
ObjectScript Reference

Version 2019.4
2020-01-28

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

ObjectScript Reference
InterSystems IRIS Data Platform Version 2019.4 2020-01-28
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

Symbols and Abbreviations .. 3
Symbols Used in ObjectScript ... 4
Abbreviations Used in ObjectScript ... 14

ObjectScript Commands ... 19
BREAK .. 20
CATCH ... 25
CLOSE ... 31
CONTINUE ... 33
DO .. 35
DO WHILE .. 43
ELSE .. 46
ELSEIF ... 47
FOR .. 48
GOTO ... 56
HALT .. 60
HANG .. 63
IF .. 66
JOB ... 70
KILL ... 83
LOCK ... 89
MERGE .. 100
NEW ... 103
OPEN ... 108
QUIT .. 114
READ ... 120
RETURN .. 128
SET ... 133
TCOMMIT ... 144
THROW .. 146
TROLLBACK .. 150
TRY .. 155
TSTART ... 159
USE .. 162
VIEW ... 167
WHILE ... 171
WRITE ... 176
XECUTE .. 186
ZKILL .. 191
ZNSPACE ... 193
ZTRAP ... 197
ZWRITE ... 200
ZZDUMP ... 206
ZZWRITE .. 208

Routine and Debugging Commands .. 211
PRINT .. 212

ObjectScript Reference iii

ZBREAK .. 215
ZINSERT .. 222
ZLOAD .. 226
ZPRINT .. 231
ZREMOVE ... 234
ZSAVE .. 238
ZZPRINT ... 242

ObjectScript Functions ... 245
$ASCII ... 246
$BIT ... 249
$BITCOUNT .. 253
$BITFIND .. 255
$BITLOGIC ... 257
$CASE .. 260
$CHAR ... 263
$CLASSMETHOD .. 267
$CLASSNAME .. 269
$COMPILE .. 271
$DATA .. 275
$DECIMAL .. 279
$DOUBLE .. 282
$EXTRACT .. 287
$FACTOR ... 293
$FIND ... 295
$FNUMBER ... 298
$GET .. 303
$INCREMENT ... 306
$INUMBER ... 311
$ISOBJECT .. 317
$ISVALIDDOUBLE .. 319
$ISVALIDNUM ... 323
$JUSTIFY .. 328
$LENGTH .. 331
$LIST ... 334
$LISTBUILD ... 343
$LISTDATA ... 348
$LISTFIND .. 351
$LISTFROMSTRING .. 354
$LISTGET .. 356
$LISTLENGTH ... 360
$LISTNEXT ... 362
$LISTSAME .. 364
$LISTTOSTRING .. 368
$LISTUPDATE .. 371
$LISTVALID .. 374
$LOCATE ... 376
$MATCH .. 379
$METHOD ... 381
$NAME .. 383
$NCONVERT .. 386

iv ObjectScript Reference

$NORMALIZE .. 388
$NOW .. 392
$NUMBER ... 396
$ORDER .. 400
$PARAMETER .. 404
$PIECE ... 406
$PREFETCHOFF ... 414
$PREFETCHON .. 416
$PROPERTY .. 418
$QLENGTH ... 420
$QSUBSCRIPT .. 422
$QUERY .. 424
$RANDOM .. 427
$REPLACE .. 428
$REVERSE .. 431
$SCONVERT ... 432
$SELECT ... 434
$SEQUENCE ... 436
$SORTBEGIN .. 440
$SORTEND .. 441
$STACK ... 443
$TEXT .. 447
$TRANSLATE ... 451
$VIEW ... 453
$WASCII .. 458
$WCHAR ... 460
$WEXTRACT .. 461
$WFIND ... 464
$WISWIDE .. 466
$WLENGTH .. 467
$WREVERSE .. 468
$XECUTE .. 470
$ZABS .. 472
$ZARCCOS ... 473
$ZARCSIN ... 474
$ZARCTAN ... 475
$ZBOOLEAN .. 476
$ZCONVERT ... 481
$ZCOS .. 489
$ZCOT .. 490
$ZCRC ... 491
$ZCSC .. 493
$ZCYC ... 494
$ZDASCII .. 495
$ZDATE ... 497
$ZDATEH ... 509
$ZDATETIME .. 520
$ZDATETIMEH ... 535
$ZDCHAR ... 548
$ZEXP .. 549
$ZF ... 551

ObjectScript Reference v

$ZF(-1) ... 555
$ZF(-2) ... 558
$ZF(-3) ... 560
$ZF(-4) ... 562
$ZF(-5) ... 565
$ZF(-6) ... 566
$ZF(-100) ... 567
$ZHEX ... 571
$ZISWIDE ... 573
$ZLASCII ... 574
$ZLCHAR .. 575
$ZLN .. 576
$ZLOG ... 577
$ZNAME .. 578
$ZPOSITION ... 582
$ZPOWER .. 584
$ZQASCII .. 586
$ZQCHAR ... 588
$ZSEARCH .. 589
$ZSEC .. 592
$ZSEEK ... 593
$ZSIN ... 595
$ZSQR .. 597
$ZSTRIP ... 598
$ZTAN .. 602
$ZTIME .. 603
$ZTIMEH ... 607
$ZVERSION(1) ... 610
$ZWASCII .. 611
$ZWCHAR ... 613
$ZWIDTH .. 614
$ZWPACK and $ZWBPACK ... 615
$ZWUNPACK and $ZWBUNPACK ... 617
$ZZENKAKU .. 619

ObjectScript Special Variables ... 621
$DEVICE ... 622
$ECODE ... 623
$ESTACK ... 625
$HALT .. 628
$HOROLOG ... 631
$IO .. 635
$JOB ... 637
$KEY .. 638
$NAMESPACE .. 640
$PRINCIPAL .. 643
$QUIT .. 644
$ROLES ... 645
$STACK ... 647
$STORAGE .. 649
$SYSTEM .. 652

vi ObjectScript Reference

$TEST .. 661
$THIS ... 663
$THROWOBJ .. 664
$TLEVEL ... 665
$USERNAME .. 667
$X ... 668
$Y ... 670
$ZA ... 672
$ZB ... 674
$ZCHILD ... 676
$ZEOF .. 677
$ZEOS .. 678
$ZERROR .. 679
$ZHOROLOG .. 685
$ZIO ... 686
$ZJOB .. 687
$ZMODE .. 689
$ZNAME .. 690
$ZNSPACE ... 691
$ZORDER .. 693
$ZPARENT .. 694
$ZPI .. 695
$ZPOS .. 696
$ZREFERENCE ... 697
$ZSTORAGE ... 701
$ZTIMESTAMP ... 702
$ZTIMEZONE ... 705
$ZTRAP ... 709
$ZVERSION .. 713

Structured System Variables .. 715
^$GLOBAL .. 716
^$JOB ... 719
^$LOCK ... 721
^$ROUTINE ... 726

ObjectScript Reference vii

List of Figures

Figure B–1: Client/Server Connections in the Non-Concurrent and Concurrent Modes 79
Figure B–2: Initial Structure of ^X and ^Y ... 101
Figure B–3: Result on ^X and ^Y of MERGE Command .. 102

viii ObjectScript Reference

List of Tables

Table E–1: Existing Flags .. 653
Table E–2: Compiler Qualifiers ... 653
Table E–3: Export Qualifiers ... 655
Table E–4: ShowClassAndObject Qualifiers ... 657
Table E–5: UnitTest ... 657
Table E–6: Flag Qualifier Mapping ... 658

ObjectScript Reference ix

About This Book

This book provides reference material for various elements of the ObjectScript language for InterSystems IRIS® data
platform: commands, functions, and special variables, and tables of abbreviations of their names, and symbols used in the
language.

This book contains the following sections:

• Symbols and Abbreviations

• Commands

• Functions

• Special Variables

• Structured System Variables

There is also a detailed Table of Contents.

Other related topics in the documentation set are:

• Using ObjectScript

• Defining and Using Classes, particularly the chapter “Working with Registered Objects” and the appendix “Object-
Specific ObjectScript Features.”

• I/O Device Guide

ObjectScript Reference 1

Symbols and Abbreviations

ObjectScript Reference 3

Symbols Used in ObjectScript
A table of characters used in ObjectScript as operators, prefixes, and so on.

Table of Symbols
The following are the literal symbols used in ObjectScript for InterSystems IRIS® data platform. (This list does not include
symbols indicating format conventions, which are not part of the language.) There is a separate table for symbols used in
InterSystems SQL.

The name of each symbol is followed by its ASCII numeric value.

Name and UsageSymbol

White space (Tab (9) or Space (32)): Leading white space (space or tab) is required
before every line of code, with the exceptions of labels, and some comment lines.

Within commands, one (and only one) space is required between the command name
and the first argument.

Trailing white space (space or tab) is required between the last command argument
and any following command or comment on the same line. Trailing whitespace is also
required between a label and a following command or comment on the same line.

[space] or [tab]

Double white space: Trailing double white space required between an argumentless
command and the next command on the same line.

[two spaces, two
tabs, or a space
and a tab]

Exclamation mark (33): OR logical operator (full evaluation).

In READ and WRITE commands, specifies a new line.

As first character at terminal prompt, load interactive subshell.

!

Quotes (34): Used to enclose string literals. In Dynamic SQL used to enclose the SQL
code as a string argument of the %Prepare() method.

For differences between straight quotes (") and directional quotes (“ ”). see Pattern
Matching in Using ObjectScript.

"

Double quotes: Used to specify the null string (""), which is a zero-length string.

Used to specify a literal quote character within a quoted string.

""

4 ObjectScript Reference

Symbols and Abbreviations

Name and UsageSymbol

Pound sign (35): Modulo division operator. Can be used to determine a bit value. For
example, $ZA#2 returns the 1’s bit value (0 or 1); with the integer divide (\) operator
$ZJOB\1024#2 returns the 1024’s bit value (0 or 1).

In READ and WRITE commands, form feed. In fixed-length READ, number of characters
to read.

Prefix for referencing the value of a class parameter from within the class:
#ParameterName.

Prefix for many macro preprocessor directives such as: #Define, #Include, and #If. See
also ##.

In class syntax, parameter prefix used to return the parameter value. For example,
##class(%Library.Boolean).#XSDTYPE or myinstance.#EXTENTQUERYSPEC.

In ZBREAK debugging, an iteration counter for disabling a specified breakpoint or
watchpoint. For example, the following disables the breakpoint at label^rou for 100
iterations: ZBREAK -label^rou#100.

In the callout routine ZFENTRY, an argtype prefix indicating a DOUBLE data type: #D
or #F.

Regular expression end-of line comment indicator (in (?x) mode only).

#

Double pound sign: Object class invocation prefix:
##class(classname).methodname() or ##class(classname).#parametername.

##super() syntax is used to invoke an overridden superclass method.

Prefix for certain macro preprocessor directives, including ##Continue, ##Expression,
##Function, ##Lit, ##SQL, and ##Unique. ##SQL is invoked to execute a line of SQL
code from within ObjectScript: ##SQL(SQL command).

##

Double pound sign semicolon: Single-line comment indicator; can be used in column
1 in either ObjectScript or Embedded SQL.

##;

Pound sign semicolon: Single-line comment indicator; can be used in column 1.#;

Dollar sign (36): system function prefix: $name(parameters).

Special variable prefix: $name.

$Znnn (a name beginning with $Z) can be a user-defined function or special variable
defined using %ZLANG language extension library. It can also be an InterSystems-
supplied system function or special variable.

Regular expression end of string anchor; for example, (USA)$.

In ZBREAK debugging, a single-step breakpoint.

As first character at terminal prompt, load interactive subshell.

$

Double dollar sign: user-supplied function call prefix: $$myname(parameters). $$ is
returned by $STACK when context was established by a reference to a user-supplied
function.

Prefix to a routine name to directly invoke that routine.

$$

ObjectScript Reference 5

Symbols Used in ObjectScript

Name and UsageSymbol

Triple dollar sign: Macro invocation prefix.$$$

Percent sign (37): Permitted as first character of names: (1) local variable names,
indicating a “% variable” with special scoping rules, used for locking. (2) routine names,
often indicates a system utility. (3) Package class names, such as %SYSTEM.class
and %Library.class as well as class names within the %Library package, including data
types such as %String. (4) %Persistent object property names and method names,
such as %Dialect, %New(), and %OpenId(). A %On... method name is a callback method.
(5) Labels.

Required as first character of a macro argument.

Prefix for some embedded SQL variables: %msg, %ROWCOUNT, and for some SQL
keywords: %STARTSWITH.

See i% (instance variable).

%

Double percent sign: Prefix for the pseudo-field reference variable keywords
%%CLASSNAME, %%CLASSNAMEQ, %%ID, and %%TABLENAME, used in
ObjectScript computed field code and trigger code.

%%

Ampersand (38): AND logical operator (full evaluation). $BITLOGIC bitstring AND
operator.

In a formal parameter list, an optional, non-functional variable name prefix that marks
a parameter as one that should be passed by reference. The & is a marker and is not
part of the variable name. For example Calc(x,&y).

Shell invocation prefix for embedded code. For example &sql (SQL commands).

UNIX® batch command.

&

Double ampersand: AND logical operator (partial evaluation).

Regular expression AND logical operator.

&&

Name and UsageSymbol

Apostrophe (39): Unary Not operator. Can be combined with: logical operators '& (Not
And), '| (Not Or); relational operators '= (not equal to), '< (not less than), '> (not greater
than); or pattern match '(operand?pattern).

European numeric group separator.

'

6 ObjectScript Reference

Symbols and Abbreviations

Name and UsageSymbol

Parentheses (40,41): Used to enclose a procedure or function parameter list. Parenthe-
ses are mandatory, even when empty.

Used to nest expressions; nesting overrides the InterSystems IRIS default of strict left-
to-right evaluation of operators, and allows you to give precedence to expressions.

Used to specify array subscripts for a local variable:a(1,1), a global variable:^a(1,1),
or a process-private global: ^||a(1,1).

Used to enclose an alternating pattern match (following a ?).

With NEW and KILL commands, exclusive (everything but) indicator.

For postconditionals, required if postconditional contains a space.

Used to enclose embedded SQL code, following an &sql shell invocation command:
&sql(SQL commands).

Regular expression match string (Boston) or string list (Boston|New York|Paris). Regular
expression grouping construct.

When setting a JSON object or array value, used to enclose an ObjectScript literal or
expression.

()

Asterisk (42): Multiplication operator.

In $ZSEARCH, wild card for zero, one, or more than one characters.

In $EXTRACT, $LIST, and $PIECE specifies the final item at the end of the string; can
be used with a signed integer to specify offset from the end, for example *-2, *+1.

In WRITE command, specifies an integer code for a character. For example, WRITE
*65 writes the letter “A”.

As prefix to $ZTRAP string value, specifies that call stack level should be left unchanged.

In ZBREAK a name prefix denoting a local variable. In certain error codes returned to
$ZERROR, a name prefix denoting an undefined local variable, class, method, or
property.

Regular expression 0 or more character quantifier.

*

Double asterisk: Exponentiation operator. For example, 4**3=64.**

Asterisk plus: In SET $EXTRACT, SET $LIST, and SET $PIECE specifies offset beyond
the last item of the string; used to append values. For example, *+1 appends an item
to the end of string.

*+

Asterisk minus: In WRITE command, specifies a device control integer code. For
example, WRITE *-10 clears the terminal input buffer.

In $EXTRACT, $LIST, $LISTGET, and $PIECE specifies offset backwards from the
last item of the string; for example, *-1 is the next-to-last item.

*-

Asterisk slash: Multi-line comment ending indicator. Comment begins with /*.*/

ObjectScript Reference 7

Symbols Used in ObjectScript

Name and UsageSymbol

Plus sign (43): Unary arithmetic positive operator. When appended to a string or a
function that returns a string forces numeric evaluation; for example, WRITE +"007.0"
or WRITE +$PIECE(str,",",2).

Addition operator.

Integer line count offset from a label: label+offset. In $ZTRAP, integer line count
offset from top of a procedure: +offset^procname.

With LOCK and ZBREAK commands, a prefix that enables or applies/increments the
item that follows.

Regular expression 1 or more character quantifier.

+

Plus sign, Equal sign In commands and functions that output to a file, means that output
data is appended to the existing file contents. Just an equal sign means that output
data overwrites the contents of an existing file. See $ZF(-100).

+=

Comma (44): In functions and procedures, multiple parameters separator.

In commands, multiple arguments delimiter.

In array variables, subscript levels separator.

American numeric group separator or European decimal point character (configurable).

In $ECODE, surround error code: ,M7,

,

Two commas: In functions, a placeholder for an unspecified positional parameter (which
takes a default value).

,,

Minus sign (45): Unary arithmetic negative operator.

Subtraction operator.

With LOCK and ZBREAK commands, a prefix that disables or decrements/removes
the item that follows.

Regular expression character range operator; for example [A-Z].

–

Double minus sign: With ZBREAK command, a prefix that removes the item that follows.

Regular expression subtract (except for) logical operator.

––

Period (46): American decimal point character, or European numeric group separator
(configurable).

Object dot syntax used to refer to a method or property of an object instance:
myinstance.Name.

Windows and UNIX®: As a pathname or part of a pathname, specifies the current
directory. Used by $ZSEARCH.

May be included within a global name or a routine name.

Prefix to a variable or array name in an actual parameter list that specifies passing by
reference: SET x=$$Calc(num,.result).

Pattern match repeat indicator.

Regular expression single-character wildcard.

.

8 ObjectScript Reference

Symbols and Abbreviations

Name and UsageSymbol

Double period: relative dot syntax: a prefix that specifies a method or property of the
current object. For example, WRITE ..foo()

Windows and UNIX®: As a pathname or part of a pathname, specifies the parent
directory of the current directory. Used by $ZSEARCH.

..

Double period, pound sign: A prefix for references to a class parameter from within a
method of the same class. For example, WRITE ..#MyParam

..#

Triple period (ellipsis): A suffix appended to the last (or only) parameter in a formal
parameter list or actual parameter list that is used to specify a variable number of
parameters. For example, Calc(x,y,params...).This syntax is commonly used with
a dynamic dispatch method, such as Method %DispatchMethod(Method As
%String,Params...)

In ZWRITE output, trailing ellipsis indicates string truncation.

In a Terminal prompt, leading characters that indicate that a long implied namespace
has been truncated to its final 24 characters.

(This literal use of ellipsis in code should not be confused with format convention usage
in our documentation, where ellipsis indicates that an argument can be repeated multiple
times, or that a section of code is intentionally omitted.)

...

Slash (47): Division operator (keep remainder).

In OPEN, CLOSE, and USE commands, I/O keyword parameter prefix. In READ and
WRITE, device control mnemonic prefix.

With ZBREAK command, a subcommand prefix.

/

Double slash: Single-line comment indicator.//

Triple slash: Single-line comment indicator. Can be used in column 1 for macro
comments.

///

Slash asterisk: Multi-line comment begins indicator. Comment ends with */./*

Colon (58): In commands, postconditional indicator, for example, WRITE:x=0 “nothing”.

In commands such as OPEN, USE, CLOSE, JOB, LOCK, READ, and ZBREAK a
placeholder separator of arguments and/or separator of parameters within an argument.
For example, LOCK var1:10,+var2:15, or OPEN "|TCP|4":(:4200:"PSTE"::32767:32767)

In $CASE and $SELECT functions, used to specify test:value paired items.

In a JSON object, used to specify a key:value pair. For example, SET
JSONobj={"name":"Sam"}.

In $JOB special variable value, separates process ID (PID) and nodename. For
example, 11368:MYCOMPUTER.

Prefix indicating an ObjectScript label within embedded ObjectScript code, such as
SQL trigger code, where the label cannot be coded in column 1.

:

Semicolon (59): Single-line comment indicator.;

Double semicolon: Retained single-line comment indicator.;;

ObjectScript Reference 9

Symbols Used in ObjectScript

Name and UsageSymbol

Less than (60): Less than operator.<

Less than, Equal sign: Less than or equal to operator.<=

Not operator, Less than: Greater than or equal to operator.'<

Equal sign (61): Equal to comparison operator.

In SET command, assignment operator.

=

Not operator, Equal sign: Not equal to comparison operator'=

Greater than (62): Greater than operator.>

Greater than, Equal sign: Greater than or equal to operator.>=

Not operator, Greater than: Less than or equal to operator.'>

Question mark (63): Pattern match operator.

Regular expression 0 or 1 character quantifier suffix. Regular expression mode prefix.
For example, (?i) case mode on; (?-i) case mode off.

In $ZCONVERT translation table results, represents an untranslatable character.

In $ZSEARCH, wild card for a single character.

In READ and WRITE commands, column position indicator.

In ZBREAK command, display help text.

In Dynamic SQL, an input parameter variable supplied by the %Execute() method.

?

Question mark and pound sign: Regular expression embedded comment prefix. For
example, (?# this is a comment).

?#

At sign (64): Indirection operator. For subscript indirection, appears as:
@array@(subscript).

@

The letter “A” (65,97): Pattern match code (following a ?).A, a

The letter “C” (67,99): Pattern match code (following a ?).C, c

The letter “E” (69,101): Scientific notation operator. for example, 4E3=4000. The
uppercase “E” is the standard exponent operator; the lowercase “e” is a configurable
exponent operator, using the ScientificNotation() method of the %SYSTEM.Process

class.

Pattern match code (following a ?).

E, e

The letter “I” (73,105): Integer indicator in $NUMBER function.I, i

The letter “i” percent: instance variable syntax: i%propertyname.i%

The letter “L” (76,108): Pattern match code (following a ?).L, l

The letter “N” (78,110): Pattern match code (following a ?).N, n

The letter “P” (80,112): Pattern match code (following a ?).P, p

The letter “U” (85,117): Pattern match code (following a ?).U, u

10 ObjectScript Reference

Symbols and Abbreviations

Name and UsageSymbol

Open square bracket (91): Contains operator.[

Square brackets (91,93): Used to enclose a namespace name, directory name, or the
null string in an extended global reference ^["namespace"]global. Used to specify
a process-private global with the following syntax: ^["^"]ppgname or
^["^",""]ppgname.

In a structured system variable (SSVN) used to enclose a namespace name
^$["namespace"]GLOBAL() to specify an extended SSVN reference.

In XECUTE command or a procedure definition, encloses a public variables list:[a,b,c]

In ZWRITE or argumentless WRITE command display, encloses an object reference
(oref).

Regular expression match any character in a list [ABCD] or a range [A-D].

JSON dynamic array expression, which returns an instance of %DynamicArray. For
example, SET JSONarray=[1,2,3].

[]

Square brackets and colons: Regular expression character type keyword. For example,
[:alpha:].

[: :]

Backslash (92): Integer division operator (drop remainder). Can be used with modulo
(#) operator to determine a bit value; for example, $ZA\16#2 returns the value (0 or 1)
of the $ZA 16 bit.

Regular expression escape prefix. JSON string escape prefix, for example\".

\

Close square bracket (93): Follows operator.]

Double close square brackets: Sorts After operator.]]

Caret (94): Global variable name prefix, for example, ^myglobal(i).

Routine invocation prefix, for example, DO ^routine or DO label^routine.

Implied namespace prefix with the format ^system^dir.

$BITLOGIC bitstring XOR (exclusive or) operator.

Regular expression beginning of string anchor; for example, ^A. Regular expression
character type keyword inverse. For example, [:^alpha:].

^

Double caret: Implied namespace prefix for the current system, with the format ^^. or
^^dirpath.

^^

Caret dollar: Structured system variable prefix. For example, ^$GLOBAL() or
^$|"namespace"|GLOBAL().

^$

Caret dollar bracket: In a structured system variable (SSVN) used to enclose a
namespace name ̂ $["namespace"]GLOBAL() to specify an extended SSVN reference.

^$[

Caret dollar bar: In a structured system variable (SSVN) used to enclose a namespace
name ^$|"namespace"|GLOBAL() to specify an extended SSVN reference.

^$|

Caret percent: System global prefix, for example, ^%utility or ^%qStream.^%

Caret parenthesis: A naked global reference, where the most recently named subscripted
global name is implied. For example: ^(1,2)

^(

ObjectScript Reference 11

Symbols Used in ObjectScript

Name and UsageSymbol

Caret open square bracket: see Square brackets.^[

Caret bar: depending on the character(s) that follow, this may be:

An extended global reference, a global reference where a pair of bars encloses a quoted
namespace name, a directory name, or a null string. The bars and their contents are
not part of the global name. For example: ^|""|globname, or
^|"namespace"|globname.

A process-private global prefix with the prefix ̂ ||.The bars are part of the process-private
global name. For example, ^||ppgname. Also valid as syntax for this process-private
global: ^|"^"|ppgname.

An extended routine reference, where a pair of bars encloses a quoted namespace
name, a variable that resolves to a namespace name, or a null string. For example, DO
^|"namespace"|routine.

^|

Underscore (95): Concatenate operator.

As first character of a name.

_

Curly braces (123,125): Code block delimiters used in procedures, for TRY and CATCH
blocks, or with the IF, FOR, DO WHILE, and WHILE commands.

In SQL compute code, encloses a field name. For example, SET {Age}=18, or SET
{f1} = {f2}.

In XECUTE command, encloses code in which variables are treated as private.

Regular expression quantifier; for example, {5} = 5 times; {3,6} = at least 3 times but
not more than 6 times. Regular expression character type letter code or keyword with
\p prefix; for example, \p{LL}, \p{lower}. Regular expression single character keyword
with \N prefix; for example, \N{comma}.

JSON dynamic object expression, which returns an instance of %DynamicObject. For
example, SET JSONobj={"name":"Sam"}.

{ }

Asterisk within curly braces: In SQL compute code, specifies the current SQL field
name.

{*}

Vertical bar (124): $BITLOGIC bitstring OR operator.

Regular expression OR operator.

For other uses, see ^| and ^$.

|

Double vertical bar (bar bar): OR logical operator (short circuit evaluation).

Compound ID indicator. Used by InterSystems IRIS to display a generated compound
object ID (a concatenated ID).This can be either an IDKey defined on multiple properties
(prop1||prop2), or an ID for a parent/child relationship (parent||child).

||

12 ObjectScript Reference

Symbols and Abbreviations

Name and UsageSymbol

Tilde (126): $BITLOGIC bitstring NOT (one's complement) operator.

In Windows pathnames, indicates 8.3 compression of long names. For example:
c:\PROGRA~1\.To convert compressed directory names, use the NormalizeDirectory()
method of the %Library.File class.

In UNIX pathnames, indicates the current user’s home directory. For example: ~myfile

or ~/myfile.

~

ObjectScript Reference 13

Symbols Used in ObjectScript

Abbreviations Used in ObjectScript
A table of abbreviations for commands, functions, and special variables available in ObjectScript.

Table of Abbreviations
The following are the name abbreviations used in ObjectScript for InterSystems IRIS® data platform. Most, but not all,
ObjectScript commands, functions, and special variables have name abbreviations. Other uses of letters as code characters
are found in the table of symbols used in ObjectScript.

Full NameAbbreviation

$ASCII function$A

BREAK commandB

CLOSE commandC

$CHAR function$C

DO command or DO keyword of DO WHILE commandD

$DATA function (with arguments) or $DEVICE special variable (no arguments).$D

$EXTRACT function$E

$ECODE special variable$EC

$ESTACK special variable$ES

FOR commandF

$FIND function$F

$FNUMBER function$FN

GOTO commandG

$GET function$G

^$GLOBAL structured system variable^$G

HALT command (no arguments) or HANG command (with argument)H

$HOROLOG special variable$H

IF commandI

$INCREMENT function (with arguments) or $IO special variable (no arguments).$I

$INUMBER function$IN

JOB commandJ

$JUSTIFY function (with arguments) or $JOB special variable (no arguments).$J

^$JOB structured system variable^$J

KILL commandK

$KEY special variable$K

LOCK commandL

$LENGTH function$L

14 ObjectScript Reference

Symbols and Abbreviations

Full NameAbbreviation

^$LOCK structured system variable^$L

$LISTBUILD function$LB

$LISTDATA function$LD

$LISTFIND function$LF

$LISTFROMSTRING function$LFS

$LISTGET function$LG

$LIST function$LI

$LISTLENGTH function$LL

$LISTSAME function$LS

$LISTTOSTRING function$LTS

$LISTUPDATE function$LU

$LISTVALID function$LV

MERGE commandM

NEW commandN

$NAME function$NA

$NCONVERT function$NC

$NUMBER function$NUM

OPEN commandO

$ORDER function$O

PRINT commandP

$PIECE function (with arguments) or $PRINCIPAL special variable (no arguments).$P

QUIT commandQ

$QUERY function (with arguments) or $QUIT special variable (no arguments).$Q

$QLENGTH function$QL

$QSUBSCRIPT function$QS

READ commandR

$RANDOM function$R

^$ROUTINE structured system variable^$R

$REVERSE function$RE

RETURN commandRET

SET commandS

$SELECT function (with arguments) or $STORAGE special variable (no arguments).$S

$SCONVERT function$SC

$SEQUENCE function$SEQ

ObjectScript Reference 15

Abbreviations Used in ObjectScript

Full NameAbbreviation

$STACK function (with arguments) or $STACK special variable (no arguments).$ST

$SYSTEM special variable$SY

$TEXT function (with arguments) or $TEST special variable (no arguments).$T

TCOMMIT commandTC

$TLEVEL special variable$TL

$TRANSLATE function$TR

TROLLBACK commandTRO

TSTART commandTS

USE commandU

VIEW commandV

$VIEW function$V

WRITE commandW

$WASCII function$WA

$WCHAR function$WC

$WEXTRACT function$WE

$WFIND function$WF

$WLENGTH function$WL

$WREVERSE function$WRE

XECUTE commandX

$X special variable (no abbreviation).$X

$Y special variable (no abbreviation).$Y

$ZA special variable (no abbreviation).$ZA

ZBREAK commandZB

$ZBOOLEAN function (with arguments) or $ZB special variable (no arguments, no
abbreviation).

