to efficient SQL. How to define tables and their relations to each
other is beyond the scope of this book.

This book describes the following operations to optimize a table definition. These operations require that the table be
defined, but do not require the table to be populated with data:

• Data Storage Strategy: you can choose to store data using %Storage.Persistent, %Storage.SQL, or custom storage.

• Global Naming Strategy: you can use the USEEXTENTSET parameter to specify shorter and more efficient hashed
global names for data and index lookup operations.

• Indices: you can define an index for a table field or group of fields. You can define several different type of indices:
standard, bitmap, bitslice, and bitmap extent. SQL optimization uses the defined indices, rather than the data values
themselves, to access specific records for a query, update, or delete operation.

1.2 Table Data Optimization
You can perform the following operations to optimize table access based on analysis of typical data in the table:

• Tune Table: examines typical table data and generates ExtentSize (number of rows), Selectivity (percent of rows having
a specific value), and BlockCount metadata. The query optimizer uses this information to determine the most efficient
query execution plan.

• Selectivity and Outlier Selectivity: determines the percent of rows having a specific value for a field, and whether one
value is an outlier value, a value significantly more common than the other values for that field.

InterSystems SQL Optimization Guide 3

1.3 Query Optimization
You can perform the follow operations to optimize the execution of a specific query. These query optimizations use existing
table definition and table data optimizations:

• Runtime Statistics: used to measure the performance of query execution on your system.

• Show Plan displays the execution plan for a query.

• Cached Queries and Literal Substitution: maintains a cache of recent dynamic queries, allowing for re-execution of a
query without repeating the overhead of preparing the query.

• SQL Statements and Frozen Plans allows you to retain a query execution plan, allowing you to make changes to a table
without risking the performance degradation of an existing query.

• Index configuration and usage: used to specify how existing indices should be used.

• Index optimization hints: %ALLINDEX, %IGNOREINDEX

• JOIN optimization hints: %FIRSTTABLE, %FULL, %INORDER, %STARTTABLE

• Subquery optimization hints: %NOFLATTEN, %NOMERGE, %NOREDUCE, %NOSVSO

• Parallel query execution: FROM %PARALLEL

• Union optimization: UNION %PARALLEL, UNION/OR

You can also improve query performance against large database tables by using data sharding.

1.4 Configuration Optimization
By default, the Memory and Startup Settings default to Automatically configured, and the Maximum Per-Process Memory

defaults to 262144 kb. To optimize SQL running on a production system, you should change the default to Manually con-
figured, and increase the Maximum Per-Process Memory setting. For further details, refer to Memory and Startup Settings
in the “Configuring InterSystems IRIS” chapter of the System Administration Guide.

1.5 Sharding
Sharding is the partitioning of data and its associated cache across a number of systems. A sharded cluster partitions large
database tables horizontally — that is, by row — across multiple InterSystems IRIS instances, called shard data servers,
while allowing applications to transparently access these tables through a single instance, called the shard master data
server.

A table must be defined as sharded. A sharded table can only be used in a sharded environment; a non-sharded table can
be used in a sharded or non-sharded environment. Not all tables are good candidates for sharding. Optimal performance in
a sharded environment is generally achieved by using a combination of sharded tables (generally very large tables) and
non-sharded tables. For further details, refer to Evaluating the Benefits of Sharding and Evaluate Existing Tables for
Sharding in the Scalability Guide.

For further details on deploying a sharded cluster, creating sharded tables, and querying using sharding, refer to Horizontally
Scaling InterSystems IRIS for Data Volume with Sharding in the Scalability Guide.

4 InterSystems SQL Optimization Guide

Introduction to SQL Performance Optimization

1.6 Fast Commands
InterSystems SQL supports Fast Select, Fast Insert, and Fast Truncate Table. “Fast” means that standard invocations of
these SQL commands are executed using highly-efficient internal code. These Fast operations “just work”; no special
syntax is used and no optimization options are provided.

Fast Select is supported for SELECT queries over ODBC or JDBC. Fast Insert is supported for INSERT operations over
JDBC. Fast Truncate Table is supported for TRUNCATE TABLE operations that do not involve referential integrity.

Not all tables can support Fast operations, and not all command syntax can be executed using fast execution. InterSystems
SQL performs fast execution in circumstances where it can be; if fast execution cannot be performed, InterSystems SQL
performs standard execution of the specified command.

For further details, refer to Fast Select, Fast Insert, and Fast Truncate Table.

InterSystems SQL Optimization Guide 5

Fast Commands

2
Defining and Building Indices

This chapter describes how to define and build indices on field values within tables. It includes the following topics:

Overview: index types and attributes.

Data Access:

• Data Storage Types and Indices

• Index Global Names

• Master Map, RowID, and IDKEY

• Automatically-Defined Indices for Unique, Primary Key, and Shard Key constraints

• Bitmap Extent Index

Defining Indices:

• Defining Indices

• Bitmap Indices

• Bitslice Indices

Performing Operations on Indices:

• Building Indices

– On an Inactive System

– On a READONLY Active System

– On a READ and WRITE Active System

• Validating Indices

• Listing Indices

• Opening an Instance by Index Key

• Checking If an Instance Exists

• Deleting an Instance

This chapter describes how to define and build indices. It does not describe which fields to index or how to analyze the
effectiveness of defined indices. See “What to Index” for information on which fields to index to optimize performance
of specific queries. See “ Index Usage Analysis” for tools to analyze index usage for all queries in the current namespace.

InterSystems SQL Optimization Guide 7

2.1 Overview
An index is a structure maintained by a persistent class that InterSystems IRIS® data platform can use to optimize queries
and other operations.

You can define an index on the values of a field within a table, or the corresponding property within a class. (You can also
define an index on the combined values of several fields/properties.) The same index is created, regardless of whether you
defined it using SQL field and table syntax, or class property syntax. InterSystems IRIS automatically defines indices when
certain types of fields (properties) are defined. You can define additional indices on any field in which data is stored or for
which data can be reliably derived. InterSystems IRIS provides several types of indices. You can define more than one
index for the same field (property), providing indices of different types for different purposes.

InterSystems IRIS populates and maintains indices (by default) whenever a data insert, update, or delete operation is carried
out against the database, whether using SQL field and table syntax, or class property syntax. You can override this default
(by using the %NOINDEX keyword) to rapidly make changes to the data, and then build or rebuild the corresponding index
as a separate operation. You can define indices before populating a table with data. You can also define indices for a table
that is already populated with data and then populate (build) the index as a separate operation.

InterSystems IRIS makes use of available indices when preparing and executing SQL queries. By default it selects which
indices to use to optimize query performance. You can override this default to prevent the use of one or more indices for
a specific query or for all queries, as appropriate. For information about optimizing index usage, refer to the Using Indices
section of the “Optimizing Query Performance” chapter of this book.

2.1.1 Index Attributes

Every index has a unique name. This name is used for database administrative purposes (reporting, index building, dropping
indices, and so on). Like other SQL entities, an index has both an SQL index name and a corresponding index property
name; these names differ in permitted characters, case-sensitivity, and maximum length. If defined using the SQL CREATE
INDEX command, the system generates a corresponding index property name. If defined using a persistent class definition,
the SqlName keyword allows the user to specify a different SQL index name (SQL map name). The Management Portal
SQL interface Catalog Details displays the SQL index name (SQL Map Name) and the corresponding index property name
(Index Name) for each index.

The index type is defined by two index class keywords, Type and Extent. The types of indices available with InterSystems
IRIS include:

• Standard Indices (Type = index) — A persistent array that associates the indexed value(s) with the RowID(s) of the
row(s) that contains the value(s). Any index not explicitly defined as a bitmap index, bitslice index, or extent index is
a standard index.

• Bitmap Indices (Type = bitmap) — A special kind of index that uses a series of bitstrings to represent the set of RowID
values that correspond to a given indexed value; InterSystems IRIS includes a number of performance optimizations
for bitmap indices.

• Bitslice Indices (Type = bitslice) — A special kind of index that enables very fast evaluation of certain expressions,
such as sums and range conditions. Certain SQL queries automatically use bitslice indices.

• Extent Indices — An index of all of the objects in an extent. For more information, see the Extent index keyword page
in the Class Definition Reference.

The maximum number of indices for a table (class) is 400.

8 InterSystems SQL Optimization Guide

Defining and Building Indices

2.1.2 Storage Type and Indices

The index functionality described here applies to data stored in a persistent class.

InterSystems SQL supports index functionality for data stored using the InterSystems IRIS default storage structure:
%Storage.Persistent (%Storage.Persistent-mapped classes).

InterSystems SQL also supports index functionality for data stored using %Storage.SQL (%Storage.SQL-mapped classes).
You can define an index for a %Storage.SQL-mapped class using a functional index type. The index is defined in the same
manner as an index in a class using default storage, with the following special considerations:

• The class must define the IdKey functional index, if it is not automatically system assigned. See Master Map, below.

• This functional index must be defined as an INDEX.

Refer to %Library.FunctionalIndex for further details.

Note that the %Storage.Persistent and %Storage.SQL class methods should not be called directly. Instead, you should invoke
index functionality using the %Persistent class methods and the operations described in this chapter.

2.1.3 Index Global Names

The subscripted global used to store index data is generated using one of two strategies:

• %CLASSPARAMETER USEEXTENTSET=0 uses a global naming strategy that creates “traditional” global names,
consisting of a user-specified name, an appended letter code, and the name of the index. These global names are
comprehensible to the user, but can be long and are less efficient than hashed global names.

– If USEEXTENTSET=0 and DEFAULTGLOBAL is not specified, the following example describes the generated
global names: the Sample.MyTest persistent class would define a Master Map global named ̂ Sample.MyTestD
a Bitmap Extent index global name ^Sample.MyTestI("$MyTest") (or
^Sample.MyTestI("DDLBEIndex")), and for the defined index NameIDX, it defines a global named
^Sample.MyTestI("NameIDX"). Note that these globals specify the persistent class name (which is case-
sensitive), not the SQL table name. For a full list of the appended letter codes, refer to the DEFAULTGLOBAL
parameter of the %Library.Persistent class.

– If USEEXTENTSET=0 and DEFAULTGLOBAL is specified, the specified global name is substituted for the
persistent class name. This allows you to specify a name that is shorter or clearer than the persistent class name.
For example, if DEFAULTGLOBAL="MyGlobal" the globals would have names such as the following:
^MyGlobalD and ^MyGlobalI("NameIDX").

• %CLASSPARAMETER USEEXTENTSET=1 uses a global naming strategy that creates hashed global names. This
involves hashing the package name, hashing the class name, then appending a dot and a sequential integer suffix that
identifies the index. These global names are less comprehensible to the user, but tend to be shorter and more efficient.

The integer suffix is keyed solely to the index name; the field(s) associated with the index name and the index type
have no effect on integer numbering. For example, ^EW3K.CgZk.1 is the Master Map, ^EW3K.CgZk.2 is the Bitmap
Extent, ^EW3K.CgZk.3 is a defined standard index NameIDX for the LastName field, and ^EW3K.CgZk.4 is the
defined index WorkIdIDX. If you delete NameIDX the global ^EW3K.CgZk.3 is deleted, creating a gap in the integer
sequence. If you define LNameIDX for the LastName field, the global ^EW3K.CgZk.5 is created; however, if you
later create bitmap index NameIDX for the FullName field, the index global will again be ̂ EW3K.CgZk.3. For further
details on this index global naming convention, refer to the USEEXTENTSET parameter of the %Library.Persistent

class.

– If USEEXTENTSET=1 and DEFAULTGLOBAL is not specified, the package name and class name are hashed,
as described above. The sequential integer suffix is appended.

InterSystems SQL Optimization Guide 9

Overview

– If USEEXTENTSET=1 and DEFAULTGLOBAL is specified, the DEFAULTGLOBAL name is used rather than
the hashed package name and class name. The sequential integer suffix is appended. For example, if DEFAULT-
GLOBAL="MyGlobal" the globals would have names such as the following: ̂ MyGlobal.1 and ̂ MyGlobal.3.

If you use the CREATE TABLE command to define a table, USEEXTENTSET defaults to 1. Therefore, by default, CREATE
TABLE creates hashed global names. This default behavior can be changed using the %CLASSPARAMETER keyword
and the USEEXTENTSET and DEFAULTGLOBAL parameters. You can change the system-wide default using the
SetDDLUseExtentSet() method.

If you define a persistent class that is projected to a table, USEEXTENTSET defaults to 0. Therefore, by default, traditional
global names are used.

DEFAULTGLOBAL, if defined, serves as a default value. If the ExtentLocation, DataLocation, or IndexLocation storage
keywords are defined, those values are used rather than the defaults described above. For further details, refer to Hashed
Global Names in the “ Introduction to Persistent Objects” chapter of Defining and Using Classes.

You can supply the global name to ZWRITE to display the index data.

2.1.4 Master Map

The system automatically defines a Master Map (Data/Master) for every table. The Master Map is not an index, it is a map
that directly accesses the data itself using its map subscript field(s). By default, the master map subscript field is the system-
defined RowID field. By default, this direct data access using the RowID field is represented with the SQL Map Name
(SQL index name) IDKEY.

By default, a user-defined primary key is not the IDKEY. This is because Master Map lookup using RowID integers is
almost always more efficient than lookup by primary key values. However, if you specify that the primary key is the IDKEY,
the primary key index is defined as the Master Map for the table and SQL Map Name is the primary key SQL index name.

For a single-field primary key/IDKEY, the primary key index is the Master Map, but the Master Map data access column
remains the RowID. This is because there is a one-to-one match between a record’s unique primary key field value and its
RowID value, and RowID is the presumed more efficient lookup. For a multi-field primary key/IDKEY, the Master Map
is given the primary key index name, and the Master Map data access columns are the primary key fields.

You can view the Master Map definition through the Management Portal SQL Catalog Details tab. This displays, among
other items, the global name where the Master Map data is stored. For SQL and default storage, this Master Map global
defaults to ^package.classnameD and the namespace is recorded to prevent ambiguity. For custom storage, no Master Map
data storage global is defined; you can use the DATALOCATIONGLOBAL class parameter to specify a data storage global
name.

For SQL and default storage, the Master Map data is stored in a subscripted global named either ̂ package.classnameD
or ^hashpackage.hashclass.1: refer to Index Global Names. Note that the global name specifies the persistent class
name, not the corresponding SQL table name, and that the global name is case-sensitive. You can supply the global name
to ZWRITE to display the Master Map data.

Data access using a Master Map is inefficient, especially for large tables. For this reason, it is recommended that the user
define indices that can be used to access data fields specified in WHERE conditions, JOIN operations, and other operations.

2.2 Automatically-Defined Indices
The system automatically defines certain indices when you define a table. The following indices are automatically generated
when you define a table and populated when you add or modify table data. If you define:

10 InterSystems SQL Optimization Guide

Defining and Building Indices

• A primary key that is not an IDKEY, the system generates a corresponding index of type Unique. The name of the
primary key index may be user-specified or derived from the name of the table. For example, if you define an unnamed
primary key, the corresponding index will be named tablenamePKEY#, where # is a sequential integer for each unique
and primary key constraint.

• A UNIQUE field, InterSystems IRIS generates an index for each UNIQUE field with the name tablenameUNIQUE#,
where # is a sequential integer for each unique and primary key constraint.

• A UNIQUE constraint, the system generates an index for each UNIQUE constraint with the specified name, indexing
the fields that together define a unique value.

• A shard key, the system generates an index on the shard key field(s) named ShardKey.

You can view these indices through the Management Portal SQL Catalog Details tab. The CREATE INDEX command
can be used to add a UNIQUE field constraint; the DROP INDEX command can be used to remove a UNIQUE field con-
straint.

By default, the system generates the IDKEY index on the RowID field. Defining an IDENTITY field does not generate an
index. However, if you define an IDENTITY field and make that field the primary key, InterSystems IRIS defines the
IDKEY index on the IDENTITY field and makes it the primary key index. This is shown in the following example:

CREATE TABLE Sample.MyStudents (
 FirstName VARCHAR(12),
 LastName VARCHAR(12),
 StudentID IDENTITY,
 CONSTRAINT StudentPK PRIMARY KEY (StudentID))

Similarly, if you define an IDENTITY field and give that field a UNIQUE constraint, InterSystems IRIS explicitly defines
an IdKey/Unique index on the IDENTITY field. This is shown in the following example:

CREATE TABLE Sample.MyStudents (
 FirstName VARCHAR(12),
 LastName VARCHAR(12),
 StudentID IDENTITY,
 CONSTRAINT StudentU UNIQUE (StudentID))

These IDENTITY indexing operations only occur when there is no explicitly defined IdKey index and the table contains
no data.

2.2.1 Bitmap Extent Index

A bitmap extent index is a bitmap index for the rows of the table, not for any specified field of the table. In a bitmap extent
index, each bit represents a sequential RowID integer value, and the value of each bit specifies whether or not the corre-
sponding row exists. InterSystems SQL uses this index to improve performance of COUNT(*), which returns the number
of records (rows) in the table. A table can have, at most, one bitmap extent index. Attempting to create more than one
bitmap extent index results in an SQLCODE -400 error with the %msg ERROR #5445: Multiple Extent indices
defined: DDLBEIndex.

All tables defined using CREATE TABLE automatically define a bitmap extent index. This automatically-generated index
is assigned the Index Name (index property name) DDLBEIndex and the SQL MapName (SQL index name) %%DDLBEIn-
dex. A table defined as a class may have a bitmap extent index defined with an Index Name and SQL MapName of
$ClassName (where ClassName is the name of the table’s persistent class.)

You can use the CREATE INDEX command with the BITMAPEXTENT keyword to add a bitmap extent index to a table,
or to rename an automatically-generated bitmap extent index. For further details, refer to CREATE INDEX.

You can view a table’s bitmap extent index through the Management Portal SQL Catalog Details tab. Though a table can
have only one bitmap extent index, a table that inherits from another table is listed with both its own bitmap extent index
and the bitmap extent index of the table it extends from. For example, the Sample.Employee table extends the Sample.Person
table; in the Catalog Details Maps/IndicesSample.Employee lists both a $Employee and $Person bitmap extent index.

InterSystems SQL Optimization Guide 11

Automatically-Defined Indices

In a table that undergoes many DELETE operations the storage for a bitmap extent index can gradually become less efficient.
You can rebuild a Bitmap Extent index from the Management Portal by selecting the table’s Catalog Details tab, Maps/Indices
option and selecting Rebuild Index.

The %SYS.Maint.Bitmap utility methods compress the bitmap extent index, as well as bitmap indices and bitslice indices.
For further details, see “Maintaining Bitmap Indices” .

Invoking the %BuildIndices() method builds an existing bitmap extent index in any of the following cases: the
%BuildIndices() pIndexList argument is not specified (build all defined indices); pIndexList specifies the bitmap extent
index by name; or pIndexList specifies any defined bitmap index. See “Building Indices Programmatically” .

2.3 Defining Indices
There are two ways to define indices:

• Defining Indices Using a Class Definition, which includes:

– Properties That Can Be Indexed

– Indices on Multiple Properties

– Index Collation

– Using the Unique, PrimaryKey, and IdKey Keywords with Indices

– Defining SQL Search Indices

– Storing Data with Indices

– Indexing Collections

– Indexing an Embedded Object (%SerialObject) Property

– Notes on Indices Defined in Classes

• Defining Indices Using DDL

2.3.1 Defining Indices Using a Class Definition

Within Studio, you can add index definitions to a %Persistent class definition using either the New Index Wizard or by
editing the text of the class definition. An index is defined on one or more index property expressions optionally followed
by one or more optional index keywords. It takes the form:

INDEX index_name ON index_property_expression_list [index_keyword_list];

where:

• index_name is a valid identifier.

• index_property_expression_list is a list of the one or more comma-separated property expressions that serve as the
basis for the index.

• index_keyword_list is an optional comma-separated list of index keywords, enclosed in square brackets. Used to
specify the index Type for a bitmap or bitslice index. Also used to specify a Unique, IdKey, or PrimaryKey index. (An
IdKey or PrimaryKey index is, by definition, also a Unique index.) The complete list of index keywords appears in
the Class Definition Reference.

12 InterSystems SQL Optimization Guide

Defining and Building Indices

The index_property_expression_list argument consists of one or more index property expressions. An index property
expression consists of:

• The name of the property to be indexed.

• An optional (ELEMENTS) or (KEYS) expression, which provide a means of indexing on collection subvalues. If the
index property is not a collection, the user can use the BuildValueArray() method to produce an array containing keys
and elements. For more information on keys and elements, see the “ Indexing Collections” section.

• An optional collation expression. This consists of a collation name followed optionally by a list of one or more comma-
separated collation parameters. You cannot specify an index collation for a Unique, IdKey, or PrimaryKey index. A
Unique or PrimaryKey index takes its collation from the property (field) that is being indexing. An IdKey index is
always EXACT collation. For a list of valid collation names, see the “Collation Types” section of the “Collation”
chapter of Using InterSystems SQL.

For example, the following class definition defines two properties and an index based on each of them:

Class MyApp.Student Extends %Persistent [DdlAllowed]
{
 Property Name As %String;
 Property GPA As %Decimal;

 Index NameIDX On Name;
 Index GPAIDX On GPA;
}

A more complex index definition might be:

 Index Index1 On (Property1 As SQLUPPER(77), Property2 AS EXACT);

2.3.1.1 Properties That Can Be Indexed

The only properties that can be indexed are:

• Those that are stored in the database

• Those that can be reliably derived from stored properties

A property that can be reliably derived (and is not stored) must be defined with the SQLComputed keyword as true; the
code specified by SQLComputeCode must be the only way to derive the property’s value and the property cannot be set
directly.

If it is possible to directly set the value of a derived property, such as is the case of a simple (non-collection) property
defined as Transient and not also defined as Calculated, then directly setting the property’s value overrides the computation
defined in SQLComputeCode and the value cannot be derived reliably from stored properties; this type of derived property
is referred to as nondeterministic. (The Calculated keyword actually means that no instance memory is allocated.) The
general rule is that only derived properties defined as Calculated and SQLComputed can be indexed. There is, however,
an exception for derived collections: a collection that is derived (SQLComputed) and is Transient (not stored) and is not
also defined as Calculated (meaning no instance memory) can be indexed.

Note: There must not be a sequential pair of vertical bars (||) within the values of any property used by an IdKey index,
unless that property is a valid reference to an instance of a persistent class. This restriction is required by the
InterSystems SQL internal mechanism. The use of || in IdKey properties can result in unpredictable behavior.

2.3.1.2 Indices on Multiple Properties

You can define indices on combinations of two or more properties (fields). Within a class definition, use the On clause of
the index definition to specify a list of properties, such as:

InterSystems SQL Optimization Guide 13

Defining Indices

Class MyApp.Employee Extends %Persistent [DdlAllowed]
{
 Property Name As %String;
 Property Salary As %Integer;
 Property State As %String(MAXLEN=2);

 Index MainIDX On(State,Salary);
}

An index on multiple properties may be useful if you need to perform queries that use a combination of field values, such
as:

SELECT Name,State,Salary
 FROM Employee
 ORDER BY State,Salary

2.3.1.3 Index Collation

A Unique, PrimaryKey, or IdKey index cannot specify a collation type. For other types of indices, each property specified
in an index definition can optionally have a collation type. The index collation type should match the property (field) col-
lation type when the index is applied.

1. If an index definition includes an explicitly specified collation for a property, the index uses that collation.

2. If an index definition does not include an explicitly specified collation for a property, the index uses the collation
explicitly specified in the property definition.

3. If the property definition does not include an explicitly specified collation, then the index uses the collation that is the
default for the property data type.

For example, the Name property is defined as a string, and therefore has, by default, SQLUPPER collation. If you define
an index on Name, it takes, by default, the property’s collation, and the index would also be defined with SQLUPPER. The
property collation and the index collation match.

However, if a comparison applies a different collation, for example, WHERE %EXACT(Name)=%EXACT(:invar), the
property collation type in this usage no longer matches the index collation type. A mismatch between the property compar-
ison collation type and the index collation type may cause the index to not be used. Therefore, in this case, you might wish
to define the index for the Name property with collation EXACT. If an ON clause of a JOIN statement specifies a collation
type, for example, FROM Table1 LEFT JOIN Table2 ON %EXACT(Table1.Name) = %EXACT(Table2.Name),
a mismatch between the property collation type specified here and the index collation type may cause InterSystems IRIS
to not use the index.

The following rules govern collation matches between an index and a property:

• Matching collation types always maximize use of an index.

• A mismatch of collation types, where the property is specified with EXACT collation (as shown above) and the index
has some other collation allow the index to be used, but its use is less effective than matching collation types.

• A mismatch of collation types, where the property collation is not EXACT and the property collation does not match
the index collation, causes the index to not be used.

To explicitly specify a collation for a property in an index definition, the syntax is:

Index IndexName On PropertyName As CollationName;

where

• IndexName is the name of the index

• PropertyName is the property being indexed

• CollationName is the type of collation being used for the index

14 InterSystems SQL Optimization Guide

Defining and Building Indices

For example:

Index NameIDX On Name As Exact;

Different properties can have different collation types. For example, in the following example the F1 property uses
SQLUPPER collation while F2 uses EXACT collation:

Index Index1 On (F1 As SQLUPPER, F2 As EXACT);

For a list of recommended collation types, see the “Collation Types” section of the “Collation” chapter of Using InterSys-
tems SQL.

Note: An index specified as Unique, PrimaryKey, or IdKey cannot specify an index collation. The index takes its collation
from the property collations.

2.3.1.4 Using the Unique, PrimaryKey, and IdKey Keywords with Indices

As is typical with SQL, InterSystems IRIS supports the notions of a unique key and a primary key. InterSystems IRIS also
has the ability to define an IdKey, which is one that is a unique record ID for the instance of a class (row of a table). These
features are implemented through the Unique, PrimaryKey, and IdKey keywords:

• Unique — Defines a UNIQUE constraint on the properties listed in the index’s list of properties. That is, only a unique
data value for this property (field) can be indexed. Uniqueness is determined based on the property’s collation. For
example, if the property collation is EXACT, values that differ in letter case are unique; if the property collation is
SQLUPPER, values that differ in letter case are not unique. However, note that the uniqueness of indices is not checked
for properties that are undefined. In accordance with the SQL standard, an undefined property is always treated as
unique.

• PrimaryKey — Defines a PRIMARY KEY constraint on the properties listed in the index’s list of properties.

• IdKey — Defines a unique constraint and specifies which properties are used to define the unique identity of an instance
(row). An IdKey always has EXACT collation, even when it is of data type string.

The syntax of such keywords appears in the following example:

Class MyApp.SampleTable Extends %Persistent [DdlAllowed]
{
 Property Prop1 As %String;
 Property Prop2 As %String;
 Property Prop3 As %String;

 Index Prop1IDX on Prop1 [Unique];
 Index Prop2IDX on Prop2 [PrimaryKey];
 Index Prop3IDX on Prop3 [IdKey];
}

Note: The IdKey, PrimaryKey, and Unique keywords are only valid with standard indices. You cannot use them with
bitmap or bitslice indices.

It is also valid syntax to specify both the IdKey and PrimaryKey keywords together, such as:

 Index IDPKIDX on Prop4 [IdKey, PrimaryKey];

This syntax specifies that the IDPKIDX index is both the IdKey for the class (table), as well as its primary key. All other
combinations of these keywords are redundant.

For any index defined with one of these keywords, there is a method that allows you to open the instance of the class where
the properties associated with the index have particular values; for more information, see the “Opening an Instance by
Index Key” section.

InterSystems SQL Optimization Guide 15

Defining Indices

For more information on the IdKey keyword, see the IdKey page of the Class Definition Reference. For more information
on the PrimaryKey keyword, see the PrimaryKey page of the Class Definition Reference. For more information on the
Unique keyword, see the Unique page of the Class Definition Reference.

2.3.1.5 Defining SQL Search Indices

You can define SQL Search indices in a table class definition as follows:

Class Sample.TextBooks Extends %Persistent [DdlAllowed]
{
 Property BookName As %String;
 Property SampleText As %String(MAXLEN=5000);

 Index NameIDX On BookName [IdKey];
 Index SQLSrchIDXB On (SampleText) As %iFind.Index.Basic;
 Index SQLSrchIDXS On (SampleText) As %iFind.Index.Semantic;
 Index SQLSrchIDXA On (SampleText) As %iFind.Index.Analytic;
}

For further details refer to Guide to SQL Text Search.

2.3.1.6 Storing Data with Indices

You can specify that a copy of one or more data values be stored within an index using the index Data keyword:

Class Sample.Person Extends %Persistent [DdlAllowed]
{
 Property Name As %String;
 Property SSN As %String(MAXLEN=20);

 Index NameIDX On Name [Data = Name];
}

In this case, the index, NameIDX, is subscripted by the collated (uppercase) value of the various Name values. A copy of
the actual (uncollated) value of the Name is stored within the index. These copies are maintained when changes are made
to the Sample.Person table through SQL or to corresponding the Sample.Person class or its instances through objects.

Maintaining a copy of data along within an index can be helpful in cases where you frequently perform selective (selecting
a few rows out of many) or ordered searches that return a few columns out of many.

For example, consider the following query against the Sample.Person table:

SELECT Name FROM Sample.Person ORDER BY Name

The SQL Engine could decide to satisfy this request entirely by reading from the NameIDX and never reading the master
data for the table.

Note: You cannot store data values with a bitmap index.

2.3.1.7 Indexing a NULL

If the data has a NULL (no data present) for an indexed field, the corresponding index represents this using an index null
marker. By default, the index null marker value is -1E14. Use of an index null marker provides that null values collate
before all non-null values.

The %Library.BigInt data type can potentially store small negative numbers less than -1E14. By default, the %BigInt index
null marker value is -1E14, and is therefore compatible with existing %BigInt indices. If indexed %BigInt data values are
likely to include these extremely small negative numbers, you can change the index null marker value for a specific field
as part of property definition using the INDEXNULLMARKER property parameter, as shown in the following example:

Property ExtremeNums As %Library.BigInt(INDEXNULLMARKER = "-1E19");

16 InterSystems SQL Optimization Guide

Defining and Building Indices

You can also change the index null marker default value in a data type class definition. Refer to %Library.DataType for
details.

2.3.1.8 Indexing Collections

When a property is indexed, the value that is placed in the index is the entire collated property value. For collections, it is
possible to define index properties that correspond to the element and key values of the collection by appending (ELEMENTS)
or (KEYS) to the property name. (ELEMENTS) and (KEYS) allow you to specify that multiple values are produced from
a single property value and each of these sub-values is indexed. When the property is a collection then the ELEMENTS
token references the elements of the collection by value and the KEYS token references them by position. When both
ELEMENTS and KEYS are present in a single index definition then the index key value includes the key and associated
element value.

For example, suppose there is an index based on FavoriteColors property of the Sample.Person class. The simplest form of
an index on the items in this property’s collection would be either of:

 INDEX fcIDX1 ON (FavoriteColors(ELEMENTS));

or

 INDEX fcIDX2 ON (FavoriteColors(KEYS));

where FavoriteColor(ELEMENTS) refers to the elements of the FavoriteColors property, since it is a collection. The
general form is propertyName(ELEMENTS) or propertyName(KEYS), where that collection’s content is the set of elements
contained in a property defined as a List Of or an Array Of some data type). For information on collections, see the
chapter “Working with Collections” in Defining and Using Classes.

To index literal properties (described in the “Defining and Using Literal Properties” chapter of Defining and Using Classes),
you can create an index value array as produced by a propertyNameBuildValueArray() method (described in the following
section). As with collections proper, the (ELEMENTS) and (KEYS) syntax is valid with index value arrays.

If property-collection is projected as array, then the index must obey the following restrictions in order to be projected to
the collection table. The index must include (KEYS). The index cannot reference any properties other than the collection
itself and the object's ID value. If a projected index also defines DATA to be stored in the index, then the data properties
stored must also be restricted to the collection and the ID. Otherwise the index is not projected. This restriction applies to
an index on a collection property that is projected as an array; it does not apply to an index on a collection that is projected
as a list. For further details, refer to “Controlling the SQL Projection of Collection Properties” in Defining and Using
Classes.

Indices that correspond to element or key values of a collection can also have all the standard index features, such as storing
data with the index, index-specific collations, and so on.

InterSystems SQL can use a collection index by specifying the FOR SOME %ELEMENT predicate.

Indexing Data Type Properties with (ELEMENTS) and (KEYS)
For the purposes of indexing data type properties, you can also create index value arrays using the BuildValueArray()
method. This method parses a property value into an array of keys and elements; it does this by producing a collection of
element values derived from the value of the property with which it is associated. When you use BuildValueArray() to
create an index value array, its structure is suitable for indexing.

The BuildValueArray() method has the name propertyNameBuildValueArray() and its signature is:

ClassMethod propertynameBuildValueArray(value, ByRef valueArray As %Library.String) As %Status

where

• The name of the BuildValueArray() method derives from the property name in the typical way for composite methods.

• The first argument is the property value.

InterSystems SQL Optimization Guide 17

Defining Indices

• The second argument is an array that is passed by reference. This is an array containing key-element pairs where the
array subscripted by the key is equal to the element.

• The method returns a %Status value.

