
Specialized System Tools and
Utilities

Version 2019.4
2020-01-28

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Specialized System Tools and Utilities
InterSystems IRIS Data Platform Version 2019.4 2020-01-28
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

1 Introduction .. 3
1.1 Customization ... 3
1.2 Remote System Management ... 3
1.3 Byte Order Conversion ... 4

2 Customizing the InterSystems IRIS System .. 5
2.1 Using System Classes for National Language Support .. 5

2.1.1 The %SYS.NLS Classes .. 6
2.1.2 Examples Using %SYS.NLS ... 8
2.1.3 The Config.NLS Classes .. 10
2.1.4 Examples Using Config.NLS ... 11
2.1.5 Using %Library.GlobalEdit to Set the Collation for a Global 15

2.2 Customizing Start and Stop Behavior with ^%ZSTART and ^%ZSTOP Routines 17
2.2.1 Design Considerations ... 18
2.2.2 Enabling %ZSTART and %ZSTOP ... 19
2.2.3 Debugging ^%ZSTART and ^%ZSTOP .. 19
2.2.4 Removing %ZSTART and ^%ZSTOP ... 20
2.2.5 Example ... 20

2.3 Extending Languages with ^%ZLANG Routines .. 24
2.3.1 Notes .. 25
2.3.2 Examples .. 25

3 Managing InterSystems IRIS Remotely ... 27
3.1 Using ^GBLOCKCOPY for Fast Global Copies ... 27

3.1.1 Uses of ^GBLOCKCOPY .. 28
3.1.2 Running ^GBLOCKCOPY .. 28

3.2 Using Switches ... 29
3.2.1 Currently Defined Switches ... 29
3.2.2 Manipulating Switches ... 30
3.2.3 Failure Modes ... 31

3.3 Controlling InterSystems IRIS from a Windows Client ... 32
3.3.1 IRISctlGetDirs ... 32
3.3.2 IRISctlConfigStatus ... 32
3.3.3 IRISctlControl ... 33
3.3.4 IRISctlRun ... 33
3.3.5 IRISctlRunIO ... 34

3.4 Character-Based Management Routines .. 35

4 Process Management .. 37
4.1 Batch Mode .. 37
4.2 Priority .. 38

4.2.1 The SetPrio() Method ... 38
4.2.2 The ^%PRIO Utility ... 38
4.2.3 Jobbed Process Priority .. 38

5 Using cvendian for Byte Order Conversion ... 39
5.1 Introduction to cvendian ... 39

5.1.1 Location of Utility .. 39

Specialized System Tools and Utilities iii

5.1.2 Conversion Process .. 39
5.1.3 Utility Syntax ... 40

iv Specialized System Tools and Utilities

About This Book

Although the browser-based Management Portal application is the standard tool for managing and administering your
InterSystems IRIS® data platform system, other tools are also available. This book is a guide to the numerous specialized
tools and utilities that can be used to manage, customize, and extend InterSystems IRIS systems.

This book covers the following topics:

• Introduction — a detailed summary of the tools discussed in this book.

• Customizing the InterSystems IRIS System — discusses some ways to customize and extend a standard InterSystems
IRIS installation.

• Managing InterSystems IRIS Remotely — discusses routines and utilities for managing InterSystems IRIS from a
character-based terminal or an external program.

• Process Management — discusses methods and utilities for managing how an individual process contends for system
resources with other concurrent processes.

• Using cvendian for Byte Order Conversion — discusses a tool you can use for migration between Big-endian and
Little-endian platforms

For a detailed outline, see the Table of Contents.

For information about related topics, see the following documents:

• System Administration Guide describes the standard tools and procedures for managing an InterSystems IRIS system.

• Using Terminal describes how to use the ObjectScript command-line interface.

• Installation Guide describes the standard procedures for installing InterSystems IRIS on your system.

• InterSystems IRIS Monitoring Guide describes the tools, routines, and third-party interfaces available to monitor
InterSystems IRIS.

• Security Administration Guide describes authentication, authorization, auditing, database encryption, SSL/TLS, and
other aspects of InterSystems security.

Specialized System Tools and Utilities 1

1
Introduction

The purpose of this book is to gather information on InterSystems IRIS® system tools and utilities that are too specialized
to be of interest to a general audience. They are not documented in other books for one or more of the following reasons:

• They would only be used by a small minority of users.

• They are not required, and would usually be used only once.

• They allow advanced customizations or extensions that require expert knowledge of an InterSystems IRIS system.

• They are legacy applications, but can still occasionally be useful on current systems.

The following sections provide a detailed summary of the tools described in this book.

1.1 Customization
The chapter on “Customizing the InterSystems IRIS System” discusses several ways to customize and extend a standard
InterSystems IRIS installation .The following tools are described:

• System Classes for National Language Support — describes support for localization, referred to as National Language
Support (or NLS), which allows applications to be adapted to various languages and regions without engineering
changes.

• Using the InterSystems IRIS ^%ZSTART and ^%ZSTOP Routines — describes how to create customized system
routines that will be called automatically when certain system events are detected. Routines can be called when Inter-
Systems IRIS starts or stops, when a user performs a login or logout, when a JOB begins or ends, or when an external
program begins or completes a CALLIN.

• Extending ObjectScript with %ZLang — describes how to use the %ZLANG language extension library to add custom
features to ObjectScript. You can declare user-defined commands, functions, and system-wide special variables for
your installation of InterSystems IRIS. These custom extensions work exactly like standard ObjectScript features.

1.2 Remote System Management
The chapter on “Managing InterSystems IRIS Remotely” discusses routines and utilities for managing InterSystems IRIS
from a terminal or an external program. The following tools are described:

Specialized System Tools and Utilities 3

• Using ^GBLOCKCOPY for Fast Global Copies — describes a routine that performs fast global copies between
databases, and can be used to convert databases during a migration. It can be run interactively to a terminal, or be set
up in a batch to run one or more global copies as background jobs. It contains a built-in monitor and several reports to
track the progress of global copies. It can be restarted at the point it left off if there is a system failure.

• Using Switches — discusses the available InterSystems IRIS switches, which are per-instance flags that can be used
for a variety of purposes. They are especially useful for inhibiting various system processes when doing backups or
trying to recover crashed systems.

• Controlling InterSystems IRIS from a Windows Client — describes a DLL that allows an external application to
function as a Windows client that can control an InterSystems IRIS configuration, start an InterSystems IRIS process
with the desired settings, find InterSystems service name and directories paths for a given configuration name, and get
the status of the InterSystems IRIS system.

• Character-based Management Routines — describes the^LEGACYNETWORK routine, which allows you to list, add,
edit, and remove COM ports.

1.3 Byte Order Conversion
The chapter Using cvendian for Byte Order Conversion describes a utility to convert the byte order of an InterSystems IRIS
database for migration between Big-endian and Little-endian platforms. It also provides an option to report on the byte
order of a given database.

4 Specialized System Tools and Utilities

Introduction

2
Customizing the InterSystems IRIS System

This chapter discusses several ways to customize and extend a standard InterSystems IRIS® instance.

• Using System Classes for National Language Support

• Customizing Start and Stop Behavior with ^%ZSTART and ^%ZSTOP Routines

• Extending Languages with ^%ZLANG Routines

2.1 Using System Classes for National Language Support
Modern applications are often designed so that they can adapt to various languages and regions without engineering changes.
This process is called internationalization. The process of adapting an application to a specific region or language by adding
specific components for that purpose is localization.

The set of parameters that defines the user language, country and any other, special variant preferences is a locale. Locales
specify the conventions for the input, output and processing of data. These are such things as

• Number formats

• Date and time formats

• Currency symbols

• The sort order of words

• Automatic translation of strings to another character set

A locale often is identified by noting the language in use and its geographic region (or other variation). These are usually
given by the International Standards Organization (ISO) abbreviations for language and location. For example, en-us can
represent the conventions of the English language as it is used in the United States, and en-gb as English is used in Great
Britain.

Note: The InterSystems IRIS instances on all members of a mirror must have the same locale and collation. See the
“Mirroring” chapter of the High Availability Guide for more information.

Specialized System Tools and Utilities 5

http://en.wikipedia.org/wiki/ISO_639
http://en.wikipedia.org/wiki/ISO_3166

2.1.1 The %SYS.NLS Classes

InterSystems IRIS supports localization via classes in the package %SYS.NLS (NLS refers to National Language Support).
These classes contain the information InterSystems IRIS needs to adapt an internationalized program to its runtime circum-
stances. This section summarizes your options; for additional detail, see the class documentation for each class.

Note: Using any of these classes, an application can obtain the values currently set for the system or the process.
Changing the values associated with the process takes effect immediately. To change the system settings, your
application must define a new locale with the appropriate values and direct InterSystems IRIS to start using the
new locale.

2.1.1.1 %SYS.NLS.Locale

The properties in %SYS.NLS.Locale contain information about the current locale that you might need to consult. Changing
any of them will not affect any behavior of the system.

2.1.1.2 %SYS.NLS.Device

The class %SYS.NLS.Device contains some properties for the current device, not necessarily the device that was current
when the object was instantiated.

Usually, the properties for a specific device are set when the device is opened. This guarantees that the correct translations
will be used. It is possible to change the translation table once the device is open by changing the XLTTable property in the
process instance of this class, but this is not recommended without a solid reason for doing so.

Other properties in %SYS.NLS.Device enable you to handle errors that occur during translations. By default, when a char-
acter cannot be handled by the current table, no error is triggered and the offending character is translated as a question
mark (?). This character, called the replacement value or replacement string can be changed to any other string. Furthermore,
instead of silently translating undefined characters, it is possible to issue an error. This behavior is called the default action,
and the possible choices are:

• 0 — Generate error

• 1 — Replace the untranslatable character with the replacement value

• 2 — Ignore the error and pass the untranslatable character through

There are separate properties for the input and output operations in the properties of this class:

• InpDefaultAction

• InpReplacementValue

• OutDefaultAction

• OutReplacementValue

2.1.1.3 %SYS.NLS.Format

The class %SYS.NLS.Format contains properties that affect the behavior of $ZDATE() and related functions. These prop-
erties are inherited from the values defined for the current locale but can be altered at the process level without affecting
other users. The properties DateSeparator and TimeSeparator, for example, hold the characters that separate date and time
items respectively.

The documentation for $ZDATE, $ZDATEH, and $FNUMBER describes the effect of changing these values.

6 Specialized System Tools and Utilities

Customizing the InterSystems IRIS System

Locale Property
The Locale property in the class %SYS.NLS.Format allows control of the “ look” of values in the current process. For
example:

• If Locale is a empty string, the system default formats (usually US English) are in effect.

• If Locale is a locale name such as rusw or csy8, the formats come from that locale.

• If Locale is Current, the formats come from the system.

The property can be changed after the object is instantiated or by passing the desired locale to the %New() method as in
the following:

 Set fmt = ##class(%SYS.NLS.Format).%New("jpnw")

These changes affect only the current process.