$ZB

$ZCYC function (with argument) or $ZCHILD special variable (no arguments).$ZC

$ZCONVERT function$ZCVT

$ZDATE function$ZD

$ZDASCII function$ZDA

$ZDCHAR function$ZDC

$ZDATEH function$ZDH

$ZDATETIME function$ZDT

$ZDATETIMEH function$ZDTH

$ZERROR special variable$ZE

16 ObjectScript Reference

Symbols and Abbreviations

Full NameAbbreviation

$ZF functions (no abbreviation). See also $ZF(-100), $ZF(-3), $ZF(-4), $ZF(-5),
and $ZF(-6) functions.

$ZF

$ZHEX function (with arguments) or $ZHOROLOG special variable (no arguments).$ZH

ZINSERT commandZI

$ZIO special variable$ZI

$ZJOB special variable$ZJ

ZKILL commandZK

ZLOAD commandZL

$ZLASCII function$ZLA

$ZLCHAR function$ZLC

$ZMODE special variable$ZM

ZNSPACE commandZN

$ZNAME special variable$ZN

$ZORDER special variable$ZO

ZPRINT commandZP

$ZPARENT special variable$ZP

$ZQASCII function$ZQA

$ZQCHAR function$ZQC

ZREMOVE commandZR

$ZREFERENCE special variable$ZR

ZSAVE commandZS

$ZSTORAGE special variable$ZS

$ZSEARCH function$ZSE

$ZTIME function (with arguments) or $ZTRAP special variable (no arguments).$ZT

$ZTIMEH function$ZTH

$ZTIMESTAMP special variable$ZTS

$ZTIMEZONE special variable$ZTZ

$ZVERSION special variable$ZV

ZWRITE commandZW

$ZWASCII function$ZWA

$ZWCHAR function$ZWC

ObjectScript Reference 17

Abbreviations Used in ObjectScript

ObjectScript Commands

This document provides detailed descriptions of the commands supported by ObjectScript. In this manual, ObjectScript
commands are divided into two groups:

• General Commands.

• Routine and Debugging Commands.

Within each group, the commands are presented in alphabetical order.

For more information on ObjectScript commands generally, see the Commands chapter of Using ObjectScript.

You can abbreviate most commands to the first letter of the command name, or, in the case of commands that begin with
the letter Z, to the first two letters of the command name. In the Synopsis for each command, the full name syntax is first
presented, and below it is shown the abbreviated name (if one exists).

The Synopsis for each command contains only literal syntactical punctuation. The Synopsis does not include punctuation
for format conventions, such as what elements of the syntax are optional. This information is provided in the table of
arguments immediately following the Synopsis.

The one exception is the ellipsis (...). An ellipsis following a comma indicates that the argument (or argument group) pre-
ceding the comma can be repeated multiple times as a comma-separated list. An ellipsis within curly braces { . . . } indicates
that a block of code containing one or more commands can be specified within the curly braces. The curly braces are literal
characters that must be specified in the code.

Most commands take one or more arguments. Arguments are expressions (for example, a function and its parameters, a
variable, an operator and its operands, an object property, or an object method) that define or control the action of the
command. Multiple arguments used with a command are generally referred to as an argument list. Some commands have
arguments that themselves take argument parameters. For example, each argument of the DO command can take a param-
eter list. This is indicated in the syntax.

Some commands are argumentless, and can be invoked without any arguments. Some commands never take arguments;
other commands take arguments only in certain circumstances. Such commands change their meaning depending on whether
they are argumentless, or specify an argument list.

Most commands can take an optional postconditional expression, which specifies a condition that dictates whether or not
the command should be executed. A postconditional expression is appended to the command name by a colon (:). No spaces
or line breaks are permitted between a command name and its postconditional expression. While a postconditional
expression is not, strictly speaking, a command argument, they are here presented with the arguments. An argumentless
command can take a postconditional expression.

Most ObjectScript commands are the same on all hardware platforms. Any platform-specific features of a command are
marked with the type of platform that supports it; for example, Windows or UNIX®. Any command not marked with a
platform limitation is supported by all platforms.

ObjectScript Reference 19

BREAK
Interrupts execution at a breakpoint. Enables or disables user interrupts.

BREAK:pc extend
B:pc extend

BREAK:pc flag
B:pc flag

Arguments

Optional — A postconditional expression.pc

Optional — A letter code indicating the kind of breakpoints to enable or disable, specified
as a quoted string. Valid values are listed in BREAK Extended Arguments. Cannot be
used with the flag argument.

extend

Optional — An integer flag that specifies interrupt behavior.The flag value can be quoted
or unquoted.Valid values are: 0 and 4 which disable CTRL-C interrupts, and 1 and 5 which
enable CTRL-C interrupts.The default is determined by context (see BREAK flag for details).
Cannot be used with the extend argument.

flag

Description
The BREAK command has three syntax forms:

• BREAK without an argument breaks code execution at the current location.

• BREAK extend breaks code execution at regular breakpoint intervals.

• BREAK flag enables or disables CTRL-C interrupts.

Required Permission

To use BREAK statements when running code, the user must be assigned to a role (such as %Developer or %Manager)
that provides the %Development resource with U (use) permission. A user is assigned to a role either through the SQL
GRANT statement, or by using the Management Portal System Administration, Security, Users option. Select a user name
to edit its definition, then select the Roles tab to assign that user to a role.

Arguments

pc

An optional postconditional expression. InterSystems IRIS executes the BREAK command if the postconditional expression
is true (evaluates to a nonzero numeric value). InterSystems IRIS does not execute the command if the postconditional
expression is false (evaluates to zero). For further details, refer to Command Postconditional Expressions in Using
ObjectScript.

extend

BREAK extend supports letter string codes to specify breakpoint behavior. Quotes are required. See BREAK Extended
Arguments for a table of these extend codes.

flag

BREAK flag supports four different ways to handle CTRL-C interrupts:

20 ObjectScript Reference

ObjectScript Commands

• BREAK 0: dismisses any pending, but not yet signaled, CTRL-C trap. Disables future signaling of CTRL-C.

• BREAK 1: dismisses any pending CTRL-C trap. Enables future signaling of CTRL-C.

This means that typing CTRL-C following execution of the BREAK 1 causes a CTRL-C signal.

• BREAK 4: does not dismiss any pending CTRL-C trap. Disables future signaling of CTRL-C.

This means that a pending CTRL-C trap is signaled when a future BREAK 1 or BREAK 5 command enables CTRL-C.

• BREAK 5: does not dismiss any pending CTRL-C trap. Enables future signaling of CTRL-C.

This means that a pending CTRL-C trap should be signaled by an ObjectScript command shortly following BREAK 5.
Most, but not all ObjectScript commands poll for CTRL-C.

See BREAK flag to Enable or Disable Interrupts for further details and examples.

Argumentless BREAK
Argumentless BREAK interrupts code execution when encountered. You can use argumentless BREAK in program source
code, with or without a postconditional, to interrupt program execution at that point and return control to the Terminal
prompt. Argumentless BREAK is used for debugging purposes.

If you include an argumentless BREAK within a routine, it sets a breakpoint, which interrupts routine execution and returns
the process to the Terminal prompt. By imbedding breakpoints in your code, you can establish specific contexts for
debugging. Each time execution reaches a BREAK, InterSystems IRIS suspends the routine and returns you to the Terminal.
You can then use other ObjectScript commands to perform debugging activities. For example, you might use the WRITE
command to examine the values of variables at the current stopping point and the SET command to supply new values for
these or other variables. You can also invoke the Routine Line Editor (XECUTE ^%), which provides basic editing capa-
bilities for modifying the routine After you suspend routine execution with a BREAK, you can resume normal execution
by using an argumentless GOTO. Alternatively, you can resume execution at a different location by specifying this location
as the GOTO command argument.

Note: InterSystems recommends that you use the ZBREAK command to invoke the ObjectScript Debugger, rather than
using the BREAK command in code. The Debugger provides much more extensive debugging capabilities.

You can configure argumentless BREAK behavior for the current process using the BreakMode() method of the
%SYSTEM.Process class. You can configure argumentless BREAK behavior system-wide by setting the BreakMode
property in the Config.Miscellaneous class.

Like all argumentless commands, you must insert at least two blank spaces between an argumentless BREAK and a command
following it on the same line.

Using Argumentless BREAK with a Condition

You may find it useful to specify a condition on an argumentless BREAK command in code so that you can rerun the same
code simply by setting a variable rather than having to change the routine. For example, you may have the following line
in a routine:

 BREAK:$DATA(debug)

You can then set the variable debug to suspend the routine and return the job to the Terminal prompt or clear the variable
debug to continue running the routine.

BREAK Extended Arguments to Set Regular Breakpoints
You do not have to place argumentless BREAK commands at every location where you want to suspend your routine.
BREAK has a series of "extended" arguments (extend) that can periodically suspend a routine as if you scattered argumentless
BREAKs throughout the code. BREAK command extended arguments are listed in the following table.

ObjectScript Reference 21

BREAK

DescriptionArgument

Use BREAK "S" (Single Step) to step through your code a single command (generated
token) at a time. Not all ObjectScript commands generate a token; some generate multiple
tokens and thus are parsed as multiple steps (see below). InterSystems IRIS stops
breaking on commands invoked by a DO command or an XECUTE command, or within
a FOR loop or a user-defined function, and resumes with the next token when the
command or loop is done.

"S"

BREAK "S+" acts like BREAK "S", except that InterSystems IRIS includes breaking
on commands invoked by a DO command or an XECUTE command, or within a FOR
loop or a user-defined function.

"S+"

Use BREAK "S-" to disable break stepping ("S" or "L") at the current level and enable
single stepping at the previous level. Acts like BREAK "C" at the current level and BREAK
"S" at the previous level.

"S-"

Use BREAK "L" (Line Stepping) to step through your code a single routine line at a
time, breaking at the beginning of every line. Lines that do not generate tokens are
ignored (see below). InterSystems IRIS stops breaking on commands invoked by a DO
command or an XECUTE command, or within a FOR loop or a user-defined function,
and resumes with the next line when the command or loop is done.

"L"

BREAK "L+" acts like BREAK "L", except that InterSystems IRIS also continues to
break at the beginning of every routine line on commands invoked by a DO command
or an XECUTE command, or within a FOR loop or a user-defined function.

"L+"

Use BREAK "L-" to disable break stepping ("S" or "L") at the current level and enable
line stepping at the previous level. Acts like BREAK "C" at the current level and BREAK
"L" at the previous level.

"L-"

Use BREAK "C" (Clear Break) to stop all break stepping ("L" and "S") at the current
level. Breaking resumes at a previous routine level after the job executes a QUIT if a
BREAK state is in effect at that previous level.

"C"

Use BREAK "C-" to stop all break stepping ("L" and "S") at the current level and all
previous levels. This allows stepping to be removed at all levels without affecting other
debugging features.

"C-"

BREAK "OFF" removes all debugging that has been established for the process. It
removes all breakpoints and watchpoints, and turns off stepping at all program stack
levels. It also removes the association with the debug and trace devices, but does not
close them.

"OFF"

BREAK "S" and BREAK "L" break on statements that generate tokens. Not all ObjectScript commands or lines generate
a token. For example, BREAK "S" and BREAK "L" both ignore label lines, comments, and TRY statements. BREAK
"S" breaks at a CATCH statement (if the CATCH block is entered); BREAK "L" does not.

One difference between BREAK "S" and BREAK "L" is that many command lines generate more than one token and
thus consist of more than one step. This is not always obvious. For example, the following are all one line (and one
ObjectScript command), but BREAK "S" parses each as two steps:

 KILL x,y
 SET x=1,y=2
 IF x=1,y=2 {
 WRITE "hello",! }

BREAK "S" parses command postconditionals. If the postconditional is true (execute the command), it repositions the
cursor to point to after the postconditional.

22 ObjectScript Reference

ObjectScript Commands

To resume code execution after a breakpoint, issue a GOTO command (abbreviated as G) at the Terminal prompt. See
Debugging in Using ObjectScript for more information.

Issuing a BREAK "OFF" command is equivalent to issuing the following series of commands:

 ZBREAK /CLEAR
 ZBREAK /TRACE:OFF
 ZBREAK /DEBUG:""
 ZBREAK /ERRORTRAP:ON
 BREAK "C-"

BREAK flag to Enable or Disable Interrupts
Use BREAK flag to control whether user interrupts, such as CTRL-C, are enabled or disabled. The practical difference
between these disable/enable options is as follows:

BREAK 0 and BREAK 1 can be used to create a code block where a CTRL-C signal cannot interrupt a critical sequence
of commands. However, a loop on such a block may be difficult for an interactive user to interrupt using CTRL-C. This is
because there is a slight delay between detecting a CTRL-C trap and polling a CTRL-C signal. This delay may permit the
next BREAK command loop to dismiss the CTRL-C user interrupt.

A program block containing BREAK 4 and BREAK 5 can be used to create code where a CTRL-C signal cannot interrupt
a critical sequence of commands without affecting the ability of an interactive user to interrupt a loop operation on this
block using CTRL-C.

The default flag behavior of BREAK is dependent upon the login mode, as follows:

• If you log in at the Terminal prompt, the default is BREAK 1. Interrupts, such as CTRL-C, are always enabled. The B
(/break) protocol specified in an OPEN or USE command has no effect.

• If you execute code from a routine, the default is BREAK 0. Interrupts, such as CTRL-C, are enabled or disabled by
the B (/break) protocol specified in an OPEN or USE command.

For further details on OPEN and USE mode protocols, refer to Terminal I/O in the I/O Device Guide.

BREAK flag Examples

The following example uses $ZJOB to determine if interrupts are enabled or disabled:

 BREAK 0
 DO InterruptStatus
 BREAK 1
 DO InterruptStatus
 WRITE "all done"
InterruptStatus()
 IF $ZJOB\4#2=1 {WRITE "Interrupts enabled",!}
 ELSE {WRITE "Interrupts disabled",!}

The following example uses a READ in a FOR loop for user input of a series of numbers. It sets BREAK 0 to disable user
interrupts during the READ operation. However, if the user inputs a value that is not a number, BREAK 1 enables user
interrupts so that the user can either reject or accept the value they just input:

 SET y="^"
InputLoop
 TRY {
 FOR {
 BREAK 0
 READ "input a number ",x
 IF x="" { WRITE !,"all done" QUIT }
 ELSEIF 0=$ISVALIDNUM(x) {
 BREAK 1
 WRITE !,x," is not a number",!
 WRITE "you have four seconds to press CTRL-C",!
 WRITE "or accept this input value",!
 HANG 4 }
 ELSE { }
 SET y=y_x_"^"
 WRITE !,"the number list is ",y,!
 }

ObjectScript Reference 23

BREAK

 }
 CATCH { WRITE "Rejecting bad input",!
 DO InputLoop
 }

See Also
• ZBREAK command

• GOTO command

• OPEN command

• USE command

• Debugging in Using ObjectScript

• Terminal I/O in I/O Device Guide

24 ObjectScript Reference

ObjectScript Commands

CATCH
Identifies a block of code to execute when an exception occurs.

CATCH exceptionvar
{
 . . .
}

Argument

Optional — An exception variable. Specified as a local variable, with or without subscripts,
that receives a reference to an InterSystems IRIS Object (an OREF). This argument can,
optionally, be enclosed with parentheses.

exceptionvar

Description
The CATCH command defines an exception handler, a block of code to execute when an exception occurs in a TRY block
of code. The CATCH command is followed by a block of code statements, enclosed in curly braces.

If you specify a TRY block, a CATCH block is required; every TRY block must have a corresponding CATCH block.
Only one CATCH block is permitted for each TRY block. The CATCH block must immediately follow its TRY block.
No lines of executable code are permitted between a TRY block and its CATCH block. No label is permitted between a
TRY block and its CATCH block, or on the same line as the CATCH command. You can, however, include comments
between a TRY block and its CATCH block.

A CATCH block is entered when an exception occurs. If no exception occurs, the CATCH block should not be executed.
You should never use a GOTO statement to enter a CATCH block.

You can exit a CATCH block using QUIT or RETURN. QUIT exits the current block structure and continues execution
with the next command outside of that block structure. For example, if you are within a nested CATCH block, issuing a
QUIT exits that CATCH block to the enclosing block structure. You cannot use an argumented QUIT to exit a CATCH
block; attempted to do so results in a compile error. To exit a routine completely from within a CATCH block, issue a
RETURN statement.

The CATCH command has two forms:

• Without an argument

• With an argument

The argumented form is preferred.

CATCH Exception Handling

CATCH exceptionvar receives an object instance reference (OREF) from the TRY block, either explicitly passed by the
THROW command, or implicitly from the system runtime environment in the event of a system error. For information on
OREFs, see “OREF Basics” in Defining and Using Classes.

This object instance reference provides properties that contain information about the exception.

An exception can pass four exception properties to CATCH. These are, in order: Name, Code, Location, and Data. A
thrown exception cannot pass a Location parameter. You can use the %IsA() instance method to determine what type of
exception passed in these properties.

In the following example, the TRY block can generate a system exception (undefined local variable), throw an SQL
exception, throw a %Status exception, or throw a general exception. This general-purpose CATCH exception handler
determines which type of exception occurred and displays the appropriate properties. It displays all four properties for a

ObjectScript Reference 25

CATCH

system exception (the Data property is the empty string for some types of system errors). It displays two properties for an
SQL exception (Code and Data). It supplies two properties to $SYSTEM.Status.Error() to generate an error message
string for a %Status exception. It displays three properties for a general ObjectScript exception (Name, Code, and Data).
It uses the $ZCVT function to format a Name value containing angle brackets for browser display:

 TRY {
 SET x=$RANDOM(4)
 IF x=0 { KILL undefvar
 WRITE undefvar }
 ELSEIF x=1 {
 SET oref=##class(%Exception.SQL).%New(,"-999",,"SQL error message")
 THROW oref }
 ELSEIF x=2 {
 SET oref=##class(%Exception.StatusException).%New(,"5002",,$LISTBUILD("My Status Error"))
 THROW oref }
 ELSE {
 SET oref=##class(%Exception.General).%New("<MY BAD>","999",,"General error message")
 THROW oref }
 WRITE "this should not display",!
 }
 CATCH exp { WRITE "In the CATCH block",!
 IF 1=exp.%IsA("%Exception.SystemException") {
 WRITE "System exception",!
 WRITE "Name: ",$ZCVT(exp.Name,"O","HTML"),!
 WRITE "Location: ",exp.Location,!
 WRITE "Code: "
 }
 ELSEIF 1=exp.%IsA("%Exception.SQL") {
 WRITE "SQL exception",!
 WRITE "SQLCODE: "
 }
 ELSEIF 1=exp.%IsA("%Exception.StatusException") {
 WRITE "%Status exception",!
 DO $SYSTEM.Status.DisplayError($SYSTEM.Status.Error(exp.Code,exp.Data))
 RETURN
 }
 ELSEIF 1=exp.%IsA("%Exception.General") {
 WRITE "General ObjectScript exception",!
 WRITE "Name: ",$ZCVT(exp.Name,"O","HTML"),!
 WRITE "Code: "
 }
 ELSE { WRITE "Some other type of exception",! RETURN }
 WRITE exp.Code,!
 WRITE "Data: ",exp.Data,!
 RETURN
 }

Nested TRY/CATCH Blocks

Only one CATCH block is permitted for each TRY block. However, it is possible to nest paired TRY/CATCH blocks.

You can nest an inner TRY/CATCH pair within an outer CATCH block, such as the following:

 TRY {
 /* TRY code */
 }
 CATCH exvar1 {
 /* CATCH code */
 TRY {
 /* nested TRY code */
 }
 CATCH exvar2 {
 /* nested CATCH code */
 }
 }

You can nest an inner TRY/CATCH pair within an outer TRY block, such as the following:

26 ObjectScript Reference

ObjectScript Commands

 TRY {
 /* TRY code */
 TRY {
 /* nested TRY code */
 }
 CATCH exvar2 {
 /* nested CATCH code */
 }
 }
 CATCH exvar1 {
 /* CATCH code */
 }

Execution Stack

The %Exception object contains the execution stack at the time the object was created. You can access this execution stack
using the StackAsArray() method. The following example shows this execution stack:

 TRY {
 WRITE "In the TRY block",!
 WRITE 7/0
 }
 CATCH exobj {
 WRITE "In the CATCH block",!
 WRITE $ZCVT($ZERROR,"O","HTML"),!
 TRY {
 WRITE "In the nested TRY block",!
 KILL fred
 WRITE fred
 }
 CATCH exobj2 {
 WRITE "In the nested CATCH block",!
 WRITE $ZCVT($ZERROR,"O","HTML"),!!
 WRITE "The Execution Stack",!
 DO exobj2.StackAsArray(.stk)
 ZWRITE stk
 }
 }

CATCH and $ZTRAP

You cannot set $ZTRAP within a TRY block. However, you can set $ZTRAP within a CATCH block. You can also set
$ZTRAP before entering the TRY block.

If an exception occurs within the CATCH block, the specified $ZTRAP exception handler is taken.

TRY / CATCH Loop

A loop where a TRY block invokes a CATCH block that loops back to the TRY block does not loop infinitely. It eventually
issues a <FRAMESTACK> error.

Disabling CATCH

Issuing a ZBREAK /ERRORTRAP:OFF command disables CATCH exception handling.

Argument

exceptionvar

A local variable, used to receive the exception object reference from the THROW command or from the system runtime
environment in the event of a system error. When a system error occurs, exceptionvar receives a reference to an object of
type %Exception.SystemException. When a user-specified error occurs, exceptionvar receives a reference to an object of
type %Exception.General, %Exception.StatusException, or %Exception.SQL. For further details, refer to the
%Exception.AbstractException abstract class in the InterSystems Class Reference.

The exceptionvar argument can optionally be enclosed with parentheses, thus: CATCH(var) { code block }. This
parentheses syntax is provided for compatibility, and has no effect on functionality.

ObjectScript Reference 27

CATCH

Examples: System Exceptions
The following example shows an argumentless CATCH invoked by a divide-by-zero runtime error. It displays the $ZERROR
and $ECODE error values. Argumentless CATCH is not recommended because it is less reliable than passing an
exceptionvar. If an error occurs in the CATCH block, $ZERROR will contain this most recent error, not the error that
invoked the CATCH. In this example the QUIT command exits the CATCH block, but does not prevent “fall-through”
to the next line outside the block structure:

 TRY {
 WRITE !,"TRY block about to divide by zero",!!
 SET a=7/0
 WRITE !,"this should not display"
 }
 CATCH {
 WRITE "CATCH block exception handler",!!
 WRITE "$ZERROR is: ",$ZERROR,!
 WRITE "$ECODE is :",$ECODE,!
 QUIT
 WRITE !,"this should not display"
 }
 WRITE !,"this is where the code falls through"

The following example shows a CATCH invoked by a divide-by-zero runtime error and receiving an argument. This is
the preferred coding practice. The myexp OREF argument receives a system-generated exception object. It displays the
Name, Code, and Location properties of this exception instance. In this example the RETURN command exits the program,
so no “fall-through” occurs:

 TRY {
 WRITE !,"TRY block about to divide by zero",!!
 SET a=7/0
 WRITE !,"this should not display"
 }
 CATCH myexp {
 WRITE "CATCH block exception handler",!!
 WRITE "Name: ",$ZCVT(myexp.Name,"O","HTML"),!
 WRITE "Code: ",myexp.Code,!
 WRITE "Location: ",myexp.Location,!
 RETURN
 }
 WRITE !,"this is where the code falls through"

The following example shows a CATCH receiving a system exception object. The CATCH block code displays the system
exception as a $ZERROR-formatted string using the AsSystemError() method of the %Exception.SystemException class.
($ZERROR is also displayed, for comparison purposes.) This CATCH block then displays the error name, error code,
error data, and error location as separate properties:

 TRY {
 WRITE !,"this global is not defined",!
 SET a=^badglobal(1)
 WRITE !,"this should not display"
 }
 CATCH myvar {
 WRITE !,"this is the exception handler",!
 WRITE "AsSystemError is: ",myvar.AsSystemError(),!
 WRITE "$ZERROR is: ",$ZERROR,!!
 WRITE "Error name=",$ZCVT(myvar.Name,"O","HTML"),!
 WRITE "Error code=",myvar.Code,!
 WRITE "Error data=",myvar.Data,!
 WRITE "Error location=",myvar.Location,!
 RETURN
 }

Examples:Thrown Exceptions
The following example shows a CATCH invoked by the THROW command. The myvar argument receives a user-defined
exception object with four properties. Note that in this example the THROW does not supply a value for the omitted
Location property of the %Exception.General class:

28 ObjectScript Reference

ObjectScript Commands

 TRY {
 SET total=1234
 WRITE !,"Throw an exception!"
 THROW ##class(%Exception.General).%New("Example Error",999,,"MyThrow")
 WRITE !,"this should not display"
 }
 CATCH myvar {
 WRITE !!,"this is the exception handler"
 WRITE !,"Error data=",myvar.Data
 WRITE !,"Error code=",myvar.Code
 WRITE !,"Error name=",myvar.Name
 WRITE !,"Error location=",myvar.Location,!
 RETURN
 }

The following two examples generate birth dates in the TRY block. If they generate a birth date that is in the future, they
use THROW to issue a general exception, passing the user-defined exception to the CATCH block. (You may have to
run these examples more than once to generate a date that throws an exception.)

The first of these examples does not specify a CATCH exceptionvar. It uses the OREF name defined in the TRY block to
specify the exception properties:

 TRY {
 WRITE "In the TRY block",!
 SET badDOB=##class(%Exception.General).%New("BadDOB","999",,"Birth date is in the future")
 FOR x=1:1:20 { SET rndDOB = $RANDOM(7)_$RANDOM(10000)
 IF rndDOB > $HOROLOG { THROW badDOB }
 ELSE { WRITE "Birthdate ",$ZDATE(rndDOB,1,,4)," is valid",! }
 }
 }
 CATCH {
 WRITE !,"In the CATCH block"
 WRITE !,"Birthdate ",$ZDATE(rndDOB,1,,4)," is invalid"
 WRITE !,"Error code=",badDOB.Code
 WRITE !,"Error name=",badDOB.Name
 WRITE !,"Error data=",badDOB.Data
 RETURN
 }

The second of these examples specifies a CATCH exceptionvar. It uses this renamed OREF to specify the exception
properties. This is the preferred usage:

 TRY {
 WRITE "In the TRY block",!
 SET badDOB=##class(%Exception.General).%New("BadDOB","999",,"Birth date is in the future")
 FOR x=1:1:20 { SET rndDOB = $RANDOM(7)_$RANDOM(10000)
 IF rndDOB > $HOROLOG { THROW badDOB }
 ELSE { WRITE "Birthdate ",$ZDATE(rndDOB,1,,4)," is valid",! }
 }
 }
 CATCH err {
 WRITE !,"In the CATCH block"
 WRITE !,"Birthdate ",$ZDATE(rndDOB,1,,4)," is invalid"
 WRITE !,"Error code=",err.Code
 WRITE !,"Error name=",err.Name
 WRITE !,"Error data=",err.Data
 RETURN
 }

Example: Nested TRY/CATCH
The following example shows a CATCH invoked by a divide-by-zero runtime error. The CATCH block contains an inner
TRY block paired with an inner CATCH block. This inner CATCH block is invoked by a thrown exception. For the
purposes of demonstration, this THROW is invoked randomly in this program. In a real-world program, the inner CATCH
block would be invoked by an exception test, such as a mismatch between AsSystemError() (the caught error) and
$ZERROR (the most-recent error):

 TRY {
 WRITE !,"Outer TRY block",!!
 SET a=7/0
 WRITE !,"this should not display"
 }
 CATCH myexp {
 WRITE "Outer CATCH block",!
 WRITE "Name: ",$ZCVT(myexp.Name,"O","HTML"),!

ObjectScript Reference 29

CATCH

 WRITE "Code: ",myexp.Code,!
 WRITE "Location: ",myexp.Location,!
 SET rndm=$RANDOM(2)
 IF rndm=1 {RETURN }
 TRY {
 WRITE !,"Inner TRY block",!
 SET oref=##class(%Exception.General).%New("<MY BAD>","999",,"General error message")
 THROW oref
 RETURN
 }
 CATCH myexp2 {
 WRITE !,"Inner CATCH block",!
 IF 1=myexp2.%IsA("%Exception.General") {
 WRITE "General ObjectScript exception",!
 WRITE "Name: ",$ZCVT(myexp2.Name,"O","HTML"),!
 WRITE "Code: ",myexp2.Code,!
 }
 ELSE { WRITE "Some other type of exception",! }
 QUIT
 }
 WRITE !,"back to Outer CATCH block",!
 RETURN
 }

See Also
• THROW command

• TRY command

• ZBREAK command

• Error Processing in Using ObjectScript

30 ObjectScript Reference

ObjectScript Commands

CLOSE
Closes a file or a device.

CLOSE:pc closearg,...
C:pc closearg,...

where closearg is:

device:parameters

Arguments

Optional — A postconditional expression.pc

The device to be closed.device

Optional — One or more parameters used to set characteristics of the device. A
single parameter may be specified as a quoted string:CLOSE device:"D". Multiple
parameters must be specified enclosed by parentheses and separated by colons.

parameters

Description
CLOSE device releases ownership of the specified device, optionally sets a parameter, and returns it to the pool of available
devices.

If the process does not own the specified device, or if the specified device is not open or does not exist, InterSystems IRIS
ignores CLOSE and returns without issuing an error.

Arguments

pc

An optional postconditional expression. InterSystems IRIS executes the CLOSE command if the postconditional expression
is true (evaluates to a nonzero numeric value). InterSystems IRIS does not execute the command if the postconditional
expression is false (evaluates to zero). For further details, refer to Command Postconditional Expressions in Using
ObjectScript.

device

The device to be closed. A device can be a physical device, a TCP connection, or the pathname of a sequential file. Specify
the same device ID (mnemonic or number) as specified on the corresponding OPEN command. For more information on
specifying device IDs, refer to the OPEN command.

You can specify a single device ID or as a comma-separated list of device IDs. CLOSE closes all of the listed devices that
the process currently has open. It ignores any listed devices that do not exist or are not currently open by this process.

The device ID of the current device is contained in the $IO special variable.

parameters

A parameter or a colon-separated list of parameters used when closing the specified device. Parameter codes are not case-
sensitive. Multiple parameters must be enclosed with parentheses and separated by colons.

