
Projecting Objects to XML

Version 2019.4
2020-01-28

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Projecting Objects to XML
InterSystems IRIS Data Platform Version 2019.4 2020-01-28
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

1 Introduction to Object-XML Projections ... 3
1.1 The Basics .. 3
1.2 How It Works .. 3
1.3 Projection Options .. 4
1.4 Related Tools in InterSystems IRIS ... 4
1.5 Possible Applications for XML Documents ... 5

2 Projecting Objects to XML .. 7
2.1 Projecting an InterSystems IRIS Object to XML ... 8

2.1.1 Exceptions for Objects Used with Web Methods ... 8
2.2 Ensuring That Properties Have Projections to XML .. 9

2.2.1 Properties Defined with List of or Array of ... 9
2.2.2 Properties of Type %ListOfDataTypes or %ArrayOfDataTypes 9
2.2.3 Properties of Type %ListOfObjects or %ArrayOfObjects ... 10
2.2.4 Exceptions .. 10

2.3 Summary of the Default Projection .. 10
2.4 Example XML Projection .. 11

2.4.1 Example XML-Enabled Class ... 11
2.4.2 Example XML Document .. 11
2.4.3 Example Schema .. 12

2.5 Specifying Format Options for the Projected XML Document ... 12
2.6 Controlling the Form of the Projection for Simple Properties ... 13

2.6.1 Basic XMLPROJECTION Variations .. 13
2.6.2 Projecting a Property as Content .. 14

2.7 Controlling the Form of the Projection for Object-Valued Properties 14
2.7.1 Specifying the Form of the Projection for an Object-Valued Property 14
2.7.2 Specifying an XML Summary ... 15
2.7.3 Projecting Only Object Identifiers ... 17

2.8 Controlling the Form of the Projection for Collection Properties .. 18
2.8.1 Specifying the Form of the Projection for List Properties ... 18
2.8.2 Specifying the Form of the Projection for Array Properties .. 19

2.9 Controlling the Form of the Projection for Relationships .. 19
2.9.1 The Default Projection for Relationships ... 20
2.9.2 Projecting the Other Side of the Relationship Instead ... 21

2.10 Controlling the Form of the Projection of a Stream Property .. 21
2.11 Controlling the Availability of Projected Properties .. 22
2.12 Disabling the Projection ... 23
2.13 Methods in %XML.Adaptor .. 23

3 Controlling Transformations of Values ... 25
3.1 Introduction .. 25
3.2 Handling Special XML Characters ... 26

3.2.1 Examples .. 26
3.2.2 Alternative Way to Prevent the Escaping ... 27

3.3 Handling the UTC Time Zone Indicator .. 27
3.4 Projecting the Value in DISPLAYLIST .. 28
3.5 Controlling the Line Endings of Imported Stream Properties .. 29

Projecting Objects to XML iii

3.6 Specifying a Default Date/Time Value ... 29
3.7 Projecting Nonprinting Characters to XML ... 30

4 Handling Empty Strings and Null Values ... 31
4.1 Default Projections of Empty Strings and Null Values .. 31
4.2 Exporting Values .. 32

4.2.1 Controlling the Form of an Empty Element ... 32
4.2.2 Details for XMLIGNORENULL, XMLNIL, and XMLUSEEMPTYELEMENT 81

4.3 Importing Values .. 33

5 Controlling the XML Element and Attribute Names .. 35
5.1 Default XML Element and Attribute Names .. 35
5.2 Controlling the Name of the Element or Attribute for an Object Projected as a Top-Level Element
... 36
5.3 Controlling the Tags for Simple Properties .. 37
5.4 Controlling the Element and Attribute Names for List-Type Properties 38
5.5 Controlling the Element and Attribute Names for Array-Type Properties 38

6 Specifying Namespaces for Elements and Attributes .. 41
6.1 Overview .. 42

6.1.1 Namespace Refresher ... 42
6.1.2 XML Namespaces and Classes .. 43
6.1.3 Namespaces and Context ... 43

6.2 Specifying the Namespaces for Objects Treated as Global Elements 43
6.3 Specifying the Namespaces for Properties Projected as Elements .. 44

6.3.1 Case 1: Property Is Treated as Local Element ... 44
6.3.2 Case 2: Property Is Treated as Global Element .. 45

6.4 Specifying the Namespaces for Properties Projected as Attributes .. 46
6.5 Specifying Custom Prefixes for Namespaces .. 47
6.6 Recommendations .. 47

7 Controlling the Projection to XML Schemas ... 49
7.1 Viewing the Schema for an XML-Enabled Class ... 50

7.1.1 Example ... 50
7.2 Projection of Literal Properties to XML Schemas ... 51

7.2.1 Default XSD Types for InterSystems IRIS Data Type Classes 52
7.2.2 Compiler Keywords That Affect the Schema ... 53
7.2.3 Parameters That Affect XML Schemas .. 54

7.3 Projection of Stream Classes to XML Types ... 58
7.4 Projection of Collection Properties to XML Schemas ... 58

7.4.1 Projection of Collection Properties to XML Schemas ... 58
7.4.2 Options for Using Collection Classes .. 64

7.5 Projection of Other XML-Enabled Classes to XML Types ... 65
7.6 Specifying the Namespaces for Types .. 65
7.7 Suppressing the Namespace Prefix for the Type QName .. 66

8 Advanced Options for XML Schemas .. 69
8.1 Automatic Creation of Types for Subclasses .. 69
8.2 Creating a Choice List of Subtypes .. 70

8.2.1 Restricting a Subclass from the Choice List .. 71
8.2.2 Example for Choice List With Explicit List ... 71
8.2.3 Example for Choice List with XMLINCLUDEINGROUP=0 72

8.3 Creating a Substitution Group of Subtypes .. 72

iv Projecting Objects to XML

8.3.1 Restricting a Subclass from the Substitution Group .. 73
8.4 How Superclasses Are Represented as Types ... 73
8.5 Classes Based on Multiple XML-Enabled Superclasses .. 75

9 Special Topics .. 77
9.1 Controlling the Closing of Elements .. 77
9.2 Handling a Document with Multiple Tags with the Same Name ... 78
9.3 Controlling Unswizzling After Export ... 79
9.4 Projecting InterSystems IRIS IDs for Export ... 79
9.5 Controlling the Namespace Prefix on Export .. 80
9.6 Handling Unexpected Elements and Attributes on Import ... 80

Appendix A: Summary of XML Projection Parameters .. 83

Projecting Objects to XML v

List of Tables

Table 2–1: Effect of XMLPROJECTION on Simple Properties ... 13
Table 2–2: Effect of XMLPROJECTION on Object Properties .. 15
Table 2–3: Effect of XMLPROJECTION on Collection Properties .. 18
Table 2–4: Effect of XMLPROJECTION on Stream Properties ... 21
Table 3–1: Form of Escaping for Literal and SOAP-encoded Formats ... 26
Table 4–1: Default SQL and XML Projections of Empty Strings and Null Values 31
Table 4–2: Exporting Empty Strings and Null Values for a Property Projected to XML as an Element
.. 32
Table 4–3: Exporting Empty Strings and Null Values for a Property Projected to XML as an Attribute
.. 32
Table 4–4: Importing XML Documents with Empty, Null, or Missing Elements and Attributes 34
Table 5–1: Tag for Object Projected as Top-Level Element .. 36
Table 5–2: Tag for List Items ... 38
Table 5–3: Tag for List Item .. 39
Table 7–1: XML Types for InterSystems IRIS Data Types in the %Library and %xsd Packages 52
Table 7–2: XML Types for InterSystems IRIS Streams .. 58
Table 7–3: Forms of Collection Properties and Their XML Projection Details 59

vi Projecting Objects to XML

About This Book

This book describes, to programmers who are familiar with XML, how to project InterSystems IRIS® objects to XML and
how to control that projection to XML elements, attributes, and schemas. It includes the following sections:

• Introduction to Object-XML Projections

• Projecting Objects to XML

• Controlling Transformations of Values

• Handling Empty Strings and Null Values

• Controlling the XML Element and Attribute Names

• Controlling the Namespaces for Elements and Attributes

• Controlling the Projection to XML Schemas

• Advanced Options for XML Schemas

• Special Topics

• Summary of XML Projection Parameters

For a detailed outline, see the table of contents.

Also see the following books:

• Using XML Tools describes how to use InterSystems IRIS tools to work with XML-enabled objects and with general
XML documents and DOMs (Document Object Model).

• Creating Web Services and Web Clients describes how to create InterSystems IRIS web services and web clients.

Projecting Objects to XML 1

1
Introduction to Object-XML Projections

This book describes how to project InterSystems IRIS objects to XML and how to control that projection to XML elements,
attributes, and types.

This chapter introduces how to project objects to XML and explains why you might want to do this.

For information on XML standards supported in InterSystems IRIS, see “Standards Supported by InterSystems IRIS” in
Using XML Tools.

1.1 The Basics
The phrase projecting an object to XML means defining how that object can be used as an XML document. To project an
object to XML, you add %XML.Adaptor to the superclass list of the class that defines the object, as well as any other object
classes used by that class, with minor exceptions.

This activity is also called defining the XML projection of the class that defines the object or XML-enabling that class.

1.2 How It Works
When you define the XML projection for a class:

• The system generates additional INT code for the class that enables you to use class instances as XML documents.
(This code is generated when you compile the class, and you should not edit it.)

• Each property of your class automatically inherits from %XML.PropertyParameters.

• %XML.Adaptor adds XML-related class parameters to your class.

• %XML.PropertyParameters adds XML-related property parameters to properties in your class.

• Data type properties define the LogicalToXSD() and XSDToLogical() methods, which control how data is transformed
when output to XML or input from XML.

Then, if the default projection is not suitable for your needs, you edit the XML-related parameters in your class as needed.

Projecting Objects to XML 3

1.3 Projection Options
The XML projection for a given class determines how instances of that class correspond to XML documents and vice versa.
For example:

You can control the XML projection in many ways, including the following:

• Controlling the structure to which a property is projected. For example, simple properties can be projected as either
elements or attributes — or they cannot be projected at all, as shown in the preceding example.

• Controlling the XML element and attribute names.

• Controlling the XML namespaces to which elements and attributes are assigned.

• Controlling the details of how the InterSystems IRIS class is mapped to an XML schema.

Most of these parameters affect all the scenarios in which you use the XML-enabled class. A few parameters apply in certain
scenarios; this book notes these exceptions.

1.4 Related Tools in InterSystems IRIS
When you define the XML projection for a class, you have access to a large set of InterSystems IRIS tools, which are
suitable for many practical applications. You can use these tools to work with your class in any of the following ways:

• Export objects of that class to XML documents.

• Import XML documents into InterSystems IRIS, which creates new instances of that class, which you can then save.

• Use objects of that class as arguments for web services and web clients.

• Generate XML schemas. InterSystems IRIS implicitly defines an XML type for the class and uses that for validation
when using objects of that class in any of the preceding ways.

InterSystems IRIS provides additional tools for working with XML documents, including arbitrary XML documents that
do not correspond to InterSystems IRIS classes. These tools include support for DOM, XPath, and XSLT.

InterSystems IRIS uses the InterSystems IRIS SAX Parser to validate and parse inbound and outbound XML documents
(SAX means “Simple API for XML”). The InterSystems IRIS SAX Parser is a built-in SAX XML validating parser using
the standard Xerces library. InterSystems IRIS SAX communicates with an InterSystems IRIS process using a high-perfor-
mance, in-process call-in mechanism. You can fine-tune the parser or provide your own custom SAX interface classes.

For information on using any of the XML tools described here, see Using XML Tools.

For information on web services and clients, see Creating Web Services and Web Clients.

4 Projecting Objects to XML

Introduction to Object-XML Projections

1.5 Possible Applications for XML Documents
You can use XML documents in a variety of practical applications, including:

• As a standard format in messaging applications. This includes industry-standard protocols as well as homegrown
solutions.

• As a standard format for data exchange between applications and users.

• As a standard representation for external data storage. This may include traditional database records or it may include
more complex content such as documentation.

• As the payload of SOAP messages sent between web services and web clients.

• As the contents of an XData block in a class definition. See “XData Blocks” in Defining and Using Classes.

Projecting Objects to XML 5

Possible Applications for XML Documents

2
Projecting Objects to XML

This chapter describes how to project InterSystems IRIS objects as XML documents. This chapter includes the following
topics:

• How to project an object to XML

• How to ensure that the properties have XML projections

• Summary of the default XML projection

• Example XML projection

• How to specify the available format options (literal, encoded, or both)

• How to control the projection of a simple property

• How to control the projection of an object-valued property

• How to control the projection of a collection property

• How to control the projection of a relationship property

• How to control the projection of a stream property

• How to control the availability of a projected property (import, export, or both)

• How to disable the XML projection

• A note on methods in the %XML.Adaptor class

Class and Property Parameters Discussed in This Chapter

• ELEMENTTYPE

• XMLPROJECTION

• XMLFORMAT

• XMLENABLED

• XMLSUMMARY

• XMLDEFAULTREFERENCE

• GUIDENABLED

• XMLIO

Projecting Objects to XML 7

Later chapters discuss the details of controlling the element and attribute names and controlling the associated XML schema.

2.1 Projecting an InterSystems IRIS Object to XML
To project an object to XML (alternatively, to define the XML projection of that object), do the following:

1. Add %XML.Adaptor to the superclass list of the class that defines the object.

For example:

Class MyApp.MyClass Extends (%Persistent, %XML.Adaptor)
{
//class details
}

This step XML-enables the class.

Alternatively, if the object you are projecting is an instance of a system class, create and use a subclass instead. In the
subclass, add %XML.Adaptor to the superclass list.

Also, InterSystems IRIS provides many specialized XML-enabled classes in its class library. These include classes in
the %Net, %SOAP, and other packages. All these XML-enabled classes inherit from %XML.Adaptor.

2. If you are creating an XML-enabled subclass of %ListOfDataTypes, %ArrayOfDataTypes, %ListOfObjects, or
%ArrayOfObjects, then in the subclass, specify the ELEMENTTYPE class parameter. For example:

Class MyApp.MyIntegerCollection Extends %ListOfDataTypes
{
Parameter ELEMENTTYPE="%Library.Integer";

}

For ELEMENTTYPE, specify the complete package and class name of the class used in the collection. If you do not
specify this parameter, the type is assumed to be a string.

This step is necessary only if you need a complete XML schema.

3. Ensure that each property of the XML-enabled class has an XML projection if suitable, as described in the next section.

In most cases, if the property has an object value, you must XML-enable the class that defines the property. The
exceptions are collections and streams when used as properties, as described in the next section.

No work is necessary for data type classes.

4. Recompile the changed classes.

Now you can, for example, write the object to an XML document, as described in Using XML Tools.

2.1.1 Exceptions for Objects Used with Web Methods

If you use %ListOfDataTypes, %ListOfObjects, %ArrayOfDataTypes, %ArrayOfObjects as input or output for a web method,
it is not necessary to create an XML-enabled subclass. It is necessary to specify ELEMENTTYPE, but you can do this in
the method signature.

If you use a stream class as input or output for a web method, it is not necessary to create an XML-enabled subclass.

For further information, see Creating Web Services and Web Clients.

8 Projecting Objects to XML

Projecting Objects to XML

2.2 Ensuring That Properties Have Projections to XML
To ensure that each property of the object has an XML projection:

• For each simple (non-object) property of this object, no work is necessary. Each InterSystems IRIS data type already
has an XML projection.

• For each stream property, no work is necessary. The XML tools treat stream objects specially when used as properties
of an XML-enabled class.

• For object-valued properties other than collections, add %XML.Adaptor to the superclass list of the referenced class.

This includes relationship properties.

• For information on collections, see the following subsections.

For information on how InterSystems IRIS XML tools handle property values of different types, see “Controlling Trans-
formations of Values,” later in this book. For information on how property types are projected to XML types, see “Con-
trolling the Projection to XML Schemas,” later in this book.

2.2.1 Properties Defined with List of or Array of

For each property that is defined with the syntax Property PropName As List of classname or Property
PropName As Array of classname, do the following:

• If classname is an object class, XML-enable that class. That is, add %XML.Adaptor to the superclass list of classname.

• If classname is a datatype class, no work is needed.

• If classname is a stream class, and if the property is a list, no work is needed. The streams are projected to XML as
strings.

Note: InterSystems IRIS does not support projecting arrays of streams to XML. If your object has a property that is
defined as an array of streams, include XMLPROJECTION="none" for that property.

For example:

Class MyApp.MyXMLObject Extends (%RegisteredObject, %XML.Adaptor)
{
Property MyListOfObjects As list Of MyApp.OtherXMLObject;

Property MyArrayOfObjects As array Of MyApp.OtherXMLObject;

Property MyListOfDT As list Of %String;

Property MyArrayOfDT As array Of %String;

Property MyListOfStreams As list Of %GlobalCharacterStream;

Property MyArrayOfStreams As array Of %GlobalCharacterStream(XMLPROJECTION = "NONE");
}

2.2.2 Properties of Type %ListOfDataTypes or %ArrayOfDataTypes

The XML tools automatically project properties of type %ListOfDataTypes or %ArrayOfDataTypes as containers, as shown
later in this book. By default, the container includes string elements.

If you need a correct XML schema, and if it is inappropriate to assume that the elements are strings, then create and use a
subclass of the collection class. In the subclass, specify the ELEMENTTYPE class parameter. For example:

Projecting Objects to XML 9

Ensuring That Properties Have Projections to XML

Class MyApp.MyIntegerCollection Extends %ListOfDataTypes
{
Parameter ELEMENTTYPE="%Library.Integer";

}

For ELEMENTTYPE, specify the complete package and class name of the class used in the collection.

2.2.3 Properties of Type %ListOfObjects or %ArrayOfObjects

The XML tools automatically project properties of the type %ListOfObjects or %ArrayOfObjects as containers, as shown
later in this book. It is necessary, however, to XML-enable the class used in the collection.

For a property of type %ArrayOfObjects, the class used in the collection cannot be a stream class.

If you need a complete XML schema, then you must specify the element type for the collection. To do so, create and use
a subclass of the collection class. In the subclass, specify the ELEMENTTYPE class parameter, as shown in the previous
section.

2.2.4 Exceptions

If a given property is not projected to XML, there is no need to XML-enable the class to which it refers. The following
properties are not projected to XML:

• Private properties

• Multidimensional properties

• Properties that specify the XMLPROJECTION parameter as "NONE"

You can project private properties if you set the XMLPROJECTION property parameter to "ELEMENT" or some other
appropriate value, as described later in this chapter. The same applies to multidimensional properties. Also, you can project
a multidimensional property only if its top node has a value; note that only the top node is included in the projection.

2.3 Summary of the Default Projection
The default XML projection is as follows:

• An object instance corresponds to a top-level XML element.

• Only properties are projected. No other class members are projected.

Also, private properties and multidimensional properties are ignored.