2.1.1.4 %SYS.NLS.Table

The class %SYS.NLS.Table can instantiate objects that reflect either the system default or the current process settings for
the various categories of tables. A table is the basic NLS mechanism that allows application data to be accepted as input,
ordered, and displayed in the format appropriate to the specified locale. As with %SYS.NLS.Locale, changing any property
of a system object will not affect the system. However, changing a property from a process object will cause the associated
behavior to change immediately.

NLS tables can be classified into I/O and Internal tables. Each table type has its own set of related data:

I/O Tables
These tables translate between the basic underlying character set supported by the current locale in which the systems is
operating and a foreign character set supported by some entity outside InterSystems IRIS. The locale character set might
be, for example, Latin2 (more properly known as ISO 8859-2) and the foreign character set might be UTF-8, generally
used to communicate with the Terminal. Thus, on output, a table like Latin2–to-UTF8 would be used and, on input, a
reverse mapping table would be needed, UTF8–to-Latin2.

Although there are two tables involved here (one for input and another for output), these tables usually complement one
another. For simplicity, when speaking of locale definitions and system defaults, InterSystems IRIS uses a single name for
a pair of I/O tables. This name is usually the name of the foreign character set, with the tacit assumption that the other half
is the locale character set. However, when creating custom tables, any name that conveys the meaning of the exchange can
be chosen.

I/O tables are used in devices; in this case, the word device refers to any interface where InterSystems IRIS meets the
external world and where translation is needed, including the process and system call interfaces.

• Terminal

• Other terminal connections

• External files

• TCP/IP connections

• Printer

• InterSystems IRIS processes

• System call

Internal Tables
The internal tables also map strings of characters from the current local character set to some other value, but they are not
intended to be used in communication with the external world. The internal tables identify characters that are part of:

Specialized System Tools and Utilities 7

Using System Classes for National Language Support

• Pattern matching

Identify the characters that match certain pattern codes such as letters, numbers, punctuation, and so on.

• Identifiers

Identifier tables indicate which characters can be used in identifiers.

• Uppercase, lowercase alphabets, and uppercase when used in titles.

These similar in structure to the I/O tables; they map from one character set to another which just happens to be the
same set. However, they are used in the context of $ZCONVERT(), not with some I/O operation.

• Collation ordering

These tables map a string of characters into an internal representation of that string suitable for use in global subscripts.
Different languages have differing rules about how words should collate in dictionary order; these rules are encapsulated
in a collation table.

• $X/$Y action

These tables map characters into values that indicate how they interact with the $X and $Y special variables. Should
$X and/or $Y be incremented after this character is output? Is the character printable? These are questions that a $X/$Y
table answers.

Note: The list of available collations in any version of InterSystems IRIS is fixed. If your needs are not met by an
existing collation, please contact the InterSystems Worldwide Support Center for assistance.

2.1.2 Examples Using %SYS.NLS

Important: These examples are all executable but none have a RunIt button, because they manipulate process-default
values for the current locale. Also, many require administrative privileges and/or write access to the %SYS

namespace. If you wish to execute them, please run them in a separate process, such as the InterSystems
Terminal facility (Windows), or via a TCP/IP connection, and with the appropriate privileges.

2.1.2.1 Display Current Locale Information

This example displays information about the current system locale:

 Set Info = ##class(%SYS.NLS.Locale).%New()
 Set Items = "Name" _
 "/Description" _
 "/Country" _
 "/CountryAbbr" _
 "/Language" _
 "/LanguageAbbr" _
 "/Currency" _
 "/CharacterSet"

 Write !
 For i = 1 : 1 : $LENGTH(Items, "/")
 {
 Set Item = $PIECE(Items, "/", i)
 Write $JUSTIFY(Item, 15),": ", $PROPERTY(Info, Item), !
 }

2.1.2.2 Display System and Process Table Data

This should display the same values for the system and process tables unless some properties have been externally altered
before running this example.

 Set IOTables = "Process" _
 "/IrisTerminal" _
 "/OtherTerminal" _
 "/File" _

8 Specialized System Tools and Utilities

Customizing the InterSystems IRIS System

http://www.intersystems.com/support

 "/TCPIP" _
 "/SystemCall" _
 "/Printer"
 Set IntTables = "PatternMatch" _
 "/Identifier" _
 "/Uppercase" _
 "/Lowercase" _
 "/Titlecase" _
 "/Collation" _
 "/XYAction"

 // iterate over the systems, and then the process data
 For Type = "System", "Process"
 {
 Write !
 Set Table = ##class(%SYS.NLS.Table).%New(Type)
 Write "Type: ", Type, !

 Write "I/O Tables", !
 For i = 1 : 1 : $LENGTH(IOTables, "/")
 {
 Set PropName = $PIECE(IOTables, "/", i)
 Write $JUSTIFY(PropName, 15), ": ", $PROPERTY(Table, PropName), !
 }

 Write "Internal Tables", !
 For i = 1 : 1 : $LENGTH(IntTables, "/")
 {
 Set PropName = $PIECE(IntTables, "/", i)
 Write $JUSTIFY(PropName, 15), ": ", $PROPERTY(Table, PropName), !
 }
 }

2.1.2.3 Changing Date and Time Displays

The %SYS.NLS.Format class contains the properties DateSeparator and TimeSeparator, for example, hold the characters
used to separate the components of date and time items respectively. In the United States default locale, enu8 (or enuw
for Unicode systems), these are the slash character (/) and the colon (:), respectively. The following example shows how
these may be altered:

 // display the current defaults
 // date is 10 April 2005
 // time is 6 minutes 40 seconds after 11 in the morning
 Write $ZDATE("60000,40000"), !

 // now change the separators and display it again
 Set fmt = ##class(%SYS.NLS.Format).%New()
 Set fmt.DateSeparator = "_"
 Set fmt.TimeSeparator = "^"
 Write !, $ZDATE("60000,40000")

This following example changes the month names to successive letters of the alphabet (for demonstration purposes). To
do this, it sets the property MonthName to a space-separated list of the month names. Note that the list starts with a space:

 // get the format class instance
 Set fmt = ##class(%SYS.NLS.Format).%New()

 // define the month names
 Set Names = " AAA BBB CCC DDD EEE FFF GGG HHH III JJJ KKK LLL"
 Set fmt.MonthAbbr = Names
 Set rtn = ##class(%SYS.NLS.Format).SetFormatItem("DATEFORMAT", 2)

 // show the result
 Write $ZDATE(60000, 2)

2.1.2.4 Changing the Way Numbers Are Displayed

Some properties in %SYS.NLS.Format control how numbers are interpreted by $Number(). In English locales, the decimal
point is used to separate the integer from the fractional part of a number, and a comma is used to separate groups of 3 digits.
This too can be altered:

Specialized System Tools and Utilities 9

Using System Classes for National Language Support

 // give the baseline display
 Write $Number("123,456.78"), !

 Set fmt = ##class(%SYS.NLS.Format).%New()
 // use "/" for groups of digits
 Set fmt.NumericGroupSeparator = "."

 // group digits in blocks of 4
 Set fmt.NumericGroupSize = 4

 // use ":" for separating integer and fractional parts
 Set fmt.DecimalSeparator = ","

 // try interpreting again
 Write $Number("12.3456,78"), !

2.1.2.5 Setting the Translation for a File

The following shows that an application can control the representation of data written to a file.

 // show the process default translation (RAW, no translation performed)
 Set Tbl = ##class(%SYS.NLS.Table).%New("Process")
 Write "Process default translation: ", Tbl.File, !

 // create and open a temporary file
 // use XML for the translation
 Set TempName = ##class(%Library.File).TempFilename("log")
 Set TempFile = ##class(%Library.File).%New(TempName)
 Do TempFile.Open("WSNK\XML\")
 Write "Temp file: ", TempFile.CanonicalNameGet(), !

 // write a few characters to show the translation
 // then close it
 Do TempFile.WriteLine(("--" _ $CHAR(38) _ "--"))
 Do TempFile.Close()

 // now re-open it in raw mode and show content
 Do TempFile.Open("RSK\RAW\")
 Do TempFile.Rewind()
 Set MaxChars = 50
 Set Line = TempFile.Read(.MaxChars)
 Write "Contents: """, Line, """", !

 // finish
 Do TempFile.Close()
 Do ##class(%Library.File).Delete(TempName)
 Set TempFile = ""

For more information on translation tables, see the section on “Three-Parameter Form: Encoding Translation” in the doc-
umentation for the $ZCONVERT function.

2.1.3 The Config.NLS Classes

Unlike %SYS.NLS, which is available everywhere and is intended for general use, the classes in Config.NLS can be used
only in the %SYS namespace and only by a user with administrative privileges. Normally, administrators who need to
create custom locales and tables would use the NLS pages in the Management Portal. Only users with very special
requirements should need to use Config.NLS.

There are three classes in package Config.NLS:

• Locales – Contain all the definitions and defaults for a country or geographical region.

• Tables – Contain a high level description of tables, but not the mapping itself.

• SubTables – Contain the character mappings proper and may be shared by more than one Table.

The main reason for having separate Tables and SubTables classes is to avoid duplication of data. It is possible to have
Tables for different character sets that happen to share the same mappings and thus the same SubTable. Also, the classes
in Tables define a default action and a replacement value (see description of these properties in %SYS.NLS above).
Therefore, it is possible to have separate Tables in which these attributes are different even though they share the same
SubTable. This flexibility adds some complexity in managing the correct relationships between Tables and SubTables, but

10 Specialized System Tools and Utilities

Customizing the InterSystems IRIS System

the gains make it worthwhile. The separation of Tables from SubTables is kept hidden from users in the Management
Portal and the %SYS.NLS classes, where all the housekeeping is done. However, when working with Config.NLS this needs
to be done explicitly.

2.1.3.1 Conventions for Naming User-Defined Locales and Tables

To differentiate your custom items from the system items, and to simplify upgrades, use a y at the start of the name of your
items; for example: XLT-yEBCDIC-Latin1 and XLT-Latin1-yEBCDIC.

CAUTION: User-defined tables, sub-tables and locales that do not follow this convention may be deleted during a
system upgrade. The way to avoid this is to export user-defined tables and locales to XML files and re-
import them after the upgrade.

When a custom SubTable is created from a copy of some InterSystems SubTable, the utilities that perform this task auto-
matically use the same name and append a numeric suffix. Thus, copies of the Latin2-to-Unicode SubTable would be named
XLT-Latin2-Unicode.0001 and XLT-Unicode-Latin2.0001, and so on.

2.1.4 Examples Using Config.NLS

This section presents the following examples:

• Listing the Available Locales

• Listing the Tables in a Specific Locale

• Creating a Custom Locale

2.1.4.1 Listing the Available Locales

This example uses the List() class query in Config.NLS.Locales and displays a list of the available locale identifiers and
descriptions.