The available parameter values are as follows:

ObjectScript Reference 31

CLOSE

Closes and deletes a sequential file. Can also be specified as /DEL, /DEL=1,
/DELETE, or /DELETE=1.

"D"

Closes and renames a sequential file. Can also be specified as /REN=newname
or /RENAME=newname.

"R":newname

Closes at the InterSystems IRIS level but not at the operating system level. Used
only on non-Windows systems.

“K”

If the specified parameter is not valid, CLOSE still closes the device.

Refer to Sequential File I/O in the I/O Device Guide for further information.

Examples
In the following UNIX® example, the CLOSE command closes device C (/dev/tty02), but only if it is not the current
device. The postconditional uses the $IO special variable to check for the current device.

CloseDevC
 SET C="/dev/tty02"
 OPEN C
 ; ...
 CLOSE:$IO'=C C

Notes

Acquiring Ownership of a Device

A process acquires ownership of a device with the OPEN command and makes it active with the USE command. If the
closed device is the active (that is, current) device, the default I/O device becomes the current device. (The default I/O
device is established at login.) When a process is terminated (for example, after a HALT), all its opened devices are auto-
matically closed and returned to the system.

If the process’s default device is closed, any subsequent output (such as error messages) to that device causes the process
to hang. In this case, you must explicitly reopen the default device.

See Also
• OPEN command

• I/O Devices and Commands in I/O Device Guide

32 ObjectScript Reference

ObjectScript Commands

CONTINUE
Jumps to FOR, WHILE, or DO WHILE command and re-executes test and loop.

CONTINUE:pc

Argument

Optional — A postconditional expression.pc

Description
The CONTINUE command is used within the code block following a FOR, WHILE, or DO WHILE command. CONTINUE
causes execution to jump back to the FOR, WHILE, or DO WHILE command. The FOR, WHILE, or DO WHILE command
evaluates its test condition, and, based on that evaluation, re-executes the code block loop. Thus, the CONTINUE command
has exactly the same effect on execution as reaching the closing curly brace (}) of the code block.

CONTINUE takes no arguments (other than the postconditional). At least two blank spaces must separate it from a command
following it on the same line.

A CONTINUE can cause execution to jump out of a TRY or CATCH block to return to its control flow statement.

Arguments

pc

An optional postconditional expression that can make the command conditional. InterSystems IRIS executes the CONTINUE
command if the postconditional expression is true (evaluates to a nonzero numeric value). InterSystems IRIS does not
execute the command if the postconditional expression is false (evaluates to zero). For further details, refer to Command
Postconditional Expressions in Using ObjectScript.

Examples
The following example uses a CONTINUE with a postconditional expression. It loops through and prints out all the
numbers from 1 to 10, except 3:

Loop
 FOR i=1:1:10 {
 IF i # 2 {
 CONTINUE:i=3
 WRITE !,i," is odd" }
 ELSE { WRITE !,i," is even" }
 }
 WRITE !,"done with the loop"
 QUIT

The following example shows two nested FOR loops. The CONTINUE jumps back to the FOR in the inner loop:

Loop
 FOR i=1:1:3 {
 WRITE !,"outer loop: i=",i
 FOR j=2:2:10 {
 WRITE !,"inner loop: j=",j
 IF j '= 8 {CONTINUE }
 ELSE { WRITE " crazy eight"}
 }
 WRITE !,"back to outer loop"
 }
 QUIT

The following example shows a CONTINUE that exits a TRY block. The CONTINUE jumps back to the FOR statement
outside the TRY block.

ObjectScript Reference 33

CONTINUE

TryLoop
 FOR i=1:1:10 {
 WRITE !,"Top of FOR loop"
 TRY {
 WRITE !,"In TRY block: i=",i
 IF i=7 {
 WRITE " lucky seven" }
 ELSE { CONTINUE }
 }
 CATCH exp {
 WRITE !,"CATCH block exception handler",!
 WRITE "Error code=",exp.Code
 RETURN
 }
 WRITE !,"Bottom of the FOR loop"
 }
 QUIT

See Also
• DO WHILE command

• FOR command

• WHILE command

34 ObjectScript Reference

ObjectScript Commands

DO
Calls a routine.

DO:pc doargument,...
D:pc doargument,...

where doargument is:

entryref(param,...):pc

Arguments

Optional — A postconditional expression.pc

The name of the routine to be called, preceded by a caret (DO ^myroutine), optionally
with a label name (DO Label2^myroutine), or label and line offset (DO
Label2+3^myroutine). To invoke the current routine you can omit the routine name
and just specify a label or label and line offset.You can also invoke an object method
as DO oref.Method() or using another syntax form, as listed below.

entryref

Optional — Parameter values to be passed to the called routine.param

Description

Note: The DO command and the DO WHILE command are separate and unrelated commands. This page documents
the DO command. In the DO WHILE command, the DO keyword and the WHILE keyword may be separated
by several lines of code; however, you can immediately identify a DO WHILE command because the DO keyword
is followed by an open curly brace.

The DO command calls a specified object method, subroutine, function, or procedure. InterSystems IRIS executes the
called routine, then executes the next command after the DO command. You can call the routine with or without parameter
passing. For example DO ^myrou1 or DO ^myrou(a,b,c).

DO cannot accept a return value from the called routine. If the called routine concludes with an argumented QUIT, the
DO command completes successfully, but ignores the QUIT argument value.

DO can specify multiple arguments as a comma-separated list. For example, DO ^myrou1,^myrou2,^myrou3. The
system executes the arguments in the order specified. Execution halts if it encounters an invalid argument.

DO is commonly invoked at the Terminal prompt to execute an existing compiled routine. The DO command can, of course,
also be invoked from within a routine.

Each invocation of DO places a new context frame on the call stack for your process. The $STACK special variable contains
the current number of context frames on the call stack. This context frame establishes a new execution level, incrementing
$STACK and $ESTACK, and providing scope for NEW and SET $ZTRAP operations issued during the DO operation.
Upon successful completion, DO decrements $STACK and $ESTACK and reverts NEW and SET $ZTRAP operations.

Current Routine

When invoking DO from the Terminal, DO first searches for the currently loaded routine. If the current process has a current
routine, DO executes this routine, not the corresponding routine on disk.

For example, you load the routine myroutine from disk using the ZLOAD command. This makes it the current routine (as
shown by the $ZNAME special variable). You then modify the current routine using ZINSERT, then invoke DO ̂ myroutine.
The DO command executes the modified myroutine, not the unmodified myroutine on disk. The argumentless ZREMOVE

ObjectScript Reference 35

DO

command unloads the currently loaded routine. Following an argumentless ZREMOVE, DO ^myroutine executes the
unmodified version of myroutine from disk.

You can invoke the current routine in either of two ways:

• With explicit routine name: DO ^myroutine, DO Label2^myroutine, or DO Label2+3^myroutine.

• With implied routine name, specifying just label and (optionally) offset: DO Main, DO Label2, or DO Label2+3.

Arguments

pc

An optional postconditional expression. If the postconditional expression is appended to the DO command keyword,
InterSystems IRIS executes the DO command if the postconditional expression is TRUE (evaluates to a nonzero numeric
value). InterSystems IRIS does not execute the DO command if the postconditional expression is FALSE (evaluates to
zero).

If the postconditional expression is appended to an argument, InterSystems IRIS executes the argument if the postconditional
expression is TRUE (evaluates to a nonzero numeric value). If the postconditional expression is FALSE (evaluates to zero),
InterSystems IRIS skips that argument and proceeds to evaluate the next argument (if there is one) or the next command.
For example:

 DO:0 $INCREMENT(myvar($INCREMENT(subvar))):1 /* myvar and subvar not incremented */
 DO:1 $INCREMENT(myvar($INCREMENT(subvar))):0 /* myvar not incremented, subvar incremented */

Note that because InterSystems IRIS processes expressions from left to right, any part of the argument containing expressions
(such as a parameter value or an object reference) is evaluated and can cause an error before the postconditional expression
is evaluated. If DO invokes an object method with an appended postconditional, the maximum number of object method
parameters is 253.

For further details, refer to Command Postconditional Expressions in Using ObjectScript.

entryref

The name of the routine (Object Method, Subroutine, Procedure, or User-supplied Function) to be called. You can specify
multiple routines as a comma-separated list.

entryref can take any of the following forms.

36 ObjectScript Reference

ObjectScript Commands

Specifies a line label within the current routine. The optional +offset
can only be used when calling a subroutine to which no parameters
are passed; it cannot be used when calling a procedure or when
passing parameters to a subroutine. offset is a nonnegative integer
that specifies the number of lines after the label at which execution
of the subroutine is to start.

label+offset

Specifies a line label within the named routine that resides on disk.
InterSystems IRIS loads the routine from disk and begins execution
at the indicated label. The +offset is optional.

label+offset^routine

The name of a routine that resides on disk. The system loads the
routine from disk and begins execution at the first executable line of
the routine. Must be a literal value; a variable cannot be used to
specify routine. (Note that the ^ character is a separator character,
not part of the routine name.) If the routine has been modified,
InterSystems IRIS loads the updated version of the routine when DO
invokes the routine. If the routine is not in the current namespace,
you can specify the namespace that contains the routine using an
extended routine reference, as follows: ^|"namespace"|routine.

^routine

Specifies an object method. The system accesses the object and
executes the specified method, passing the arguments (if any)
specified in param, the method’s argument list. Object calls use dot
syntax: oref (the object reference) and Method() are separated by a
dot; blank spaces are not permitted. A method must specify its open
and close parentheses, even if there are no param arguments.

The following syntactic forms are supported: DO oref.Method(),
DO (oref).Method(), DO ..Method(), DO
##class(cname).Method(), DO i%prop(subs).Method().

oref.Method()

You cannot specify an offset when calling a IRISSYS % routine. If you attempt to do so, InterSystems IRIS issues a
<NOLINE> error.

If you specify a nonexistent label, InterSystems IRIS issues a <NOLINE> error. If you specify a nonexistent routine,
InterSystems IRIS issues a <NOROUTINE> error. If you specify a nonexistent method, InterSystems IRIS issues a
<METHOD DOES NOT EXIST> error. If you specify an existing property as a method (with parentheses), InterSystems
IRIS issues an <OBJECT DISPATCH> error. If you use extended reference (for example, DO ^|"%SYS"|MyProg) and
specify a nonexistent namespace, InterSystems IRIS issues a <NAMESPACE> error. If you use extended reference and
specify a namespace for which you do not have privileges, InterSystems IRIS issues a <PROTECT> error, followed by the
database path, such as the following: <PROTECT> *^|^^c:\intersystems\iris\mgr\|MyRoutine. For further
details on these errors, refer to the $ZERROR special variable.

If you specify an offset that points to the middle of a multi-line statement, the system starts execution at the beginning of
the next statement.

param

Parameter values to be passed to the subroutine, procedure, user-supplied function or object method. You can specify a
single param value, or a comma-separated list of param values. A param list is enclosed in parentheses. When no param
is specified, the enclosing parentheses are required when calling a procedure or user-supplied function, optional when
calling a subroutine. Parameters can be passed by value or passed by reference. The same call can mix parameters passed
by value and parameters passed by reference. When passing by value, you can specify a parameter as a value constant,

ObjectScript Reference 37

DO

expression, or unsubscripted local variable name. (See Passing By Value.) When passing by reference, the parameters must
reference the name of a local variable or unsubscripted array in the form .name (See Passing By Reference.)

The maximum total param values for a DO entrypoint is 382; the maximum total param values for a DO method or DO
with indirection is 380. This total can include up to 254 actual parameters and 128 postconditional parameters.

you can specify a variable number of parameters using ... syntax.

DO Command entryref Arguments
The DO command with entryref arguments invokes the execution of one or more blocks of code that are defined elsewhere.
Each block of code to execute is specified by its entryref. The DO command can specify multiple blocks of code to execute
as a comma-separated list. The execution of the DO command, and the execution of each entryref in a comma-separated
list can be governed by optional postconditional expressions.

DO can invoke the execution of a subroutine (with or without parameter passing), a procedure, or a user-supplied function.
Upon completion of the execution of the block of code, execution resumes at the next command after the DO command.
A block of code invoked by the DO command cannot return a value to the DO command; any value returned is ignored.
Thus DO can execute a user-supplied function, but cannot receive the return value of that function.

DO cannot invoke most ObjectScript system functions. Attempting to do so results in a <SYNTAX> error. A few system
functions can be invoked as a DO command argument: $CASE, $CLASSMETHOD, $METHOD, $INCREMENT, and
$ZF(-100). DO cannot receive the return value of a function. Like all DO command arguments, these functions can take
a postconditional parameter. For example, DO
$CASE(exp,0:NoMul(),2:Square(num),3:Cube(num),:Exponent(num,exp)):0. For an example program,
refer to the $CASE function.

The DO Command without Parameter Passing

The DO command without parameter passing is only used with subroutines. Use of DO entryref without parameter passing
(that is, without specifying the param option) takes advantage of the fact that a calling routine and its called subroutine
share the same variable environment. Any variable updates made by the subroutine are automatically available to the code
following the DO command.

When using DO without parameter passing, you must make sure that both the calling routine and the called subroutine
reference the same variables.

Note: Procedures handle variables entirely differently. Refer to Procedures in Using ObjectScript.

In the following example, Start (the calling routine) and Exponent (the called subroutine) share access to three variables:
num, powr, and result. Start sets num and powr to the user-supplied values. These values are automatically available to
Exponent when it is called by the DO command. Exponent references num and powr, and places the calculated value in
result. When Exponent executes the RETURN command, control returns to the WRITE command immediately after the
DO. The WRITE command outputs the calculated value by referencing result:

Start ; Raise an integer to a specified power.
 READ !,"Integer= ",num QUIT:num=""
 READ !,"Power= ",powr QUIT:powr=""
 DO Exponent()
 WRITE !,"Result= ",result,!
 RETURN
Exponent()
 SET result=num
 FOR i=1:1:powr-1 { SET result=result*num }
 RETURN

In the following example, DO invokes the Admit() method on the object referred to by pat. The method does not receive
parameters or return a value.

 DO pat.Admit()

38 ObjectScript Reference

ObjectScript Commands

In the following example, DO calls, in succession, the subroutines Init and Read1 in the current routine and the subroutine
Convert in routine Test.

 DO Init,Read1,Convert^Test

In the following example, DO uses an extended reference to call the routine fibonacci in a different namespace (the SAMPLES
namespace):

 NEW $NAMESPACE
 SET $NAMESPACE="USER"
 DO ^|"SAMPLES"|fibonacci

DO and GOTO

The DO command can be used to invoke a subroutine (with or without parameter passing), a procedure, or a user-supplied
function. At the completion of the call, InterSystems IRIS executes the next command following the DO command.

The GOTO command can only be used to invoke a subroutine without parameter passing. At the completion of the call,
InterSystems IRIS issues a QUIT, ending execution.

DO with Parameter Passing

When used with parameter passing, DO entryref explicitly passes one or more values to the called subroutine, procedure,
user-supplied function or object method. The passed values are specified as a comma-separated list with the param option.
With parameter passing, you must make sure that the called subroutine is defined with a parameter list. The subroutine
definition takes the form:

>label(param)

where label is the label name of the subroutine, procedure, user-supplied function or object method, and param is a comma
separated list of one or more unsubscripted local variable names. For example,

Main
 SET x=1,y=2,z=3
 WRITE !,"In Main ",x,y,z
 DO Sub1(x,y,z)
 WRITE !,"Back in Main ",x,y,z
 QUIT
Sub1(a,b,c)
 WRITE !,"In Sub1 ",a,b,c
 QUIT

The list of parameters passed by the DO command is known as the actual parameter list. The list of parameter variables
defined as part of the label of the coded routine is known as the formal parameter list. When DO calls the routine, the
parameters in the actual parameter list are mapped, by position, to the corresponding variables in the formal parameter list.
In the above example, the value of the first actual parameter (x) is placed in the first variable (a) of the subroutine’s formal
parameter list; the value of the second actual parameter (y) is placed in the second variable (b); and so on. The subroutine
can then access the passed values by using the appropriate variables in its formal parameter list.

If there are more variables in the actual parameter list than there are parameters in the formal parameter list, InterSystems
IRIS issues a <PARAMETER> error.

If there are more variables in the formal parameter list than there are parameters in the actual parameter list, the extra
variables are left undefined. In the following example, the formal parameter c is left undefined:

ObjectScript Reference 39

DO

Main
 SET x=1,y=2,z=3
 WRITE !,"In Main ",x,y,z
 DO Sub1(x,y)
 WRITE !,"Back in Main ",x,y,z
 QUIT
Sub1(a,b,c)
 WRITE !,"In Sub1 "
 IF $DATA(a) {WRITE !,"a=",a}
 ELSE {WRITE !,"a is undefined"}
 IF $DATA(b) {WRITE !,"b=",b}
 ELSE {WRITE !,"b is undefined"}
 IF $DATA(c) {WRITE !,"c=",c}
 ELSE {WRITE !,"c is undefined"}
 QUIT

You can specify a default value for a formal parameter, to be used when no actual parameter value is specified.

You can leave any variable undefined by omitting the corresponding parameter from the DO command’s actual parameter
list. However, you must include a comma as a place holder for each omitted actual parameter. In the following example,
the formal parameter b is left undefined:

Main
 SET x=1,y=2,z=3
 WRITE !,"In Main ",x,y,z
 DO Sub1(x,,z)
 WRITE !,"Back in Main ",x,y,z
 QUIT
Sub1(a,b,c)
 WRITE !,"In Sub1 "
 IF $DATA(a) {WRITE !,"a=",a}
 ELSE {WRITE !,"a is undefined"}
 IF $DATA(b) {WRITE !,"b=",b}
 ELSE {WRITE !,"b is undefined"}
 IF $DATA(c) {WRITE !,"c=",c}
 ELSE {WRITE !,"c is undefined"}
 QUIT

You can specify a variable number of parameters using ... syntax:

Main
 SET x=3,x(1)=10,x(2)=20,x(3)=30
 DO Sub1(x...)
 QUIT
Sub1(a,b,c)
 WRITE a," ",b," ",c
 QUIT

The DO command can pass parameters either by value (for example, DO Sub1(x,y,z)) or by reference (for example,
DO Sub1(.x,.y,.z)). You can mix passing by value and passing by reference within the same DO command. For further
details, refer to Parameter Passing in Using ObjectScript.

The following examples show the difference between passing by value and passing by reference:

Main /* Passing by Value */
 SET x=1,y=2,z=3
 WRITE !,"In Main ",x,y,z
 DO Sub1(x,y,z)
 WRITE !,"Back in Main ",x,y,z
 QUIT
Sub1(a,b,c)
 SET a=a+1,b=b+1,c=c+1
 WRITE !,"In Sub1 ",a,b,c
 QUIT

Main /* Passing by Reference */
 SET x=1,y=2,z=3
 WRITE !,"In Main ",x,y,z
 DO Sub1(.x,.y,.z)
 WRITE !,"Back in Main ",x,y,z
 QUIT
Sub1(&a,&b,&c) /* The & prefix is an optional by-reference marker */
 SET a=a+1,b=b+1,c=c+1
 WRITE !,"In Sub1 ",a,b,c
 QUIT

40 ObjectScript Reference

ObjectScript Commands

DO with Indirection

You can use indirection to supply a target subroutine location for DO. For example, you might implement a generalized
menu program by storing the various menu functions at different locations in a separate routine. In your main program
code, you could use name indirection to provide the DO command with the location of the function corresponding to each
menu choice.

You cannot use indirection with InterSystems IRIS object dot syntax. This is because dot syntax is parsed at compile time,
not at runtime.

In name indirection, the value of the expression to the right of the indirection operator (@) must be a name (that is, a line
label or a routine name). In the following code segment, name indirection supplies the DO with the location of a target
function in the routine Menu.

 READ !,"Enter the number for your choice: ",num QUIT:num=""
 DO @("Item"_num)^Menu

The DO command invokes the subroutine in Menu whose label is Item concatenated with the user-supplied num value (for
example, Item1, Item2, and so on).

You can also use the argument form of indirection to substitute the value of an expression for a complete DO argument.
For example, consider the following DO command:

 DO @(eref_":fstr>0")

This command calls the subroutine specified by the value of eref if the value of fstr is greater than 0.

For more information, refer to Indirection in Using ObjectScript.

DO with Argument Postconditionals

You can use argument postconditional expressions to select a target subroutine for a DO command. If the postconditional
expression evaluates to FALSE (0), InterSystems IRIS ignores the associated subroutine call. If the postconditional
expression evaluates to TRUE (1), InterSystems IRIS executes the associated subroutine call, then returns to the DO com-
mand. You can use postconditionals on both the DO command and on its arguments.

For example, consider the command:

 DO:F>0 A:F=1,B:F=2,C

The DO command has a postconditional expression; if F is not greater than 0, no part of the DO is executed. The DO
command’s arguments also have postconditional expressions. DO uses these argument postconditionals to select which
subroutine(s) (A, B, or C) to execute. All subroutines that fulfill the truth condition are executed, in the order presented.
Thus, in the above example, C, with no postconditional, is always executed: if F=1 both A and C are executed; if F=2, B
and C are executed; if F=3 (or any other number) C is executed. To establish C as a true default, do the following:

 DO:F>0 A:F=1,B:F=2,C:((F'=1)&&(F'=2))

In this example, one and only one subroutine is executed.

In the following example, the DO command takes a postconditional, and each of its arguments also takes a postconditional.
In this case, the first argument is not executed, because its postconditional is 0. The second argument is executed because
its postconditional is 1.

ObjectScript Reference 41

DO

Main
 SET x=1,y=2,z=3
 WRITE !,"In Main ",x,y,z
 DO:1 Sub1(x,y,z):0,Sub2(x,y,z):1
 WRITE !,"Back in Main ",x,y,z
 QUIT
Sub1(a,b,c)
 WRITE !,"In Sub1 ",a,b,c
 QUIT
Sub2(d,e,f)
 WRITE !,"In Sub2 ",d,e,f
 QUIT

Most Object (oref) methods invoked by DO can take an argument postconditional. However, $SYSTEM object methods
cannot take an argument postconditional. Attempted to do so generates a <SYNTAX> error.

Note that because InterSystems IRIS evaluates expressions in strict left-to-right order, an argument that contains expressions
is evaluated (and can generate an error) before InterSystems IRIS evaluates the argument postconditional.

When using argument postconditionals, make sure there are no unwanted side effects. For example, consider the following
command:

 DO @^Control(i):z=1

In this case, ^Control(i) contains the name of the subroutine to be called if the postconditional z=1 tests TRUE. Whether
or not z=1, InterSystems IRIS evaluates the value of ^Control(i) and resets the current global naked indicator accordingly.
If z=1 is FALSE, InterSystems IRIS does not execute the DO. However, it does reset the global naked indicator just as if
it had executed the DO. For more details on the naked indicator, see Naked Global Reference in Using Globals.

For more information on how postconditional expressions are evaluated, see Command Postconditional Expressions in
Using ObjectScript.

$TEST Behavior with DO

When you use DO to call a procedure, InterSystems IRIS preserves the value of $TEST by restoring it to its state at the
time of the call upon quitting the procedure. However, when you use DO to call a subroutine (either with or without
parameter passing), InterSystems IRIS does not preserve the value of $TEST across the call.

To save the $TEST value across a DO call, you can explicitly assign it to a variable before the call. You can then reference
the variable in code that follows the call.

See Also
• GOTO command

• XECUTE command

• NEW command

• QUIT command

• $CASE function

• $ESTACK special variable

• $STACK special variable

• Subroutines in Using ObjectScript

• Procedures in Using ObjectScript

• Parameter Passing in Using ObjectScript

42 ObjectScript Reference

ObjectScript Commands

DO WHILE
Executes code while a condition exists.

DO {code} WHILE expression,...
D {code} WHILE expression,...

Arguments

A block of ObjectScript commands enclosed in curly braces.code

A boolean test condition expression, or a comma-separated list of boolean test
condition expressions.This expression can, optionally, be enclosed in parentheses.

expression

Description
DO WHILE executes code, then evaluates expression. If expression evaluates to TRUE, DO WHILE loops and re-executes
code. If expression is not TRUE, code is not re-executed, and the next command following DO WHILE is executed.

Note that DO WHILE is always written in block-oriented form. The code to be executed is placed between the DO and
the WHILE keywords, and is enclosed by curly braces.

An opening or closing curly brace may appear on its own code line or on the same line as a command. An opening or
closing curly brace may even appear in column 1 (though this is not recommended). It is a recommended programming
practice to indent curly braces to indicate the beginning and end of a nested block of code. No whitespace is required before
or after an opening curly brace. No whitespace is required before or after a closing curly brace. No whitespace is required
between the WHILE keyword and an expression enclosed in parentheses. A comment may appear between the closing
curly brace and the WHILE keyword.

The DO keyword may be abbreviated.

DO WHILE (unlike the unrelated DO command) does not create a new execution level. Commands that are sensitive to
the execution level, such as NEW and SET $ZTRAP, that are invoked during the DO WHILE loop remain in effect after
the loop concludes.

Arguments

code

A block of one or more ObjectScript commands. The code block may span several lines. The code block is enclosed by
curly braces. The commands and comments within the code block and arguments within commands may be separated from
one another by one or more blank spaces and/or line returns. However, as in all ObjectScript commands, each command
keyword must be separated from its first argument by exactly one space.

expression

A test condition which can take the form of a single expression or a comma-separated list of expressions. For an expression
list, InterSystems IRIS evaluates the individual expressions in left to right order. It stops evaluation if it encounters an
expression that is FALSE. If all expressions evaluate to TRUE, InterSystems IRIS re-executes the code commands. DO
WHILE executes repeatedly, testing expression for each loop. If any expression evaluates to FALSE, InterSystems IRIS
ignores any remaining expressions, and does not loop. It executes the next command after DO WHILE.

ObjectScript evaluates expressions in strictly left-to-right order. The programmer must use parentheses to establish any
precedence.

Note: InterSystems IRIS performs no validation of expression before executing code. Therefore, DO WHILE always
executes its code loop once, regardless of whether expression can successfully execute.

ObjectScript Reference 43

DO WHILE

Examples
The following examples show first a DO WHILE in which expression is TRUE, and then a DO WHILE in which
expression is FALSE. When expression is FALSE, the code block is executed once.

DoWhileTrue
 SET x=1
 DO {
 WRITE !,"Looping",x
 SET x=x+1
 } WHILE x<10
 WRITE !,"DONE"

This program writes Looping1 through Looping9 and then DONE.

DoWhileFalse
 SET x=11
 DO {
 WRITE !,"Looping",x
 SET x=x+1
 } WHILE x<10
 WRITE " DONE"

This program writes Looping11 DONE.

Notes

DO WHILE and WHILE

The DO WHILE command executes the loop once and then tests expression. The WHILE command tests expression
before executing the loop.

DO WHILE and CONTINUE

Within the code block of a DO WHILE command, encountering a CONTINUE command causes execution to immediately
jump to the WHILE keyword. The DO WHILE command then evaluates the WHILE expression test condition, and, based
on that evaluation, determines whether to re-execute the code block loop. Thus, the CONTINUE command has exactly
the same effect on execution as reaching the closing curly brace of the code block.

The following example only displays the results of its odd-numbered loops:

 SET x=0
 DO {SET x=x+1 IF x#2=0 {CONTINUE} WRITE !,"Loop ",x} WHILE x<20
 WRITE !,"DONE"

DO WHILE, QUIT, and RETURN

The QUIT command within the code block ends the DO WHILE loop and transfers execution to the command following
the WHILE keyword, as shown in the following example:

Testloop
 SET x=1
 DO {
 WRITE !,"Looping",x
 QUIT:x=5
 SET x=x+1
 } WHILE x<10
 WRITE !,"DONE"

This program writes Looping1 through Looping5 and then DONE.

DO WHILE code blocks may be nested. That is, a DO WHILE code block may contain another flow-of-control loop
(another DO WHILE, or a FOR or WHILE code block). A QUIT in an inner nested loop breaks out of the inner loop, to
the next enclosing outer loop. This is shown in the following example:

44 ObjectScript Reference

ObjectScript Commands

Nestedloops
 SET x=1,y=1
 DO {
 WRITE "outer loop ",!
 DO {
 WRITE "inner loop "
 WRITE " y=",y,!
 QUIT:y=7
 SET y=y+2
 } WHILE y<100
 WRITE "back to outer loop x=",x,!!
 SET x=x+1
 } WHILE x<6
 WRITE "Done"

You can use RETURN to terminate execution of a routine at any point, including from within a DO WHILE loop or nested
loop structure. RETURN always exits the current routine, returning to the calling routine or terminating the program if
there is no calling routine. RETURN always behaves the same, regardless of whether it is issued from within a code block.

DO WHILE and GOTO

A GOTO command within the code block may direct execution to a label outside the loop, terminating the loop. (A label
is also sometimes referred to as a tag.) A GOTO command within the code block may direct execution to a label within
the same code block. A GOTO can be used to exit a nested code block. Other uses of GOTO, though supported, are not
recommended.

The following example uses GOTO to exit a DO WHILE loop:

mainloop
 DO {
 WRITE !,"In an infinite DO WHILE loop"
 GOTO label1
 WRITE !,"This should not display"
 } WHILE 1=1
 WRITE !,"This should not display"
label1
 WRITE !,"Went to label1 and quit"
 QUIT

The following example uses GOTO to transfer execution within a DO WHILE loop:

mainloop ; Example of a GOTO to within the code block
 SET x=1
 DO {
 WRITE !,"In the DO WHILE loop"
 GOTO label1
 WRITE !,"This should not display"
label1
 WRITE !,"Still in the DO WHILE loop after GOTO"
 SET x=x+1
 WRITE !,"x= ",x
 } WHILE x<3
 WRITE !,"DO WHILE loop done"

See Also
• WHILE command

• FOR command

• IF command

• CONTINUE command

• GOTO command

• QUIT command

• RETURN command

ObjectScript Reference 45

DO WHILE

ELSE
Clause of block-oriented IF command.

ELSE { code }

Refer to IF command for complete syntax.

Description
ELSE is not a separate command, but a clause of the block-oriented IF command. You can specify a single ELSE clause
as the final clause of an IF command, or you can omit the ELSE clause. Refer to the IF command for details and examples.