• Properties are projected to XML in the same order in which they appear within Studio.

• Any property without a specified type is assumed to be a string.

• Each object-valued property corresponds to an XML element within the enclosing top-level XML element.

Its properties are nested within this element.

• Collections are projected as nested elements. This is true for both collections of data types and collections of objects.

The lower-level details are slightly different for lists and arrays.

• Relationships are treated in the same way as list properties.

The XML projection contains only one side of the relationship; an error occurs if you attempt to project both sides.

10 Projecting Objects to XML

Projecting Objects to XML

• Character streams are projected as strings.

• Binary streams are projected using strings with base–64 encoding.

2.4 Example XML Projection
This section shows an XML-enabled class and its XML projection. Later sections in this chapter show additional example.

2.4.1 Example XML-Enabled Class

The following shows an XML-enabled class that includes the major structural property variations:

Class Basics.BasicDemo Extends (%RegisteredObject, %XML.Adaptor)
{

Parameter XMLTYPENAMESPACE = "mytypes";

Property SimpleProp As %String;

Property ObjProp As SimpleObject;

Property Collection1 As list Of %String;

Property Collection2 As list Of SimpleObject;

Property MultiDimProp As %String [MultiDimensional];

Property PrivateProp As %String [Private];

}

The XMLTYPENAMESPACE parameter is discussed later; this specifies the target namespace for types defined in this class.

The SimpleObject class is also XML-enabled:

Class Basics.SimpleObject Extends (%RegisteredObject, %XML.Adaptor)
{

Parameter XMLTYPENAMESPACE = "mytypes";

Property MyProp As %String;

Property AnotherProp As %String;

}

2.4.2 Example XML Document

The following shows an XML document generated from an instance of the BasicDemo class:

<?xml version="1.0" encoding="UTF-8"?>
<BasicDemo>
 <SimpleProp>abc</SimpleProp>
 <ObjProp>
 <MyProp>12345</MyProp>
 <AnotherProp>67890</AnotherProp>
 </ObjProp>
 <Collection1>
 <Collection1Item>list item 1</Collection1Item>
 <Collection1Item>list item 2</Collection1Item>
 </Collection1>
 <Collection2>
 <SimpleObject>
 <MyProp>12345</MyProp>
 <AnotherProp>67890</AnotherProp>
 </SimpleObject>
 <SimpleObject>
 <MyProp>12345</MyProp>

Projecting Objects to XML 11

Example XML Projection

 <AnotherProp>67890</AnotherProp>
 </SimpleObject>
 </Collection2>
</BasicDemo>

2.4.3 Example Schema

The following shows the schema for the XML type namespace used in the two sample classes:

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema" xmlns:s="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified" targetNamespace="mytypes">
 <complexType name="BasicDemo">
 <sequence>
 <element minOccurs="0" name="SimpleProp" type="s:string"/>
 <element minOccurs="0" name="ObjProp" type="s01:SimpleObject" xmlns:s01="mytypes"/>
 <element minOccurs="0" name="Collection1" type="s02:ArrayOfCollection1ItemString"
xmlns:s02="mytypes"/>
 <element minOccurs="0" name="Collection2" type="s03:ArrayOfSimpleObjectSimpleObject"
xmlns:s03="mytypes"/>
 </sequence>
 </complexType>
 <complexType name="SimpleObject">
 <sequence>
 <element minOccurs="0" name="MyProp" type="s:string"/>
 <element minOccurs="0" name="AnotherProp" type="s:string"/>
 </sequence>
 </complexType>
 <complexType name="ArrayOfCollection1ItemString">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="Collection1Item" nillable="true"
type="s:string"/>
 </sequence>
 </complexType>
 <complexType name="ArrayOfSimpleObjectSimpleObject">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="SimpleObject"
 nillable="true" type="s04:SimpleObject" xmlns:s04="mytypes"/>
 </sequence>
 </complexType>
</schema>

2.5 Specifying Format Options for the Projected XML
Document
There are two basic formats of XML documents, literal and encoded (SOAP-encoded). For examples of these formats, see
“ Introduction to InterSystems XML Tools” in Using XML Tools. You specify one of these formats when you export data
from or import data into an XML-enabled class.

When you add %XML.Adaptor to a class and compile it, InterSystems IRIS writes additional code to the generated routines.
By default, this additional code supports both formats. If you need only one format, you can suppress the other format and
reduce the amount of generated code. To do so, specify the XMLFORMAT parameter for that class. Use one of the following
values (not case-sensitive):

• "LITERAL" — The class supports only literal format.

• "ENCODED" — The class supports only encoded format. (It does support both SOAP 1.1 and SOAP 1.2 versions).

• Null (the default) — The class supports both literal and encoded formats.

12 Projecting Objects to XML

Projecting Objects to XML

2.6 Controlling the Form of the Projection for Simple
Properties
A simple property is a property whose type is a data type class or whose type is undeclared (any property without a specified
type is assumed to be a string).

To control the form of the XML projection for a simple property, set the XMLPROJECTION parameter for that property.
Use one of the following values (not case-sensitive):

Table 2–1: Effect of XMLPROJECTION on Simple Properties

Effect on Non-collection PropertiesValue of
XMLPROJECTION

The property is projected as an element.This is the default for non-collection properties."ELEMENT"

The property is projected as an attribute."ATTRIBUTE"

The property is projected as an attribute with the prefix xml."XMLATTRIBUTE"

The property is projected as an element with a subelement; the name of the subelement
is based on the data type of the property.

"WRAPPED"

The property is projected as the primary content for this class (that is, the contents of
the property are written without any enclosing element). In any class, you cannot
specify this value for more than one property.

"CONTENT"

The property is not projected to XML."NONE"

The XMLPROJECTION parameter also accepts the values "COLLECTION" or "ELEMENTREF", but those values are
deprecated and are not documented here; for details, see the class documentation for %XML.PropertyParameters.

2.6.1 Basic XMLPROJECTION Variations

The following class defines simple properties that use all variations of XMLPROJECTION except for "CONTENT":

Class xmlproj.SimpleProps Extends (%RegisteredObject, %XML.Adaptor)
{

Property Simple1 As %String (XMLPROJECTION="attribute");

Property Simple2 As %String (XMLPROJECTION="xmlattribute");

Property Simple3 As %String;

Property Simple4 As %String (XMLPROJECTION="element");

Property Simple5 As %String (XMLPROJECTION="wrapped");

Property Simple6 As %String (XMLPROJECTION="none");

}

The following shows an example of the XML representation of an instance of this class:

<SimpleProps Simple1="The quick" xml:Simple2="brown fox">
 <Simple3>jumps</Simple3>
 <Simple4>over</Simple4>
 <Simple5>
 <string>the lazy</string>
 </Simple5>
</SimpleProps>

Projecting Objects to XML 13

Controlling the Form of the Projection for Simple Properties

2.6.2 Projecting a Property as Content

The "CONTENT" value enables you to project the class as a simple element with some text content and possibly some
attributes, but no subelements.

The following shows an example class that uses this value:

Class xmlproj.SimpleContentProp Extends (%RegisteredObject, %XML.Adaptor)
{

Property Simple1 As %String(XMLPROJECTION = "content");

Property Simple2 As %String(XMLPROJECTION = "attribute");

Property Simple3 As %String(XMLPROJECTION = "element");

}

When you export an instance of such a class:

• If the property marked with "CONTENT" has a value, this value is exported as the content of the class. Any properties
that are projected as attributes are also exported. Other properties are ignored. For example:

<SimpleContentProp Simple2="other value">The quick brown fox jumps over the lazy
dog</SimpleContentProp>

• If the property marked with "CONTENT" is null, then it is ignored, and the other properties are all exported as specified
by their values for XMLPROJECTION. For example:

<SimpleContentProp Simple2="other value">
 <Simple3>yet another value</Simple3>
</SimpleContentProp>

You cannot specify XMLPROJECTION as "CONTENT" for more than one property in any class. Also, you can use this
value only for a property that contains simple, literal value, not a collection or other type of object.

2.7 Controlling the Form of the Projection for
Object-Valued Properties
For each object-valued property, the default XML projection consists of an XML element (to represent the object itself)
with subelements or attributes to represent the properties of that object, as controlled by the XML projection options in that
object class. For an example, see “Example XML Projection,” earlier in this book.

Note: Later sections discuss the following special object-valued properties: collections, relationships, and streams.

2.7.1 Specifying the Form of the Projection for an Object-Valued Property

To control how a object property is projected, set the XMLPROJECTION parameter for that property, as follows:

14 Projecting Objects to XML

Projecting Objects to XML

Table 2–2: Effect of XMLPROJECTION on Object Properties

Effect on Collection PropertiesValue of XMLPROJECTION

The property is projected as an element with subelements. The
element corresponds to the object class. Each subelement
corresponds to a property of that class. This is the default for object
properties (other than streams).

"WRAPPED"

Each property of the object class is projected as an element, without
being wrapped in a parent element.

"ELEMENT"

The property is not projected to XML."NONE"

Compile-time error."ATTRIBUTE", "XMLATTRIBUTE", or
"CONTENT"

For example, consider the following class:

Class Basics.ObjectPropsDemo Extends (%RegisteredObject, %XML.Adaptor)
{

Property Object1 As SimpleObject(XMLPROJECTION = "wrapped");

Property Object2 As SimpleObject(XMLPROJECTION = "element");

}

The following shows an example of the XML representation of an instance of this class:

<ObjectPropsDemo>
 <Object1>
 <SimpleObject>
 <MyProp>abcdef</MyProp>
 <AnotherProp>qrstuv</AnotherProp>
 </SimpleObject>
 </Object1>
 <Object2>
 <MyProp>abcdef</MyProp>
 <AnotherProp>qrstuv</AnotherProp>
 </Object2>
</ObjectPropsDemo>

2.7.2 Specifying an XML Summary

You can easily specify which properties of a class to project to XML when that class is used as a property:

• In the class, specify the XMLSUMMARY class parameter as a comma-separated list of the properties to project to XML,
in the exact case used in the class definition.

This parameter has no effect unless you also specify either or both of the following parameters.

• In the same class, optionally specify the XMLDEFAULTREFERENCE as "SUMMARY" or "COMPLETE" (the default);
these values are not case-sensitive. The option "SUMMARY" means that only the properties listed in XMLSUMMARY
should be used in the projection when this class is used as a property. The option "COMPLETE" means that all properties
that have XML projections should be used.

These values are not case-sensitive.

• In a class that uses this class as a property, optionally specify the XMLREFERENCE property parameter as "SUMMARY"
or "COMPLETE" (the default); these values are not case-sensitive. This overrides the XMLDEFAULTREFERENCE
class parameter.

You can set this property parameter only for a property whose value is an object.

For example, consider the following Address class:

Projecting Objects to XML 15

Controlling the Form of the Projection for Object-Valued Properties

Class xmlsummary.Address Extends (%RegisteredObject, %XML.Adaptor)
{

Parameter XMLSUMMARY = "City,ZipCode";

Parameter XMLDEFAULTREFERENCE = "SUMMARY";

Property Street As %String;

Property City As %String;

Property State As %String;

Property ZipCode As %String;

}

The following shows an example of the XML representation of an instance of this class:

<Address>
 <Street>47 Winding Way</Street>
 <City>Middlebrook</City>
 <State>GA</State>
 <ZipCode>50291</ZipCode>
</Address>

Notice that all properties are included.

Now consider another class that uses the Address class as a property:

Class xmlsummary.Person Extends (%RegisteredObject, %XML.Adaptor)
{

Property Name As %String;

Property Address as Address;

}

The following shows an example of the XML representation of an instance of this class:

<Person>
 <Name>Penelope Farnsworth</Name>
 <Address>
 <City>Middlebrook</City>
 <ZipCode>50291</ZipCode>
 </Address>
</Person>

Here, because the Address class is a property of this class, the XMLSUMMARY and XMLDEFAULTREFERENCE
parameters are used, and only the class properties listed in XMLSUMMARY are used in the projection.

You can use the "COMPLETE" option to force an override. For example, the following class also uses the Address class
as a property but specifies XMLREFERENCE as "COMPLETE":

Class xmlsummary.Employee Extends (%RegisteredObject, %XML.Adaptor)
{

Property Name As %String;

Property Address As Address(XMLREFERENCE = "COMPLETE");

}

The following shows an example of the XML representation of an instance of this class:

<Employee>
 <Name>Malcom Winters</Name>
 <Address>
 <Street>770 Enders Lane</Street>
 <City>Middlebrook</City>
 <State>GA</State>
 <ZipCode>50293</ZipCode>
 </Address>
</Employee>

16 Projecting Objects to XML

Projecting Objects to XML

All the properties that have XML projections are included; in this case, this means all properties are included.

2.7.3 Projecting Only Object Identifiers

Instead of projecting an object-valued property as shown earlier in this section, you can project only an identifier for the
object. To do so, use one of the following values for the XMLDEFAULTREFERENCE class parameter or the
XMLREFERENCE property parameter:

• The "ID" option projects only the internal ID of the object, as stored on disk. It does not project any properties. For
example, consider the following class:

Class xmlidentifiers.Person Extends (%Persistent, %XML.Adaptor)
{

Property Name As %String;

Property PrimaryCarePhysician As Person (XMLREFERENCE = "ID");

}

The following shows an example of the XML representation of an instance of this class:

<Person>
 <Name>Sam Smith</Name>
 <PrimaryCarePhysician>24</PrimaryCarePhysician>
</Person>

• The "OID" option projects only the OID of the object (as package.class,ID). It does not project any properties. If we
use this option for the PrimaryCarePhysician property, the preceding Person object would be projected as follows:

<Person>
 <Name>Sam Smith</Name>
 <PrimaryCarePhysician>xmlidentifiers.Person,24</PrimaryCarePhysician>
</Person>

• The "GUID" option projects only the GUID (globally unique ID) of the object, if available. The GUID for an object
is null unless the GUIDENABLED class parameter is 1. Suppose that we redefine the Person class as follows:

Class xmlidentifiers.Person Extends (%Persistent, %XML.Adaptor)
{

Parameter GUIDENABLED=1;

Property Name as %String;

Property PrimaryCarePhysician As Person (XMLREFERENCE = "GUID");

}

In this case, the XML representation of an instance of this class could be as follows:

<Person>
 <Name>Sam Smith</Name>
 <PrimaryCarePhysician>D0F383EB-DB31-4C11-AD56-AA14EB37B734</PrimaryCarePhysician>
</Person>

Note: For the property parameter XMLREFERENCE, you can use the "ID", "OID", and "GUID" options only if the
value is a persistent object. You receive compile-time errors otherwise.

Similarly, if you set the class parameter XMLDEFAULTREFERENCE to "ID", "OID", or "GUID", and if the
class has properties whose values are non-persistent objects, you must explicitly set the property parameter
XMLREFERENCE to "COMPLETE"" or "SUMMARY" for those properties.

Projecting Objects to XML 17

Controlling the Form of the Projection for Object-Valued Properties

2.8 Controlling the Form of the Projection for Collection
Properties
To control the form of the XML projection for a collection property, set the XMLPROJECTION parameter for that property,
as follows:

Table 2–3: Effect of XMLPROJECTION on Collection Properties

Effect on Collection PropertiesValue of XMLPROJECTION

The property is projected as an element with subelements; each
subelement corresponds to an item of the collection.This is the default
for collection properties.

"WRAPPED"

Each item in the collection is projected as an element, without being
wrapped in the parent property.

"ELEMENT"

The property is not projected to XML."NONE"

Compile-time error."ATTRIBUTE", "XMLATTRIBUTE", or
"CONTENT"

The following sections show examples with properties that are lists or arrays of data types. For collections of objects, the
projected elements can have further structure, recursively, depending on the XML projections of those objects.

2.8.1 Specifying the Form of the Projection for List Properties

The following class defines collection properties that use the "WRAPPED" and "ELEMENT" values:

Class xmlproj.DataTypeColls Extends (%RegisteredObject, %XML.Adaptor)
{

Property Collection1 As list Of %String;

Property Collection2 As list Of %String (XMLPROJECTION="wrapped");

Property Collection3 As list Of %String (XMLPROJECTION="element");

}

The following shows an example of the XML representation of an instance of this class:

<?xml version="1.0" encoding="UTF-8"?>
<DataTypeColls>
 <Collection1>
 <Collection1Item>list item 1</Collection1Item>
 <Collection1Item>list item 2</Collection1Item>
 </Collection1>
 <Collection2>
 <Collection2Item>list item 1</Collection2Item>
 <Collection2Item>list item 2</Collection2Item>
 </Collection2>
 <Collection3>list item 1</Collection3>
 <Collection3>list item 2</Collection3>
</DataTypeColls>

For the Collection3 property, which uses "ELEMENT", the XML projection disregards the list nature of the property
and instead treats each list item as a separate property of the class.

18 Projecting Objects to XML

Projecting Objects to XML

2.8.2 Specifying the Form of the Projection for Array Properties

For an array, each array item has both a value and a key, and both of these pieces of information must be represented in
XML. The key is always projected as an XML attribute within the element. Consider the following class:

Class xmlproj.DataTypeArray Extends (%RegisteredObject, %XML.Adaptor)
{

Property ArrayProp As array Of %String;

}

The following shows an example of the default XML representation of an instance of this class:

<?xml version="1.0" encoding="UTF-8"?>
<DataTypeArray>
 <ArrayProp>
 <ArrayPropItem ArrayPropKey="1">apples</ArrayPropItem>
 <ArrayPropItem ArrayPropKey="2">bananas</ArrayPropItem>
 <ArrayPropItem ArrayPropKey="3">chocolate</ArrayPropItem>
 </ArrayProp>
</DataTypeArray>

If you specify XMLPROJECTION as "ELEMENT", the XML projection is as follows instead:

<?xml version="1.0" encoding="UTF-8"?>
<DataTypeArray>
 <ArrayProp ArrayPropKey="1">apples</ArrayProp>
 <ArrayProp ArrayPropKey="2">bananas</ArrayProp>
 <ArrayProp ArrayPropKey="3">chocolate</ArrayProp>
</DataTypeArray>

2.9 Controlling the Form of the Projection for
Relationships
Relationships are projected to XML in the same way as other properties, depending on the nature of the collection used in
them:

• For a parent-child relationship:

– The relationship property in the parent object is a collection property, specifically a list of objects. See “Controlling
the Projection for Collection Properties.”

– The relationship property in the child object is an object-valued property.

This relationship is not projected to XML by default.

• For a one-to-many relationship:

– The relationship property in the single object is a collection property, specifically a list of objects.

– The relationship property in the other object is an object-valued property.

This relationship is not projected to XML by default.

At any given time, only one side of the relationship can be projected, because otherwise there would be an infinite loop.
To reverse the way in which the projection is done, use the XMLPROJECTION property parameter.

This principle is best explained by examples.

Projecting Objects to XML 19

Controlling the Form of the Projection for Relationships

2.9.1 The Default Projection for Relationships

First, consider the following pair of classes:

The class Parent is the parent of the class Child.