Consider this example:

/// DescriptiveWords is a comma-delimited string of words
Property DescriptiveWords As %String;

/// Index based on DescriptiveWords
Index dwIDX On DescriptiveWords(ELEMENTS);

/// The DescriptiveWordsBuildValueArray() method demonstrates how to index on subvalues of a property.
///
/// (If DescriptiveWords were defined as a collection, this method would not be necessary.)
ClassMethod DescriptiveWordsBuildValueArray(
 Words As %Library.String = "",
 ByRef wordArray As %Library.String)
 As %Status {
 If Words '= "" {
 For tPointer = 1:1:$Length(Words,",") {
 Set tWord = $Piece(Words,",",tPointer)
 If tWord '= "" {
 Set wordArray(tPointer) = tWord
 }
 }
 }
 Else {
 Set wordArray("TODO") = "Enter keywords for this person"
 }
 Quit $$$OK
}

In this case, the dwIDX index is based on the DescriptiveWords property. The DescriptiveWordsBuildValueArray()
method takes the value specified by the Words argument, creates an index value array based on that value, and stores it in
wordArray. InterSystems IRIS uses the implementation of BuildValueArray() internally; you do not call this method.

Note: It is not necessary to base any of the element/key values on the property value. The only recommendation is that
the same array of elements and keys be created each time this method is passed a given value.

Setting values for DescriptiveWords property of various instances and examining those values involves activity such as the
following:

SAMPLES>SET empsalesoref = ##class(MyApp.Salesperson).%OpenId(3)

SAMPLES>SET empsalesoref.DescriptiveWords = "Creative"

SAMPLES>WRITE empsalesoref.%Save()
1
SAMPLES>SET empsalesoref = ##class(MyApp.Salesperson).%OpenId(4)

SAMPLES>SET empsalesoref.DescriptiveWords = "Logical,Tall"

SAMPLES>WRITE empsalesoref.%Save()
1

This results in sample index content such as:

DataIDDescriptiveWords(ELEMENTS)

""3" CREATIVE"

""1" ENTER KEYWORDS FOR THIS PERSON"

""2" ENTER KEYWORDS FOR THIS PERSON"

""4" LOGICAL"

""4" TALL"

18 InterSystems SQL Optimization Guide

Defining and Building Indices

Note: This table displays index content in an abstracted form. The actual form of storage on disk is subject to change.

Projecting an Index on array(ELEMENTS) to a Child Table
In order to project a parent table index on array(ELEMENTS) to a child table, the child class/table must have all of the
necessary columns to properly maintain the index. It must include information about the key, which is part of the child
table RowID. Every index row must provide complete RowID information, which enables returning to the corresponding
master map row.

Lacking this complete RowID information, an INSERT to a child table cannot populate the associated parent table index
on array(ELEMENTS).

2.3.1.9 Indexing an Embedded Object (%SerialObject) Property

To index a property in an embedded object, you create an index in the persistent class referencing that embedded object.
The property name must specify the name of the referencing field in the table (%Persistent class) and the property in the
embedded object (%SerialObject), as shown in the following example:

Class Sample.Person Extends (%Persistent) [DdlAllowed]
{ Property Name As %String(MAXLEN=50);
 Property Home As Sample.Address;
 Index StateInx On Home.State;
}

Here Home is a property in Sample.Person that references the embedded object Sample.Address, which contains the State
property, as shown in the following example:

Class Sample.Address Extends (%SerialObject)
{ Property Street As %String;
 Property City As %String;
 Property State As %String;
 Property PostalCode As %String;
 }

Only the data values in the instance of the embedded object associated with the persistent class property reference are
indexed. You cannot index a %SerialObject property directly.

You can also define an index on an embedded object property using the SQL CREATE INDEX statement, as shown in the
following example:

CREATE INDEX StateIdx ON TABLE Sample.Person (Home_State)

For further details, refer to Introduction to Serial Objects in Defining and Using Classes and Embedded Object (%SerialOb-
ject) in the “Defining Tables” chapter of Using InterSystems SQL.

2.3.1.10 Notes on Indices Defined in Classes

When working with indices in class definitions, here are some points to keep in mind:

• Index definitions are only inherited from the primary (first) superclass.

• If you use Studio to add (or remove) an index definition for a class that has data stored within the database, you must
manually populate the index by using one of the procedures described in “Building Indices.”

2.3.2 Defining Indices Using DDL

If you are using DDL statements to define tables, you can also use the following DDL commands to create and remove
indices:

• CREATE INDEX

• DROP INDEX

InterSystems SQL Optimization Guide 19

Defining Indices

The DDL index commands do the following:

1. They update the corresponding class and table definitions on which an index is being added or removed. The modified
class definition is recompiled.

2. They add or remove index data in the database as needed: The CREATE INDEX command populates the index using
the data currently stored within the database. Similarly, the DROP INDEX command deletes the index data (that is,
the actual index) from the database.

2.4 Bitmap Indices
A bitmap index is a special type of index that uses a series of bitstrings to represent the set of ID values that correspond to
a given indexed data value.

Bitmap indices have the following important features:

• Bitmaps are highly compressed: bitmap indices can be significantly smaller than standard indices. This reduces disk
and cache usage considerably.

• Bitmaps operations are optimized for transaction processing: you can use bitmap indices within tables with no perfor-
mance penalty as compared with using standard indices.

• Logical operations on bitmaps (counting, AND, and OR) are optimized for high performance.

• The SQL Engine includes a number of special optimizations that can take advantage of bitmap indices.

The creation of bitmap indices depends upon the nature of the table’s unique identity field(s):

• If the table’s ID field is defined as a single field with positive integer values, you can define a bitmap index for a field
using this ID field. This type of table either uses a system-assigned unique positive integer ID, or uses an IdKey to
define custom ID values where the IdKey is based on a single property with type %Integer and MINVAL > 0, or type
%Numeric with SCALE = 0 and MINVAL > 0.

• If the table’s ID field is not defined as single field with positive integer values (for example, a child table), you can
define a %BID (bitmap ID) field that takes positive integers which acts as a surrogate ID field; this allows you to create
bitmap indices for fields in this table.

Subject to the restrictions listed below, bitmap indices operate in the same manner as standard indices. Indexed values are
collated and you can index on combinations of multiple fields.

This chapter addresses the following topics related to bitmap indices:

• Bitmap Index Operation

• Defining Bitmap Indices by Using a Class Definition

• Defining Bitmap Indices Using DDL

• Generating a Bitmap Extent Index

• Choosing an Index Type

• Restrictions on Bitmap Indices

• Maintaining Bitmap Indices

• SQL Manipulation of Bitmap Chunks

20 InterSystems SQL Optimization Guide

Defining and Building Indices

2.4.1 Bitmap Index Operation

Bitmap indices work in the following way. Suppose you have a Person table containing a number of columns:

Figure 2–1: Person Table

Each row in this table has a system-assigned RowID number (a set of increasing integer values). A bitmap index uses a set
of bitstrings (a string containing 1 and 0 values). Within a bitstring, the ordinal position of a bit corresponds to the RowID
of the indexed table. For a given value, say where State is “NY” , there is a string of bits with a 1 for every position that
corresponds to a row containing “NY” and a 0 in every other position.

For example, a bitmap index on State might look like this:

Figure 2–2: State Bitmap Index

InterSystems SQL Optimization Guide 21

Bitmap Indices

While an index on Age might look like this:

Figure 2–3: Age Bitmap Index

Note: The Age field shown here can be an ordinary data field or a field whose value can be reliably derived (Calculated
and SQLComputed).

In addition to using bitmap indices for standard operations, the SQL engine can use bitmap indices to efficiently perform
special set-based operations using combinations of multiple indices. For example, to find all instances of Person that are
24 years old and live in New York, the SQL Engine can simply perform the logical AND of the Age and State indices:

Figure 2–4: Using Multiple Indices

The resulting bitmap contains the set of all rows that match the search criteria. The SQL Engine uses this to return data
from these rows.

The SQL Engine can use bitmap indices for the following operations:

• ANDing of multiple conditions on a given table.

• ORing of multiple conditions on a given table.

22 InterSystems SQL Optimization Guide

Defining and Building Indices

• RANGE conditions on a given table.

• COUNT operations on a given table.

2.4.2 Defining an IdKey Bitmap Index Using a Class Definition

If the table’s ID is a field with values restricted to unique positive integers, you can add bitmap index definitions to a class
definition using either the New Index Wizard or by editing the text of the class definition in the same way that you would
create a standard index. The only difference is that you need to specify the index Type as being “bitmap” :

Class MyApp.SalesPerson Extends %Persistent [DdlAllowed]
{
 Property Name As %String;
 Property Region As %Integer;

 Index RegionIDX On Region [Type = bitmap];
}

2.4.3 Defining a %BID Bitmap Index Using a Class Definition

If the table’s ID is not restricted to positive integers, you can create a %BID property to use to create bitmap index definitions.
You can use this option for a table with an ID field of any datatype, as well as an IDKEY consisting of multiple fields
(which includes child tables). A %BID bitmap can be created for either data storage type: a default structure table or a
%Storage.SQL table. This feature is referred to as “Bitmaps for Any Table,” or BAT.

To enable use of bitmap indices on such a table, you must do the following:

1. Define a %BID property/field for the class. This could be an existing property of the class, or a new property. It can
have any name. If this is a new property, you will have to populate this property/field for all existing rows in the table.
This %BID field must be defined with a data type that restricts the field data values to unique positive integers. For
example, Property MyBID As %Counter;

2. Define a new class parameter to define which property is the %BID field. This parameter is named BIDField. This
parameter is set to the SQLFieldName of the %BID property. For example, Parameter BIDField = "MyBID";

3. Define an index for the %BID. For example, Index BIDIdx On MyBID [Type = key, Unique];

4. Define the %BID locator index. This ties the %BID index to the table’s ID key field(s). The following example is for
a table with a compound IDKey consisting of two fields:

Index IDIdx On (IDfield1, IDfield2) [IdKey, Unique];
Index BIDLocIdx On (IDfield1, IDfield2, MyBID) [Data = IdKey, Unique];

This table now supports bitmap indices. You can define bitmap indices as needed using standard syntax. For example:
Index RegionIDX On Region [Type = bitmap];

This table now also supports bitslice indices. You can define bitslice indices using standard syntax.

Note: To build or rebuild a %BID bitmap index you must use %BuildIndices(). The %ConstructIndicesParallel()
method is not supported for %BID bitmap indices.

2.4.4 Defining Bitmap Indices Using DDL

If you are using DDL statements to define tables, you can also use the following DDL commands to create and remove
bitmap indices for a table with a positive integer ID:

• CREATE INDEX

• DROP INDEX

InterSystems SQL Optimization Guide 23

Bitmap Indices

This is identical to creating standard indices, except that you must add the BITMAP keyword to the CREATE INDEX
statement:

CREATE BITMAP INDEX RegionIDX ON TABLE MyApp.SalesPerson (Region)

2.4.5 Generating a Bitmap Extent Index

When compiling a class that contains a bitmap index, the class compiler generates a bitmap extent index if there are any
bitmap indices present in the class and no bitmap extent index is defined for that class. The class inherits the bitmap extent
index from the primary superclass if it exists, either defined or generated. When building indices for a class, the bitmap
extent index is built either if it is asked to be built or if another bitmap index is being built and the bitmap extent index
structure is empty.

InterSystems IRIS does not generate a bitmap extent index unless there are bitmap indices present. A bitmap extent index
is defined as: type = bitmap, extent = true. That means a bitmap extent index inherited from a primary superclass
is considered to be a bitmap index and will trigger a bitmap extent index to be generated in the subclass, if no bitmap extent
index is explicitly defined in that subclass.

InterSystems IRIS does not generate a bitmap extent index in a superclass based on future possibility. This means that
InterSystems IRIS does not ever generate a bitmap extent index in a persistent class unless an index whose type =
bitmap is present. A presumption that some future subclass might introduce an index with type = bitmap is not sufficient.

Note: Special care is required during the process of adding a bitmap index to a class on a production system (where
users are actively using a particular class, compiling said class, and subsequently building the bitmap index
structure for it). On such a system, the bitmap extent index may be populated in the interim between the compile
completing and the index build proceeding. This can cause the index build procedure to not implicitly build the
bitmap extent index, which leads to a partially complete bitmap extent index.

2.4.6 Choosing an Index Type

The following is a general guideline for choosing between bitmap and standard indices. In general, use standard indices
for indexing on all types of keys and references:

• Primary key

• Foreign key

• Unique keys

• Relationships

• Simple object references

Otherwise, bitmap indices are generally preferable (assuming that the table uses system-assigned numeric ID numbers).

Other factors:

• Separate bitmap indices on each property usually have better performance than a bitmap index on multiple properties.
This is because the SQL engine can efficiently combine separate bitmap indices using AND and OR operations.

• If a property (or a set of properties that you really need to index together) has more than 10,000-20,000 distinct values
(or value combinations), consider standard indices. If, however, these values are very unevenly distributed so that a
small number of values accounts for a substantial fraction of rows, then a bitmap index could be much better. In general,
the goal is to reduce the overall size required by the index.

24 InterSystems SQL Optimization Guide

Defining and Building Indices

2.4.7 Restrictions on Bitmap Indices

All bitmap indices have the following restrictions:

• You cannot define a bitmap index on a UNIQUE column.

• You cannot store data values within a bitmap index.

• For a table containing more than 1 million records, a bitmap index is less efficient than a standard index when the
number of unique values exceeds 10,000. Therefore, for a large table it is recommended that you avoid using a bitmap
index for any field that contains (or is likely to contain) more than 10,000 unique values; for a table of any size, avoid
using a bitmap index for any field that is likely to contain more than 20,000 unique values. These are general approxi-
mations, not exact numbers.

You must create a %BID property to support bitmap indices on a table that:

• Uses a non-integer field as the unique ID key.

• Uses a multi-field ID key.

• Is a child table within a parent-child relationship.

You can use the $SYSTEM.SQL.SetBitmapFriendlyCheck() method to set a system-wide configuration parameter to
check at compile time for this restriction, determining whether a defined bitmap index is allowed in a %Storage.SQL class.
This check only applies to classes that use %Storage.SQL. You can use $SYSTEM.SQL.GetBitmapFriendlyCheck() to
determine the current configuration of this option.

2.4.7.1 Application Logic Restrictions

A bitmap structure can be represented by an array of bit strings, where each element of the array represents a "chunk" with
a fixed number of bits. Because undefined is equivalent to a chunk with all 0 bits, the array can be sparse. An array element
that represents a chunk of all 0 bits need not exist at all. For this reason, application logic should avoid depending on the
$BITCOUNT(str,0) count of 0-valued bits.

Because a bit string contains internal formatting, application logic should never depend upon the physical length of a bit
string or upon equating two bit strings that have the same bit values. Following a rollback operation, a bit string is restored
to its bit values prior to the transaction. However, because of internal formatting, the rolled back bit string may not equate
to or have the same physical length as the bit string prior to the transaction.

2.4.8 Maintaining Bitmap Indices

In a volatile table (one that undergoes many INSERT and DELETE operations) the storage for a bitmap index can gradually
become less efficient. To maintain bitmap indices, you can run the %SYS.Maint.Bitmap utility methods to compress the
bitmap indices, restoring them to optimal efficiency. You can use the OneClass() method to compress the bitmap indices
for a single class. Or you can use the Namespace() method to compress the bitmap indices for an entire namespace. These
maintenance methods can be run on a live system.

The results of running the %SYS.Maint.Bitmap utility methods are written to the process that invoked the method. These
results are also written to the class %SYS.Maint.BitmapResults.

2.4.9 SQL Manipulation of Bitmap Chunks

InterSystems SQL provides the following extensions to directly manipulate bitmap indices:

• %CHUNK function

• %BITPOS function

InterSystems SQL Optimization Guide 25

Bitmap Indices

• %BITMAP aggregate function

• %BITMAPCHUNK aggregate function

• %SETINCHUNK predicate condition

All of these extensions follow the InterSystems SQL conventions for bitmap representation, representing a set of positive
integers as a sequence of bitmap chunks, of up to 64,000 integers each.

These extensions enable easier and more efficient manipulation of certain conditions and filters, both within a query and
in embedded SQL. In embedded SQL they enable simple input and output of bitmaps, especially at the single chunk level.
They support the processing of complete bitmaps, which are handled by %BITMAP() and the %SQL.Bitmap class. They
also enable bitmap processing for non-RowID values, such as foreign key values, parent-reference of a child table, either
column of an association, etc.

For example, to output the bitmap for a specified chunk:

SELECT %BITMAPCHUNK(Home_Zip) FROM Sample.Person
WHERE %CHUNK(Home_Zip)=2

To output all the chunks for the whole table:

SELECT %CHUNK(Home_Zip),%BITMAPCHUNK(Home_Zip) FROM Sample.Person
GROUP BY %CHUNK(Home_Zip) ORDER BY 1

2.4.9.1 %CHUNK function

%CHUNK(f) returns the chunk assignment for a bitmap indexed field f value. This is calculated as f\64000+1. %CHUNK(f)
for any field or value f that is not a bitmap indexed field always returns 1.

2.4.9.2 %BITPOS function

%BITPOS(f) returns the bit position assigned to a bitmap indexed field f value within its chunk. This is calculated as
f#64000+1 . %BITPOS(f) for any field or value f that is not a bitmap indexed field returns 1 more than its integer value.
A string has an integer value of 0.

2.4.9.3 %BITMAP aggregate function

The aggregate function %BITMAP(f) combines many f values into a %SQL.Bitmap object, in which the bit corresponding
to f in the proper chunk is set to 1 for each value f in the result set. f in all of the above would normally be a positive integer
field (or expression), usually (but not necessarily) the RowID.

2.4.9.4 %BITMAPCHUNK aggregate function

The aggregate function %BITMAPCHUNK(f) combines many values of the field f into an InterSystems SQL standard
bitmap string of 64,000 bits, in which bit f#64000+1=%BITPOS(f) is set to 1 for each value f in the set. Note that the bit
is set in the result regardless of the value of %CHUNK(f) . %BITMAPCHUNK() yields NULL for the empty set, and like
any other aggregate it ignores NULL values in the input.

2.4.9.5 %SETINCHUNK predicate condition

The condition (f %SETINCHUNK bm) is true if and only if ($BIT(bm,%BITPOS(f))=1) . bm could be any bitmap
expression string, e.g. an input host variable :bm, or the result of a %BITMAPCHUNK() aggregate function, etc. Note that
the <bm> bit is checked regardless of the value of %CHUNK(f) . If <bm> is not a bitmap or is NULL, the condition returns
FALSE. (f %SETINCHUNK NULL) yields FALSE (not UNKNOWN).

26 InterSystems SQL Optimization Guide

Defining and Building Indices

2.5 Bitslice Indices
A bitslice index is used for a numeric data field when that field is used for certain numeric operations. A bitslice index
represents each numeric data value as a binary bit string. Rather than indexing a numeric data value using a boolean flag
(as in a bitmap index), a bitslice index represents each value in binary and creates a bitmap for each digit in the binary value
to record which rows have a 1 for that binary digit. This is a highly specialized type of index that can substantially improve
performance of the following operations:

• SUM, COUNT, or AVG aggregate calculations. (A bitslice index is not used for COUNT(*) calculations.) Bitslice
indices are not used for other aggregate functions.

• A field specified in a TOP n ... ORDER BY field operation.

• A field specified in a range condition operation, such as WHERE field > n or WHERE field BETWEEN lownum
AND highnum.

The SQL optimizer determines whether a defined bitslice index should be used. Commonly, the optimizer only uses a bitslice
index when a substantial number of rows (thousands) are being processed.

You can create a bitslice index for a string data field, but the bitslice index will represent these data values as canonical
numbers. In other words, any non-numeric string, such as “abc” will be indexed as 0. This type of bitslice index could be
used to rapidly COUNT records that have a value for a string field and not count those that are NULL.

In the following example, Salary would be a candidate for a bitslice index:

SELECT AVG(Salary) FROM SalesPerson

A bitslice index can be used for an aggregate calculation in a query that uses a WHERE clause. This is most effective if
the WHERE clause is inclusive of a large number of records. In the following example, the SQL optimizer would probably
use a bitslice index on Salary, if defined; if so, it would also use a bitmap index on Region, either using a defined bitmap
or generating a bitmap tempfile for Region:

SELECT AVG(Salary) FROM SalesPerson WHERE Region=2

However, a bitslice index is not used when the WHERE condition cannot be satisfied by an index, but must be performed
by reading the table that contains the field being aggregated. The following example would not use the bitslice index on
Salary:

SELECT AVG(Salary) FROM SalesPerson WHERE Name LIKE '%Mc%'

A bitslice index can be defined for any field containing numeric values. InterSystems SQL uses a scale parameter to convert
fractional numbers into bitstrings, as described in the ObjectScript $FACTOR function. A bitslice index can be defined for
a field of data type string; in this case, non-numeric string data values are treated as 0 for the purposes of the bitslice index.

A bitslice index can be defined for fields in a table that has system-assigned row Ids with positive integer values, or a table
defined with a %BID property to support bitmap (and bitslice) indices.

A bitslice index can only be defined for a single field name, not a concatenation of multiple fields. You cannot specify a
WITH DATA clause.

The following example compares a bitslice index to a bitmap index. If you create a bitmap index for values 1, 5, and 22
for rows 1, 2, and 3, it creates an index for the values:

^gloI("bitmap",1,1)= "100"
^gloI("bitmap",5,1)= "010"
^gloI("bitmap",22,1)="001"

If you create a bitslice index for values 1, 5, and 22 for rows 1, 2, and 3, it first converts the values to bit values:

InterSystems SQL Optimization Guide 27

Bitslice Indices

1 = 00001
5 = 00101
22 = 10110

It then creates an index for the bits:

^gloI("bitslice",1,1)="110"
^gloI("bitslice",2,1)="001"
^gloI("bitslice",3,1)="011"
^gloI("bitslice",4,1)="000"
^gloI("bitslice",5,1)="001"

In this example, the value 22 in a bitmap index required setting 1 global node; the value 22 in a bitslice index required
setting 3 global nodes.

Note that an INSERT or UPDATE requires setting a bit in all n bitslices, rather than setting a single bitstring. These
additional global set operations can affect performance of INSERT and UPDATE operations that involve populating bitslice
indices. Populating and maintaining a bitslice index using INSERT, UPDATE, or DELETE operations is slower than
populating a bitmap index or a regular index. Maintaining multiple bitslice indices, and/or maintaining a bitslice index on
a field that is frequently updated may have a significant performance cost.

In a volatile table (one that undergoes many INSERT, UPDATE, and DELETE operations) the storage for a bitslice index
can gradually become less efficient. The %SYS.Maint.Bitmap utility methods compress both bitmap indices and bitslice
indices, restoring efficiency. For further details, see “Maintaining Bitmap Indices” .

2.6 Building Indices
The current database access determines how you should rebuild an existing index:

• Inactive System (no other processes accessing data during index build or rebuild)

• READONLY active system (other processes able to query the data during index build or rebuild)

• READ and WRITE active system (other processes able to modify the data and to query the data during index build or
rebuild)

The preferred way of building indices is to use the %BuildIndices() method or the %BuildIndicesAsync() method.

• %Library.Persistent.%BuildIndices(): %BuildIndices() executes as a background process but the caller has to wait
for %BuildIndices() to complete before receiving control back.

• %Library.Persistent.%BuildIndicesAsync(): %BuildIndicesAsync() initiates %BuildIndices() as a background
process and the caller immediately receives control back. The first argument to %BuildIndicesAsync() is the queueToken
output argument. The remaining arguments are the same as %BuildIndices().

%BuildIndicesAsync() returns a %Status value: success indicates that the %BuildIndices() worker job was successfully
queued; failure indicates the worker job was not successfully queued.

%BuildIndicesAsync() returns a value to the queueToken output argument that indicates the %BuildIndices() com-
pletion status. To get the completion status, you pass by reference the queueToken value to the
%BuildIndicesAsyncResponse() method. You also specify the wait boolean. If wait=1,
%BuildIndicesAsyncResponse() will wait until the %BuildIndices() job identified by queueToken has completed.
If wait=0, %BuildIndicesAsyncResponse() will return as quickly as possible with a status value. If the
%BuildIndicesAsyncResponse() queueToken is not NULL on return, then the %BuildIndices() job has not yet
completed. In this case, the queueToken can be used to call %BuildIndicesAsyncResponse() again. When
%BuildIndicesAsyncResponse() queueToken is finally NULL, then the %BuildIndicesAsyncResponse() returned
%Status value is the completion status for the job invoked by %BuildIndicesAsync().

28 InterSystems SQL Optimization Guide

Defining and Building Indices

2.6.1 Building Indices on an Inactive System

The system automatically generates methods (provided by the %Persistent class) that build (that is, provide values for) or
purge (that is, remove values for) every index defined for a class (table). You can use these methods in either of two ways:

• Interactively, via the Management Portal.

• Programmatically, as method calls.

Building an index does the following:

1. Removes the current contents of the index.

2. Scans (reads every row) of the main table and adds index entries for each row in the table. If possible, the special
$SortBegin and $SortEnd functions are used to make sure that building of large indices is efficient. When building a
standard index, this use of $SortBegin/$SortEnd can use space in the IRISTEMP database, in addition to caching
data in memory. Therefore, when building a very large standard index, InterSystems IRIS can require space in IRISTEMP
roughly equivalent to the size of the final index.

Note: Methods to build indices are only provided for classes (tables) that use InterSystems IRIS default storage structure.
Classes mapped to legacy storage structures do not support index building as it assumed that the legacy application
manages the creation of indices.

2.6.1.1 Building Indices with the Management Portal

You can build existing indices (rebuild indices) for a table by doing the following:

1. From the Management Portal select System Explorer, then SQL. Select a namespace with the Switch option at the top
of the page; this displays the list of available namespaces. After selecting a namespace, select the Schema drop-down
list on the left side of the screen. This displays a list of the schemas in the current namespace with boolean flags indi-
cating whether there are any tables or any views associated with each schema.

2. Select a schema from this list; it appears in the Schema box. Just above it is a drop-down list that allows you to select
Tables, System Tables, Views, Procedures, or All of these that belong to the schema. Select either Tables or All, then
open the Tables folder to list the tables in this schema. If there are no tables, opening the folder displays a blank page.
(If you have not selected Tables or All, opening the Tables folder lists the tables for the entire namespace.)

3. Select one of the listed Tables. This displays the Catalog Details for the table.

• To rebuild all indices: click the Actions drop-down list and select Rebuild Table’s Indices.

• To rebuild a single index: click the Indices button to display the existing indices. Each listed index has the option
to Rebuild Index.

CAUTION: Do not rebuild indices while the table’s data is being accessed by other users. To rebuild indices on an
active system, see Building Indices on an Active System.

2.6.1.2 Building Indices Programmatically

The preferred way of building indices for an inactive table is to use the %BuildIndices() (or %BuildIndicesAsync())
method provided with the persistent class for the table. (For a comparison of these two methods, see Building Indices.)

To build an index (or indices) programmatically, use the %Library.Persistent.%BuildIndices() method.

• Build All Indices: Invoking %BuildIndices() with no arguments builds (provides values for) all the indices defined
for a given class (table):

InterSystems SQL Optimization Guide 29

Building Indices

 SET sc = ##class(MyApp.SalesPerson).%BuildIndices()
 IF sc=1 {WRITE !,"Successful index build" }
 ELSE {WRITE !,"Index build failed",!
 DO $System.Status.DisplayError(sc) QUIT}

• Build Specified Indices: Invoking %BuildIndices() with a $List of index names as the first argument builds (provides
values for) the specified defined indices for a given class (table):

 SET sc = ##class(MyApp.SalesPerson).%BuildIndices($ListBuild("NameIDX","SSNKey"))
 IF sc=1 {WRITE !,"Successful index build" }
 ELSE {WRITE !,"Index build failed",!
 DO $System.Status.DisplayError(sc) QUIT}

• Build All Indices Except: Invoking %BuildIndices() with a $List of index names as the seventh argument builds
(provides values for) all defined indices for a given class (table) except for the specified indices:

 SET sc = ##class(MyApp.SalesPerson).%BuildIndices("",,,,,,$ListBuild("NameIDX","SSNKey"))
 IF sc=1 {WRITE !,"Successful index build" }
 ELSE {WRITE !,"Index build failed",!
 DO $System.Status.DisplayError(sc) QUIT}

The %BuildIndices() method does the following:

1. Invokes the $SortBegin function on any (non-bitmap) indices to be rebuilt (this initiates a high performance sorting
operation for these indices).

2. Loops over the main data for the class (table), gathers the values used by indices, and adds these values to the indices
(with appropriate collation transformation).

3. Invokes the $SortEnd function to finish the process of sorting the indices.

If the indices already have values, you must call %BuildIndices() with two arguments, where the second argument has a
value of 1. Specifying 1 for this argument causes the method to purge the values before rebuilding them. For example:

 SET sc = ##class(MyApp.SalesPerson).%BuildIndices(,1)
 IF sc=1 {WRITE !,"Successful index build" }
 ELSE {WRITE !,"Index build failed",!
 DO $System.Status.DisplayError(sc) QUIT}

which purges and rebuilds all the indices. You can also purge and rebuild a subset of the indices, such as in:

 SET sc = ##class(MyApp.SalesPerson).%BuildIndices($ListBuild("NameIDX","SSNKey"),1)
 IF sc=1 {WRITE !,"Successful index build" }
 ELSE {WRITE !,"Index build failed",!
 DO $System.Status.DisplayError(sc) QUIT}

CAUTION: Do not rebuild indices while the table’s data is being accessed by other users. To rebuild indices on an
active system, see Building Indices on an Active System.

2.6.2 Building Indices on an Active System

When building (or rebuilding) an index on an active system, there are two concerns:

• Active queries could return incorrect results unless the index being built is hidden from SELECT queries. This is
handled using the SetMapSelectability() method before building the index.

• Active updates to the data during the index build could be not reflected in the index entries. This is handled by having
the build operation lock individual rows while building the index.

Note: If an application is performing a large number of updates to the data within a single transaction, lock table
contention issues may arise.

30 InterSystems SQL Optimization Guide

Defining and Building Indices

2.6.3 Building Indices on a READONLY Active System

If a table is currently in use for query operations only (READONLY), you can build new indices or rebuild existing indices
without interrupting query operations. This is done by making the indices unavailable to the query optimizer while these
indices are being rebuilt.

If all the classes for which you wish to build one or more indices are currently READONLY, use the same series of operations
described in “Building Indices on a READ and WRITE Active System” , with the following difference: when you use
%BuildIndices() set pLockFlag=3 (shared extent lock).

2.6.4 Building Indices on a READ and WRITE Active System

If a persistent class (table) is currently in use and is available for READ and WRITE access (query and data modification),
you can build new indices or rebuild existing indices without interrupting these operations. If the class for which you wish
to rebuild one or more indices is currently READ and WRITE accessible, the preferred way of building indices is to use
the %BuildIndices() (or %BuildIndicesAsync()) method provided with the persistent class for the table. (For a comparison
of these two methods, see Building Indices.)

CAUTION: The following information applies to Dynamic SQL queries, not Embedded SQL. Embedded SQL checks
the MapSelectability setting when it's compiled, not at runtime. Therefore, turning off MapSelectability
for an index does not have any effect on Embedded SQL queries which have already been compiled. As
a result, Embedded SQL queries could still try to use the disabled index and will give incorrect results.

The following series of operations is required for building one or more indices during concurrent READ and WRITE access:

1. Make the index that you wish to build unavailable to queries (READ access). This is done using SetMapSelectability().
This makes the index unavailable for use by the Query Optimizer. This operation should be performed both when
rebuilding an existing index and when creating a new index. For example:

 WRITE $SYSTEM.SQL.SetMapSelectability("Sample.MyStudents","StudentNameIDX",0)

where:

• The first argument is the Schema.Table name, which is the SqlTableName, not the persistent class name. For
example, the default schema is SQLUser, not User. This value is case-sensitive.

• The second argument is the SQL index map name. This is typically the name of the index, and refers to the name
under which the index is stored on disk. For a new index, this is the name you will use when you create the index.
This value is not case-sensitive.

• The third argument is the MapSelectability flag, where 0 defines the index map as non-selectable (off), and 1
defines the index map as selectable (on). Specify 0.

You can determine if an index is non-selectable by invoking the GetMapSelectability() method. This method returns
0 if you have explicitly flagged an index as non-selectable. In all other cases it returns 1; it does not perform validation
checks for the existence of the table or the index. Note that the Schema.Table name is the SqlTableName, and is case-
sensitive.

SetMapSelectability() and GetMapSelectability() apply to index maps in the current namespace only. If this table
is mapped to multiple namespaces, and the index needs to be built in each namespace, SetMapSelectability() should
be called in each namespace.

2. Establish concurrent operations for the duration of the index build:

• For a new index: Create the index definition in the class (or the new SQL Index Map specification in the
%Storage.SQL of the class). Compile the class. At this point, the index exists in the table definition; this means
that object saves, SQL INSERT operations, and SQL UPDATE operations are all filed in the index. However,

InterSystems SQL Optimization Guide 31

Building Indices

because of the SetMapSelectability() call made in step 1, this index map is not chosen for any data retrieval.
SetMapSelectability() prevents queries from using the extent index, but the data map will be projected to SQL
to use the index global and the data global. For a new index this is appropriate because the index has not yet been
populated. Population of the extent index needs to occur before queries can be run against the table.