#include %occInclude
 new $namespace
 set $namespace="%SYS"
 set stmt=##class(%SQL.Statement).%New()
 set status=stmt.%PrepareClassQuery("Config.NLS.Locales","List")
 if $$$ISOK(status) {
 set locales=stmt.%Execute("*")
 While locales.%Next() {
 Write locales.%Get("Name"), " - ", locales.%Get("Description"), !
 }

 }

2.1.4.2 Listing the Tables in a Specific Locale

The following example shows the tables that make up the Unicode locale for United States English (if it is available).

 new $namespace
 set $namespace="%SYS"

 // establish the locale identifier, try
 // United States - English - Unicode
 // United States - English - 8-bit
 Set Loc = "enuw"
 Do ##class(Config.NLS.Locales).Exists(Loc, .Ref, .Code)
 If (##class(%SYSTEM.Status).IsError(Code))
 {
 Set Loc = "enu8"
 Do ##class(Config.NLS.Locales).Exists(Loc, .Ref, .Code)
 If (##class(%SYSTEM.Status).IsError(Code))
 {
 Do ##class(%SYSTEM.Status).DisplayError(Code)
 Quit
 }
 }

Specialized System Tools and Utilities 11

Using System Classes for National Language Support

 // get the local array of table names
 Write "Tables for locale: ", Loc, !
 Do Ref.GetTables(.Tables)
 Set Type = $ORDER(Tables(""))
 While (Type '= "")
 {
 Set Name = $ORDER(Tables(Type, ""))
 While (Name '= "")
 {
 Set Mod = $ORDER(Tables(Type, Name, ""))
 While (Mod '= "")
 {
 Write Type, " - ", Name, " - ", Mod, !
 Set Mod = $ORDER(Tables(Type, Name, Mod))
 }
 Set Name = $ORDER(Tables(Type, Name))
 }
 Set Type = $ORDER(Tables(Type))
 }

2.1.4.3 Creating a Custom Locale

This example will provide a template for creating a custom locale with a custom table. The custom table will translate
between EBCDIC (the common form used in the US) and Latin-1 (ISO-8859–1). For more details, see the documentation
for the respective classes.

As for any other table, first we need to get the definition for the character mappings. For this example we are using the data
file from the web site http://source.icu-project.org (International Components for Unicode). The relevant data file is a text
file with comment lines starting with a pound sign (#) and then a series of translation definition lines of the form:

<Uuuuu> \xee |0

A small excerpt of the file looks like:

#
#UNICODE EBCDIC_US
#_______ _________
<U0000> \x00 |0
<U0001> \x01 |0
<U0002> \x02 |0
<U0003> \x03 |0
<U0004> \x37 |0
<U0005> \x2D |0
...

The lines indicate that Unicode character Uaaaa maps to EBCDIC character \xbb (where aaaa and bb are expressed in
hexadecimal). We assume that the table is reversible and that EBCDIC character \xbb maps back to Unicode character
Uaaaa. This allows us to create both sides (that is, EBCDIC-to-Latin1 and Latin1-to-EBCDIC) from the same data file in
a single scan. Because the Unicode range is just from 0 to 255, this is actually a Latin-1 table.

The process first creates the SubTable object, then the Table, and finally the Locale. For the first step, the process creates
two SubTables objects, initializes their Name and Type properties, and then fills in the FromTo mapping array with data
read from the definition file.

SubTable names take the form, Type–FromEncoding–ToEncoding. The Type for regular I/O translations is “XLT” and so
the SubTable names will be XLT-yEBCDIC-Latin1 and XLT-yLatin1-EBCDIC.

The following code creates the SubTables objects. In a real world program, the code would perform a number of consistency
checks that omitted here for the sake of clarity. This example deletes an existing previous versions of the same objects
(SubTables, Tables and Locales) so that you can run the example multiple times. More properly, you should check for the
existence of previous objects using the class method Exists() and take a different action if they are already present.

12 Specialized System Tools and Utilities

Customizing the InterSystems IRIS System

http://source.icu-project.org
http://source.icu-project.org/repos/icu/data/trunk/charset/data/ucm/glibc-EBCDIC_US-2.1.2.ucm

 // Names for the new SubTables (save for later)
 Set nam1 = "XLT-Latin1-yEBCDIC"
 Set nam2 = "XLT-yEBCDIC-Latin1"

 // Delete existing SubTables instances with same ids
 Do ##class(Config.NLS.SubTables).Delete(nam1)
 Do ##class(Config.NLS.SubTables).Delete(nam2)

 // Create two SubTable objects
 Set sub1 = ##class(Config.NLS.SubTables).%New()
 Set sub2 = ##class(Config.NLS.SubTables).%New()

 // Set Name and Description
 Set sub1.Name = nam1
 Set sub1.Description = "ICU Latin-1->EBCDIC sub-table"
 Set sub2.Name = nam2
 Set sub2.Description = "ICU EBCDIC ->Latin-1 sub-table"

The SubTables object contains a property, type, that is a small integer indicating whether we are dealing with a multibyte
translation or not. This example sets type to zero indicating a single-byte mapping. The mapping is initialized so that code
points (characters) not defined in the data file are mapped to themselves.

 // Set Type (single-to-single)
 Set sub1.Type = 0
 Set sub2.Type = 0

 // Initialize FromTo arrays
 For i = 0 : 1 : 255
 {
 Do sub1.FromTo.SetAt(i, i)
 Do sub2.FromTo.SetAt(i, i)
 }

Next the application reads the file. Definitions in the file override those set as the default mapping. The function $ZHEX()
converts the codes from hexadecimal to decimal.

 // Assume file is in the mgr directory
 Set file = "glibc-EBCDIC_US-2.1.2.ucm"

 // Set EOF exit trap
 Set $ZTRAP = "EOF"

 // Make that file the default device
 Open file
 Use file
 For
 {
 Read x
 If x?1"<U"4AN1">".E
 {
 Set uni = $ZHEX($E(x,3,6)),ebcdic = $ZHEX($E(x,12,13))
 Do sub1.FromTo.SetAt(ebcdic,uni)
 Do sub2.FromTo.SetAt(uni,ebcdic)
 }
 }

EOF // No further data
 Set $ZT = ""
 Close file

 // Save SubTable objects
 Do sub1.%Save()
 Do sub2.%Save()

The character mappings are now complete. The next step is to create the Table objects that reference the SubTables objects
just defined. Table objects are really descriptors for the SubTables and have only a few properties. The following code
makes the connection between the two:

 // Delete existing Tables instances with same ids
 Do ##class(Config.NLS.SubTables).Delete("XLT", "Latin1", "yEBCDIC")
 Do ##class(Config.NLS.SubTables).Delete("XLT", "yEBCDIC", "Latin1")

 // Create two Table objects
 Set tab1 = ##class(Config.NLS.Tables).%New()
 Set tab2 = ##class(Config.NLS.Tables).%New()

 // Set description
 Set tab1.Description = "ICU loaded Latin-1 -> EBCDIC table"

Specialized System Tools and Utilities 13

Using System Classes for National Language Support

 Set tab2.Description = "ICU generated EBCDIC -> Latin-1 table"

 // Set From/To encodings
 Set tab1.NameFrom = "Latin1"
 Set tab1.NameTo = "yEBCDIC"
 Set tab2.NameFrom = "yEBCDIC"
 Set tab2.NameTo = "Latin1"

 // Set SubTable
 Set tab1.SubTableName = nam1
 Set tab2.SubTableName = nam2

 // Set Type
 Set tab1.Type = "XLT"
 Set tab2.Type = "XLT"

 // Set Default Action
 // 1 = Replace with replacement value
 Set tab1.XLTDefaultAction = 1
 Set tab2.XLTDefaultAction = 1

 // Set Replacement value of "?"
 Set tab1.XLTReplacementValue = $ASCII("?")
 Set tab2.XLTReplacementValue = $ASCII("?")

 // Set Reversibility
 // 1 = Reversible
 // 2 = Generated
 Set tab1.XLTReversibility = 1
 Set tab2.XLTReversibility = 2

 // Set Translation Type
 // 0 = non-modal to non-modal
 Set tab1.XLTType = 0
 Set tab2.XLTType = 0

 // Save Table objects
 Do tab1.%Save()
 Do tab2.%Save()

With the Tables defined, the last step of the construction is to define a locale object that will incorporate the new tables.
The application creates an empty Locale object and fills in each of the properties as was done for the Tables and SubTables.
A Locale, however, is bigger and more complex. The easiest way to make a simple change like this is to copy an existing
locale and change only what we need. This process uses enu8 as the source locale and names the new one, yen8. The
initial y makes it clear this is a custom locale and should not be deleted on upgrades.

 // Delete existing Locales instance with the same id
 Do ##class(Config.NLS.Locales).Delete("yen8")

 // Open source locale
 Set oldloc = ##class(Config.NLS.Locales).%OpenId("enu8")

 // Create clone
 Set newloc = oldloc.%ConstructClone()

 // Set new Name and Description
 Set newloc.Name = "yen8"
 Set newloc.Description = "New locale with EBCDIC table"

With the locale in place, the process now adds the EBCDIC table to the list of I/O tables that are loaded at startup. This is
done by inserting a node in the array property XLTTables, as follows:

XLTTables(<TableName>) = <components>

• tablename identifies the pair of input and output tables for this locale.

Because the name does not need to start with y, we use EBCDIC.

• components is a four-item list as follows:

1. The input “From” encoding

2. The input “To” encoding

3. The output “From” encoding

14 Specialized System Tools and Utilities

Customizing the InterSystems IRIS System

4. The output “To” encoding

The following code adds the table to the list of available locales:

 // Add new table to locale
 Set component = $LISTBUILD("yEBCDIC", "Latin1", "Latin1", "yEBCDIC")
 Do newloc.XLTTables.SetAt(component, "EBCDIC")

Before the locale is usable by InterSystems IRIS, it must be compiled into its internal form. This is also sometimes called
validating the locale. The IsValid() class method does a detailed analysis and returns two arrays, one for errors and one
for warnings, with human-readable messages if the locale is not properly defined.

 // Check locale consistency
 If '##class(Config.NLS.Locales).IsValid("yen8", .Errors, .Warns)
 {
 Write !,"Errors: "
 ZWrite Errors
 Write !,"Warnings: "
 ZWrite Warns
 Quit
 }

 // Compile new locale
 Set status = ##class(Config.NLS.Locales).Compile("yen8")
 If (##class(%SYSTEM.Status).IsError(status))
 {
 Do $System.OBJ.DisplayError(status)
 }
 Else
 {
 Write !,"Locale yen8 successfully created."
 }

2.1.5 Using %Library.GlobalEdit to Set the Collation for a Global

The collation of newly created InterSystems IRIS globals is automatically set to the default collation of the database in
which the global is created. The databases created by InterSystems IRIS installation are all set to the InterSystems IRIS
standard collation, except USER, which is set to the default collation for the locale with which InterSystems IRIS is installed.