The class Parent has two properties (ParentPropA and ParentPropB) in addition to the relationship property
(Children).

Similarly, the class Child has two properties (ChildPropA and ChildPropB) in addition to the relationship property
(MyParent).

When you project these classes to XML, you get the following results by default:

• The XML projection for Parent includes projections for three properties: ParentPropA, ParentPropB, and
Children. The Children property is treated like any other collection. That is, by default it is projected as a set of
nested elements.

For example:

<Parent>
 <ParentPropA>12345</ParentPropA>
 <ParentPropB>67890</ParentPropB>
 <Children>
 <Child>
 <ChildPropA>abc</ChildPropA>
 <ChildPropB>def</ChildPropB>
 </Child>
 <Child>
 <ChildPropA>ghi</ChildPropA>
 <ChildPropB>jkl</ChildPropB>
 </Child>
 </Children>
</Parent>

• The XML projection for Child includes projections for two properties: ChildPropA and ChildPropB. The property
MyParent is ignored.

For example:

<Child>
 <ChildPropA>abc</ChildPropA>
 <ChildPropB>def</ChildPropB>
</Child>

20 Projecting Objects to XML

Projecting Objects to XML

The same is true for one-to-many relationships. Specifically, the object on the “one” side includes a projection for the
relationship property. The object on the “many” side does not include a projection for the relationship property.

2.9.2 Projecting the Other Side of the Relationship Instead

By specifying the XMLPROJECTION parameter in the relationship properties of both classes, you can project the other
side of the relationship instead. The following class is a variation of the class used in the default example.

Class Relationships2.Parent Extends (%Persistent, %XML.Adaptor)
{

Property ParentPropA As %String;

Property ParentPropB As %String;

Relationship Children As Child(XMLPROJECTION = "NONE") [Cardinality = children, Inverse = MyParent];

}

Similarly, the Child class is as follows:

Class Relationships2.Child Extends (%Persistent, %XML.Adaptor)
{

Property ChildPropA As %String;

Property ChildPropB As %String;

Relationship MyParent As Parent (XMLPROJECTION="element") [Cardinality = parent, Inverse = Children
];

}

When you project these classes to XML, you get the following results:

• The XML projection for Parent ignores the Children property:

<Parent>
 <ParentPropA>12345</ParentPropA>
 <ParentPropB>67890</ParentPropB>
</Parent>

• The XML projection for Child includes projections for all its properties:

<Child>
 <ChildPropA>abc</ChildPropA>
 <ChildPropB>def</ChildPropB>
 <MyParent>
 <ParentPropA>12345</ParentPropA>
 <ParentPropB>67890</ParentPropB>
 </MyParent>
</Child>

2.10 Controlling the Form of the Projection of a Stream
Property
For stream properties, the options for the XMLPROJECTION are as follows:

Table 2–4: Effect of XMLPROJECTION on Stream Properties

Effect on Stream PropertiesValue of XMLPROJECTION

The stream contents are contained in an element."ELEMENT"

Projecting Objects to XML 21

Controlling the Form of the Projection of a Stream Property

Effect on Stream PropertiesValue of XMLPROJECTION

Treated in the same way as "ELEMENT"."WRAPPED"

The stream contents are projected as described in “Projecting a
Property as Content ” in the chapter “Projecting Objects to XML. ”
For all other properties, the XMLPROJECTION parameter must be
"NONE".

"CONTENT"

The property is not projected to XML."NONE"

The property is projected as an attribute."ATTRIBUTE"

The property is projected as an attribute with the prefix xml."XMLATTRIBUTE"

This section shows examples of how streams are projected.

For example, consider the following class:

Class Basics.StreamPropDemo Extends (%Persistent, %XML.Adaptor)
{

Property BinStream As %Library.GlobalBinaryStream;

Property CharStream As %Library.GlobalCharacterStream;

}

The following shows an example of the XML representation of an instance of this class:

<StreamPropDemo>
 <BinStream>/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAUDBAQEAwUEBAQFBQUGBwwIBwcHBw8LCwkMEQ8SEhEP
ERETFhwXExQaFRERGCEYGh0dHx8fExciJCIeJBweHx7/2wBDAQUFBQcGBw4ICA4eFBEUHh4eHh4e
...
VcE/wkZ5wGJBH/joP50UVfQkqaS5dbi34EZtpJgPRlUkf1H402Fy9oIWHHlPj2K/Nn9cfhRRSGip
ZHzbmEPnEwZGGePu5/nj8qNJcpcrG4DxSuEkToDnPPtRRUyKGhPsuqlAxbypAhJ43A/y44q5HbNM
vmx3U9vuJDLG+ASCQW+pxRRSKP/Z</BinStream>
 <CharStream><![CDATA[This is a sample file.
This is line 2.
This is line 3.
This is line 4.]]></CharStream>
</StreamPropDemo>

2.11 Controlling the Availability of Projected Properties
You can specify whether each projected property is used by import, export, or both. To do this, you set the XMLIO
parameter, which controls how the export and import methods of %XML.Writer and %XML.Reader classes handle a property.
This parameter can take one of the following values (not case-sensitive):

• "INOUT" — This property is used by both export and import. This is the default for projected properties.

• "IN" — This property is used by import but is ignored by export.

• "OUT" — This property is used by export but causes an error on import. If an XML element corresponding to this
property is found in an XML document, then import returns an error.

• "CALC" — This property is used by export but is ignored by import. If an XML element corresponding to this property
is found in an XML document, then import ignores it. Typically, this is used for calculated properties (whose value is
based on the value of other properties) so that you can export a document with all values and ignore the calculated
values on import.

This parameter has no effect on a property that is not projected to XML.

22 Projecting Objects to XML

Projecting Objects to XML

2.12 Disabling the Projection
If a class is XML-enabled and you want to prevent the class from being projected (perhaps during testing for some reason),
you can set the class parameter XMLENABLED to 0. The default is 1.

If you use XMLENABLED to prevent a class from being projected, this class cannot be used as a property by any class that
is projected to XML. Setting XMLENABLED to 0 is the same as removing %XML.Adaptor from the superclass list.

2.13 Methods in %XML.Adaptor
The methods in %XML.Adaptor are deprecated and are mostly not documented. You should instead use the more robust
classes %XML.Writer and %XML.Schema, which provide greater support for namespaces. For information, see Using XML
Tools.

Projecting Objects to XML 23

Disabling the Projection

3
Controlling Transformations of Values

This chapter discusses how values are transformed as you export objects to XML and import XML into objects, and it
discusses your options for controlling those transformations.

• Introduction

• How to control how XML special characters are handled

• How to handle the UTC time zone indicator

• How to use the values in DISPLAYLIST

• How to control line endings for stream properties imported from XML

• How to specify a default date/time value to use when an invalid date is imported

• How to handle nonprinting characters

The XML examples in this chapter are in literal format.

The following chapter discusses null values and missing values.

Class and Property Parameters Discussed in This Chapter

• ESCAPE

• CONTENT

• XMLTIMEZONE

• DISPLAYLIST

• VALUELIST

• XMLDEFAULTVALUE

• XMLLISTPARAMETER

• XMLSTREAMMODE

3.1 Introduction
An XML-enabled object typically includes properties defined by InterSystems IRIS data types. Each data type class defines
the LogicalToXSD() and XSDToLogical() methods. Whenever XML output is requested for the object, the InterSystems

Projecting Objects to XML 25

IRIS XML tools automatically call the LogicalToXSD() method for each property, to convert the data to the appropriate
format for use in XML. Similarly, whenever an XML document is used as input, the InterSystems IRIS XML tools call the
XSDToLogical() method to convert the data into the correct format for InterSystems IRIS.

For example, in the %Binary data type class, the LogicalToXSD() method converts the outbound value using the
$SYSTEM.Encryption.Base64Encode() method. Similarly, the XSDToLogical() method converts the inbound value
using the $SYSTEM.Encryption.Base64Decode() method.

An InterSystems IRIS class can also include stream-valued properties, but the stream classes do not define the
LogicalToXSD() and XSDToLogical() methods. Instead, the XML tools treat stream classes specially when they are used
as properties of an XML-enabled class. Specifically:

• Character streams are treated in the same way as strings. By default, no changes are made apart from the changes that
are necessary due to the presence of XML special characters, as described in the next section.

• When InterSystems IRIS exports to XML, it converts binary stream properties to strings with base–64 encoding (that
is, it encodes the data in that way and then exports it). When InterSystems IRIS imports from XML, it does the reverse.

When you use XML-enabled objects, it is sometimes necessary to consider the special cases of values that cannot be directly
projected to XML or values that you want to transform for other reasons. The rest of this chapter discusses these cases.

3.2 Handling Special XML Characters
Depending on the context, InterSystems IRIS XML support escapes the ampersand character (&) and certain other characters,
when it finds those characters within a property of type string or character stream.

Note: The ESCAPE property parameter controls which characters are recognized as special. This parameter is either
"XML" (the default) or "HTML" (not discussed in this book). In the examples in this book, ESCAPE is "XML".

For these special characters, you can control how the escaping is performed by setting the CONTENT property parameter.
The details are different for literal and encoded formats, as follows:

Table 3–1: Form of Escaping for Literal and SOAP-encoded Formats

XML Document in SOAP-encoded
Format

XML Document in Literal
Format

Value of CONTENT
(Case-insensitive)

CDataCData"STRING" (the default)

XML entityXML entity"ESCAPE"

XML entity*XML entity*"ESCAPE-C14N"

CDataNo escaping is done"MIXED"

*For "ESCAPE-C14N", the escaping is done in accordance with the XML Canonicalization standard. The main difference
is that a carriage return is escaped as 

3.2.1 Examples

Consider the following class:

26 Projecting Objects to XML

Controlling Transformations of Values

Class ResearchXForms.CONTENT Extends (%RegisteredObject, %XML.Adaptor)
{

Parameter XMLNAME = "Demo";

Property String1 As %String;

Property String2 As %String(CONTENT = "STRING");

Property String3 As %String(CONTENT = "ESCAPE");

Property String4 As %String(CONTENT = "MIXED");

}

String2 and String1 are always treated in the same way, because String2 uses the default value for CONTENT.

Literal XML output for this class might look like the following:

<?xml version="1.0" encoding="UTF-8"?>
<Demo>
 <String1><![CDATA[value 1 & value 2]]></String1>
 <String2><![CDATA[value 1 & value 2]]></String2>
 <String3>value 1 & value 2</String3>
 <String4>value 1 & value 2</String4>
</Demo>

SOAP-encoded XML output would be as follows instead:

<?xml version="1.0" encoding="UTF-8"?>
<CONTENT xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:s="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <String1><![CDATA[value 1 & value 2]]></String1>
 <String2><![CDATA[value 1 & value 2]]></String2>
 <String3>value 1 & value 2</String3>
 <String4><![CDATA[value 1 & value 2]]></String4>
</CONTENT>

3.2.2 Alternative Way to Prevent the Escaping

There is another way to prevent the escaping of special XML characters. You can define the property as one of the special
XML types: %XML.String, %XML.FileCharacterStream, or %XML.GlobalCharacterStream. For these data type classes,
CONTENT is "MIXED".

Note that your application is responsible for ensuring that the property value is valid for the scenario in which it will be
used; the %XML.String and other classes do not provide this validation.

3.3 Handling the UTC Time Zone Indicator
For XML-enabled classes, you can specify whether to use the UTC time zone indicator when importing from XML documents.
Similarly, you can specify whether to include the UTC time zone indicator on export.

To do so, specify the XMLTIMEZONE parameter. Use one of the following values:

• "UTC" — In this case, when you import elements with xsd:time or xsd:dateTime, the data is converted to UTC
time. This is the default behavior.

In compliance with the XML Schema specification, InterSystems IRIS XML support treats the time zone indicator as
a pure duration and ignores any named time zones such as EDT.

• "IGNORE" — In this case, the UTC time zone indicator is ignored when you import elements with xsd:time or
xsd:dateTime.

On export, UTC time is always used. The XMLTIMEZONE parameter controls the UTC zone indicator is included.

Projecting Objects to XML 27

Handling the UTC Time Zone Indicator

Consider the following class:

Class ResearchXForms.UTC Extends (%Persistent, %XML.Adaptor)
{

Parameter XMLNAME = "Demo";

Property Time1 As %Time;

Property Time2 As %Time(XMLTIMEZONE = "IGNORE");

Property TimeStamp1 As %TimeStamp;

Property TimeStamp2 As %TimeStamp(XMLTIMEZONE = "IGNORE");

}

XML output for this class might be as follows:

<?xml version="1.0" encoding="UTF-8"?>
<Demo>
 <Time1>17:52:06Z</Time1>
 <Time2>17:52:06</Time2>
 <TimeStamp1>1976-02-18T17:52:06Z</TimeStamp1>
 <TimeStamp2>1976-02-18T17:52:06</TimeStamp2>
</Demo>

3.4 Projecting the Value in DISPLAYLIST
For properties of type %String (or any subclass), the XML projection can use the DISPLAYLIST parameter.

Simple properties can specify the DISPLAYLIST and VALUELIST parameters. The VALUELIST parameter specifies a list
of possible values for the property; this defines an enumerated property . Often you also specify the DISPLAYLIST
parameter, which specifies the corresponding values to display.

By default, the XML projection uses the value contained in the object, which is one of the values specified by VALUELIST.
For properties of type %String, the XMLLISTPARAMETER parameter is meant to indicate which parameter contains the
list of alternative values to use in the projection. Typically, you set this equal to "DISPLAYLIST". For example, consider
the following data type class:

Class xmldisplaylist.MyEnumString Extends %String
{

Parameter VALUELIST = ",a,b,c";

Parameter DISPLAYLIST = ",apples,bananas,chocolate";

Parameter XMLLISTPARAMETER = "DISPLAYLIST";

}

Also consider the following class, which uses the preceding data type class:

Class xmldisplaylist.Demo Extends (%RegisteredObject, %XML.Adaptor)
{

Property Property1 As MyEnumString;

Property Property2 As MyEnumString(DISPLAYLIST = ",red,green,blue", VALUELIST = ",r,g,b");

}

The following shows an example of the XML representation of an instance of this class:

<Demo>
 <Property1>chocolate</Property1>
 <Property2>red</Property2>
</Demo>

28 Projecting Objects to XML

Controlling Transformations of Values

In contrast, if the data type class did not specify the XMLLISTPARAMETER parameter, the XML representation would be
as follows:

<Demo>
 <Property1>c</Property1>
 <Property2>r</Property2>
</Demo>

3.5 Controlling the Line Endings of Imported Stream
Properties
For each property that is a character stream, you can control the line endings in the stream when you import from XML.
To do so, you set the XMLSTREAMMODE property parameter, which can have either of the following values (not case-
sensitive):

• If XMLSTREAMMODE equals "block" (the default), the normalized XML data is copied unchanged to the stream.
The LineTerminator property of the stream is set to $CHAR(10), which makes the import compatible with any traditional
newline sequence ($CHAR(10), $CHAR(13), $CHAR(13,10)).

• If XMLSTREAMMODE equals "line", the XML data is broken into lines separated by the character given by the
LineTerminator property of the stream; see %Library.AbstractStream.

For example, suppose that we have the following data:

...
<Stream1>
<![CDATA[this is a line
this is another line
this is another line
]]>
</Stream1>
...

We import this data into an object that has a Stream1 property of type %Stream.GlobalCharacter. By default,
XMLSTREAMMODE is "block" for the property. After we import data, this property will contain the following data:

this is a line
 this is another line
 this is another line

If we set XMLSTREAMMODE equal to "line" for this property, and reimported the data, this property would contain the
following data:

this is a line
this is another line
this is another line

In this case, the line endings are determined by the LineTerminator property of the stream class. This property equals
$char(13,10) for %Stream.GlobalCharacter.

3.6 Specifying a Default Date/Time Value
For the %PosixTime, %TimeStamp, and %DateTime data type classes, the XMLDEFAULTVALUE parameter specifies the
value to use if the date fails validity check by $zdatetimeh. By default, in such a case, a null string is used, and this results
in an error when you import data via XMLImport(). Specify a valid value for the class.

Projecting Objects to XML 29

Controlling the Line Endings of Imported Stream Properties

For example, for %TimeStamp, and %DateTime, specify a date in YYYY-MM-DD HH:MM:SS.nnnnnnnnn format, starting
with any year after 1841. For example: 1841-01-1 00:00:00

3.7 Projecting Nonprinting Characters to XML
XML does not permit nonprinting characters, specifically characters below ASCII 32 (except for carriage return, line feed,
and tab).

If you need to project a property to XML and that property contains any of these nonprinting characters, that property must
be of type %Binary or %xsd.base64Binary (which is equivalent). This value is automatically converted to base–64 encoding
on export to XML (or automatically converted from base–64 encoding on import).

30 Projecting Objects to XML

Controlling Transformations of Values

4
Handling Empty Strings and Null Values

This chapter discusses the following topics:

• Default XML projections for empty strings and null values

• How these values are exported to XML

• How these values are imported from XML

The XML examples in this chapter are in literal format.

Class and Property Parameters Discussed in This Chapter

• XMLUSEEMPTYELEMENT

• XMLIGNORENULL

• XMLNILNOOBJECT

• XMLNIL

4.1 Default Projections of Empty Strings and Null Values
The following table summarizes the default XML projections of empty strings and null values. Note that the XML projections
are analogous to the SQL projections, which are also shown here for comparison.

Table 4–1: Default SQL and XML Projections of Empty Strings and Null Values

Projection to SQLDefault Projection to XMLInterSystems IRIS
Value

SQL empty stringEmpty element or attribute$char(0)

SQL NULL valueNo projection""

The following sections describe how these projections work upon export and import, and provide details on your options
for controlling these projections.

Projecting Objects to XML 31

4.2 Exporting Values
The following table lists the ways in which empty strings and null values can be exported from XML-enabled objects to
XML documents, for a property that is projected to XML as an element:

Table 4–2: Exporting Empty Strings and Null Values for a Property Projected to XML as an Element

Property equals
$char(0)

Property equals ""Details of XML-Enabled Class

Exported
document contains
an empty element
that corresponds to
this property; see
the subsection

Exported XML document does not contain an
element that corresponds to this property

Class specifies default values
for the parameters described in
this chapter

Exported document contains an empty element that
corresponds to this property; see the subsection

Class specifies
XMLIGNORENULL=1

Exported document contains an empty element that
corresponds to this property and this empty element
specifies xsi:nil="true"

Class specifies XMLNIL=1 (and
XMLIGNORENULL is not 1)

The details are similar for a property projected as an attribute:

Table 4–3: Exporting Empty Strings and Null Values for a Property Projected to XML as an Attribute

Property equals
$char(0)

Property equals ""Details of XML-Enabled Class

Exported
document contains
an empty attribute
that corresponds to
this property

Exported XML document does not contain an
attribute that corresponds to this property

Class specifies default values for
the parameters described in this
table

Exported document contains an empty attribute
that corresponds to this property. For example:
PropName=""

XMLIGNORENULL=1

Exported XML document does not contain an
attribute that corresponds to this property (same
as the default scenario)

XMLNIL=1 (and XMLIGNORENULL
is not 1)

4.2.1 Controlling the Form of an Empty Element

By default, InterSystems IRIS writes an empty element with an opening tag and a closing tag. For example:

<PropName></PropName>

You can instead cause InterSystems IRIS to write a self-closing empty element (which is equivalent). For example:

<PropName />

To do so, specify the XMLUSEEMPTYELEMENT class parameter as 1. The default for this parameter is 0.