• For an existing index: Purge any cached queries that reference the table. The first operation that the index build
performs is to kill the index. Therefore, you cannot rely on any code that is optimized to use the index while the
index is being rebuilt.

3. Use the %BuildIndices() method of your persistent class (table) with pLockFlag=2 (row level locking) to build the
index or indices. The pLockFlag=2 flag establishes an exclusive write lock on individual rows during the rebuild process
so that concurrent data modification operations are coordinated with build index operations.

By default, %BuildIndices() builds all indices defined for the persistent class; you can use pIgnoreIndexList to exclude
indices from the rebuild.

By default, %BuildIndices() builds index entries for all IDs. However, you can you can use pStartID and pEndID to
define a range of IDs. %BuildIndices() will build the index entries only for IDs in that range, inclusive. For example,
if you use INSERT with the %NOINDEX restriction to add a series of new records into a table, you can later use
%BuildIndices() with an ID range to build index entries for those new records. pStartID and pEndID can also be used
build an extremely large index in sections.

%BuildIndices() returns a %Status value. If %BuildIndices() fails due to a problem retrieving data, the system gen-
erates an SQLCODE error and a message (%msg) that include the %ROWID where the error was encountered.

4. Once you have completed building the index, enable the map for selectability by the Query Optimizer. Set the third
argument, the MapSelectability flag to 1, as shown in the following example:

 WRITE $SYSTEM.SQL.SetMapSelectability("Sample.MyStudents","StudentNameIDX",1)

5. Once again, purge any cached queries that reference the table. This will eliminate cached queries that were created
during this process that could not use the index, and are thus less optimal than the same queries using the index.

This completes the process. The index is fully populated and the Query Optimizer is able to consider the index.

Note: %BuildIndices() can only be used to rebuild indices for tables that have positive integer ID values. You can also
use %BuildIndices() to rebuild indices in a child table if the parent table has positive integer ID values. For other
tables, use the %ValidateIndices() method as described in Validate Indices. Because %ValidateIndices() is the
slowest method for building indices, it should only be used when there is no other option.

2.7 Validating Indices
You can validate indices using the either of the following methods:

• $SYSTEM.OBJ.ValidateIndices() validates the indices for a table, and also validates any indices in collection child
tables for that table.

• %Library.Storage.%ValidateIndices() validates the indices for a table. Collection child table indices must be validated
with separate %ValidateIndices() calls.

Both methods check the data integrity of one or more indices for a specified table, and optionally correct any index integrity
issues found. They perform index validation in two steps:

1. Confirm that an index entity is properly defined for every row (object) in the table (class).

32 InterSystems SQL Optimization Guide

Defining and Building Indices

2. Traverse each index and for every entry indexed, make sure there is a value and matching entry in the table (class).

If either method finds discrepancies, it can optionally correct the index structure and/or contents. It can validate, and
optionally correct, standard indices, bitmap indices, bitmap extent indices, and bitslice indices. By default, both methods
validate indices, but do not correct indices.

%ValidateIndices() can only be used to correct (build) an index on a READ and WRITE active system if the following
conditions are followed: SetMapSelectability() is used, as described above; the %ValidateIndices() arguments must
include autoCorrect=1 and lockOption>0. Because %ValidateIndices() is significantly slower, %BuildIndices() is the
preferred method for building indices on an active system.

%ValidateIndices() is commonly run from the Terminal. It displays output to the current device. This method can be
applied to a specified %List of index names, or to all indices defined for the specified table (class). It operates only on those
indices that originated in specified class; if an index originated in a superclass, that index can be validated by calling
%ValidateIndices() on the superclass.

%ValidateIndices() is not supported for READONLY classes.

%ValidateIndices() is supported for sharded classes and for shard-master class tables (Sharded=1). You can invoke
%ValidateIndices, either directly as a class method, or from $SYSTEM.OBJ.ValidateIndices on the shard master class.
Index validation is then performed on the shard local class on each shard, and the results are returned to the caller on the
shard master. When using %ValidateIndices() on a sharded class, the verbose flag is forced to 0. There is no output to the
current device. Any issues found/corrected are returned in the byreference errors() array.

The following example uses %ValidateIndices() to validate and correct all indices for the table Sample.Person:

 SET status=##class(Sample.Person).%ValidateIndices("",1,2,1)
 IF status=1 {WRITE !,"Successful index validation/correction" }
 ELSE {WRITE !,"Index validation/correction failed",!
 DO $System.Status.DisplayError(status) QUIT}

In this example, the first argument ("") specifies that all indices are to be validated; the second argument (1) specifies that
index discrepancies should be corrected; the third argument (2) specifies exclusive locking on the entire table; and the
fourth argument (1) specifies using multiple processes (if available) to perform validation. The method returns a %Status
value.

2.7.1 Validating Indices by Name

The first argument of %ValidateIndices() or the second argument of $SYSTEM.OBJ.ValidateIndices() specifies which
indices are to be validated as a %List structure. The IdKey index is always validated, regardless of the first argument value.
You can validates all of the table’s indices by specifying an empty string value (""). You can validates individual indices
for the table by specifying a list structure. The following example validates the IdKey index and the two specified indices:
NameIDX and SSNKey:

 SET IndList=$LISTBUILD("NameIDX","SSNKey")
 SET status=##class(Sample.Person).%ValidateIndices(IndList,1,2,1)
 IF status=1 {WRITE !,"Successful index validation/correction" }
 ELSE {WRITE !,"Index validation/correction failed",!
 DO $System.Status.DisplayError(status) QUIT}

For either method, if the index list contains a non-existent index name, the method performs no index validation and returns
a %Status error. If the index list contains a duplicate valid index name, the method validates the specified indices, ignoring
the duplicate and issuing no error.

InterSystems SQL Optimization Guide 33

Validating Indices

2.8 Listing Indices
The INFORMATION.SCHEMA.INDEXES persistent class displays information about all column indices in the current
namespace. It returns one record for each indexed column. It provides a number of index properties, including the name
of the index and the schema name, table name, and column name that the index maps to. Each column record also provides
the ordinal position of that column in the index map; this value is 1 unless the index maps to multiple columns.

The following example returns the index name, and the corresponding table schema name, table name, and column name,
and the ordinal position of the column in the index definition for all non-system indices in the current namespace:

SELECT Index_Name,Table_Schema,Table_Name,Column_Name,Ordinal_Position FROM INFORMATION_SCHEMA.INDEXES
 WHERE NOT Table_Schema %STARTSWITH '%'

2.9 Open, Exists, and Delete Methods
The InterSystems IRIS indexing facility supports the following operations:

• Opening an Instance by Index Key

• Checking If an Instance Exists

• Deleting an Instance

2.9.1 Opening an Instance by Index Key

For ID key, primary key, or unique indices, the indexnameOpen() method (where indexname is the name of the index)
allows you to open the object whose index property value or values match supplied value or values. Because this method
has one argument corresponding to each property in the index, the method has three or more arguments:

• The first argument(s) each correspond to the properties in the index.

• The penultimate argument specifies the concurrency value with which the object is to be opened (with the available
concurrency settings listed in the “Object Concurrency” appendix of Defining and Using Classes).

• The final argument can accept a %Status code, in case the method fails to open an instance.

The method returns an OREF if it locates a matching instance.

For example, suppose that a class includes the following index definition:

 Index SSNKey On SSN [Unique];

then, if the referenced object has been stored to disk and has a unique ID value, you can invoke the method as follows:

 SET person = ##class(Sample.Person).SSNKeyOpen("111-22-3333",2,.sc)

Upon successful completion, the method has set the value of person to the OREF of the instance of Sample.Person whose
SSN property has a value of 111–22–3333.

The second argument to the method specifies the concurrency value, which here is 2 (shared). The third argument holds
an optional %Status code; if the method does not find an object that matches the supplied value, then an error message is
written to the status parameter sc.

34 InterSystems SQL Optimization Guide

Defining and Building Indices

This method is implemented as the %Compiler.Type.Index.Open() method; this method is analogous to the
%Persistent.Open() and %Persistent.OpenId() methods, except that it uses the properties in the index definition instead
of the OID or ID argument.

2.9.2 Checking If an Instance Exists

The indexnameExists() method (where indexname is the name of the index) checks if an instance exists with the index
property value or values specified by the method’s arguments. The method has one argument corresponding to each property
in the index; its final, optional argument can receive the object’s ID, if one matches the supplied value(s). The method
returns a boolean, indicating success (1) or failure (0). This method is implemented as the %Compiler.Type.Index.Exists()
method.

For example, suppose that a class includes the following index definition:

 Index SSNKey On SSN [Unique];

then, if the referenced object has been stored to disk and has a unique ID value, you can invoke the method as follows:

 SET success = ##class(Sample.Person).SSNKeyExists("111-22-3333",.id)

Upon successful completion, success equals 1 and id contains the ID matching the object that was found.

This method returns values for all indices except:

• bitmap indices, or a bitmap extent index.

• when the index includes an (ELEMENTS) or (KEYS) expression. For more information on such indices, see the section
“ Indexing Collections.”

2.9.3 Deleting an Instance

The indexnameDelete() method (where indexname is the name of the index) is meant for use with a Unique, PrimaryKey,
and or IdKey index; it deletes the instance whose key value matches the supplied key property/column values. There is one
optional argument, which you can use to specify a concurrency setting for the operation. The method returns a %Status
code. It is implemented as the %Compiler.Type.Index.Delete() method.

InterSystems SQL Optimization Guide 35

Open, Exists, and Delete Methods

3
Optimizing Tables

There are a number of things you can do to ensure the maximum performance of InterSystems SQL tables on InterSystems
IRIS® data platform. The optimizations can have a significant effect on any queries run against this table. The following
performance optimizing considerations are discussed in this chapter:

• ExtentSize, Selectivity, and BlockCount to specify table data estimates before populating the table with data; this
metadata is used to optimize future queries.

• Running Tune Table to analyze representative table data in a populated table; this generated metadata is used to optimize
future queries.

• Tune Table Calculated Values include ExtentSize, Selectivity, Outlier Selectivity, Average Field Size, and BlockCount

• Exporting and Re-importing Tune Table Statistics

3.1 ExtentSize, Selectivity, and BlockCount
When the Query Optimizer decides the most efficient way to execute a specific SQL query, three of the things it considers
are:

• ExtentSize row count for each table used within the query.

• Selectivity the percentage of distinct values calculated for each column used by the query.

• BlockCount count for each SQL map used by the query.

In order to ensure that the Query Optimizer can make the correct decisions, it is important that these values are set correctly.

• You can explicitly set any of these statistics during class (table) definition, prior to populating the table with data.

• After populating the table with representative data, you can run Tune Table to calculate these statistics.

• After running Tune Table, you can override a calculated statistic by specifying an explicit value.

You can compare your explicitly set statistics to the Tune Table generated results. If the assumptions made by Tune Table
result in less-than-optimal results from the Query Optimizer, you can use an explicitly set statistic rather than a Tune Table
generated statistic.

In Studio the Class Editor window displays the class source code. At the bottom of the source code it displays the Storage
definition, which includes the class ExtentSize, and the Selectivity (and, where appropriate, the OutlierSelectivity) for each
property.

InterSystems SQL Optimization Guide 37

3.1.1 ExtentSize

The ExtentSize value for a table is simply the number of rows (roughly) stored within the table.

At development time, you can provide an initial ExtentSize value. If you do not specify an ExtentSize, the default is 100,000.

Typically, you provide a rough estimate of what you expect the size of this table will be when populated with data. It is
not important to have an exact number. This value is used to compare the relative costs of scanning over different tables;
the most important thing is to make sure that the relative values of ExtentSize between associated tables represent an
accurate ratio (that is, small tables should have a small value and large tables a large one).

• CREATE TABLE provides an %EXTENTSIZE parameter keyword to specify the expected number of rows in the
table, as shown in the following example:

CREATE TABLE Sample.DaysInAYear (%EXTENTSIZE 366,
 MonthName VARCHAR(24),Day INTEGER,
 Holiday VARCHAR(24),ZodiacSign VARCHAR(24))

• A persistent class definition for a table can specify an ExtentSize parameter within the storage definition:

<Storage name="Default">
<Data name="MyClassDefaultData">
...
<ExtentSize>200</ExtentSize>
...
</Storage>

In this example, the fragment is the storage definition for the MyClass class, which specifies a value of 200 for ExtentSize.

If your table has real (or realistic) data, you can automatically calculate and set its ExtentSize value using the Tune Table
facility within the Management Portal; for details, see the following section on Tune Table.

3.1.2 Selectivity

Within an InterSystems SQL table (class), every column (property) has a Selectivity value associated with it. The Selectivity
value for a column is the percentage of rows within a table that would be returned as a result of query searching for a typical
value of the column. Selectivity is 1/D where D is the number of distinct values for the field.

Selectivity is based on roughly equal quantities of the distinct values. For example, suppose a table contains a Gender column
whose values are roughly evenly distributed between “M” and “F” . The Selectivity value for the Gender column would
be 50%. The Selectivity value for a more distinguishing property, such as Street Name, is typically a small percentage.

A field in which all the values are the same has a selectivity of 100%. The optimizer will test up to 100,000 values to
determine if all of the values of a non-indexed field are the same. If other values for a field might not be detected in a test
of 100,000 records, you should set the selectivity manually.

A field that is defined as Unique (all values different) has a selectivity of 1 (which should not be confused with a selectivity
of 1.0000%).

At development time, you can provide this value by defining a Selectivity parameter within the storage definition that is
part of the class definition for the table:

<Storage name="Default">
<Data name="MyClassDefaultData">
...
<Property name="Gender">
<Selectivity>50%</Selectivity>
</Property>
...
</Storage>

38 InterSystems SQL Optimization Guide

Optimizing Tables

To view a class’s storage definition, in Studio, from the View menu, select View Storage; Studio includes the storage at the
bottom of the source code for the class.

Typically you provide an estimate of what you expect the Selectivity will be when used within an application. As with
ExtentSize, it is not important to have an exact number. Many of the data type classes provided by InterSystems IRIS will
provide reasonable default values for Selectivity.

You can also use the $SYSTEM.SQL.SetFieldSelectivity() method to set the Selectivity value for a specific field (property).

If your table has real (or realistic) data, you can automatically calculate and set its Selectivity values using the Tune Table
facility within the Management Portal. Tune Table determines if a field has an outlier value, a value that is far more common
than any other value. If so, Tune Table calculates a separate Outlier Selectivity percentage, and calculates Selectivity based
on the presence of this outlier value. The presence of an outlier value may dramatically change the Selectivity value.

3.1.3 BlockCount

When you compile a persistent class, the class compiler computes approximate numbers of map blocks used by each SQL
map based on the ExtentSize and the property definitions. You can view these BlockCount values in the Map BlockCount

tab of the Tune Table facility. The BlockCount is identified in Tune Table as Estimated by class compiler. Note
that if you change the ExtentSize, you must close and re-open the SQL Tune Table window to see this change reflected in
the BlockCount values.

When you run Tune Table, it measures the actual block count for each SQL map. Unless specified otherwise, the Tune
Table measured values replace the class compiler approximate values. These Tune Table measured values are represented
in the class definition as negative integers, to distinguish them from specified BlockCount values. This is shown in the
following example:

<SQLMap name="IDKEY">
 <BlockCount>-4</BlockCount>
</SQLMap>

Tune Table measured values are represented in Tune Table as positive integers, identified as Measured by TuneTable.

You can define explicit BlockCount values in the class definition. You can explicitly specify a block count as a positive
integer, as shown in the following example:

<SQLMap name="IDKEY">
 <BlockCount>12</BlockCount>
</SQLMap>

When you define a class you can omit defining the BlockCount for a map, explicitly specify a BlockCount as a positive
integer, or explicitly define the BlockCount as NULL.

• If you do not specify a BlockCount, or specify a BlockCount of 0, the class compiler estimates the block count. Running
Tune Table replaces the class compiler estimated value.

• If you specify an explicit positive integer BlockCount, running Tune Table does not replace this explicit BlockCount
value. Explicit class definition block count values are represented in Tune Table as positive integers, identified as
Defined in class definition. These block count values are not changed by subsequently running Tune Table.

• If you specify an explicit BlockCount of NULL, the SQL Map uses the BlockCount value estimated by the class
compiler. Because BlockCount is “defined” in the class definition, running Tune Table does not replace this estimated
BlockCount value.

The size of all InterSystems SQL map blocks is 2048 bytes (2K bytes).

Tune Table does not measure BlockCount in the following circumstances:

• If the table is a child table projected by an array or a list collection. The BlockCount values for these types of child
tables are the same as BlockCount for the data map of the parent table.

InterSystems SQL Optimization Guide 39

ExtentSize, Selectivity, and BlockCount

• If a global map is a remote global (a global in a different namespace). The estimated BlockCount used during class
compilation is used instead.

3.2 Tune Table
Tune Table is a utility that examines the data in a table and returns statistics about the ExtentSize (the number of rows in
the table), the relative distribution of distinct values in each field, and the Average Field Size (average length of values in
each field). It also generates the BlockCount for each SQL map. You can specify that Tune Table use this information to
update the metadata associated with a table and each of its fields. The query optimizer can subsequently use these statistics
to determine the most efficient execution plan for a query.

Using Tune Table on an external table will only calculate the ExtentSize. Tune Table cannot calculate field Selectivity
values, Average Field Size, or map BlockCount values for an external table.

3.2.1 When to Run Tune Table

You should run Tune Table on each table after that table has been populated with a representative quantity of real data.
Commonly, you only need to run Tune Table once, as a final step in application development, before the data goes “live.”
Tune Table is not a maintenance utility; it should not be run periodically on live data.

Note: There are rare cases where running Tune Table can decrease SQL performance. While Tune Table can be run on
live data, it is recommended that you run Tune Table on a test system with real data, rather than on a production
system. You can use the optional System Mode configuration parameter to indicate whether the current system
is a test system or a live system. When set, the System Mode is displayed at the top of the Management Portal
page, and can be returned by the $SYSTEM.Version.SystemMode() method.

Generally, Tune Table should not be re-run when table data is added, modified, or deleted, unless there is an order-of-
magnitude change to the characteristics of the current data, as follows:

• Relative Table Sizes: Tune Table assumes that it is analyzing a representative subset of the data. This subset can be
only a small percentage of the full data set, if it is a representative subset. Tune Table results remain relevant as the
number of rows in a table changes, provided that the ExtentSizes of tables involved in joins or other relationships
maintain roughly the same relative sizes. ExtentSize needs to be updated if the ratio between joined tables changes by
an order of magnitude. This is important for JOIN statements, because the SQL optimizer uses ExtentSize when opti-
mizing the table join order. As a general rule, a smaller table is joined before a larger table, regardless of the join order
specified in the query. Therefore, you would want to re-run Tune Table on one or more tables if the ratio of rows in
tableA to tableB changes from 1000:2000 to 10000:2000, but not if it changes to 2100:4000.

• Even Value Distribution: Tune Table assumes that every data value is equally likely. If it detects an outlier value, it
assumes that every data value other than the outlier value is equally likely. Tune Table establishes Selectivity by ana-
lyzing the current data values for each field. Equal likelihood in real data is always a rough approximation; normal
variation in the number of distinct data values and their relative distribution should not warrant re-running Tune Table.
However, an order-of-magnitude change in the number of possible values for a field (the ratio of distinct values to
records), or the overall likelihood of a single field value can result in inaccurate Selectivity. Dramatically changing
the percentage of records with a single field value can cause Tune Table to designate an outlier value or to remove
outlier value designation, significantly changing the calculated Selectivity. If the Selectivity of a field no longer reflects
the actual distribution of data values, you should re-run Tune Table.

• A significant InterSystems IRIS upgrade, or a new site installation may warrant re-running Tune Table.

40 InterSystems SQL Optimization Guide

Optimizing Tables

3.2.2 Running Tune Table

There are three interfaces for running Tune Table:

• Using the Management Portal SQL interface Actions drop-down list, which allows you to run Tune Table on a single
table or on multiple tables.

• Invoking the $SYSTEM.SQL.TuneTable() method for a single table. This interface provides more options.

• Issuing the SQL command TUNE TABLE for a single table.

Tune Table purges cached queries that reference the table being tuned. The TuneTable() method and the TUNE TABLE
command both provide a recompile cached queries option to regenerate the cached queries using the new Tune Table cal-
culated values.

If the table is mapped to a readonly datababase, Tune Table cannot be performed and an error message is generated.

After running the Tune Table facility, the resulting ExtentSize and Selectivity values are saved in the class’s storage definition.
To view the storage definition, in Studio, from the View menu, select View Storage; Studio includes the storage at the bottom
of the source code for the class.

3.2.2.1 Tune Table from the Management Portal

To run Tune Table from the Management Portal:

1. Select System Explorer, then SQL. Select a namespace by clicking the Switch option at the top of the page, then
selecting a namespace from the displayed list. (You can set the Management Portal default namespace for each user.)

2. Select a Schema from the drop-down list on the left side of the screen, or use a Filter. For further details on how to use
Schema and Filter, refer to Browsing SQL Schemas in the “Using the Management Portal SQL Interface” of this
manual.

3. Do one of the following:

• Tune a Single Table: Expand the Tables category and select a table from the list. Once you have selected a table,
click the Actions drop-down list and select Tune Table Information. This displays the table’s current ExtentSize
and Selectivity information. If Tune Table has never been run, ExtentSize=100000, no Selectivity, Outlier Selec-
tivity, Outlier Value, or Average Field Size information is shown (other than the ID having a selectivity of 1), and
the Map BlockCount information is listed as Estimated by class compiler.

From the Selectivity tab, select the Tune Table button. This runs Tune Table on the table, calculating the ExtentSize,
Selectivity, Outlier Selectivity, Outlier Value, and Average Field Size values based on the data in the table. The
Map BlockCount information is listed as Measured by Tune Table.

• Tune All Tables in the Schema: click the Actions drop-down list and select Tune All Tables in Schema. This displays
the Tune Table box. Select the Finish button to run Tune Table on all tables in the schema. When Tune Table
completes this box displays a Done button. Select Done to exit the Tune Table box.

The SQL Tune Table window has two tabs: Selectivity and Map BlockCount. These tabs display the current values generated
by Tune Table. They also allow you to manually set different values than the values generated by Tune Table.

The Selectivity tab contains the following fields:

• Current Table Extentsize. This field has an edit button that allows you to enter a different Table Extentsize.

• Keep class up to date check box. Any changes to statistics generated by Tune Table, or by user input value from the
Tune Table interface, or from Tune Table methods are immediately represented in the class definition:

InterSystems SQL Optimization Guide 41

Tune Table

– If this box is not checked (No), the up-to-date flag on the modified class definition is not set. This indicates that
the class definition is out of date and should be recompiled. This is the default.

– If this box is checked (Yes), the class definition remains flagged as up-to-date. This is the preferred option when
making changes to statistics on a live system, because it makes it less likely that a table class definition will be
recompiled.

• Fields table with columns for Field Name, Selectivity, Notes, Outlier Selectivity, Outlier Value, and Average Field
Size. By clicking on a Fields table heading, you can sort by that column’s values. By clicking on a Fields table row,
you can manually set values for Selectivity, Outlier Selectivity, Outlier Value, and Average Field Size for that field.

The Map BlockCount tab contains the following fields:

• Map Name table with columns for SQL Map Name, BlockCount, and Source of BlockCount. The SQL Map Name
for an index is the SQL index name; this may differ from the persistent class index property name.

By clicking on an individual map name, you can manually set a BlockCount value for that map name.

From the Selectivity tab, you can click the Tune Table button to run Tune Table on this table.

3.2.2.2 Tune Table using a Method

You can use the $SYSTEM.SQL.TuneTable() method to run the Tune Table facility in the current namespace. You can
use TuneTable(tablename) to run Tune Table on a single table, or TuneTable(*) to run Tune Table on all tables is the
specified (or default) schema. Running Tune Table on a single table is shown in the following example:

 DO $SYSTEM.SQL.TuneTable("SQLUser.Person",0,1)

In this example, the second parameter specifies that the Calculated results from this invocation of Tune Table should not
update the table’s current ExtentSize and Selectivity values. The third parameter specifies to display the Tune Table results
at the Terminal.

When using the TuneTable() method, the following error messages may be generated:

• Non-existent table: DO $SYSTEM.SQL.TuneTable("NoSuchTable",0,1)

No such table 'SQLUser.NoSuchTable'

• View: DO $SYSTEM.SQL.TuneTable("MyView",0,1)

'SQLUser.MyView' is a view, not a table. No tuning will be performed.

You can also use the $SYSTEM.SQL.TuneSchema() method to run the Tune Table facility for all the tables in a schema.
When running $SYSTEM.SQL.TuneTable("*") or $SYSTEM.SQL.TuneSchema(), the system will use multiple processes
to tune multiple tables in parallel, if the system supports parallel processing.

3.2.3 Running Tune Table on a Sharded Table

If Tune Table is run on a sharded table, the Tune Table operation is forwarded to each of the shards, where it runs against
that shard of the table. Tune Table does not execute in the master namespace from which it was invoked. If Tune Table is
run on a non-sharded table which has had its class definition exported to the shards, because that table is joined to a sharded
table, the Tune Table operation is forwarded to each of the shards, and it is also executed in the master namespace.

The following guidelines should be followed when running Tune Table on a sharded table:

• Tune the shard-master table, not the shard-local table.

• EXTENTSIZE and BLOCKCOUNT values are per-shard values, not a total value for all shards.

42 InterSystems SQL Optimization Guide

Optimizing Tables

• If using ExportTuneStats() and ImportTuneStats(), export/import the tune stats for the shard-master table, not the
shard-local table.

• When tuning a sharded table, the RecompileCachedQueries argument is ignored, and cached queries for the table are
always purged.

• Tuning a sharded table will define tune stats in both the shard-master and shard-local class/table definition. If manually
editing tune table metadata in the class definitions, the suggested procedure is to modify the definition of the shard-
master class, then recompile the shard-master class. When the shard-master class is compiled, the shard-master tune
stats will be copied to the shard-local version of the class.

If TuneTable() specifies a LogFile parameter, the log file in the shard master instance has an entry for the specified table,
such as the following:

• Sharded table: TABLE: <tablename> Invoking TuneTable on shards for sharded table
<tablename>

• Non-sharded table: TABLE: <tablename> Invoking TuneTable on shards for mapped non-sharded
table <tablename>

On each of the shard instances, a log file of the same name is created in the mgr/<shard-namespace> directory, logging the
Tune Table information for this table on this shard. If a directory path was specified for the log file, it is ignored on the
shards, and the file is always stored in mgr/<shard- namespace>.

3.3 Tune Table Calculated Values
The Tune Table operation calculates and sets table statistics based on the representative data in the table:

• ExtentSize, which may or may not be the actual number of rows in the table (Row Count).

• Selectivity for each property (field) in the table. You can optionally prevent selectivity calculation for individual
properties.

• Outlier Selectivity for a property in which one value appears much more commonly than other values. An efficient
query can make use of outlier optimization.

• Notes for each property that identify certain property characteristics.

• Average Field Size for each property.

• SQL Map Name, BlockCount, and Source of BlockCount for the table.

3.3.1 Extent Size and the Row Count

When running the Tune Table facility from the Management Portal, the ExtentSize is the actual count of the rows currently
in the table. By default, the TuneTable() method also uses the actual row count as the ExtentSize. When a table contains
a large number of rows, it may be preferable to perform analysis on a smaller number of rows. When running the TuneTable()
method, you can optionally specify a different ExtentSize, as shown in the following example:

 DO $SYSTEM.SQL.TuneTable("Sample.Person",0,1,,,,,50)

You can use this option to improve TuneTable() performance when running against a table with a large number of rows.
If you specify an ExtentSize smaller than the actual number of rows in the table, this ExtentSize number should be large
enough to sample representative data.

InterSystems SQL Optimization Guide 43

Tune Table Calculated Values

A specified ExtentSize can be smaller or larger than the actual number of rows. However, ExtentSize should not significantly
exceed the actual number of rows in the current table data. When you specify an ExtentSize, TuneTable() extrapolates
row Ids for that number of rows, then performs sampling. If the ExtentSize greatly exceeds the actual number of rows,
most of the sampled row Ids will not correspond to actual row data. If this is the case, field selectivities cannot be calculated;
instead, TuneTable() lists the ExtentSize you specified as the CALCULATED ExtentSize and a smaller number as the
SAMPLESIZE; TuneTable() returns <Not Specified> for these non-existent Calculated values.

You can specify a SamplePercent for the TuneTable() method. This specifies the percentage of the ExtentSize to sample.
SamplePercent defaults to "" (the null string). This default samples the data as follows:

• If ExtentSize < 1000: SamplePercent="" uses the entire extent size. For example, an ExtentSize of 600 would use a
sample of 600.

• If ExtentSize >= 1000: SamplePercent="" uses 3*sqrt(ExtentSize). For example, an ExtentSize of 10,000 would use
a sample of 300.

You can set an ExtentSize of 0. This may be desirable when you have a table that is never intended to be populated with
data, but used for other purposes such as query joins. When you set ExtentSize to 0, InterSystems IRIS sets the Selectivity
of each field as 100%, and the Average Field Size of each field as 0.

3.3.2 Selectivity and Outlier Selectivity

Tune Table calculates a Selectivity for each property (field) value as a percentage. It does this by sampling the data, so
selectivity is always an estimate, not an exact value. Selectivity is based on the assumption that all property values are, or
could be, equally likely. This is a reasonable assumption for most data. For example, in a general population table most
data values are typical: any given date of birth will appear in around .27% of the data (1 in 365); roughly half will be female
and half male (50%). A field that is defined as Unique has a selectivity of 1 (which should not be confused with a selectivity
of 1.0000 (1%). A selectivity percentage is sufficient for most properties.

For a few properties, Tune Table also calculates an Outlier Selectivity. This is a percentage for a single property value that
appears much more frequently in the sample than the other data values. Tune Table only returns an outlier selectivity when
there is a substantial difference between the frequency of one data value and the frequency of the other data values. Tune
Table returns, at most, one outlier for a table, regardless of the distribution of data values. If an outlier is selected, Tune
Table displays this value as the Outlier Value. NULL is represented as <Null>.

If Tune Table returns an outlier selectivity, the normal selectivity is still the percentage of each non-outlier data value within
the whole set of rows. For example, if the outlier selectivity is 80% and the regular selectivity is 1%, then in addition to
the outlier value, you can expect to find about 20 ((1-.80)/.01) additional non-outlier values.

The most common example of outlier selectivity is a property that permits NULLs. If the number of records with NULL
for a property greatly exceeds the number of records that have any specific data value for that property, NULL is the outlier.
The following is the Selectivity and Outlier Selectivity for the FavoriteColors field:

SELECTIVITY of FIELD FavoriteColors
 CURRENT = 1.8966%
 CALCULATED = 1.4405%
 CURRENT OUTLIER = 45.0000%, VALUE = <Null>
 CALCULATED OUTLIER = 39.5000%, VALUE = <Null>

If a field only contains one distinct value (all rows have the same value), it has a Selectivity of 100%. A value that has a
selectivity of 100% is not considered to be an outlier. Normally, Tune Table establishes Selectivity and Outlier Selectivity
values by sampling the data and estimating, which is not sufficient for establishing that there is only one value. All rows
must be examined. Consequently, Tune Table can only recognize a field of this sort if the field is indexed, the field is the
first field of the index, and the field and the index have the same collation type. If the field is not indexed as described, you
should manually specify a Selectivity of 100%, delete any outlier selectivity, and set CALCSELECTIVITY=0 to prevent
Tune Table attempting to calculate selectivity or specify this value as an outlier.

44 InterSystems SQL Optimization Guide

Optimizing Tables

To modify these Selectivity, Outlier Selectivity, and Outlier Value calculated values, select an individual field from the
Tune Table display. This displays these values for that field in the Details area to the right of the display. You can modify
Selectivity, Outlier Selectivity, and/or Outlier Value to values that better fit the anticipated full data set.

• You can specify Selectivity either as a percentage of rows with a percent (%) sign, or as an integer number of rows (no
percent sign). If specified as an integer number of rows, InterSystems IRIS uses the extent size to calculate the Selec-
tivity percentage.

• You can specify an Outlier Selectivity and Outlier Value for a field that previously had no outlier. Specify Outlier
Selectivity as a percentage with a percent (%) sign. If you specify just the Outlier Selectivity, Tune Table assumes the
Outlier Value is <Null>. If you specify just the Outlier Value, Tune Table will not save this value unless you also
specify an Outlier Selectivity.

3.3.3 CALCSELECTIVITY Parameter and Not Calculating Selectivity

Under certain circumstances, you may not want the Tune Table facility to calculate the Selectivity for a property. To prevent
Selectivity from being calculated, specify the value of the property’s CALCSELECTIVITY parameter to 0 (the default is 1).
In Studio, you can set CALCSELECTIVITY on the Property Parameters page of the New Property Wizard or in the list of a
property’s parameters in the Inspector (you may need to contract and re-expand the property parameter list to display it).

One circumstance where you should specify CALCSELECTIVITY=0 is a field that is known to contain only one value in
all rows (Selectivity=100%), if that field is not indexed.