After you create a database, you can edit its properties to change its default collation. You can select InterSystems IRIS
standard, the default collation for the locale, or any other collation loaded in the instance. Once the default collation of the
database is set, any globals created in this database are created with this default collation.

InterSystems IRIS also supports the ability to override this behavior and specify a custom collation for a global. To do this,
use the Create() method in the class %Library.GlobalEdit supplying the collation desired:

 Set sc = ##class(%Library.GlobalEdit).Create(ns,
 global,
 collation,
 growthblk,
 ptrblock,
 keep,
 journal,
 .exists)

where:

• ns — Specifies the namespace, where "" indicates the current namespace, or ̂ ^directoryname references a specific
directory.

• global — Specifies the global name, including leading ^, such as ^cz2.

• collation — Specifies the collation, where collation is one of the supported collations.

• growthblk — Specifies the starting block for data.

• ptrblk — Specifies the starting block for pointers.

Specialized System Tools and Utilities 15

Using System Classes for National Language Support

• keep — Specifies whether or not to keep the global’s directory entry when the global is killed. Setting this to 1 preserves
the collation, protection, and journal attributes if the global is killed.

• journal — This argument is no longer relevant and is ignored.

• exists — Specifies, by reference, a variable that indicates whether the global already exists.

In environments in which some globals require different collations from other globals, InterSystems recommends that you
set up a database for each different collation, and that you add a global mapping within the namespace to map each global
to the database with its required collation. This method allows mixed collations to be used without changing application
code to specially use the Create() method call.

2.1.5.1 Supported Collations

The following are supported in InterSystems IRIS, for use in the collation argument of the CreateGlobal^%DM subroutine:

• 5 — InterSystems IRIS standard

• 10 — German1

• 11 — Portuguese1

• 12 — Polish1

• 13 — German2

• 14 — Spanish1

• 15 — Danish1

• 16 — Cyrillic1

• 17 — Greek1

• 18 — Czech1

• 19 — Czech2

• 20 — Portuguese2

• 21 — Finnish1

• 23 — Cyrillic2

• 24 — Polish2

• 27 — French1

• 28 — Finnish2

• 29 — Hungarian1

• 30 — German3

• 31 — Polish3

• 32 — Spanish2

• 33 — Danish2

• 34 — Greek2

• 35 — Finnish3

• 36 — Lithuanian1

• 41 — Danish3

16 Specialized System Tools and Utilities

Customizing the InterSystems IRIS System

• 44 — Czech3

• 45 — Hungarian2

• 47 — Spanish3

• 49 — Spanish4

• 51 — Spanish5

• 52 — Finnish4

Note: To see a similar list, including which collations have been loaded into the instance, open a Terminal window,
change to the %SYS% namespace, and enter the command DO ^COLLATE.

2.1.5.2 Default Collation for the Installed Locale

The default collation for the locale of a new installation of InterSystems IRIS is always the most recent version of the col-
lation, that is, the one with with the highest numeric suffix (as shown in the list in the previous section). For example, whn
installing with a Spanish locale, the default collation is Spanish5. Older versions of the collation are supported for compat-
ibility with existing databases.

When an InterSystems IRIS instance is upgraded, the default collation is preserved wven when the updated locale uses a
new default. For example, if the existing instance’s locale uses Finnish3 as the default collation and the updated instance
would use Finnish4, the upgrade preserves Finnish3 as the default, but makes Finnish4 available for new globals and
databases..

2.2 Customizing Start and Stop Behavior with ̂ %ZSTART
and ^%ZSTOP Routines
InterSystems IRIS can execute your custom code when certain events occur. Two steps are required:

1. Define the ^%ZSTART routine, the ^%ZSTOP routine, or both.

In these routines, you can define subroutines to execute when the certain activities start or stop.

^%ZSTART and ̂ %ZSTOP must be defined in the %SYS namespace, although they can be mapped to a non-default
database.

2. Use the Management Portal to configure InterSystems IRIS to invoke the desired subroutines.

Specifically, if you define the routine ^%ZSTART and ^%ZSTOP and you include subroutines with specific names, the
system automatically calls these subroutines when the activity is beginning or ending. The subroutine names are as follows:

• SYSTEM — Executed when InterSystems IRIS as a system starts or stops

• LOGIN — Executed when a user performs a login or logout using the %Service_Console or Service_Telnet

services.

• JOB — Executed when a JOB begins or ends

• CALLIN: — Executed when an external program begins or completes a CALLIN

For example, when a user logs in, the system automatically invokes LOGIN^%ZSTART, if that is defined and if you
have used the Management Portal to enable this subroutine.

Specialized System Tools and Utilities 17

Customizing Start and Stop Behavior with ^%ZSTART and ^%ZSTOP Routines

These subroutines are not intended to do complex calculations or run for long periods of time. Long calculations or potentially
long operations like network accesses will delay the completion of the activity until the called routine returns. In this case,
users may take a long (elapsed) time to login, or JOB throughput may be curtailed because they take too long to start.

Note: These subroutines are called as part of normal InterSystems IRIS operation. This means that an external event
which terminates InterSystems IRIS abnormally, such as a power failure, will not generate a call to ^%ZSTOP.

Note: If a system implements ̂ %ZSTOP, and an application implements one or more $HALT routines, the ̂ %ZSTOP
code is not executed until the last $HALT terminates with a HALT command. The failure of a $HALT routine
to issue its own HALT command can prevent the ^%ZSTOP code from running.

2.2.1 Design Considerations

Because ^%ZSTART and ^%ZSTOP run in a somewhat restricted environment, the designer must keep several things
in mind, namely:

• The routines must be written in ObjectScript.

• Since ^%ZSTART is essentially run as though it is started with an argumentless new command, it can not be used to
perform tasks such as initializing local variables for users.

• There are no values passed as arguments when any of the routine entry points are called. If different algorithms are
applicable in various circumstances, the called entry point must determine what to do by examining data external to
the routine: global, system variables, and so on.

• Make sure that the routines are well-behaved under all possible conditions. They should be written defensively. That
is, they should check to make sure that all the resources needed to complete their task are at hand and, if possible,
reserved to them before computation starts. Errors which occur are reported as failures of that system function so it is
important to think about the design from the viewpoint of error containment and handling. Failure to properly account
for recovery in the face of missing resources or the presence of errors has varied consequences: InterSystems IRIS
may fail to start; major functions such as Studio may act strangely; or more subtle and insidious consequences may
occur which are not immediately detected. It is strongly recommended that these routines be carefully written and
debugged under simulated conditions, and then tested under simulated environment conditions before being put into
production systems.

• No assumption should be made that conditions found during a previous invocation or a different entry point are still
valid. Between successive calls to JOB^%ZSTART, for example, a file used by the prior call could have been deleted
before this call occurred.

• Each entry point should perform its task efficiently. If part of the task is potentially long-running, it is recommended
that you queue enough information to complete the task for later completion by another part of your application.

• If an entry point wishes to have data around persistently for, say, statistical purposes, it must use something like a
global or an external file to hold the data.

• The routines should make minimal assumptions about the environment they are running in. A developer of one of these
routines cannot, for example, assume that the program will always be executed under a specific job number. The
designer cannot assume that the various entry point will be called in a specific order. The sequence of bringing up the
multiple processes that implement InterSystems IRIS is rarely deterministic.

• The routine cannot assume that it is being called at a specific point during the system startup. The sequence of events
during startup may change from release to release, or even from restart to restart.

• With a few exceptions, the routine must leave things as it found them. As an illustration of this principle, reassigning
the value of $IO in the subroutine without saving and restoring it upon entry and exit is an almost certain source of
error. The calling routine has no way of knowing that such things are changed, and it is very difficult for the caller to

18 Specialized System Tools and Utilities

Customizing the InterSystems IRIS System

defend against any possible change to the execution environment. Therefore, the burden of not disturbing the system
processing context lies on the subroutine being called.

The general exceptions to the no-changes rule are that changing process-local values specific to an application or
installation are allowed. For example, the SYSTEM^%ZSTART entry point may set system-wide defaults. Similarly,
for application testing, it could set the date to a specific value to validate end-of-month processing.

• ^%ZSTOP cannot contain references to globals in remote databases. At the time it is called, some of these may no
longer be accessible.

• If these routines are mapped to a database different from IRISSYS, then InterSystems IRIS will attempt to execute
them from that database, not from IRISSYS. InterSystems IRIS will, of course, make certain that the calling routine
has the appropriate access to that database beforehand. It is the responsibility of the administrator to ensure that the
routine has access to any application globals and mappings that it requires from that namespace.

• SYSTEM^%ZSTART and SYSTEM^%ZSTOP are run with $USERNAME set to %SYSTEM and $ROLES set to
%All. To run your code with a different username, use $SYSTEM.Security.Login() to set the desired name and then
continue with your custom code. If you use JOB to launch any additional processes, those processes will inherit the
same username (and roles) as the initiating process.

CAUTION: All the entry points in ̂ %ZSTART and ̂ %ZSTOP are invoked at critical points in system operation
and can have widespread effects on the operation of a system or even on its data. The specified purpose
of these routines makes this high level of privilege necessary. Because of this, you must make sure
that all code that can be invoked by these entry points has been thoroughly tested. Further, do not
allow any user-specified code to be run via XECUTE or indirection.

• The exiting (that is, halting) process may get a <FUNCTION> error on any reference that requires an answer from a
distributed cache cluster data server.

Note: On upgrades, InterSystems IRIS preserves only the %Z* routines that are mapped to the IRISSYS database, and
if the .INT or .MAC code is available, recompiles them. Preservation of routines in other databases are the
responsibility of the site administrator.

2.2.2 Enabling %ZSTART and %ZSTOP

Once the routines have been designed, developed, compiled, and are ready to be tested, individual entry points may be
enabled through the Management Portal. Navigate to the Startup Settings page by selecting System Administration, then
Configuration, then Additional Settings, then Startup Settings, and edit the appropriate individual settings:

• SystemStart, SystemHalt

• ProcessStart, ProcessHalt

• JobStart, JobHalt

• CallinStart, CallinHalt

To deactivate one or more of the entry points, use the same procedure but change the value to false.

2.2.3 Debugging ^%ZSTART and ^%ZSTOP

The opportunities for debugging ^%ZSTART and ^%ZSTOP in their final environment are very limited. If an error
occurs, errors are written to the operator messages log, which is the current device while these routines are running. This
file is messages.log and is found in the Manager’s directory.

Specialized System Tools and Utilities 19

Customizing Start and Stop Behavior with ^%ZSTART and ^%ZSTOP Routines

The message indicates the reason for failure and location where the error was detected. This may be different from the
place where the error in the program logic or flow actually occurred. The developer is expected to deduce the nature and
location of the error from the information provided, or modify the routine so that future tests provide more evidence as to
the nature of the error.

2.2.4 Removing %ZSTART and ^%ZSTOP

It is strongly recommended that you disable the entry point options via the Management Portal before deleting the routines.
If the portal warns that a restart of InterSystems IRIS is needed for them to take effect, do this as well before proceeding.
This guarantees that none of the entry points are being executed while they are being deleted.