32 Projecting Objects to XML

Handling Empty Strings and Null Values

4.2.2 Details for XMLIGNORENULL, XMLNIL, and XMLUSEEMPTYELEMENT

XMLIGNORENULL

Used during export to XML (and when writing SOAP messages), this parameter controls whether to ignore null
strings (rather than exporting them).

This parameter is a class parameter in all XML-enabled classes. XMLIGNORENULL can equal 0 (the default), 1,
"INPUTONLY", or "RUNTIME" (not case-sensitive).

The XMLIGNORENULL class parameter is inherited by subclasses.

XMLNIL

Used during export to XML (and when writing SOAP messages), this parameter controls the use of the xsi:nil
attribute for null strings.

This parameter is a class parameter and a property parameter in all XML-enabled classes; the property parameter
takes precedence. XMLNIL can equal 0 (the default) or 1.

The XMLNIL class parameter is not inherited by subclasses. The XMLNIL property parameter is inherited.

XMLUSEEMPTYELEMENT

Used during export to XML (and when writing SOAP messages), this parameter controls whether InterSystems
IRIS writes self-closing empty tags. This parameter applies in two scenarios:

• If XMLUSEEMPTYELEMENT is 1 for a class, the parameter affects any string-valued properties that equal
"" and that are projected as elements. Any such property is exported as a self-closing empty element.

• If XMLUSEEMPTYELEMENT is 1 for a class, and none of the properties appear as elements in the XML
export, then the parameter affects the form of the empty element corresponding to the class instance. This
element is exported as a self-closing empty element.

If XMLUSEEMPTYELEMENT is 1 in a class, the system generates slightly more code for that class. Also the XML
processing for that class is slightly less efficient.

4.3 Importing Values
The following table lists the ways in which InterSystems IRIS handles empty, null, or missing elements and attributes when
it imports from XML into an XML-enabled object:

Projecting Objects to XML 33

Importing Values

Table 4–4: Importing XML Documents with Empty, Null, or Missing Elements and Attributes

In the imported document, the
element is empty and specifies
xsi:nil="true"

In the imported
document, the
element or attribute
is empty

Imported
document does
not contain the
element or
attribute

Details of
XML-Enabled Class

The property is set
equal to $char(0)

The property is
not set

Class specifies default
value for
XMLNILNOOBJECT
parameter

• If the property is a literal-valued
property, the property is not set

• If the property is an object-val-
ued property, the property is set
to a new instance of the refer-
enced class; no properties are
set in this instance

The property is not setClass specifies
XMLNILNOOBJECT=1

34 Projecting Objects to XML

Handling Empty Strings and Null Values

5
Controlling the XML Element and Attribute
Names

There is a default correspondence between InterSystems IRIS class and property names and the names of the XML elements
and attributes. This chapter describes how to override these defaults. It discusses the following topics:

• Default XML element and attribute names

• How to control the element name for a top-level object

• How to control the element or attribute name for a simple property

• How to control the element and attribute names for a list-type property

• How to control the element and attribute names for an array-type property

Note that InterSystems IRIS also supports the case in which an XML document contains multiple elements with the same
name. See the chapter “Special Topics.”

The XML examples in this chapter are in literal format.

Class and Property Parameters Discussed in This Chapter

• XMLNAME

• XMLTYPE

• XMLITEMNAME

• XMLKEYNAME

5.1 Default XML Element and Attribute Names
The default correspondence between InterSystems IRIS names and XML element and attribute name is as follows:

• For a class, the corresponding XML element or attribute name is the same as the short class name.

• For a property in this class, the corresponding XML element or attribute name is the same as the property name.

(Note that the property definition determines whether it is projected as an XML element or attribute. See “Controlling
the Projection for Simple Properties,” earlier in this book.)

Projecting Objects to XML 35

If the property name includes quotes, the quote marks are not included in the XML element or attribute name. For
example, consider the following property:

Property "Quoted Property" As %String;

This property is projected as the element <Quoted Property> or the attribute Quoted Property, depending on
how this property is mapped.

• If the property is a list or an array, it automatically consists of subelements, each of which is one item in that list or
array. By default, the name of the subelement is the property name with Item appended to it.

• If a property is an array, the subelement also has an attribute to indicate the corresponding key. By default, the name
of that attribute is the property name with Key appended to it.

5.2 Controlling the Name of the Element or Attribute for
an Object Projected as a Top-Level Element
When you project a class instance as a top-level element, its XML name is determined as follows:

Table 5–1:Tag for Object Projected as Top-Level Element

Tag (Element or Attribute)XMLType Parameter of ClassXMLNAME Parameter of Class

Value of XMLNAMEIgnoredSpecified

Value of XMLTYPESpecifiedNot specified

Short class nameNot specified

For information on XMLTYPE, see the chapter “Controlling the Projection to XML Schemas,” later in this book.

For example, if you export objects of the Sample.Address class, each of those objects would be shown something like
the following, by default:

<Address>
 <Street>5064 Elm Street</Street>
 <City>Jackson</City>
 <State>PA</State>
 <Zip>27621</Zip>
</Address>

Suppose that you specify the XMLNAME parameter of the Sample.Address class. For example:

Parameter XMLNAME = "HomeAddress";

In this case, the output would be as follows instead:

<HomeAddress>
 <Street>5064 Elm Street</Street>
 <City>Jackson</City>
 <State>PA</State>
 <Zip>27621</Zip>
</HomeAddress>

You can override these parameters when you export objects to XML, as described in Using XML Tools.

36 Projecting Objects to XML

Controlling the XML Element and Attribute Names

5.3 Controlling the Tags for Simple Properties
In an XML-enabled object, each simple property is projected as an XML element or attribute, depending on how it is
mapped. In either case, by default, the InterSystems IRIS property name is used as the XML element or attribute name. To
provide a different XML name for a property, you specify the XMLNAME parameter of that property.

For example:

Property Zip As %String (XMLNAME = "PostalCode");

The output for the previous example would be as follows instead:

<HomeAddress>
 <Street>5064 Elm Street</Street>
 <City>Jackson</City>
 <State>PA</State>
 <PostalCode>27621</PostalCode>
</HomeAddress>

Note that if a property is in turn another InterSystems IRIS object class, the XML projection ignores the class name and
the XMLNAME parameter of that class. For example, suppose that the Person class has a property named Address which
is a reference to the Address class. The projection for a Person object would look something like the following:

<Person>
 <Name>Zevon,Juanita Q.</Name>
 <DOB>1986-08-18</DOB>
 <Address>
 <Street>5064 Elm Street</Street>
 <City>Jackson</City>
 <State>PA</State>
 <Zip>27621</Zip>
 </Address>
</Person>

The name of the <Address> element is determined by the name of the corresponding property in the Person object. This
is because the address object is a property of the object that is being imported or exported (instead of being an object that
is being imported or exported directly).

As with any other property, you can override this name by specifying theXMLNAME parameter for the property. For
example:

Property Address As MyApp.Address (XMLNAME = "EmployeeAddress");

The output for the previous example would be as follows instead:

<Person>
 <Name>Zevon,Juanita Q.</Name>
 <DOB>1986-08-18</DOB>
 <EmployeeAddress>
 <Street>5064 Elm Street</Street>
 <City>Jackson</City>
 <State>PA</State>
 <Zip>27621</Zip>
 </EmployeeAddress>
</Person>

Projecting Objects to XML 37

Controlling the Tags for Simple Properties

5.4 Controlling the Element and Attribute Names for
List-Type Properties
Note: This section does not apply to a collection property that specifies XMLPROJECTION as "ELEMENT". For such

a property, each list item is treated as a separate property of the class. See “Controlling the Projection for Collection
Properties,” earlier in this book.

In an XML-enabled object, a list-type property is projected to an element with subelements, each of which is one item in
that list. Suppose that an InterSystems IRIS object property named ColorOptions equals a list of three strings: "Red",
"Green", "Blue". By default, this property corresponds to the following XML fragment:

<ColorOptions>
 <ColorOptionsItem>Red</ColorOptionsItem>
 <ColorOptionsItem>Green</ColorOptionsItem>
 <ColorOptionsItem>Blue</ColorOptionsItem>
</ColorOptions>

This shows the ColorOptionsItem subelement, which corresponds to an item in the list. The name for this subelement
is determined as follows:

Table 5–2:Tag for List Items

Tag (Element or Attribute)XMLNAME Parameter
of Property

XMLITEMNAME
Parameter of Property

Value of XMLITEMNAMEIgnoredSpecified

Value of XMLNAME with Item concatenated to the
end

SpecifiedNot specified

If the list item corresponds to a data type property, the
tag is the property name with Item concatenated to
the end. If the list item corresponds to an object class,
the tag is the short class name.

Not specified

The same logic applies to the items of an array. The keys of an array are treated separately; see the next topic.

5.5 Controlling the Element and Attribute Names for
Array-Type Properties
Note: This section does not apply to a collection property that specifies XMLPROJECTION as "ELEMENT". For such

a property, each array item is treated as a separate property of the class. See the section “Controlling the Projection
for Collection Properties,” earlier in this book.

In an XML-enabled object, an array-type property is projected to an element with subelements, each of which is one item
in that array, in the same basic way that a list property is projected; see the previous section.

Each subelement has an additional attribute that indicates the key associated with the item. You can control the name of
this attribute.

Consider the following example property:

38 Projecting Objects to XML

Controlling the XML Element and Attribute Names

Property Tools As %ArrayOfDataTypes;

For example, suppose that (for some object instance) this property consists of an array as follows:

• The value Hammer is stored with the key 845.

• The value Monkey wrench is stored with the key 1009.

• The value Screwdriver is stored with the key 3762.

By default, this property corresponds to the following XML fragment:

<Tools>
 <ToolsItem ToolsKey="845">Hammer</ToolsItem>
 <ToolsItem ToolsKey="1009">Monkey Wrench</ToolsItem>
 <ToolsItem ToolsKey="3762">Screwdriver</ToolsItem>
</Tools>

This shows the ToolsKey attribute, which corresponds to the key of an array. The name of this attribute is determined as
follows:

Table 5–3:Tag for List Item

Name of Attribute That Contains the KeyXMLNAME Parameter
of Property

XMLKEYNAME
Parameter of Property

Value of XMLKEYNAMEIgnoredSpecified

Value of XMLNAME with Key concatenated to the endSpecifiedNot specified

Property name with Key concatenated to the endNot specified

Notice that the XMLITEMNAME property parameter does not affect the attribute name; this parameter is discussed in the
previous section.

For example, suppose you do not set XMLKEYNAME and you set XMLNAME equal to MyXMLName, as follows:

Property Tools As %ArrayOfDataTypes(XMLNAME = "MyXMLName");

Then the same property would correspond to the following XML fragment:

<MyXMLName>
 <MyXMLNameItem MyXMLNameKey="845">Hammer</MyXMLNameItem>
 <MyXMLNameItem MyXMLNameKey="1009">Monkey Wrench</MyXMLNameItem>
 <MyXMLNameItem MyXMLNameKey="3762">Screwdriver</MyXMLNameItem>
</MyXMLName>

Projecting Objects to XML 39

Controlling the Element and Attribute Names for Array-Type Properties

6
Specifying Namespaces for Elements and
Attributes

XML elements and attributes can belong to different namespaces, and the XML Schema specification provides for multiple
ways of controlling and representing namespace assignment. The %XML.Adaptor class provides the corresponding support
for your XML documents.

This section discusses the following topics:

• Overview

• How to specify the namespace for top-level objects

• How to specify the namespace for properties projected as elements

• How to specify the namespaces for properties projected as attributes

• How to specify custom prefixes for namespaces

• Recommendations

Also see “Specifying the Namespaces for Types,” later in this book.

The XML examples in this chapter are in literal format.

Class and Property Parameters Discussed in This Chapter

• NAMESPACE

• ELEMENTQUALIFIED

• ATTRIBUTEQUALIFIED

• XMLREF

• REFNAMESPACE

• XSDTYPE

• XMLPREFIX

Projecting Objects to XML 41

6.1 Overview
This section provides a refresher on XML namespaces and an overview of how InterSystems IRIS objects are assigned to
XML namespaces.

6.1.1 Namespace Refresher

The general assumption in this book is that the reader is familiar with XML. It may be worthwhile, however, to review
how to determine the namespace, if any, to which an element or attribute is assigned in an XML document.

First, unless the XML document includes a default namespace or a namespace prefix for every element and attribute that
it includes, it is necessary to see the corresponding XML schema. Apart from any imported elements or attributes, any
element or attribute is one of the following:

• Qualified, which means that the element or attribute is in the target namespace of the schema.

• Unqualified, which has different meaning for elements and attributes. An unqualified element is in no namespace. An
unqualified attribute is in the default namespace, if any, of its containing element.

For each element and attribute that it defines, a schema indicates whether that item is qualified or unqualified. The schema
does this by a combination of the following pieces:

• The <schema> element can specify the elementFormDefault and attributeFormDefault attributes. This
controls the default namespace assignment of any elements and attributes in the schema. The possible values are
"qualified" and "unqualified".

These attributes are optional. The default for both of them is "unqualified". That is, by default if a element or
attribute is used without a prefix, it is in no namespace.

• Second, the definition of an element or attribute can specify the form attribute, which indicates how that item is
assigned to a namespace. The possible values are "qualified" and "unqualified".

Consider the following XML document:

<?xml version="1.0" encoding="UTF-8"?>
<ClassA xmlns="mynamespace" xmlns:s01="mynamespace" s01:String1="abcdef">
 <s01:ClassB xmlns="">
 <String3>qrstuv</String3>
 <String4>wxyz</String4>
 </s01:ClassB>
 <String2>ghijkl</String2>
</ClassA>

For simplicity, we assume that the corresponding schema document uses the default values of elementFormDefault
and attributeFormDefault, and does not specify the form attribute for any items it defines. Then the items in this
document are in namespaces as follows:

• The <ClassA> element is in mynamespace, because of two items:

– That is the namespace given by the default namespace declaration for this element and its immediate children
(xmlns="mynamespace").

– The <ClassA> element does not have a namespace prefix that would indicate some other namespace.

• The String1 attribute is in mynamespace, because this attribute uses the s01 prefix, and the xmlns:s01 namespace
declaration indicates that the s01 refers to the mynamespace namespace.

Because the schema uses the default for attributeFormDefault ("unqualified"), the String1 attribute
would be in mynamespace even if it did not use a namespace prefix.

42 Projecting Objects to XML

Specifying Namespaces for Elements and Attributes

• The <ClassB> element is in mynamespace, because this attribute uses the s01 prefix.

• The <String3> and <String4> elements are not in any namespace, because of two items:

– The namespace declaration for the parent element indicates that the default namespace here is null (xmlns="").

– These elements do not have a namespace prefix that would indicate some other namespace.

• The element <String2> is the namespace mynamespace, because that is the default namespace specified in its
parent element.

6.1.2 XML Namespaces and Classes

In InterSystems IRIS XML support, you specify namespaces on a class-by-class basis. You use the NAMESPACE class
parameter to specify the namespace for instances of that class, as well as its immediate child objects. Also, you use the
ELEMENTQUALIFIED and ATTRIBUTEQUALIFIED parameters to specify whether properties of its object-valued prop-
erties are global (and belong to the same namespace as the parent) or local.

Note: You can also specify ELEMENTQUALIFIED as a property parameter, if needed for unusual scenarios, not discussed
in this book.

6.1.3 Namespaces and Context

Particularly with namespaces, it is important to remember that an XML-enabled object is handled differently depending
on the context. For example, if you export an Address object at the top level, it is a global element. If you export a Person
object that includes a reference to an Address object, then Address is a local element (as are all other properties of
Person). Global and local elements are assigned to namespaces differently.

6.2 Specifying the Namespaces for Objects Treated as
Global Elements
If you import or export an XML-enabled object at the top level, that object becomes a global element and is assigned to a
namespace as follows:

• If the NAMESPACE parameter of the class is specified, the element is assigned to that namespace.

• If the NAMESPACE parameter of the class is not specified, the element does not belong to any namespace. You can,
however, specify a namespace during export. See “Writing XML Output from Objects” in Using XML Tools.

For example, consider the following class definition:

Class MyApp.Person Extends (%Persistent, %XML.Adaptor)
{
Parameter NAMESPACE = "http://www.person.org";

Property Name As %Name [Required];

Property DOB As %Date(FORMAT = 5, MAXVAL = "+$h") [Required];
}

If you export or import an object of this class, the projection might look as follows:

<Person xmlns="http://www.person.org">
 <Name>Isaacs,Rob G.</Name>
 <DOB>1981-01-29</DOB>
</Person>

Projecting Objects to XML 43

Specifying the Namespaces for Objects Treated as Global Elements

6.3 Specifying the Namespaces for Properties Projected
as Elements
This section describes how to specify the namespace for a property that is projected as an element.

6.3.1 Case 1: Property Is Treated as Local Element

If you import or export an XML-enabled object at the top level, any property that is projected as an element becomes a
local element by default. There are two possible namespace assignments for these local elements:

• If the ELEMENTQUALIFIED class parameter is 1 for the parent class, the local elements are qualified, and they are
explicitly included in namespace of their parent element.

• If the ELEMENTQUALIFIED class parameter is 0 for the parent class, the local elements are unqualified, and they do
not belong to any namespace. (You can, however, specify a namespace during export. See “Writing XML Output
from Objects” in Using XML Tools.)

44 Projecting Objects to XML

Specifying Namespaces for Elements and Attributes

Notice that in both cases, the namespace in the child class is ignored.

Note: The default for ELEMENTQUALIFIED depends on whether the input or output is in literal format or encoded
format. Literal format is the default and the most common.

For literal format, ELEMENTQUALIFIED defaults to 1. For encoded format, ELEMENTQUALIFIED defaults
to 0.

For information on these formats, see “Specifying Format Options for the XML Document,” earlier in this book.

6.3.2 Case 2: Property Is Treated as Global Element

You can make a property into a global element and assign it to a namespace. To do so, you set the XMLREF property
parameter to 1. The following describes how the corresponding element is assigned to a namespace:

1. If the REFNAMESPACE property parameter is specified, the element is in that namespace.

2. Otherwise the element is assigned to a namespace as follows:

a. If the property is a type and specifies the XSDTYPE class parameter, the element is in the namespace of the parent
class.

b. Otherwise, if the property class defines the NAMESPACE class parameter, the element is in the namespace of the
property class.

c. If the property class does not define either of these class parameters, the element is in no namespace.