3.3.4 Outlier Optimization

By default, the query optimizer assumes that a query will not select for the outlier value. For example, a query commonly
selects for specific field value(s) and returns a small number of records from the database, rather than returning the large
number of records in which that field value is the outlier. The query optimizer always uses Selectivity for construction of
the query plan unless you perform some action that requests consideration of the Outlier Selectivity.

There are several actions you can perform to adjust query optimization based on selecting for an outlier value:

• If the Outlier Value is <null>, specify an IS NULL or IS NOT NULL condition for that field in the query WHERE
clause. This causes the query optimizer to use the Outlier Selectivity when constructing the query.

• If the Outlier Value is a data value, the query optimizer assumes that the field value you are selecting for is not the
outlier value. For example, the employee records for a Massachusetts-based company might have an Office_State field
outlier of ‘MA’ (Massachusetts). The optimizer assumes that the query is not going to select for ‘MA’, because that
would return the majority of the records in the database. If, however, you are writing a query that does select for the
outlier value, you can inform the optimizer of this by enclosing the outlier value in double parentheses. When querying
on the field, specify a WHERE clause such as the following: WHERE Office_State=(('MA')). This technique
suppresses literal substitution and forces the query optimizer to use the Outlier Selectivity when constructing the query
plan. This syntax is necessary for Dynamic SQL queries, and for queries written outside of InterSystems IRIS that are
supplied using ODBC/JDBC. It is not necessary for class queries, Embedded SQL queries, or queries accessed through
a view. For further details, refer to the WHERE clause reference page.

• Configure the system-wide Optimize queries based on parameter values SQL setting. This option sets an appropriate
combination of Runtime Plan Choice (RTPC) optimization for an outlier value and Bias Queries as Outlier (BQO)
optimization. Note that changing this configuration setting purges all cached queries in all namespaces. Using the
Management Portal, select System Administration, Configuration, SQL and Object Settings, SQL to view and change
this option. The available choices are:

– Assume query parameter values are not field outliers (BQO=OFF, RTPC=OFF, the initial default)

– Assume query parameter values often match field outliers (BQO=ON, RTPC=OFF)

– Optimize for actual query parameter values at runtime (BQO=OFF, RTPC=ON)

InterSystems SQL Optimization Guide 45

Tune Table Calculated Values

To determine the current settings, call $SYSTEM.SQL.CurrentSettings().

• Overriding the system-wide configuration settings for a query.

You can override RTPC for an individual query by specifying the %NORUNTIME restriction keyword. If the query
SELECT Name,HaveContactInfo FROM t1 WHERE HaveContactInfo=? would result in RTPC processing,
the query SELECT %NORUNTIME Name,HaveContactInfo FROM t1 WHERE HaveContactInfo=? would
override RTPC, resulting in a standard query plan.

You can override Bias Queries as Outlier for an individual query by specifying the comment option /*#OPTIONS
{"BiasAsOutlier":1} */.

3.3.5 The Notes Column

The Management Portal Tune Table Information option displays a Notes column for each field. The values in this field are
system-defined and non-modifiable. They include the following:

• RowID field: A table has one RowID, which is defined by the system. Its name is commonly ID, but it can have a
different system-assigned name. Because all of its values are (by definition) unique, its Selectivity is always 1. If the
class definition includes SqlRowIdPrivate, the Notes column value is RowID field, Hidden field.

• Hidden field: A hidden field is defined as private, and is not displayed by SELECT *. By default, CREATE
TABLE defines the RowID field as hidden; you can specify the %PUBLICROWID keyword to make the RowID not
hidden and public. By default, tables defined by a persistent class definition define the RowID as not hidden; you can
specify SqlRowIdPrivate to define the RowID as hidden and private. Container fields are defined as hidden.

• Stream field: Indicates a field defined with a stream data type, either character stream (CLOB) or binary stream
(BLOB). A stream file has no Average Field Size.

• Parent reference field: A field that references a parent table.

An IDENTITY field, ROWVERSION field, SERIAL field, or UNIQUEIDENTIFIER (GUID) field is not identified in the
Notes column.

3.3.6 Average Field Size

Running Tune Table calculates the average field size (in characters) for all non-Stream fields, based on the current table
data set. This is (unless otherwise noted) the same as AVG($LENGTH(field)), rounded to two decimal places. You can
change this average field size for individual fields to reflect the anticipated average size of the field’s data.

• NULL: Because the $LENGTH function treats NULL fields as having a length of 0, NULL fields are averaged in,
with a length 0. This may result in an Average Field Size of less than one character.

• Empty column: If a column contains no data (no field values for all of the rows), the average field size value is 1, not
0. The AVG($LENGTH(field)) is 0 for a column that contains no data.

• ExtentSize=0: When you set ExtentSize to 0, Average Field Size for all fields is reset to 0.

• Logical field values: Average Field Size is always calculated based on the field’s Logical (internal) value.

• List fields: InterSystems IRIS List fields are calculated based on their Logical (internal) encoded value. This encoded
length is longer than the total length of the elements in the list.

• Container fields: A container field for a collection is larger than the total length of its collection objects. For example,
in Sample.Person the Home container field Average Field Size is larger than the total of the average field sizes of
Home_Street, Home_City, Home_State, and Home_Zip. For further details, refer to “Controlling the SQL Projection
of Collection Properties” in Using InterSystems IRIS Objects.

• Stream fields: A stream field does not have an average field size.

46 InterSystems SQL Optimization Guide

Optimizing Tables

If the property parameter CALCSELECTIVITY is set to 0 for a property/field, Tune Table does not calculate the Average
Field Size for that property/field.

You can modify an Average Field Size calculated value by selecting an individual field from the Tune Table display. This
displays the values for that field in the Details area to the right of the display. You can modify the Average Field Size to a
value that better fits the anticipated full data set. Because Tune Table performs no validation when you set this value, you
should make sure that the field is not a Stream field, and that the value you specify is not larger than the maximum field
size (MaxLen).

The Average Field Size is also displayed in the Management Portal Catalog Details tab Fields option table. Tune Table must
have been run for the Fields option table to display Average Field Size values. For further details, refer to the Catalog
Details Tab section in the “Using the Management Portal SQL Interface” chapter of this guide.

3.3.7 Map BlockCount Tab

The Tune Table Map BlockCount tab displays the SQL Map Name, BlockCount (as a positive integer), and Source of Block-

Count. The Source of BlockCount can be Defined in class definition, Estimated by class compiler,
or Measured by TuneTable. Running Tune Table changes Estimated by class compiler to Measured by
TuneTable; it does not affect Defined in class definition values.

You can modify a BlockCount calculated value by selecting an individual SQL Map Name from the Tune Table display.
This displays the block count for that Map Name in the Details area to the right of the display. You can modify the BlockCount
to a value that better fits the anticipated full data set. Because Tune Table performs no validation when you set this value,
you should make sure that the block count is a valid value. Modifying BlockCount changes the Source of BlockCount to
Defined in class definition. For further details, refer to the BlockCount section in this chapter.

3.4 Exporting and Re-importing Tune Table Statistics
You can export Tune Table statistics from a table or group of tables and then import these Tune Table statistics into a table
or group of tables. The following are three circumstances in which you might want to perform this export/import. (For
simplicity, these describe the export/import of statistics from a single table; in actual use, export/import of statistics from
multiple inter-related tables is often performed):

• To model a production system: A production table is fully populated with actual data and optimized using Tune Table.
In a test environment you create a table with the same table definition but far less data. By exporting the Tune Table
statistics from the production table and importing them into the test table, you can model the production table optimization
on the test table.

• To replicate a production system: A production table is fully populated with actual data and optimized using Tune
Table. A second production table with the same table definition is created. (For example, a production environment
and its backup environment, or a multiple identical table definitions with each table containing the patient records for
a different hospital.) By exporting the Tune Table statistics from the first table and importing them into the second
table, you can give the second table the same optimization as the first table without the overhead of running Tune Table
a second time or waiting for the second table to be populated with representative data.

• To revert to a prior set of statistics: You can create optimization statistics for a table by running Tune Table or by
explicitly setting statistics. By exporting these statistics you can preserve them while experimenting with other statistics
settings. Once you have determined the optimal set of statistics, you can import them back into the table.

You can export Tune Table statistics to an XML file using the $SYSTEM.SQL.ExportTuneStats() method. This method
can export the Tune Table statistics for one, more than one, or all tables within a namespace, as shown in the following
examples:

InterSystems SQL Optimization Guide 47

Exporting and Re-importing Tune Table Statistics

 DO $SYSTEM.SQL.ExportTuneStats("C:\AllStats.xml")
 /* Exports TuneTable Statistics for all schemas/tables in the current namespace */

 DO $SYSTEM.SQL.ExportTuneStats("C:\SampleStats.xml","Sample")
 /* Exports TuneTable Statistics for all tables in the Sample schema */

 DO $SYSTEM.SQL.ExportTuneStats("C:\SamplePStats.xml","Sample","P*")
 /* Exports TuneTable Statistics for all tables beginning with the letter "P" in the Sample schema
*/

 DO $SYSTEM.SQL.ExportTuneStats("C:\SamplePersonStats.xml","Sample","Person")
 /* Exports TuneTable Statistics for the Sample.Person table */

You can re-import Tune Table statistics that were exported using ExportTuneStats() by using the
$SYSTEM.SQL.ImportTuneStats() method.

ImportTuneStats() has a KeepClassUpToDate boolean option. If TRUE (and update is TRUE), ImportTuneStats() will
update the class definition with the new EXTENTSIZE and SELECTIVITY values, but the class definition will be kept as
up-to-date. In many cases, however, it is desirable to recompile the class after its table has been tuned so that queries in the
class definition can be recompiled and the SQL query optimizer can use the updated data statistics. The default is FALSE
(0). Note that if the class is deployed the class definition will not be updated.

ImportTuneStats() has a ClearCurrentStats boolean option. If TRUE, ImportTuneStats() will clear any prior EXTENTSIZE,
SELECTIVITY, BLOCKCOUNT and other Tune Table statistics from the existing table before importing the stats. This
can be used if you want to completely clear those table stats that are not specified in the import file, instead of leaving them
defined in the persistent class for the table. The default is FALSE (0).

If ImportTuneStats() does not find the corresponding table, it skips that table and proceeds to the next table specified in
the import file. If a table is found, but some of the fields are not found, those fields will simply be skipped.

The BlockCount for a map in a class storage definition cannot be inherited. The BlockCount can only appear in the storage
definition of the class where the map originated. ImportTuneStats() only sets the projected table's BlockCount metadata
and not the class storage BlockCount metadata if the map originated in a super class.

48 InterSystems SQL Optimization Guide

Optimizing Tables

4
Cached Queries

The system automatically maintains a cache of prepared Dynamic SQL statements (“queries”). This permits the re-execution
of an SQL query without repeating the overhead of optimizing the query and developing a Query Plan. A cached query is
created when certain SQL statements are prepared using Dynamic SQL, ODBC, JDBC, or the $SYSTEM.SQL.DDLImport()
method. (The Management Portal execute SQL inteface, the InterSystems SQL Shell, and the %SYSTEM.SQL.Execute()
method use Dynamic SQL, and thus create cached queries.) A non-cursor Embedded SQL statement does not create a
cached query.

SQL statements that are automatically cached are:

• SELECT: a SELECT cached query is shown in the Catalog Details for its table. If the query references more than one
table, the same cached query is listed for each referenced table. Purging the cached query from any one of these tables
purges it from all tables. From the table’s Catalog Details you can select a cached query name to display cached query
details, including Execute and Show Plan options. A SELECT cached query created by the DDLImport("IRIS")
method does not provide Execute and Show Plan options.

DECLARE name CURSOR FOR SELECT creates a cached query. However, cached query details do not include
Execute and Show Plan options.

• INSERT, UPDATE, INSERT OR UPDATE, DELETE: create a cached query shown in the Catalog Details for its
table.

• TRUNCATE TABLE: issued from Dynamic SQL creates a cached query shown in the Catalog Details for its table.
Note that DDLImport("IRIS") does not support TRUNCATE TABLE.

• CALL: creates a cached query shown in the Cached Queries list for its schema.

• SET TRANSACTION, START TRANSACTION, %INTRANSACTION, COMMIT, ROLLBACK: create a
cached query shown in the Cached Queries list for every schema in the namespace.

A cached query is created when you Prepare the query. For this reason, it is important not to put a %Prepare() method in
a loop structure. A subsequent %Prepare() of the same query (differing only in specified literal values) uses the existing
cached query rather than creating a new cached query.

Changing the SetMapSelectability() value for a table invalidates all existing cached queries that reference that table. A
subsequent Prepare of an existing query creates a new cached query and removes the old cached query from the listing.

A cache query is deleted when you purge cached queries. Modifying a table definition automatically purges any queries
that reference that table. Issuing a Prepare or Purge automatically requests an exclusive system-wide lock while the query
cache metadata is updated. The System Administrator can modify the timeout value for the cached query lock.

The creation of a cached query is not part of a transaction. The creation of a cached query is not journaled.

InterSystems SQL Optimization Guide 49

4.1 Cached Queries Improve Performance
When you first prepare a Dynamic SQL query, the SQL Engine optimizes it and generates a program (a set of one or more
InterSystems IRIS® data platform routines) that will execute the query. The optimized query text is then stored as a cached
query class. If you subsequently attempt to execute the same (or a similar) query, the SQL Engine will find the cached
query and directly execute the code for the query, bypassing the need to optimize and code generate.

Cached queries provide the following benefits:

• Subsequent execution of frequently used queries is faster. More importantly, this performance boost is available
automatically without having to code cumbersome stored procedures. Most relational database products recommend
using only stored procedures for database access. This is not necessary with InterSystems IRIS.

• A single cached query is used for similar queries, queries that differ only in their literal values. For example, SELECT
TOP 5 Name FROM Sample.Person WHERE Name %STARTSWITH 'A' and SELECT TOP 1000 Name
FROM Sample.Person WHERE Name %STARTSWITH 'Mc' only differ in the literal values for TOP and the
%STARTSWITH condition. The cached query prepared for the first query is automatically used for the second query.
For other considerations that result in two “identical” queries resulting in separate cached queries, see below.

• The query cache is shared among all database users; if User 1 prepares a query, then User 1023 can take advantage of
it.

• The Query Optimizer is free to use more time to find the best solution for a given query as this price only has to be
paid the first time a query is prepared.

InterSystems SQL stores all cached queries in a single location, the IRISLOCALDATA database. However, cached queries
are namespace specific. Each cached query is identified with the namespace from which it was prepared (generated). You
can only view or execute a cached query from within the namespace in which it was prepared. You can purge cached queries
either for the current namespace or for all namespaces.

A cached query does not include comments. However, it can include comment options following the query text, such as
/*#OPTIONS {"optionName":value} */.

There is no need for a cache for Embedded SQL, because Embedded SQL statements are replaced with inline code at
compilation time.

For use of cached queries when changing a table definition, refer to the “SQL Statements and Frozen Plans” chapter in
this manual.

4.2 Creating a Cached Query
When InterSystems IRIS Prepares a query it determines:

1. If the query matches a query already in the query cache. If not, it assigns an increment count to the query.

2. If the query prepares successfully. If not, it does not assign the increment count to a cached query name.

3. Otherwise, the increment count is assigned to a cached query name and the query is cached.

50 InterSystems SQL Optimization Guide

Cached Queries

4.2.1 Cached Query Names

The SQL Engine assigns a unique class name to each cached query, with the following format:

%sqlcq.namespace.clsnnn

Where namespace is the current namespace, in capital letters, and nnn is a sequential integer. For example,
%sqlcq.USER.cls16.

Cached queries are numbered sequentially on a per-namespace basis, starting with 1. The next available nnn sequential
number depends on what numbers have been reserved or released:

• A number is reserved when you begin to prepare a query if that query does not match an existing cached query. A
query matches an existing cached query if they differ only in their literal values — subject to certain additional consid-
erations: suppressed literal substitution, different comment options, or the situations described in “Separate Cached
Queries” .

• A number is reserved but not assigned if the query does not prepare successfully. Only queries that Prepare successfully
are cached.

• A number is reserved and assigned to a cached query if the query prepares successfully. This cached query is listed
for every table referred to in the query, regardless of whether any data is accessed from that table. If a query does not
refer to any tables, a cached query is created but cannot be listed or purged by table.

• A number is released when a cached query is purged. This number becomes available as the next nnn sequential
number. Purging individual cached queries associated with a table or purging all of the cached queries for a table
releases the numbers assigned to those cached queries. Purging all cached queries in the namespace releases all of the
numbers assigned to cached queries, including cached queries that do not reference a table, and numbers reserved but
not assigned.

Purging cached queries resets the nnn integer. Integers are reused, but remaining cached queries are not renumbered.
For example, a partial purge of cached queries might leave cls1, cls3, cls4, and cls7. Subsequent cached queries
would be numbered cls2, cls5, cls6, and cls8.

A CALL statement may result in multiple cached queries. For example, the SQL statement CALL
Sample.PersonSets('A','MA') results in the following cached queries:

%sqlcq.USER.cls1: CALL Sample . PersonSets (? , ?)
%sqlcq.USER.cls2: SELECT name , dob , spouse FROM sample . person
 WHERE name %STARTSWITH ? ORDER BY 1
%sqlcq.USER.cls3: SELECT name , age , home_city , home_state
 FROM sample . person WHERE home_state = ? ORDER BY 4 , 1

In Dynamic SQL, after preparing an SQL query (using the %Prepare() or %PrepareClassQuery() instance method) you can
return the cached query name using the %Display() instance method or the %GetImplementationDetails() instance
method. See Results of a Successful Prepare.

The cached query name is also a component of the result set OREF returned by the %Execute() instance method of the
%SQL.Statement class (and the %CurrentResult property). Both of these methods of determining the cached query name
are shown in the following example:

 SET randtop=$RANDOM(10)+1
 SET randage=$RANDOM(40)+1
 SET myquery = "SELECT TOP ? Name,Age FROM Sample.Person WHERE Age < ?"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET x = tStatement.%GetImplementationDetails(.class,.text,.args)
 IF x=1 { WRITE "cached query name is: ",class,! }
 SET rset = tStatement.%Execute(randtop,randage)
 WRITE "result set OREF: ",rset.%CurrentResult,!
 DO rset.%Display()
 WRITE !,"A sample of ",randtop," rows, with age < ",randage

InterSystems SQL Optimization Guide 51

Creating a Cached Query

In this example, the number of rows selected (TOP clause) and the WHERE clause predicate value change with each query
invocation, but the cached query name does not change.

4.2.2 Separate Cached Queries

Differences between two queries that shouldn’t affect query optimization nevertheless generate separate cached queries:

• Different syntactic forms of the same function generate separate cached queries. Thus ASCII('x') and {fn
ASCII('x')} generate separate cached queries, and {fn CURDATE()} and {fn CURDATE} generate separate
cached queries.

• A case-sensitive table alias or column alias value, and the presence or absence of the optional AS keyword generate
separate cached queries. Thus ASCII('x'), ASCII('x') AChar, and ASCII('x') AS AChar generate separate
cached queries.

• Using a different ORDER BY clause.

• Using TOP ALL instead of TOP with an integer value.

4.3 Literal Substitution
When the SQL Engine caches a Dynamic SQL query, it performs literal substitution. The query in the query cache represents
each literal with a “?” character, representing an input parameter. This means that queries that differ only in their literal
values are represented by a single cached query. For example, the two queries:

SELECT TOP 11 Name FROM Sample.Person WHERE Name %STARTSWITH 'A'

SELECT TOP 5 Name FROM Sample.Person WHERE Name %STARTSWITH 'Mc'

Are both represented by a single cached query:

SELECT TOP ? Name FROM Sample.Person WHERE Name %STARTSWITH ?

This minimizes the size of the query cache, and means that query optimization does not need to be performed on queries
that differ only in their literal values.

Literal values supplied using input host variables (for example, :myvar) and ? input parameters are also represented in
the corresponding cached query with a “?” character. Therefore, the queries SELECT Name FROM t1 WHERE
Name='Adam', SELECT Name FROM t1 WHERE Name=?, and SELECT Name FROM t1 WHERE Name=:namevar
are all matching queries and generate a single cached query.

You can use the %GetImplementationDetails() method to determine which of these entities is represented by each “?”
character for a specific prepare.

The following considerations apply to literal substitution:

• Plus and minus signs specified as part of a literal generate separate cached queries. Thus ABS(7), ABS(-7), and
ABS(+7) each generate a separate cached query. Multiple signs also generate separate cached queries: ABS(+?) and
ABS(++?). For this reason, it is preferable to use an unsigned variable ABS(?) or ABS(:num), for which signed or
unsigned numbers can be supplied without generating a separate cached query.

• Precision and scale values usually do not take literal substitution. Thus ROUND(567.89,2) is cached as ROUND(?,2).
However, the optional precision value in CURRENT_TIME(n), CURRENT_TIMESTAMP(n), GETDATE(n), and
GETUTCDATE(n) does take literal substitution.

52 InterSystems SQL Optimization Guide

Cached Queries

• A boolean flag does not take literal substitution. Thus ROUND(567.89,2,0) is cached as ROUND(?,2,0) and
ROUND(567.89,2,1) is cached as ROUND(?,2,1).

• A literal used in an IS NULL or IS NOT NULL condition does not take literal substitution.

• Any literal used in an ORDER BY clause does not take literal substitution. This is because ORDER BY can use an
integer to specify a column position. Changing this integer would result in a fundamentally different query.

• An alphabetic literal must be enclosed in single quotes. Some functions permit you to specify an alphabetic format
code with or without quotes; only a quoted alphabetic format code takes literal substitution. Thus
DATENAME(MONTH,64701) and DATENAME('MONTH',64701) are functionally identical, but the corresponding
cached queries are DATENAME(MONTH,?) and DATENAME(?,?).

• Functions that take a variable number of arguments generate separate cached queries for each argument count. Thus
COALESCE(1,2) and COALESCE(1,2,3) generate separate cached queries.

4.3.1 DynamicSQLTypeList Comment Option

When matching queries, a comment option is treated as part of the query text. Therefore, a query that differs from an
existing cached query in its comment options does not match the existing cached query. A comment option may be user-
specified as part of the query, or generated and inserted by the SQL preprocessor before preparing the query.

If an SQL query contains literal values, the SQL preprocessor generates a DynamicSQLTypeList comment option, which
it appends to the end of the cached query text. This comment option assigns a data type to each literal. Data types are listed
in the order that the literals appear in the query. Only actual literals are listed, not input host variables or ? input parameters.
The following is a typical example:

SELECT TOP 2 Name,Age FROM Sample.MyTest WHERE Name %STARTSWITH 'B' AND Age > 21.5

generates the cached query text:

SELECT TOP ? Name , Age FROM Sample . MyTest WHERE Name %STARTSWITH ? AND Age > ? /*#OPTIONS
{"DynamicSQLTypeList":"10,1,11"} */

In this example, the literal 2 is listed as type 10 (integer), the literal “B” is listed as type 1 (string), and the literal 21.5 is
listed as type 11 (numeric).

Note that the data type assignment is based solely on the literal value itself, not the data type of the associated field. For
instance, in the above example Age is defined as data type integer, but the literal value 21.5 is listed as numeric. Because
InterSystems IRIS converts numbers to canonical form, a literal value of 21.0 would be listed as integer, not numeric.

DynamicSQLTypeList returns the following data type values:

String of length 1 to 32 (inclusive)1

String of length 33 to 128 (inclusive)2

String of length 129 to 512 (inclusive)3

String of length > 5124

Integer10

Numeric11

Because the DynamicSQLTypeList comment option is part of the query text, changing a literal so that it results in a different
data type results in creating a separate cached query. For example, increasing or decreasing the length of a literal string so
that it falls into a different range.

InterSystems SQL Optimization Guide 53

Literal Substitution

4.3.2 Literal Substitution and Performance

The SQL Engine performs literal substitution for each value of an IN predicate. A large number of IN predicate values can
have a negative effect on cached query performance. A variable number of IN predicate values can result in multiple cached
queries. Converting an IN predicate to an %INLIST predicate results in a predicate with only one literal substitution,
regardless of the number of listed values. %INLIST also provides an order-of-magnitude SIZE argument, which SQL uses
to optimize performance.

4.3.3 Suppressing Literal Substitution

This literal substitution can be suppressed. There are circumstances where you may wish to optimize on a literal value, and
create a separate cached query for queries with that literal value. To suppress literal substitution, enclose the literal value
in double parentheses. This is shown in the following example:

SELECT TOP 11 Name FROM Sample.Person WHERE Name %STARTSWITH (('A'))

Specifying a different %STARTSWITH value would generate a separate cached query. Note that suppression of literal
substitution is specified separately for each literal. In the above example, specifying a different TOP value would not gen-
erate a separate cached query.

To suppress literal substitution of a signed number, specify syntax such as ABS(-((7))).

Note: Different numbers of enclosing parentheses may also suppress literal substitution in some circumstances. Inter-
Systems recommends always using double parentheses as the clearest and most consistent syntax for this purpose.

4.4 Cosharding Comment Option
If an SQL query specifies multiple sharded tables, the SQL preprocessor generates a Cosharding comment option, which
it appends to the end of the cached query text. This Cosharding option shows whether or not the specified tables are
cosharded.

In the following example, all three specified tables are cosharded:

/*#OPTIONS {"Cosharding":[["T1","T2","T3"]]} */

In the following example, none of the three specified tables are cosharded:

/*#OPTIONS {"Cosharding":[["T1"],["T2"],["T3"]]} */

In the following example, table T1 is not cosharded, but tables T2 and T3 are cosharded:

/*#OPTIONS {"Cosharding":[["T1"],["T2","T3"]]} */

4.5 Runtime Plan Choice
Runtime Plan Choice (RTPC) is a configuration option that allows the SQL optimizer to take advantage of outlier value
information at run time (query execution time). Runtime Plan Choice is a system-wide SQL configuration option.

When RTPC is activated, preparing the query includes detecting whether the query contains a condition on a field that has
an outlier value. If the prepare detects one or more outlier field conditions, the query is not sent to the optimizer. Instead,
SQL generates a Runtime Plan Choice stub. At execution time, the optimizer uses this stub to choose which query plan to

54 InterSystems SQL Optimization Guide

Cached Queries

execute: a standard query plan that ignores outlier status, or an alternative query plan that optimizes for outlier status. If
there are multiple outlier value conditions, the optimizer can choose from multiple alternative run time query plans.

• When the query is prepared, SQL determines if it contains outlier field conditions. If so, it defers choosing a query
plan until the query is executed. At prepare time it creates a standard SQL Statement and (for Dynamic SQL) a corre-
sponding cached query, but defers the choice of whether to use this query plan or to create a different query plan until
the query is executed. At prepare time, it creates what appear to be a standard SQL Statement, such as the following:
DECLARE QRS CURSOR FOR SELECT Top ? Name,HaveContactInfo FROM Sample.MyTest WHERE

HaveContactInfo=?, representing literal substitution variables with question marks. However, if you view the SQL
Statement details, the Query Plan contains the statement “execution may cause creation of a different
plan” At prepare time, a Dynamic SQL query also creates what appears to be a standard cached query; however, the
cached query Show Plan option displays the Query Text with the SELECT %NORUNTIME keyword, indicating that
this is a query plan that does not use RTPC.

• When the query is executed (OPEN in Embedded SQL), SQL creates a second SQL Statement and a corresponding
cached query. The SQL Statement has a hash generated name and generates a RTPC stub, such as the following:
DECLARE C CURSOR FOR %NORUNTIME SELECT Top :%CallArgs(1) Name,HaveContactInfo FROM

Sample.MyTest WHERE HaveContactInfo=:%CallArgs(2). The optimizer then uses this to generate a cor-
responding cached query. If the optimizer determines that outlier information provides no performance advantage, it
creates a cached query identical to the cached query created at prepare time, and executes this cached query. However
if the optimizer determines that using outlier information provides a performance advantage, it creates a cached query
that suppresses literal substitution of outlier fields in the cached query. For example, if the HaveContactInfo field is
an outlier field (the vast majority of records have the value ‘Yes’), the query SELECT Name,HaveContactInfo
FROM t1 WHERE HaveContactInfo=? would result in the cached query: SELECT Name,HaveContactInfo
FROM t1 WHERE HaveContactInfo=(('Yes')).

Note that RTPC query plan display differs based on the source of the SQL code:

The Management Portal SQL interface Show Plan button may display an alternative run time query plan because this Show
Plan takes its SQL code from the SQL interface text box.

The SQL Statement, when selected, displays the Statement Details which includes the Query Plan. This Query Plan does
not display an alternative run time query plan, but instead contains the text “execution may cause creation of
a different plan” because it takes its SQL code from the statement index.

If RTPC is not activated, or the query does not contain appropriate outlier field conditions, or the query is a simple
Embedded SQL query that does not use a cursor, the optimizer creates a standard SQL Statement and (for Dynamic SQL)
a corresponding cached query.

If an RTPC stub is frozen, all associated alternative run time query plans are also frozen. RTPC processing remains active
for a frozen query even when the RTPC configuration option is turned off.

You can manually suppress literal substitution when writing the query by specifying parentheses: SELECT
Name,HaveContactInfo FROM t1 WHERE HaveContactInfo=(('Yes')). If you suppress literal substitution
of the outlier field in a condition, RTPC is not applied to the query. The optimizer creates a standard cached query.

4.5.1 Activating RTPC

You can configure RTPC system-wide using either the Management Portal or a class method. Note that changing the RTPC
configuration setting purges all cached queries.

Using the Management Portal, configure the system-wide Optimize queries based on parameter values SQL setting. This
option sets an appropriate combination of Runtime Plan Choice (RTPC) optimization and Bias Queries as Outlier (BQO)
optimization. Select System Administration, Configuration, SQL and Object Settings, SQL to view and change this option.
The available choices are:

• Assume query parameter values are not field outliers (BQO=OFF, RTPC=OFF, the initial default)

InterSystems SQL Optimization Guide 55

Runtime Plan Choice

• Assume query parameter values often match field outliers (BQO=ON, RTPC=OFF)

• Optimize for actual query parameter values at runtime (BQO=OFF, RTPC=ON)

To determine the current settings, call $SYSTEM.SQL.CurrentSettings().

You can activate RTPC using the $SYSTEM.SQL.SetRTPC(flag,.oldvalue) class method. The flag argument is a boolean
used to set (1) or unset (0) RTPC. The oldvalue argument returns the prior RTPC setting as a boolean value.

4.5.2 Application of RTPC

The system applies RTPC to Dynamic SQL queries and Cursor-based Embedded SQL queries. It does not apply RTPC to
single-row (non-cursor) Embedded SQL queries, or to INSERT, UPDATE, or DELETE statements.

The system applies RTPC to any field that Tune Table has determined to have an outlier value, when that field is specified
in the following query contexts.

The outlier field is specified in a condition where it is compared to a literal. This comparison condition can be:

• A WHERE clause condition using an equality (=), non-equality (!=), IN, or %INLIST predicate.

• An ON clause join condition with an equality (=), non-equality (!=), IN, or %INLIST predicate.

If RTPC is applied, the optimizer determines at run time whether to apply the standard query plan or an alternative query
plan.

RTPC is not applied if the query contains unresolved ? input parameters.

RTPC is not applied if the query specifies the literal value surrounded by double parentheses, suppressing literal substitution.

RTPC is not applied if the literal is supplied to the outlier field condition by a subquery. However, RTPC is applied if there
is an outlier field condition within a subquery.

4.5.3 Overriding RTPC

You can override RTPC for a specific query by specifying the %NORUNTIME restriction keyword. If the query SELECT
Name,HaveContactInfo FROM t1 WHERE HaveContactInfo=? would result in RTPC processing, the query
SELECT %NORUNTIME Name,HaveContactInfo FROM t1 WHERE HaveContactInfo=? would override RTPC,
resulting in a standard query plan.

4.6 Cached Query Result Set
When you execute a cached query it creates a result set. A cached query result set is an Object instance. This means that
the values you specify for literal substitution input parameters are stored as object properties. These object properties are
referred to using i%PropName syntax.

4.7 Listing Cached Queries
You can count and list existing cached queries in the current namespace:

• Counting cached queries

• Displaying cached queries using the InterSystems IRIS Management Portal

56 InterSystems SQL Optimization Guide

Cached Queries

• Listing cached queries using the ^rINDEXSQL global

• Exporting cached queries to a file using the ExportSQL^%qarDDLExport utility

4.7.1 Counting Cached Queries

You can determine the current number of cached queries for a table by invoking the GetCachedQueryTableCount()
method of the %Library.SQLCatalog class. This is shown in the following example:

 ZNSPACE "Samples"
 SET tbl="Sample.Person"
 SET num=##class(%Library.SQLCatalog).GetCachedQueryTableCount(tbl)
 IF num=0 {WRITE "There are no cached queries for ",tbl }
 ELSE {WRITE tbl," is associated with ",num," cached queries" }

Note that a query that references more than one table creates a single cached query. However, each of these tables counts
this cached query separately. Therefore, the number of cached queries counted by table may be larger than the number of
actual cached queries.