Note: An earlier version of the ELSE command may exist in legacy applications where it is used with a line-oriented
IF command. These commands may be recognized because they do not use curly braces. The old and new forms
of IF and ELSE are syntactically different and should not be combined; therefore, an IF of one type should not
be paired with an ELSE of the other type.

The earlier line-oriented ELSE command could be abbreviated as E. The block-oriented ELSE keyword cannot
be abbreviated.

The ELSE keyword must be followed by an opening and closing curly brace ({) and (}). Usually these curly braces enclose
a block of code. However, an ELSE with no code block is permissible, as in the following:

 SET x=1
Loop
 IF x=1{
 WRITE "Once only"
 SET x=x+1
 GOTO Loop
 }
 ELSE{}
 WRITE !,"All done"

There are no whitespace restrictions on the ELSE keyword.

See Also
• IF command

• Flow of Control Commands in Using ObjectScript

46 ObjectScript Reference

ObjectScript Commands

ELSEIF
Clause of block-oriented IF command.

ELSEIF expression,... { code }

Refer to IF command for complete syntax.

Description
ELSEIF is not a separate command, but a clause of the block-oriented IF command. You can specify one or more ELSEIF
clauses in an IF command, or you can omit the ELSEIF clause. Refer to the IF command for details and examples.

See Also
• IF command

• Flow of Control Commands in Using ObjectScript

ObjectScript Reference 47

ELSEIF

FOR
Executes a block of code repeatedly, testing at the beginning of each loop.

FOR var=forparameter { code }
F var=forparameter { code }

FOR var=forparameter,forparameter2,... { code }
F var=forparameter,forparameter2,... { code }

where forparameter can be:

expr
start:increment
start:increment:end

Arguments

Optional — A local variable or instance variable initialized by the FOR command.
Commonly, this a numeric counter that is incremented each time the code block is
executed.

var

Optional — The value assigned to var before executing the code block. Can be a
single value or a comma-separated list of values.

expr

Optional — The numeric value assigned to var before the first execution of the code
block. Used with increment and (optionally) end to govern multiple iterations of the
FOR loop.

start

Optional — The numeric value used to increment (or decrement) var after each
iteration of the FOR loop.

increment

Optional — The numeric value used to terminate the FOR loop. Looping ends when
var is incremented to a value equal to or greater than end.

end

A block of ObjectScript commands enclosed in curly braces.code

Description
FOR is a block-oriented command. Commonly, it consists of a counter and an executable block of code enclosed in curly
braces. The number of times this block of code is executed is determined by the counter, which is tested at the top of each
loop. Less commonly, a FOR command does not specify an incrementing counter. It can be argumentless (looping infinitely
until exited), or can specify an expression as its argument (looping once).

The FOR command has two basic forms:

• Without an argument

• With an argument

FOR Without an Argument

FOR without an argument executes the loop code block infinitely until exited by a command within the code block. Inter-
Systems IRIS repeats the commands within the curly braces until it encounters a QUIT, RETURN, or GOTO command
that breaks out of the loop. The following example exits the loop when x=3:

48 ObjectScript Reference

ObjectScript Commands

 SET x=8
 FOR { WRITE "Running loop x=",x,!
 SET x=x-1
 QUIT:x=3
 }
 WRITE "Next command after FOR code block"

An error, of course, also breaks out of a FOR loop, as shown in the following example. This FOR loop is exited by a
divide-by-zero error, caught by the CATCH block:

 TRY {
 SET x=8
 FOR { SET y=4/x
 WRITE "Running loop 4/",x,"=",y,!
 SET x=x-1
 }
 WRITE "Next command after FOR code block"
 }
 CATCH exp {
 WRITE !,"this is the exception handler",!
 IF 1=exp.%IsA("%Exception.SystemException") {
 WRITE "Name: ",$ZCVT(exp.Name,"O","HTML"),!
 WRITE "Location: ",exp.Location,!
 WRITE "Code: ",exp.Code
 }
 ELSE {WRITE "Unexpected exception type",! }
 RETURN
 }

FOR With an Argument

The action FOR performs depends on the argument form you use:

FOR var=expr executes the code block once, setting var to the value of expr. FOR var=expr1,expr2...,exprN executes the
code block N times, setting var for each loop to each successive value of expr.

FOR var=start:increment executes the code block infinitely, unless exited. On the first iteration, InterSystems IRIS sets
var to the value of start. Each execution of the FOR command increments the var value by the specified increment value.
Execution repeats until it encounters a QUIT, RETURN, or GOTO command in the code block.

FOR var=start:increment:end sets var to the value of start. InterSystems IRIS then executes the code block based on the
conditions described in this table:

increment is negativeincrement is positive

If start < end, do not execute the code block. Stop
looping when var is equal to or less than end, or if
InterSystems IRIS encounters a QUIT, RETURN, or
GOTO command.

If start > end, do not execute the code block. Stop
looping when var is equal to or greater than end, or
if InterSystems IRIS encounters a QUIT, RETURN,
or GOTO command.

InterSystems IRIS evaluates the start, increment, and end values when it begins execution of the loop. Any changes made
to these values within the loop are ignored and have no effect on the number of loop executions.

When the loop terminates, var contains a value that reflects the increment resulting from the last execution of the loop.
However, var is never incremented beyond the maximum value specified in end.

A FOR loop can include multiple comma-separated forparameter arguments, but only one var argument. Valid syntax is
as follows:

FOR var=start1:increment1:end1,start2:increment2:end2

This var=forparameter syntax must be specified as a single line of code. Line breaks are not permitted in a forparameter
argument or between comma-separated forparameter arguments. Line breaks are permitted before or after the curly brace
code delimiters and within the code block.

ObjectScript Reference 49

FOR

Blank spaces are permitted, but not required, in forparameter arguments. Therefore FOR i=1:1:10{code} and FOR i = 1
: 1 : 10 { code } are equally valid syntax.

Arguments

var

The var argument can be a simple local variable, a subscripted local variable, or an instance variable (such as i%property).
The FOR command initializes (or sets) this variable; var does not need to be defined prior to the FOR command.

• When using loop counter syntax, var is a local variable that holds the current counter value for the FOR loop. It initially
contains the numeric value specified by start. It is then recalculated using increment for each repetition of the FOR
loop.

• When using var=expr syntax, a local variable is initialized to the expr value.

expr

The value InterSystems IRIS assigns to var before executing the loop commands. The value of expr can be specified as a
literal or any valid expression. An expr can be a single value or a comma-separated list of values. If a single value, Inter-
Systems IRIS executes the FOR loop once, supplying this var value to the code block. If a comma-separated list of values,
InterSystems IRIS executes the FOR loop as many times as there are values, each loop equating var to the value, and
supplying this var value to the code block

start

The numeric value InterSystems IRIS assigns to var on the first iteration of the FOR loop. The value of start can be spec-
ified as a literal or any valid expression; InterSystems IRIS evaluates start for its numeric value. A non-numeric start value
is evaluated as 0.

increment

The numeric value InterSystems IRIS uses to increment var after each iteration of the FOR loop. It is required if you
specify start. The value of increment can be specified as a literal or any valid expression; InterSystems IRIS evaluates
increment for its numeric value. increment can be an integer or a fractional number; it can be a positive number (to increment)
or a negative number (to decrement).

A value of 0 or a non-numeric increment value causes the FOR loop to repeat infinitely, unless exited. This is true even if
end=0. However, if start is greater than end, the loop does not execute and an increment of 0 is ignored.

end

The numeric value InterSystems IRIS uses to terminate a FOR loop. When var equals (or exceeds) this value, the FOR
loop is executed one last time and then terminated. The value of end can be specified as a literal or any valid expression;
InterSystems IRIS evaluates end for its numeric value.

If start=end the FOR loop executes once. If start is greater than end (and increment is a positive number) the FOR loop
does not execute.

code

A block of one or more ObjectScript commands enclosed in curly braces. This executable block of code can contain multiple
commands, labels, comments, line returns, indents, and blank spaces as needed. When the FOR command concludes,
execution continues with next command after the closing curly brace.

An opening or closing curly brace may appear on its own code line or on the same line as a command. An opening or
closing curly brace may even appear in column 1 (though this is not recommended). It is a recommended programming
practice to indent curly braces to indicate the beginning and end of a nested block of code. No whitespace is required before
or after an opening curly brace. No whitespace is required before a closing curly brace, including a curly brace that follows

50 ObjectScript Reference

ObjectScript Commands

an argumentless command. There is only one whitespace requirement for curly braces: a closing curly brace must be separated
from the command that follows it by a space, tab, or line return.

Exiting a FOR Loop
You can exit a FOR loop by issuing a QUIT, RETURN, CONTINUE, or GOTO:

• QUIT exits the current FOR block structure. Therefore, a QUIT in a FOR block causes InterSystems IRIS to begin
execution at the next line after the FOR block. A QUIT only exits the current FOR block; if a FOR block is nested
in another FOR block (or in any other block structure), issuing a QUIT exits the inner FOR block to the outer block
structure.

QUIT behavior within a FOR block (and some other block structures) differs from QUIT behavior when not in a
block structure. A QUIT outside of one of these block structures exits the current routine, not just the current code
block. For further details, refer to the QUIT command reference page.

A QUIT exits a FOR block only if the QUIT appears within the FOR block. If the FOR loop invokes a subroutine,
issuing a QUIT in the subroutine terminates the subroutine, not the FOR loop that invoked it.

• RETURN exits the current routine, whether or not it is issued from within a FOR block structure.

• CONTINUE exits the current FOR loop. It causes execution to immediately jump back to the FOR command. The
FOR command then increments and evaluates its arguments, and, based on that evaluation, determines whether to re-
execute the code block loop. Thus, the CONTINUE command has exactly the same effect on execution as reaching
the closing curly brace of the code block.

• GOTO can exit the current FOR block structure by transferring control outside of the FOR code block. A FOR loop
is not terminated by a GOTO that transfers control within the FOR code block.

FOR Loop or WHILE Loop

You can use either a FOR or a WHILE to perform the same operation: loop until an event causes execution to break out
of the loop. However, which loop construct you use has consequences for performing single-step (BREAK "S+" or BREAK
"L+") debugging on the code module.

A FOR loop pushes a new level onto the stack. A WHILE loop does not change the stack level. When debugging a FOR
loop, popping the stack from within the FOR loop (using BREAK "C" GOTO or QUIT 1) allows you to continue single-
step debugging with the command immediately following the end of the FOR command construct. When debugging a
WHILE loop, issuing a using BREAK "C" GOTO or QUIT 1 does not pop the stack, and therefore single-step debugging
does not continue following the end of the WHILE command. The remaining code executes without breaking.

For further details, refer to the BREAK command and Debugging with BREAK in the “Command-line Routine Debugging”
chapter of Using ObjectScript.

Examples

Argumentless FOR

In the following example, demonstrating argumentless FOR, the user is prompted repeatedly for a number that is then
passed to the Calc subroutine by the DO command. The FOR loop terminates when the user enters a null string (presses
ENTER without inputting a number), which causes the QUIT command to execute.

Mainloop
 FOR {
 READ !,"Number: ",num
 QUIT:num=""
 DO Calc(num)
 }
Calc(a)
 WRITE !,"The number squared is ",a*a
 QUIT

ObjectScript Reference 51

FOR

Using FOR var=expr

When you specify var=expr, InterSystems IRIS executes the FOR loop as many times as there are comma-separated values
in expr. The value(s) in expr can be a literal or any valid expression. If you specify an expression, it must evaluate to a
single value.

In the following example, the FOR command executes the code block once, with num having the value 4. It writes the
number 12:

Loop
 SET val=4
 FOR num=val {
 WRITE num*3,!
 }
 WRITE "Next command after FOR code block"

In the following example, the FOR command executes the code block once, with alpha(7) having the value “abcdefg”:

Loop
 SET val="abc"
 FOR alpha(7)=val_"defg" {
 WRITE alpha(7),!
 }
 WRITE "Next command after FOR code block"

In the following example, the FOR command executes the code block eight times, supplying each successive perfect
number to the code block:

 FOR pnum=6,28,496,8128,33550336,8589869056,137438691328,2305843008139952128 {
 WRITE "Perfect number ",pnum
 SET rp=$REVERSE(pnum)
 IF 54=$ASCII(rp,1) {
 WRITE " ends in 6",! }
 ELSEIF 56=$ASCII(rp,1),50=$ASCII(rp,2) {
 WRITE " ends in 28",! }
 ELSE {WRITE " is something unknown to mathematics",! }
 }

Using FOR var=start:increment:end

The arguments start, increment, and end specify a start, increment, and end value, respectively. All three are evaluated as
numbers. They can be integer or real, positive or negative. If you supply string values, they are converted to their numeric
equivalents at the start of the loop.

When InterSystems IRIS first enters the loop, it assigns the start value to var and compares the var value to the end value.
If the var value is less than the end value (or greater than it, in the case of a negative increment value), InterSystems IRIS
executes the loop commands. It then updates the var value using the increment value. (The var value is decremented if a
negative increment is used.)

Execution of the loop continues until the incrementing of the var value would exceed the end value (or until InterSystems
IRIS encounters a QUIT, RETURN, or GOTO). At that point, to prevent var from exceeding end, InterSystems IRIS
suppresses variable assignment and loop execution ends. If the increment causes the var value to equal the end value,
InterSystems IRIS executes the FOR loop one last time and then terminates the loop.

The following code executes the WRITE command repetitively to output, in sequence, all of the characters in string1,
except for the last character. Because the end value is specified as len-1, the last character is not output. This is because
the test is performed at the top of the loop, and the loop is terminated when the variable value (index) exceeds (not just
matches) the end value (len-1).

Stringwriteloop
 SET string1="123 Primrose Path"
 SET len=$LENGTH(string1)
 FOR index=1:1:len-1 {
 WRITE $EXTRACT(string1,index)
 }

52 ObjectScript Reference

ObjectScript Commands

Using FOR var=start:increment

In this form of the FOR command there is no end value; the loop must contain a QUIT, RETURN, or GOTO command
to terminate the loop.

The start and increment values are evaluated as numbers. They can be integer or real, positive or negative. If string values
are supplied, they are converted to their numeric equivalents at the start of the loop. InterSystems IRIS evaluates the start
and increment values when it begins execution of the loop. Any changes made to these values within the loop are ignored.

When InterSystems IRIS first enters the loop, it assigns the start value to var and executes the loop commands. It then
updates the var value using the increment value. (The var value is decremented if a negative increment is used.) Execution
of the loop continues until InterSystems IRIS encounters a QUIT, RETURN, or GOTO within the loop.

The following example uses start:increment syntax to return all of the multiples of 7 that are less than three digits in length:

 FOR i(1)=0:7 {
 QUIT:$LENGTH(i(1))=3
 WRITE "multiple of 7 = ",i(1),! }

The following example uses start:increment syntax to compute an average for a series of user supplied numbers. The
postconditional QUIT is included to terminate execution of the loop when the user enters a null string (that is, presses
ENTER without inputting a value). When the postconditional expression (num="") tests TRUE, InterSystems IRIS executes
the QUIT and terminates the loop.

The loop counter (the i variable) is used to keep track of how many numbers have been entered. i is initialized to 0 because
the counter increment occurs after the user inputs a number. InterSystems IRIS terminates the loop when the user enters a
null. After the loop is terminated, the SET command references i (as a local variable) to calculate the average.

Averageloop
 SET sum=0
 FOR i=0:1 {
 READ !,"Number: ",num
 QUIT:num=""
 SET sum=sum+num
 }
 SET average=sum/i

Using FOR with Multiple forparameters

A FOR command can contain only one var= argument, but can contain multiple forparameter arguments, specified as a
comma-separated list. For example, the syntax var=expr1,expr2,expr3 would cause the code block to be executed three
times, with a different var value for each execution.

These forparameter arguments are evaluated and executed in strict left-to-right order. Therefore an error in one forparameter
does not prevent the execution of the forparameters that precede it.

A single FOR command can contain both types of parameter syntax: expr syntax and start:increment:end syntax.

The following example combines expr syntax with start:increment:end syntax. The two forparameters are separated by a
comma. The first time through the FOR, InterSystems IRIS uses the expr syntax, and invokes the Test subroutine with x
equal to the value of y. In the second (and subsequent) iterations, InterSystems IRIS uses the start:increment:end syntax.
It sets x to 1, then 2, etc. On the final iteration, x=10.

Mainloop
 SET y="beta"
 FOR x=y,1:1:10 {
 DO Test
 }
 QUIT
Test
 WRITE !,"Running test number ",x
 QUIT

The following example is a sampling program that includes three forparameter arguments with start:increment:end syntax.
It sets i to 1, then increments single-digit numbers by 1 for 1 through 10; the second forparameter takes the i value of 10

ObjectScript Reference 53

FOR

and increments it by 10s through 100; the third forparameter takes the i value of 100 and increments it by 100s through
1000. Note that this example repeats the 10 and 100 values:

 FOR i=1:1:10,i:10:100,i:100:1000 {WRITE i,!}

The following example performs the same operation as the previous example, without repeating the 10 and 100 values:

 FOR i=1:1:9,i+1:10:99,i+10:100:1000 {WRITE i,!}

Incrementing with Argumentless FOR

The argumentless FOR operates the same as the FOR var=start:increment form. The only difference is that it does not
provide a way to keep track of the number of loop executions.

The following example shows how the previous loop counter example might be rewritten using the argumentless FOR.
The assignment i=i+1 replaces the loop counter.

Average2loop
 SET sum=0
 SET i=0
 FOR {
 READ !,"Number: ",num QUIT:num=""
 SET sum=sum+num,i=i+1
 }
 SET average=sum/i
 WRITE !!,"Average is: ",average
 QUIT

Notes

FOR and NEW

A NEW command can affect var. Issuing an argumentless NEW command or an exclusive NEW command (that does not
specifically exclude var) in the body of the FOR loop can result in var being undefined in the new frame context.

A NEW command that does not include var has no effect on FOR loop execution, as shown in the following example:

 SET a=1,b=1,c=8
 FOR i=a:b:c {
 WRITE !,"count is ",i
 NEW a,c
 WRITE " loop"
 NEW (i)
 WRITE " again"
 }

FOR and Watchpoints

You have limited use of watchpoints with FOR. If you establish a watchpoint for the control (index) variable of a FOR
command, InterSystems IRIS triggers the specific watchpoint action only on the initial evaluation of each FOR command
argument. This restriction is motivated by performance considerations.

The following example contains three kinds of FOR command arguments for the watched variable x: a range, with initial
value, increment, and limit (final value); a single value; and a range with initial value, increment, and no limit. Breaks occur
when x has the initial values 1, 20, and 50.

USER>ZBREAK *x
USER>FOR x=1:1:10,20,50:2 {SET t=x QUIT:x>69}
<BREAK>
USER 2f0>WRITE
x=1
USER 2f0>g
USER>FOR x=1:1:10,20,50:2 {SET t=x QUIT:x>69}
<BREAK>
USER 2f0>WRITE
t=10
x=20
USER> 2f0>g
USER>FOR x=1:1:10,20,50:2 {SET t=x QUIT:x>69}

54 ObjectScript Reference

ObjectScript Commands

<BREAK>
USER 2f0>WRITE
t=20
x=50
USER 2f0>g
USER>WRITE
t=70
x=70

See Also
• DO WHILE command

• WHILE command

• IF command

• CONTINUE command

• DO command

• QUIT command

• RETURN command

ObjectScript Reference 55

FOR

GOTO
Transfers control.

GOTO:pc
GOTO:pc goargument,...

G:pc
G:pc goargument,...

where goargument is:

location:pc

Arguments

Optional — A postconditional expression.pc

Optional — The point to which control will be transferred.location

Description
The GOTO command has two forms:

• Without an argument

• With an argument

GOTO Without an Argument

GOTO without an argument resumes normal program execution after InterSystems IRIS encounters an error or a BREAK
command in the currently executing code. You can use the argumentless GOTO only at the Terminal prompt.

The following example shows the use of an argumentless GOTO. In this example, the second WRITE is not executed
because of the <BREAK> error; issuing a GOTO resumes execution, executing the second WRITE:

USER>WRITE "before" BREAK WRITE "after"
before
WRITE "before" BREAK WRITE "after"
 ^
<BREAK>
USER 1S0>GOTO
after
USER>

Note that there must be two spaces after the BREAK command.

If a NEW command is in effect when you issue an argumentless GOTO, InterSystems IRIS issues a <COMMAND> error,
and the new context is maintained. Use the QUIT 1 command, then argumentless GOTO to resume after a NEW.

Argumentless GOTO can also be used at the Terminal prompt to continue execution after an error. See Processing Errors
at the Terminal Prompt in the “Error Processing” chapter of Using ObjectScript.

GOTO With an Argument

GOTO with the argument location transfers control to the specified location. If you specify a postconditional expression
on either the command or the argument, InterSystems IRIS transfers control only if the postconditional expression evaluates
to TRUE (nonzero).

You can use GOTO location from the Terminal prompt to resume an interrupted program at a different location.

You can specify a $CASE function as a GOTO command argument.

56 ObjectScript Reference

ObjectScript Commands

Arguments

pc

An optional postconditional expression that can make the command conditional. If the postconditional expression is appended
to the GOTO command keyword, InterSystems IRIS executes the GOTO command if the postconditional expression is
true (evaluates to a nonzero numeric value). InterSystems IRIS does not execute the GOTO command if the postconditional
expression is false (evaluates to zero). If the postconditional expression is appended to an argument, InterSystems IRIS
executes the argument if the postconditional expression is true (evaluates to a nonzero numeric value). If the postconditional
expression is false (evaluates to zero), InterSystems IRIS skips that argument and evaluates the next argument (if there is
one) or the next command. For further details, refer to Command Postconditional Expressions in Using ObjectScript.

location

The point to which control will be transferred. It is required in routine code. It is optional from the Terminal prompt. You
can specify location as a single value or as a comma-separated list of values (with postconditionals) and can take any of
the following forms:

label+offset specifies a line label within the current routine. The optional +offset is a nonnegative integer that specifies the
number of lines after the label at which execution is to start. The offset counts lines of code (including label lines), and
counts comment lines; offset does not count blank lines and blank lines within comments. However, offset does count all
Embedded SQL lines, including all blank lines.

label+offset^routine specifies a line label within the named routine, which resides on disk. InterSystems IRIS loads the
routine from disk and continues execution at the indicated label. The optional +offset is a nonnegative integer that specifies
the number of lines after the label at which execution is to start.

^routine specifies a routine that resides on disk. InterSystems IRIS loads the routine from disk and continues execution at
the first line of executable code within the routine. If the routine has been modified, InterSystems IRIS loads the updated
version of the routine when GOTO invokes the routine. Unlike the DO command, GOTO does not return to the invoking
program following routine execution. If you specify a nonexistent routine, InterSystems IRIS issues a <NOROUTINE>
error message. For more information, refer to the $ZERROR special variable.

Note: GOTO does not support extended routine reference. To execute a routine in another namespace, use the DO
command.

You can also reference location as a variable containing any of the above forms. In this case, though, you must use name
indirection. location cannot specify a subroutine label that is defined with a formal parameter list or the name of a user-
defined function or procedure. If you specify a nonexistent label, InterSystems IRIS issues a <NOLINE> error message.
For more information, refer to Indirection in Using ObjectScript.

You cannot specify an offset when calling a IRISSYS % routine. If you attempt to do so, InterSystems IRIS issues a
<NOLINE> error.

Examples
In the following example, GOTO directs execution to one of three locations depending on the user-supplied age value.
The location is a subroutine label that is stored in variable loc and then referenced by means of name indirection (@loc).

mainloop
 SET age=""
 READ !,"What is your age? ",age QUIT:age=""
 IF age<30 {
 SET loc="Young" }
 ELSEIF (age>29)&(age<60) {
 SET loc="Midage" }
 ELSEIF age>59 {
 SET loc="Elder" }
 ELSE {
 WRITE "data input error"
 QUIT }
 GOTO @loc

ObjectScript Reference 57

GOTO

 QUIT
Young
 WRITE !,"You're still young"
 QUIT
Midage
 WRITE !,"You're in your prime"
 QUIT
Elder
 WRITE !,"You have a lifetime of wisdom to impart"
 QUIT

Note that this type of GOTO using name indirection is not permitted from within a procedure block.

As an alternative, you could omit the IF command and code the GOTO with a comma-separated list using postconditionals
on the arguments, as follows:

 GOTO Young:age<30,Midage:(age>29)&(age<60),Elder:age>59

You might also code this example using a DO command to call the appropriate subroutine location. In this case, though,
when InterSystems IRIS encounters a QUIT, it returns control to the command following the DO.

The following example shows how offset counts lines of code. It counts the intervening label line and the comment line; it
does not count the blank line:

Main
 GOTO Branch+7
 QUIT
Branch
 WRITE "Line 1",!
SubBranch
 WRITE "Line 3",!
 /* comment line */
 WRITE "Line 5",!

 WRITE "Line 6",!
 WRITE "Line 7",!
 WRITE "Line 8",!
 QUIT

Notes

How Control is Transferred When QUIT is Encountered

Unlike the DO command, GOTO transfers control unconditionally. When InterSystems IRIS encounters a QUIT in a
subroutine called by DO, it passes control to the command following the most recent DO.

When InterSystems IRIS encounters a QUIT after a GOTO transfer, it does not return control to the command following
the GOTO. If there was a preceding DO, it returns control to the command following the most recent DO. If there was no
preceding DO, then it returns to the Terminal.

In the following code sequence, the QUIT in C returns control to the WRITE command following the DO in A:

testgoto
A
 WRITE !,"running A"
 DO B
 WRITE !,"back to A, all done"
 QUIT
B
 WRITE !,"running B"
 GOTO C
 WRITE !,"this line in B should never execute"
 QUIT
C
 WRITE !,"running C"
 QUIT

Using GOTO with Code Blocks

GOTO can be used to exit a code block, but not to enter a code block.

58 ObjectScript Reference

ObjectScript Commands

If you use GOTO inside a FOR, IF, DO WHILE, or WHILE loop, you can go to a location outside of all code blocks,
a location within the current code block, or go from a nested code block to a location in the code block that encloses it.
You cannot go from a code block to a location within another code block, either an independent code block, or a code block
nested within the current code block. For code examples, refer to the individual commands.

A GOTO to a location outside a code block terminates the loop. A GOTO to a location within a code block does not ter-
minate the loop. A GOTO from a nested code block to an enclosing code block terminates the inner (nested) loop, but not
the outer loop.

A GOTO can be used to exit a TRY or CATCH code block, but not to enter one of these code blocks. You also cannot
specify a GOTO to a label on the same line as the TRY or CATCH keyword. Attempting to do so results in a <NOLINE>
error.

GOTO Restrictions

The following GOTO operations are not permitted:

• GOTO should not be used to enter or exit a procedure.

• GOTO cannot be used with name indirection (GOTO @name) within a procedure block.

See Also
• DO command

• FOR command

• IF command

• DO WHILE command

• WHILE command

• BREAK command

• QUIT command

• $CASE function

• Processing Errors at the Terminal Prompt in the “Error Processing” chapter of Using ObjectScript

• Debugging With BREAK in the “Command-line Routine Debugging” chapter of Using ObjectScript

ObjectScript Reference 59

GOTO

HALT
Terminates execution of the current process.

HALT:pc
H:pc

Argument

Optional — A postconditional expression.pc

Description
The HALT command terminates execution of the current process. If a $HALT special variable is defined in the current
context (or a prior context), issuing a HALT command invokes the halt trap routine specified in $HALT, rather than ter-
minating the current process. Typically, a halt trap routine performs some cleanup or reporting operations, then issues a
second HALT command to terminate execution.

HALT behaves the same whether it is encountered by running routine code or is entered from the Terminal prompt. In
either case, it terminates the current process.

HALT has the same minimum abbreviation as the HANG command. HANG is distinguished by its required hangtime
argument.

Effects of HALT

When HALT terminates a process, the system automatically relinquishes all locks and closes all devices owned by the
process. This ensures that the halted process does not leave behind locked variables or unreleased devices.

If there is a transaction in progress when HALT terminates a process, the resolution of the transaction depends on the type
of process. A HALT in a background job (non-interactive process) always rolls back the transaction in progress. A HALT
in an interactive process (such as using Terminal to run a routine) prompts you to resolve the transaction in progress. The
prompt is as follows:

You have an open transaction.
Do you want to perform a (C)ommit or (R)ollback? R =>

Specify “C” to commit the current transaction. Specify “R” (or just press the Enter key) to roll back the current transaction.

Halt Traps

Execution of a HALT command is interrupted by a halt trap. Halt traps are established using the $HALT special variable.

If a halt trap has been established for the current context frame, issuing a HALT command invokes the halt trap routine
specified by $HALT. The HALT command itself is not executed.

If a halt trap has been established for a lower context frame, a HALT command removes context frames from the frame
stack until the context frame with the halt trap is reached. HALT then invokes the halt trap routine specified by $HALT
and ceases execution.

Arguments

pc

An optional postconditional expression that can make the command conditional. InterSystems IRIS executes the HALT
command if the postconditional expression is true (evaluates to a nonzero numeric value). InterSystems IRIS does not
execute the command if the postconditional expression is false (evaluates to zero). For further details, refer to Command
Postconditional Expressions in Using ObjectScript.

60 ObjectScript Reference

ObjectScript Commands

Examples
In the following example, HALT allows the user to end the current application and return to the operating system. The
system performs all necessary cleanup for the user. Note the use of the postconditional on the command.

Main
 READ !,"Do you really want to stop (Y or N)? ",ans QUIT:ans=""
 HALT:(ans["Y")!(ans="y")
 DO Start
Start()
 WRITE !,"This is the Start routine"
 QUIT

In the following example, HALT invokes the halt trap routine specified in $HALT. In this case, it is the second HALT
command that actually halts execution. (For demonstration purposes, this example uses HANG statements so that you have
time to view the displayed output.)