Projecting Objects to XML 45

Specifying the Namespaces for Properties Projected as Elements

Note: The XMLREF property parameter replaces the XMLELEMENTREF property parameter. The XMLELEMENTREF
parameter, however, will be supported indefinitely.

6.4 Specifying the Namespaces for Properties Projected
as Attributes
This section describes how to specify the namespace for a property that is projected as an attribute. The
ATTRIBUTEQUALIFIED parameter specifies whether attributes are qualified by a namespace prefix; the possible values
are as follows:

• 0 (the default), which means that no namespace prefix is included.

• 1, which means that a namespace prefix is included.

The XMLREF and REFNAMESPACE property parameters are also supported for properties that you project as attributes.

For a property projected as an attribute, if you set the XMLREF property parameter to 1, the corresponding attribute is
assigned to a namespace as follows:

1. If the REFNAMESPACE property parameter is specified, the attribute is in that namespace.

2. Otherwise:

a. If the property is a type and specifies the XSDTYPE class parameter, the attribute is in the namespace of the parent
class.

b. Otherwise, if the property class defines the NAMESPACE class parameter, the attribute is in the namespace of the
property class.

c. If the property class does not define either of these class parameters, the attribute is in no namespace.

46 Projecting Objects to XML

Specifying Namespaces for Elements and Attributes

6.5 Specifying Custom Prefixes for Namespaces
When you generate XML output for an object, the system generates namespace prefixes as needed. The first namespace
prefix is s01, the next is s02, and so on. You can specify different prefixes. To do so, set the XMLPREFIX parameter in
the class definitions for the XML-enabled objects themselves. This parameter has two effects:

• It ensures that the prefix you specify is declared in the XML output. That is, it is declared even if doing so is not nec-
essary.

• It uses that prefix rather than the automatically generated prefix that you would otherwise see.

For example, suppose your class definition is as follows:

Class GXML.Person Extends (%Persistent, %XML.Adaptor)
{

Parameter XMLPREFIX = "p";

Parameter NAMESPACE = "http://www.person.com";

Parameter XMLNAME = "Person";

Property Name As %Name;

}

For this class, XML output looks like the following:

<?xml version="1.0" encoding="UTF-8"?>
<Person xmlns="http://www.person.com" xmlns:p="http://www.person.com">
 <Name>Umansky,Jocelyn O.</Name>
</Person>

For information on exporting to XML, see Using XML Tools.

6.6 Recommendations
To simplify development, debugging, and troubleshooting, InterSystems recommends the following practices:

• If you need to specify namespaces, specify NAMESPACE in all your XML-enabled classes. Otherwise, the defaulting
rules become complex.

• If you need to control whether local elements are qualified, also specify the ELEMENTQUALIFIED parameter in all
your XML-enabled classes.

Projecting Objects to XML 47

Specifying Custom Prefixes for Namespaces

7
Controlling the Projection to XML
Schemas

This chapter discusses how to control the projection of InterSystems IRIS classes to XML schemas. It discusses the following
topics:

• How to view the schema for an XML-enabled class

• How data types are projected to XML types

• How streams are projected to XML types

• How collections are projected to XML types

• How other XML-enabled classes are projected to XML types and how to control that projection

• How to specify namespaces for XML types

• How to suppress the namespace prefix in the type QName

The XML examples in this chapter are in literal format.

Projecting Objects to XML 49

Class and Property Parameters Discussed in This Chapter

• CONTENT

• DISPLAYLIST

• VALUELIST

• ESCAPE

• MAXLEN

• MINLEN

• MINVAL

• XMLFractionDigits

• XMLTotalDigits

• XMLLISTPARAMETER

• XSDTYPE

• XMLTYPE

• SUPPRESSTYPEPREFIX

7.1 Viewing the Schema for an XML-Enabled Class
When you enable an InterSystems IRIS class for XML, you are implicitly creating an XML schema for that class, which
you can view. To see the schema for a given XML-enabled class, you have two options:

• You can use %XML.Schema and %XML.Writer to generate complete schema documents. For details, see “Generating
XML Schemas from Classes” in Using XML Tools.

• You can use the XMLSchema() class method of your XML-enabled class, which writes the XML schema for this
class to the current device. This method does not write the XML declaration and ignores namespaces and thus has
limited use. This method can be helpful, however, if you are interested only in the XML types.

This chapter primarily uses the XMLSchema() class method, because using it requires only a single line of code.

7.1.1 Example

For example, consider the following class definitions:

Class GXML.Person Extends (%Persistent, %Populate, %XML.Adaptor)
{
Property Name As %Name;
Property DOB As %Date(FORMAT = 5, MAXVAL = "+$h");
Property GroupID As %String (XMLPROJECTION="ATTRIBUTE");
Property OtherID As %String(XMLPROJECTION = "NONE");
Property Address As GXML.Address;
Property Doctors As list Of GXML.Doctor;
}

The GXML.Address class is as follows:

50 Projecting Objects to XML

Controlling the Projection to XML Schemas

Class GXML.Address Extends (%Persistent, %Populate, %XML.Adaptor)
{
Property Street As %String;
Property City As %String;
Property State As %String(MAXLEN = 2, PATTERN = "2u");
Property Zip As %String(MAXLEN = 10, PATTERN = "5n.1(1""-""4n)");
}

And the GXML.Doctor class is as follows:

Class GXML.Doctor Extends (%Persistent, %Populate, %XML.Adaptor)
{
Property Name As %Name;
}

To see the schema for the GXML.Person class, enter the following command in the Terminal:

 do ##class(GXML.Person).XMLSchema()

You then see the following:

<s:complexType name="Person">
 <s:sequence>
 <s:element name="Name" type="s:string" minOccurs="0" />
 <s:element name="DOB" type="s:date" minOccurs="0" />
 <s:element name="Address" type="s_Address" minOccurs="0" />
 <s:element name="Doctors" type="ArrayOfDoctorDoctor" minOccurs="0" />
 </s:sequence>
 <s:attribute name="GroupID" type="s:string" />
</s:complexType>
<s:complexType name="s_Address">
 <s:sequence>
 <s:element name="City" type="s:string" minOccurs="0" />
 <s:element name="Zip" type="s:string" minOccurs="0" />
 </s:sequence>
</s:complexType>
<s:complexType name="ArrayOfDoctorDoctor">
 <s:sequence>
 <s:element name="Doctor" type="Doctor"
minOccurs="0" maxOccurs="unbounded" nillable="true" />
 </s:sequence>
</s:complexType>
<s:complexType name="Doctor">
 <s:sequence>
 <s:element name="Name" type="s:string" minOccurs="0" />
 </s:sequence>
</s:complexType>

Notice the following:

• The schemas for the <Person>, <Address>, and <Doctor> types are based directly on the corresponding class
definitions.

• The schema consists of only the properties that are projected.

• The schema recognizes whether each property is projected as an element or as an attribute. For example, GroupID is
an attribute and Name is an element.

• Other parameters of the properties can affect the schema.

• In this example, the class properties are of type string, which is one of the basic XSD types (see
http://www.w3.org/TR/xmlschema-2/).

7.2 Projection of Literal Properties to XML Schemas
This section discusses how literal (non-collection) properties are projected to XML types, as well as options that affect the
XML schema. It discusses the following:

Projecting Objects to XML 51

Projection of Literal Properties to XML Schemas

http://www.w3.org/TR/xmlschema-2/

• Default XSD types for data type classes

• Compiler keywords that affect the schema

• Parameters that affect the schema

7.2.1 Default XSD Types for InterSystems IRIS Data Type Classes

If a class or a class property is based on one of the common InterSystems IRIS data type classes, the XML type is set
automatically, according to the following table. Classes in the %xsd package map directly to the XML types, as shown in
the table.

Table 7–1: XML Types for InterSystems IRIS Data Types in the %Library and %xsd Packages

XSD Type Used in Projections
to XML

InterSystems IRIS Class in the
%Library Package

InterSystems IRIS Class in the
%xsd Package

anyURI%xsd.anyURI

base64Binary%Binary

%Status

%xsd.base64Binary

boolean%Boolean%xsd.boolean

byte%TinyInt%xsd.byte

date%Date%xsd.date

dateTime%PosixTime

%StringTimeStamp

%TimeStamp

%xsd.dateTime

decimal%Currency

%Decimal

%Numeric

%xsd.decimal

double%Double%xsd.double

float%xsd.float

hexBinary%xsd.hexBinary

int%xsd.int

integer%xsd.integer

long%BigInt

%Integer

%xsd.long

negativeInteger%xsd.negativeInteger

nonNegativeInteger%xsd.nonNegativeInteger

nonPositiveInteger%xsd.nonPositiveInteger

positiveInteger%xsd.positiveInteger

52 Projecting Objects to XML

Controlling the Projection to XML Schemas

XSD Type Used in Projections
to XML

InterSystems IRIS Class in the
%Library Package

InterSystems IRIS Class in the
%xsd Package

short%SmallInt%xsd.short

string%Name

%String

%List

%xsd.string

time%Time%xsd.time

unsignedByte%xsd.unsignedByte

unsignedInt%xsd.unsignedInt

unsignedLong%xsd.unsignedLong

unsignedShort%xsd.unsignedShort

For information on the XML data types, see http://www.w3.org/TR/xmlschema-2/.

For example, consider the following class:

Class Schema.DataTypesDemo Extends (%RegisteredObject, %XML.Adaptor)
{

Parameter XMLTYPENAMESPACE="mytypes";

Property binaryprop As %xsd.base64Binary;

Property booleanprop As %Boolean;

Property dateprop As %Date;

Property datetimeprop As %TimeStamp;

Property decimalprop As %Numeric;

Property integerprop As %Integer;

Property stringprop As %String;

Property timeprop As %Time;

}

The schema for this class is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema" xmlns:s="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" targetNamespace="mytypes">
 <complexType name="DataTypesDemo">
 <sequence>
 <element minOccurs="0" name="binaryprop" type="s:base64Binary"/>
 <element minOccurs="0" name="booleanprop" type="s:boolean"/>
 <element minOccurs="0" name="dateprop" type="s:date"/>
 <element minOccurs="0" name="datetimeprop" type="s:dateTime"/>
 <element minOccurs="0" name="decimalprop" type="s:decimal"/>
 <element minOccurs="0" name="integerprop" type="s:long"/>
 <element minOccurs="0" name="stringprop" type="s:string"/>
 <element minOccurs="0" name="timeprop" type="s:time"/>
 </sequence>
 </complexType>
</schema>

7.2.2 Compiler Keywords That Affect the Schema

The Required keyword affects the XML schema, by removing the minOccurs="0" attribute. For example, consider the
following class:

Projecting Objects to XML 53

Projection of Literal Properties to XML Schemas

http://www.w3.org/TR/xmlschema-2/

Class Schema.PropKeywords Extends (%RegisteredObject, %XML.Adaptor)
{

Parameter XMLTYPENAMESPACE="mytypes";

Property Property1 As %String;

Property Property2 As %String [Required];

}

If we generate a schema for the namespace used here, we see the following:

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema" xmlns:s="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" targetNamespace="test">
 <complexType name="PropKeywords">
 <sequence>
 <element minOccurs="0" name="Property1" type="s:string"/>
 <element name="Property2" type="s:string"/>
 </sequence>
 </complexType>
</schema>

Note that the default for minOccurs is 1; that is, Property2 is required.

Note: For compatibility reasons, %XML.Reader does not check for required properties by default, but you can cause it
to do so; see “Checking for Required Elements and Attributes” in Using XML Tools. Also by default, an Inter-
Systems IRIS web service does not check for required properties, but you can cause it to do so; see “Checking
for Required Elements and Attributes” in Creating Web Services and Web Clients.

No other property keywords affect the schema for data type classes.

7.2.3 Parameters That Affect XML Schemas

The InterSystems IRIS data type classes use many parameters. (For a table that lists the parameters supported in each data
type class, see “Data Types” in Defining and Using Classes.) In most cases, you can also specify these as property
parameters.

The parameters that affect XML schemas are as follows:

CONTENT

Influences how the property values are escaped; see “Handling Special XML Characters,” earlier in this book.

The "MIXED" value causes a change in the schema, as compared to the other possible values. Consider the following
class:

Class Schema.CONTENT Extends (%RegisteredObject, %XML.Adaptor)
{

Parameter XMLTYPENAMESPACE = "mytypes";

Property Property1 As %String;

Property Property2 As %String(CONTENT = "STRING");

Property Property3 As %String(CONTENT = "ESCAPE");

Property Property4 As %String(CONTENT = "MIXED");

}

If we generate a schema for the namespace used here, we see the following:

54 Projecting Objects to XML

Controlling the Projection to XML Schemas

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema" xmlns:s="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" targetNamespace="mytypes">
 <complexType name="CONTENT">
 <sequence>
 <element minOccurs="0" name="Property1" type="s:string"/>
 <element minOccurs="0" name="Property2" type="s:string"/>
 <element minOccurs="0" name="Property3" type="s:string"/>
 <element name="Property4">
 <complexType mixed="true">
 <choice maxOccurs="unbounded" minOccurs="0">
 <any processContents="lax"/>
 </choice>
 </complexType>
 </element>
 </sequence>
 </complexType>
</schema>

Notice that the three of these properties have the same type information, because XML treats them in the same
way. InterSystems IRIS, however, treats the properties differently as described in “Handling Special XML Char-
acters,” later in this book.

If you use the object as input or output for a web method, and SoapBodyUse is encoded for that method, then
InterSystems IRIS treats mixed content like string content, the default. That is, if you specify CONTENT as
"MIXED", that value is ignored.

DISPLAYLIST

Affects the schema if VALUELIST is also specified and if XMLLISTPARAMETER equal to "DISPLAYLIST".
See the discussions for those two parameters.

MAXLEN

Controls the maxLength attribute, which is a facet or restriction. Facets define acceptable values for XML types.
The following example shows several of them. Consider the following class:

Class Schema.BasicFacets Extends (%RegisteredObject, %XML.Adaptor)
{

Parameter XMLTYPENAMESPACE = "mytypes";

Property Property1 As %Integer (MINVAL=10, MAXVAL=1000);

Property Property2 As %String (MINLEN=20, MAXLEN=100);

}

If we generate a schema for the namespace used here, we see the following:

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:s="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified"
targetNamespace="mytypes">
 <complexType name="BasicFacets">
 <sequence>
 <element minOccurs="0" name="Property1">
 <simpleType>
 <restriction base="s:long">
 <maxInclusive value="1000"/>
 <minInclusive value="10"/>
 </restriction>
 </simpleType>
 </element>
 <element minOccurs="0" name="Property2">
 <simpleType>
 <restriction base="s:string">
 <maxLength value="100"/>
 <minLength value="20"/>
 </restriction>
 </simpleType>
 </element>
 </sequence>
 </complexType>
</schema>

Projecting Objects to XML 55

Projection of Literal Properties to XML Schemas

When the SOAP Wizard or the XML Schema Wizard finds a maxLength restriction in a schema, it sets the
MAXLEN property parameter as appropriate in the generated class.

MAXVAL

Controls the maxInclusive attribute. See the example in MAXLEN.

MINLEN

Controls the minLength attribute. See the example in MAXLEN.

When the SOAP Wizard or the XML Schema Wizard finds a minLength restriction in a schema, it sets the
MINLEN property parameter as appropriate in the generated class.

MINVAL

Controls the minInclusive attribute. See the example in MAXLEN.

VALUELLIST

Adds an <enumeration> restriction to the type. Consider the following class:

Class Schema.VALUELIST Extends (%RegisteredObject, %XML.Adaptor)
{

Parameter XMLTYPENAMESPACE = "mytypes";

Property Property1 As %String;

Property Property2 As %String (VALUELIST = ",r,g,b");

}

The following shows the schema for this class:

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema" xmlns:s="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" targetNamespace="mytypes">
 <complexType name="VALUELIST">
 <sequence>
 <element minOccurs="0" name="Property1" type="s:string"/>
 <element minOccurs="0" name="Property2">
 <simpleType>
 <restriction base="s:string">
 <enumeration value="r"/>
 <enumeration value="g"/>
 <enumeration value="b"/>
 </restriction>
 </simpleType>
 </element>
 </sequence>
 </complexType>
</schema>

XMLFractionDigits

Applicable to a %Numeric property. This parameter corresponds to the <fractionDigits> facet, as shown in the
following fragment:

<element minOccurs="0" name="Property2">
 <simpleType>
 <restriction base="s:decimal">
 <fractionDigits value="2"/>
 <totalDigits value="5"/>
 </restriction>
 </simpleType>
</element>

56 Projecting Objects to XML

Controlling the Projection to XML Schemas

XMLTotalDigits

Applicable to a %Numeric property or an %Integer property. This parameter corresponds to the <totalDigits> facet,
as shown in the following fragment:

<element minOccurs="0" name="Property2">
 <simpleType>
 <restriction base="s:decimal">
 <fractionDigits value="2"/>
 <totalDigits value="5"/>
 </restriction>
 </simpleType>
</element>

XMLLISTPARAMETER

Applicable to a %String property that specifies the VALUELIST parameter. Specifies the name of the parameter
that contains the list of values to project to XML, instead of the values contained in the object. In most cases, you
also specify the standard DISPLAYLIST parameter, and you set XMLLISTPARAMETER equal to "DISPLAYLIST".

The XMLLISTPARAMETER parameter controls the value attribute used in the <enumeration> restriction.

You cannot specify this as a property parameter.

XMLPATTERN

Controls the pattern restriction. Consider the following class:

Class Schema.Pattern Extends (%RegisteredObject, %XML.Adaptor)
{

Parameter XMLTYPENAMESPACE = "mytypes";

Property Property1 As %String;

Property Property2 As %String(XMLPATTERN = "[A-Z]");

}

The schema for this class is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema" xmlns:s="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" targetNamespace="mytypes">
 <complexType name="Pattern">
 <sequence>
 <element minOccurs="0" name="Property1" type="s:string"/>
 <element minOccurs="0" name="Property2">
 <simpleType>
 <restriction base="s:string">
 <pattern value="[A-Z]"/>
 </restriction>
 </simpleType>
 </element>
 </sequence>
 </complexType>
</schema>

If multiple patterns appear in a simple type, then InterSystems IRIS combines the patterns according to
https://www.w3.org/TR/xmlschema-2 (see section 4.3.4.3, “Constraints on XML Representation of pattern”).
The patterns are combined as separate branches in the same pattern (separated by a vertical bar) in the
XMLPATTERN parameter.

XSDTYPE

Declares the XSD type used when projecting to XML. This parameter is set appropriately in all InterSystems IRIS
data type classes. The InterSystems IRIS XML tools use this parameter when generating schemas. This parameter
does not directly affect the input and output transformations, although it should be consistent with them.