Remember that ^%ZSTART and ^%ZSTOP (as well as any supporting routines) are stored persistently. To remove all
traces of them, delete them through the Management Portal.

2.2.5 Example

The following example demonstrates a simple log for tracking system activity. It shows examples for ^%ZSTART and
^%ZSTOP, both of which use subroutines of a third example routine, ^%ZSSUtil, for convenience.

2.2.5.1 ^%ZSSUtil Example

This routine has two public entry points. One writes a single line to the operator messages log file. The other writes a list
of name-value pairs to a local log file. Both files reside in the Manager’s directory, which is returned by the
ManagerDirectory() method of the %Library.File class.

%ZSSUtil ;
 ; this routine packages a set of subroutines
 ; used by the %ZSTART and %ZSTOP entry points
 ;
 ; does not do anything if invoked directly
 quit

#Define Empty ""
#Define OprLog 1

WriteConsole(LineText) PUBLIC ;
 ; write the line to the messages log
 ; by default the file messages.log in the MGR directory
 new SaveIO

 ; save the current device and open the operator console
 ; set up error handling to cope with errors
 ; there is little to do if an error happens
 set SaveIO = $IO
 set $ZTRAP = "WriteConsoleExit"
 open $$$OprLog
 use $$$OprLog
 ; we do not need an "!" for line termination
 ; because each WRITE statement becomes its
 ; own console record (implicit end of line)
 write LineText
 ; restore the previous io device
 close $$$OprLog
 ; pick up here in case of an error
WriteConsoleExit ;
 set $ZTRAP = ""
 use SaveIO
 quit

WriteLog(rtnname, entryname, items) PUBLIC ;
 ; write entries into the log file
 ; the log is presumed to be open as
 ; the default output device
 ;
 ; rtnname: distinguishes between ZSTART & ZSTOP
 ; entryname: the name of the entry point we came from
 ; items: a $LIST of name-value pairs
 new ThisIO, ThisLog
 new i, DataString

 ; preserve the existing $IO device reference

20 Specialized System Tools and Utilities

Customizing the InterSystems IRIS System

 ; set up error handling to cope with errors
 ; there is little to do if an error happens
 set ThisIO = $IO
 set $ZTRAP = "WriteLogExit"

 ; construct the name of the file
 ; use the month and day as part of the name so that
 ; it will create a separate log file each day
 set ThisLog = "ZSS"
 _ "-"
 _ $EXTRACT($ZDATE($HOROLOG, 3), 6, 10)
 _".log"

 ; and change $IO to point to our file
 open ThisLog:"AWS":0
 use ThisLog

 ; now loop over the items writing one line per item pair
 for i = 1 : 2 : $LISTLENGTH(items)
 {
 set DataString = $LISTGET(items, i, "*MISSING*")
 if ($LISTGET(items, (i + 1), $$$Empty) '= $$$Empty)
 {
 set DataString = DataString
 _ ": "
 _ $LISTGET(items, (i + 1))
 }
 write $ZDATETIME($HOROLOG, 3, 1),
 ?21, rtnname,
 ?28, entryname,
 ?35, DataString, !
 }

 ; stop using the log file and switch $IO back
 ; to the value saved on entry
 close $IO
 ; pick up here in case of an error
WriteLogExit ;
 set $ZTRAP = ""
 use ThisIO
 quit

Here is an description for each label:

^%ZSSUtil

This routine (as well as the others) begins with a QUIT command so that it is benign if invoked via

 do ^%ZSSUtil

The #DEFINE sequence cosmetically provides named constants in the body of the program. In this instance, it
names the empty string and the device number of the operator messages log.

WriteConsole^%ZSSUtil

The entry point is very simple. It is designed for low volume output, and as a minimally intrusive routine to use
for debugging output.

It takes a single string as its argument and writes it to the operator messages log. However, it must take care to
preserve and restore the current $IO attachment across its call.

Each item sent to the device results in a separate record being written to the messages log. Thus, the following
results in four records being written.

 WRITE 1, 2, 3, !

The first three consist of a single digit and the fourth is a blank line. If multiple items are desired on a line, it is
the responsibility of the caller to concatenate them into a string.

Specialized System Tools and Utilities 21

Customizing Start and Stop Behavior with ^%ZSTART and ^%ZSTOP Routines

WriteLog^%ZSSUtil

This subroutine can be called by any entry point within ^%ZSTART or ^%ZSTOP. The first two arguments
supply the information needed to report how the subroutine was launched. The third argument is a $LIST of name-
value pairs to be written to the log.

This entry point first builds the name of the file it will use. To make log management easier, the name contains
the month and day when the routine is entered. Therefore, calls to this subroutine create a new file whenever the
local time crosses midnight. because the name is determined only at the time of the call. All the name-value pairs
passed as the argument will be displayed in the same file.

Once the name has been constructed, the current value of $IO is saved for later use and the output device is switched
to the named log file. The parameters used for the OPEN command ensure that the file will be created if it is not
there. The timeout of zero indicates that InterSystems IRIS will try a single time to open the file and fail if it cannot.

Once the file has been opened, the code loops over the name value pairs. For each pair, the caller routine name
and the entry point name are written followed in the line by the name-value pair. (If the value part is the empty
string, only the name is written.) Each pair occupies one line in the log file. The first three values on each line are
aligned so they appear in columns for easier scanning.

When all the pairs have been written, the log file is closed, the previous value $IO is restored and control returns
to the caller.

2.2.5.2 ^%ZSTART

This routine contains the entry point actually invoked by InterSystems IRIS. It uses the services of ̂ %ZSSUtil just described.
All the entry points act more or less the same, they place some information in the log. The SYSTEM entry point has been
made slightly more elaborate than the others. It places information in the Operator messages log as well.

%ZSTART ; User startup routine.

#Define ME "ZSTART"
#Define BgnSet "Start"
#Define Empty ""

 ; cannot be invoked directly
 quit

SYSTEM ;
 ; InterSystems IRIS starting
 new EntryPoint, Items

 set EntryPoint = "SYSTEM"

 ; record the fact we got started in the messages log
 do WriteConsole^%ZSSUtil((EntryPoint
 _ "^%"
 _ $$$ME
 _ " called @ "
 _ $ZDATETIME($HOROLOG, 3)))

 ; log the data accumulate results
 set Items = $LISTBUILD($$$BgnSet, $ZDATETIME($HOROLOG, 3),
 "Job", $JOB,
 "Computer", ##class(%SYS.System).GetNodeName(),
 "Version", $ZVERSION,
 "StdIO", $PRINCIPAL,
 "Namespace", $NAMESPACE,
 "CurDirPath", ##class(%File).ManagerDirectory(),
 "CurNSPath", ##class(%File).NormalizeDirectory(""),
 "CurDevName", $System.Process.CurrentDevice(),
 "JobType", $System.Process.JobType(),
 "JobStatus", $ZHEX($ZJOB),
 "StackFrames", $STACK,
 "AvailStorage", $STORAGE,
 "UserName", $System.Process.UserName())
 do WriteLog^%ZSSUtil($$$ME, EntryPoint, Items)

 quit

22 Specialized System Tools and Utilities

Customizing the InterSystems IRIS System

LOGIN ;
 ; a user logs into InterSystems IRIS
 new EntryPoint, Items

 set EntryPoint = "LOGIN"
 set Items = $LISTBUILD($$$BgnSet, $ZDATETIME($HOROLOG, 3))
 do WriteLog^%ZSSUtil($$$ME, EntryPoint, Items)
 quit

JOB ;
 ; JOB'd process begins
 new EntryPoint, Items

 set EntryPoint = "JOB"
 set Items = $LISTBUILD($$$BgnSet, $ZDATETIME($HOROLOG, 3))
 do WriteLog^%ZSSUtil($$$ME, EntryPoint, Items)
 quit

CALLIN ;
 ; a process enters via CALLIN interface
 new EntryPoint, Items

 set EntryPoint = "CALLIN"
 set Items = $LISTBUILD($$$BgnSet, $ZDATETIME($HOROLOG, 3))
 do WriteLog^%ZSSUtil($$$ME, EntryPoint, Items)
 quit

Here is an description for each label:

^%ZSTART

This routine begins with a QUIT command so that it is benign if invoked as a routine rather than beginning its
execution properly at one of its entry points.

This routine also defines named constants (as macros) for its own name, a starting string and the empty string.

SYSTEM^%ZSTART

This subroutine constructs a string consisting of the calling routine name, entry point, and the date and time it was
invoked. Then it calls WriteConsole^%ZSSUtil to place it in the operator messages log.

Afterward, it constructs a list of name-value pairs that it wishes to be displayed. It passes this to
WriteLog^%ZSSUtil to place into the local log file. Then it returns to its caller.

LOGIN^%ZSTART, JOB^%ZSTART, and CALLIN^%ZSTART

These subroutines do not place any information in the operator messages log. Instead, they construct a short list
of items, enough to identify that they were invoked, and then use WriteLog^%ZSSUtil to record it.

2.2.5.3 ^%ZSTOP

This routine contains the entry points actually invoked by InterSystems IRIS and it uses subroutines in ^%ZSSUtil. This
example is similar to the example for ^%ZSTART. See the previous section for details.

%ZSTOP ; User shutdown routine.

#Define ME "ZSTOP"
#Define EndSet "End"
#Define Empty ""

 ; cannot be invoked directly
 quit

SYSTEM ; InterSystems IRIS stopping
 new EntryPoint

 set EntryPoint = "SYSTEM"
 ; record termination in the messages log
 do WriteConsole^%ZSSUtil((EntryPoint
 _ "^%"
 _ $$$ME
 _ " called @ "
 _ $ZDATETIME($HOROLOG, 3)))

Specialized System Tools and Utilities 23

Customizing Start and Stop Behavior with ^%ZSTART and ^%ZSTOP Routines

 ; write the standard log information
 do Logit(EntryPoint, $$$ME)
 quit

LOGIN ; a user logs out of InterSystems IRIS
 new EntryPoint

 set EntryPoint = "LOGIN"
 do Logit(EntryPoint, $$$ME)
 quit

JOB ; JOB'd process exits.
 new EntryPoint

 set EntryPoint = "JOB"
 do Logit(EntryPoint, $$$ME)
 quit

CALLIN ; process exits via CALLIN interface.
 new EntryPoint

 set EntryPoint = "CALLIN"
 do Logit(EntryPoint, $$$ME)
 quit

Logit(entrypoint, caller) PRIVATE ;
 ; common logging for exits

 new items

 set items = $LISTBUILD($$$EndSet, $ZDATETIME($HOROLOG, 3))
 do WriteLog^%ZSSUtil(caller, entrypoint, items)
 quit

2.3 Extending Languages with ^%ZLANG Routines
Note: It is customary (but inaccurate) to refer to a routine as if the caret is part of its name. This documentation follows

this custom.