Main
 NEW $ESTACK
 SET $HALT="OnHalt"
 WRITE !,"Main $ESTACK= ",$ESTACK // 0
 HANG 2
 DO SubA
 WRITE !,"this should never display"
SubA()
 WRITE !,"SubA $ESTACK= ",$ESTACK // 1
 HANG 2
 HALT // invoke the OnHalt routine
 WRITE !,"this should never display"
OnHalt()
 WRITE !,"OnHalt $ESTACK= ",$ESTACK // 0
 HANG 2
 // clean-up and reporting operations
 HALT // actually halt the current process

$SYSTEM.Process.Terminate()
You can use the $SYSTEM.Process.Terminate() method to halt the current process or to halt other running processes.

The following example halts the current process:

 DO $SYSTEM.Process.Terminate()

The following example halts the process with the PID 7732:

 DO $SYSTEM.Process.Terminate(7732)

The effects of the Terminate() method are the same as the HALT command for the current process, or the ^RESJOB
utility for other processes.

^RESJOB and ^JOBEXAM
The HALT command is used to halt the current process.

The ^RESJOB or ^JOBEXAM utility can be used to halt other running processes. These utilities cannot be used to halt
the current process. They can be used to display information about all running processes, including the current process.

These utilities must be invoked from the %SYS namespace. You must have appropriate privileges to invoke these utilities.
Utility names are case-sensitive.

• ^RESJOB allows you to directly halt a process if you know the process ID (PID). You can use the ? option to display
a listing of all of the running processes.

• ^JOBEXAM first displays a listing of all of the running processes, then allows you to specify which process to halt
(terminate), suspend, or resume. View^JOBEXAM allows you to display a listing of all of the running processes; it
does not provide options to halt, suspend, or resume a process.

The following is an example invocation of ^RESJOB from Terminal:

ObjectScript Reference 61

HALT

%SYS>DO ^RESJOB

Force a process to quit InterSystems IRIS

Process ID (? for status report): 7732

Process ID (? for status report):

%SYS>

At the prompt, you type the process ID (PID) for the process you wish to halt. ^RESJOB halts the process, then prompts
you for the next process ID. Press the Enter key at the prompt when you are finished entering process IDs. You can specify
? at the prompt to display a list of currently running processes.

• Current process: attempting to use ^RESJOB to halt the current process fails with the message This is your
current process, not proceeding with kill. ^RESJOB then prompts you for another process ID.

• Non-running process: specifying the process ID of a non-running process fails with the message [no such
InterSystems IRIS process]. ^RESJOB then prompts you for another process ID.

• System processes: you cannot use ^RESJOB to halt certain system processes. Attempting to do so fails with the
message Can NOT kill the name process. ^RESJOB then prompts you for another process ID.

• Transaction-in-progress: using ^RESJOB to halt a process with a transaction-in-progress is the same as issuing a
HALT command in that process. A non-interactive process rolls back the incomplete transaction; an interactive process
prompts you at its Terminal prompt to either commit or roll back the incomplete transaction.

See Also
• $HALT special variable

• Debugging in Using ObjectScript

62 ObjectScript Reference

ObjectScript Commands

HANG
Suspends execution for a specified number of seconds.

HANG:pc hangarg
H:pc hangarg

where hangarg can be:

hangtime,...

Arguments

Optional — A postconditional expression.pc

The amount of time to wait, in seconds. An expression that resolves to a positive
numeric value, or a comma-separated list of numeric expressions.

hangtime

Description
HANG suspends the executing routine for the specified time period. If there are multiple arguments, InterSystems IRIS
suspends execution for the duration of each argument in the order presented. The HANG time is calculated using the system
clock, which determines its precision.

HANG has the same minimum abbreviation (H) as the HALT command. HANG is distinguished by its required hangtime
argument.

Arguments

pc

An optional postconditional expression. InterSystems IRIS executes the HANG command if the postconditional expression
is true (evaluates to a nonzero numeric value). InterSystems IRIS does not execute the command if the postconditional
expression is false (evaluates to zero). For further details, refer to Command Postconditional Expressions in Using
ObjectScript.

hangtime

The amount of time to wait, in seconds. This time can be expressed as any numeric expression. You can specify hangtime
as an integer to specify whole seconds, or as fractional number to specify fractional seconds. You can use exponentiation
(**), arithmetic expressions, and other numeric operators.

You can set hangtime to 0 (zero), in which case no hang is performed. Setting hangtime to a negative number or a nonnumeric
value is the same as setting it to 0.

You can specify multiple hangtime arguments as a comma-separated list, as described below.

Examples
The following example suspends the process for 10 seconds:

 WRITE !,$ZTIME($PIECE($HOROLOG,",",2))
 HANG 10
 WRITE !,$ZTIME($PIECE($HOROLOG,",",2))

The following example suspends the process for 1/2 second. $ZTIMESTAMP, unlike $HOROLOG, can return fractional
seconds if the precision parameter of the $ZTIME function is specified.

ObjectScript Reference 63

HANG

 WRITE !,$ZTIME($PIECE($ZTIMESTAMP,",",2),1,2)
 HANG .5
 WRITE !,$ZTIME($PIECE($ZTIMESTAMP,",",2),1,2)

Returns values such as the following:

14:34:19.75
14:34:20.25

Notes

Multiple HANG Arguments

You can specify hangtime as a comma-separated list of numeric expressions. InterSystems IRIS suspends execution for
the duration of each argument in the order presented. Negative numbers are treated as zero. Therefore, a hangtime of 16,-
15 would hang for 16 seconds.

That each hangtime argument is separately executed can affect operations that use the current time in hang calculations, as
shown in the following example:

 SET start=$ZHOROLOG
 SET a=$ZHOROLOG+5
 HANG 4,a-$ZHOROLOG
 SET end=$ZHOROLOG
 WRITE !,"elapsed hang=",end-start

In this example, HANG first suspends execution for 4 seconds, then suspends execution for the current time before the
hang plus 5 seconds, minus the current time when the second hang argument is parsed. Because HANG executes each
argument in turn, the total hang time in this example is (roughly) 5 seconds, rather than the (roughly) 9 seconds one might
otherwise expect.

HANG Compared with Timed READ

You can use HANG to pause the routine while the user reads an output message. However, you can handle this type of
pause more effectively with a timed READ command. A timed READ allows the user to continue when ready, but a HANG
does not because it is set to a fixed duration.

HANG and ^JOBEXAM

The HANG command is used to pause execution of the current process.

The ^JOBEXAM utility can be used to suspend and resume execution of other running processes; it cannot be used to
suspend execution of the current process. You cannot use ^JOBEXAM to resume process execution that has been paused
by a HANG command. If you use ^JOBEXAM to suspend a process that has been paused by a HANG command, the
^JOBEXAM resume activates the process, which must complete whatever portion of the HANG time that remained when
it was suspended.

^JOBEXAM displays State information about all running processes. A process that is paused by a HANG command is
listed as State HANGW. A process that is suspended by ^JOBEXAM is listed as State SUSPW.

The ̂ JOBEXAM utility must be invoked by the Terminal from the %SYS namespace. You must have appropriate privileges
to invoke this utility. Utility names are case-sensitive. You can execute ^JOBEXAM as follows:

• DO ^JOBEXAM: displays a listing of all running processes. It provides letter code options to terminate, suspend, or
resume a running process.

• DO View^JOBEXAM displays a listing of all running processes. It does not provide options to terminate, suspend,
or resume a process.

See Also
• READ command

64 ObjectScript Reference

ObjectScript Commands

• $ZTIME function

• $HOROLOG special variable

• $ZTIMESTAMP special variable

ObjectScript Reference 65

HANG

IF
Evaluates an expression, then selects which block of code to execute based on the truth value of the expression.

IF expression1,... {
 code
}
ELSEIF expression2,... {
 code
}
ELSE {
 code
}

or

I expression1,... {
 code
}
ELSEIF expression2,... {
 code
}
ELSE {
 code
}

Arguments

A boolean test condition for the IF clause. A single condition or a
comma-separated list of conditions.

expression1

A boolean test condition for an ELSEIF clause. A single condition or a
comma-separated list of conditions.

expression2

A block of ObjectScript commands enclosed in curly braces.code

Description
This page describes the IF, ELSEIF, and ELSE command keywords, all of which are considered to be component clauses
of the IF command. The IF keyword can be abbreviated as I; the other two keywords cannot be abbreviated.

An IF command consist of one IF clause, followed by any number of ELSEIF clauses, followed by one ELSE clause.
The ELSEIF and ELSE clauses are optional, but it is a good programming practice to always specify an ELSE clause.

The IF command first evaluates the IF clause expression1 and, if expression1 is TRUE, it executes the code block within
the curly braces that follow it and the IF command completes.

If expression1 is FALSE, execution jumps to the next clause of the IF statement. It evaluates the first ELSEIF clause (if
present). If expression2 in the ELSEIF clause is TRUE, it executes the ELSEIF code block within the curly braces that
follow it and the IF command completes. If expression2 is FALSE, the next ELSEIF clause (if present) is evaluated in the
same way. Each successive ELSEIF clause is tested in the order listed until one of them evaluates TRUE, or all of them
evaluate FALSE.

If the IF clause and all ELSEIF clauses evaluate to FALSE, execution continues with the ELSE clause. It executes the
ELSE code block within the curly braces that follow it and the IF command completes. If the ELSE clause is omitted, the
IF command completes.

IF is a block-oriented command. Each command keyword is followed by a block of code enclosed in curly braces. IF,
ELSEIF, and ELSE clauses may use white space (line returns, indents, and blank spaces) freely. However, each IF and

66 ObjectScript Reference

ObjectScript Commands

ELSEIF keyword and the first character of its boolean test expression must be on the same line, separated by one blank
space. A boolean test expression can span multiple lines and contain multiple blank spaces.

An opening or closing curly brace may appear on its own code line or on the same line as a command. An opening or
closing curly brace may even appear in column 1 (though this is not recommended). It is a recommended programming
practice to indent curly braces to indicate the beginning and end of a nested block of code. No whitespace is required before
or after an opening curly brace. No whitespace is required before or after a closing curly brace, including a curly brace that
follows an argumentless command. There is only one whitespace requirement for curly braces: the final closing curly brace
of the last clause of the IF command must be separated from the command that follows it by a space, tab, or line return.

The IF command does not read or set the value of the $TEST special variable. If a boolean test expression evaluates to
TRUE, it executes the block of code within the curly braces, regardless of the value of $TEST.

Arguments

expression1

A test condition for the IF clause. It can take the form of a single expression or a comma-separated list of expressions. For
an expression list, InterSystems IRIS evaluates the individual expressions in left to right order. It stops evaluation if it
encounters an expression in the comma-separated list that evaluates to FALSE. If all expressions in the comma-separated
list evaluate to TRUE, InterSystems IRIS executes the block of code associated with the IF clause. If any expression in the
list evaluates to FALSE, InterSystems IRIS ignores any remaining expressions, and does not execute the block of code
associated with the IF clause.

Commonly, expression1 is a boolean expression that evaluates to TRUE or FALSE (for example, x=7). Refer to the Oper-
ators and Expressions chapter of Using ObjectScript. IF interprets a literal value as a boolean TRUE and FALSE as follows:

• TRUE: any non-zero numeric value, or a numeric string that evaluates to a non-zero numeric value. For example, 1,
7, -.007, "7-7", and "7dwarves".

• FALSE: a zero numeric value, or a string that evaluates to a zero numeric value. A non-numeric string evaluates to a
zero numeric value. For example, 0, -0.00, 7-7, "0", "TRUE", "FALSE", "strike3", and the empty string ("").

For further details, refer to Strings as Numbers in the “Data Types and Values” chapter of Using ObjectScript.

expression2

A test condition for an ELSEIF clause. It can take the form of a single expression or a comma-separated list of expressions.
It is evaluated the same way as expression1.

IF with QUIT
If a QUIT command is encountered within an IF code block (or an ELSEIF code block or an ELSE code block) the QUIT
behaves as a regular QUIT command, as if the code block did not exist. This behavior differs from a QUIT within any
other type of curly brace code block (FOR, WHILE, DO...WHILE, TRY, or CATCH).

• If the IF code block is nested within a loop structure (such as a FOR code block), the QUIT exits the loop structure
block and continues execution with the command that follows the loop structure code block.

• If the IF code block is within a TRY block or a CATCH block, the QUIT exits the TRY or CATCH block and con-
tinues execution with the command that follows the TRY or CATCH block.

• If the IF code block is not nested within a loop structure, or within a TRY or CATCH block, the QUIT exits the current
routine.

Issuing a RETURN exits the current routine, whether or not it is issued from within a block structure.

The following example demonstrates the behavior of QUIT when the IF is not in a loop structure. The QUIT exits the
routine:

ObjectScript Reference 67

IF

 SET y=$RANDOM(10)
 IF y#2=0 {
 WRITE y," is even",!
 QUIT
 WRITE "never written"
 }
 ELSE {
 WRITE y," is odd",!
 QUIT
 WRITE "never written"
 }
 WRITE "QUIT out of the IF (never written)"

The following example demonstrates the behavior of QUIT when the IF is in a loop structure. The QUIT exits the FOR
loop, then execution of the routine continues:

 FOR x=1:1:8 {
 IF x#2=0 {
 WRITE x," is even",!
 QUIT:x=4
 }
 ELSE {
 WRITE x," is odd",!
 }
 }
 WRITE "QUIT out of the FOR loop (written)"

The following example demonstrates the behavior of QUIT when the IF is in a TRY block. The QUIT exits the TRY
block, then execution of the routine continues with the next code after the CATCH block:

 TRY {
 SET y=$RANDOM(10)
 IF y#2=0 {
 WRITE y," is even",!
 QUIT
 WRITE "never written"
 }
 ELSE {
 WRITE y," is odd",!
 QUIT
 WRITE "never written"
 }
 WRITE "QUIT out of the IF (never written)"
 }
 CATCH exp1 {
 WRITE "only written if an error occurred",!
 WRITE "Error Name: ",$ZCVT(exp1.Name,"O","HTML"),!
 }
 TRY {
 WRITE "on to the next TRY block"
 }
 CATCH exp2 {
 WRITE "only written if an error occurred",!
 WRITE "Error Name: ",$ZCVT(exp2.Name,"O","HTML"),!
 }

IF with GOTO
If a GOTO is encountered within an IF code block, program execution obeys that statement, with certain restrictions:

A GOTO statement can jump to a location outside of the IF command, or within the code block of the current clause. A
GOTO statement cannot jump into another code block: neither a code block that belongs to another clause of the current
IF command, nor a code block that belongs to another IF, FOR, DO WHILE, or WHILE command.

Example
In the following example, the IF command is used to categorize responders into one of three groups and invokes the
appropriate subroutine. The three groups are females aged 44 or less, males aged 44 or less, and either females or males
from age 45 through 120. In this example, the sex test expressions use the Contains operator ([). (See Operators in Using
ObjectScript.)

Mainloop
 NEW sex,age
 READ !,"What is your sex? (M or F): ",!,sex QUIT:sex=""

68 ObjectScript Reference

ObjectScript Commands

 READ !,"What is your age? ",!,age QUIT:age=""
 IF "Ff"[sex,age<45 {
 DO SubA(age)
 }
 ELSEIF "Mm"[sex,age<45 {
 DO SubB(age)
 }
 ELSEIF "FfMm"[sex,age>44,age<125 {
 DO SubC(age)
 }
 ELSE {
 WRITE !,"Invalid data value input"
 }
SubA(y)
 WRITE !,"Young woman ",y," years old"
SubB(y)
 WRITE !,"Young man ",y," years old"
SubC(y)
 WRITE !,"Older person ",y," years old"

See Also
• DO WHILE command

• FOR command

• WHILE command

• GOTO command

• QUIT command

• $CASE function

ObjectScript Reference 69

IF

JOB
Runs a process in background.

JOB:pc jobargument,...
J:pc jobargument,...

where jobargument is one of the following:

Local Jobs:

routine(routine-params):(process-params):timeout
routine(routine-params)[joblocation]:(process-params):timeout
routine(routine-params)|joblocation|:(process-params):timeout
##class(className).methodName(args):(process-params):timeout
..methodName(args):(process-params):timeout
$CLASSMETHOD(className,methodName,args):(process-params):timeout

Remote Jobs:

routine[joblocation]
routine|joblocation|

Arguments

Optional — A postconditional expression.pc

The routine to be executed by the process created by JOB.routine

Optional — A comma-separated list of parameters to pass to the
routine. These parameters can be values, expressions, or existing
local variable names. If specified, the enclosing parentheses are
required. Routine parameters can only be passed to local jobs.

routine-params

The class method to be executed by the process created by JOB. The
className cannot be $SYSTEM; it can be %SYSTEM. If you specify
.. in place of className, JOB uses the current class context (the $THIS
class). A comma-separated list of args arguments is optional; the
enclosing parentheses are required. Omitted arguments are not
permitted. For further details on using $CLASSMETHOD, refer to the
section Dynamically Accessing Objects in the “Object-specific
ObjectScript Features ” chapter of Defining and Using Classes.

className.methodName(args)

..methodName(args)

Optional — A colon-separated list of positional parameters used to set
various elements in the job’s environment. The process-params list is
enclosed in parentheses and the parenthesized list preceded by a
colon. All process-params are optional; the parentheses are required.
To indicate a positional parameter is missing, its colon must be present,
though trailing colons may be omitted. The process-params argument
can only be specified for local jobs.

process-params

Optional — The number of seconds to wait for the jobbed process to
start. Fractional seconds are truncated to the integer portion. The
preceding colon is required.The timeout argument can only be specified
for local jobs. If omitted, InterSystems IRIS waits indefinitely.

timeout

70 ObjectScript Reference

ObjectScript Commands

Optional — An explicit or implied namespace used to specify the system
and directory on which to run a local or remote job. An implied
namespace is a directory path preceded by two caret characters:
"^^dir". Enclose joblocation in either square brackets or vertical bars.

You cannot specify a joblocation when jobbing a class method. If
joblocation specifies a remote system, you cannot specify
routine-params, process-params, or timeout.

If joblocation specifies a local job, you cannot specify the first process
parameter (nspace) because this would conflict with the joblocation
parameter. Therefore, only the second, third, and fourth process
parameters can be specified, and the missing nspace parameter must
be indicated by a colon.

joblocation

Description
JOB creates a separate process known as a job, jobbed process, or background job. The created process runs in the back-
ground, independently of the current process, usually without user interaction. A jobbed process inherits its configuration
environment from the invoking process, except what is explicitly specified in the JOB command. For example, a jobbed
process inherits the locale settings of the parent process, not the system default locale.

By contrast, a routine invoked with the DO command runs in the foreground as part of the current process.

JOB can create a local process on your local system, or it can invoke the creation of a remote process on another system.
For more on remote jobs, see Remote Jobs.

When a job begins, InterSystems IRIS can call a user-written JOB^%ZSTART routine. When a job ends, InterSystems
IRIS can call a user-written JOB^%ZSTOP routine. These entry points can be used for maintaining a log of job activity
and troubleshooting problems encountered. For further details, see the section on “Using the InterSystems IRIS ̂ %ZSTART
and ^%ZSTOP Routines” in Specialized System Tools and Utilities.

Arguments

pc

An optional postconditional expression. InterSystems IRIS executes JOB if the postconditional expression is true (evaluates
to a nonzero numeric value). InterSystems IRIS does not execute the command if the postconditional expression is false
(evaluates to zero). For further details, refer to Command Postconditional Expressions in Using ObjectScript.

routine

The process to be started. It can take any of the following forms:

DescriptionProcess Specification

Specifies a line label within the current routine.label

Specifies a routine that resides on disk. InterSystems IRIS loads
the routine from disk and starts execution at the first line of
executable code within the routine.

^routine

Specifies a line label within the named routine, which resides
on disk. InterSystems IRIS loads the routine from disk and starts
execution at the indicated label.

label^routine

ObjectScript Reference 71

JOB

DescriptionProcess Specification

Specifies an offset of a specified number of lines from the line
label. Use of offsets can cause problems with program
maintenance, and is discouraged.You cannot specify an offset
when calling a IRISSYS % routine. If you attempt to do so,
InterSystems IRIS issues a <NOLINE> error.

label+offset

label+offset^routine

If you are within a procedure block, calling the JOB command starts a child process that is outside the scope of the procedure
block. It therefore cannot resolve a label reference within the procedure block. Therefore, for the JOB to reference a label
within a procedure, the procedure cannot use a procedure block.

If you specify a nonexistent label, InterSystems IRIS issues a <NOLINE> error. If you specify a nonexistent routine,
InterSystems IRIS issues a <NOROUTINE> error. For further details on these errors, refer to the $ZERROR special variable.

routine-params

A comma-separated list of values, expressions, or existing local variable names. The enclosing parentheses are required.
This list is known as the actual parameter list. The routine must have a formal parameter list with the same or a greater
number of parameters. If you specify extra actual parameters, InterSystems IRIS issues a <PARAMETER> error. Note
that if the invoked routine contains a formal parameter list, you must specify the enclosing parentheses, even if you do not
pass any parameters. You cannot omit items from the list of routine-params.

You can pass routine parameters only by value, which means that you cannot pass arrays. This is different from the DO
command where you can pass parameters by value and by reference. A special consequence of this restriction is you cannot
pass arrays with the JOB command, since they are passed only by reference.

You cannot pass an object reference (oref) to a jobbed process. This is because a reference to an object existing in the
invoking process context cannot be referenced in the new jobbed process context. Attempting to pass an oref results in
passing an empty string ("") to the jobbed process.

When the routine starts, InterSystems IRIS evaluates any expressions and maps the value of each parameter in the actual
list, by position, to the corresponding variable in the formal list. If there are more variables in the formal list than there are
parameters in the actual list, InterSystems IRIS leaves the extra variables undefined.

Routine parameters can only be passed to local processes. You cannot specify routine parameters when creating a remote
job. See Remote Jobs.

process-params

A colon-separated list of positional parameters used to set various elements in the job’s environment. The preceding colon
and enclosing parentheses are required. All of the positional parameters are optional. You can specify up to six positional
parameters for process-params. These six parameters are:

(nspace:switch:principal-input:principal-output:priority:os-directory)

Since the parameters are positional, you must specify them in the order shown. If you omit a parameter that precedes a
specified parameter, you must include a colon as a placeholder for it.

Process parameters cannot be specified for a remote job.

The following table describes the process parameters:

72 ObjectScript Reference

ObjectScript Commands

DescriptionProcess Parameter

The default namespace of the process.The specified routine is drawn from
this namespace. If you omit nspace, your current default namespace is the
default namespace of the jobbing process. An invalid namespace may
prevent the job from starting. A local job cannot specify both the joblocation
argument and namespace as a process parameter; you must omit the
nspace process parameter, retaining the placeholder colon.

nspace

An integer consisting of the sum of one or more of the following values:

An integer bit mask that can represent zero or more of the following flags:

1 — Pass the symbol table to the spawned job.

2 — Do not use a JOB Server.

4 — Pass an open TCP/IP socket to the spawned job using the principal
I/O device ($PRINCIPAL). (Deprecated, use 16 instead. See below.)

8 — Establish the process-specific window for two-digit years of the
spawned job to be the system-wide default sliding window definition. Oth-
erwise, the spawned job inherits the sliding window definition of the process
issuing the JOB command.

16 — Pass an open TCP/IP socket to the spawned job using current I/O
device ($IO).

128 through 16384 (in multiples of 32) — An additional integer value that
specifies a partition size (in kilobytes) for the JOBbed child process. See
"Specifying Child Process Partition Size” for more information.

The switch value can be the sum of any combination of these integers. For
example, a switch value of 13 (1+4+8) passes the symbol table (1), passes
the open TCP/IP socket (4), and establishes a process-specific window for
two-digit years that is the system-wide default (8).

Blocking switches can be determined using the CheckSwitch() method of
the %SYSTEM.Util class.

switch

Principal input device for the process.

UNIX®: See principal-output for default.

principal-input

Principal output device for the process. The default is the device you
specify for principal-input.

UNIX®: If you do not specify either device, the process uses the default
principal device for processes started with the JOB command, which is
/dev/null.

principal-output

UNIX® — An integer that specifies the priority for the child process (subject
to operating system constraints). If not specified, the child process takes
the parent process' base priority plus the system-defined job priority modifier.
You can use the $VIEW function to determine the current priority of a job.
Windows has a Normal priority of 7. UNIX® priority ranges between -20
and 20, with 0 as Normal priority. In UNIX®, a process cannot give itself
an increased priority unless running as root.

priority

ObjectScript Reference 73

JOB

DescriptionProcess Parameter

An operating system working directory for file I/O. The default is to use the
working directory inherited from the parent process. This parameter may
be ignored on some systems.

os-directory

Switch 4 and Switch 16

The use of switch=4 is discouraged, because this establishes the passed TCP device as the principal device of the child job.
In this case, the child job could halt when it detected the TCP remote connection dropped and would not perform error
trapping. Instead, users should use switch=16, and then in the child job use the %SYSTEM.INetInfo.TCPName() method
to get the passed TCP device name. In this case, the child job could continue to run when it detected the TCP remote con-
nection dropped, because the principal device of the child job is not the passed TCP device.

timeout

The number of seconds to wait for the jobbed process to start before timing out and aborting the job. The preceding colon
is required. You must specify timeout as an integer value or expression. If a jobbed process times out, InterSystems IRIS
aborts the process and sets the $TEST special variable to 0 (FALSE). Execution then proceeds to the next command in the
calling routine; no error message is issued. If a jobbed process succeeds, InterSystems IRIS sets $TEST to 1 (TRUE). Note
that $TEST can also be set by the user, or by a LOCK, OPEN, or READ timeout.

Timeout can only be specified for a local process.

Examples
The following example starts the monitor routine in the background. If the process does not start in 20 seconds, InterSystems
IRIS sets $TEST to FALSE (0).

 JOB ^monitor::20
 WRITE $TEST

The following example starts execution of the monitor routine at the line label named Disp.

 JOB Disp^monitor

The following example starts the Add routine, passing it the value in variable num1, the value 8, and the value resulting
from the expression a+2. The Add routine must contain a formal parameter list that includes at least three parameters.

 JOB ^Add(num1,8,a+2)

The following example starts the Add routine, which has a formal parameter list, but passes no parameters. In this case,
the Add routine must include code to assign default values to its formal parameters, since they receive no values from the
calling routine.

 JOB ^Add()

The following example creates a process running your current routine at label AA. The process parameters pass your current
symbol table to the routine. It can use a JOB Server.

 JOB AA:("":1)

This following example passes the routine parameters VAL1 and the string "DR." to the routine ^PROG, starting at entry
point ABC, in the current namespace. The routine expects two arguments. InterSystems IRIS does not pass the current
symbol table to this job, it will use a JOB Server if possible, and use tta5: as principal input and output device.

 JOB ABC^PROG(VAL1,"DR."):(:0:"tta5:")

The following examples show the jobbing of a class method, with a timeout of ten seconds. They use tta5: as principal
input and output device.

74 ObjectScript Reference

ObjectScript Commands

The following example uses ##class syntax to invoke a class method:

 JOB ##class(MyClass).Run():(:0:"tta5:"):10

The following example uses the $CLASSMETHOD function to invoke a class method:

 JOB $CLASSMETHOD(MyClass,Run):(:0:"tta5:"):10

$CLASSMETHOD parameters must be passed by value, not by reference, when using JOB $CLASSMETHOD.

The following example uses relative dot syntax (..) to refer to a method of the current object:

 JOB ..CleanUp():(:0:"tta5:"):10

or simply:

 JOB ..CleanUp()::10

For further details, refer to “Object-specific ObjectScript Features” in Defining and Using Classes.

Notes

InterSystems IRIS Assigns Job Numbers and Memory Partitions

After you start a jobbed process, InterSystems IRIS allocates a separate memory partition for it and assigns it a unique job
number (also referred to as a Process ID or PID). The job number is stored in the $JOB special variable. The status of the
job (including whether or not it was started by a JOB command) is stored in the $ZJOB special variable.

Since jobbed processes have separate memory partitions, they do not share a common local variable environment with the
process that created them or with each other. When you start a jobbed process, you can use parameter passing (routine-params)
to pass values from the current process to the jobbed process.

If the JOB command fails, it is usually because:

• There are no free partitions.

• There is not enough memory to create a partition with the characteristics specified by process-params.

Jobbed Process Permissions are Platform-dependent

Processes created by the JOB command run as the InterSystems service account user. This means that you must insure that
the InterSystems service account has explicit permissions to access all necessary resources.

A spawned job process may run under a different userid than that of the process that issued the JOB command. The userid
of the spawned job process depends on the platform:

• On Windows platforms, the job process uses the userid established for the InterSystems IRIS instance.

• On UNIX® platforms, the job process uses the userid of the process that issued the JOB command.

Thus, when you spawn a job, you must make sure that the userid for the job process has the necessary permissions to use
any files read or written during the job execution.

Communicating Between Jobs

Parameter passing by value can occur in only one direction and only at job start up. For processes to communicate with
each other, they must use mutually agreed upon global variables. Such variables are commonly known as scratch globals
because their sole purpose is to allow processes to exchange information among themselves.

• Processes can use the %SYSTEM.Event class methods to communicate between jobs.

• You can pass all local variables in the current process to the invoked process by specifying a special process parameter.

ObjectScript Reference 75

JOB

• Processes can communicate between jobs through the IPC (Interprocess Communication) devices (device numbers
224 through 255) or, on UNIX® operating systems, through UNIX® pipes.

Establishing Device Ownership

InterSystems IRIS assumes that the invoked routine includes code (that is, OPEN and USE commands) to handle device
ownership for the new process. The default device is the null device.

InterSystems IRIS does not assign a default device to any process other than the process started at sign in.

Setting Job Priority

The %PRIO utility allows you to control the priority at which a UNIX® jobbed process runs. The available options are
NORMAL (uses load balancing to adjust CPU usage), LOW, and HIGH. A jobbed process with a priority of HIGH competes
on an equal basis with interactive processes for CPU resources.

InterSystems IRIS also allows you to establish default priorities for jobbed processes.

You can use the BatchFlag() method to establish a process as executing in batch mode. A batch mode process has a lower
priority than a non-batch process.

Using the JOB Command in a Raw Partition (UNIX®)

You can use the JOB command in a raw partition in either of two ways:

• Issue the JOB command while in the raw partition.