Projecting Objects to XML 57

Projection of Literal Properties to XML Schemas

https://www.w3.org/TR/xmlschema-2

7.3 Projection of Stream Classes to XML Types
If a class or a property is based on an InterSystems IRIS stream, it is projected to an XML type as shown in the following
table:

Table 7–2: XML Types for InterSystems IRIS Streams

XSD Type Used in
Projections to XML

InterSystems IRIS Stream Type

string%Library.GlobalCharacterStream, %Library.FileCharacterStream, %Stream.FileCharacter,
and %Stream.GlobalCharacter

base64Binary%Library.GlobalBinaryStream, %Library.FileBinaryStream, %Stream.FileBinary, and
%Stream.GlobalBinary

For example, consider the following class:

Class Schema.StreamPropDemo Extends (%Persistent, %XML.Adaptor)
{

Parameter XMLTYPENAMESPACE="mytypes";

Property BinStream As %Library.GlobalBinaryStream;

Property CharStream As %Library.GlobalCharacterStream;

}

The schema for this class is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema" xmlns:s="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" targetNamespace="mytypes">
 <complexType name="StreamPropDemo">
 <sequence>
 <element minOccurs="0" name="BinStream" type="s:base64Binary"/>
 <element minOccurs="0" name="CharStream" type="s:string"/>
 </sequence>
 </complexType>
</schema>

7.4 Projection of Collection Properties to XML Schemas
This section describes how collection properties are projected to XML schemas, for XML-enabled classes. This section
discusses the following:

• Projection of collection properties

• Options for using collection classes

7.4.1 Projection of Collection Properties to XML Schemas

For most kinds of properties, the class definition contains enough information to specify the complete XML projection —
both to project objects as XML documents and to define a complete XML schema for validation purposes. For collection
properties, however, InterSystems IRIS supports some forms of definitions that do not provide enough information for a
complete XML schema. If you are using the XML projections in a context where the schema is needed (such as in web
services and clients), it is necessary to have a complete XML schema; otherwise validation against the schema will fail. If
you are not validating against a schema, this consideration does not apply. The following table lists the scenarios:

58 Projecting Objects to XML

Controlling the Projection to XML Schemas

Table 7–3: Forms of Collection Properties and Their XML Projection Details

XML Schema Is Usable?XML Is Usable?Form of Property Definition

YesYesProperty PropName As List of classname or
Property PropName As Array of classname

Yes (but the default type for
the collection item is string,
which might not be
appropriate)

YesProperty PropName As %ListOfDataTypes or
Property PropName As %ArrayOfDataTypes

No (the schema does not
specify the type for the
collection item)

YesProperty PropName As %ListOfObjects or Property
PropName As %ArrayOfObjects

The following subsections show the XML schemas for these scenarios.

7.4.1.1 List of Classname

This section shows the part of an XML schema that is generated from an XML-enabled class, when that class includes a
property that is defined as List of Classname. For example, consider the following property definition:

Property PropName As list Of %Integer(XMLITEMNAME = "MyXmlItemName");

If this property is in an XML-enabled class named Test.DemoList1, the XML schema for this class contains the following:

<schema xmlns="http://www.w3.org/2001/XMLSchema" xmlns:s="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"
targetNamespace="mytypes">
 <complexType name="DemoList1">
 <sequence>
 <element minOccurs="0" name="PropName" type="s01:ArrayOfMyXmlItemNameLong" xmlns:s01="mytypes"/>

 </sequence>
 </complexType>
 <complexType name="ArrayOfMyXmlItemNameLong">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="MyXmlItemName" nillable="true" type="s:long"/>

 </sequence>
 </complexType>
...
</schema>

The following rules govern the names of the types:

• For the PropName property, the corresponding type is named ArrayOfXMLItemNameType, where:

– XMLItemName is the name of items in the collection as described as in “Controlling the Element and Attribute
Names for List-Type Properties.” For a data type property, the default item name is the property name with Item
appended to the end. (For a object property, the default item name is the short class name.)

– Type is the XML type to which the property class is projected.

<element minOccurs="0" name="PropName" type="s01:ArrayOfMyXmlItemNameLong" xmlns:s01="mytypes"/>

Note: If XMLItemName is identical to Type, then for the PropName property, the corresponding type is named
ArrayOfXMLItemName. That is, the redundant array item is removed from the type name. To cause the
type name to include the redundant name, specify the AllowRedundantArrayName property (of your instance
of %XML.Schema) as 1. Similarly, in a web service class, to include the redundant array item name in the
type in the WSDL, specify the ALLOWREDUNDANTARRAYNAME parameter (of the web service class) as
1.

Projecting Objects to XML 59

Projection of Collection Properties to XML Schemas

• The type ArrayOfXMLItemNameType is defined as a <sequence> of another type, named XMLItemName:

 <complexType name="ArrayOfMyXmlItemNameLong">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="MyXmlItemName" nillable="true"
type="s:long"/>
 </sequence>
 </complexType>

• The element XMLItemName is based on the XSD type corresponding to the data type class:

<element maxOccurs="unbounded" minOccurs="0" name="MyXmlItemName" nillable="true" type="s:long"/>

The same rules apply when Classname refers to an object class. For example, consider the following property definition:

Property PropName As list Of SimpleObject(XMLITEMNAME = "MyXmlItemName");

Where Simple.Object contains two properties, MyProp and AnotherProp. If this property is in an XML-enabled class named
Test.DemoObjList, the XML schema for this class contains the following:

<schema xmlns="http://www.w3.org/2001/XMLSchema" xmlns:s="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"
targetNamespace="mytypes">
 <complexType name="DemoObjList">
 <sequence>
 <element minOccurs="0" name="PropName" type="s01:ArrayOfMyXmlItemNameSimpleObject"
xmlns:s01="mytypes"/>
 </sequence>
 </complexType>
 <complexType name="ArrayOfMyXmlItemNameSimpleObject">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="MyXmlItemName" nillable="true"
type="s01:SimpleObject" xmlns:s01="mytypes"/>
 </sequence>
 </complexType>
 <complexType name="SimpleObject">
 <sequence>
 <element minOccurs="0" name="MyProp" type="s:string"/>
 <element minOccurs="0" name="AnotherProp" type="s:string"/>
 </sequence>
 </complexType>
...
</schema>

7.4.1.2 Array of Classname

This section shows the part of an XML schema that is generated from an XML-enabled class, when that class includes a
property that is defined as Array of Classname. For example, consider the following property definition:

Property PropName As array Of %Integer(XMLITEMNAME = "MyXmlItemName", XMLKEYNAME = "MyXmlKeyName");

If this property is in an XML-enabled class named Test.DemoArray1, the XML schema for this class contains the following:

60 Projecting Objects to XML

Controlling the Projection to XML Schemas

<schema xmlns="http://www.w3.org/2001/XMLSchema" xmlns:s="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" targetNamespace="mytypes">
 <complexType name="DemoArray1">
 <sequence>
 <element minOccurs="0" name="PropName" type="s01:ArrayOfMyXmlItemNamePairOfMyXmlKeyNameLong"
xmlns:s01="mytypes"/>
 </sequence>
 </complexType>
 <complexType name="ArrayOfMyXmlItemNamePairOfMyXmlKeyNameLong">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="MyXmlItemName" nillable="true"
type="s01:PairOfMyXmlKeyNameLong" xmlns:s01="mytypes"/>
 </sequence>
 </complexType>
 <complexType name="PairOfMyXmlKeyNameLong">
 <simpleContent>
 <extension base="s:long">
 <attribute name="MyXmlKeyName" type="s:string" use="required"/>
 </extension>
 </simpleContent>
 </complexType>
...
</schema>

The following rules govern the names of the types:

• For the PropName property, the corresponding type is named ArrayOfXMLItemNamePairOfXMLKeyNameType,
where:

– XMLItemName is the name of items in the collection as described as in “Controlling the Element and Attribute
Names for Array-Type Properties.” For a data type property, the default item name is the property name with
Item appended to the end. (For a object property, the default item name is the short class name.)

– XMLKeyName is the name of the key for the collection as described in “Controlling the Element and Attribute
Names for Array-Type Properties.” The default is the property name with Key concatenated to the end

– Type is the XML type to which the property class is projected.

<element minOccurs="0" name="PropName" type="s01:ArrayOfMyXmlItemNamePairOfMyXmlKeyNameLong"
xmlns:s01="mytypes"/>

Note: If XMLKeyName is identical to Type, then for the PropName property, the corresponding type is named
ArrayOfXMLItemNamePairOfXMLKeyName. That is, the redundant array item is removed from the type
name. To cause the type name to include the redundant name, specify the AllowRedundantArrayName property
(of your instance of %XML.Schema) as 1. Similarly, in a web service class, to include the redundant array
item name in the type in the WSDL, specify the ALLOWREDUNDANTARRAYNAME parameter (of the web
service class) as 1.

• The type ArrayOfXMLItemNamePairOfXMLKeyNameType is defined as a <sequence> of another type, named
PairOfXMLKeyNameType:

 <complexType name="ArrayOfMyXmlItemNamePairOfMyXmlKeyNameLong">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="MyXmlItemName" nillable="true"
type="s01:PairOfMyXmlKeyNameLong" xmlns:s01="mytypes"/>
 </sequence>
 </complexType>

• The type PairOfXMLKeyNameType is an extension of the given XSD type. This extension adds an attribute named
XMLKeyName:

 <complexType name="PairOfMyXmlKeyNameLong">
 <simpleContent>
 <extension base="s:long">
 <attribute name="MyXmlKeyName" type="s:string" use="required"/>
 </extension>
 </simpleContent>
 </complexType>

Projecting Objects to XML 61

Projection of Collection Properties to XML Schemas

The same rules apply when Classname refers to an object class. For example, consider the following property definition:

Property PropName As %ArrayOfObjects(XMLITEMNAME = "MyXmlItemName", XMLKEYNAME = "MyXmlKeyName");

Where Simple.Object contains two properties, MyProp and AnotherProp. If this property is in an XML-enabled class named
Test.DemoObjArray, the XML schema for this class contains the following:

<schema xmlns="http://www.w3.org/2001/XMLSchema" xmlns:s="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"
targetNamespace="mytypes">
 <complexType name="DemoObjArray">
 <sequence>
 <element minOccurs="0" name="PropName" type="s01:ArrayOfMyXmlItemNamePairOfMyXmlKeyNameSimpleObject"
 xmlns:s01="mytypes"/>
 </sequence>
 </complexType>
 <complexType name="ArrayOfMyXmlItemNamePairOfMyXmlKeyNameSimpleObject">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="MyXmlItemName" nillable="true"
type="s01:PairOfMyXmlKeyNameSimpleObject" xmlns:s01="mytypes"/>
 </sequence>
 </complexType>
 <complexType name="PairOfMyXmlKeyNameSimpleObject">
 <complexContent>
 <extension base="s01:SimpleObject" xmlns:s01="mytypes">
 <attribute name="MyXmlKeyName" type="s:string" use="required"/>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="SimpleObject">
 <sequence>
 <element minOccurs="0" name="MyProp" type="s:string"/>
 <element minOccurs="0" name="AnotherProp" type="s:string"/>
 </sequence>
 </complexType>
</schema>

7.4.1.3 %ListOfDataTypes

This section shows the part of an XML schema that is generated from an XML-enabled class, when that class includes a
property that is defined as %ListOfDataTypes. For example, consider the following property definition:

Property PropName As %ListOfDataTypes(XMLITEMNAME = "MyXmlItemName");

If this property is in an XML-enabled class named Test.DemoList, the XML schema for this class contains the following:

<schema xmlns="http://www.w3.org/2001/XMLSchema" xmlns:s="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" targetNamespace="mytypes">
 <complexType name="DemoList">
 <sequence>
 <element minOccurs="0" name="PropName" type="s01:ArrayOfMyXmlItemNameString" xmlns:s01="mytypes"/>

 </sequence>
 </complexType>
 <complexType name="ArrayOfMyXmlItemNameString">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="MyXmlItemName" nillable="true" type="s:string"/>

 </sequence>
 </complexType>
</schema>

For the rules for the names of the types, see “List of Classname,” earlier in this section. Note that the collection item
(PropNameItem in this example) is based on the XSD string type:

<element maxOccurs="unbounded" minOccurs="0" name="MyXmlItemName" nillable="true" type="s:string"/>

That is, the collection item is assumed to be a string. Also see “Options for Using Collection Classes,” later in this chapter.

7.4.1.4 %ArrayOfDataTypes

This section shows the part of an XML schema that is generated from an XML-enabled class, when that class includes a
property that is defined as %ArrayOfDataTypes. For example, consider the following property definition:

62 Projecting Objects to XML

Controlling the Projection to XML Schemas

Property PropName As %ArrayOfDataTypes(XMLITEMNAME = "MyXmlItemName", XMLKEYNAME = "MyXmlKeyName");

If this property is in an XML-enabled class named Test.DemoArray, the XML schema for this class contains the following:

<schema xmlns="http://www.w3.org/2001/XMLSchema" xmlns:s="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"
targetNamespace="mytypes">
 <complexType name="DemoArray">
 <sequence>
 <element minOccurs="0" name="PropName" type="s01:ArrayOfMyXmlItemNamePairOfMyXmlKeyNameString"
xmlns:s01="mytypes"/>
 </sequence>
 </complexType>
 <complexType name="ArrayOfMyXmlItemNamePairOfMyXmlKeyNameString">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="MyXmlItemName" nillable="true"
type="s01:PairOfMyXmlKeyNameString" xmlns:s01="mytypes"/>
 </sequence>
 </complexType>
 <complexType name="PairOfMyXmlKeyNameString">
 <simpleContent>
 <extension base="s:string">
 <attribute name="MyXmlKeyName" type="s:string" use="required"/>
 </extension>
 </simpleContent>
 </complexType>
...
</schema>

For the rules for the names of the types, see “Array of Classname,” earlier in this section. Note that the collection item
(PairOfMyXmlKeyNameString in this example) is based on the XSD string type:

 <complexType name="PairOfMyXmlKeyNameString">
 <simpleContent>
 <extension base="s:string">
 <attribute name="MyXmlKeyName" type="s:string" use="required"/>
 </extension>
 </simpleContent>
 </complexType>

That is, the collection item is assumed to be a string. Also see “Options for Using Collection Classes,” later in this chapter.

7.4.1.5 %ListOfObjects

This section shows the part of an XML schema that is generated from an XML-enabled class, when that class includes a
property that is defined as %ListOfObjects. For example, consider the following property definition:

Property PropName As list Of %Integer(XMLITEMNAME = "MyXmlItemName");

If this property is in an XML-enabled class named Test.DemoObjList1, the XML schema for this class contains the following:

<schema xmlns="http://www.w3.org/2001/XMLSchema" xmlns:s="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"
targetNamespace="mytypes">
 <complexType name="DemoObjList1">
 <sequence>
 <element minOccurs="0" name="PropName" type="s01:ArrayOfMyXmlItemNameRegisteredObject"
xmlns:s01="mytypes"/>
 </sequence>
 </complexType>
 <complexType name="ArrayOfMyXmlItemNameRegisteredObject">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="MyXmlItemName" nillable="true"
type="s01:RegisteredObject" xmlns:s01="mytypes"/>
 </sequence>
 </complexType>
...
</schema>

For the rules for the names of the types, see “List of Classname,” earlier in this section. Note that the collection item type
is RegisteredObject, which is not defined:

<element maxOccurs="unbounded" minOccurs="0" name="MyXmlItemName" nillable="true"
type="s01:RegisteredObject" xmlns:s01="mytypes"/>

Projecting Objects to XML 63

Projection of Collection Properties to XML Schemas

As a result, this schema is unusable. See “Options for Using Collection Classes,” later in this chapter.

7.4.1.6 %ArrayOfObjects

This section shows the part of an XML schema that is generated from an XML-enabled class, when that class includes a
property that is defined as %ArrayOfObjects. For example, consider the following property definition:

Property PropName As %ArrayOfObjects(XMLITEMNAME = "MyXmlItemName", XMLKEYNAME = "MyXmlKeyName");

If this property is in an XML-enabled class named Test.DemoObjArray1, the XML schema for this class contains the following:

<schema xmlns="http://www.w3.org/2001/XMLSchema" xmlns:s="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" targetNamespace="mytypes">
 <complexType name="DemoObjArray1">
 <sequence>
 <element minOccurs="0" name="PropName"
type="s01:ArrayOfMyXmlItemNamePairOfMyXmlKeyNameRegisteredObject" xmlns:s01="mytypes"/>
 </sequence>
 </complexType>
 <complexType name="ArrayOfMyXmlItemNamePairOfMyXmlKeyNameRegisteredObject">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="MyXmlItemName" nillable="true"
type="s01:PairOfMyXmlKeyNameRegisteredObject" xmlns:s01="mytypes"/>
 </sequence>
 </complexType>
 <complexType name="PairOfMyXmlKeyNameRegisteredObject">
 <complexContent>
 <extension base="s01:RegisteredObject" xmlns:s01="mytypes">
 <attribute name="MyXmlKeyName" type="s:string" use="required"/>
 </extension>
 </complexContent>
 </complexType>
...
</schema>

For the rules for the names of the types, see “List of Classname,” earlier in this section. Note that the collection item type
is based on RegisteredObject, which is not defined:

 <complexType name="PairOfMyXmlKeyNameRegisteredObject">
 <complexContent>
 <extension base="s01:RegisteredObject" xmlns:s01="mytypes">
 <attribute name="MyXmlKeyName" type="s:string" use="required"/>
 </extension>
 </complexContent>
 </complexType>

As a result, this schema is unusable. See “Options for Using Collection Classes,” later in this chapter.

7.4.2 Options for Using Collection Classes

Within an XML-enabled class, tor each property of type %ListOfDataTypes or %ArrayOfDataTypes, the collection item is
assumed to be a string; this assumption may or may not be suitable for your needs. Similarly, for each property of type
%ListOfObjects or %ArrayOfObjects, the collection item type is RegisteredObject, and InterSystems IRIS does not
include an XML projection for the type RegisteredObject, so the XML schema is not usable. (See the previous sub-
sections for examples.)

In these scenarios, you can do either of the following:

• Modify the property definition to have the form List of Classname or Array of Classname, where Classname
is a suitable class. If Classname is an object class, XML-enable the class.

• Create a custom subclass of the collection class (%ListOfDataTypes, %ArrayOfDataTypes, %ListOfObjects,
%ArrayOfObjects). In the subclass, specify the ELEMENTTYPE class parameter. For example:

Class MyApp.MyIntegerCollection Extends %ListOfDataTypes
{
Parameter ELEMENTTYPE="%Library.Integer";

}

64 Projecting Objects to XML

Controlling the Projection to XML Schemas

For ELEMENTTYPE, specify the complete package and class name of the class used in the collection. If you subclass
%ListOfDataTypes or %ArrayOfDataTypes, specify a data type class. Then the type for the collection element is controlled
by the XSDTYPE parameter for that class.