4.7.2 Displaying Cached Queries

You can view (and manage) the contents of the query cache using the InterSystems IRIS Management Portal. From System

Explorer, select SQL. Select a namespace with the Switch option at the top of the page; this displays the list of available
namespaces. On the left side of the screen open the Cached Queries folder. Selecting one of these cached queries displays
the details.

The Query Type can be one of the following values:

• %SQL.Statement Dynamic SQL: a Dynamic SQL query using %SQL.Statement.

• ODBC/JDBC Statement: a dynamic query from either ODBC or JDBC.

When you successfully prepare an SQL statement, the system generates a new class that implements the statement. If you
have set the Retain cached query source system-wide configuration option, the source code for this generated class is
retained and can be opened for inspection using Studio. To do this, go to the InterSystems IRIS Management Portal. From
System Administration, select Configuration, then SQL and Object Settings, then SQL. On this screen you can set the Retain

cached query source option. If this option is not set (the default), the system generates and deploys the class and does not
save the source code.

You can also set this system-wide option using the SetCachedQuerySaveSource() method. To determine the current setting,
call $SYSTEM.SQL.CurrentSettings().

4.7.3 Listing Cached Queries Using ^rINDEXSQL

You can use the ^rINDEXSQL global to list all of the cached queries and all of the SQL Statements for the current
namespace:

 ZWRITE ^rINDEXSQL("sqlidx",2)

A typical global in this list looks like this:
^rINDEXSQL("sqlidx",2,"%sqlcq.USER.cls4.1","oRuYrsuQDz72Q6dBJHa8QtWT/rQ=")="".

The third subscript is the location. For example, "%sqlcq.USER.cls4.1" is a cached query in the USER namespace; "Sam-
ple.MyTable.1" is an SQL Statement.

The fourth subscript is the Statement hash.

InterSystems SQL Optimization Guide 57

Listing Cached Queries

4.7.4 Exporting Cached Queries to a File

The following utility lists all of the cached queries for the current namespace to a text file.

ExportSQL̂ %qarDDLExport(file,fileOpenParam,eos,cachedQueries,classQueries,classMethods,routines,display)

A file pathname where cached queries are to be listed.
Specified as a quoted string. If the file does not exist,
the system creates it. If the file already exists,
InterSystems IRIS overwrites it.

file

Optional — The OPEN mode parameters for the file.
Specified as a quoted string. The default is “WNS”.
“W” specifies that the file is being opened for writing.
“N” specifies that if the file does not exist, create a
new sequential file with this name. “S” specifies
stream format with carriage return, line feed, or form
feed as default terminators. For a full list of OPEN
mode parameters refer to the “Sequential File I/O ”
chapter of the I/O Device Guide.

fileOpenParam

Optional — The end-of-statement delimiter used to
separate the individual cached queries in the listing.
Specified as a quoted string. The default is “GO”.

eos

Optional — Export all SQL queries from the query
cache to file. A boolean flag. The default is 1.

cachedQueries

Optional — Export all SQL queries from SQL class
queries to file. A boolean flag. The default is 1.

classQueries

Optional — Export embedded SQL queries from class
methods to file. A boolean flag. The default is 1.

classMethods

Optional — Export embedded SQL queries from MAC
routines to file. This listing does not include system
routines, cached queries, or generated routines. A
boolean flag. The default is 1.

routines

Optional — Display export progress on the Terminal
screen. A boolean flag. The default is 0.

display

The following is an example of evoking this cached queries export utility:

 DO ExportSQL^%qarDDLExport("C:\temp\test\qcache.txt","WNS","GO",1,1,1,1,1)

When executed from the Terminal command line with display=1, export progress is displayed to the terminal screen, such
as the following example:

Export SQL Text for Cached Query: %sqlcq.USER.cls14.. Done
Export SQL Text for Cached Query: %sqlcq.USER.cls16.. Done
Export SQL Text for Cached Query: %sqlcq.USER.cls17.. Done
Export SQL Text for Cached Query: %sqlcq.USER.cls18.. Done
Export SQL Text for Cached Query: %sqlcq.USER.cls19.. Done
Export SQL statement for Class Query: Cinema.Film.TopCategory... Done
Export SQL statement for Class Query: Cinema.Film.TopFilms... Done
Export SQL statement for Class Query: Cinema.FilmCategory.CategoryName...Done
Export SQL statement for Class Query: Cinema.Show.ShowTimes... Done
Export SQL statement for Class Query: Cinema.TicketItem.ShowItem... Done
Export SQL statement from Class Method: Aviation.EventCube.Fact.%BuildAllFacts...Done

58 InterSystems SQL Optimization Guide

Cached Queries

Export SQL statement from Class Method: Aviation.EventCube.Fact.%BuildTempFile...Done
Export SQL statement from Class Method: Aviation.EventCube.Fact.%Count...Done
Export SQL statement from Class Method: Aviation.EventCube.Fact.%DeleteFact...Done
Export SQL statement from Class Method: Aviation.EventCube.Fact.%ProcessFact...Done
Export SQL statement from Class Method: Aviation.EventCube.Fact.%UpdateFacts...Done
Export SQL statement from Class Method: Aviation.EventCube.Star1032357136.%Count...Done
Export SQL statement from Class Method: Aviation.EventCube.Star1032357136.%GetDimensionProperty...Done
Export SQL statement from Class Method: Aviation.EventCube.Star1035531339.%Count...Done
Export SQL statement from Class Method: Aviation.EventCube.Star1035531339.%GetDimensionProperty...Done

20 SQL statements exported to script file C:\temp\test\qcache.txt

The created export file contains entries such as the following:

 -- SQL statement from Cached Query %sqlcq.USER.cls30
 SELECT TOP ? Name , Home_State , Age , AVG (Age) AS AvgAge FROM Sample . Person ORDER BY Home_State
GO

 -- SQL statement from Class Query Cinema.Film.TopCategory
#import Cinema
SELECT TOP 3 ID, Description, Length, Rating, Title, Category->CategoryName
 FROM Film
WHERE (PlayingNow = 1) AND (Category = :P1)

 ORDER BY TicketsSold DESC
GO

 -- SQL statement(s) from Class Method Aviation.EventCube.Fact.%Count
#import Aviation.EventCube
SELECT COUNT(*) INTO :tCount FROM Aviation_EventCube.Fact
GO

This cached queries listing can be used as input to the Query Optimization Plans utility.

4.8 Executing Cached Queries
• From Dynamic SQL: A %SQL.Statement Prepare operation (%Prepare(), %PrepareClassQuery(), or %ExecDirect())

creates a cached query. A Dynamic SQL %Execute() method using the same instance executes the most recently prepared
cached query.

• From the Terminal: You can directly execute a cached query using the ExecuteCachedQuery() method of the
$SYSTEM.SQL class. This method allows you to specify input parameter values and to limit the number of rows to
output. You can execute a Dynamic SQL %SQL.Statement cached query or an xDBC cached query from the Terminal
command line. This method is primarily useful for testing an existing cached query on a limited subset of the data.

• From the Management Portal SQL Interface: Follow the “Displaying Cached Queries” instructions above. From the
selected cached query’s Catalog Details tab, click the Execute link.

4.9 Cached Query Lock
Issuing a Prepare or Purge statement automatically requests an exclusive system-wide lock while the cached query metadata
is updated. SQL supports the SetCachedQueryLockTimeout() method, which governs lock timeout when attempting to
acquire a lock on cached query metadata. The default is 120 seconds. This is significantly longer than the standard SQL
lock timeout, which defaults to 10 seconds. A System Administrator may need to modify this cached query lock timeout
on systems with large numbers of concurrent Prepare and Purge operations, especially on a system which performs bulk
purges involving a large number (several thousand) cached queries.

The SetCachedQueryLockTimeout() method sets the timeout value system-wide and returns the previous value:

InterSystems SQL Optimization Guide 59

Executing Cached Queries

SetCQTimeout
 DO $SYSTEM.SQL.SetCachedQueryLockTimeout(150,.oldval)
 WRITE oldval," prior value cached query seconds",!!
SetCQTimeoutAgain
 DO $SYSTEM.SQL.SetCachedQueryLockTimeout(180,.oldval2)
 WRITE oldval2," prior value cached query seconds",!!
ResetCQTimeoutToDefault
 DO $SYSTEM.SQL.SetCachedQueryLockTimeout(,.oldval3)
 WRITE oldval3," prior value cached query seconds"

SetCachedQueryLockTimeout() sets the cached query lock timeout for all new processes system-wide. It does not change
the cached query lock timeout for existing processes.

4.10 Purging Cached Queries
Whenever you modify (alter or delete) a table definition, any queries based on that table are automatically purged from the
query cache on the local system. If you recompile a persistent class, any queries that use that class are automatically purged
from the query cache on the local system.

You can explicitly purge cached queries via the Management Portal using one of the Purge Cached Queries options. You
can purge cached queries using the SQL Shell PURGE command.

You can use the $SYSTEM.SQL.Purge(n) method to explicitly purge cached queries that have not been recently used.
Specifying n number of days purges all cached queries in the current namespace that have not been used (prepared) within
the last n days. Specifying an n value of 0 or "" purges all cached queries in the current namespace. For example, if you
issue a $SYSTEM.SQL.Purge(30) method on May 11, 2018, it will purge only the cached queries that were last prepared
before April 11, 2018. A cached query that was last prepared exactly 30 days ago (April 11, in this example) would not be
purged.

You can also purge cached queries using the following methods:

• $SYSTEM.SQL.PurgeCQClass() purges one or more cached queries by name in the current namespace. You can
specify cached query names as a comma-separated list. The specified cached query name or list of cached query names
must be enclosed with quotation marks.

• $SYSTEM.SQL.PurgeForTable() purges all cached queries in the current namespace that reference the specified
table.

• $SYSTEM.SQL.PurgeAllNamespaces() purges all cached queries in all namespaces on the current system. Note that
when you delete a namespace, its associated cached queries are not purged. Executing PurgeAllNamespaces() checks
if there are any cached queries associated with namespaces that no longer exist; if so, these cached queries are purged.

Purging a cached query also purges related query performance statistics.

CAUTION: When you change the system-wide default schema name, the system automatically purges all cached
queries in all namespaces on the system.

4.10.1 Remote Systems

Purging a cached query on a local system does not purge copies of that cached query on mirror systems. Copies of a purged
cached query on a remote system must be manually purged.

When a persistent class is modified and recompiled, the local cached queries based on that class are automatically purged.
InterSystems IRIS does not automatically purge copies of those cached queries on remote systems. This could mean that
some cached queries on a remote system are “stale” (no longer valid). However, when a remote system attempts to use a
cached query, the remote system checks whether any of the persistent classes that the query references have been recompiled.

60 InterSystems SQL Optimization Guide

Cached Queries

If a persistent class on the local system has been recompiled, the remote system automatically purges and recreates the stale
cached query before attempting to use it.

4.11 SQL Commands That Are Not Cached
The following non-query SQL commands are not cached; they are purged immediately after use:

• Data Definition Language (DDL): CREATE TABLE, ALTER TABLE, DROP TABLE, CREATE VIEW, ALTER
VIEW, DROP VIEW, CREATE INDEX, DROP INDEX, CREATE FUNCTION, CREATE METHOD, CREATE
PROCEDURE, CREATE QUERY, DROP FUNCTION, DROP METHOD, DROP PROCEDURE, DROP QUERY,
CREATE TRIGGER, DROP TRIGGER, CREATE DATABASE, USE DATABASE, DROP DATABASE

• User, Role, and Privilege: CREATE USER, ALTER USER, DROP USER, CREATE ROLE, DROP ROLE, GRANT,
REVOKE, %CHECKPRIV

• Locking: LOCK TABLE, UNLOCK TABLE

• Miscellaneous: SAVEPOINT, SET OPTION

Note that if you issue one of these SQL commands from the Management Portal Execute Query interface, the Performance
information includes text such as the following: Cached Query: %sqlcq.USER.cls16. This appears in indicate that
a cached query name was assigned. However, this cached query name is not a link. No cached query was created, and the
incremental cached query number .cls16 was not set aside. InterSystems SQL assigns this cached query number to the
next SQL command issued.

InterSystems SQL Optimization Guide 61

SQL Commands That Are Not Cached

5
Optimizing Query Performance

InterSystems SQL automatically uses a Query Optimizer to create a query plan that provides optimal query performance
in most circumstances. This Optimizer improves query performance in many ways, including determining which indices
to use, determining the order of evaluation of multiple AND conditions, determining the sequence of tables when performing
multiple joins, and many other optimization operations. You can supply “hints” to this Optimizer in the FROM clause of
the query. This chapter describes tools that you can use to evaluate a query plan and to modify how InterSystems SQL will
optimize a specific query.

InterSystems IRIS® data platform supports the following tools for optimizing SQL queries:

• SQL Runtime Statistics to generate performance statistics on query execution.

• Index Analyzer to display various index analyzer reports for all queries in the current namespace. This shows how
InterSystems SQL is going to execute the query, giving you an overall view of how indices are being used. This index
analysis may indicate that you should add one or more indices to improve performance.

• Show Plan to display the optimal (default) execution plan for an SQL query.

• Alternate Show Plans to display available alternate execution plans for an SQL query, with statistics.

You can direct the Query Optimizer by using the following options, either by setting configuration defaults or by coding
optimizer “hints” in the query code:

• Index Optimization Options available FROM clause options governing all conditions, or %NOINDEX prefacing an
individual condition.

• Comment Options specified in the SQL code that cause the Optimizer to override a system-wide compile option for
that query.

• Parallel Query Processing available on a per-query or system-wide basis allows multi-processor systems to divide
query execution amongst the processors.

The following SQL query performance tools are described in other chapters of this manual:

• Cached Queries to enable Dynamic SQL queries to be rerun without the overhead of preparing the query each time it
is executed.

• SQL Statements to preserve the most-recently compiled Embedded SQL query. In the “SQL Statements and Frozen
Plans” chapter.

• Frozen Plans to preserve a specific compile of an Embedded SQL query. This compile is used rather than a more recent
compile. In the “SQL Statements and Frozen Plans” chapter.

The following tools are used to optimize table data, and thus can have a significant effect on all queries run against that
table:

InterSystems SQL Optimization Guide 63

• Defining Indices can significantly speed access to data in specific indexed fields.

• ExtentSize, Selectivity, and BlockCount to specify table data estimates before populating the table with data; this
metadata is used to optimize future queries.

• Tune Table to analyze representative table data in a populated table; this generated metadata is used to optimize future
queries.

This chapter also describes how to Write Query Optimization Plans to a File, and how to generate an SQL Troubleshooting
Report to submit to InterSystems WRC.

5.1 Management Portal SQL Performance Tools
The InterSystems IRIS Management Portal provides access to the following SQL performance tools. There are two ways
to access these tools from the Management Portal System Explorer option:

• Select Tools, then select SQL Performance Tools.

• Select SQL, then select the Tools drop-down menu.

From either interface you can select one of the following SQL performance tools:

• SQL Runtime Statistics to generate performance statistics on query execution.

• Index Analyzer to display various index analyzer reports for all queries in the current namespace. This shows how
InterSystems SQL is going to execute the query, giving you an overall view of how indices are being used. This index
analysis may indicate that you should add one or more indices to improve performance.

• Alternate Show Plans to display available alternate execution plans for an SQL query, with statistics.

• Generate Report to submit an SQL query performance report to InterSystems Worldwide Response Center (WRC)
customer support. To use this reporting tool you must first get a WRC tracking number from the WRC.

• Import Report allows you to view SQL query performance reports.

5.1.1 The %SYS.PTools Package

The %SYS.PTools package contains performance analysis classes and their methods. It includes:

• %SYS.PTools.StatsSQL for collecting and displaying performance statistics on SQL queries.

• %SYS.PTools.UtilSQLAnalysis for analyzing index usage.

It also contains several deprecated classes.

Methods in these classes can be invoked either from ObjectScript, or from the SQL CALL or SELECT command. The
SQL naming convention is to specify the package name %SYS_PTools, then prefix “PT_” to the method name that begins
with a lower-case letter. This is shown in the following examples:

ObjectScript:

 DO ##class(%SYS.PTools.UtilSQLAnalysis).indexUsage()

SQL:

 CALL %SYS_PTools.PT_indexUsage()

 SELECT %SYS_PTools.PT_indexUsage()

64 InterSystems SQL Optimization Guide

Optimizing Query Performance

https://www.intersystems.com/support-learning/support/

5.2 SQL Runtime Statistics
You can use SQL Runtime Statistics to measure the performance of SQL queries on your system. SQL Runtime Statistics
measures the performance of SELECT, INSERT, UPDATE, and DELETE operations (collectively known as query
operations). SQL runtime statistics (SQL Stats) are gathered when a query operation is Prepared.

Gathering of SQL runtime statistics is off by default. You must activate the gathering of statistics. It is highly recommended
that you specify a timeout to end the gathering of statistics. After activate the gathering of statistics, you must recompile
(Prepare) existing Dynamic SQL queries and recompile classes and routines that contain Embedded SQL.

Performance statistics include the ModuleName, ModuleCount (the number of times a module is called), RowCount
(number of rows returned), TimeSpent (execution performance in seconds), GlobalRefs (number of global references),
LinesOfCode (number of lines executed), and the ReadLatency (the disk read access time, in milliseconds). For details,
see Stats Values.

You can explicitly purge (clear) SQL Stats data. Purging a cached query deletes any related SQL Stats data. Dropping a
table or view deletes any related SQL Stats data.

Note: A system task is automatically run once per hour in all namespaces to aggregate process-specific SQL query
statistics into global statistics. Therefore, the global statistics may not reflect statistics gathered within the hour.
You can use the Management Portal to monitor this hourly aggregation or to force it to occur immediately. To
view when this task was last finished and next scheduled, select System Operation, Task Manager, Task Schedule

and view the Update SQL query statistics task. You can click on the task name for task details. From
the Task Details display you can use the Run button to force the task to be performed immediately.

5.2.1 Runtime Statistics Interfaces

InterSystems IRIS provides several interfaces you can use to gather and display SQL runtime statistics:

• You can use the %PROFILE keyword (equivalent to SetSQLStatsFlagJob(2)) or %PROFILE_ALL keyword
(equivalent to SetSQLStatsFlagJob(3)) in a SELECT, INSERT, UPDATE, or DELETE statement to gather
performance statistics for just that statement.

• The Management Portal SQL Runtime Statistics tool. This tool gathers performance statistics system-wide. See Using
the SQL Runtime Statistics Tool.

• The %SYS.PTools.StatsSQL class methods. The following methods are provided to gather performance statistics for:

– The entire system: SetSQLStats()

– A specific namespace: SetSQLStatsFlagByNS()

– The current process or job: SetSQLStatsFlagJob()

– A specified process or job: SetSQLStatsFlagByPID()

See Using Performance Statistics Methods.

5.3 Using the SQL Runtime Statistics Tool
You can display performance statistics for SQL queries system-wide from the Management Portal using either of the fol-
lowing:

InterSystems SQL Optimization Guide 65

SQL Runtime Statistics

• Select System Explorer, select Tools, select SQL Performance Tools, then select SQL Runtime Statistics.

• Select System Explorer, select SQL, then from the Tools drop-down menu select SQL Runtime Statistics.

5.3.1 Settings

The Settings tab displays the current system-wide SQL Runtime Statistics setting and when this setting will expire.

the Change Settings button allows you to set the following statistics collection options:

• Collection Option: you can set the statistics collection option to 0, 1, 2, or 3. 0 = turn off statistics code generation; 1
= turn on statistics code generation for all queries, but do not gather statistics; 2 = record statistics for just the outer
loop of the query (gather statistics at the open and close of the MAIN module); 3 = record statistics for all module
levels of the query. For further details, see Action Option.

• Timeout Option: if the Collection Option is 2 or 3, you can specify a timeout by elapsed time (hours or minutes) or by
a completion date and time. You can specify elapsed time in minutes or in hours and minutes; the tool converts a
specified minutes value to hours and minutes (100 minutes = 1 hour, 40 minutes). The default is 50 minutes. The date
and time option defaults to just before midnight (23:59) of the current day. It is highly recommended that you specify
a timeout option.

• Reset Option: if the Collection Option is 2 or 3, you can specify the Collection Option to reset to when the Timeout
value expires. The available options are 0 and 1.

5.3.1.1 Purge Cached Queries Button

The Purge Cached Queries button deletes all of cached queries in the current namespace. You may need to purge cached
queries when changing the Collection Option, as described below.

5.3.2 Query Test

The Query Test tab allows you to input an SQL query text (or retrieve one from History) and then display the SQL Stats
and Query Plan for that query. Query Test includes the SQL Stats for all module levels of the query, regardless of the
Collection Option setting.

Input an SQL query text, or retrieve one using the Show History button. You can clear the query text field by clicking the
round "X" circle on the right hand side.

Use the Show Plan With SQL Stats button to execute.

The Run Show Plan process in the background check box is unselected by default, which is the preferred setting for most
queries. Select this check box only for long, slow-running queries. When this check box is selected, you will see a progress
bar displayed with a "Please wait..." message. While a long query is being run, the Show Plan With SQL Stats and Show

History buttons disappear and a View Process button is shown. Clicking View Process opens the Process Details page in a
new tab. From the Process Details page, you can view the process, and may Suspend, Resume or Terminate the process.
The status of the process should be reflected on the Show Plan page. When the process is finished, the Show Plan shows
the result. The View Process button disappears and the Show Plan With SQL Stats and Show History buttons reappear.

The Statement Text displayed using Query Test includes comments and does not perform literal substitution.

5.3.3 View Stats

The View Stats tab gives you an overall view of the runtime statistics that have been gathered on this system.

You can click on any one of the View Stats column headers to sort the query statistics. You can then click the SQL Statement

text to view the detailed Query Statistics and the Query Plan for the selected query.

66 InterSystems SQL Optimization Guide

Optimizing Query Performance

The Statement Text displayed using this tool includes comments and does not perform literal substitution. The Statement
Text displayed by exportStatsSQL() and by Show Plan strips out comments and performs literal substitution.

5.3.3.1 Purge Stats Button

The Purge Stats button clears all of the accumulated statistics for all queries in the current namespace. It displays a message
on the SQL Runtime Statistics page. If successful, a message indicates the number of stats purged. If there were no stats,
the Nothing to purge message is displayed. If the purge was unsuccessful, an error message is displayed. For additional
options, refer to Delete SQL performance statistics.

5.3.4 Runtime Statistics and Show Plan

The SQL Runtime Statistics tool can be used to display the Show Plan for a query with runtime statistics.

The Alternate Show Plans tool can be used to compare show plans with stats, displaying runtime statistics for a query. The
Alternate Show Plans tool in its Show Plan Options displays estimated statistics for a query. If gathering runtime statistics
is activated, its Compare Show Plans with Stats option displays actual runtime statistics; if runtime statistics are not active,
this option displays estimate statistics.

5.4 Using Performance Statistics Methods
You can use %SYS.PTools.StatsSQL class methods to:

• Activate SQL performance statistics.

• Get the current SQL statistics settings.

• Export the gathered SQL performance statistics. Either display or export to a file.

• Delete SQL performance statistics.

This section also contains program examples using these methods.

5.4.1 Activate the Gathering of Statistics

You activate statistics (Stats) code generation to collect performance statistics using the %SYS.PTools.StatsSQL class
methods. The following methods are provided to gather performance statistics for:

• The entire system: SetSQLStats()

• A specific namespace: SetSQLStatsFlagByNS()

• The current process or job: SetSQLStatsFlagJob()

• A specified process or job: SetSQLStatsFlagByPID()

These methods take an integer action option. They return a colon-separated string, the first element of which is the prior
statistics action option. You can determine the current settings using the GetSQLStatsFlag() or GetSQLStatsFlagByPID()
method.

You can invoke these method from ObjectScript or from SQL as shown in the following examples:

• from ObjectScript: SET rtn=##class(%SYS.PTools.StatsSQL).SetSQLStats(2,,8)

• from SQL: SELECT %SYS_PTools.StatsSQL_SetSQLStats(2,,8)

InterSystems SQL Optimization Guide 67

Using Performance Statistics Methods

5.4.1.1 Action Option

For SetSQLStats() and SetSQLStatsFlagByNS() you specify one of the following Action options: 0 turn off statistics
code generation; 1 turn on statistics code generation for all queries, but do not gather statistics (the default); 2 record
statistics for just the outer loop of the query (gather statistics at the open and close of the query); 3 record statistics for all
module levels of the query. Modules can be nested. If so, the MAIN module statistics are inclusive numbers, the overall
results for the full query.

For SetSQLStatsFlagJob() and SetSQLStatsFlagByPID() the Action options differ slightly. They are: -1 turn off statistics
for this job; 0 use the system setting value. The 1, 2, and 3 options are the same as SetSQLStats() and override the system
setting. The default is 0.

To gather SQL Stats data, queries need to be compiled (Prepared) with statistics code generation turned on (option 1, the
default):

• To go from 0 to 1: after changing the SQL Stats option, runtime Routines and Classes that contain SQL will need to
be compiled to perform statistics code generation. For xDBC and Dynamic SQL, you must purge cached queries to
force code regeneration.

• To go from 1 to 2: you simply change the SQL Stats option to begin gathering statistics. This allows you to enable
SQL performance analysis on a running production environment with minimal disruption.

• To go from 1 to 3 (or 2 to 3): after changing the SQL Stats option, runtime Routines and Classes that contain SQL will
need to be compiled to record statistics for all module levels. For xDBC and Dynamic SQL, you must purge cached
queries to force code regeneration. Option 3 is commonly only used on an identified poorly-performing query in a
non-production environment.

• To go from 1, 2, or 3 to 0: to turn off statistics code generation you do not need to purge cached queries.

5.4.1.2 Collect Option

If the Action option is 2 or 3, when you invoke one of these methods you can specify a Collect option value to specify
which performance statistics to collect. The default is to collect all statistics.

You specify a Collect option by adding together the integer values associated with each type of statistic that you wish to
collect. The default is 15 (1 + 2 + 4 + 8).

These methods return the prior value of this Collect option as the second colon-separated element. You can determine the
current setting using the GetSQLStatsFlag() or GetSQLStatsFlagByPID() method. By default all statistics are collected,
returning 15 as the second element value.

Refer to %SYS.PTools.StatsSQL for further details.

5.4.1.3 Terminate Option

Statistics collection continues until terminated. By default, collection continues indefinitely until it is terminated by issuing
another SetSQLStats[nnn]() method. Or, if the Action option is 1, 2, or 3, you can specify a SetSQLStats[nnn]() terminate
option, either an elapsed period (in minutes) or a specified timestamp. You then specify the Action option re-set when that
period elapses. For example, the string "M:120:1" sets M (elapsed minutes) to 120 minutes, at the end of which the Action
option re-sets to 1. All other options reset to the default values appropriate for that Action option.

These methods return the prior value of this Terminate option value as the fifth colon-separated element as an encoded
value. See Get Statistics Settings.

5.4.2 Get Statistics Settings

The SetSQLStats[nnn]() methods return the prior statistics settings as a colon-separated value. You can determine the
current settings using the GetSQLStatsFlag() or GetSQLStatsFlagByPID() method.

68 InterSystems SQL Optimization Guide

Optimizing Query Performance

The 1st colon-separated value is the Action option setting. The 2nd colon-separated value is the Collect option. The 3rd
and 4th colon-separated values are used for namespace-specific statistics gathering. The 5th colon-separated value encodes
the Terminate option.

You can use the ptInfo array to display the Terminate option settings in greater detail, as shown in the following example:

 KILL
 DO ##class(%SYS.PTools.StatsSQL).clearStatsSQL()
 DO ##class(%SYSTEM.SQL).SetSQLStatsFlagByNS("USER",3,,7,"M:5:1")
DisplaySettings
 SET SQLStatsFlag = ##class(%SYS.PTools.StatsSQL).GetSQLStatsFlag(0,0,.ptInfo)
 WRITE "ptInfo array of SQL Stats return value:",!
 ZWRITE ptInfo,SQLStatsFlag

5.4.3 Export Query Performance Statistics

You can export query performance statistics to a file using the exportStatsSQL() method of %SYS.PTools.StatsSQL. This
method is used to export statistics data from %SYS.PTools.StatsSQL classes to a file.

You can invoke exportStatsSQL() as shown in the following examples:

• from ObjectScript: SET status=##class(%SYS.PTools.StatsSQL).exportStatsSQL("$IO") (defaults
to format T).

• from SQL: CALL %SYS_PTools.PT_exportStatsSQL('$IO') (defaults to format H).

If you don't specify a filename argument, this method exports to the current directory. By default, this file is named
PT_StatsSQL_exportStatsSQL_ followed by the current local date and time as YYYYMMDD_HHMMSS. You can
specify $IO to output the data to the Terminal or Management Portal display. If you specify a filename argument, this
method creates a file in the Mgr subdirectory for the current namespace, or in the path location you specify. This export is
limited to data in the current namespace.

You can specify the output file format as P (text), D (comma-separated data), X (XML markup), H (HTML markup), or Z
(user-defined delimiter).

By default this method exports the query performance statistics. You can specify that it instead export the SQL query text
or the SQL Query Plan data, as shown in the following examples:

• Query Text: CALL %SYS_PTools.PT_exportStatsSQL('$IO',,0,1,0)

• Query Plan: CALL %SYS_PTools.PT_exportStatsSQL('$IO',,0,1,1)

exportStatsSQL() modifies the query text by stripping out comments and performing literal substitution.

The same query text and query plan data can be returned by ExportSQLQuery().

5.4.3.1 Stats Values

The following statistics are returned:

• RowCount - The total number of rows returned in the MAIN module for the given query.

• RunCount - The total number of times the query has been run since the last time it was compiled/prepared.

• ModuleCount - The total number of times a given module was entered during the run of the query.

• TimeToFirstRow - The total time spent to return the first resultset row to the MAIN module for the given query.

• TimeSpent - The total time spent in a given module for the given query.

• GlobalRefs - The total number of global references done in a given module for the given query.

• LinesOfCode - The total number of lines of ObjectScript code executed in a given module for the given query.

InterSystems SQL Optimization Guide 69

Using Performance Statistics Methods

• DiskWait (also known as Disk Latency) - The total number of milliseconds spent waiting for disk reads in a given
module for the given query.

5.4.4 Delete Query Performance Statistics

You can use the clearStatsSQL() method to delete performance statistics. By default, it deletes statistics gathered for all
routines in the current namespace. You can specify a different namespace, and/or limit deletion to a specific routine.

You can use the clearStatsSQLAllNS() method to delete performance statistics from all namespaces. By default, it deletes
statistics gathered for all routines. You can limit deletion to a specific routine.

5.4.5 Performance Statistics Examples

The following example gathers performance statistics on the main module of a query (Action option 2) that was prepared
by the current process, then uses the exportStatsSQL() to display the performance statistics to the Terminal.

 DO ##class(%SYS.PTools.StatsSQL).clearStatsSQL()
 DO $SYSTEM.SQL.SetSQLStatsFlagJob(2)
 SET myquery = "SELECT TOP 5 Name,DOB FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET pStatus = ##class(%SYS.PTools.StatsSQL).exportStatsSQL("$IO")
 IF pStatus'=1 {WRITE "Performance stats display failed:" DO $System.Status.DisplayError(qStatus)
QUIT}

The following example gathers performance statistics on all modules of a query (Action option 3) that was prepared by the
current process, then calls exportStatsSQL() from Embedded SQL to display the performance statistics to the Terminal:

 DO ##class(%SYS.PTools.StatsSQL).clearStatsSQL()
 DO $SYSTEM.SQL.SetSQLStatsFlagJob(3)
 SET myquery = "SELECT TOP 5 Name,DOB FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 &sql(CALL %SYS_PTools.PT_exportStatsSQL('$IO'))

The following example gathers performance statistics on the main module of a query (Action option 2) that was prepared
by the current process, then uses the StatsSQLView query to display these statistics:

 DO ##class(%SYS.PTools.StatsSQL).clearStatsSQL()
 DO ##class(%SYSTEM.SQL).SetSQLStatsFlagJob(2)
 SET myquery = "SELECT TOP 5 Name,DOB FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
GetStats
 SET qStatus = tStatement.%Prepare("SELECT * FROM %SYS_PTools.StatsSQLView")
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rsstats = tStatement.%Execute()
 DO rsstats.%Display()
 WRITE !!,"End of SQL Statistics"

The following example gathers performance statistics on all modules (Action option 3) of all queries in the USER namespace.
When the statistics collection time expires after 1 minute, it re-sets to Action option 2 and the scope of collecting defaults
to 15 (all statistics) on all namespaces:

70 InterSystems SQL Optimization Guide

Optimizing Query Performance

 DO ##class(%SYS.PTools.StatsSQL).clearStatsSQL()
 DO ##class(%SYSTEM.SQL).SetSQLStatsFlagByNS("USER",3,,7,"M:1:2")
 SET myquery = "SELECT TOP 5 Name,DOB FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
GetStats
 SET qStatus = tStatement.%Prepare("SELECT * FROM %SYS_PTools.StatsSQLView")
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rsstats = tStatement.%Execute()
 DO rsstats.%Display()
 WRITE !!,"End of SQL Statistics",!
TerminateResetStats
 WRITE "returns: ",##class(%SYS.PTools.StatsSQL).GetSQLStatsFlag(),!
 HANG 100
 WRITE "reset to: ",##class(%SYS.PTools.StatsSQL).GetSQLStatsFlag()

5.5 Using Indices
Indexing provides a mechanism for optimizing queries by maintaining a sorted subset of commonly requested data.
Determining which fields should be indexed requires some thought: too few or the wrong indices and key queries will run
too slowly; too many indices can slow down INSERT and UPDATE performance (as the index values must be set or
updated).