• Issue the JOB command while in another namespace, and specify the raw partition as the nspace process parameter
of the JOB command. Here nspace is an implied namespace. An implied namespace is a directory path preceded by
two caret characters: "^^dir". Implied namespace syntax is described in Global Structure in Using Globals.

Commands and jobbed processes running in a raw partition must always specify the full pathname when making references
to filenames, and must not use any pathname that starts with "." or ".." , as these are special UNIX® files and are not present
in a raw partition. Violating either of these rules causes a <DIRECTORY> error.

To obtain the full pathname of the current namespace, you can invoke the NormalizeDirectory() method, as shown in the
following example:

 WRITE ##class(%Library.File).NormalizeDirectory("")

Alternatively, you can use UNIX® job-control syntax (&) instead of the ObjectScript JOB command.

Remote Jobs

Before starting a remote job, you must establish an ECP connection and set the netjob parameter to true. This enables the
server to handle job requests from remote ECP client systems.

You must configure the ability to receive remote job requests on any system that will receive them.

On the receiving system, go to the Management Portal, select System Administration, Configuration, Additional Settings,
Advanced Memory. Locate netjob to view and edit. When “ true” , incoming remote job requests via ECP will be honored
on this server. The default is “ true” .

The license on the remote system must support enough users to run remotely initiated jobs. You can determine the number
of available InterSystems IRIS licenses using class methods of the %SYSTEM.License class, as described in the InterSystems
Class Reference.

76 ObjectScript Reference

ObjectScript Commands

JOB Syntax for Remote Job Request

You can send a remote job from one InterSystems IRIS system to another using the following syntax:

JOB routine[joblocation]
JOB routine|joblocation|

The two forms are equivalent; you can use either square brackets or vertical bars to enclose the joblocation parameter. A
remote job cannot pass routine parameters, process parameters, or a timeout.

A specification of the location of the job.The enclosing square brackets or vertical
bars are required.

joblocation

The action InterSystems IRIS takes depends on the job location syntax you are using.

Resultjoblocation Syntax

InterSystems IRIS checks whether this explicit namespace has its default
dataset on the local system or on a remote system. If the default dataset is on
the local system, the system starts the job using the parameters you specify.
If the default dataset is on a remote system, the system starts the remote job
in the directory of the namespace’s default dataset.

["namespace"]

InterSystems IRIS converts this location to the implied namespace form
["^sys^dir"].

["dir","sys"]

The job runs in the specified directory on the specified remote system.
InterSystems IRIS does not allow any routine parameters, process parameters,
or timeout specification.

["^sys^dir"]

The job runs in the specified directory (implied namespace) as a local job on
the current system using the parameters you specify. An implied namespace
is a directory path preceded by two caret characters: "^^dir".

["^^dir"]

InterSystems IRIS issues a <COMMAND> error.["dir",""]

Global Mapping with Remote Jobs (Windows)

InterSystems IRIS does not provide global mapping for remote jobs, whether or not global mapping has been defined on
the requesting system. To avoid the lack of global mapping, use extended references with your global specifications that
point to the location of any globals not in that namespace. If the namespace you specify in an extended reference is not
defined on the system you specify, you receive a <NAMESPACE> error. Namespaces and the syntax for extended global
references are described in Global Structure in Using Globals.

Using the $ZCHILD and $ZPARENT Special Variables

$ZPARENT contains the PID (Process ID) of the process which jobbed the current process, or 0 if the current process was
not created through the JOB command.

$ZCHILD contains the PID of the last process created by the JOB command, whether or not the attempt was successful.

By using $ZCHILD it is possible to determine the execution status of a remote job by comparing the $ZCHILD value
before and after running the JOB command. If the before and after values are different, and the after value is nonzero, the
after $ZCHILD value is the PID of the newly created remote job, indicating that the process was successfully created. If
the after value is zero, or the after value is the same as the before value, the remote job was not created.

$ZCHILD can only tell you that a remote job was created; it does not tell you if the remote job ran successfully. The best
way to determine if a remote process ran without error and ran to completion is to provide some sort of logging and error

ObjectScript Reference 77

JOB

trapping in the code being run. The remote job mechanism does not inform the parent process in any way about remote
process errors or remote process termination, successful or otherwise.

Using JOB Servers

JOB Servers are InterSystems IRIS processes that wait to process job requests. Jobbed processes that attach to JOB Servers
avoid the added overhead of having to create a new process. Whenever a user issues a JOB command with the switch
parameter set to use JOB Server if available, InterSystems IRIS checks to see if any JOB Servers are available to handle
it. If not, it will create a process. If there is a free JOB Server, the job attaches to that JOB Server.

When a job halts while running in a JOB Server, the JOB Server hibernates until it receives another job request. A jobbed
process not running in a JOB Server exits and the process is deleted.

There are some unavoidable differences between the JOB Server environment and the jobbed process environment, which
may be a security concern with jobbed processes executing in JOB Servers. A jobbed process takes on the security attributes
of the process that issued the JOB command at the InterSystems IRIS level.

Input and Output Devices

Only one process can own a device at a time. This means that a job executing in a JOB Server is unable to perform input
or output to your principal I/O devices even though you may close device 0.

Therefore, if you expect a JOB Server to perform input, you must specify:

• An alternative input device for it

• The null device for an output device (if you do not want to see the output)

Failure to follow these guidelines may cause the job executing in the JOB Server to hang if it needs to do any input or
output from/to your principal I/O devices. You may find that frequently job output does get through to your terminal (for
example, if you have the SHARE privilege), but typically it will not.

Troubleshooting Jobs That Will Not Execute

If your job does not start, check your I/O specification. Your job will not start if InterSystems IRIS cannot open the devices
you requested. Note that the null device (/dev/null on UNIX®) is always available.

If your job starts but then halts immediately, make sure you have sufficient swap space. Your job receives an error if you
do not have enough swap space. If the new process created by a JOB command halted immediately or was terminated by
the ^RESJOB utility before the process startup was complete, the JOB command generates a <HALTED> or <RESJOB>
error. Refer to the HALT command for further details.

If your job does not start, make sure that you have used the correct namespace in the JOB command. You can test whether
a namespace is defined by using the Exists() method:

 WRITE ##class(%SYS.Namespace).Exists("USER"),! ; an existing namespace
 WRITE ##class(%SYS.Namespace).Exists("LOSER") ; a nonexistent namespace

If the JOB command is still not working, try the following:

• Execute the routine with the DO command.

• Make sure you are not exceeding the number of processes for which you are licensed in InterSystems IRIS. You can
determine the number of available InterSystems IRIS licenses using class methods of the %SYSTEM.License class, as
described in the InterSystems Class Reference.

• If there is a timeout parameter in your JOB command, check whether the speed of your system is using up the timeout
period.

When many jobs are executing concurrently, the JOB command may hang while waiting for a routine buffer or a license
slot. You can interrupt a JOB command by using Ctrl-C.

78 ObjectScript Reference

ObjectScript Commands

JOB Command Completion

A jobbed process continues to completion even if the process that created it logs off before that completion.

JOB Command with TCP Devices

You can use the JOB command to implement a TCP concurrent server. A TCP concurrent server allows multiple clients
to be served simultaneously. In this mode a client does not have to wait for the server to finish serving other clients. Instead,
each time a client requests the server, it spawns a separate subjob for that client which remains open as long as the client
needs it. As soon as this subjob has been spawned (indicated by the return of the JOB command), another client may request
service and the server will create a subjob for that client as well.

Figure B–1: Client/Server Connections in the Non-Concurrent and Concurrent Modes

A concurrent server uses the JOB command with the switch process parameter bit mask bit 4 or bit 16 turned on, and passes
to the spawned process the input and output process parameters.

• If you specify switch bit 4, you must specify the TCP device in both principal–input and principal–output process
parameters. You must use the same device for both principal–input and principal–output, as follows:

 JOB child:(:4:tcp:tcp)

The spawned process then sets this single I/O device, as follows:

 SET tcp=$IO

• If you specify switch bit 16, you can specify different devices for the TCP device, the principal–input, and the
principal–output process parameters, as follows:

 USE tcp
 JOB child:(:16:input:output)

USE tcp preceding the JOB command specifies the current device (rather than the principal device), as the TCP
device. The spawned process can then set these devices, as follows:

ObjectScript Reference 79

JOB

 SET tcp=##class(%SYSTEM.INetInfo).TCPName()
 SET input=$PRINCIPAL
 SET output=$IO
 WRITE tcp," ",input," ",output

It is important to note that the JOB command will pass the TCP socket to the jobbed process if the 4 or 16 bit is set. This
capability may be combined with other features of the JOB command by adding the appropriate bit code for each additional
feature. For example, when switch includes the bit with value 1, the symbol table is passed. To turn on concurrency and
pass the symbol table, switch would have a value of 5 (4+1) or 17 (16+1).

Before you issue the JOB command, the TCP device must:

• Be open

• Be listening on a TCP port

• Have accepted an incoming connection

After the JOB command, the device in the spawning process is still listening on the TCP port, but no longer has an active
connection. The application should check the $ZA special variable after issuing the JOB command to make sure that the
CONNECTED bit in the state of the TCP device was reset.

The spawned process starts at the designated entry point using the specified device(s) as TCP device, principal–input, and
principal–output device. The TCP device has the same name in the child process as in the parent process. The TCP device
has one attached socket. The USE command is used to establish the TCP device in “M” mode, which is equivalent to
“PSTE” . The “P” (pad) option is needed to pad output with record terminator characters. When this mode is set, WRITE
! sends LF (line feed) and WRITE # sends FF (form feed), in addition to flushing the write buffer.

The TCP device in the spawned process is in a connected state: the same state the device would receive after it is opened
from a client. The spawned process can use the TCP device with an explicit USE statement. It can also use the TCP device
implicitly.

The following example shows a very simple concurrent server that spawns off a child job whenever it detects a connection
from a client. JOB uses a switch value of 17, consisting of the concurrent server bit 16 and the symbol table bit 1:

server ;
 SET io="|TCP|1"
 SET ^serverport=7001
 OPEN io:(:^serverport:"MA"):200
 IF $TEST=0 {
 WRITE !,"Cannot open server port"
 QUIT }
 ELSE { WRITE !,"Server port opened" }
loop ;
 USE io READ x ; Read for accept
 USE 0 WRITE !,"Accepted connection"
 USE io
 JOB child:(:17::) ; Concurrent server bit is on
 GOTO loop
child ;
 SET io=##class(%SYSTEM.INetInfo).TCPName()
 SET input=$PRINCIPAL
 SET output=$IO
 USE io:(::"M") ; Ensure that "M" mode is used
 WRITE $JOB,! ; Send job id on TCP device to be read by client
 QUIT
client ;
 SET io="|TCP|2"
 SET host="127.0.0.1"
 OPEN io:(host:^serverport:"M"):200 ; Connect to server
 IF $TEST=0 {
 WRITE !,"Cannot open connection"
 QUIT }
 ELSE { WRITE !,"Client connection opened" }
 USE io READ x#3:200 ; Reads from subjob
 IF x="" {
 USE 0
 WRITE !,"No message from child"
 CLOSE io
 QUIT }
 ELSE {
 USE 0

80 ObjectScript Reference

ObjectScript Commands

 WRITE !,"Child is on job ",x
 CLOSE io
 QUIT }

The child uses the inherited TCP connection to pass its job ID (in this case assumed to be 3 characters) back to the client,
after which the child process exits. The client opens up a connection with the server and reads the child’s job ID on the
open connection. In this example, the IPv4 value "127.0.0.1" for the variable "host" indicates a loopback connection
to the local host machine (the corresponding IPv6 loopback value is "0:0:0:0:0:0:0:1" or "::1"). You can set up a
client on a different machine from the server if "host" is set to the server’s IP address or name. Further details on IPv4 and
IPv6 formats can be found in the section “Use of IPv6 Addressing” in the chapter “Server Configuration Options” in the
Orientation Guide for Server-Side Programming.

In principle, the child and client can conduct extended communication, and multiple clients can be talking concurrently
with their respective children of the server.

Specifying Child Process Partition Size

The partition size ($ZSTORAGE size) for a background job is determined as follows:

• If job servers are active, for any job server process the job partition size will always be 262144 (in kilobytes).

• If job servers are inactive, the job partition size defaults to the default partition size for non-background jobs (bbsiz).
This is the system-wide default in effect when you execute JOB, regardless of the partition size of the parent process
from which you issue JOB.

If job servers are enabled, but all of them are active and you start a new job, that job process will not be a job server
process, so its $ZSTORAGE value will default to bbsiz. This is also true when job servers are active, but due to
loading the job is run in a non-job-server process.

• If job servers are inactive, you can specify the partition size of the jobbed child process in the JOB statement. You
specify the partition size (in kilobytes) of the jobbed process in the second process parameter of the JOB command.
For example, JOB ^myroutine:(:8192). The value you specify must be a multiple of 32 and must range from
128 through 16384. It also cannot exceed the default partition size; it can only be used to specify a lower value than
the default.

You can optionally specify the partition-size process parameter value in combination with other process information
that you would normally put in the second process parameter of JOB. Consider the following JOB command: JOB
^myroutine:(:544+1). This command specifies that the symbol table of the jobbing process should be passed to
the jobbed process and that the jobbed process should have a partition size of 544K. Although you can specify this
second parameter, which passes two values (544 and 1) as 545, 544 +1 is clearer and has exactly the same effect.

Note that a job itself can programmatically set its own partition size using SET $ZSTORAGE.

See Also
• ^$JOB structured system variable

• $JOB special variable

• $TEST special variable

• $ZJOB special variable

• $ZCHILD special variable

• $ZPARENT special variable

• $ZF(-1) function

• $ZF(-2) function

• TCP Client/Server Communication in I/O Device Guide

ObjectScript Reference 81

JOB

• The Spool Device in I/O Device Guide

• Using the Management Portal to monitor and control processes in Managing InterSystems IRIS in System Administration
Guide

82 ObjectScript Reference

ObjectScript Commands

KILL
Deletes variables.

KILL:pc killargument,...
K:pc killargument,...

where killargument can be:

variable,...
(variable,...)

Arguments

Optional — A postconditional expression.pc

Optional — A variable name or comma-separated list of variable names. Without
parentheses: the variable(s) to be deleted. With parentheses: the variable(s) to be kept.

variable

Description
There are three forms of the KILL command:

• KILL without an argument, known as an argumentless KILL.

• KILL with a variable list, known as an inclusive KILL.

• KILL with a variable list enclosed in parentheses, known as an exclusive KILL.

The KILL command without an argument deletes all local variables. It does not delete process-private globals, globals, or
user-defined special variables.

KILL with a variable or comma-separated variable list as an argument:

KILL variable,...

is called an inclusive KILL. It deletes only the variable(s) you specify in the argument. Killing a variable kills all subscripts
of that variable at all lower levels than the specified variable. The variables can be local variables, process-private globals,
or globals. They do not have to be actual defined variables, but they must be valid variable names. You cannot kill a special
variable, even if its value is user-specified. Attempting to do so generates a <SYNTAX> error.

KILL with a variable or comma-separated variable list enclosed in parentheses as an argument:

KILL (variable,...)

is called an exclusive KILL. It deletes all local variables except those you specify in the argument. The variables you
specify can only be local variables. You cannot specify a subscripted variable; specifying a local variable preserves the
variable and all of its subscripts. The local variables you specify do not have to be actual defined variables, but they must
be valid local variable names.

Note: KILL can delete local variables created by InterSystems IRIS objects. Therefore, do not use either argumentless
KILL or exclusive KILL in any context where they might affect system structures (such as %objTX currently
used in %Save) or system objects (such as the stored procedure context object). In most programming contexts,
these forms of KILL should be avoided.

ObjectScript Reference 83

KILL

You can use the $DATA function to determine whether a variable is defined or undefined, and whether a defined variable
has subscripts. Killing a variable changes its $DATA status to undefined.

Using KILL to delete variables frees up local variable storage space. To determine or set the maximum storage space (in
kilobytes) for the current process, use the $ZSTORAGE special variable. To determine the available storage space (in
bytes) for the current process, use the $STORAGE special variable.

Arguments

pc

An optional postconditional expression. InterSystems IRIS executes the KILL command if the postconditional expression
is true (evaluates to a nonzero numeric value). InterSystems IRIS does not execute the command if the postconditional
expression is false (evaluates to zero). For further details, refer to Command Postconditional Expressions in Using
ObjectScript.

variable

If not enclosed in parentheses: the variable(s) to be deleted by the KILL command. variable can be a single variable or a
comma-separated list of variables.

If enclosed in parentheses: the local variable(s) to be kept by the KILL command; the KILL command deletes all other
local variables. variable can be a single variable or a comma-separated list of variables.

Examples
In the following example, an inclusive KILL deletes local variables a, b, and d, and the deletes the process-private global
^||ppglob and all of its subscripts. No other variables are affected:

 SET ^||ppglob(1)="fruit"
 SET ^||ppglob(1,1)="apples"
 SET ^||ppglob(1,2)="oranges"
 SET a=1,b=2,c=3,d=4,e=5
 KILL a,b,d,^||ppglob
 WRITE "a=",$DATA(a)," b=",$DATA(b)," c=",$DATA(c)," d=",$DATA(d)," e=",$DATA(e),!
 WRITE "^||ppglob(1)=",$DATA(^||ppglob(1)),
 " ^||ppglob(1,1)=",$DATA(^||ppglob(1,1)),
 " ^||ppglob(1,2)=",$DATA(^||ppglob(1,2))

In the following example, an inclusive KILL deletes the local variable a(1) and its subscripts a(1,1), a(1,2) and a(1,1,1);
it does not delete the local variables a, a(2), or a(2,1):

 SET a="food",a(1)="fruit",a(2)="vegetables"
 SET a(1,1)="apple",a(1,1,1)="mackintosh",a(1,2)="banana"
 SET a(2,1)="artichoke"
 WRITE "before KILL:",!
 WRITE $DATA(a)," ",$DATA(a(1))," ",$DATA(a(1,1))," ",$DATA(a(1,1,1))," ",
 $DATA(a(2))," ",$DATA(a(2,1)),!
 KILL a(1)
 WRITE "after KILL:",!
 WRITE $DATA(a)," ",$DATA(a(1))," ",$DATA(a(1,1))," ",$DATA(a(1,1,1))," ",
 $DATA(a(2))," ",$DATA(a(2,1))

In the following example, an exclusive KILL deletes all local variables except for variables d and e:

 SET a=1,b=2,c=3,d=4,e=5
 KILL (d,e)
 WRITE "a=",$DATA(a)," b=",$DATA(b)," c=",$DATA(c)," d=",$DATA(d)," e=",$DATA(e)

Note that because an exclusive KILL deletes object variables, the above program works from a terminal session, but does
not work within an object method.

The following example, an inclusive KILL deletes two process-private globals and an exclusive KILL deletes all local
variables except for variables d and e.

84 ObjectScript Reference

ObjectScript Commands

 SET ^||a="one",^||b="two",^||c="three"
 SET a=1,b=2,c=3,d=4,e=5
 KILL ^||a,^||c,(d,e)
 WRITE "a=",$DATA(a)," b=",$DATA(b)," c=",$DATA(c)," d=",$DATA(d)," e=",$DATA(e),!
 WRITE "^||a=",$DATA(^||a)," ^||b=",$DATA(^||b)," ^||c=",$DATA(^||c)

Notes

KILL and Objects

Object instance references (OREFs) automatically maintain a reference count — the number of items currently referring
to an object. Whenever you SET a variable or object property to refer to an object, InterSystems IRIS increments the
object’s reference count. When you KILL a variable, InterSystems IRIS decrements the corresponding object reference
count. When this reference count goes to 0, the object is automatically destroyed; that is, InterSystems IRIS removes it
from memory. The object reference count is also decremented when a variable is SET to a new value, or when the variable
goes out of scope.

In the case of a persistent object, call the %Save() method before removing the object from memory if you wish to preserve
changes to the object. The %Delete() method deletes the stored version of an InterSystems IRIS object; it does not remove
the in-memory version of that object.

For information on OREFs, see “OREF Basics” in Defining and Using Classes.

KILL Using an Object Method

You can specify an object method on the left side of a KILL expression. The following example specifies the %Get()
method:

 SET obj=##class(test).%New() // Where test is class with a multidimensional property md
 SET myarray=[(obj)]
 SET index=0,subscript=2
 SET myarray.%Get(index).md(subscript)="value"
 WRITE $DATA(myarray.%Get(index).md(subscript)),!
 KILL myarray.%Get(index).md(subscript)
 WRITE $DATA(myarray.%Get(index).md(subscript))

Inclusive KILL

An inclusive KILL deletes only those variables explicitly named. The list can include local variables, process-private
globals, and globals—either subscripted or unsubscripted. The inclusive KILL is the only way to delete global variables.

You can delete a range of subscripted global variables by using the KillRange() method.

Exclusive KILL

An exclusive KILL deletes all local variables except those that you explicitly name. Listed names are separated by commas.
The enclosing parentheses are required.

The local variables specified in the exception list do not have to be defined when exclusive KILL is invoked.

The exception list can contain only local unsubscripted variable names. For example, if you have a local variable array
named fruitbasket, which has several subscript nodes, you can preserve the entire local variable array by specifying KILL
(fruitbasket); you cannot use exclusive KILL to selectively preserve individual subscript nodes.

The exception list can contain local variables representing object references (OREFs). The exception list cannot contain
properties of an object reference.

An exclusive kill list cannot specify a process-private global, a global, or a special variable; attempting to do so results in
a <SYNTAX> error. Local variables not named in the exception list are deleted; subsequent references to such variables
generate an <UNDEFINED> error. The exclusive KILL has no effect on process-private globals, globals, and special
variables. However, it does delete local variables created by system objects.

ObjectScript Reference 85

KILL

Using KILL with Arrays

You can use an inclusive KILL to delete an entire array or a selected node within an array. The specified array can be a
local variable, a process-private global, or a global variable.

• To delete a local variable array, use any form of KILL.

• To delete a selected node within a local variable array, you must use an inclusive KILL.

• To delete a global variable array, you must use an inclusive KILL.

• To delete a selected node within a global variable array, you must use an inclusive KILL.

For further details on global variables with subscripted nodes, see Global Structure in Using Globals.

To delete an array, simply supply its name to an inclusive KILL. For example, the following command deletes global array
^fruitbasket and all of its subordinate nodes.

 SET ^fruitbasket(1)="fruit"
 SET ^fruitbasket(1,1)="apples"
 SET ^fruitbasket(1,2)="oranges"
 WRITE "Before KILL:",!
 WRITE "^fruitbasket(1)=",$DATA(^fruitbasket(1)),
 " ^fruitbasket(1,1)=",$DATA(^fruitbasket(1,1)),
 " ^fruitbasket(1,2)=",$DATA(^fruitbasket(1,1)),!
 KILL ^fruitbasket
 WRITE "After KILL:",!
 WRITE "^fruitbasket(1)=",$DATA(^fruitbasket(1)),
 " ^fruitbasket(1,1)=",$DATA(^fruitbasket(1,1)),
 " ^fruitbasket(1,2)=",$DATA(^fruitbasket(1,1))

To delete an array node, supply the appropriate subscript. For example, the following KILL command deletes the node at
subscript 1,2.

 SET ^fruitbasket(1)="fruit"
 SET ^fruitbasket(1,1)="apples"
 SET ^fruitbasket(1,2)="oranges"
 SET ^fruitbasket(1,2,1)="navel"
 SET ^fruitbasket(1,2,2)="mandarin"
 WRITE ^fruitbasket(1)," contains ",^fruitbasket(1,1),
 " and ",^fruitbasket(1,2),!
 WRITE ^fruitbasket(1,2)," contains ",^fruitbasket(1,2,1),
 " and ",^fruitbasket(1,2,2),!
 KILL ^fruitbasket(1,2)
 WRITE "1st level node: ",$DATA(^fruitbasket(1)),!
 WRITE "2nd level node: ",$DATA(^fruitbasket(1,1)),!
 WRITE "Deleted 2nd level node: ",$DATA(^fruitbasket(1,2)),!
 WRITE "3rd level node under deleted 2nd: ",$DATA(^fruitbasket(1,2,1)),!
 QUIT

When you delete an array node, you automatically delete all nodes subordinate to that node and any immediately preceding
node that contains only a pointer to the deleted node. If a deleted node is the only node in its array, the array itself is deleted
along with the node.

To delete multiple local variable arrays, you can use either the inclusive form or exclusive form of KILL, as described
above. For example, the following command removes all local arrays except array1 and array2.

 KILL (array1,array2)

To delete multiple array nodes, you can use only the inclusive form of KILL. For example, the following command removes
the three specified nodes, deleting one node from each array.

 KILL array1(2,4),array2(3,2),array3(1,7)

The nodes can be in the same or different arrays.

You may delete a specified local or global array node by using the ZKILL command. Unlike KILL, ZKILL does not
delete all nodes subordinate to the specified node.

86 ObjectScript Reference

ObjectScript Commands

Effects of KILL with Parameter Passing

With parameter passing, values are passed to a user-defined function or to a subroutine called with the DO command. The
values to be passed to the user-defined function or subroutine are supplied in a comma-separated list called the actual
parameter list. Each value supplied is mapped, by position, into a corresponding variable in the formal parameter list
defined for the user-defined function or subroutine.

Depending on how the actual parameter list is specified, parameter passing can occur in either of two ways: by value or by
reference. For more information on these two types of parameter passing, see Parameter Passing in Using ObjectScript.

Killing a variable in the formal parameter list has different results depending on whether passing by value or passing by
reference is in effect.

If you are passing a variable by value:

• Killing a variable in the formal list has no effect outside the context of the invoked function or subroutine. This is
because InterSystems IRIS automatically saves the current value of the corresponding actual variable when the function
or subroutine is invoked. It then automatically restores the saved value on exit from the function or subroutine.

In the following passing by value example, the KILL in Subrt1 deletes the formal variable x but does not affect the actual
variable a:

Test
 SET a=17
 WRITE !,"Before Subrt1 a: ",$DATA(a)
 DO Subrt1(a)
 WRITE !,"After Subrt1 a: ",$DATA(a)
 QUIT
Subrt1(x)
 WRITE !,"pre-kill x: ",$DATA(x)
 KILL x
 WRITE !,"post-kill x: ",$DATA(x)
 QUIT

If you are passing a variable by reference:

• Performing KILL and including the variable in the formal list also kills the corresponding actual variable. When the
function or subroutine terminates, the actual variable will no longer exist.

• Performing a KILL and excluding the variable in the formal list causes both the formal variable and the actual variable
passed by reference to be preserved.

In the following passing by reference example, the KILL in Subrt1 deletes both the formal variable x and the actual variable
a:

Test
 SET a=17
 WRITE !,"Before Subrt1 a: ",$DATA(a)
 DO Subrt1(.a)
 WRITE !,"After Subrt1 a: ",$DATA(a)
 QUIT
Subrt1(&x)
 WRITE !,"pre-kill x: ",$DATA(x)
 KILL x
 WRITE !,"post-kill x: ",$DATA(x)
 QUIT

As a general rule, you should not KILL variables specified in a formal parameter list. When InterSystems IRIS encounters
a function or subroutine that uses parameter passing (whether by value or by reference), it implicitly executes a NEW
command for each variable in the formal list. When it exits from the function or subroutine, it implicitly executes a KILL
command for each variable in the formal list. In the case of a formal variable that uses passing by reference, it updates the
corresponding actual variable (to reflect changes made to the formal variable) before executing the KILL.

ObjectScript Reference 87

KILL

Transaction Processing

A KILL of a global variable is journaled as part of the current transaction; this global variable deletion is rolled back during
transaction rollback. A KILL of a local variable or a process-private global variable is not journaled, and thus this variable
deletion is unaffected by a transaction rollback.

See Also
• ZKILL command

• $DATA function

• $STORAGE special variable

88 ObjectScript Reference

ObjectScript Commands

LOCK
Enables a process to apply and release locks to control access to data resources.

LOCK:pc
L:pc

LOCK:pc +lockname#locktype:timeout,...
L:pc +lockname#locktype:timeout,...

LOCK:pc +(lockname#locktype,...):timeout,...
L:pc +(lockname#locktype,...):timeout,...

Arguments

Optional — A postconditional expression.pc

Optional — The lock operation indicator (a + character, – character, or no character) to
apply or remove a lock. A + (plus sign) applies the specified lock(s) without unlocking
any prior locks. This can be used to apply an incremental lock. A – (minus sign) unlocks
(or decrements) a lock. If you omit the lock operation indicator (no character), InterSystems
IRIS unlocks all prior locks and applies the specified lock(s).

+

–

A lock name associated with the resource(s) to be locked or unlocked. Must be a valid
identifier, following the same naming conventions as local variables or globals.

lockname

Optional — A letter code specifying the type of lock to lock or unlock, specified in quotation
marks. Available values are “S” (shared lock), ”E” (escalating lock), “I” (immediate unlock),
and “D” (deferred unlock). When specifying, the preceding # symbol is mandatory. For
example, #"S".You can specify more than one letter code. For example, #"SEI". “S”
and “E” are specified for both locking and unlocking operations; “I” and “D” are only
specified for unlocking operations. If omitted, the lock type defaults to an exclusive lock
(non-S) that does not escalate (non-E) and that always defers releasing an unlocked lock
to the end of the current transaction (non-I / non-D).

#locktype

Optional — The time to wait before the attempted lock operation times out. Specified as
seconds with or without a fractional component up to 100ths of a second (s.ff). Can be
specified with or without the optional #locktype. When specifying, the preceding : symbol
is mandatory. For example, LOCK ^a(1):10 or LOCK ^a(1)#"E":10. Specify timeout
as an integer number of seconds. A value of 0 means to make one attempt, then time
out. If omitted, InterSystems IRIS waits indefinitely.

:timeout

Description
There are two basic forms of the LOCK command:

• Without arguments

• With arguments

LOCK without Arguments

The argumentless LOCK releases (unlocks) all locks currently held by the process in all namespaces. This includes
exclusive and shared locks, both local and global. It also includes all accumulated incremental locks. For example, if there
are three incremental locks on a given lock name, InterSystems IRIS releases all three locks and removes the lock name
entry from the lock table.

ObjectScript Reference 89

LOCK

If you issue an argumentless LOCK during a transaction, InterSystems IRIS places all locks currently held by the process
in a Delock state until the end of the transaction. When the transaction ends, InterSystems IRIS releases the locks and
removes the corresponding lock name entries from the lock table.