If you subclass %ListOfObjects or %ArrayOfObjects, specify an XML-enabled class. For example

Class MyApp.MyObjectCollection Extends %ListOfObjects
{
Parameter ELEMENTTYPE="MyApp.SimpleObject";

}

Then use your custom collection class in your property definition. For example:

Property MyProp as MyApp.MyIntegerCollection;

7.5 Projection of Other XML-Enabled Classes to XML
Types
For an XML-enabled class or a property that is based on an XML-enabled class, the XML type is determined as follows:
If the class has a value for the XMLTYPE parameter, that is used as the type name. Otherwise, the short class name is taken
as the XML type name.

For example, consider the following class definitions:

Class GXML.PersonWithAddress Extends (%Persistent, %XML.Adaptor)
{
Parameter XMLTYPE = "PersonType";

Property Name As %Name;

Property DOB As %Date(FORMAT = 5, MAXVAL = "+$h");

Property HomeAddress As GXML.Address;

}

For an instance of this class, the XML type is PersonType, which is taken from the XMLTYPE parameter.

Suppose that the GXML.Address class does not include the XMLTYPE parameter. In this case, for the <HomeAddress>
element, the XML type is Address, which is the short class name.

7.6 Specifying the Namespaces for Types
The previous sections discussed how to assign elements to namespaces. This section discusses the namespaces of the types.

XML types are assigned to namespaces as follows:

1. If the corresponding class definition defines the XSDTYPE class parameter, the type is in the following W3 namespace:

http://www.w3.org/2001/XMLSchema

You specify XSDTYPE only within data type classes.

Note: A data type class does not inherit the XSDTYPE class parameter. That is, if you subclass an existing data type
class, you must specify this parameter, if the class should be mapped to one of the XSD types.

Projecting Objects to XML 65

Projection of Other XML-Enabled Classes to XML Types

2. If the class definition does not define XSDTYPE but does define NAMESPACE, the type is in the namespace specified
by NAMESPACE.

3. Otherwise the type is not in any namespace.

You can, however, specify a namespace when you generate a schema. See “Generating XML Schemas from Classes”
in Using XML Tools.

To see the namespaces to which the types are assigned, you must use %XML.Schema and %XML.Writer. For details, see
“Generating XML Schemas from Classes” in Using XML Tools.

7.7 Suppressing the Namespace Prefix for the Type
QName
As described in Using XML Tools, when you generate output with %XML.Writer, you can include the XML type attribute;
to do so, you specify the writer’s OutputTypeAttribute property as 1.

By default, the type attribute is written as a QName (qualified name), which indicates both the name of the type as well as
the namespace to which the type belongs. For example:

<TeamA xmlns:s01="http://mynamespace" xsi:type="s01:TeamA">

You can define the corresponding InterSystems IRIS class definition so that the namespace prefix is suppressed. For
example:

<TeamB xsi:type="TeamB">

For example, consider the following class definition:

Class STP.TeamA Extends (%RegisteredObject, %XML.Adaptor)
{

Parameter NAMESPACE = "http://mynamespace";

Property Member1 as %String;

Property Member2 as %String;

}

The class STP.TeamB, which is not shown, has the same definition but also specifies SUPPRESSTYPEPREFIX as 1.

Both classes are used as properties in a third class:

Class STP.Container Extends (%RegisteredObject, %XML.Adaptor)
{

Parameter NAMESPACE = "http://mynamespace";

Property TeamA As STP.TeamA;

Property TeamB As STP.TeamB;

}

When we generate output for an instance of STP.Container (and we enable output of the XML type attribute), we see
something like this:

66 Projecting Objects to XML

Controlling the Projection to XML Schemas

<?xml version="1.0" encoding="UTF-8"?>
<Container xmlns="http://mynamespace"
 xmlns:s="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <TeamA xmlns:s01="http://mynamespace" xsi:type="s01:TeamA">
 <Member1 xsi:type="s:string">Jack O'Neill</Member1>
 <Member2 xsi:type="s:string">Samantha Carter</Member2>
 </TeamA>
 <TeamB xsi:type="TeamB">
 <Member1 xsi:type="s:string">Jasper O'Nelson</Member1>
 <Member2 xsi:type="s:string">Sandra Chartres</Member2>
 </TeamB>
</Container>

Notice that the <TeamA> element includes the xsi:type attribute, which equals "s01:TeamA". The namespace decla-
ration in this element indicates that the s01 prefix refers to the namespace http://mynamespace.

The <TeamB> element, however, does not include a prefix within the xsi:type attribute.

Note: The SUPPRESSTYPEPREFIX does not affect the namespace to which the XML type belongs. It just suppresses
the writing of the type prefix.

Projecting Objects to XML 67

Suppressing the Namespace Prefix for the Type QName

8
Advanced Options for XML Schemas

This chapter discusses advanced options for creating XML schemas. It discusses the following topics:

• How XML types are automatically created for subclasses and how you can use them

• How to use subtypes to create a choice list for a type

• How to use subtypes to create a substitution group for a type

• How superclasses of a projected class are represented as XML types

• How InterSystems IRIS projects a class with multiple XML-enabled superclasses

The XML examples in this chapter are in literal format.

Class and Property Parameters Discussed in This Chapter

• XMLTYPECONSTRAINT

• XMLINCLUDEINLIST

• XMLINHERITANCE

8.1 Automatic Creation of Types for Subclasses
When you define the XML projection for a class, all its subclasses are automatically mapped to separate types, all of which
use the superclass as the base type. This means that wherever the supertype is used, you could instead use one of the subtypes.
You can also use the subtypes to define either choice lists or substitution groups in the XML schema.

Note that you can define the XML projection for an abstract class; the class appears as the base type in any derived class
schema even though, being abstract, it cannot be instantiated.

Consider an example. We start with a simple Person class:

Class UsingSubclasses.Person Extends (%Persistent, %XML.Adaptor)
{
Property Name As %String [Required];
Property DOB As %Date(FORMAT = 5, MAXVAL = "+$h") [Required];
}

Suppose that we have two classes that are based directly on the Person class. First is the Patient class:

Projecting Objects to XML 69

Class UsingSubclasses.Patient Extends UsingSubclasses.Person
{
Property PatientID As %String [Required];
}

Next is the Employee class:

Class UsingSubclasses.Employee Extends UsingSubclasses.Person
{
Property EmployeeID As %String [Required];
}

Finally, consider a class that uses Person as a property:

Class UsingSubclasses.Example1 Extends (%Persistent, %XML.Adaptor)
{
Property Person As UsingSubclasses.Person;
}

When you generate the schema for the Example1 class, the result is as follows:

<s:complexType name="Example1">
 <s:sequence>
 <s:element name="Person" type="Person" minOccurs="0" />
 </s:sequence>
</s:complexType>
<s:complexType name="Employee">
 <s:complexContent>
 <s:extension base="Person">
 <s:sequence>
 <s:element name="EmployeeID" type="s:string" />
 </s:sequence>
 </s:extension>
 </s:complexContent>
</s:complexType>
<s:complexType name="Person">
 <s:sequence>
 <s:element name="Name" type="s:string" />
 <s:element name="DOB" type="s:date" />
 </s:sequence>
</s:complexType>
<s:complexType name="Patient">
 <s:complexContent>
 <s:extension base="Person">
 <s:sequence>
 <s:element name="PatientID" type="s:string" />
 </s:sequence>
 </s:extension>
 </s:complexContent>
</s:complexType>

Notice the following:

• The type for Example1 is Person.

• The Employee type and the Patient type are both defined; this is the default. (For reference, this corresponds to
setting the XMLTYPECONSTRAINT property parameter equal to "EXPLICIT".)

• According to the XML Schema specification, the preceding schema means that wherever a <Person> element is
included, you could include either an <Employee> element or a <Patient> element.

8.2 Creating a Choice List of Subtypes
According to the XML Schema specification, a complex type can consist of a choice list of types, particularly related types.
Suppose that instead of a <Person> element, we want the schema to permit a <Person>, <Patient>, or <Employee>
element. To define such a schema, we would set the XMLTYPECONSTRAINT property parameter equal to "CHOICE" for
the Person property, as follows:

70 Projecting Objects to XML

Advanced Options for XML Schemas

Class UsingSubclasses.Example2 Extends (%Persistent, %XML.Adaptor)
{
Property Person As UsingSubclasses.Person(XMLTYPECONSTRAINT = "CHOICE");
}

By default, the choice list consists of all subclasses of the Person class. The schema for Example2 is as follows:

<s:complexType name="Example2">
 <s:sequence>
 <s:choice minOccurs="0">
 <s:element name="Employee" type="Employee" />
 <s:element name="Patient" type="Patient" />
 <s:element name="Person" type="Person" />
 </s:choice>
 </s:sequence>
</s:complexType>
<s:complexType name="Employee">
 <s:complexContent>
 <s:extension base="Person">
 <s:sequence>
 <s:element name="EmployeeID" type="s:string" />
 </s:sequence>
 </s:extension>
 </s:complexContent>
</s:complexType>
<s:complexType name="Person">
 <s:sequence>
 <s:element name="Name" type="s:string" />
 <s:element name="DOB" type="s:date" />
 </s:sequence>
</s:complexType>
<s:complexType name="Patient">
 <s:complexContent>
 <s:extension base="Person">
 <s:sequence>
 <s:element name="PatientID" type="s:string" />
 </s:sequence>
 </s:extension>
 </s:complexContent>
</s:complexType>

In contrast to the previous example, the type for Example2 is a choice list that consists of Person, Patient, or Employee.
The latter three types are defined in the same way as in the previous example.

8.2.1 Restricting a Subclass from the Choice List

You might not want all subclasses to be included in the choice list. You can restrict the list of subclasses in two different
ways.

• You can use the XMLINCLUDEINGROUP class parameter to mark a given subclass so that it is not included in the
choice list.

• You can set the XMLCHOICELIST property parameter equal to a comma-separated list of the subclasses in the choice
list.

• This parameter takes precedence; that is, if a subclass is listed in XMLCHOICELIST, it is included in the choice list,
even if the subclass is marked as XMLINCLUDEINGROUP = 0.

The following sections show examples.

8.2.2 Example for Choice List With Explicit List

Suppose that we set the XMLCHOICELIST property parameter equal to a comma-separated list of the subclasses that we
want to include in the choice list; for example:

Class UsingSubclasses.Example2A Extends (%Persistent, %XML.Adaptor)
{
Property Person As UsingSubclasses.Person
(XMLCHOICELIST = "UsingSubclasses.Patient, UsingSubclasses.Employee",
XMLTYPECONSTRAINT = "CHOICE");
}

Projecting Objects to XML 71

Creating a Choice List of Subtypes

The schema for this class would be as follows:

<s:complexType name="Example2A">
 <s:sequence>
 <s:choice minOccurs="0">
 <s:element name="Patient" type="Patient" />
 <s:element name="Employee" type="Employee" />
 </s:choice>
 </s:sequence>
</s:complexType>
<s:complexType name="Patient">
 <s:complexContent>
 <s:extension base="Person">
 <s:sequence>
 <s:element name="PatientID" type="s:string" />
 </s:sequence>
 </s:extension>
 </s:complexContent>
</s:complexType>
<s:complexType name="Person">
 <s:sequence>
 <s:element name="Name" type="s:string" />
 <s:element name="DOB" type="s:date" />
 </s:sequence>
</s:complexType>
<s:complexType name="Employee">
 <s:complexContent>
 <s:extension base="Person">
 <s:sequence>
 <s:element name="EmployeeID" type="s:string" />
 </s:sequence>
 </s:extension>
 </s:complexContent>
</s:complexType>

Notice that all four classes are represented (Example2A, Patient, Person, and Employee), but the choice list does
not include the Person class. Also notice that the Person, Patient, and Employee types are defined in the same way
as in the default case.

8.2.3 Example for Choice List with XMLINCLUDEINGROUP=0

Suppose that we add another subclass of the class Person and that we restrict it by setting XMLINCLUDEINGROUP to
0:

Class UsingSubclasses.Other Extends UsingSubclasses.Person
{
Parameter XMLINCLUDEINGROUP = 0;
}

In this case, this class is not included in the choice list and it is not included in the schema.

8.3 Creating a Substitution Group of Subtypes
The XML Schema specification also permits you to define a substitution group, which can be an alternative way to create
choices. The syntax is somewhat different. Instead of making an explicit, central list of the types, you annotate the possible
substitutes, as follows:

<s:complexType name="Example3">
 <s:sequence>
 <s:element ref="Person" minOccurs="0" />
 </s:sequence>
</s:complexType>
<s:element name="Person" type="Person"/>
<s:element name="Employee" type="Employee" substitutionGroup="Person"/>
<s:complexType name="Employee">
 <s:complexContent>
 <s:extension base="Person">
 <s:sequence>
 <s:element name="EmployeeID" type="s:string" />

72 Projecting Objects to XML

Advanced Options for XML Schemas

 </s:sequence>
 </s:extension>
 </s:complexContent>
</s:complexType>
<s:complexType name="Person">
 <s:sequence>
 <s:element name="Name" type="s:string" />
 <s:element name="DOB" type="s:date" />
 </s:sequence>
</s:complexType>
<s:element name="Patient" type="Patient" substitutionGroup="Person"/>
<s:complexType name="Patient">
 <s:complexContent>
 <s:extension base="Person">
 <s:sequence>
 <s:element name="PatientID" type="s:string" />
 </s:sequence>
 </s:extension>
 </s:complexContent>
</s:complexType>

To create this schema, we use the following class:

Class UsingSubclasses.Example3 Extends (%Persistent, %XML.Adaptor)
{
Property Person As UsingSubclasses.Person
(XMLTYPECONSTRAINT = "SUBSTITUTIONGROUP");
}

8.3.1 Restricting a Subclass from the Substitution Group

For a given property, if you set the XMLTYPECONSTRAINT property parameter equal to "SUBSTITUTIONGROUP", the
group automatically consists of all subclasses of the type of the property, as shown in the previous example. You can use
the XMLINCLUDEINGROUP parameter to mark a given subclass so that it is not included in the substitution group. For
example, suppose we add another subclass of the class Person:

Class UsingSubclasses.Other Extends UsingSubclasses.Person
{

Parameter XMLINCLUDEINGROUP = 0;

Property OtherID As %String [Required];
}

In this case, this class is not included in the substitution group. And because you have explicitly marked this class in this
way, it is not included in the schema at all.

8.4 How Superclasses Are Represented as Types
If you need the XML schema to show a certain hierarchy of types, you need to understand how the projection interprets
your InterSystems IRIS class hierarchy.

Your class hierarchy represents a meaningful organization of data, among other things. This hierarchy is mirrored, as much
as possible, in the corresponding XML type definitions.

For example, suppose that you have the following classes:

• A class named Base, which defines three public properties (Property1, Property2, and Property3).

• A class named Addition1, which extends Baseand which defines an additional public property (Addition1).

• A class named Addition2, which extends Addition1 and which defines an additional public property (Addition2).

What should the schema for Addition2 contain? It must represent all five properties. Also, because these classes are all
user-defined, the schema for Addition2 should show the details of the class hierarchy; in contrast, if the Base extends

Projecting Objects to XML 73

How Superclasses Are Represented as Types

a class from the InterSystems IRIS class library, which in turn extends other classes from that library, those details are less
interesting.

Correspondingly, the XML schema for Addition2 looks as follows by default:

<s:complexType name="Addition2">
 <s:complexContent>
 <s:extension base="Addition1">
 <s:sequence>
 <s:element name="Addition2" type="s:decimal" minOccurs="0" />
 </s:sequence>
 </s:extension>
 </s:complexContent>
</s:complexType>
<s:complexType name="Addition1">
 <s:complexContent>
 <s:extension base="Base">
 <s:sequence>
 <s:element name="Addition1" type="s:string" minOccurs="0" />
 </s:sequence>
 </s:extension>
 </s:complexContent>
</s:complexType>
<s:complexType name="Base">
 <s:sequence>
 <s:element name="Property1" type="s:string" minOccurs="0" />
 <s:element name="Property2" type="s:decimal" minOccurs="0" />
 <s:element name="Property3" type="s:date" minOccurs="0" />
 </s:sequence>
</s:complexType>

Because XML type definitions do not support multiple inheritance, the InterSystems IRIS XML support makes certain
simplifying assumptions. For a class that extends multiple superclasses, the type for the class is assumed to be the first
listed superclass. An example is shown below. Consider the following three class definitions. AddressPart1 contains
one property:

Class GXML.Writer.ShowMultiple.AddressPart1 Extends %XML.Adaptor
{
Property Street As %String [Required];
}

The AddressPart2 class contains another property:

Class GXML.Writer.ShowMultiple.AddressPart2 Extends %XML.Adaptor
{
Property City As %String [Required];
}

Finally, Address inherits from both of these classes (with AddressPart1 as the first superclass) and adds more properties:

Class GXML.Writer.ShowMultiple.Address Extends
(GXML.Writers.ShowMultiple.AddressPart1,
GXML.Writers.ShowMultiple.AddressPart2)
{
Property State As %String(MAXLEN = 2, PATTERN = "2u") [Required];
Property Zip As %String(MAXLEN = 10, PATTERN = "5n.1(1""-""4n)") [Required];
}

The XML schema for Address is as follows:

<s:complexType name="Address">
 <s:complexContent>
 <s:extension base="AddressPart1">
 <s:sequence>
 <s:element name="City" type="s:string" />
 <s:element name="State" type="s:string" />
 <s:element name="Zip" type="s:string" />
 </s:sequence>
 </s:extension>
 </s:complexContent>
</s:complexType>
<s:complexType name="AddressPart1">
 <s:sequence>
 <s:element name="Street" type="s:string" />
 </s:sequence>
</s:complexType>

74 Projecting Objects to XML

Advanced Options for XML Schemas

Notice the following:

• The first listed superclass, AddressPart1, is represented by the corresponding XML type, which contains all the
expected details.

• Apart from the property contained by the AddressPart1 type, all remaining properties are assigned to the Address
type. This is the only possible representation of these properties, once the AddressPart1 class has been mapped.

• Both AddressPart1 and AddressPart2 are subclasses of %XML.Adaptor, yet no structure of %XML.Adaptor class
is exposed. The emphasis is on the custom classes, which is appropriate.

The following rules govern how the superclasses are handled when you view the schema for a given class:

• If a superclass inherits from %XML.Adaptor, it is represented by an XML type, which represents all the projected
properties of this class. The short class name is taken as the XML type for the property. If the class specifies a value
for theXMLTYPE parameter, that value is used as the type name instead.

• If a superclass does not inherit from %XML.Adaptor, it is not represented by an XML type. If it has any properties, they
are assigned to the inheriting class (the class whose schema you are viewing).