5.5.1 What to Index

To determine if adding an index improves query performance, run the query from the Management Portal SQL interface
and note in Performance the number of global references. Add the index and then rerun the query, noting the number of
global references. A useful index should reduce the number of global references. You can prevent use of an index by using
the %NOINDEX keyword as preface to a WHERE clause or ON clause condition.

You should index fields (properties) that are specified in a JOIN. A LEFT OUTER JOIN starts with the left table, and then
looks into the right table; therefore, you should index the field from the right table. In the following example, you should
index T2.f2:

 FROM Table1 AS T1 LEFT OUTER JOIN Table2 AS T2 ON T1.f1 = T2.f2

An INNER JOIN should have indices on both ON clause fields.

Run Show Plan and follow to the first map. If the first bullet item in the Query Plan is “Read master map”, or the Query
Plan calls a module whose first bullet item is “Read master map”, the query first map is the master map rather than an index
map. Because the master map reads the data itself, rather than an index to the data, this almost always indicates an inefficient
Query Plan. Unless the table is relatively small, you should create an index so that when you rerun this query the Query
Plan first map says “Read index map.”

You should index fields that are specified in a WHERE clause equal condition.

You may wish to index fields that are specified in a WHERE clause range condition, and fields specified in GROUP BY
and ORDER BY clauses.

Under certain circumstances, an index based on a range condition could make a query slower. This can occur if the vast
majority of the rows meet the specified range condition. For example, if the query clause WHERE Date < CURRENT_DATE
is used with a database in which most of the records are from prior dates, indexing on Date may actually slow down the
query. This is because the Query Optimizer assumes range conditions will return a relatively small number of rows, and
optimizes for this situation. You can determine if this is occurring by prefacing the range condition with %NOINDEX and
then run the query again.

If you are performing a comparison using an indexed field, the field as specified in the comparison should have the same
collation type as it has in the corresponding index. For example, the Name field in the WHERE clause of a SELECT or
in the ON clause of a JOIN should have the same collation as the index defined for the Name field. If there is a mismatch

InterSystems SQL Optimization Guide 71

Using Indices

between the field collation and the index collation, the index may be less effective or may not be used at all. For further
details, refer to Index Collation in the “Defining and Building Indices” chapter of this manual.

For details on how to create an index and the available index types and options, refer to the CREATE INDEX command
in the InterSystems SQL Reference, and the “Defining and Building Indices” chapter of this manual.

5.5.2 Index Configuration Options

The following system-wide configuration methods can be used to optimize use of indices in queries:

• $SYSTEM.SQL.SetDDLPKeyNotIDKey() to use the PRIMARY KEY as the IDKey index.

• $SYSTEM.SQL.SetFastDistinct() to use indices for SELECT DISTINCT queries.

For further details, refer to SQL and Object Settings described in Configuration Parameter File Reference.

5.5.3 Index Usage Analysis

You can analyze index usage by SQL cached queries using either of the following:

• The Management Portal Index Analyzer SQL performance tool.

• The %SYS.PTools.UtilSQLAnalysis methods indexUsage(), tableScans(), tempIndices(), joinIndices(), and
outlierIndices().

5.5.4 Index Analyzer

You can analyze index usage for SQL queries from the Management Portal using either of the following:

• Select System Explorer, select Tools, select SQL Performance Tools, then select Index Analyzer.

• Select System Explorer, select SQL, then from the Tools drop-down menu select Index Analyzer.

The Index Analyzer provides an SQL Statement Count display for the current namespace, and five index analysis report
options.

5.5.4.1 SQL Statement Count

At the top of the SQL Index Analyzer there is an option to count all SQL statements in the namespace. Press the Gather SQL

Statements button. The SQL Index Analyzer displays “Gathering SQL statements” while the count is in progress, then
“Done!” when the count is complete. SQL statements are counted in three categories: a Cached Query count, a Class
Method count, and a Class Query count. These counts are for the entire current namespace, and are not affected by the
Schema Selection option.

The corresponding method is getSQLStmts() in the %SYS.PTools.UtilSQLAnalysis class.

You can use the Purge Statements button to delete all gathered statements in the current namespace. This button invokes
the clearSQLStatements() method.

5.5.4.2 Report Options

You can either examine reports for the cached queries for a selected schema in the current namespace, or (by not selecting
a schema) examine reports for all cached queries in the current namespace. You can skip or include system class queries,
INSERT statements, and/or IDKEY indices in this analysis. The schema selection and skip option check boxes are user
customized.

The index analysis report options are:

72 InterSystems SQL Optimization Guide

Optimizing Query Performance

• Index Usage: This option takes all of the cached queries in the current namespace, generates a Show Plan for each and
keeps a count of how many times each index is used by each query and the total usage for each index by all queries in
the namespace. This can be used to reveal indices that are not being used so they can either be removed or modified
to make them more useful. The result set is ordered from least used index to most used index.

The corresponding method is indexUsage() in the %SYS.PTools.UtilSQLAnalysis class. To export analytic data generated
by this method, use the exportIUAnalysis() method.

• Queries with Table Scans: This option identifies all queries in the current namespace that do table scans. Table scans
should be avoided if possible. A table scan can’t always be avoided, but if a table has a large number of table scans,
the indices defined for that table should be reviewed. Often the list of table scans and the list of temp indices will
overlap; fixing one will remove the other. The result set lists the tables from largest Block Count to smallest Block
Count. A Show Plan link is provided to display the Statement Text and Query Plan.

The corresponding method is tableScans() in the %SYS.PTools.UtilSQLAnalysis class. To export analytic data generated
by this method, use the exportTSAnalysis() method.

• Queries with Temp Indices: This option identifies all queries in the current namespace that build temporary indices to
resolve the SQL. Sometimes the use of a temp index is helpful and improves performance, for example building a
small index based on a range condition that InterSystems IRIS can then use to read the master map in order. Sometimes
a temp index is simply a subset of a different index and might be very efficient. Other times a temporary index degrades
performance, for example scanning the master map to build a temporary index on a property that has a condition. This
situation indicates that a needed index is missing; you should add an index to the class that matches the temporary
index. The result set lists the tables from largest Block Count to smallest Block Count. A Show Plan link is provided
to display the Statement Text and Query Plan.

The corresponding method is tempIndices() in the %SYS.PTools.UtilSQLAnalysis class. To export analytic data generated
by this method, use the exportTIAnalysis() method.

• Queries with Missing JOIN Indices: This option examines all queries in the current namespace that have joins, and
determines if there is an index defined to support that join. It ranks the indices available to support the joins from 0
(no index present) to 4 (index fully supports the join). Outer joins require an index in one direction. Inner joins require
an index in both directions. By default, the result set only contains rows that have a JoinIndexFlag < 4. JoinIndexFlag=4
means there is an index that fully supports the join.

The corresponding method is joinIndices() in the %SYS.PTools.UtilSQLAnalysis class, which provides descriptions of
the JoinIndexFlag values. To export analytic data generated by this method, use the exportJIAnalysis() method. By
default, exportJIAnalysis() does not list JoinIndexFlag=4 values, but they can optionally be listed.

• Queries with Outlier Indices: This option identifies all queries in the current namespace that have outliers, and determines
if there is an index defined to support that outlier. It ranks the indices available to support the outlier from 0 (no index
present) to 4 (index fully supports the outlier). By default, the result set only contains rows that have a OutlierIndexFlag
< 4. OutlierIndexFlag=4 means there is an index that fully supports the outlier.

The corresponding method is outlierIndices() in the %SYS.PTools.UtilSQLAnalysis class. To export analytic data
generated by this method, use the exportOIAnalysis() method. By default, exportOIAnalysis() does not list Out-
lierIndexFlag=4 values, but they can optionally be listed.

When you select one of these options, the system automatically performs the operation and displays the results. The first
time you select an option or invoke the corresponding method, the system generates the results data; if you select that option
or invoke that method again, InterSystems IRIS redisplays the same results. To generate new results data you must use the
Gather SQL Statements button to reinitialize the Index Analyzer results tables. To generate new results data for the
%SYS.PTools.UtilSQLAnalysis methods, you must invoke getSQLStmts() to reinitialize the Index Analyzer results tables.
Changing the Skip all system classes and routines or Skip INSERT statements check box option also reinitializes the Index
Analyzer results tables.

InterSystems SQL Optimization Guide 73

Using Indices

5.5.5 indexUsage() Method

The following example demonstrates the use of the indexUsage() method:

 DO ##class(%SYS.PTools.UtilSQLAnalysis).indexUsage(1,1)
 SET utils = "SELECT %EXACT(Type), Count(*) As QueryCount "_
 "FROM %SYS_PTools.UtilSQLStatements GROUP BY Type"
 SET utilresults = "SELECT SchemaName, Tablename, IndexName, UsageCount "_
 "FROM %SYS_PTools.UtilSQLAnalysisDB ORDER BY UsageCount"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(utils)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of utilities data",!!
 SET qStatus = tStatement.%Prepare(utilresults)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of results data"

Note that because results are ordered by UsageCount, indices with UsageCount > 0 are listed at the end of the result set.

5.5.6 Index Optimization Options

By default, the InterSystems SQL query optimizer uses sophisticated and flexible algorithms to optimize the performance
of complex queries involving multiple indices. In most cases, these defaults provide optimal performance. However, in
infrequent cases, you may wish to give “hints” to the query optimizer by specifying optimize-option keywords.

The FROM clause supports the %ALLINDEX and %IGNOREINDEX optimize-option keywords. These optimize-option
keywords govern all index use in the query. They are described in detail in the FROM clause reference page of the Inter-
Systems SQL Reference.

You can use the %NOINDEX condition-level hint to specify exceptions to the use of an index for a specific condition. The
%NOINDEX hint is placed in front of each condition for which no index should be used. For example, WHERE %NOINDEX
hiredate < ?. This is most commonly used when the overwhelming majority of the data is selected (or not selected)
by the condition. With a less-than (<) or greater-than (>) condition, use of the %NOINDEX condition-level hint is often
beneficial. With an equality condition, use of the %NOINDEX condition-level hint provides no benefit. With a join condition,
%NOINDEX is supported for ON clause joins.

The %NOINDEX keyword can be used to override indexing optimization established in the FROM clause. In the following
example, the %ALLINDEX optimization keyword applies to all condition tests except the E.Age condition:

 SELECT P.Name,P.Age,E.Name,E.Age
 FROM %ALLINDEX Sample.Person AS P LEFT OUTER JOIN Sample.Employee AS E
 ON P.Name=E.Name
 WHERE P.Age > 21 AND %NOINDEX E.Age < 65

5.6 Show Plan
Show Plan displays the execution plan for SELECT, UPDATE, DELETE, TRUNCATE TABLE, and some INSERT
operations. These are collectively known as query operations because they use a SELECT query as part of their execution.
Show Plan is performed when a query operation is prepared; you do not have to actually execute the query operation to
generate an execution plan.

Show Plan displays what InterSystems IRIS considers to be the optimal execution plan. For generated %PARALLEL and
Sharded queries, Show Plan outputs all of the applicable execution plans.

Note that for most queries there is more than one possible execution plan. In addition to the execution plan that InterSystems
IRIS deems as optimal, you can also display alternate execution plans.

74 InterSystems SQL Optimization Guide

Optimizing Query Performance

The SQL EXPLAIN command can also be used to generate and display an execution plan and, optionally, alternate execution
plans.

5.6.1 Displaying an Execution Plan

You can use Show Plan to display the execution plan for a query in any of the following ways:

• From the Management Portal SQL interface. Select System Explorer, then SQL. Select a namespace with the Switch

option at the top of the page. (You can set the Management Portal default namespace for each user.) Write a query,
then press the Show Plan button. (You can also invoke Show Plan from the Show History listing by clicking the plan
option for a listed query.) See Executing SQL Statements in the “Using the Management Portal SQL Interface”
chapter of this manual.

• From the Management Portal Tools interface. Select System Explorer, then Tools, then select SQL Performance Tools,
then SQL Runtime Statistics:

– From the Query Test tab: Select a namespace with the Switch option at the top of the page. Write a query in the
text box. Then press the Show Plan with SQL Stats button. This generates a Show Plan without executing the query.

– From the View Stats tab: Press the Show Plan button for one of the listed queries. The listed queries include both
those written at Execute Query, and those written at Query Test.

• By running the ShowPlan() method, as shown in the following example:

 SET oldstat=$SYSTEM.SQL.SetSQLStatsFlagJob(3)
 SET mysql=2
 SET mysql(1)="SELECT TOP 10 Name,DOB FROM Sample.Person "
 SET mysql(2)="WHERE Name ['A' ORDER BY Age"
 DO $SYSTEM.SQL.ShowPlan(.mysql,0,1)
 DO $SYSTEM.SQL.SetSQLStatsFlagJob(oldstat)

• By running Show Plan against a cached query result set, using :i%Prop syntax for literal substitution values stored as
properties:

 SET cqsql=2
 SET cqsql(1)="SELECT TOP :i%PropTopNum Name,DOB FROM Sample.Person "
 SET cqsql(2)="WHERE Name [:i%PropPersonName ORDER BY Age"
 DO ShowPlan^%apiSQL(.cqsql,0,"",0,$LB("Sample"),"",1)

Show Plan by default returns values in Logical mode. However, when invoking Show Plan from the Management Portal
or the SQL Shell, Show Plan uses Runtime mode.

5.6.2 Execution Plan: Statement Text and Query Plan

The Show Plan execution plan consists of two components, Statement Text and Query Plan:

Statement Text replicates the original query, with the following modifications: The Show Plan button from the Management
Portal SQL interface displays the SQL statement with comments and line breaks removed. Whitespace is standardized. The
Show Plan button display also performs literal substitution, replacing each literal with a ?, unless you have suppressed literal
substitution by enclosing the literal value in double parentheses. These modifications are not performed when displaying
a show plan using the ShowPlan() method, or when displayed using the SQL Runtime Statistics or Alternate Show Plans
tools.

Query Plan shows the plan that would be used to execute the query. A Query Plan can include the following:

• “Frozen Plan” is the first line of Query Plan if the query plan has been frozen; otherwise, the first line is blank.

• “Relative cost” is an integer value which is computed from many factors as an abstract number for comparing the
efficiency of different execution plans for the same query. This calculation takes into account (among other factors)
the complexity of the query, the presence of indices, and the size of the table(s). Relative cost is not useful for comparing

InterSystems SQL Optimization Guide 75

Show Plan

two different queries. “Relative cost not available” is returned by certain aggregate queries, such as COUNT(*) or
MAX(%ID) without a WHERE clause.

• The Query Plan consists of a main module, and (when needed) one or more subcomponents. One or more module
subcomponents may be shown, named alphabetically, starting with B: Module:B, Module:C, etc.), and listed in the
order of execution (not necessarily alphabetically).

By default, a module performs processing and populates an internal temp-file (internal temporary table) with its results.
You can force the query optimizer to create a query plan that does not generate internal temp-files by specifying
/*#OPTIONS {"NoTempFile":1} */, as described in Comment Options.

A named subquery module is shown for each subquery in the query. Subquery modules are named alphabetically.
Subquery naming skips one or more letters before each named subquery. Thus, Module:B, Subquery:F or Module:D,
Subquery:G. When the end of the alphabet is reached, additional subqueries are numbered, parsing Z=26 and using
the same skip sequence. The following example is an every-third subquery naming sequence starting with Subquery:F:
F, I, L, O, R, U, X, 27, 30, 33. The following example is an every-second subquery naming sequence starting with
Subquery:G: G, I, K, M, O, Q, S, U, W, Y, 27, 29. If a subquery calls a module, the module is placed in alphabetical
sequence after the subquery with no skip. Therefore, Subquery:H calls Module:I.

• “Read master map” as the first bullet item in the main module indicates an inefficient Query Plan. The Query Plan
begins execution with one of the following map type statements Read master map... (no available index), Read
index map... (use available index), or Generate a stream of idkey values using the multi-index
combination... (Multi Index, use multiple indices). Because the master map reads the data itself, rather than an
index to the data, Read master map... almost always indicates an inefficient Query Plan. Unless the table is rel-
atively small, you should define an index so that when you regenerate the Query Plan the first map says Read index
map.... For information on interpreting a Query Plan, refer to “Interpreting an SQL Query Plan.”

Some operations create a Show Plan that indicates no Query Plan could be generated:

• Non-query INSERT: An INSERT... VALUES() command does not perform a query, and therefore does not generate
a Query Plan.

• Query always FALSE: In a few cases, InterSystems IRIS can determine when preparing a query that a query condition
will always be false, and thus cannot return data. The Show Plan informs you of this situation in the Query Plan com-
ponent. For example, a query containing the condition WHERE %ID IS NULL or the condition WHERE Name
%STARTSWITH('A') AND Name IS NULL cannot return data, and therefore InterSystems IRIS generates no exe-
cution plan. Rather than generating an execution plan, the Query Plan says “Output no rows” . If a query contains
a subquery with one of these conditions, the subquery module of the Query Plan says “Subquery result NULL,
found no rows” . This condition check is limited to a few situations involving NULL, and is not intended to catch
all self-contradictory query conditions.

• Invalid query: Show Plan displays an SQLCODE error message for most invalid queries. However, in a few cases,
Show Plan displays as empty. For example, WHERE Name = $$$$$ or WHERE Name %STARTSWITH('A") (note
single-quote and double-quote). In these cases, Show Plan displays no Statement Text, and Query Plan says [No plan
created for this statement]. This commonly occurs when quotation marks delimiting a literal are imbalanced.
It also occurs when you specify two or more leading dollar signs without specifying the correct syntax for a user-defined
(“extrinsic”) function.

5.7 Alternate Show Plans
You can display alternate execution plans for a query using the Management Portal or the ShowPlanAlt() method.

To display alternate execution plans for a query from the Management Portal using either of the following:

76 InterSystems SQL Optimization Guide

Optimizing Query Performance

• Select System Explorer, select Tools, select SQL Performance Tools, then select Alternate Show Plans.

• Select System Explorer, select SQL, then from the Tools drop-down menu select Alternate Show Plans.

Using the Alternate Show Plans tool:

1. Input an SQL query text, or retrieve one using the Show History button. You can clear the query text field by clicking
the round "X" circle on the right hand side.

2. Press the Show Plan Options button to display multiple alternate show plans. The Run ... in the background check box
is unselected by default, which is the preferred setting for most queries. It is recommended that you select the Run ...

in the background check box for large or complex queries. While a long query is being run in background a View Process

button is shown. Clicking View Process opens the Process Details page in a new tab. From the Process Details page,
you can view the process, and may Suspend, Resume or Terminate the process.

3. Possible Plans are listed in ascending order by Cost, with the Map Type and Starting Map. You can select the Show

Plan (no statistics) or Show Plan with Stats link for each plan for further details.

4. From the list of possible plans, use the check boxes to select the plans that you wish to compare, then press the Compare

Show Plans with Stats button to run them and display their SQL statistics.

The ShowPlanAlt() method shows all of the execution plans for a query. It first shows the plan the InterSystems IRIS
considers optimal (lowest cost), the same Show Plan display as the ShowPlan() method. ShowPlanAlt() then allows you
to select an alternate plan to display. Alternate plans are listed in ascending order of cost. Specify the ID number of an
alternate plan at the prompt to display its execution plan. ShowPlanAlt() then prompts you for the ID of another alternate
plan. To exit this utility, press the return key at the prompt.

The following example displays the same execution plan as the ShowPlan() example, then lists alternate plans and prompts
you to specify an alternate plan for display:

 DO $SYSTEM.SQL.SetSQLStatsFlagJob(3)
 SET mysql=1
 SET mysql(1)="SELECT TOP 4 Name,DOB FROM Sample.Person ORDER BY Age"
 DO $SYSTEM.SQL.ShowPlanAlt(.mysql,0,1)

To display an alternate plan, specify the plan’s ID number from the displayed list and press Return. To exit ShowPlanAlt(),
just press Return.

Also refer to the possiblePlans methods in the %SYS.PTools.StatsSQL class.

5.7.1 Stats

The Show Plans Options lists assigns each alternate show plan a Cost value, which enables you to make relative comparisons
between the execution plans.

The Alternate Show Plan details provides for each Query Plan a set of stats (statistics) for the Query Totals, and (where
applicable) for each Query plan module. The stats for each module include Time (overall performance, in seconds), Global
Refs (number of global references), Commands (number of lines executed), and Read Latency (disk wait, in milliseconds).
The Query Totals stats also includes the number of Rows Returned.

InterSystems SQL Optimization Guide 77

Alternate Show Plans

5.8 Writing Query Optimization Plans to a File
The following utility lists the query optimization plan(s) for one or more queries to a text file.

QOPlanner^%apiSQL(infile,outfile,eos,schemapath)

A file pathname to a text file containing a listing of
cached queries. Specified as a quoted string.

infile

A file pathname where query optimization plans are
to be listed. Specified as a quoted string. If the file
does not exist, the system creates it. If the file already
exists, InterSystems IRIS overwrites it.

outfile

Optional — The end-of-statement delimiter used to
separate the individual cached queries in the infile
listing. Specified as a quoted string. The default is
“GO”. If this eos string does not match the cached
query separator, no outfile is generated.

eos

Optional — A comma-separated list of schema names
that specifies a schema search path for unqualified
table names, view names, or stored procedure names.
Can include DEFAULT_SCHEMA, the current
system-wide default schema. If infile contains #Import
directives, QOPlanner adds these #Import
package/schema names to the end of schemapath.

schemapath

The following is an example of evoking this query optimization plans listing utility. This utility takes as input the file
generated by the ExportSQL^%qarDDLExport() utility, as described in “Listing Cached Queries to a File” section of
the “Cached Queries” chapter. You can either generate this query listing file, or write a query (or queries) to a text file.

 DO QOPlanner^%apiSQL("C:\temp\test\qcache.txt","C:\temp\test\qoplans.txt","GO")

When executed from the Terminal command line progress is displayed to the terminal screen, such as the following
example:

Importing SQL Statements from file: C:\temp\test\qcache.txt

Recording any errors to principal device and log file: C:\temp\test\qoplans.txt

 SQL statement to process (number 1):
 SELECT TOP ? P . Name , E . Name FROM Sample . Person AS P ,
 Sample . Employee AS E ORDER BY E . Name
 Generating query plan...Done

 SQL statement to process (number 2):
 SELECT TOP ? P . Name , E . Name FROM %INORDER Sample . Person AS P
 NATURAL LEFT OUTER JOIN Sample . Employee AS E ORDER BY E . Name
 Generating query plan...Done

Elapsed time: .16532 seconds

The created query optimization plans file contains entries such as the following:

<pln>
<sql>
 SELECT TOP ? P . Name , E . Name FROM Sample . Person AS P , Sample . Employee AS E ORDER BY E . Name
</sql>
Read index map Sample.Employee.NameIDX.
Read index map Sample.Person.NameIDX.

78 InterSystems SQL Optimization Guide

Optimizing Query Performance

</pln>
######
<pln>
<sql>
 SELECT TOP ? P . Name , E . Name FROM %INORDER Sample . Person AS P
 NATURAL LEFT OUTER JOIN Sample . Employee AS E ORDER BY E . Name
</sql>
Read master map Sample.Person.IDKEY.
Read extent bitmap Sample.Employee.$Employee.
Read master map Sample.Employee.IDKEY.
Update the temp-file.
Read the temp-file.
Read master map Sample.Employee.IDKEY.
Update the temp-file.
Read the temp-file.
</pln>
######

You can use the query optimization plan text files to compare generated optimization plans using different variants of a
query, or compare optimization plans between different versions of InterSystems IRIS.

When exporting the SQL queries to the text file, a query that comes from a class method or class query will be preceded
by the code line:

#import <package name>

This #Import statement tells the QOPlanner utility what default package/schema to use for the plan generation of the query.
When exporting the SQL queries from a routine, any #import lines in the routine code prior to the SQL statement will also
precede the SQL text in the export file. Queries exported to the text file from cached queries are assumed to contain fully
qualified table references; if a table reference in a text file is not fully qualified, the QOPlanner utility uses the system-wide
default schema that is defined on the system when QOPlanner is run.

5.9 Comment Options
You can specify one or more comment options to the Query Optimizer within a SELECT, INSERT, UPDATE, DELETE,
or TRUNCATE TABLE command. A comment option specifies a option that the query optimizer uses during the compile
of the SQL query. Often a comment option is used to override a system-wide configuration default for a specific query.

5.9.1 Syntax

The syntax /*#OPTIONS */, with no space between the /* and the #, specifies a comment option. A comment option is
not a comment; it specifies a value to the query optimizer. A comment option is specified using JSON syntax, commonly
a key:value pair such as the following: /*#OPTIONS {"optionName":value} */. More complex JSON syntax, such
as nested values, is supported.

A comment option is not a comment; it may not contain any text other than JSON syntax. Including non-JSON text within
the /* ... */ delimiters results in an SQLCODE -153 error. InterSystems SQL does not validate the contents of the JSON
string.

The #OPTIONS keyword must be specified in uppercase letters. No spaces should be used within the curly brace JSON
syntax. If the SQL code is enclosed with quote marks, such as a Dynamic SQL statement, quote marks in the JSON syntax
should be doubled. For example: myquery="SELECT Name FROM Sample.MyTest /*#OPTIONS
{""optName"":""optValue""} */".

You can specify a /*#OPTIONS */ comment option anywhere in SQL code where a comment can be specified. In displayed
statement text, the comment options are always shown as comments at the end of the statement text.

You can specify multiple /*#OPTIONS */ comment options in SQL code. They are shown in returned Statement Text
in the order specified. If multiple comment options are specified for the same option, the last-specified option value is used.

InterSystems SQL Optimization Guide 79

Comment Options

The following comment options are documented:

• /*#OPTIONS {"BiasAsOutlier":1} */

• /*#OPTIONS {"DynamicSQLTypeList":"10,1,11"}

• /*#OPTIONS {"NoTempFile":1} */

5.9.2 Display

The /*#OPTIONS */ comment options display at the end of the SQL statement text, regardless of where they were
specified in the SQL command. Some displayed /*#OPTIONS */ comment options are not specified in the SQL command,
but are generated by the compiler pre-processor. For example /*#OPTIONS {"DynamicSQLTypeList": ...} */.

The /*#OPTIONS */ comment options display in the Show Plan Statement Text, in the Cached Query Query Text, and
in the SQL Statement Statement Text.

A separate cached query is created for queries that differ only in the /*#OPTIONS */ comment options.

5.10 Parallel Query Processing
Parallel query hinting directs the system to perform parallel query processing when running on a multi-processor system.
This can substantially improve performance of certain types of queries. The SQL optimizer determines whether a specific
query could benefit from parallel processing, and performs parallel processing where appropriate. Specifying parallel query
hinting does not force parallel processing of every query, only those that may benefit from parallel processing. If the system
is not a multi-processor system, this option has no effect. To determine the number of processors on the current system use
the %SYSTEM.Util.NumberOfCPUs() method.

You can specify parallel query processing in two ways:

• System-wide, by setting the auto parallel option.

• Per query, by specifying the %PARALLEL keyword in the FROM clause of an individual query.

Parallel query processing is applied to SELECT queries. It is not applied to INSERT, UPDATE, or DELETE operations.

5.10.1 System-Wide Parallel Query Processing

You can configure system-wide automatic parallel query processing using either of the following options:

• From the Management Portal choose System Administration, then Configuration, then SQL and Object Settings, then
SQL. View or change the Execute queries in a single process check box. Note that the default for this check box is
unselected, which mean that parallel processing is activated by default.

• Invoke the $SYSTEM.SQL.SetAutoParallel() method.

Note that changing this configuration setting purges all cached queries in all namespaces.

When activated, automatic parallel query hinting directs the SQL optimizer to apply parallel processing to any query that
may benefit from this type of processing. At IRIS 2019.1 and subsequent, auto parallel processing is activated by default.
Users upgrading from IRIS 2018.1 to IRIS 2019.1 will need to explicitly activate auto parallel processing.

One option the SQL optimizer uses to determine whether to perform parallel processing for a query is the auto parallel
threshold. If system-wide auto parallel processing is activated (the default), you can use the
$SYSTEM.SQL.SetAutoParallelThreshold() method to set the optimization threshold for this feature as an integer value.

80 InterSystems SQL Optimization Guide

Optimizing Query Performance

The higher the threshold value is, the lower the chance that this feature will be applied to a query. This threshold is used
in complex optimization calculations, but you can think about this value as the minimal number of tuples that must reside
in the visited map. The default value is 3200. The minimum value is 0.

When automatic parallel processing is activated, a query executed in a sharded environment will always be executed with
parallel processing, regardless of the parallel threshold value.

The $SYSTEM.SQL.CurrentSettings() method displays the current Enable auto hinting for %PARALLEL and
Threshold of auto hinting for %PARALLEL settings.

5.10.2 Parallel Query Processing for a Specific Query

The optional %PARALLEL keyword is specified in the FROM clause of a query. It suggests that InterSystems IRIS perform
parallel processing of the query, using multiple processors (if applicable). This can significantly improve performance of
some queries that uses one or more COUNT, SUM, AVG, MAX, or MIN aggregate functions, and/or a GROUP BY clause,
as well as many other types of queries. These are commonly queries that process a large quantity of data and return a small
result set. For example, SELECT AVG(SaleAmt) FROM %PARALLEL User.AllSales GROUP BY Region would
likely use parallel processing.

A “one row” query that specifies only aggregate functions, expressions, and subqueries performs parallel processing, with
or without a GROUP BY clause. However, a “multi-row” query that specifies both individual fields and one or more
aggregate functions does not perform parallel processing unless it includes a GROUP BY clause. For example, SELECT
Name,AVG(Age) FROM %PARALLEL Sample.Person does not perform parallel processing, but SELECT
Name,AVG(Age) FROM %PARALLEL Sample.Person GROUP BY Home_State does perform parallel processing.

If a query that specifies %PARALLEL is compiled in Runtime mode, all constants are interpreted as being in ODBC format.

Specifying %PARALLEL may degrade performance for some queries. Running a query with %PARALLEL on a system
with multiple concurrent users may result in degraded overall performance.

Parallel processing can be performed when querying a view. However, parallel processing is never performed on a query
that specifies a %VID, even if the %PARALLEL keyword is explicitly specified.

For further details, refer to the FROM clause in the InterSystems SQL Reference.

5.10.2.1 %PARALLEL in Subqueries

%PARALLEL is intended for SELECT queries and their subqueries. An INSERT command subquery cannot use
%PARALLEL.

%PARALLEL is ignored when applied to a subquery that is correlated with an enclosing query. For example:

SELECT name,age FROM Sample.Person AS p
WHERE 30<(SELECT AVG(age) FROM %PARALLEL Sample.Employee where Name = p.Name)

%PARALLEL is ignored when applied to a subquery that includes a complex predicate, or a predicate that optimizes to a
complex predicate. Predicates that are considered complex include the FOR SOME and FOR SOME %ELEMENT predicates.

5.10.3 Parallel Query Processing Ignored

Regardless of the auto parallel option setting or the presence of the %PARALLEL keyword in the FROM clause, some
queries may use linear processing, not parallel processing. InterSystems IRIS makes the decision whether or not to use
parallel processing for a query after optimizing that query, applying other query optimization options (if specified). Inter-
Systems IRIS may determine that the optimized form of the query is not suitable for parallel processing, even if the user-
specified form of the query would appear to benefit from parallel processing. You can determine if and how InterSystems
IRIS has partitioned a query for parallel processing using Show Plan.

InterSystems SQL Optimization Guide 81

Parallel Query Processing

In the following circumstances specifying %PARALLEL does not perform parallel processing. The query executes success-
fully and no error is issued, but parallelization is not performed:

• The query contains the FOR SOME predicate.

• The query contains both a TOP clause and an ORDER BY clause. This combination of clauses optimizes for fastest
time-to-first-row which does not use parallel processing. Adding the FROM clause %NOTOPOPT optimize-option
keyword optimizes for fastest retrieval of the complete result set. If the query does not contain an aggregate function,
this combination of %PARALLEL and %NOTOPOPT performs parallel processing of the query.

• A query containing a LEFT OUTER JOIN or INNER JOIN in which the ON clause is not an equality condition. For
example, FROM %PARALLEL Sample.Person p LEFT OUTER JOIN Sample.Employee e ON p.dob >
e.dob. This occurs because SQL optimization transforms this type of join to a FULL OUTER JOIN. %PARALLEL
is ignored for a FULL OUTER JOIN.

• The %PARALLEL and %INORDER optimizations cannot be used together; if both are specified, %PARALLEL is
ignored.

• The query references a view and returns a view ID (%VID).

• COUNT(*) does not use parallel processing if the table has a BITMAPEXTENT index.

• %PARALLEL is intended for tables using standard data storage definitions. Its use with customized storage formats
may not be supported. %PARALLEL is not supported for GLOBAL TEMPORARY tables or tables with extended
global reference storage.