The following example applies various locks during a transaction, then issues an argumentless LOCK to release all of
these locks. The locks are placed in a Delock state until the end of the transaction. The HANG commands give you time
to check the lock’s ModeCount in the Lock Table:

 TSTART
 LOCK +^a(1) // ModeCount: Exclusive
 HANG 2
 LOCK +^a(1)#"E" // ModeCount: Exclusive/1+1e
 HANG 2
 LOCK +^a(1)#"S" // ModeCount: Exclusive/1+1e,Shared
 HANG 2
 LOCK // ModeCount: Exclusive/1+1e->Delock,Shared->Delock
 HANG 10
 TCOMMIT // ModeCount: locks removed from table

Argumentless LOCK releases all locks held by the process without applying any locks. Completion of a process also
releases all locks held by that process.

LOCK with Arguments

LOCK with arguments specifies one or more lock names on which to perform locking and unlocking operations. What
lock operation InterSystems IRIS performs depends on the lock operation indicator argument you use:

• LOCK lockname unlocks all locks previously held by the process in all namespaces, then applies a lock on the specified
lock name(s).

• LOCK +lockname applies a lock on the specified lock name(s) without unlocking any previous locks. This allows
you to accumulate different locks, and allows you to apply incremental locks to the same lock.

• LOCK -lockname performs an unlock operation on the specified lock name(s). Unlocking decrements the lock count
for the specified lock name; when this lock count decrements to zero, the lock is released.

A lock operation may immediately apply the lock, or it may place the lock request on a wait queue pending the release of
a conflicting lock by another process. A waiting lock request may time out (if you specify a timeout) or may wait indefinitely
(until the end of the process).

LOCK with Multiple Lock Names

You can specify multiple locks with a single LOCK command in either of two ways:

• Without Parentheses: By specifying multiple lock arguments without parentheses as a comma-separated list, you can
specify multiple independent lock operations, each of which can have its own timeout. (This is functionally identical
to specifying a separate LOCK command for each lock argument.) Lock operations are performed in strict left-to-right
order. For example:

 LOCK var1(1):10,+var2(1):15

Multiple lock arguments without parentheses each can have their own lock operation indicator and their own timeout
argument. However, if you use multiple lock arguments, be aware that a lock operation without a plus sign lock oper-
ation indicator unlocks all prior locks, including locks applied by an earlier part of the same LOCK command. For
example, the command LOCK ^b(1,1), ^c(1,2,3), ^d(1) would be parsed as three separate lock commands: the first
releasing the processes’ previously held locks (if any) and locking ^b(1,1), the second immediately releasing ^b(1,1)
and locking ^c(1,2,3), the third immediately releasing ^c(1,2,3) locking ^d(1). As a result, only ^d(1) would be locked.

• With Parentheses: By enclosing a comma-separated list of lock names in parentheses, you can perform these locking
operations on multiple locks as a single atomic operation. For example:

 LOCK +(var1(1),var2(1)):10

90 ObjectScript Reference

ObjectScript Commands

All lock operations in a parentheses-enclosed list are governed by a single lock operation indicator and a single timeout
argument; either all of the locks are applied or none of them are applied. A parentheses-enclosed list without a plus
sign lock operation indicator unlocks all prior locks then locks all of the listed lock names.

Arguments

pc

An optional postconditional expression that can make the command conditional. InterSystems IRIS executes the LOCK
command if the postconditional expression is true (evaluates to a nonzero numeric value). InterSystems IRIS does not
execute the command if the postconditional expression is false (evaluates to zero). You can specify a postconditional
expression on an argumentless LOCK command or a LOCK command with arguments. For further details, refer to Command
Postconditional Expressions in Using ObjectScript.

lock operation indicator

The lock operation indicator is used to apply (lock) or remove (unlock) a lock. It can be one of the following values:

Unlock all prior locks belonging to the current process and attempt to apply the
specified lock. For example, LOCK ^a(1) performs the following atomic operation:
it releases all locks previously held by the process (whether local or global,
exclusive or shared, escalating or non-escalating) and it attempts to lock ^a(1).
This can result in one of two outcomes: (1) all prior locks unlocked and ^a(1)
locked; (2) all prior locks unlocked and ^a(1) placed in a lock waiting state
pending the release of a conflicting lock held by another process.

No character

Attempt to apply the specified lock without performing any unlocks. This allows
you to add a lock to the locks held by the current process. One use of this option
is to perform incremental locking of a lock name.

Plus sign (+)

Unlocks the specified lock. If the lock name has a lock count of 1, an unlock
remove the lock from the lock table. If the lock name has a lock count of more
than 1, an unlock removes one of its incremental locks (decrements the lock
count). By default, this unlocks an exclusive, non-escalating lock. To remove a
shared lock and/or an escalating lock, you must specify the corresponding
#locktype.

Minus sign (-)

If your LOCK command contains multiple comma-separated lock arguments, each lock argument can have its own lock
operation indicator. InterSystems IRIS parses this as multiple independent LOCK commands.

lockname

A lockname is the name of a lock for a data resource; it is not the data resource itself. That is, your program can specify a
lock named ^a(1) and a variable named ^a(1) without conflict. The relationship between the lock and the data resource
is a programming convention; by convention, processes must acquire the lock before modifying the corresponding data
resource.

Lock names are case-sensitive. Lock names follow the same naming conventions as the corresponding local variables and
global variables. A lock name can be subscripted or unsubscripted. Lock subscripts have the same naming conventions and
maximum length and number of levels as variable subscripts. In InterSystems IRIS, the following are all valid and unique
lock names: a, a(1), A(1), ^a, ^a(1,2), ^A(1,1,1). For further details, see the Variables chapter of Using ObjectScript.

Note: For performance reasons, it is recommended you specify lock names with subscripts whenever possible. For
example, ^a(1) rather than ^a. Subscripted lock names are used in documentation examples.

ObjectScript Reference 91

LOCK

Lock names can be local or global. A lock name such as A(1) is a local lock name. It applies only to that process, but does
apply across namespaces. A lock name that begins with a caret (^) character is a global lock name; the mapping for this
lock follows the same mapping as the corresponding global, and thus can apply across processes, controlling their access
to the same resource. (See Global Structure in Using Globals.)

Note: Process-private global names can not be used as lock names. Attempting to use a process-private global name as
a lock name performs no operation and completes without issuing an error.

A lock name can represent a local or global variable, subscripted or unsubscripted. It can be an implicit global reference,
or an extended reference to a global on another computer. (See Global Structure in Using Globals.)

The data resource corresponding to a lock name does not need to exist. For example, you may lock the lock name ̂ a(1,2,3)
whether or not a global variable with the same name exists. Because the relationship between locks and data resources is
an agreed-upon convention, a lock may be used to protect a data resource with an entirely different name.

locktype

A letter code specifying the type of lock to apply or remove. locktype is an optional argument; if you omit locktype, the
lock type defaults to an exclusive non-escalating lock. If you omit locktype, you must omit the pound sign (#) prefix. If
you specify locktype, the syntax for lock type is a mandatory pound sign (#), followed by quotation marks enclosing one
or more lock type letter codes. Lock type letter codes can be specified in any order and are not case-sensitive. The following
are the lock type letter codes:

• S: Shared lock

Allows multiple processes to simultaneously hold nonconflicting locks on the same resource. For example, two (or
more) processes may simultaneously hold shared locks on the same resource, but an exclusive lock limits the resource
to one process. An existing shared lock prevents all other processes from applying an exclusive lock, and an existing
exclusive lock prevents all other processes from applying a shared lock on that resource. However, a process can first
apply a shared lock on a resource and then the same process can apply an exclusive lock on the resource, upgrading
the lock from shared to exclusive. Shared and Exclusive lock counts are independent. Therefore, to release such a
resource it is necessary to release both the exclusive lock and the shared lock. All locking and unlocking operations
that are not specified as shared (“S”) default to exclusive.

A shared lock may be incremental; that is, a process may issue multiple shared locks on the same resource. You may
specify a shared lock as escalating (“SE”) when locking and unlocking. When unlocking a shared lock, you may
specify the unlock as immediate (“SI”) or deferred (“SD”). To view the current shared locks with their increment
counts for escalating and non-escalating lock types, refer to the system-wide lock table, described in the “Lock Man-
agement” chapter of Using ObjectScript.

• E: Escalating lock

Allows you to apply a large number of concurrent locks without overflowing the lock table. By default, locks are non-
escalating. When applying a lock, you can use locktype “E” to designate that lock as escalating. When releasing an
escalating lock, you must specify locktype “E” in the unlock statement. You can designate both exclusive locks and
shared (“S”) locks as escalating.

Commonly, you would use escalating locks when applying a large number of concurrent locks at the same subscript
level. For example LOCK +^mylock(1,1)#"E",+^mylock(1,2)#"E",+^mylock(1,3)#"E"....

The same lock can be concurrently applied as a non-escalating lock and as an escalating lock. For example,
^mylock(1,1) and ^mylock(1,1)#"E". InterSystems IRIS counts locks issued with locktype “E” separately in
the lock table. For information on how escalating and non-escalating locks are represented in the lock table, refer to
the “Lock Management” chapter of Using ObjectScript.

When the number of “E” locks at a subscript level reaches a threshold number, the next “E” lock requested for that
subscript level automatically attempts to lock the parent node (the next higher subscript level). If it cannot, no escalation
occurs. If it successfully locks the parent node, it establishes one parent node lock with a lock count corresponding to

92 ObjectScript Reference

ObjectScript Commands

the number of locks at the lower subscript level, plus 1. The locks at the lower subscript level are released. Subsequent
“E” lock requests to the lower subscript level further increment the lock count of this parent node lock. You must
unlock all “E” locks that you have applied to decrement the parent node lock count to 0 and de-escalate to the lower
subscript level. The default lock threshold is 1000 locks; lock escalation occurs when the 1001st lock is requested.

Note that once locking is escalated, lock operations preserve only the number of locks applied, not what specific
resources were locked. Therefore, failing to unlock the same resources that you locked can cause “E” lock counts to
get out of sync.

In the following example, lock escalation occurs when the program applies the lock threshold + 1 “E” lock. This
example shows that lock escalation both applies a lock on the next-higher subscript level and releases the locks on the
lower subscript level:

Main
 TSTART
 SET thold=$SYSTEM.SQL.GetLockThreshold()
 WRITE "lock escalation threshold is ",thold,!
 SET almost=thold-5
 FOR i=1:1:thold+5 { LOCK +dummy(1,i)#"E"
 IF i>almost {
 IF ^$LOCK("dummy(1,"_i_")","OWNER") '= "" {WRITE "lower level lock applied at ",i,"th lock
 ",! }
 ELSEIF ^$LOCK("dummy(1)","OWNER") '= "" {WRITE "lock escalation",!
 WRITE "higher level lock applied at ",i,"th lock
 ",!
 QUIT }
 ELSE {WRITE "No locks applied",! }
 }
 }
 TCOMMIT

Note that only “E” locks are counted towards lock escalation. The following example applies both default (non-“E”)
locks and “E” locks on the same variable. Lock escalation only occurs when the total number of “E” locks on the
variable reaches the lock threshold:

Main
 TSTART
 SET thold=$SYSTEM.SQL.GetLockThreshold()
 WRITE "lock escalation threshold is ",thold,!
 SET noE=17
 WRITE "setting ",noE," non-escalating locks",!
 FOR i=1:1:thold+noE { IF i < noE {LOCK +a(6,i)}
 ELSE {LOCK +a(6,i)#"E"}
 IF ^$LOCK("a(6)","OWNER") '= "" {
 WRITE "lock escalation on lock a(6,",i,")",!
 QUIT }
 }
 TCOMMIT

Unlocking “E” locks is the reverse of the above. When locking is escalated, unlocks at the child level decrement the
lock count of the parent node lock until it reaches zero (and is unlocked); these unlocks decrementing a count, they
are not matched to specific locks. When the parent node lock count reaches 0, the parent node lock is removed and
“E” locking de-escalates to the lower subscript level. Any subsequent locks at the lower subscript level create specific
locks at that level.

The “E” locktype can be combined with any other locktype. For example, “SE”, “ED”, “EI”, “SED”, “SEI”. When
combined with the “I” locktype it permits unlocks of “E” locks to occur immediately when invoked, rather than at the
end of the current transaction. This “EI” locktype can minimize situations where locking is escalated.

Commonly, “E” locks are automatically applied for SQL INSERT, UPDATE, and DELETE operations within a
transaction. However, there are specific limitations on SQL data definition structures that support “E” locking. Refer
to the specific SQL commands for details.

• I: Immediate unlock

Immediately releases a lock, rather than waiting until the end of a transaction:

ObjectScript Reference 93

LOCK

– Specifying “I” when unlocking a non-incremented (lock count 1) lock immediately releases the lock. By default,
an unlock does not immediately release a non-incremented lock. Instead, when you unlock a non-incremented
lock InterSystems IRIS maintains that lock in a delock state until the end of the transaction. Specifying “I” overrides
this default behavior.

– Specifying “I” when unlocking an incremented lock (lock count > 1) immediately releases the incremental lock,
decrementing the lock count by 1. This is the same behavior as a default unlock of an incremented lock.

The “I” locktype is used when performing an unlock during a transaction. It has the same effect on InterSystems IRIS
unlock behavior whether the lock was applied within the transaction or outside of the transaction. The “I” locktype
performs no operation if the unlock occurs outside of a transaction. Outside of a transaction, an unlock always imme-
diately releases a specified lock.

“I” can only be specified for an unlock operation; it cannot be specified for a lock operation. “I” can be specified for
an unlock of a shared lock (#"SI") or an exclusive lock (#"I"). Locktypes “I” and “D” are mutually exclusive. “IE”
can be used to immediately unlock an escalating lock.

This immediate unlock is shown in the following example:

 TSTART
 LOCK +^a(1) // apply lock ^a(1)
 LOCK -^a(1) // remove (unlock) ^a(1)
 // An unlock without a locktype defers the unlock
 // of a non-incremented lock to the end of the transaction.
 WRITE "Default unlock within a transaction.",!,"Go look at the Lock Table",!
 HANG 10 // This HANG allows you to view the current Lock Table
 LOCK +^a(1) // reapply lock ^a(1)
 LOCK -^a(1)#"I" // remove (unlock) lock ^a(1) immediately
 // this removes ^a(1) from the lock table immediately
 // without waiting for the end of the transaction
 WRITE "Immediate unlock within a transaction.",!,"Go look at the Lock Table",!
 HANG 10 // This HANG allows you to view the current Lock Table
 // while still in the transaction
 TCOMMIT

• D: Deferred unlock

Controls when an unlocked lock is released during a transaction. The unlock state is deferred to the state of the previous
unlock of that lock. Therefore, specifying locktype “D” when unlocking a lock may result in either an immediate unlock
or a lock placed in delock state until the end of the transaction, depending on the history of the lock during that trans-
action. The behavior of a lock that has been locked/unlocked more than once differs from the behavior of a lock that
has only been locked once during the current transaction.

The “D” unlock is only meaningful for an unlock that releases a lock (lock count 1), not an unlock that decrements a
lock (lock count > 1). An unlock that decrements a lock is always immediately released.

“D” can only be specified for an unlock operation. “D” can be specified for a shared lock (#"SD") or an exclusive
lock (#"D"). “D” can be specified for a escalating (“E”) lock, but, of course, the unlock must also be specified as
escalating (“ED”). Lock types “D” and “I” are mutually exclusive.

This use of “D” unlock within a transaction is shown in the following examples. The HANG commands give you time
to check the lock’s ModeCount in the Lock Table.

If the lock was only applied once during the current transaction, a “D” unlock immediately releases the lock. This is
the same as “I” behavior. This is shown in the following example:

 TSTART
 LOCK +^a(1) // Lock Table ModeCount: Exclusive
 LOCK -^a(1)#"D" // Lock Table ModeCount: null (immediate unlock)
 HANG 10
 TCOMMIT

If the lock was applied more than once during the current transaction, a “D” unlock reverts to the prior unlock state.

– If the last unlock was a standard unlock, the “D” unlock reverts unlock behavior to that prior unlock’s behavior
— to defer unlock until the end of the transaction. This is shown in the following examples:

94 ObjectScript Reference

ObjectScript Commands

 TSTART
 LOCK +^a(1) // Lock Table ModeCount: Exclusive
 LOCK +^a(1) // Lock Table ModeCount: Exclusive
 LOCK -^a(1) // Lock Table ModeCount: Exclusive
 WRITE "1st unlock",! HANG 5
 LOCK -^a(1)#"D" // Lock Table ModeCount: Exclusive->Delock
 WRITE "2nd unlock",! HANG 5
 TCOMMIT

 TSTART
 LOCK +^a(1) // Lock Table ModeCount: Exclusive
 LOCK -^a(1) // Lock Table ModeCount: Exclusive->Delock
 WRITE "1st unlock",! HANG 5
 LOCK +^a(1) // Lock Table ModeCount: Exclusive
 LOCK -^a(1)#"D" // Lock Table ModeCount: Exclusive->Delock
 WRITE "2nd unlock",! HANG 5
 TCOMMIT

 TSTART
 LOCK +^a(1) // Lock Table ModeCount: Exclusive
 LOCK +^a(1) // Lock Table ModeCount: Exclusive
 LOCK +^a(1) // Lock Table ModeCount: Exclusive
 LOCK -^a(1)#"I" // Lock Table ModeCount: Exclusive/2
 WRITE "1st unlock",! HANG 5
 LOCK -^a(1) // Lock Table ModeCount: Exclusive
 WRITE "2nd unlock",! HANG 5
 LOCK -^a(1)#"D" // Lock Table ModeCount: Exclusive->Delock
 WRITE "3rd unlock",! HANG 5
 TCOMMIT

– If the last unlock was an “I” unlock, the “D” unlock reverts unlock behavior to that prior unlock’s behavior — to
immediately unlock the lock. This is shown in the following examples:

 TSTART
 LOCK +^a(1) // Lock Table ModeCount: Exclusive
 LOCK -^a(1)#"I" // Lock Table ModeCount: null (immediate unlock)
 WRITE "1st unlock",! HANG 5
 LOCK +^a(1) // Lock Table ModeCount: Exclusive
 LOCK -^a(1)#"D" // Lock Table ModeCount: null (immediate unlock)
 WRITE "2nd unlock",! HANG 5
 TCOMMIT

 TSTART
 LOCK +^a(1) // Lock Table ModeCount: Exclusive
 LOCK +^a(1) // Lock Table ModeCount: Exclusive
 LOCK -^a(1)#"I" // Lock Table ModeCount: Exclusive
 WRITE "1st unlock",! HANG 5
 LOCK -^a(1)#"D" // Lock Table ModeCount: null (immediate unlock)
 WRITE "2nd unlock",! HANG 5
 TCOMMIT

– If the last unlock was a “D” unlock, the “D” unlock follows the behavior of the last prior non-“D” lock:

 TSTART
 LOCK +^a(1) // Lock Table ModeCount: Exclusive
 LOCK +^a(1) // Lock Table ModeCount: Exclusive
 LOCK -^a(1)#"D" // Lock Table ModeCount: Exclusive
 WRITE "1st unlock",! HANG 5
 LOCK -^a(1)#"D" // Lock Table ModeCount: null (immediate unlock)
 WRITE "2nd unlock",! HANG 5
 TCOMMIT

 TSTART
 LOCK +^a(1) // Lock Table ModeCount: Exclusive
 LOCK +^a(1) // Lock Table ModeCount: Exclusive
 LOCK +^a(1) // Lock Table ModeCount: Exclusive
 LOCK -^a(1) // Lock Table ModeCount: Exclusive/2
 WRITE "1st unlock",! HANG 5
 LOCK -^a(1)#"D" // Lock Table ModeCount: Exclusive
 WRITE "2nd unlock",! HANG 5
 LOCK -^a(1)#"D" // Lock Table ModeCount: Exclusive->Delock
 WRITE "3rd unlock",! HANG 5
 TCOMMIT

ObjectScript Reference 95

LOCK

 TSTART
 LOCK +^a(1) // Lock Table ModeCount: Exclusive
 LOCK +^a(1) // Lock Table ModeCount: Exclusive
 LOCK +^a(1) // Lock Table ModeCount: Exclusive
 LOCK -^a(1)#"I" // Lock Table ModeCount: Exclusive/2
 WRITE "1st unlock",! HANG 5
 LOCK -^a(1)#"D" // Lock Table ModeCount: Exclusive
 WRITE "2nd unlock",! HANG 5
 LOCK -^a(1)#"D" // Lock Table ModeCount: null (immediate unlock)
 WRITE "3rd unlock",! HANG 5
 TCOMMIT

timeout

The number of seconds or fractions of a second to wait for a lock request to succeed before timing out. timeout is an optional
argument. If omitted, the LOCK command waits indefinitely for a resource to be lockable; if the lock cannot be applied,
the process will hang. The syntax for timeout is a mandatory colon (:), followed by an numeric value or an expression that
evaluates to an numeric value.

Valid values are seconds with or without fractional tenths or hundredths of a second. Thus the following are all valid timeout
values: :5, :5.5, :0.5, :.5, :0.05, :.05. Any value smaller than :0.01 is parsed as zero. A value of zero invokes
one locking attempt before timing out. A negative number is equivalent to zero.

Commonly, a lock will wait if another process has a conflicting lock that prevents this lock request from acquiring (holding)
the specified lock. The lock request waits until either a lock is released that resolves the conflict, or the lock request times
out. Terminating the process also ends (deletes) pending lock requests. Lock conflict can result from many situations, not
just one process requesting the same lock held by another process. A detailed explanation of lock conflict and lock request
wait states is provided in the “Lock Management” chapter of Using ObjectScript.

If you use timeout and the lock is successful, InterSystems IRIS sets the $TEST special variable to 1 (TRUE). If the lock
cannot be applied within the timeout period, InterSystems IRIS sets $TEST to 0 (FALSE). Issuing a lock request without
a timeout has no effect on the current value of $TEST. Note that $TEST can also be set by the user, or by a JOB, OPEN,
or READ timeout.

The following example applies a lock on lock name ^abc(1,1), and unlocks all prior locks held by the process:

 LOCK ^abc(1,1)

This command requests an exclusive lock: no other process can simultaneously hold a lock on this resource. If another
process already holds a lock on this resource (exclusive or shared), this example must wait for that lock to be released. It
can wait indefinitely, hanging the process. To avoid this, specifying a timeout value is strongly recommended:

 LOCK ^abc(1,1):10

If a LOCK specifies multiple lockname arguments in a comma-separated list, each lockname resource may have its own
timeout (syntax without parentheses), or all of the specified lockname resources may share a single timeout (syntax with
parentheses).

• Without Parentheses: each lockname argument can have its own timeout. InterSystems IRIS parses this as multiple
independent LOCK commands, so the timeout of one lock argument does not affect the other lock arguments. Lock
arguments are parsed in strict left-to-right order, with each lock request either completing or timing out before the next
lock request is attempted.

• With Parentheses: all lockname arguments share a timeout. The LOCK must successfully apply all locks (or unlocks)
within the timeout period. If the timeout period expires before all locks are successful, none of the lock operations
specified in the LOCK command are performed, and control returns to the process.

InterSystems IRIS performs multiple operations in strict left-to-right order. Therefore, in LOCK syntax without parentheses,
the $TEST value indicates the outcome of the last (rightmost) of multiple lockname lock requests.

96 ObjectScript Reference

ObjectScript Commands

In the following examples, the current process cannot lock ^a(1) because it is exclusively locked by another process. These
examples use a timeout of 0, which means they make one attempt to apply the specified lock.

The first example locks ^x(1) and ^z(1). It sets $TEST=1 because ^z(1) succeeded before timing out:

 LOCK +^x(1):0,+^a(1):0,+^z(1):0

The second example locks ^x(1) and ^z(1). It sets $TEST=0 because ^a(1) timed out. ^z(1) did not specify a timeout and
therefore had no effect on $TEST:

 LOCK +^x(1):0,+^a(1):0,+^z(1)

The third example applies no locks, because a list of locks in parentheses is an atomic (all-or-nothing) operation. It sets
$TEST=0 because ^a(1) timed out:

 LOCK +(^x(1),^a(1),^z(1)):0

Using the Lock Table to View and Delete Locks System-wide
InterSystems IRIS maintains a system-wide lock table that records all locks that are in effect and the processes that have
applied them. The system manager can display the existing locks in the Lock Table or remove selected locks using the
Management Portal interface or the ^LOCKTAB utility, as described in the “Lock Management” chapter of Using
ObjectScript. You can also use the %SYS.LockQuery class to read lock table information. From the %SYS namespace you
can use the SYS.Lock class to manage the lock table.

You can use the Management Portal to view held locks and pending lock requests system-wide. Go to the Management
Portal, select System Operation, select Locks, then select View Locks. For further details on the View Locks table refer to
the “Lock Management” chapter of Using ObjectScript.

You can use the Management Portal to remove (delete) locks currently held on the system. Go to the Management Portal,
select System Operation, select Locks, then select Manage Locks. For the desired process (Owner) click either “Remove”
or “Remove All Locks for Process”.

Removing a lock releases all forms of that lock: all increment levels of the lock, all exclusive, exclusive escalating, and
shared versions of the lock. Removing a lock immediately causes the next lock waiting in that lock queue to be applied.

You can also remove locks using the SYS.Lock.DeleteOneLock() and SYS.Lock.DeleteAllLocks() methods.

Removing a lock requires WRITE permission. Lock removal is logged in the audit database (if enabled); it is not logged
in messages.log.

Incremental Locking and Unlocking
Incremental locking permits you to apply the same lock multiple times: to increment the lock. An incremented lock has a
lock count of > 1. Your process can subsequently increment and decrement this lock count. The lock is released when the
lock count decrements to 0. No other process can acquire the lock until the lock count decrements to 0. The lock table
maintains separate lock counts for exclusive locks and shared locks, and for escalating and non-escalating locks of each
type. The maximum incremental lock count is 32,766. Attempting to exceed this maximum lock count results in a <MAX
LOCKS> error.

You can increment a lock as follows:

• Plus sign: Specify multiple lock operations on the same lock name with the plus sign lock operation indicator. For
example: LOCK +^a(1) LOCK +^a(1) LOCK +^a(1) or LOCK +^a(1),+^a(1),+^a(1) or LOCK
+(^a(1),^a(1),^a(1)). All of these would result in a lock table ModeCount of Exclusive/3. Using the plus
sign is the recommended way to increment a lock.

• No sign: It is possible to increment a lock without using the plus sign lock operation indicator by specifying an atomic
operation performing multiple locks. For example, LOCK (^a(1),^a(1),^a(1)) unlocks all prior locks and

ObjectScript Reference 97

LOCK

incrementally locks ^a(1) three times. This too would result in a lock table ModeCount of Exclusive/3. While this
syntax works, it is not recommended.

Unlocking an incremented lock when not in a transaction simply decrements the lock count. Unlocking an incremented
lock while in a transaction has the following default behavior:

• Decrementing Unlocks: each decrementing unlock immediately release the incremental unlock until the lock count is
1. By default, the final unlock puts the lock in delock state, deferring release of the lock to the end of the transaction.
This is always the case when you delock with the minus sign lock operation indicator, whether or not the operation is
atomic. For example: LOCK -^a(1) LOCK -^a(1) LOCK -^a(1) or LOCK -^a(1),-^a(1),-^a(1) or LOCK
-(^a(1),^a(1),^a(1)). All of these begin with a lock table ModeCount of Exclusive/3 and end with
Exclusive->Delock.

• Unlocking Prior Resources: an operation that unlocks all prior resources immediately puts an incremented lock into a
delock state until the end of the transaction. For example, either LOCK x(3) (lock with no lock operation indicator)
or an argumentless LOCK would have the following effect: the incremented lock would begin with a lock table
ModeCount of Exclusive/3 and end with Exclusive/3->Delock.

Note that separate lock counts are maintained for the same lock as an Exclusive lock, a Shared lock, a Exclusive escalating
lock and a Shared escalating lock. In the following example, the first unlock decrements four separate lock counts for lock
^a(1) by 1. The second unlock must specify all four of the ^a(1) locks to remove them. The HANG commands give you
time to check the lock’s ModeCount in the Lock Table.

 LOCK +(^a(1),^a(1)#"E",^a(1)#"S",^a(1)#"SE")
 LOCK +(^a(1),^a(1)#"E",^a(1)#"S",^a(1)#"SE")
 HANG 10
 LOCK -(^a(1),^a(1)#"E",^a(1)#"S",^a(1)#"SE")
 HANG 10
 LOCK -(^a(1),^a(1)#"E",^a(1)#"S",^a(1)#"SE")

If you attempt to unlock a lock name that has no current locks applied, no operation is performed and no error is returned.

Automatic Unlock

When a process terminates, InterSystems IRIS performs an implicit argumentless LOCK to clear all locks that were applied
by the process. It removes both held locks and lock wait requests.

Locks on Global Variables
Locking is typically used with global variables to synchronize the activities of multiple processes that may access these
variables simultaneously. Global variables differ from local variables in that they reside on disk and are available to all
processes. The potential exists, then, for two processes to write to the same global at the same time. In fact, InterSystems
IRIS processes one update before the other, so that one update overwrites and, in effect, discards the other.

Global lock names begin with a caret (^) character.

To illustrate locking with global variables, consider the case in which two data entry clerks are concurrently running the
same student admissions application to add records for newly enrolled students. The records are stored in a global array
named ^student. To ensure a unique record for each student, the application increments the global variable ^index for each
student added. The application includes the LOCK command to ensure that each student record is added at a unique location
in the array, and that one student record does not overwrite another.

The relevant code in the application is shown below. In this case, the LOCK controls not the global array ^student but the
global variable ^index. ^index is a scratch global that is shared by the two processes. Before a process can write a record
to the array, it must lock ^index and update its current value (SET ^index=^index+1). If the other process is already in this
section of the code, ^index will be locked and the process will have to wait until the other process releases the lock (with
the argumentless LOCK command).