You can use the ^%ZLANG feature to add custom commands, functions, and special variables to the ObjectScript and
other languages. Your extensions are invoked in the same way as standard features, and follow the same rules for syntax,
operator precedence, and so on. ^%ZLANG features generally do not execute as rapidly as standard InterSystems IRIS
features. Consider this point when coding performance-critical routines.

To add such extensions:

1. Define routines with the following names, as needed:

PurposeRoutine Name

Defines custom ObjectScript commands.^%ZLANGC00

Defines custom ObjectScript functions.^%ZLANGF00

Defines custom ObjectScript special variables.^%ZLANGV00

2. In these routines, define public subroutines as follows:

• For the subroutine label, use the name of the command, function, or special variable that you are defining.

The name must start with the letter Z and can include only letters. Unicode characters are permitted, if the locale
defines them as alphabetic. All letters must be in uppercase, though execution is not case-sensitive. The maximum
length of a name is 31 letters.

The name cannot be the same as an existing command, function, or special variable (if it is, InterSystems IRIS
ignores it). InterSystems also strongly recommends that you do not use an SQL reserved word.

24 Specialized System Tools and Utilities

Customizing the InterSystems IRIS System

If you are defining a function, even a function with no arguments, the label must include parentheses.

A label for a special variable can include parentheses.

• Optionally include an additional label to define an abbreviation. Be careful that it is not already used by InterSystems
IRIS.

• Define the subroutine appropriately. See the “Notes” section for details.

3. As good programming practice, the first command in the parent routine should use QUIT so that nothing occurs if a
user invokes the routine directly.

It is also helpful for the routine to include a comment at the top that indicates the name of the routine itself.

CAUTION: For other subroutines, including ones invoked by the public subroutines, make sure that the labels for those
are in lowercase or mixed case (or do not start with Z). Or implement them as private subroutines.

That is, because a ^%ZLANG routine extends the language, it is important to make sure that only the
desired subroutines are available outside of it.

2.3.1 Notes

Commands are handled like a DO of a routine or procedure. Arguments are passed as call parameters.

Your code should preserve the values of system state such as $TEST and $ZREFERENCE unless you intend for them to
be a result of your code. (But note that for functions and special variables, the system automatically preserves $TEST.)

You can SET the value of a special variable. There is only one entry point for the variable. To determine whether to set the
value or retrieve the value, your code should check whether an argument is given. For example:

ZVAR(NewValue) public {
 if $DATA(NewValue) Set ^||MyVar=NewValue Quit
 Quit $GET(^||MyVar)
}

Then, a user can either set this variable or retrieve it, as demonstrated here:

USER>w $ZVAR

USER>s $ZVAR="xyz"

USER>w $ZVAR
xyz

To return an error code from a command or function, use $SYSTEM.Process.ThrowError().

2.3.2 Examples

For example, to define a custom special variable for use in ObjectScript, you define the routine ^%ZLANGV00, which
could look like the following:

 ; implementation of ^%ZLANGV00
 ; custom special variables for ObjectScript
 QUIT

ZVERNUM ; tag becomes name of a special variable
ZVE
 QUIT $PIECE($ZVERSION,"(Build")

Then, for demonstration, you can use the new variable in the Terminal as follows:

Specialized System Tools and Utilities 25

Extending Languages with ^%ZLANG Routines

USER>w $zvernum
InterSystems IRIS for Windows (x86-64) 2018.1
USER>w $zve
InterSystems IRIS for Windows (x86-64) 2018.1

For another example, suppose that you define the ^%ZLANGF00 routine as follows:

 ; implementation of ^%ZLANGF00
 ; custom functions for ObjectScript
 QUIT

ZCUBE(input) public {
 Quit input*input*input
}

Then, for demonstration, you can use the new function in the Terminal as follows:

USER>w $zcube(2)
8

The following example shows ^%ZLANGC00, which creates a command that executes the system status utility ^%SS:

 ; %ZLANGC00
 ; custom commands for ObjectScript
 QUIT

ZSS ; tag name of a command to check system status
 DO ^%SS
 QUIT

26 Specialized System Tools and Utilities

Customizing the InterSystems IRIS System

3
Managing InterSystems IRIS Remotely

This chapter describes outines and utilities for managing InterSystems IRIS from the Terminal or an external program.

• Using ^GBLOCKCOPY for Fast Global Copies — describes a routine that performs fast global copies between
databases as well as other useful operations.

• Using Switches — discusses the available InterSystems IRIS switches, which are per-instance flags that can be used
for a variety of purposes. They are especially useful for inhibiting various system processes when doing backups or
trying to recover crashed systems.

• Controlling InterSystems IRIS from a Windows Client — describes a DLL that allows your program to function as a
Windows client that can check the status of InterSystems IRIS and perform calls to InterSystems IRIS.

• Character-Based Management Routines — describes the use of character-based management routines that can be
invoked in the InterSystems IRIS terminal to manage the instance when the Management Portal cannot be used.

3.1 Using ^GBLOCKCOPY for Fast Global Copies
^GBLOCKCOPY is an InterSystems IRIS routine that performs fast global copies between databases. It can be run
interactively to a terminal, or be set up in a batch to run one or more global copies as background jobs. ^GBLOCKCOPY
contains a built-in monitor and several reports to track the progress of global copies. You can restart ^GBLOCKCOPY
at the point it left off if there is a system failure.

This section discusses the following topics:

• Uses of ^GBLOCKCOPY

• Running ^GBLOCKCOPY

Note: Because there is no locking or integrity checking for database blocks that are being copied, ^GBLOCKCOPY
should be used to copy globals only when they are not being actively modified . Although Set or Kill operations
may be performed on other globals in the source database where the copy is being performed, as well as in the
destination global, database, or namespace without affecting the copy, results in the destination global are
unpredictable if Sets or Kills occur in the source global that is being copied to another database or namespace.

When ^GBLOCKCOPY copies a global to a new database, it creates the global there with the same properties of the
source global, including Protection, Journal attributes, Collation type, and Keep attributes.

Note: The SYS.Database.Copy() class method provides functionality similar to ^GBLOCKCOPY.

Specialized System Tools and Utilities 27

3.1.1 Uses of ^GBLOCKCOPY

^GBLOCKCOPY can be used for several different operations as follows:

• Copy single or multiple globals from a database to another database or namespace — You can select one or several
globals to be copied into a destination database or namespace. If the global already exists in the destination database,
data from the source global is merged into the existing data.

• Split a global from a single database into multiple databases using subscript level mapping — By setting up a
namespace with subscript level mapping (SLM) of a global, you can copy a global from a database into this new
namespace and cause it to be split amongst the database which make up SLM.

• Move a subscript-mapped global in many databases into one database — Create a new database which contains the
entire global. Then set up several copies in a batch which will copy the global from all the different SLM databases
into the new database. Since databases can now exceed 2 GB in size, this is a useful method for consolidating databases.

• Make a copy of a database — You may copy a database to another directory by copying all the globals to it.

• Copy a global to another machine across ECP — ̂ GBLOCKCOPY supports copying a global across an ECP network
connection to another machine. You need to set up an ECP connection to a remote machine, and a namespace mapping
which points to it. Then select the “Copy from Database to Namespace” option and select the remote namespace as
the destination of the copy.

• Reclaim unused space in a database — If a large global is created then killed in a database, there may be a large excess
of unused space in the database. You can remove this space by copying all the globals in the database to a new one,
and then replacing the old database with the new database.

• Reorganize the pointers in a database — If a database becomes fragmented because of block splits, you may want to
reorganize the data in it to speed performance. You can do this by copying all the globals in a database into a new
database, and then replacing the old database with the new database.

• Change the collation of a global — If you want to change the collation of an existing global you are copying, you can
create the global in the destination database with the desired default collation before running ^GBLOCKCOPY.

• Import a Caché or legacy database or namespace into InterSystems IRIS — If you have a CACHE.DAT file or legacy
database file you want to import to an IRIS.DAT database or namespace, simply select the directory where it exists as
the source directory for the copy. The database is renamed IRIS.DAT, and the data is available to copy to the destination
database or namespace.

3.1.2 Running ^GBLOCKCOPY

Before you run ̂ GBLOCKCOPY (or for that matter before you perform an upgrade), make a full operating system backup
of your databases, and run an integrity check to ensure there is no corruption in any of the databases.

Note: To make ^GBLOCKCOPY run faster, kill off any temporary and scratch data as well as any old data you do not
require.

You can use the batch functionality of ^GBLOCKCOPY to set up a batch of operations to run at the same time. While
the batch of operations is running, you can monitor progress using the Monitor or Batch Report.

Note: Users should be kept from accessing the databases while they are being processed by ^GBLOCKCOPY. The
result of the database operations are unpredictable if they are accessed while ^GBLOCKCOPY is running.
Databases on the same system which are not being processed by ^GBLOCKCOPY can be used safely.

28 Specialized System Tools and Utilities

Managing InterSystems IRIS Remotely

3.2 Using Switches
InterSystems IRIS switches are per-instance flags that can be used for a variety of purposes. They are especially useful for
inhibiting various system processes when doing backups or trying to recover crashed systems. The ^SWSET routine is
used to directly manipulate the values of the switches.

Background
Switches in InterSystems IRIS have their genesis in the physical contacts once part of computer operator consoles or
included in the front panel of microcomputers. By setting one of these switches, an operator could convey a single bit of
information to the programs running on the machine at that time. Since InterSystems IRIS implements a “virtual machine” ,
the concept of the switch for this machine has been similarly abstracted.

Today, switches in InterSystems IRIS are represented as individual bit settings in the shared, common memory of an
InterSystems IRIS instance; they are visible to all InterSystems IRIS processes. While several have been set aside for users,
most influence the operation of InterSystems IRIS itself.

Note: Users should view the switches as being local to an InterSystems IRIS instance. Although InterSystems IRIS
itself provides mechanisms to propagate the meaning of certain settings to other members of a cluster, these are
for InterSystems internal use only. The values of the user switches cannot be moved to other systems.

3.2.1 Currently Defined Switches

All switches are identified by number. They are initialized to zero (off) when InterSystems IRIS starts. The following table
gives the switch number(s) and their effect:

Meaning / UseSwitch

Reserved for use by applications programs.0 — 7

Inhibits existing InterSystems IRIS daemons from responding to network requests.8

Inhibits the creation of new daemons to process network logins.9

Inhibit all global access except by the process that sets this switch. Also inhibit routine
accesses that causes disk IO except for this process.

10

Inhibit all global access except for the system job that sets this switch. This overrides switch
10 and is reserved for use by the system. This switch is set, for example, by the backup
process to quiesce system activity before copying.

11

Inhibits the ability to login to InterSystems IRIS. Users who attempting to login will receive a
message: "Sign-on and JOB inhibited: Switch 12 is set".

12

Inhibits all global SETs, KILLs and ZSAVE commands; only read access is allowed to globals
and routines.