• If the given class inherits from multiple superclasses, an XML type is created for the first superclass (if applicable; see
the preceding rules). All properties that do not belong to the first superclass are assigned to the inheriting class, as in
the previous example.

8.5 Classes Based on Multiple XML-Enabled Superclasses
In some cases, a given class might be based on multiple XML-enabled superclasses. In such cases, the corresponding XML
schema considers the order in which these classes are listed. For example, consider the following class, which inherits from
two XML-enabled superclasses:

Class Test.Default Extends (Test.Superclass1, Test.Superclass2)
{
///additional class members ...
}

The XML schema for this class lists the XML types derived from the left-most class Test.Superclass1 before the
XML types derived from Test.Superclass2. That same order occurs when you generate XML output for objects of
this class.

If you instead want the XML schema (and the output) to be determined from right to left, specify the XMLINHERITANCE
parameter as "right". For example:

Class Test.Default Extends (Test.Superclass1, Test.Superclass2)
{
Parameter XMLINHERITANCE = "right";

///additional class members ...
}

Projecting Objects to XML 75

Classes Based on Multiple XML-Enabled Superclasses

9
Special Topics

This chapter describes the following additional special topics:

• How to control the closing of elements

• How to handle an XML document with multiple elements that have the same name

• How to control unswizzling after export

• How to project InterSystems IRIS internal IDs

• How to control namespace prefixes on export

• How to handle unexpected elements or attributes on import

The XML examples in this chapter are in literal format.

Class and Property Parameters Discussed in This Chapter

• XMLNAME

• XMLSEQUENCE

• XMLUNSWIZZLE

• XMLPREFIX

• XMLIGNOREINVALIDTAG

• XMLIGNOREINVALIDATTRIBUTE

9.1 Controlling the Closing of Elements
In XML, an element that contains only attributes can be represented in either of the following ways:

<tag attribute="value" attribute="value" attribute="value"></tag>
<tag attribute="value" attribute="value" attribute="value"/>

InterSystems IRIS recognizes these forms as equivalent. When you export objects with %XML.Writer, you can control the
closing form, but not by modifying the XML projection itself. See “Controlling the Closing of Elements” in the chapter
“Writing XML Output from Objects” in Using XML Tools.

Projecting Objects to XML 77

9.2 Handling a Document with Multiple Tags with the
Same Name
A given element in XML can contain multiple elements that have the same name; these elements are distinguished from
each other by their order. For example, the following is a legitimate XML document:

<?xml version="1.0" encoding="UTF-8"?>
<Root>
 <Person>
 <Name>Able, Andrew</Name>
 <DOB>1977-10-06</DOB>
 <Address>
 <Street>6218 Clinton Drive</Street>
 <City>Reston</City>
 <State>TN</State>
 <Zip>87639</Zip>
 </Address>
 <Address>
 <Street>110 High Street</Street>
 <City>Zanesville</City>
 <State>OR</State>
 <Zip>80719</Zip>
 </Address>
 </Person>
</Root>

It is slightly tricky to map such a document to an InterSystems IRIS class, because each class property must have a unique
name.

To map such a document to an InterSystems IRIS class, do the following:

• Set the XMLNAME property parameter as needed to map different class properties to the same XML name.

• Set the XMLSEQUENCE class parameter equal to 1. As a precaution, this ensures that the mapping respects the order
of the properties as listed in the class definition.

• Make sure that the properties are listed in the class definition in the same order as in the XML document.

For example, consider the following class definition:

Class GXML.TestSequence.Person Extends (%Persistent, %XML.Adaptor)
{

Property Name As %Name [Required];
Property DOB As %Date(FORMAT = 5, MAXVAL = "+$h") [Required];
Property HomeAddress As GXML.TestSequence.Address(XMLNAME = "Address");
Property WorkAddress As GXML.TestSequence.Address(XMLNAME = "Address");

/// If the XMLSEQUENCE = 1, then the order of the XML elements must match the
/// order of the class properties. This allows us to deal with XML where the
/// same field appears multiple times and is distinguished by the order.
Parameter XMLSEQUENCE = 1;

}

This class definition maps to the XML document shown previously.

Note: If XMLSEQUENCE is 1, the XMLIGNOREINVALIDTAG parameter is ignored.

78 Projecting Objects to XML

Special Topics

9.3 Controlling Unswizzling After Export
When you use InterSystems IRIS XML tools to export a persistent XML-enabled object, the system automatically swizzles
all needed information into memory as usual; this information includes object-valued properties. After exporting the object,
InterSystems IRIS unswizzles any lists of objects but does not (by default) unswizzle single object references. In the case
of large objects, this can result in <STORE> errors.

To cause any single object references to be unswizzled in this scenario, set the XMLUNSWIZZLE parameter in your XML-
enabled class as follows:

Parameter XMLUNSWIZZLE = 1;

The default for this parameter is 0.

9.4 Projecting InterSystems IRIS IDs for Export
When you project an InterSystems IRIS object at the top level (rather than as a property of another object), its internal ID,
OID, and globally unique ID are not available as object properties, and these IDs are thus are not projected. However, in
some cases, you might want to use an object ID as the unique identifier. Then, for example, you can match an incoming
(changed) object to the corresponding stored object, before updating the stored object.

InterSystems IRIS XML support provides several helper classes that you can use to project InterSystems IRIS object
identifiers to XML documents: %XML.Id (for the internal ID), %XML.Oid (for the OID), and %XML.GUID (for the globally
unique ID).

To use these classes, add a special property to your XML-enabled class whose purpose is to contain the ID that you will
export. The property must be of type %XML.Id, %XML.Oid, or %XML.GUID. Make sure that this property is projected, and
mark it as transient so that it is not included in the SQL projection of the class.

When you are exporting to XML, you bring an object of your XML-enabled class into memory. When the object is in
memory, the special property you added retrieves the requested ID from InterSystems IRIS internal storage and contains
that value (so that you can export it).

For example, consider the following class:

Class MyApp4.Obj.Person4 Extends (%Persistent,%Populate,%XML.Adaptor)
{

Property IdForExport As %XML.Id
(XMLNAME="IRISID", XMLPROJECTION="ELEMENT") [Private, Transient];

Property Name As %Name;

Property DOB As %Date(FORMAT = 5, MAXVAL = "+$h");

}

In this class, the special property is IdForExport. This property is specifically projected with the XML element name
of IRISID.

Example output for this class is as follows:

Projecting Objects to XML 79

Controlling Unswizzling After Export

<?xml version="1.0" encoding="UTF-8"?>
<Root>
 <Person>
 <IRISID>1</IRISID>
 <Name>Marks,Jules F.</Name>
 <DOB>1989-04-02</DOB>
 </Person>
 <Person>
 <IRISID>2</IRISID>
 <Name>Palmer,Angelo O.</Name>
 <DOB>1937-11-15</DOB>
 </Person>
...

9.5 Controlling the Namespace Prefix on Export
When you generate XML output for an object, the system generates namespace prefixes as needed, but you can specify the
prefixes if needed. To do so, set the following parameter in the class definitions for the XML-enabled objects:

XMLPREFIX

Specifies the prefix to associate with the namespace for this class.

For details, see “Writing XML Output from Objects,” in Using XML Tools.

9.6 Handling Unexpected Elements and Attributes on
Import
Because the source XML documents might contain unexpected elements and attributes, your XML-enabled classes provide
two parameters to specify how to react when you import such a document. For example, consider the following class defi-
nition:

Class GXML.TestImportParms.Person Extends (%Persistent,%XML.Adaptor)
{

Property Name As %Name [Required];
Property DOB As %Date(FORMAT = 5, MAXVAL = "+$h") [Required];
}

Also consider the following XML document:

<?xml version="1.0" encoding="UTF-8"?>
<Root>
 <Person employeeID="450">
 <Name>Dillard, Daniel</Name>
 <DOB>1962-09-18</DOB>
 <UserID>fr0078</UserID>
 <Address>
 <Street>810 Main Street</Street>
 <City>Reston</City>
 <State>NJ</State>
 <Zip>02641</Zip>
 </Address>
 </Person>
</Root>

The employeeID attribute and the <Address> element do not correspond to properties in the class and are therefore
unexpected.

To specify how to handle unexpected attributes and elements, use the following parameters of your XML-enabled classes:

80 Projecting Objects to XML

Special Topics

XMLIGNOREINVALIDATTRIBUTE

Controls how to handle attributes that are unexpected. If this parameter is 1 (the default), such attributes are ignored.
If it is 0, they are treated as errors, and import fails.

XMLIGNOREINVALIDTAG

Controls how to handle elements that are unexpected. If this parameter is 1, such elements are ignored. If it is 0
(the default), they are treated as errors, and import fails.

These parameters affect only import.

Note: The xmlns attribute, array key name attribute, and schema instance (xsi) attribute are always ignored.

Also, if XMLSEQUENCE is 1, the XMLIGNOREINVALIDTAG parameter is ignored. See the section “Handling
a Document with Multiple Tags with the Same Name,” earlier in this chapter.

Projecting Objects to XML 81

Handling Unexpected Elements and Attributes on Import

A
Summary of XML Projection Parameters

This appendix summarizes the XML projection options in InterSystems IRIS. Unless otherwise indicated, the class
parameters are available in your XML-enabled classes, and the property parameters are available for properties of those
classes.

ParametersTopic

XMLENABLED class parameterEnabling the XML projection. See “Projecting
an InterSystems IRIS Object to XML. ”

• XMLPROJECTION property parameter ("NONE",
"ATTRIBUTE", "XMLATTRIBUTE", "CONTENT",
"ELEMENT", or "WRAPPED")

• XMLSUMMARY class parameter

• XMLDEFAULTREFERENCE class parameter
("SUMMARY", "COMPLETE", "ID", "OID", or "GUID")

• XMLREFERENCE property parameter ("SUMMARY",
"COMPLETE", "ID", "OID", or "GUID")

Mapping of properties to elements or
attributes. See “Projecting Objects to XML. ”

• XMLNAME class parameter

• XMLNAME property parameter

• XMLITEMNAME property parameter

• XMLKEYNAME property parameter

Defaults are based on XML type names.

XML element names and attribute names.
See “Controlling the XML Element and
Attribute Names. ”

• XMLTYPE class parameter

• XMLTYPE property parameter

• XSDTYPE class parameter

XML types. See “Controlling the Projection
to XML Schemas. ”

Projecting Objects to XML 83

ParametersTopic

• NAMESPACE class parameter

• ELEMENTQUALIFIED class parameter (0 or 1)

You can override this upon export.

• ELEMENTQUALIFIED property parameter (0 or 1)

You can override this upon export.

• ATTRIBUTEQUALIFIED class parameter (0 or 1)

You can override this upon export.

• XMLREF property parameter (0 or 1)

• REFNAMESPACE property parameter

• XMLPREFIX class parameter

Namespaces. See “Specifying Namespaces
for Elements and Attributes. ”

• XMLUSEEMPTYELEMENT class parameter (0 or 1)

• XMLIGNORENULL class parameter (0, 1, "INPUTONLY",
or "RUNTIME"

• XMLNIL class parameter (0 or 1)

XMLNIL property parameter (0 or 1)

You can override XMLNIL upon export or import if
XMLIGNORENULL is "RUNTIME"

• XMLNILNOOBJECT class parameter (0 or 1)

• XMLNILNOOBJECT property parameter (0 or 1)

Empty strings and nulls. See “Handling Empty
Strings and Null Values. ”

• CONTENT parameter ("STRING", "ESCAPE",
"ESCAPE-C14N", or "MIXED")

• ESCAPE parameter ("XML" or "HTML")

Escaping XML special characters. See
“Handling Special XML Characters. ”

XMLTIMEZONE property parameter ("UTC" or "IGNORE")Time zones. See “Handling the UTC Time
Zone Indicator. ”

• XMLTYPECONSTRAINT property parameter
("EXPLICIT", "CHOICE", or "SUBSTITUTIONGROUP")

• XMLINCLUDEINGROUP class parameter (0 or 1)

• XMLCHOICELIST property parameter

• XMLINHERITANCE class parameter ("left" or
"right")

• Many InterSystems IRIS data type property parameters

XML type details, including restrictions. See
“Controlling the Projection to XML Schemas”
and “Advanced Options for XML Schemas ”

XMLIO property parameter ("INOUT", "IN", "OUT", or
"CALC")

Using property for input, output, or both. See
“Controlling the Availability of Projected
Properties. ”

84 Projecting Objects to XML

Summary of XML Projection Parameters

ParametersTopic

XMLFORMAT class parameter ("LITERAL", "ENCODED", or
null for both formats)

Controlling available XML document formats.
See “Specifying Format Options for the XML
Document. ”

XMLSEQUENCE class parameter (0 or 1)Multiple elements with the same name. See
“Handling a Document with Multiple Elements
with the Same Name. ”

XMLSTREAMMODE property parameter ("BLOCK" or
"LINE")

Stream properties. See “Controlling the Line
Endings of Stream Properties. ”

• XMLIGNOREINVALIDTAG class parameter (0 or 1)

• XMLIGNOREINVALIDATTRIBUTE class parameter (0
or 1)

Unexpected elements and attributes. See
“Handling Unexpected Elements and
Attributes on Import. ”

XMLPREFIX class parameterNamespace prefixes. See “Controlling the
Namespace Prefix on Export. ”

XMLPATTERN property parameterSpecifying the pattern restriction in the
schema.

There is an additional parameter: the XMLELEMENTREF property parameter, which is deprecated (replaced by XMLREF),
but will be supported indefinitely.

Projecting Objects to XML 85

Summary of XML Projection Parameters

	Table of Contents
	About This Book
	1 Introduction to Object-XML Projections
	1.1 The Basics
	1.2 How It Works
	1.3 Projection Options
	1.4 Related Tools in InterSystems IRIS
	1.5 Possible Applications for XML Documents

	2 Projecting Objects to XML
	2.1 Projecting an InterSystems IRIS Object to XML
	2.1.1 Exceptions for Objects Used with Web Methods

	2.2 Ensuring That Properties Have Projections to XML
	2.2.1 Properties Defined with List of or Array of
	2.2.2 Properties of Type %ListOfDataTypes or %ArrayOfDataTypes
	2.2.3 Properties of Type %ListOfObjects or %ArrayOfObjects
	2.2.4 Exceptions

	2.3 Summary of the Default Projection
	2.4 Example XML Projection
	2.4.1 Example XML-Enabled Class
	2.4.2 Example XML Document
	2.4.3 Example Schema

	2.5 Specifying Format Options for the Projected XML Document
	2.6 Controlling the Form of the Projection for Simple Properties
	2.6.1 Basic XMLPROJECTION Variations
	2.6.2 Projecting a Property as Content

	2.7 Controlling the Form of the Projection for Object-Valued Properties
	2.7.1 Specifying the Form of the Projection for an Object-Valued Property
	2.7.2 Specifying an XML Summary
	2.7.3 Projecting Only Object Identifiers

	2.8 Controlling the Form of the Projection for Collection Properties
	2.8.1 Specifying the Form of the Projection for List Properties
	2.8.2 Specifying the Form of the Projection for Array Properties

	2.9 Controlling the Form of the Projection for Relationships
	2.9.1 The Default Projection for Relationships
	2.9.2 Projecting the Other Side of the Relationship Instead

	2.10 Controlling the Form of the Projection of a Stream Property
	2.11 Controlling the Availability of Projected Properties
	2.12 Disabling the Projection
	2.13 Methods in %XML.Adaptor

	3 Controlling Transformations of Values
	3.1 Introduction
	3.2 Handling Special XML Characters
	3.2.1 Examples
	3.2.2 Alternative Way to Prevent the Escaping

	3.3 Handling the UTC Time Zone Indicator
	3.4 Projecting the Value in DISPLAYLIST
	3.5 Controlling the Line Endings of Imported Stream Properties
	3.6 Specifying a Default Date/Time Value
	3.7 Projecting Nonprinting Characters to XML

	4 Handling Empty Strings and Null Values
	4.1 Default Projections of Empty Strings and Null Values
	4.2 Exporting Values
	4.2.1 Controlling the Form of an Empty Element
	4.2.2 Details for XMLIGNORENULL, XMLNIL, and XMLUSEEMPTYELEMENT

	4.3 Importing Values

	5 Controlling the XML Element and Attribute Names
	5.1 Default XML Element and Attribute Names
	5.2 Controlling the Name of the Element or Attribute for an Object Projected as a Top-Level Element
	5.3 Controlling the Tags for Simple Properties
	5.4 Controlling the Element and Attribute Names for List-Type Properties
	5.5 Controlling the Element and Attribute Names for Array-Type Properties

	6 Specifying Namespaces for Elements and Attributes
	6.1 Overview
	6.1.1 Namespace Refresher
	6.1.2 XML Namespaces and Classes
	6.1.3 Namespaces and Context

	6.2 Specifying the Namespaces for Objects Treated as Global Elements
	6.3 Specifying the Namespaces for Properties Projected as Elements
	6.3.1 Case 1: Property Is Treated as Local Element
	6.3.2 Case 2: Property Is Treated as Global Element

	6.4 Specifying the Namespaces for Properties Projected as Attributes
	6.5 Specifying Custom Prefixes for Namespaces
	6.6 Recommendations

	7 Controlling the Projection to XML Schemas
	7.1 Viewing the Schema for an XML-Enabled Class
	7.1.1 Example

	7.2 Projection of Literal Properties to XML Schemas
	7.2.1 Default XSD Types for InterSystems IRIS Data Type Classes
	7.2.2 Compiler Keywords That Affect the Schema
	7.2.3 Parameters That Affect XML Schemas

	7.3 Projection of Stream Classes to XML Types
	7.4 Projection of Collection Properties to XML Schemas
	7.4.1 Projection of Collection Properties to XML Schemas
	7.4.2 Options for Using Collection Classes

	7.5 Projection of Other XML-Enabled Classes to XML Types
	7.6 Specifying the Namespaces for Types
	7.7 Suppressing the Namespace Prefix for the Type QName

	8 Advanced Options for XML Schemas
	8.1 Automatic Creation of Types for Subclasses
	8.2 Creating a Choice List of Subtypes
	8.2.1 Restricting a Subclass from the Choice List
	8.2.2 Example for Choice List With Explicit List
	8.2.3 Example for Choice List with XMLINCLUDEINGROUP=0

	8.3 Creating a Substitution Group of Subtypes
	8.3.1 Restricting a Subclass from the Substitution Group

	8.4 How Superclasses Are Represented as Types
	8.5 Classes Based on Multiple XML-Enabled Superclasses

	9 Special Topics
	9.1 Controlling the Closing of Elements
	9.2 Handling a Document with Multiple Tags with the Same Name
	9.3 Controlling Unswizzling After Export
	9.4 Projecting InterSystems IRIS IDs for Export
	9.5 Controlling the Namespace Prefix on Export
	9.6 Handling Unexpected Elements and Attributes on Import

	Appendix A: Summary of XML Projection Parameters
	Index