• %PARALLEL is intended for a query that can access all rows of a table, a table defined with row-level security
(ROWLEVELSECURITY) cannot perform parallel processing.

• %PARALLEL is intended for use with data stored in the local database. It does not support global nodes mapped to
a remote database.

5.10.4 Shared Memory Considerations

For parallel processing, InterSystems IRIS supports multiple InterProcess Queues (IPQ). Each IPQ handles a single parallel
query. It allows parallel work unit subprocesses to send rows of data back to the main process so the main process does
not have to wait for a work unit to complete. This enables parallel queries to return their first row of data as quickly as
possible, without waiting for the entire query to complete. It also improves performance of aggregate functions.

Parallel query execution uses shared memory from the generic memory heap (gmheap). Users may need to increase gmheap
size if they are using parallel SQL query execution. As a general rule, the memory requirement for each IPQ is 4 x 64k =
256k. InterSystems IRIS splits a parallel SQL query into the number of available CPU cores. Therefore, users need to
allocate this much extra gmheap:

<Number of concurrent parallel SQL requests> x <Number cores> x 256 = <required size increase (in kilobytes) of gmheap>

Note that this formula is not 100% accurate, because a parallel query can spawn sub queries which are also parallel.
Therefore it is prudent to allocate more extra gmheap than is specified by this formula.

Failing to allocate adequate gmheap results in errors reported to messages.log. SQL queries may fail. Other errors may also
occur as other subsystems try to allocate gmheap.

To review gmheap usage by an instance, including IPQ usage in particular, from the home page of the Management Portal
choose System Operation then System Usage, and click the Shared Memory Heap Usage link; see Generic (Shared) Memory
Heap Usage in the “Monitoring InterSystems IRIS Using the Management Portal” chapter of the Monitoring Guide for
more information.

To change the size of the generic memory heap or gmheap (sometimes known as the shared memory heap or SMH), from
the home page of the Management Portal choose System Administration then Configuration then Additional Settings then

82 InterSystems SQL Optimization Guide

Optimizing Query Performance

Advanced Memory; see Advanced Memory Settings in the “CPF Settings in the Management Portal” appendix of Config-
uration Parameter File Reference for more information.

5.10.5 Cached Query Considerations

If you are running a cached SQL query which uses %PARALLEL and while this query is being initialized you do something
that purges cached queries, then this query could get a <NOROUTINE> error reported from one of the worker jobs. Typical
things that causes cached queries to be purged are calling $SYSTEM.SQL.Purge() or recompiling a class which this query
references. Recompiling a class automatically purges any cached queries relating to that class.

If this error occurs, running the query again will probably execute successfully. Removing %PARALLEL from the query
will avoid any chance of getting this error.

5.10.6 SQL Statements and Plan State

An SQL query which uses %PARALLEL can result in multiple SQL Statements. The Plan State for these SQL Statements
is Unfrozen/Parallel. A query with a plan state of Unfrozen/Parallel cannot be frozen by user action. Refer to the “SQL
Statements” chapter for further details.

5.11 Generate Report
You can use the Generate Report tool to submit a query performance report to InterSystems Worldwide Response Center
(WRC) customer support for analysis. You can run the Generate Report tool from the Management Portal using either of
the following:

• Select System Explorer, select Tools, select SQL Performance Tools, then select Generate Report.

• Select System Explorer, select SQL, then from the Tools drop-down menu select Generate Report.

To use this reporting tool, perform the following steps:

1. You must first get a WRC tracking number from the WRC. You can contact the WRC from the Management Portal
by using the Contact button found at the top of each Management Portal page. Enter this tracking number in the WRC

Number area. You can use this tracking number to report the performance of a single query or multiple queries.

2. In the SQL Statement area, enter a query text. An X icon appears in the top right corner. You can use this icon to clear
the SQL Statement area. When the query is complete, select the Save Query button. The system generates a query plan
and gathers runtime statistics on the specified query. Regardless of the system-wide runtime statistics setting, the
Generate Report tool always collects with Collection Option 3: record statistics for all module levels of the query.
Because gathering statistics at this level may take time, it is strongly recommended that you select the Run Save Query

process in the background check box. This check box is selected by default.

When a background job is started, the tool displays the message "Please wait...", disables all the fields on the page,
and show a new View Process button. Clicking the View Process button will open the Process Details page in a new
tab. From the Process Details page, you can view the process, and may "Suspend", "Resume" or "Terminate" the process.
The status of the process is reflected on the Save Query page. When the process is finished, the Currently Saved Queries

table is refreshed, the View Process button disappears, and all the fields on the page are enabled.

3. Perform Step 2 with each desired query. Each query will be added to the Currently Saved Queries table. Note that this
table can contain queries with the same WRC tracking number, or with different tracking numbers. When finished
with all queries, proceed to Step 4.

InterSystems SQL Optimization Guide 83

Generate Report

https://www.intersystems.com/support-learning/support/
https://www.intersystems.com/support-learning/support/

For each listed query, you can select the Details link. This link opens a separate page that displays the full SQL Statement,
the Properties (including the WRC tracking number and the IRIS software version), and the Query Plan with performance
statistics for each module.

• To delete individual queries, check the check boxes for those queries from the Currently Saved Queries table and
then click the Clear button.

• To delete all queries associated with a WRC tracking number, select a row from the Currently Saved Queries table.
The WRC number appears in the WRC Number area at the top of the page. If you then click the Clear button, all
queries for that WRC number are deleted.

4. Use the query check boxes to select the queries you wish to report to the WRC. To select all queries associated with
a WRC tracking number, select a row from the Currently Saved Queries table, rather than using the check boxes. In
either case, you then select the Generate Report button. The Generate Report tool creates a xml file that includes the
query statement, the query plan with runtime statistics, the class definition, and the sql int file associated with each
selected query.

If you select queries associated with a single WRC tracking number, the generated file will have a default name such
as WRC12345.xml. If you select queries associated with more than one WRC tracking number, the generated file will
have the default name WRCMultiple.xml.

A dialog box appears that asks you to specify the location to save the report to. After the report is saved, you can click
the Mail to link to send the report to WRC customer support. Attach the file using the mail client's attach/insert capability.

84 InterSystems SQL Optimization Guide

Optimizing Query Performance

6
Interpreting an SQL Query Plan

This chapter explains the language and terms used in an InterSystems SQL query access plan generated by ShowPlan.

6.1 Tables Stored In Maps
An SQL table is stored as a set of maps. Each table has a master map that contains all the data in the table; the table may
also have other maps such as index maps and bitmaps. Each map can be pictured as a multidimensional global, with the
data for some fields in one or more subscripts, and with the remaining fields stored in the node value. The subscripts
control what data is being accessed.

• For the master map, the RowID or the IDKEY fields are normally used as the map subscripts.

• For an index map, normally other fields are used as the leading subscript(s), with the RowID/IDKEY fields as additional
lower-level subscripts.

• For a bitmap, the bitmap layer can be thought of as an additional RowID subscript level. However, bitmaps can only
be used for RowIDs that are positive integers.

6.2 Developing the Plan
Compiling an SQL query produces a set of instructions to access and return the data specified by the query. These instructions
are expressed as ObjectScript code in an .INT routine.

The instructions and the sequence in which they are executed are influenced by the data the SQL compiler has about the
structure and content of the tables involved in the query. The compiler attempts to use information such as table sizes and
available indices to make the set of instructions as efficient as possible.

The query access plan (ShowPlan) is a human-readable translation of that resulting set of instructions. The author of the
query can use this query access plan to see how the data will be accessed. While the SQL compiler tries to make the most
efficient use of data as specified by the query, sometimes the author of the query knows more about some aspect of the
stored data than is evident to the compiler. In this case, the author can make use of the query plan to modify the original
query to provide more information or more guidance to the query compiler.

InterSystems SQL Optimization Guide 85

6.3 Reading the Plan
The result of “ShowPlan” is a series of statements about what processing will be done to access and present the data
specified in the query. The following provides information on how to interpret ShowPlan statements.

6.3.1 Accessing Maps

The plan for a query could access several tables. When accessing a table, the plan may access a single map (index or master
map), two maps (an index map followed by the master map), or, in the case of a multi-index plan, several maps.

In accessing the data via a map, the plan indicates the subscripts used. It also indicates what the actual subscript values will
be: a single given value, a set of given values, a range of values, or all values present in the table for that subscript. Which
one is chosen depends on the conditions specified in the query. Obviously, accessing a single subscript value or only a few
subscript values is faster than accessing all the values at that subscript level.

6.3.2 Conditions and Expressions

When the query is run, various conditions specified by the query are tested. Except for certain subscript-limiting conditions
as just mentioned, the ShowPlan output does not explicitly indicate the testing of conditions. It is always best to test conditions
as early as possible. The optimal place for testing the various conditions can be inferred from the plan details.

Similarly, ShowPlan does not detail the computation of expressions and sub-expressions. Besides simplicity, the main
reason for this is that in most database environments, table and index access constitute the more important aspect of pro-
cessing; the cost of retrieving the table data dominates the overall query cost, as disk access speed is still orders of magnitude
slower than CPU processing.

6.3.3 Loops

When accessing data from a table, it is often necessary to examine multiple rows iteratively. Such access is indicated by a
loop. The instructions to be executed for each pass are referred to as the body of the loop. They are visually indicated by
being indented. It is common for database access involving multiple tables to require loops within loops. In this case, each
loop level is indicated by a further indentation when compared to the previous level.

6.3.4 Temporary Files

6.3.4.1 Definition

A query plan might also indicate the need to build and use an intermediate temporary file (temp-file). This is a “scratch”
area in a local array. It is used to save temporary results for various purposes, such as sorting. Just like a map, a temp-file
has one or more subscripts, and possibly also node data.

6.3.4.2 Use

Some temp-files contain data from processing a single table. In this instance, building the temp-file could be considered
pre-processing for the data in that table. Reading such a temp-file may or may not be followed by accessing the master
map of the source table. In other cases, temp-files could contain the results of processing multiple tables. In still other situ-
ations, temp-files are used to store grouped aggregate values, to check DISTINCT, etc.

86 InterSystems SQL Optimization Guide

Interpreting an SQL Query Plan

6.3.5 Modules

The building of temp-files, as well as other processing, may be delegated to a separate unit of work called a module. Each
module is named. When separate modules are listed, the plan indicates where each module is invoked. When execution of
the module finishes, processing resumes at the next statement following the module invocation.

6.3.6 Queries Sent for Processing

For external tables linked through an ODBC or JDBC gateway connection, the plan shows the text of the query being sent
to the remote SQL Gateway Connection to retrieve the requested data from the remote tables.

For parallel query processing and for sharding, the plan shows the various queries being sent to be processed in parallel or
on the shards. The plan used for each of these queries is also displayed.

6.3.7 Sub-Queries, JOINs and UNIONs

Some subqueries (and views) within the given query might also be processed separately. Their plans are specified in separate
subquery sections. The precise place where a subquery section is called from is not indicated in the plan. This is because
they are often invoked as part of the processing of conditions or expressions.

For queries that specify OUTER JOIN, the plan may indicate the possible generation of a row of NULLs if no matching
rows were found, in order to satisfy the requirements of the outer join semantics.

For UNION, the plan might indicate the combining of the result rows from the various union subqueries in a separate
module, where further processing of these result rows may be done.

6.4 Plan Analysis
When analyzing the plan for a given query, application developers might sometimes feel that a different plan would be
more efficient. The application developer has available a variety of ways to affect the plan.

First and foremost, plans would be affected by properly running TuneTable() in an environment that includes actual
application data. Manually defining in the class source definition some of the values that TuneTable() normally computes
— such as table EXTENTSIZE, field SELECTIVITY, and map BlockCount — can also be used to achieve the desired
plan. Refer to Use the Tune Table Facility in the “Optimizing Tables” chapter of this manual.

In addition, analyzing the plan may indicate that certain changes to the class definition could result in plans that are more
efficient, for example:

6.4.1 Adding an Index

In some cases (though not always), the use of a temp-file for preprocessing can indicate that adding to the original table an
index with the same or similar structure as the temp-file would eliminate the need to build the temp-file. Removing this
processing step from the query plan obviously could make the query run faster, but this must be balanced against the amount
of work needed to maintain the index when updating the table. For further details on creating an index, refer to the Defining
and Building Indices chapter of this manual.

6.4.2 Adding Fields to Index Data

When the plan shows an index being used, followed by access to the master map, this suggests that adding the master map
fields being used in the query to the index node data might result in a faster plan for this query. Again, this must be balanced

InterSystems SQL Optimization Guide 87

Plan Analysis

against the additional update time, as well as the extra time added to the processing of other queries that use this index,
since the index would be larger and thus require somewhat more read time.

6.4.3 Adding a Join Index

When the plan shows two tables being joined in a particular order (for example t1 being retrieved first, and then joined to
t2 using the join condition t1.a=t2.b), it may be the case that the reverse table order would result in a faster plan. For
example, if t2 has additional conditions that would significantly limit the number of qualifying rows. In that case, adding
a t1 index on t1.a would enable such a join order to be considered. For further details on creating an index, refer to the
Defining and Building Indices chapter of this manual.

88 InterSystems SQL Optimization Guide

Interpreting an SQL Query Plan

7
SQL Statements

This list of SQL statements provide a record of SQL queries and other operations for each table, including table and index
definition, insert, update, and delete. These SQL statements are linked to a query plan, and this link provides the option to
freeze this query plan.

The system creates an SQL Statement for each compiled SQL operation. This provides a list of SQL DDL and DML
operations listed by table, view, or procedure name. If you change the table definition, you can use this SQL Statements
list to determine whether the query plan for each SQL operation will be affected by this DDL change and/or whether an
SQL operation may need to be modified. You can then:

• Determine which query plan to use for each SQL operation. You can decide to use a revised query plan that reflects
changes made to the table definition. Or you can freeze the current query plan, retaining the query plan generated prior
to making changes to the table definition.

• Determine whether to make code changes to routines that perform SQL operations against that table, based on changes
made to the table definition.

Note: SQL Statements is a listing of SQL routines that may be affected by a change to a table definition. It should not
be used as a history of changes to either the table definition or table data.

7.1 Operations that Create SQL Statements
The following SQL operations create corresponding SQL Statements:

Data definition (DDL) operations that compile an underlying Persistent Class always create (or update and re-compile) one
or more SQL Statements. Multiple statements are defined if constraints such as UNIQUE and PRIMARY KEY are defined.

Data management (DML) operations include queries against the table, and insert, update, and delete operations. Each
Embedded SQL data management (DML) operation creates an SQL Statement because Embedded SQL is compiled (by
default) when the routine containing it is compiled. Dynamic SQL SELECT commands create an SQL Statement when the
query is prepared and is preserved as a cached query. This creates a list of the most-recently compiled versions of all SQL
commands. If a query references more than one table, a single SQL Statement is created that lists all of the referenced tables
in the Table/View/Procedure Name(s) column.

Most SQL Statements have an associated Query Plan. When created, this Query Plan is unfrozen; you can subsequently
designate this Query Plan as a frozen plan. SQL Statements with a Query Plan include DDL commands and DML commands
that involve a SELECT operation. SQL Statements without a Query Plan are listed in the “Plan State” section below.

InterSystems SQL Optimization Guide 89

Note: SQL Statements only lists the most recently compiled version of an SQL operation. Unless you freeze the SQL
Statement, InterSystems IRIS® data platform replaces it with the next version. Thus rewriting the SQL code in
a routine causes the old SQL code to disappear from SQL Statements.

7.1.1 Other SQL Statement Operations

The following SQL commands perform more complex SQL Statement operations:

• ALTER TABLE: Adding or removing a column does not create an SQL Statement. Instead, the existing DDL SQL
Statements are recompiled, incorporating the changes to the table definition. Adding a column constraint, such as
UNIQUE, does create additional SQL Statements, and recompiles existing DDL statements.

• CREATE TRIGGER: No SQL Statement is created in the table in which the trigger is defined, either when the trigger
is defined or when it is pulled. However, if the trigger performs a DML operation on another table, defining a trigger
creates an SQL Statement in the table modified by the trigger code. The Location specifies the table in which the trigger
is defined. The SQL Statement is defined when the trigger is defined; dropping a trigger deletes the SQL Statement.
Pulling a trigger does not create an SQL Statement.

• CREATE VIEW does not create an SQL Statement, because nothing is compiled. It also does not change the Plan
Timestamp of the SQL Statements of its source table. However, compiling a DML command for a view creates an
SQL Statement for that view.

7.2 Listing SQL Statements
This section describes listing SQL Statements in detail using the Management Portal interface. You can also return an index
list of SQL Statements using the ^rINDEXSQL global.

Note: A system task is automatically run once per hour in all namespaces to clean up any SQL Statement Index entries
that might be stale or have stale routine references. Therefore, the SQL Statements listings may not reflect all
changes made within the hour. You can use the Management Portal to monitor this hourly cleanup or to force it
to occur immediately. To view when this task was last finished and next scheduled, select System Operation, Task

Manager, Task Schedule and view the Cleanup SQL Statement Index task. You can click on the task name
for task details. From the Task Details display you can use the Run button to force the task to be performed
immediately.

From the Management Portal SQL interface you can list SQL Statements as follows:

• SQL Statements tab: this lists all SQL Statements in the namespace, in collation sequence by schema then by table/view
name within each schema. This listing only includes those tables/views for which the current user has privileges. If a
SQL Statement references more than one table, the Table/View/Procedure Name(s) column lists all the referenced tables
in alphabetical order.

By clicking a column heading you can sort the list of SQL Statements by Table/View/Procedure Name(s), Plan State,
Location(s), SQL Statement Text, or any other column of the list. These sortable columns enable you to quickly find,
for example, all frozen plans (Plan State), all cached queries (Location(s)), or the slowest queries (Average time).

You can use the Filter option provided with this tab to narrow the listed SQL Statements to a specified subset. A
specified filter string filters on all data in the SQL Statements listing, most usefully on schema or schema.table name,
routine location, or a substring found in the SQL Statement texts. A filter string is not case-sensitive, but must follow
statement text punctuation whitespace (name , age, not name,age). If a query references more than one table, the
Filter includes the SQL Statement if it selects for any referenced table in the Table/View/Procedure Name(s) column.
The Filter option is user customized.

90 InterSystems SQL Optimization Guide

SQL Statements

The Max rows option defaults to 1,000. The maximum value is 10,000. the minimum value is 10. To list more than
10,000 SQL Statements, use INFORMATION_SCHEMA.STATEMENTS. The Page size and Max rows options are
user customized.

• Catalog Details tab: select a table and display its catalog details. This tab provides an Table’s SQL Statements button
to display the SQL Statements associated with that table. Note that if a SQL Statement references more than one table,
it will be listed in the Table’s SQL Statements listing for each referenced table, but only the currently selected table is
listed in the Table Name column.

By clicking a column heading you can sort the list of the table’s SQL Statements by any column of the list.

You can use the SQLTableStatements() catalog query or INFORMATION_SCHEMA.STATEMENTS to list SQL Statements
selected by various criteria, as described in Querying the SQL Statements, below.

7.2.1 Listing Columns

The SQL Statements tab lists all SQL statements in the namespace. The Catalog Details tab Table’s SQL Statements button
lists the SQL Statements for the selected table. Both listing contain the following column headings:

• #: a sequential numbering of the list rows. These numbers are not associated with specific SQL Statements.

• Table/View/Procedure Name(s): the qualified SQL table (or view or procedure) name: schema.name. If an SQL Statement
query references multiple tables or views, all of them are listed here.

• Plan State: see Plan State below.

• New plan: see New Plan Different in “Frozen Plans” chapter.

• Natural Query: see Statement Details Section below.

• Count: see Performance Statistics below.

• Average Count: see Performance Statistics below.

• Total Time: see Performance Statistics below.

• Average Time: see Performance Statistics below.

• Std Dev: see Performance Statistics below.

• Locations(): the persistent class name: package:class. If the package name is %sqlcq, the SQL Statement is a cached
query.

• SQL Statement Text: the SQL Statement text (truncated to 128 characters) in normalized format, which may differ from
the command text, as specified in SQL Statement text below.

7.2.2 Plan State

The Plan State lists one of the following:

• Unfrozen: not frozen, can be frozen.

• Unfrozen/Parallel: not frozen, cannot be frozen.

• Frozen/Explicit: frozen by user action, can be unfrozen.

• Frozen/Upgrade: frozen by InterSystems IRIS version upgrade, can be unfrozen.

• blank: no associated Query Plan:

– An INSERT... VALUES() command creates an SQL Statement that does not have an associated Query Plan, and
therefore cannot be unfrozen or frozen (the Plan State column is blank). Even though this SQL command does

InterSystems SQL Optimization Guide 91

Listing SQL Statements

not produce a Query Plan, its listing in SQL Statements still is useful, because it allows you to quickly locate all
the SQL operations against this table. For example, if you add a column to a table, you may want to find out where
all of the SQL INSERTs are for that table so you can update these commands to include this new column.

– A cursor-based UPDATE or DELETE command does not have an associated Query Plan, and therefore cannot
be unfrozen or frozen (the Plan State column is blank). The DECLARE CURSOR command does generate an
SQL Statement with an associated Query Plan. Embedded SQL statements that use that cursor (OPEN cursor,
FETCH cursor, CLOSE cursor) do not generate separate SQL Statements. Even though a cursor-based UPDATE
or DELETE does not produce a Query Plan, its listing in SQL Statements is still useful, because it allows you to
quickly locate all the SQL operations against this table.

7.2.3 SQL Statement Text

The SQL Statement text commonly differs from the SQL command because SQL statement generation normalizes lettercase
and whitespace. Other differences are as follows:

If you issue a query from the Management Portal interface or the SQL Shell interface, the resulting SQL Statement differs
from the query by preceding the SELECT statement with DECLARE Q1 CURSOR FOR (where “Q1” can be a variety of
generated cursor names). This allows the statement text to match that of the Dynamic SQL cached query.

If the SQL command specifies an unqualified table or view name, the resulting SQL Statement provides the schema by
using either a schema search path (for DML, if provided) or the system-wide default schema name (for DDL and DML).

SQL Statement Text is truncated after 1024 characters. To view the complete SQL Statement Text, display the SQL
Statement Details.

A single SQL command may result in more than one SQL Statement. For example, if a query references a view, SQL

Statements displays two statement texts, one listed under the view name, the other listed under the underlying table name.
Freezing either statement results in Plan State of Frozen for both statements.

When SQL statements are prepared via xDBC, SQL statement generation appends SQL Comment Options (#OPTIONS)
to the statement text if the options are needed to generate the statement index hash. This is shown in the following example:

DECLARE C CURSOR FOR SELECT * INTO :%col(1) , :%col(2) , :%col(3) , :%col(4) , :%col(5) FROM SAMPLE .
 COMPANY /*#OPTIONS {"xDBCIsoLevel":0} */

7.3 Data Management (DML) SQL Statements
The Data Management Language (DML) commands that create an SQL Statement are: INSERT, UPDATE, INSERT OR
UPDATE, DELETE, TRUNCATE TABLE, SELECT, and DECLARE CURSOR FOR SELECT. You can use Dynamic
SQL or Embedded SQL to compile (or prepare) a DML command. A DML command can be compiled for a table or a
view, and InterSystems IRIS creates a corresponding SQL Statement.

Note: The system creates an SQL Statement when Dynamic SQL is prepared or when Embedded SQL is compiled, not
when the SQL is executed. The SQL Statement timestamp records when the SQL code was prepared or compiled,
not when (or if) it was executed. Thus an SQL Statement may represent a change to the table that was never
actually performed.

Preparing a Dynamic SQL DML command creates a corresponding SQL Statement. The Location associated with this SQL
Statement is a cached query. Dynamic SQL is prepared when SQL is executed from the Management Portal SQL interface,
from the SQL Shell interface, or imported from a .txt file. Purging an unfrozen cached query deletes the corresponding
SQL Statement. Purging a frozen cached query removes the Location value for the corresponding SQL Statement; the SQL
Statement is deleted when it is unfrozen.

92 InterSystems SQL Optimization Guide

SQL Statements

Compiling a non-cursor Embedded SQL Data Management Language (DML) command creates a corresponding SQL
Statement. Each Embedded SQL DML command creates a corresponding SQL Statement. If a routine contains multiple
Embedded SQL commands, each Embedded SQL command creates a separate SQL Statement. (Some Embedded SQL
commands create multiple SQL Statements.) The Location column of the SQL Statement listing specifies the routine that
contains the Embedded SQL. In this way, SQL Statements maintains a record of each Embedded SQL DML command.

Compiling a cursor-based Embedded SQL Data Management Language (DML) command creates an SQL Statement for
DECLARE CURSOR with a Query Plan. Associated Embedded SQL statements (OPEN cursor, FETCH cursor, CLOSE
cursor) do not generate separate SQL Statements. Following a FETCH cursor, an associated UPDATE table WHERE
CURRENT OF cursor or DELETE FROM table WHERE CURRENT OF cursor does generate a separate SQL
Statement, but no separate Query Plan.

An INSERT command that inserts literal values creates a SQL Statement with the Plan State column blank. Because this
command does not create a Query Plan, the SQL Statement cannot be frozen.

7.3.1 Modifying a Routine Containing Embedded SQL

When you compile a routine containing Embedded SQL, each SQL command is recorded as an entry in a statement dictionary
for that routine. If you change and re-compile the routine, InterSystems IRIS removes all of the previous statement dictionary
entries for that routine from all tables, then creates new entries corresponding to the current Embedded SQL content. If the
re-compiled routine contains no Embedded SQL, the prior SQL Statements are removed and no new SQL Statements are
added. Thus, by default, only the most recently compiled version of the Embedded SQL in a routine is preserved as an SQL
Statement.

You can prevent a re-compile from deleting/replacing an SQL Statement by designating it as a Frozen Plan. This allows
you to retain the query plan for that statement. Subsequent changes to the routine’s SQL code have no effect on frozen
SQL Statements.

7.3.2 SELECT Commands

Compiling (or Preparing) a query creates a corresponding SQL Statement. It can be a simple SELECT, or a CURSOR-
based SELECT/FETCH operation. The query can be issued against a table or a view.

• A query containing a JOIN creates an identical SQL Statement for each table. The Location is the same stored query
in the listing for each table. The Statement uses the following relations lists all of the tables, as described in the SQL
Statement Details Routines and Relations Sections.

• A query containing a select-item subquery creates an identical SQL Statement for each table. The Location is the same
stored query in the listing for each table. The Statement uses the following relations lists all of the tables, as described
in the SQL Statement Details Routines and Relations Sections.

• A query that references an external (linked) table cannot be frozen.

• A query containing the FROM clause %PARALLEL keyword may create more than one SQL Statement. You can
display these generated SQL Statements by invoking:

SELECT * FROM INFORMATION_SCHEMA.STATEMENT_CHILDREN

This displays the Statement column containing the statement hash of the original query and the ParentHash column
containing the statement hash of a generated version of the query.

SQL Statements for a %PARALLEL query have a Plan State of Unfrozen/Parallel, and cannot be frozen.

• A query containing no FROM clause, and therefore not referencing any table, still creates an SQL Statement. For
example: SELECT $LENGTH('this string') creates a SQL Statement with the Table column value
%TSQL_sys.snf.

InterSystems SQL Optimization Guide 93

Data Management (DML) SQL Statements

7.4 SQL Statement Details
There are two ways to display the SQL Statement Details:

• From the SQL Statements tab, select an SQL Statement by clicking the Table/View/Procedure Name(s) link in the left-
hand column. This displays the SQL Statement Details in a separate tab. This interface allows you to open multiple
tabs for comparison. It also provides a Query Test button that displays the SQL Runtime Statistics page.

• From the table’s Catalog Details tab (or the SQL Statements tab), select an SQL Statement by clicking the Statement

Text link in the right-hand column. This displays the SQL Statement Details in a pop-up window.

You can use either SQL Statement Details display to view the Query Plan and to freeze or unfreeze the query plan.

SQL Statement Details provides buttons to Freeze or Unfreeze the query plan. It also provides a Clear SQL Statistics button
to clear the Performance Statistics, an Export button to export one or more SQL Statements to a file, as well as a buttons
to Refresh and to Close the page.

The SQL Statement Details display contains the following sections. Each of these sections can be expanded or collapsed
by selecting the arrow icon next to the section title:

• Statement Details, which includes Performance Statistics

• Compile Settings

• Statement is Defined in the Following Routines

• Statement Uses the Following Relations

• Statement Text and Query Plan (described elsewhere)

7.4.1 Statement Details Section

Statement Details section:

• Statement hash: an internal hash representation of the statement definition that is used as the key of the SQL Statement
Index (for internal use only). Occasionally, what appear to be identical SQL statements may have different statement
hash entries. Any difference in settings/options that require different code generation of the SQL statement result in a
different statement hash. This may occur with different client versions or different platforms that support different
internal optimizations.

• Timestamp: Initially, the timestamp when the plan was created. This timestamp is updated following a freeze / unfreeze
to record the time the plan was unfrozen, not the time the plan was re-compiled. You may have to click the Refresh

Page button to display the unfreeze timestamp. Comparing the Plan Timestamp with the datetime value of the routine/class
that contain the statement will let you know if the routine/class is not using the same query plan if it was recompiled
again.

• Version: the InterSystems IRIS version under which the plan was created. If the Plan state is Frozen/Upgrade, this is
an earlier version of InterSystems IRIS. When you unfreeze a query plan, the Plan state is changed to Unfrozen and
the Version is changed to the current InterSystems IRIS version.

• Plan state: Frozen/Explicit, Frozen/Upgrade, Unfrozen, or Unfrozen/Parallel. Frozen/Explicit means that this statement's
plan has been frozen by an explicit user action and this frozen plan is the query plan that will be used, regardless of
changes to the code that generated this SQL Statement. Frozen/Upgrade means that this statement's plan has been
automatically frozen by an InterSystems IRIS version upgrade. Unfrozen means that the plan is currently unfrozen and
may be frozen. Unfrozen/Parallel mean that the plan is unfrozen and uses %PARALLEL processing, and therefore
cannot be frozen. A NULL (blank) plan state means that there is no associated query plan.

94 InterSystems SQL Optimization Guide

SQL Statements

• Natural query: a boolean flag indicating whether the query is a “natural query.” If checked, the query is a natural query,
and no query performance statistics are recorded. If not checked, performance statistics may be recorded; other factors
determine whether statistics actually are recorded. A natural query is defined as an Embedded SQL query that is so
simple that the overhead of recording statistics would affect query performance. There is no advantage to keeping
statistics on a natural query, as the query is already very simple. A good example of a natural query is SELECT Name
INTO :n FROM Table WHERE %ID=?. The WHERE clause of this query is an equality condition. This query does
not involve any looping or any index references. A Dynamic SQL query (cached query) is never flagged as a natural
query; statistics may or may not be recorded for a cached query.

• Frozen plan different: if you freeze the plan, this additional field is displayed, displaying whether the frozen plan is
different from the unfrozen plan. When you freeze the plan, the Statement Text and Query Plan displays the frozen
plan and the unfrozen plan side-by-side for easier comparison.

• This section also includes five query performance statistics fields which are described in the following section.

7.4.1.1 Performance Statistics

Executing a query adds performance statistics to the corresponding SQL Statement. This information can be used to
determine which queries are the slowest and which queries are executed the most. By using this information you can
determine which queries would provide significant benefits by being optimized.

In addition to the SQL Statement name, Plan state, location, and text, the following additional information is provided for
cached queries:

• Count: an integer count of the number of times this query has been run. A change that results in a different Query Plan
for this query (such as adding an index to a table) will reset this count.

• Average count: the average number of times this query is run per day.

• Total time: the amount of time (in seconds) that running this query has taken.

• Average time: the average amount of time (in seconds) that running this query has taken. If the query is a cached query,
the first execution of the query likely took significantly more time than subsequent executions of the optimized query
from the query cache.

• Standard deviation: the standard deviation of the total time and the average time. A query that is only run once has a
standard deviation of 0. Queries that are run many times commonly have a lower standard deviation than those that
are run only a few times.

• Date first seen: the date the query was first run (executed). This may differ from the Last Compile Time, which is when
the query was prepared.

Query performance statistics are periodically updated for completed query executions. This minimizes the overhead involved
in maintaining these statistics. As a consequence, currently running queries do not appear in the query performance statistics.
Recently-completed queries (roughly, within the last hour) may not immediately appear in the query performance statistics.

You can use the Clear SQL Statistics button to clear the values of these six fields.

InterSystems IRIS does not separately record performance statistics for %PARALLEL subqueries. %PARALLEL subquery
statistics are summed with the statistics for the outer query. Queries generated by the implementation to run in parallel do
not have their performance statistics tracked individually.

InterSystems IRIS does not record performance statistics for “natural” queries. If the system collected statistics it would
slow the query performance, and a natural query is already optimal, so there is no potential for optimization.

You can view these query performance statistics for multiple SQL statements in the SQL Statements tab display. You can
sort the SQL Statements tab listing by any column. This makes it easy to determine, for example, which queries have the
largest average time.

InterSystems SQL Optimization Guide 95

SQL Statement Details

You can also access these query performance statistics by querying the INFORMATION.SCHEMA.STATEMENTS class
properties, as described in Querying the SQL Statements.