13

Inhibits all access to all globals and all routines.14

Allow network references from peers, even if switch 10,13, or 14 would normally prevent the
access.

15

Used internally by InterSystems IRIS to coordinate shutdown activity.16

Bypass wait for completion of journal flush on clusters.17

Inhibits pausing added processes if the queue for a block gets too long.18

Specialized System Tools and Utilities 29

Using Switches

Meaning / UseSwitch

Inhibit the start of new transactions.19

Undefined and reserved for InterSystems use.20 — 31

CAUTION: Customer applications should confine any switch activity to the set reserved for applications programs
(switches 0–7), except when specifically directed otherwise by InterSystems personnel or its documented
procedures.

3.2.2 Manipulating Switches

The ^SWSET routine is used to directly manipulate the values of the switches. In addition, other InterSystems IRIS facil-
ities, such as those that work with journals on clustered systems and system backup, also set them on behalf of their callers.

3.2.2.1 Routine SWSET

This routine provides an interactive way to set the value of the switches from, for example, a terminal session.

SWSET

Parameters

None.

Remarks

When invoked as in the example below, the routine will prompt for the switch number and then prompt for the
value to be set in the switch (0 or 1).

Examples

The following example demonstrates the use of SWSET . After executing

 DO ^SWSET

the user will successively see the following:

Set/Clear switch #:

Set/Clear switch #: 2

Set/Clear switch #: 2 to value (0 or 1):

Set/Clear switch #: 2 to value (0 or 1): 1

Set/Clear switch #: 2 to value (0 or 1): 1...done

3.2.2.2 Function %swstat^SWSET

This function returns the current setting for the switch.

%swstat^SWSET(switch)

Parameters

• switch — The number of the switch.

30 Specialized System Tools and Utilities

Managing InterSystems IRIS Remotely

Remarks

There are three possible return values:

• 0 — Indicates the switch was not set to its intended value.

• 1 — Indicates the switch was properly set to its new intended value.

• -1 — Indicates the switch was set to an impossible value (something other than 0 or 1).

Examples

The following example prints the value of switch number 1.

 Write $$%swstat^SWSET(1)

3.2.2.3 Function %swset^SWSET

This function sets the switch to the specified value.

%swset^SWSET(switch, value)

Parameters

• switch — The number of the switch.

• value — The value it should have, 0 or 1.

Remarks

If the switch is a valid number and value is either a 0 or 1, this function sets the switch to that value and returns:

• 0 — the switch is now reset (off)

• 1 — the switch is now set (on)

otherwise it returns a value of –1 indicating that an error has occurred.

Examples

The following example sets the value of switch number 1 to off.

 Write $$%swset^SWSET(1, 0)

3.2.3 Failure Modes

An InterSystems IRIS process which sets one of the system-reserved switches and terminates without properly cleaning
up its work can leave the system in a restricted operating mode. For example, a process that sets switch 12 and then suffers
a catastrophic failure (or even merely HALTs) will leave InterSystems IRIS in a state where no further users can login. If
this situation occurs, the administrator or operator is urged to call the InterSystems Worldwide Response Center (WRC).

Note: The only situation for which InterSystems IRIS implements an automatic recovery is for switch 10. If a process
sets this switch and then HALTs, InterSystems IRIS will automatically reset the switch to zero.

Specialized System Tools and Utilities 31

Using Switches

http://www.intersystems.com/support/support.html

3.3 Controlling InterSystems IRIS from a Windows Client
This section details usage of a DLL to check the status of InterSystems IRIS and perform calls to InterSystems IRIS from
a Windows client.

InterSystems IRIS provides a mechanism for Windows client programs to control an InterSystems IRIS configuration and
to start up InterSystems IRIS processes. This allows you to deliver applications that automatically start InterSystems IRIS
processes with the correct configuration information without requiring the standard InterSystems IRIS tools. The tools
allow you to:

• Find InterSystems IRIS directories paths and service name for a given configuration name.

• Get the status of the InterSystems IRIS system.

• Control an InterSystems IRIS configuration directly or through the InterSystems IRIS Control Service, depending on
which version of Windows is running

• Start an InterSystems IRIS process with the appropriate settings.

3.3.1 IRISctlGetDirs

Finds configuration, binary, and manager directory paths, and service name for a given configuration name.

Syntax

IRISctlGetDirs(char *config, IRISCTL_DIR_INFO *dirinfo)

The name of the desired configuration.config

A pointer to a C structure where the directory information will be stored.dirinfo

Return Values

Returns (char *0) on ERROR.

3.3.2 IRISctlConfigStatus

Returns the status of the InterSystems IRIS configuration.

Syntax

IRISctlConfigStatus(char* config)

The name of the desired configurationconfig

Return Values

Returns a value from 0 through 4 as follows:

32 Specialized System Tools and Utilities

Managing InterSystems IRIS Remotely

Configuration is up and running.0

Configuration is starting or stopping.1

Configuration startup or shutdown aborted.2

Configuration is down.3

ERROR4

3.3.3 IRISctlControl

Controls an InterSystems IRIS configuration through the InterSystems IRIS Control Service on Windows NT, or directly
on Windows 95/98.

Syntax

IRISctlControl(char *command, char *config)

Use one of the following commands:command

• start — starts a configuration

• stop — shuts down a configuration gracefully

• stopnoshut — shuts down a configuration without running the user-supplied
shutdown routine

• force — forces down a configuration; equivalent to irisforce on UNIX®
systems

• stopstart — shuts down a configuration gracefully and immediately restarts
it

The name of the desired configuration.config

Return Values

Operation succeededIRISCTL_SUCCESS

Generic errorIRISCTL_ERROR

Invalid command argumentIRISCTL_INVALID_COMMAND

Undefined configurationIRISCTL_INVALID_CONFIGURATION

^STU failedIRISCTL_CONTROL_STU_ERROR

Following an error return, IRISctlGetLastError returns a pointer to an informational error string.

3.3.4 IRISctlRun

Starts an InterSystems IRIS process in the indicated configuration, and namespace, using the indicated principal I/O device
and invoking the indicated routine.

Specialized System Tools and Utilities 33

Controlling InterSystems IRIS from a Windows Client

Syntax

IRISctlRun(char *config, char *routine, char *namespace, char *IOtype)

The name of the running configuration.config

The name of the desired routine to start.routine

The name of the desired namespace.namespace

How I/O is to be handled, with possible values of:IOtype

• terminal — The process starts a new InterSystems IRIS programmer’s
terminal.

• none — No I/O. The process runs in the background with NUL: used for
$Principal. Writes to $Principal are discarded. Reads from $Principal
produce an error.

Return Values

Operation succeededIRISCTL_SUCCESS

Generic errorIRISCTL_ERROR

Invalid command argumentIRISCTL_INVALID_COMMAND

Undefined configurationIRISCTL_INVALID_CONFIGURATION

^STU failedIRISCTL_CONTROL_STU_ERROR

Note: On Windows NT, the specified configuration must be running. If you are not sure if the configuration is running,
use IRISctlConfigStatus and IRISctlControl to check and start the desired configuration. This prevents Inter-
Systems IRIS from trying to start a configuration without using the control service.

3.3.5 IRISctlRunIO

Starts an InterSystems IRIS process in the indicated configuration, and namespace, using the indicated principal I/O device
type, invoking the indicated routine and additional IO specifications for input, output and error devices.

Syntax

IRISctlRunIO(
 char *config,
 char *routine,
 char *namespace,
 char *IOtype,
 HANDLE *hIO,
 char *cwd,
 char *options,
 HANDLE *child,
 DWORD *childPID))

34 Specialized System Tools and Utilities

Managing InterSystems IRIS Remotely

The name of the running configuration in all capital letters.config

The name of the desired routine to start.routine

The name of the desired namespace.namespace

How I/O is to be handled, which must have a value of TCP, because the
process uses a TCP socket.

IOtype

An array of three handles to be used as the standard input, output, and
error devices of the InterSystems IRIS process.

hIO

The working directory path of the child process. If the directory argument
is zero, the working directory of the current process is used.

cwd

Additional irisdb.exe command line options appended to the generated
command line. For example, you could define a larger process memory
size (-b 1024).

option

The pointer to a variable of type HANDLE, where the handle to the child
process will be returned. If the value of handle is zero, the handle to the
child process will be closed by this function.

child

The pointer to the PID of the created irisdb.exe process. This argument
can be zero if the child’s PID is not required.

childPID

Return Values

Operation succeededIRISCTL_SUCCESS

Generic errorIRISCTL_ERROR

Invalid command argumentIRISCTL_INVALID_COMMAND

Undefined configurationIRISCTL_INVALID_CONFIGURATION

^STU failedIRISCTL_CONTROL_STU_ERROR

Note: The handles in the hIOarray must be inheritable. Use DuplicateHandle to make the handle inheritable by the
child process.

On Windows NT, the specified configuration must be running. If you are not sure if the configuration is running, use
IRISctlConfigStatus and IRISctlControl to check and start the desired configuration. This prevents InterSystems IRIS
from trying to start a configuration without using the control service.

3.4 Character-Based Management Routines
The preferred and recommended way to manage an InterSystems IRIS installation is the Management Portal. The portal
provides a convenient, browser-based interface for controlling the system. However, to cover those instances when the
system cannot be managed this way, InterSystems IRIS has several character-based routines that can provide some important
functions from the Terminal.

Each of the routines is described in its own section along with its top-level functionality. In most cases, the choices on the
initial menu choice lead to further menus, or to requests for information until the routine has sufficient information to
accomplish its task. To use any routine from the Terminal, the user must be in the %SYS namespace and have at least the

Specialized System Tools and Utilities 35

Character-Based Management Routines

%Manager role. The routine () is invoked with the DO command. For example, ^LEGACYNETWORK, which supports
configuration of legacy networking tools that are available for use with InterSystems IRIS, is invoked with the following
command:

 DO ^LEGACYNETWORK

When the routine runs, it presents you with a list of options. Select an option by entering its number after the “Option?”
prompt.

Important: As previously noted, the preferred way to manage an InterSystems IRIS system is via the Management
Portal. Administrators who elect to use the routines described in the documentation are assumed to have
a detailed operating knowledge of how InterSystems IRIS works and what parameter values are appropriate
for the options they choose.

General notes about prompts
The following are characteristics of prompts when using the character-based facilities:

• Each option has a numeric prefix. Select an option by typing its number. The option-number pattern is used throughout
the routines.

• All option lists have an item to exit this level of menu and return to the previous level. You may also reply to the
“Option?” prompt with Enter. This is interpreted as if you had chosen the “Exit” option, that is, you are finished with
that section and you are presented with the next “upper” level of options. An Enter reply to the top-level of options
exits the routine.

• Many of the prompts for information have a default value which is selected by typing the Enter key. When there is a
default value available, it is shown after the prompt message and followed by the characters “=>” as in

Unsuccessful login attempts before locking user? 5 =>

where the default value is 5 for the number of times a user may try to login and fail before the system locks their
username.