7.4.2 Compile Settings Section

Compile Settings section:

• Select mode: the SelectMode the statement was compiled with. For DDL commands, this is always Runtime. For DML
commands this can be set using #SQLCompile Select; the default is Logical. If #SQLCompile Select=Runtime, a call
to $SYSTEM.SQL.SetSelectMode() can change the query result set display, but does not change the Select Mode value,
which remains Runtime.

• Default schema(s): the system-wide default schema name that were set when the statement was compiled. For DDL
commands this is the schema actually used to resolve unqualified names. For DML commands this is the system-wide
default schema in effect when the command was issued, though SQL may have resolved the schema for unqualified
names using a schema search path (if provided) rather than this system-wide default schema. However, if the statement
is a DML command in Embedded SQL using one or more #Import macro directives, the schemas specified by #Import
directives are listed here.

• Schema path: the schema path defined when the statement was compiled. For DDL commands this is always blank.
For DML commands this is the schema search path, if specified. If no schema search path is specified, this setting is
blank. However, for a DML Embedded SQL command with a search path specified in an #Import macro directive, the
#Import search path is shown in the Default schema(s) setting and this Schema path setting is blank.

7.4.3 Routines and Relations Sections

Statement is Defined in the Following Routines section:

• Routine: the class name associated with the table (for DDL), the cached query (for Dynamic SQL DML), or the routine
name (for Embedded SQL DML).

• Type: Class Method or MAC Routine (for Embedded SQL DML).

• Last Compile Time: the last compile time or prepare time for the routine. If the SQL Statement is Unfrozen, recompiling
a MAC routine updates both this timestamp and the Plan Timestamp. If the SQL Statement is Frozen, recompiling a
MAC routine updates only this timestamp; the Plan Timestamp is unchanged until you unfreeze the plan; the Plan

Timestamp then shows the time the plan was unfrozen.

Statement Uses the Following Relations section lists one or more defined tables used to create the query plan. For an INSERT
that uses a query to extract values from another table, or an UPDATE or DELETE that uses a FROM clause to reference
another table, both tables are listed here. For each table the following values are listed:

• Table or View Name: the qualified name of the table or view.

• Type: Table or View.

• Last Compile Time: The time the table DDL was last compiled.

• Classname: the classname associated with the table.

This section includes a Compile Class option to re-compile the class. If you re-compile an unfrozen plan, all three time
fields are updated. If you re-compile a frozen plan, the two Last Compile Time fields are updated, but the Plan Timestamp

is not. When you unfreeze the plan and click the Refresh Page button, the Plan Timestamp updates to the time the plan was
unfrozen.

96 InterSystems SQL Optimization Guide

SQL Statements

7.5 Data Definition (DDL) SQL Statements
Creating a table compiles a corresponding Persistent Class, and therefore creates one or more SQL Statements. Creating a
view does not create a persistent class, so no SQL Statements are created.

You can create an SQL table by defining it as a persistent class, or defining it using the SQL CREATE TABLE command
from either Embedded SQL or Dynamic SQL. Regardless of how you create a table, the system creates one or more corre-
sponding SQL Statements. The Location specifies the class name associated with the table definition.

When you create a table, InterSystems SQL defines a bitmap extent index. In doing so, it creates a corresponding SQL
Statement, such as the following:

DECLARE QEXTENT CURSOR FOR SELECT ID FROM SAMPLE . SQLTEST

Altering a table definition recompiles the existing create table SQL Statements.

When you create an index, either by modifying the table class definition or by issuing an SQL CREATE INDEX command,
InterSystems IRIS stores a corresponding SQL Statement, such as the following, for each created index. The SQL Statement
is the same regardless of the type of index created. Creating more than one type of index for a field does not store additional
SQL statements:

SELECT %ID INTO :id FROM SAMPLE . SQLTEST WHERE (:K1 IS NOT NULL AND LASTNAME = :K1
) OR (:K1 IS NULL AND LASTNAME IS NULL)

Adding an index also causes all of the create table SQL Statements to be re-compiled, updating the Plan Timestamp for all
of them, including SQL Statements for other indices. A DROP INDEX removes this SQL Statement and causes all of the
remaining DDL SQL Statements to be re-compiled, updating the Plan Timestamp.

If you define a Primary Key or Unique constraint, InterSystems IRIS defines a primary key index, and therefore creates an
SQL Statement such as the one above. In addition to the two SQL Statements described above, InterSystems IRIS adds the
following four statements (in this example the LastName field):

SELECT 1 AS _PASSFAIL FROM SAMPLE . SQLTEST WHERE LASTNAME = :pValue(1) AND %ID <>
:id
SELECT LASTNAME INTO :tCol1 FROM SAMPLE . SQLTEST WHERE %ID = :pID
DECLARE EXT CURSOR FOR SELECT %ID INTO :tID FROM SAMPLE . SQLTEST
SELECT %ID INTO :id FROM SAMPLE . SQLTEST WHERE LASTNAME = :%d(2)

InterSystems SQL Optimization Guide 97

Data Definition (DDL) SQL Statements

Each additional UNIQUE field adds three more SQL statements like these: specifying in the WHERE clause the UNIQUE
field (In this example the SSN field).

SELECT %ID INTO :id FROM SAMPLE . SQLTEST WHERE (:K1 IS NOT NULL AND SSN = :K1) OR
 (:K1 IS NULL AND SSN IS NULL)
SELECT 1 AS _PASSFAIL FROM SAMPLE . SQLTEST WHERE SSN = :pValue(1) AND %ID <> :id
SELECT %ID INTO :id FROM SAMPLE . SQLTEST WHERE SSN = :%d(3)

It also modifies the following statement to include the additional UNIQUE field, such as the following:

SELECT SSN , LASTNAME INTO :tCol2 , :tCol1 FROM SAMPLE . SQLTEST WHERE %ID = :pID

7.6 Delete Table and SQL Statements
When a table is deleted, all non-frozen SQL Statements (Plan State Unfrozen) are deleted. Frozen statements (Plan State

Frozen/Explicit) are not deleted, but the Table/View/Procedure Name(s) column is modified, as in the following example:
SAMPLE.MYTESTTABLE - Deleted?? Sample.Person; the name of the deleted table is converted to all uppercase
letters and is flagged as “Deleted??”. The Location column is blank for DDL statements because the table has been deleted.
The Location column is blank for Dynamic SQL DML statements because all cached queries associated with the table have
been automatically purged.

7.7 Querying the SQL Statements
You can use the SQLTableStatements() stored query to return the SQL Statements for a specified table. This is shown in
the following example:

 ZNSPACE "Samples"
 SET mycall = "CALL %Library.SQLTableStatements('Sample','Person')"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus=tStatement.%Prepare(mycall)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset=tStatement.%Execute()
 IF rset.%SQLCODE '= 0 {WRITE "SQL error=",rset.%SQLCODE QUIT}
 DO rset.%Display()

You can use the INFORMATION_SCHEMA package tables to query the list of SQL Statements. InterSystems IRIS supports
the following classes:

• INFORMATION_SCHEMA.STATEMENTS: Contains SQL Statement Index entries that can be accessed by the current
user in the current namespace.

• INFORMATION_SCHEMA.STATEMENT_LOCATIONS: Contains each routine location from which an SQL statement
is invoked: the persistent class name or the cached query name.

• INFORMATION_SCHEMA.STATEMENT_RELATIONS: Contains each table or view entry use by an SQL statement.

The following are some example queries using these classes:

The following example returns all of the SQL Statements in the namespace, listing the hash value (a computed Id that
uniquely identifies the normalized SQL statement), the frozen status flag (values 0 through 3), the local timestamp when
the statement was prepared and the plan saved, and the statement text itself:

SELECT Hash,Frozen,Timestamp,Statement FROM INFORMATION_SCHEMA.STATEMENTS

98 InterSystems SQL Optimization Guide

SQL Statements

The following example returns the SQL Statements for all frozen plans, indicating whether the frozen plan is different from
what the plan would be if not frozen. Note that an unfrozen statement may be Frozen=0 or Frozen=3. A statement such as
a single row INSERT, that cannot be frozen, displays NULL in the Frozen column:

SELECT Frozen,FrozenDifferent,Timestamp,Statement FROM INFORMATION_SCHEMA.STATEMENTS
WHERE Frozen=1 OR Frozen=2

The following example returns all the SQL Statements and the routines the statements are located in for a given SQL table.
(Note that the table name (SAMPLE.PERSON) must be specified with the same letter case used in the SQL Statement text:
all uppercase letters):

SELECT Statement,Frozen,STATEMENT_LOCATIONS->Location AS Routine,STATEMENT_LOCATIONS->Type AS RoutineType

 FROM INFORMATION_SCHEMA.STATEMENTS
 WHERE STATEMENT_RELATIONS->Relation='SAMPLE.PERSON'

The following example returns all the SQL Statements in the current namespace that have frozen plans:

SELECT Statement,Frozen,Frozen_Different,STATEMENT_LOCATIONS->Location AS
Routine,STATEMENT_LOCATIONS->Type AS RoutineType
 FROM INFORMATION_SCHEMA.STATEMENTS
 WHERE Frozen=1 OR Frozen=2

The following example returns all the SQL Statements in the current namespace that contain a COUNT(*) aggregate
function. (Note that the statement text (COUNT (*)) must be specified with the same whitespace used in the SQL
Statement text):

SELECT Statement,Frozen,STATEMENT_LOCATIONS->Location AS Routine,STATEMENT_LOCATIONS->Type AS RoutineType

 FROM INFORMATION_SCHEMA.STATEMENTS
 WHERE Statement [' COUNT (*) '

7.8 Exporting and Importing SQL Statements
You can export or import SQL Statements as an XML-formatted text file. This enables you to move a frozen plan from
one location to another. SQL Statement exports and imports include the associated query plan.

You can export a single SQL Statement or export all of the SQL Statements in the namespace.

You can import a previously-exported XML file containing one or more SQL Statements.

Note: This import of SQL Statements as XML should not be confused with the import and execution of SQL DDL code
from a text file.

7.8.1 Exporting SQL Statements

Export a single SQL Statement:

• Use the SQL Statement Details page Export button. From the Management Portal System Explorer SQL interface,
select the SQL Statements tab and click on a statement to open up the SQL Statement Details page. Select the Export

button. This opens a dialog box, allowing you to select to export the file to Server (a data file) or Browser.

– Server (the default): Enter the full path name of the export xml file. The first time you export, this file has a default
name of statementexport.xml. You can, of course, specify a different path and file name. After you have
successfully exported an SQL Statement file, the last used file name becomes the default.

The Run export in the background check box is not selected by default.

InterSystems SQL Optimization Guide 99

Exporting and Importing SQL Statements

– Browser: Exports the file statementexport.xml to a new page in the user’s default browser. You can specify
another name for the browser export file, or specify a different software display option.

• Use the ExportSQLStatement() method.

Export all SQL Statements in the namespace:

• Use the Export All Statements Action from the Management Portal. From the Management Portal System Explorer

SQL interface, select the Actions drop-down list. From that list select Export All Statements. This opens a dialog box,
allowing you to export all SQL Statements in the namespace to Server (a data file) or Browser.

– Server (the default): Enter the full path name of the export xml file. The first time you export, this file has a default
name of statementexport.xml. You can, of course, specify a different path and file name. After you have
successfully exported an SQL Statement file, the last used file name becomes the default.

The Run export in the background check box is selected by default. This is the recommended setting when
exporting all SQL Statements. When Run export in the background is checked, you are provided with a link to
view the background list page where you can see the background job status.

– Browser: Exports the file statementexport.xml to a new page in the user’s default browser. You can specify
another name for the browser export file, or specify a different software display option.

• Use the ExportAllSQLStatements() method.

7.8.2 Importing SQL Statements

Import an SQL Statement or multiple SQL Statements from a previously-exported file:

• Use the Import Statements Action from the Management Portal. From the Management Portal System Explorer SQL
interface, select the Actions drop-down list. From that list select Import Statements. This opens a dialog box, allowing
you to specify the full path name of the import XML file.

The Run import in the background check box is selected by default. This is the recommended setting when importing
a file of SQL Statements. When Run import in the background is checked, you are provided with a link to view the
background list page where you can see the background job status.

• Use the ImportSQLStatement() method.

7.8.3 Viewing and Purging Background Tasks

From the Management Portal System Operation option, select Background Tasks to view the log of export and import
background tasks. You can use the Purge Log button to clear this log.

100 InterSystems SQL Optimization Guide

SQL Statements

8
Frozen Plans

Most SQL statements have an associated Query Plan. A query plan is created when an SQL statement is prepared. By
default, operations such as adding an index and recompiling the class purge this Query Plan. The next time the query is
invoked it is re-prepared and a new Query Plan is created. Frozen plans enable you to retain (freeze) a existing Query Plan
across compiles. Query execution uses the frozen plan, rather than performing a new optimization and generating a new
query plan.

Changes to system software may also result in a different Query Plan. Usually, these upgrades result in better query perfor-
mance, but it is possible that a software upgrade may worsen the performance of a specific query. Frozen plans enable you
to retain (freeze) a Query Plan so that query performance is not changed (degraded or improved) by a system software
upgrade.

8.1 How to Use Frozen Plans
There are two strategies for using frozen plans — the optimistic strategy and the pessimistic strategy:

• Optimistic: use this strategy if your assumption is that a change to the system software or to a class definition will
improve performance. Run the query and freeze the plan. Export (backup) the frozen plan. Unfreeze the plan. Make
the software change. Re-run the query. This generates a new plan. Compare the performance of the two queries. If the
new plan did not improve performance, you can import the prior frozen plan from the backup file.

• Pessimistic: use this strategy if your assumption is that a change to the system software or to a class definition will
probably not improve performance of a specific query. Run the query and freeze the plan. Make the software change.
Re-run the query with the %NOFPLAN keyword (which causes the frozen plan to be ignored). Compare the performance
of the two queries. If ignoring the frozen plan did not improve performance, keep the plan frozen and remove
%NOFPLAN from the query.

8.2 Software Version Upgrade Automatically Freezes
Plans
When you upgrade InterSystems IRIS® data platform to a new major version, existing Query Plans are automatically
frozen. This ensures that a major software upgrade will never degrade the performance of an existing query. After a software
version upgrade, perform the following steps for performance-critical queries:

InterSystems SQL Optimization Guide 101

1. Execute the query with the plan state as Frozen/Upgrade and monitor performance. This is the optimized Query Plan
that was created prior to the software upgrade.

2. Add the %NOFPLAN keyword to the query, then execute and monitor performance. This optimizes the Query Plan
using the SQL optimizer provided with the software upgrade. It does not unfreeze the existing Query Plan.

3. Compare the performance metrics.

• If the %NOFPLAN performance is better, the software upgrade improved the Query Plan. Unfreeze the Query
Plan. Remove the %NOFPLAN keyword.

• If the %NOFPLAN performance is worse, the software upgrade degraded the Query Plan. Keep the Query Plan
frozen; promote it from Frozen/Upgrade to Frozen/Explicit. Remove the %NOFPLAN keyword.

4. After testing your performance-critical queries, you can unfreeze all remaining Frozen/Upgrade plans.

This automatic freeze occurs when you prepare/compile a query under an InterSystems software version newer than the
version under which the plan was originally created. For example, consider an SQL statement that was prepared/compiled
under system software version xxxx.1. You subsequently upgrade to version xxxx.2, and the SQL statement is prepared/com-
piled again. The system will detect this is the first prepare/compile of the SQL statement on the new version, and automat-
ically marks the plan state as Frozen/Upgrade, and uses the existing plan for the new prepare/compile. This ensures the
query plan used is no worse than the query plan of the previous version.

Only major version InterSystems system software upgrades automatically freeze existing query plans. A maintenance
release version upgrade does not freeze existing query plans. For example, a major version upgrade, such as from 2018.1
to 2019.1 would perform this operation. A maintenance release version upgrade, such as 2018.1.0 to 2018.1.1 does not
perform this operation.

In the Management Portal SQL interface the SQL Statements Plan State column indicates these automatically frozen plans
as Frozen/Upgrade and the Plan Version indicates the InterSystems software version of the original plan. Refer to SQL
Statement Details for further information. You can unfreeze individual plans using this interface.

You can use the FreezePlans() method to freeze or unfreeze a single plan or multiple plans:

• FreezePlans() can unfreeze Frozen/Upgrade query plans within the specified scope: namespace, schema, relation
(table), or individual query.

• FreezePlans() can promote (“freeze”) query plans flagged as Frozen/Upgrade to Frozen/Explicit. Commonly, you
would use this method to selectively promote appropriate Frozen/Upgrade plans to Frozen/Explicit, then unfreeze all
remaining Frozen/Upgrade plans.

If FreezePlans() refers to a non-existent table, it returns a error with the message in the first subscript:

USER>DO $SYSTEM.SQL.FreezePlans(1,3,"Sample.ThisIsNotARealTable",.err)

USER>ZWRITE err

err=1
err(1)="No statements found for relation Sample.ThisIsNotARealTable attempting to freeze plans."

8.3 Frozen Plans Interface
There are two frozen plan interfaces, used for different purposes:

• Management Portal SQL Statements interface, used to freeze (or unfreeze) the plan for an individual query.

• $SYSTEM.SQL.FreezePlans() method interface, used to freeze or unfreeze all plans for a namespace, a schema, a
table, or an individual query.

102 InterSystems SQL Optimization Guide

Frozen Plans

In the Management Portal SQL interface select the Execute Query tab. Write a query, then click the Show Plan button to
display the current query execution plan. If the plan is frozen, the first line in the Query Plan section is “Frozen Plan”.

In the Management Portal SQL interface select the SQL Statements tab. This displays a list of SQL Statements. The Plan

State column of this list specifies Unfrozen, Unfrozen/Parallel, Frozen/Explicit, or Frozen/Upgrade. (The Plan State column
is blank if the statement has no associated Query Plan.)

To freeze or unfreeze a plan, choose an SQL statement in the SQL Statement Text column. This displays the SQL Statement

Details box. At the bottom of this box it displays the Statement Text and Query Plan. The background color for these sections
is green if the plan is not frozen, and blue if the plan is frozen. Just above that, under Statement Actions, you can select the
Freeze Plan or Un-Freeze Plan button, as appropriate. You then select Close.

• Freeze Plan button: Clicking this button will cause the query optimization plan for this statement to be frozen. When
a plan is frozen, and that SQL statement is compiled, the SQL compilation will use the frozen plan information and
skip the query optimization phase.

• Un-Freeze Plan button: Clicking this button will delete the frozen plan for this statement and new compilations of this
statement will go through query optimization phase to determine the best plan to use.

You can also freeze or unfreeze one or more plans using the FreezePlans() method. You can specify the scope of the freeze
or unfreeze operation by specifying the namespace, the SQL schema name, the SQL schema.table name, or the query plan
statement specified by the SQL Statement hash value.

The meaning and use of the other fields in the SQL Statement Details box are described in the “SQL Statements” chapter
of this guide.

8.3.1 Privileges

A user can view only those SQL Statements for which they have execute privileges. This applies both to Management
Portal SQL Statements listings and to INFORMATION_SCHEMA.STATEMENTS class queries.

Management Portal SQL Statements access requires “USE” privilege on the %Development resource. Any user that can
see an SQL Statement in the Management Portal can freeze or unfreeze it.

For catalog access to SQL Statements, you can see the statements if you are privileged to execute the statement or you have
“USE” privilege on the %Development resource.

For the $SYSTEM.SQL.() method call, you must have “U” privilege on the %Developer resource.

8.3.2 Frozen Plan Different

If a plan is frozen, you can determine if unfreezing the plan would result in a different plan without actually unfreezing the
plan. This information can assist you in determining which SQL statements are worth testing using %NOFPLAN to determine
if unfreezing the plan would result in better performance.

A frozen plan may be different from the current plan due to any of the following operations:

• Recompiling the table or a table referenced by the table

• Using SetMapSelectability() to activate or deactivate an index

• Running TuneTable on a table

• Upgrading the InterSystems software version

Recompiling automatically purges existing cached queries. For other operations, you must manually purge existing cached
queries for a new query plan to take effect.

These operations may or may not result in a different query plan. There are two ways to determine if they do:

InterSystems SQL Optimization Guide 103

Frozen Plans Interface

• Manually checking individual frozen plans

• Automatically scanning all frozen plans on a daily basis

If the plan has not yet been checked by either of these operations, or a plan is not frozen, the SQL Statements listing New

Plan column is blank. Unfreezing a checked frozen plan resets the New Plan column to blank.

8.3.2.1 Manual Frozen Plan Check

At the top of the SQL Statement Details page for a frozen plan there is a Check frozen button. Pressing this button displays
the Unfrozen plan different check box. If this box is checked, unfreezing the plan would result in a different query plan.

When you have performed this Check frozen test on a frozen plan:

• If the Unfrozen plan different box is checked, the SQL Statements listing New Plan column contains a “1”. This indicates
that unfreezing the plan would result in a different plan.

• If the Unfrozen plan different box is not checked, the SQL Statements listing New Plan column contains a “0”. This
indicates that unfreezing the plan would not result in a different plan.

– A cached query that has been frozen has a New Plan of “0”; purging the cached query and then unfreezing the plan
causes the SQL statement to disappear.

– A Natural Query that has been frozen has a blank in the New Plan column.

After performing this test, the Check frozen button disappears. If you wish to re-test a frozen plan, select the Refresh Page

button. This re-displays the Check frozen button.

8.3.2.2 Automatic Daily Frozen Plan Check

InterSystems SQL automatically scans all frozen statements in the SQL Statement listing every night at 2:00am. This scan
lasts for, at most, one hour. If the scan is not completed in one hour, the system notes where it left off, and continues from
that point on the next daily scan. You can use the Management Portal to monitor this daily scan or to force it to scan
immediately: select System Operation, Task Manager, Task Schedule, then select the Scan frozen plans task.

This scan examines all frozen plans:

• If the frozen plan has the same InterSystems software version as the current version, InterSystems IRIS® data platform
computes a hash on all the tables that this plan references and their timestamps. If any of these have changed, it flags
the SQL statement in the SQL Statements listing New Plan column with a “1”. This indicates that unfreezing the plan
would result in a different query plan.

• If the frozen plan has the same InterSystems IRIS version as the current version, and no table timestamps have changed,
it flags the SQL statement in the SQL Statements listing New Plan column with a “0”. This indicates that unfreezing
the plan would not result in a different query plan.

• If the frozen plan has a different InterSystems software version from the current version (Frozen/Update), InterSystems
IRIS determines if a change to the SQL optimizer logic would result in a different query plan. If so, it flags the SQL
statement in the SQL Statements listing New Plan column with a “1”. Otherwise, it flags the SQL statement New Plan

column with a “0”.

You can check the results of this scan by invoking INFORMATION_SCHEMA.STATEMENTS. The following example returns
the SQL Statements for all frozen plans, indicating whether the frozen plan is different from what the plan would be if not
frozen. Note that an unfrozen statement may be Frozen=0 or Frozen=3:

SELECT Frozen,FrozenDifferent,Timestamp,Statement FROM INFORMATION_SCHEMA.STATEMENTS
WHERE Frozen=1 OR Frozen=2

104 InterSystems SQL Optimization Guide

Frozen Plans

8.3.3 Frozen Plan in Error

If a statement's plan is frozen, and something changes to a definition used by the plan to cause the plan to be invalid, an
error occurs. For example, if an index was deleted from the class that was used by the statement plan:

• The statement's plan remains frozen.

• On the SQL Statement Details page the Compile Settings area displays a Plan Error field. For example, if a query plan
used an index name indxdob and then you modified the class definition to drop index indxdob, a message such as the
following displays: Map 'indxdob' not defined in table 'Sample.Mytable', but it was
specified in the frozen plan for the query.

• On the SQL Statement Details page the Query Plan area displays Plan could not be determined due to
an error in the frozen plan.

If the query is [re]compiled and the frozen plan is in an error state, InterSystems IRIS does not use the frozen plan. Instead,
the system creates a new Query Plan that will work given the current definitions. However, this Query Plan is not preserved
in a cached query or an SQL Statement if a frozen plan is in effect.

The plan in error remains in error until either the plan is unfrozen, or the definitions are modified to bring the plan back to
a valid state.

If you modify the definitions to bring the plan back to a valid state, go to the SQL Statement Details page and press the
Clear Error button to determine if you have corrected the error. If corrected, the Plan Error field disappears; otherwise the
Plan Error message re-displays. If you have corrected the definition, you do not have to explicitly clear the plan error for
SQL to begin using the frozen plan. If you have corrected the definition, the Clear Error button causes the SQL Statement
Details page Frozen Query Plan area to again display the execution plan.

A Plan Error may be a “soft error.” This can occur when the plan uses an index, but that index is currently not selectable
by the query optimizer because its selectability has been set to 0 by SetMapSelectability(). This was probably done so the
index could be [re]built. When InterSystems IRIS encounters a soft error for a statement with a frozen plan, the query
processor attempts to clear the error automatically and use the frozen plan. If the plan is still in error, the plan is again
marked in error and query execution uses the best plan it can.

8.4 %NOFPLAN Keyword
You can use the %NOFPLAN keyword to override a frozen plan. An SQL statement containing the %NOFPLAN keyword
generates a new query plan. The frozen plan is retained but not used. This allows you to test generated plan behavior
without losing the frozen plan.

The syntax of %NOFPLAN is as follows:

DECLARE <cursor name> CURSOR FOR SELECT %NOFPLAN ...
SELECT %NOFPLAN
INSERT [OR UPDATE] %NOFPLAN ...
DELETE %NOFPLAN ...
UPDATE %NOFPLAN

In a SELECT statement the %NOFPLAN keyword can only be used immediately after the first SELECT in the query: it
can only be used with the first leg of a UNION query, and cannot be used in a subquery. The %NOFPLAN keyword must
immediately follow the SELECT keyword, preceding other keywords such as DISTINCT or TOP.

InterSystems SQL Optimization Guide 105

%NOFPLAN Keyword

8.5 Exporting and Importing Frozen Plans
You can export or import SQL Statements as an XML-formatted text file. This enables you to move a frozen plan from
one location to another. SQL Statement exports and imports include an encoded version of the associated query plan and
a flag indicating whether the plan is frozen. For details, refer to Exporting and Importing SQL Statements.

106 InterSystems SQL Optimization Guide

Frozen Plans

	Table of Contents
	About This Book
	1 Introduction to SQL Performance Optimization
	1.1 Table Definition Optimization
	1.2 Table Data Optimization
	1.3 Query Optimization
	1.4 Configuration Optimization
	1.5 Sharding
	1.6 Fast Commands

	2 Defining and Building Indices
	2.1 Overview
	2.1.1 Index Attributes
	2.1.2 Storage Type and Indices
	2.1.3 Index Global Names
	2.1.4 Master Map

	2.2 Automatically-Defined Indices
	2.2.1 Bitmap Extent Index

	2.3 Defining Indices
	2.3.1 Defining Indices Using a Class Definition
	2.3.2 Defining Indices Using DDL

	2.4 Bitmap Indices
	2.4.1 Bitmap Index Operation
	2.4.2 Defining an IdKey Bitmap Index Using a Class Definition
	2.4.3 Defining a %BID Bitmap Index Using a Class Definition
	2.4.4 Defining Bitmap Indices Using DDL
	2.4.5 Generating a Bitmap Extent Index
	2.4.6 Choosing an Index Type
	2.4.7 Restrictions on Bitmap Indices
	2.4.8 Maintaining Bitmap Indices
	2.4.9 SQL Manipulation of Bitmap Chunks

	2.5 Bitslice Indices
	2.6 Building Indices
	2.6.1 Building Indices on an Inactive System
	2.6.2 Building Indices on an Active System
	2.6.3 Building Indices on a READONLY Active System
	2.6.4 Building Indices on a READ and WRITE Active System

	2.7 Validating Indices
	2.7.1 Validating Indices by Name

	2.8 Listing Indices
	2.9 Open, Exists, and Delete Methods
	2.9.1 Opening an Instance by Index Key
	2.9.2 Checking If an Instance Exists
	2.9.3 Deleting an Instance

	3 Optimizing Tables
	3.1 ExtentSize, Selectivity, and BlockCount
	3.1.1 ExtentSize
	3.1.2 Selectivity
	3.1.3 BlockCount

	3.2 Tune Table
	3.2.1 When to Run Tune Table
	3.2.2 Running Tune Table
	3.2.3 Running Tune Table on a Sharded Table

	3.3 Tune Table Calculated Values
	3.3.1 Extent Size and the Row Count
	3.3.2 Selectivity and Outlier Selectivity
	3.3.3 CALCSELECTIVITY Parameter and Not Calculating Selectivity
	3.3.4 Outlier Optimization
	3.3.5 The Notes Column
	3.3.6 Average Field Size
	3.3.7 Map BlockCount Tab

	3.4 Exporting and Re-importing Tune Table Statistics

	4 Cached Queries
	4.1 Cached Queries Improve Performance
	4.2 Creating a Cached Query
	4.2.1 Cached Query Names
	4.2.2 Separate Cached Queries

	4.3 Literal Substitution
	4.3.1 DynamicSQLTypeList Comment Option
	4.3.2 Literal Substitution and Performance
	4.3.3 Suppressing Literal Substitution

	4.4 Cosharding Comment Option
	4.5 Runtime Plan Choice
	4.5.1 Activating RTPC
	4.5.2 Application of RTPC
	4.5.3 Overriding RTPC

	4.6 Cached Query Result Set
	4.7 Listing Cached Queries
	4.7.1 Counting Cached Queries
	4.7.2 Displaying Cached Queries
	4.7.3 Listing Cached Queries Using ^rINDEXSQL
	4.7.4 Exporting Cached Queries to a File

	4.8 Executing Cached Queries
	4.9 Cached Query Lock
	4.10 Purging Cached Queries
	4.10.1 Remote Systems

	4.11 SQL Commands That Are Not Cached

	5 Optimizing Query Performance
	5.1 Management Portal SQL Performance Tools
	5.1.1 The %SYS.PTools Package

	5.2 SQL Runtime Statistics
	5.2.1 Runtime Statistics Interfaces

	5.3 Using the SQL Runtime Statistics Tool
	5.3.1 Settings
	5.3.2 Query Test
	5.3.3 View Stats
	5.3.4 Runtime Statistics and Show Plan

	5.4 Using Performance Statistics Methods
	5.4.1 Activate the Gathering of Statistics
	5.4.2 Get Statistics Settings
	5.4.3 Export Query Performance Statistics
	5.4.4 Delete Query Performance Statistics
	5.4.5 Performance Statistics Examples

	5.5 Using Indices
	5.5.1 What to Index
	5.5.2 Index Configuration Options
	5.5.3 Index Usage Analysis
	5.5.4 Index Analyzer
	5.5.5 indexUsage() Method
	5.5.6 Index Optimization Options

	5.6 Show Plan
	5.6.1 Displaying an Execution Plan
	5.6.2 Execution Plan: Statement Text and Query Plan

	5.7 Alternate Show Plans
	5.7.1 Stats

	5.8 Writing Query Optimization Plans to a File
	5.9 Comment Options
	5.9.1 Syntax
	5.9.2 Display

	5.10 Parallel Query Processing
	5.10.1 System-Wide Parallel Query Processing
	5.10.2 Parallel Query Processing for a Specific Query
	5.10.3 Parallel Query Processing Ignored
	5.10.4 Shared Memory Considerations
	5.10.5 Cached Query Considerations
	5.10.6 SQL Statements and Plan State

	5.11 Generate Report

	6 Interpreting an SQL Query Plan
	6.1 Tables Stored In Maps
	6.2 Developing the Plan
	6.3 Reading the Plan
	6.3.1 Accessing Maps
	6.3.2 Conditions and Expressions
	6.3.3 Loops
	6.3.4 Temporary Files
	6.3.5 Modules
	6.3.6 Queries Sent for Processing
	6.3.7 Sub-Queries, JOINs and UNIONs

	6.4 Plan Analysis
	6.4.1 Adding an Index
	6.4.2 Adding Fields to Index Data
	6.4.3 Adding a Join Index

	7 SQL Statements
	7.1 Operations that Create SQL Statements
	7.1.1 Other SQL Statement Operations

	7.2 Listing SQL Statements
	7.2.1 Listing Columns
	7.2.2 Plan State
	7.2.3 SQL Statement Text

	7.3 Data Management (DML) SQL Statements
	7.3.1 Modifying a Routine Containing Embedded SQL
	7.3.2 SELECT Commands

	7.4 SQL Statement Details
	7.4.1 Statement Details Section
	7.4.2 Compile Settings Section
	7.4.3 Routines and Relations Sections

	7.5 Data Definition (DDL) SQL Statements
	7.6 Delete Table and SQL Statements
	7.7 Querying the SQL Statements
	7.8 Exporting and Importing SQL Statements
	7.8.1 Exporting SQL Statements
	7.8.2 Importing SQL Statements
	7.8.3 Viewing and Purging Background Tasks

	8 Frozen Plans
	8.1 How to Use Frozen Plans
	8.2 Software Version Upgrade Automatically Freezes Plans
	8.3 Frozen Plans Interface
	8.3.1 Privileges
	8.3.2 Frozen Plan Different
	8.3.3 Frozen Plan in Error

	8.4 %NOFPLAN Keyword
	8.5 Exporting and Importing Frozen Plans