• Prompts whose defaults are “Yes” or “No” also accept any matching partial response such as “yE” or “n” . The
match is done ignoring the case of the response.

• In options whose intent is to alter the characteristics of existing user, roles, services, and so on, the existing value of
the item is displayed as the default. Typing Enter preserves that value and moves on to the next prompt.

• Some prompts ask for a pattern to use when matching items such as usernames. The default pattern is usually “*” that
matches all items. In such patterns the asterisk matches any sequence of characters, much like it does in DOS. A pattern
may also consist of a comma-separated list of items each of which is treated as its own pattern. An item is treated as
being selected if it matches any pattern in the list.

CAUTION: There is nothing to prevent multiple instances of the same routine from being executed at the same time
by different system administrators (or even the same administrator). If this happens, it is the responsibility
of the administrators to coordinate their activity to avoid conflicts and achieve their objectives with regard
to the coherence of the affected data.

36 Specialized System Tools and Utilities

Managing InterSystems IRIS Remotely

4
Process Management

All InterSystems IRIS programs and applications are run by a process. A process is identified by a system-generated integer
process ID (referred to as a pid).

A process can be either a foreground (interactive) process, or a background (non-interactive) process. A background process
is initiated in ObjectScript using the JOB command. The process issuing the JOB command is known as the parent process,
the initiated background process is known as the child process. A background process may also be referred to as a “jobbed
process” or a “spawned process”.

Processes hold and release shared resources using locks. In ObjectScript a process acquires and releases locks using the
LOCK command. To view the current locks, refer to the system-wide lock table, described in the “Lock Management”
chapter of Using ObjectScript.

This chapter describes the following aspects of process management:

• Batch Mode

• Priority

For other aspects of process management, refer to the %SYS.ProcessQuery class.

Note: InterSystems IRIS provides optimal defaults for all aspects of process management. Changing these process
defaults should be done with caution, and only for specific special circumstances.

4.1 Batch Mode
A process executes either in the default mode, sometimes referred to as Interactive Mode (this is unrelated to user interaction),
or in Batch Mode. Batch Mode should be used only for special circumstances where no better tool is available.

A process that will access large portions of a database may be set as a Batch Mode process to limit its impact on other (non-
batch) processes running on the system. Specifically, a Batch Mode process is prevented from overwhelming the database
cache with the database blocks that it reads or modifies. For example, a data compaction utility might appropriately run in
Batch Mode.

A Batch Mode process is not the same as a jobbed process. A jobbed process is generated using the JOB command. A
jobbed process is a non-interactive process running in background.

You can use the %SYSTEM.Process.BatchFlag() method to establish the current process as executing in batch mode.
BatchFlag() takes a Boolean argument: 0=direct mode (the default), 1=batch mode. BatchFlag() with no argument returns
the current mode setting.

Specialized System Tools and Utilities 37

4.2 Priority
Process priority determines how multiple concurrent processes compete for CPU resources. A process with a higher priority
has preferential access to CPU time.

Priority is an integer value. The range of integer values is platform-dependent, as follow: Windows has a priority range of
1 to 15, with NORMAL=8. UNIX® has a priority range of -20 to 20, with NORMAL=0. Commonly, only three integer
values are used: LOW, NORMAL, and HIGH. NORMAL priority is the default for user processes. NORMAL priority uses
load balancing to adjust CPU usage.

You can determine the current priority of a process using the Priority property of the %SYS.ProcessQuery class.

Note: Changing the priority of a process is almost never needed and can compromise system stability.

4.2.1 The SetPrio() Method

You can use the %SYSTEM.Util.SetPrio() method to change the priority for the current process or another process iden-
tified by pid. You specify a positive or negative integer to increment or decrement the current priority by that amount. On
Windows, the minimum priority is 1; attempting to decrement a priority to less than 1 sets priority to 1. NORMAL priority
is 8. The maximum priority is 15. SetPrio() returns the new priority level set. (Note that attempting to increment past 15
may reset priority to 1 or have other unpredictable results. A SetPrio() return value of >15 does not reflect the actual priority
set.)

4.2.2 The ^%PRIO Utility

You can use the older ^%PRIO utility to determine the priority for the current process and to set the priority to a LOW,
NORMAL, or HIGH value.

To make calls and changes using ^%PRIO, you must have access to the %DB_IRISSYS resource with write permissions.

To determine the current priority, you can issue the following command: DO ^%PRIO. A subsequent argumentless WRITE
command will return the current priority as follows: %PRIO=8.

To set the priority of the current process, issue one of the following commands: DO LOW^%PRIO, DO NORMAL^%PRIO,
or DO HIGH^%PRIO (commands are case-sensitive). The set priority values returned (on Windows) are: LOW=4, NOR-
MAL=8, HIGH=13.

%SYSTEM.Process.BatchFlag() changes the current process priority. However, if a process is in Batch Mode (1), using
the above commands to raise the current process priority changes the process mode from Batch Mode (1) to Direct Mode
(0).

To set both the Batch Mode and the priority for the current process, specify DO SET^%PRIO(priority,mode), where prior-
ity,mode is a case-sensitive string, with priority=LOW, NORMAL, or HIGH, and mode=BATCH or NOBATCH. You can
specify either one or both of the comma-separated options. For example: DO SET^%PRIO("LOW,BATCH"). This command
allows you to change the process priority without affecting the mode status of a Batch Mode process.

4.2.3 Jobbed Process Priority

The JOB command provides an option to set the priority for a jobbed (background) process. If not specified, the child
process takes the parent process base priority adjusted by a system-defined job priority modifier. For example, on Windows
a parent process with NORMAL priority (priority=8) initiates a child process with a priority=7, due to the job priority
modifier. A jobbed process with a priority of HIGH competes on an equal basis with interactive processes for CPU resources.

38 Specialized System Tools and Utilities

Process Management

5
Using cvendian for Byte Order Conversion

This chapter describes a utility to convert the byte order of an InterSystems database for migration between Big-endian
and Little-endian platforms. It also provides an option to report on the byte order of a given database.

5.1 Introduction to cvendian
InterSystems provides a utility to convert the byte order of an InterSystems database from Big-endian (that is, most-signif-
icant byte first) to Little-endian (that is, least-significant byte first), and vice versa. It is called cvendian, for convert endian.
This is useful when moving a database among platforms of the two types. It also provides an option to report on the byte
order of a given database.

For information about the Endianness of supported platforms, see “Platform Endianness” in the online InterSystems Sup-
ported Platforms document for this release.

Important: You cannot use this utility on a mounted database.

5.1.1 Location of Utility

The cvendian utility is the file install-dir\Bin\cvendian.exe.

5.1.2 Conversion Process

You can run cvendian on either the system that has the files to be converted or the system that will be using the converted
files.

For example, to convert a database from a Little-endian to a Big-endian system, you can perform the conversion on the
Little-endian system and then transfer the database to the Big-endian system, or you can transfer the file first, and then
convert it.

Note: This utility does not work for backup and journal files. You must restore databases on a platform of the same
endian, move the restored databases to the different endian platform, and then use the cvendian utility to convert
the databases.

To convert a database, the process is:

1. Make a copy of your database files, because the utility replaces the source files with the converted files.

2. Run cvendian using the syntax described in the “Utility Syntax” section.

Specialized System Tools and Utilities 39

platforms/ISP_technologies.html#ISP_endianness

5.1.3 Utility Syntax

With the cvendian endian utility, you can specify the desired byte order, or you can report the current byte order without
conversion. Use the following syntax:

cvendian [-option] file

The option argument is one of the following:

• -big — convert the database to Big-endian

• -little — convert the database to Little-endian

• -report — report the byte order of the database

You can shorten the options to their initial letter. If this is a conversion request (-big or -little), and the database already
has the specified byte order, the utility displays a warning message and stops processing.

If you do not provide the option argument, the utility converts the database from the existing byte order to the other byte
order. It is recommended, however, that you use the option argument.

The file argument is the file to convert, and can include a complete pathname.

The utility performs the following actions:

• Auto-detects the byte order of the database

• Displays endian information and other information

• Performs the conversion

• Displays a message indicating success or failure

5.1.3.1 Example

For example, suppose you are converting a database for use on IBM AIX® for Power System-64 from Windows Server
2016. This means you must convert from Little-endian (for Intel) to Big-endian (for POWER). The output from running
cvendian on the Windows system before moving the file to the AIX system looks similar to this:

C:\IrisSys\Bin>cvendian -big c:\temp\powerdb\iris.dat

This database is little-endian.
This database has a block size of 8192 bytes.

This database has 1 volume and 1 map.
The last block in the primary volume is 18176.

Original manager directory is c:\temp\powerdb\

No extension volumes.

Done converting c:\temp\powerdb\iris.dat to big-endian

C:\IrisSys\Bin>

You can now move the converted database file to the AIX system.

40 Specialized System Tools and Utilities

Using cvendian for Byte Order Conversion

	Table of Contents
	About This Book
	1 Introduction
	1.1 Customization
	1.2 Remote System Management
	1.3 Byte Order Conversion

	2 Customizing the InterSystems IRIS System
	2.1 Using System Classes for National Language Support
	2.1.1 The %SYS.NLS Classes
	2.1.2 Examples Using %SYS.NLS
	2.1.3 The Config.NLS Classes
	2.1.4 Examples Using Config.NLS
	2.1.5 Using %Library.GlobalEdit to Set the Collation for a Global

	2.2 Customizing Start and Stop Behavior with ^%ZSTART and ^%ZSTOP Routines
	2.2.1 Design Considerations
	2.2.2 Enabling %ZSTART and %ZSTOP
	2.2.3 Debugging ^%ZSTART and ^%ZSTOP
	2.2.4 Removing %ZSTART and ^%ZSTOP
	2.2.5 Example

	2.3 Extending Languages with ^%ZLANG Routines
	2.3.1 Notes
	2.3.2 Examples

	3 Managing InterSystems IRIS Remotely
	3.1 Using ^GBLOCKCOPY for Fast Global Copies
	3.1.1 Uses of ^GBLOCKCOPY
	3.1.2 Running ^GBLOCKCOPY

	3.2 Using Switches
	3.2.1 Currently Defined Switches
	3.2.2 Manipulating Switches
	3.2.3 Failure Modes

	3.3 Controlling InterSystems IRIS from a Windows Client
	3.3.1 IRISctlGetDirs
	3.3.2 IRISctlConfigStatus
	3.3.3 IRISctlControl
	3.3.4 IRISctlRun
	3.3.5 IRISctlRunIO

	3.4 Character-Based Management Routines

	4 Process Management
	4.1 Batch Mode
	4.2 Priority
	4.2.1 The SetPrio() Method
	4.2.2 The ^%PRIO Utility
	4.2.3 Jobbed Process Priority

	5 Using cvendian for Byte Order Conversion
	5.1 Introduction to cvendian
	5.1.1 Location of Utility
	5.1.2 Conversion Process
	5.1.3 Utility Syntax