98 ObjectScript Reference

ObjectScript Commands

 READ !,"Last name: ",!,lname QUIT:lname="" SET lname=lname_","
 READ !,"First name: ",!,fname QUIT:fname="" SET fname=fname_","
 READ !,"Middle initial: ",!,minit QUIT:minit="" SET minit=minit_":"
 READ !,"Student ID Number: ",!,sid QUIT:sid=""
 SET rec = lname_fname_minit_sid
 LOCK ^index
 SET ^index = ^index + 1
 SET ^student(^index)=rec
 LOCK

The following example recasts the previous example to use locking on the node to be added to the ^student array. Only the
affected portion of the code is shown. In this case, the ^index variable is updated after the new student record is added. The
next process to add a record will use the updated index value to write to the correct array node.

 LOCK ^student(^index)
 SET ^student(^index) = rec
 SET ^index = ^index + 1
 LOCK /* release all locks */

Note that the lock location of an array node is where the top level global is mapped. InterSystems IRIS ignores subscripts
when determining lock location. Therefore, ^student(name) is mapped to the namespace of ^student, regardless of where
the data for ^student(name) is stored.

Locks in a Network

In a networked system, one or more servers may be responsible for resolving locks on global variables.

You can use the LOCK command with any number of servers, up to 255. A LOCK command can specify a maximum of
8 remote systems, and a maximum of 20 locks for each remote system.

You can use ^$LOCK to list remote locks, but it cannot list the lock state of a remote lock.

Remote locks held by a client job on a remote server system are released when you call the ^RESJOB utility to remove the
client job.

Local Variable Locks
The behavior is as follows:

• Local (non-careted) locks acquired in the context of a specific namespace, either because the default namespace is an
explicit namespace or through an explicit reference to a namespace, are taken out in the manager's dataset on the local
machine. This occurs regardless of whether the default mapping for globals is a local or a remote dataset.

• Local (non-careted) locks acquired in the context of an implied namespace or through an explicit reference to an implied
namespace on the local machine, are taken out using the manager's dataset of the local machine. An implied namespace
is a directory path preceded by two caret characters: "^^dir".

Referencing explicit and implied namespaces is further described in Global Structure in Using Globals.

See Also
• $TEST special variable

• ^$LOCK structured system variable

• Lock Management in Using ObjectScript

• Using ObjectScript for Transaction Processing in Using ObjectScript

• The Monitoring Locks section of the “Monitoring InterSystems IRIS Using the Management Portal” chapter in
Monitoring Guide

• The article Locking and Concurrency Control

ObjectScript Reference 99

LOCK

MERGE
Merges global nodes or subtrees from source into destination.

MERGE:pc mergeargument,...
M:pc mergeargument,...

where mergeargument is:

destination=source

Arguments

Optional — A postconditional expression.pc

Local variables, process-private globals, or globals to be merged. If specified
as a class property, the source variable must be a multidimensional
(subscripted) variable.

destination and source

Description
MERGE destination=source copies source into destination and all descendants of source into descendants of destination.
It does not modify source, or kill any nodes in destination.

MERGE simplifies the copying of a subtree (multiple subscripts) of a variable to another variable. Either variable can be
a subscripted local variable, process-private global, or global. A subtree is all variables that are descendants of a specified
variable. MERGE offers a one-command alternative to the current technique for doing subtree copy: a series of SET
commands with $ORDER references.

MERGE issues a <COMMAND> error if the source and destination have a parent-child relationship.

MERGE Execution

The MERGE command can take longer than most other ObjectScript commands to execute. As a result, it is more prone
to interruption. The effect of interruption is implementation-specific. Under InterSystems IRIS, an interruption may cause
an unpredictable subset of the source to have been copied to the destination subtree.

MERGE is a non-atomic operation. When executing MERGE while other processes are performing concurrent data
modification operations, the contents of destination will be the state of the data at the time that MERGE was initiated,
minus any variables that were KILLed at the time the MERGE operation concluded. Other data modifications that occurred
during MERGE processing may not be reflected in the contents of destination.

Arguments

pc

An optional postconditional expression. InterSystems IRIS executes the MERGE command if the postconditional expression
is true (evaluates to a nonzero numeric value). InterSystems IRIS does not execute the command if the postconditional
expression is false (evaluates to zero). For further details, refer to Command Postconditional Expressions in Using
ObjectScript.

destination and source

Variables to be merged. Either variable can be a local variable, a process-private global, or a global. If destination is
undefined, MERGE defines it and sets it to source. If source is undefined, MERGE completes successfully, but does not
change destination.

100 ObjectScript Reference

ObjectScript Commands

You can specify multiple, comma-separated destination=source pairs. They are evaluated in left-to-right order.

A mergeargument can reference a destination=source pair by indirection. For example, MERGE @tMergeString.

A mergeargument can be an array passed by reference that specifies a variable number of parameters, such in myargs...

The ^$GLOBAL SSVN can be the source variable. This copies the global directory to a destination variable. MERGE
adds each global name as a destination subscript with a null value. This is shown in the following example:

 MERGE gbls=^$GLOBAL("")
 ZWRITE gbls

Examples
The following example copies a subtree from one global variable (^a) to another global variable (^b). In this case, the merge
is being used to create a smaller global ^b, which contains only the ^a(1,1) subtree of the information in ^a.

 SET ^a="cartoons"
 SET ^a(1)="The Flintstones",^a(2)="The Simpsons"
 SET ^a(1,1)="characters",^a(1,2)="place names"
 SET ^a(1,1,1)="Flintstone family"
 SET ^a(1,1,1,1)="Fred"
 SET ^a(1,1,1,2)="Wilma"
 SET ^a(1,1,2)="Rubble family"
 SET ^a(1,1,2,1)="Barney"
 SET ^a(1,1,2,2)="Betty"
 MERGE ^b=^a(1,1)
 WRITE ^b,!,^b(2),!,^b(2,1)," and ",^b(2,2)

The following example shows how a destination global variable looks after it has been merged with a subtree of a source
global variable.

Suppose you execute the following:

 KILL ^X,^Y
 SET ^X(2,2)="first"
 SET ^X(2,2,4)="second"
 SET ^Y(3,6,7)="third"
 SET ^Y(3,6,8)="fourth"
 SET ^Y(3,6,7,8,4)="fifth"
 SET ^Y(3,6,7,8,9)="sixth"
 WRITE ^X(2,2),!,^X(2,2,4),!
 WRITE ^Y(3,6,7),!,^Y(3,6,8),!
 WRITE ^Y(3,6,7,8,4),!,^Y(3,6,7,8,9)

The following figure shows the resulting logical structure of ^X and ^Y.

Figure B–2: Initial Structure of ^X and ^Y

ObjectScript Reference 101

MERGE

Consider the following MERGE command:

 MERGE ^X(2,3)=^Y(3,6,7,8)

When you issue the previous statement, InterSystems IRIS copies part of ^Y into ^X(2,3). The global ^X now has the
structure illustrated in the figure below.

Figure B–3: Result on ^X and ^Y of MERGE Command

Notes

Naked Indicator

When both destination and source are local variables, the naked indicator is not changed. If source is a global variable and
destination is a local variable, then the naked indicator references source.

When both source and destination are global variables, the naked indicator is unchanged if source is undefined
($DATA(source)=0). In all other cases (including $DATA(source)=10), the naked indicator takes the same value that it
would have if the SET command replaced the MERGE command and source had a value. For more details on the naked
indicator, see Naked Global Reference in Using Globals.

Merge to Self

When the destination and source are the same variable, no merge occurs. Nothing is recorded in the journal file. However,
the naked indicator may be changed, based on the rules described in the previous section.

Watchpoints

The MERGE command supports watchpoints. If a watchpoint is in effect, InterSystems IRIS triggers that watchpoint
whenever that MERGE alters the value of a watched variable. To set watchpoints, use the ZBREAK command.

See Also
• ZBREAK command

• Debugging chapter in Using ObjectScript

• Global Structure chapter in Using Globals

102 ObjectScript Reference

ObjectScript Commands

NEW
Creates empty local variable environment.

NEW:pc newargument,...
N:pc newargument,...

where newargument can be:

variable,...
(variable,...)

Arguments

Optional — A postconditional expression.pc

Optional — Name of variable(s) to be added to the existing local variable environment.
The effect of a NEW on existing local variables depends on whether variable is enclosed
in parentheses (exclusive NEW) or is not enclosed in parentheses (inclusive NEW). A
variable must be a valid local variable name, but does not have to be a defined variable;
specifying an undefined variable neither issues an error nor defines the variable.

variable

Description
The NEW command has two forms:

• Without an argument

• With an argument

NEW without an argument creates an empty local variable environment for a called subroutine or user-defined function.
Existing local variable values are not available in this new local environment. They can be restored by returning to the
previous local environment.

The action NEW with an argument performs depends on the argument form you use.

• NEW variable (inclusive NEW) retains the existing local variable environment and adds the specified variable(s) to
it. If any of the specified local variables has the same name as an existing local variable, the old value for that named
variable is no longer accessible in the current environment.

• NEW (variable) (exclusive NEW) replaces all existing variables in the local variable environment except the specified
variable(s).

NEW Restrictions

The NEW command (inclusive or exclusive) cannot be used on the following:

• Globals

• Process-Private Globals

• Local variable subscripts

• Private variables

• Special variables, except $ESTACK, $NAMESPACE, and $ROLES

Attempting to use NEW in any of these contexts results in a <SYNTAX> error.

ObjectScript Reference 103

NEW

Arguments

pc

An optional postconditional expression. InterSystems IRIS executes the NEW command if the postconditional expression
is true (evaluates to a nonzero numeric value). InterSystems IRIS does not execute the command if the postconditional
expression is false (evaluates to zero). For further details, refer to Command Postconditional Expressions in Using
ObjectScript.

variable

Name of a single variable or a comma-separated list of variable names. You can specify only unsubscripted variable names,
although you can NEW an entire array (that is, an array name without subscripts). You can specify undefined variable
names or you can reuse the names of existing local variables. For an inclusive NEW, when you specify an existing local
variable, InterSystems IRIS reinitializes that variable in the local environment, but saves its current value on the program
stack and restores it after the subroutine or function terminates.

When a variable name or comma-separated list of variable names is enclosed in parentheses (exclusive NEW), InterSystems
IRIS performs the opposite operation. That is, all local variables are reinitialized except the specified variable names, which
retain their previous values. InterSystems IRIS saves the current values of all variables on the program stack and restores
them after the subroutine or function terminates.

Examples
The following example illustrates an inclusive NEW, which keeps the existing local variables a, b, and c, and adds variables
d and e, in this case, overlaying the prior value of d.

Main
 SET a=7,b=8,c=9,d=10
 WRITE !,"Before NEW:",!,"a=",a,!,"b=",b,!,"c=",c,!,"d=",d
 DO Sub1
 WRITE !,"Returned to prior context:"
 WRITE !,"a=",a,!,"b=",b,!,"c=",c,!,"d=",d
 QUIT
Sub1
 NEW d,e
 SET d="big number"
 WRITE !,"After NEW:",!,"a=",a,!,"b=",b,!,"c=",c,!,"d=",d
 QUIT

The following example illustrates an exclusive NEW, which removes all existing local variables except the specified
variables a and c.

 SET a=7,b=8,c=9,d=10
 NEW (a,c)
 WRITE

Notes

Where to Use NEW

NEW allows you to insulate the current process’s local variable environment from changes made by a subroutine, user-
defined function, or XECUTE string. NEW is most frequently used within a subroutine called by the DO command.

The basic purpose of the NEW command is to redefine the local variable environment within a called subroutine or user-
defined function. A subroutine or user-defined function called without parameter passing inherits its local variable environ-
ment from the calling routine. To redefine this environment for a subroutine or function, you can use NEW for all local
variables (argumentless NEW), for named local variables (inclusive NEW) or for all local variables except the named
variables (exclusive NEW).

Within a procedure, variables are either private or public:

104 ObjectScript Reference

ObjectScript Commands

• By default, local variables are private to that procedure. The procedure block uses private variables that do not interact
with variables with the same names outside the procedure block. You cannot perform a NEW on a private variable;
attempting an inclusive or exclusive NEW on a private variable within a procedure block results in a <SYNTAX>
error.

• When declaring a procedure, you can explicitly list local variables as public variables. You can perform a NEW on a
public variable within a procedure block. This NEW only affects the variable value within that procedure. You can
repeatedly NEW a public variable within a procedure.

For further details, refer to “Procedure Variables” in Using ObjectScript.

Special considerations apply in the case of a subroutine called by the DO command with parameter passing. These consid-
erations are described under "Subroutines with Parameter Passing".

NEW and KILL

Variables created by NEW do not require explicit and corresponding KILL commands. When a called subroutine or a
user-defined function terminates, InterSystems IRIS executes an implicit KILL for each variable initialized by a NEW
command within that subroutine or function.

Inclusive NEW

An inclusive NEW — NEW variable — retains the existing local variable environment and adds the specified variables
to it. If an existing variable is named, the "new" variable replaces the existing variable, which is saved on the stack and
then restored when the subroutine or function terminates.

Inclusive NEW does not restrict the number of variables you can specify as a comma-separated list. Inclusive NEW also
does not limit the number of local variable environment levels (number of times NEW is issued).

In the following example, assume that the local variable environment of the calling routine (Main) consists of variables a,
b, and c. When the DO calls Subr1, the NEW command redefines Subr1’s local variable environment to new variable c
and add variable d. After the NEW, the subroutine’s environment consists of the existing variables a and b plus the new
variables c and d. The variables a and b are inherited and retain their existing values. The new variables c and d are created
undefined. Since c is the name of an existing local variable, the system saves the existing value on the stack and restores
it when Subr1 QUITs. Note that the first SET command in Subr1 references a and b to assign a value to d. Note that variable
c in this context is undefined.

Main
 SET a=2,b=4,c=6
 WRITE !,"c in Main before DO: ",c
 DO Subr1(a,b,c)
 WRITE !,"c in Main after DO: ",c
 QUIT
Subr1(a,b,c)
 NEW c,d
 IF $DATA(c) {WRITE !,"c=",c}
 ELSE {WRITE !,"c in Subr1 is undefined"}
 SET d=a*b
 SET c=d*2
 WRITE !,"c in Subr1: ",c
 QUIT

When executed, this code produces the following results:

c before DO: 6
c in Subr1 is undefined
c in Subr1: 16
c after DO: 6

The results are the same whether passing parameters by value, as in the previous example, or passing parameters by reference:

ObjectScript Reference 105

NEW

Main
 SET a=2,b=4,c=6
 WRITE !,"c in Main before DO: ",c
 DO Subr1(.a,.b,.c)
 WRITE !,"c in Main after DO: ",c
 QUIT
Subr1(&a,&b,&c)
 NEW c,d
 IF $DATA(c) {WRITE !,"c=",c}
 ELSE {WRITE !,"c in Subr1 is undefined"}
 SET d=a*b
 SET c=d*2
 WRITE !,"c in Subr1: ",c
 QUIT

Note that variable c is passed to Subr1 and then immediately redefined using NEW. In this case, passing variable c was
unnecessary; the program results are identical whether or not c is passed. If you NEW any of the variables named in the
subroutine’s formal parameter list, you render them undefined and make their passed values inaccessible.

Exclusive NEW

An exclusive NEW — NEW (var1,var2) — replaces the entire existing local variable environment except the specified
variables. If an existing variable is named, it is retained and can be referenced in the new environment. However, any
changes made to such a variable are reflected in the existing variable when the function or subroutine terminates.

An exclusive NEW can specify a maximum of 255 variables as a comma-separated list. Exceeding this number causes
InterSystems IRIS to issue a <SYNTAX> error.

Exclusive NEW (NEW (x,y,z)) temporarily removes local variables from the current scope. This can affect local variables
created by InterSystems IRIS objects. For example, InterSystems IRIS maintains %objcn which is the cursor pointer for
InterSystems IRIS object queries. Removing this from the current scope can result in collisions with other internal structures.
Therefore, do not use exclusive NEW in any context where it might affect system structures.

Attempting to issue more than 31 levels of exclusive NEW or argumentless NEW results in a <MAXSCOPE> error.

When using exclusive NEW in a FOR code block, you must specify the FOR count variable as an excluded variable. For
further details, refer to the FOR command.

In the following example, assume that the local variable environment of the calling routine (Start) consists of variables a,
b, and c. When the DO calls Subr1, the NEW command redefines Subr1’s local variable environment to exclude all variables
except c and d.

After the NEW, the subroutine’s environment consists only of the new variables c and d. The new variable c is retained
from the calling routine’s environment and keeps its existing value. The new variable d is created undefined.

The first SET command in Subr1 references c to assign a value to d. The second SET command assigns a new value (24)
to c. When the subroutine QUITs, c will have this updated value (and not the original value of 6) in the calling routine’s
environment.

Start SET a=2,b=4,c=6
 DO Subr1
 WRITE !,"c in Start: ",c
 QUIT
Subr1 NEW (c,d)
 SET d=c+c
 SET c=d*2
 WRITE !,"c in Subr1: ",c
 QUIT

When executed, this code produces the following results:

c in Subr1: 24

c in Start: 24

106 ObjectScript Reference

ObjectScript Commands

Argumentless NEW

The argumentless NEW provides an empty local variable environment for a called subroutine or user-defined function.
The existing local variable environment (in the calling routine) is saved and then restored when the subroutine or function
terminates. Any variables created after the NEW are deleted when the subroutine or function terminates.

If a command follows the NEW on the same line, be sure to separate the NEW command from the command following it
by (at least) two spaces.

Argumentless NEW should not be used within the body of a FOR loop or in a context in which it can affect InterSystems
IRIS objects.

Attempting to issue more than 31 levels of exclusive NEW or argumentless NEW results in a <MAXSCOPE> error.

Special Variables: $ESTACK, $NAMESPACE, and $ROLES

You cannot use NEW on most special variables; attempting to do so results in a <SYNTAX> error. There are three
exceptions: $ESTACK, $NAMESPACE, and $ROLES. When you issue the command NEW $NAMESPACE, the system
creates a new namespace context. Within this context you can change the namespace. When you exit this context (with
QUIT, for example) InterSystems IRIS reverts to the prior namespace.

Subroutines with Parameter Passing

If you call a subroutine with parameter passing, InterSystems IRIS issues an implicit NEW command for each of the variables
named in the subroutine’s formal parameter list. It then assigns the values passed in the DO command’s actual parameter
list (by value or by reference) to these variables.

If the DO command uses parameter passing by value and if the formal list names any existing local variables, InterSystems
IRIS places the existing variables and their values on the stack. When the subroutine terminates (with either an explicit or
an implicit QUIT), InterSystems IRIS issues an implicit KILL command for each of the formal list variables to restore
them from the stack.

See Also
• DO command

• QUIT command

• SET command

• $NAMESPACE special variable

ObjectScript Reference 107

NEW

OPEN
Acquires ownership of a device or file for input/output operations.

OPEN:pc device:(parameters):timeout:"mnespace",...
O:pc device:(parameters):timeout:"mnespace",...

Arguments

Optional — A postconditional expression.pc

The device to be opened, specified by a device ID or a device alias. A device ID
can be an integer (a device number), a device name, or the pathname of a
sequential file. If a string, it must be enclosed with quotation marks.The maximum
length of device is 256 characters.

device

Optional — The list of parameters used to set device characteristics.The parameter
list is enclosed in parentheses, and the parameters in the list are separated by
colons. Parameters can either be positional (specified in a fixed order in the
parameter list) or keyword (specified in any order). A mix of positional and keyword
parameters is permitted.The individual parameters and their positions and keywords
are highly device-dependent.

parameters

Optional — The number of seconds to wait for the request to succeed, specified
as an integer. Fractional seconds are truncated to the integer portion. If omitted,
InterSystems IRIS waits indefinitely.

timeout

Optional — The name of the mnemonic space that contains the control mnemonics
to use with this device, specified as a quoted string.

mnespace

Description
Use the OPEN command to acquire ownership of a specified device (or devices) for input/output operations. An OPEN
retains ownership of the device until ownership is released with the CLOSE command.

An OPEN command can be used to open multiple devices by using a comma to separated the specifications for each device.
Within the specification of a device, its arguments are separated by using colons (:). If an argument is omitted, the positional
colon must be specified; however, trailing colons are not required.

The OPEN command can be used to open devices such as terminal devices, spool devices, TCP bindings, interprocess
pipes, named pipes, and interjob communications.

The OPEN command can also be used to open a sequential file. The device argument specifies the file pathname as a quoted
string. The parameters argument specifies the parameters governing the sequential file. These parameters can include the
option of creating a new file if the specified file does not exist. Specifying the timeout argument, though optional, is strongly
encouraged when opening a sequential file.

Sequential file open option defaults are set for the current process using the %SYSTEM.Process class OpenMode() and
FileMode() methods, and system-wide by using the Config.Miscellaneous class OpenMode and FileMode properties. For
much more details on opening sequential files, see Sequential File I/O in the I/O Device Guide.

The OPEN command is not used to access an InterSystems IRIS database file.

On Windows, ObjectScript allocates each process an open file quota between database files and files opened with OPEN.
When OPEN causes too many files to be allocated to OPEN commands, you receive a <TOOMANYFILES> error. The
InterSystems IRIS maximum number of open files for a process is 1,024. The actual maximum number of open files for

108 ObjectScript Reference

ObjectScript Commands

each process is a platform-specific setting. For example, Windows defaults to a maximum of 998 open files per process.
Consult the operating system documentation for your system.

Arguments

pc

An optional postconditional expression. InterSystems IRIS executes the OPEN command if the postconditional expression
is true (evaluates to a nonzero numeric value). InterSystems IRIS does not execute the OPEN command if the postconditional
expression is false (evaluates to zero). Only one postconditional is permitted, even if the OPEN command opens multiple
devices or files. For further details, refer to Command Postconditional Expressions in Using ObjectScript.

device

The device to be opened. You can specify the device using any of the following:

• Physical device number, specified as a positive integer. For example, 2 is always the spooler device. This number is
internal to InterSystems IRIS and is unrelated to device numbers assigned by the platform operating system.

• Device ID, specified as a quoted string. For example, "|TRM|:|4294318809". This value for the current device is
found in the $IO special variable.

• Device alias, specified as a positive integer. A device alias refers to a physical device number.

• File pathname, specified as a quoted string. This is used for opening sequential files. A pathname can be canonical
(c:\myfiles\testfile) or relative to the current directory (\myfiles\testfile). In UNIX pathnames, you can use tilde (~)
expansion to indicate the current user’s home directory. For example: ~myfile or ~/myfile.

The maximum length of device is 256 characters for Windows and UNIX®. See "Specifying the Device" for more information.

parameters

The list of parameters used to set operating characteristics of the device to be opened. The enclosing parentheses are required
if there is more than one parameter. (It’s good programming practice to always use parentheses when you specify a
parameter.) Note the required colon before the left parenthesis. Within the parentheses, colons are used to separate multiple
parameters.

The parameters for a device can be specified using either positional parameters or keyword parameters. You can also mix
positional parameters and keyword parameters within the same parameter list.

In most cases, specifying contradictory, duplicate, or invalid parameter values does not result in an error. Wherever possible,
InterSystems IRIS ignores inappropriate parameter values and takes appropriate defaults.

If you do not specify a list of parameters, InterSystems IRIS uses the device’s default parameters. The default parameters
for a device are configurable. Go to the Management Portal, select System Administration, Configuration, Device Settings,
Devices to display the current list of devices. For the desired device, click “edit” to display its Open Parameters: option.
Specify this value in the same way you specify the OPEN command parameters, including the enclosing parentheses. For
example, ("AVL":0:2048).

The available parameters are specific to the type of device that is being opened. For more information on device parameters,
see I/O Devices and Commands in I/O Device Guide.

Positional Parameters

Positional parameters must be specified in a fixed sequence in the parameter list. You can omit a positional parameter (and
receive the default value), but you must retain the colon to indicate the position of the omitted positional parameter. Trailing
colons are not required; excess colons are ignored. The individual parameters and their positions are highly device-dependent.
There are two types of positional parameters: values and letter code strings.

ObjectScript Reference 109

OPEN

A value can be an integer (for example, record size), a string (for example, host name), or a variable or expression that
evaluates to a value.

A letter code string uses individual letters to specify device characteristics for the open operation. For most devices, this
letter code string is one of the positional parameters. You can specify any number of letters in the string, and specify the
letters in any order. Letter codes are not case-sensitive. A letter code string is enclosed in quotation marks; no spaces or
other punctuation is allowed within a letter code string (exception: K and Y may be followed by a name delimited by
backslashes: thus: K\name\). For example, when opening a sequential file, you might specify a letter code string of “ANDFW”
(append to existing file, create new file, delete file, fix-length records, write access.) The position of the letter code string
parameter, and the meanings of individual letters is highly device-dependent.

Keyword Parameters

Keyword parameters can be specified in any sequence in the parameter list. A parameter list can consist entirely of keyword
parameters, or it can contain a mix of positional and keyword parameters. (Commonly, the positional parameters are spec-
ified first (in their correct positions) followed by the keyword parameters.) You must separate all parameters (positional
or keyword) with a colon (:). A parameter list of keyword parameters has the following general syntax:

OPEN device:(/KEYWORD1=value1:/KEYWORD2=value2:.../KEYWORDn=valuen):timeout

The individual parameters and their positions are highly device-dependent. As a general rule, you can specify the same
parameters and values using either a positional parameter or a keyword parameter. You can specify a letter code string as
a keyword parameter by using the /PARAMS keyword.

timeout

The number of seconds to wait for the OPEN request to succeed. The preceding colon is required. timeout must be specified
as an integer value or expression. If timeout is set to zero (0), OPEN makes a single attempt to open the file. If the attempt
fails, the OPEN immediately fails. If the attempt succeeds it successfully opens the file. If timeout is not set, InterSystems
IRIS will continue trying to open the device until the OPEN is successful or the process is terminated manually. If you use
the timeout option and the device is successfully opened, InterSystems IRIS sets the $TEST special variable to 1 (TRUE).
If the device cannot be opened within the timeout period, InterSystems IRIS sets $TEST to 0 (FALSE). Note that $TEST
can also be set by the user, or by a JOB, LOCK, or READ timeout.

mnespace

The name of the mnemonic space that contains the device control mnemonics used by this device. By default, InterSystems
IRIS provides the mnemonic space ^%X364 (ANSI X3.64 compatible) for devices and sequential files. Default mnemonic
spaces are assigned by device type.

Go to the Management Portal, select System Administration, Configuration, Device Settings, IO Settings. View and edit the
File, Terminal, or Other mnemonic space setting.

A mnemonic space is a routine that contains entry points for the device control mnemonics used by READ and WRITE
commands. The READ and WRITE commands invoke these device control mnemonics using the /mnemonic(params)
syntax. These device control mnemonics perform operations such a moving the cursor to a specified screen location.

Use the mnespace argument to override the default mnemonic space assignment. Specify an ObjectScript routine that
contains the control mnemonics entry points used with this device. The enclosing double quotes are required. Specify this
option only if you plan to use device control mnemonics with the READ or WRITE command. If the mnemonic space
does not exist, a <NOROUTINE> error is returned. For further details on mnemonic spaces, see I/O Devices and Commands
in the I/O Device Guide.

Examples
In the following example, the OPEN command attempts to acquire ownership of device 2 (the spooler). The first positional
parameter (3) specifies the file number within the ^SPOOL global and the second positional parameter (12) specifies the

110 ObjectScript Reference

ObjectScript Commands

line number within the file. If you later use the USE command to make this the current device (that is, USE 2), ObjectScript
sends subsequent output to the spooler.

 OPEN 2:(3:12)

In the following example, the OPEN command attempts to acquire ownership of the sequential file CUSTOMER within
the timeout period of 10 seconds.

 OPEN "\myfiles\customer"::10

Note that because no parameters are specified, the parentheses are omitted, but the colon must be present.

The following example opens a sequential file named Seqtest; the letter code positional parameter is ”NRW”. The “N”
letter code specifies that if the file does not exist, create a new sequential file with this name. The “R” and “W” letter codes
specify that the file is being opened for reading and writing. The timeout is 5 seconds.

 NEW $NAMESPACE
 SET $NAMESPACE="%SYS"
 SET dir=##class(%SYSTEM.Process).CurrentDirectory() ; determine InterSystems IRIS directory
 SET seqfilename=dir_"Samples\Seqtest"
 OPEN seqfilename:("NRW"):5
 WRITE !,"Opened a sequential file named Seqtest"
 USE seqfilename
 WRITE "a line of data for the sequential file"
 CLOSE seqfilename:"D"
 WRITE !,"Closed and deleted Seqtest"
 QUIT

This example requires that UnknownUser have assigned the %DB_IRISSYS role.

Notes

Device Ownership and the Current Device

OPEN establishes ownership of the specified device. The process retains ownership of the device until the process either
terminates or releases the device with a subsequent CLOSE command. While a device is owned by a process, no other
process can acquire or use the device.

A process can own multiple devices at the same time. However, only one device can be the current device. You establish
an owned device as the current device with the USE command. The ID of the current device is found in the $IO special
variable.

A process always owns at least one device (designated as device 0), which is its principal device. This device is assigned
to the process when it is started and is typically the terminal used to sign onto InterSystems IRIS. The ID of the principal
device is found in the $PRINCIPAL special variable.

When a process terminates, InterSystems IRIS issues an implicit CLOSE for each of the devices owned by the process
and returns them to the pool of available devices.

Changing Parameters for an Owned Device

To change the parameters for a device that is already owned by the process, you can:

• Close and then reopen the device with new parameter values.

• If the device is a terminal or TCP device, you can issue an OPEN with new parameter values on an already open
device.

If you specify the device on another OPEN command, any device parameters set by the initial OPEN command remain
in effect unless explicitly changed. Depending on the type of device, subsequent I/O may be different than if you had closed
and then reopened the device.

For some devices, you can omit the parameters option and later set the desired characteristics with the parameters option
on the USE command.

ObjectScript Reference 111

OPEN

Specifying the Device

When you open a device, you can identify the device by supplying a device number or an alias assigned to the device.

Using Physical Device Numbers

InterSystems IRIS allows you to identify certain devices by supplying their system-assigned physical device numbers. All
implementations of InterSystems IRIS recognize the following physical device numbers:

• 0 = The process’s principal device (usually the device at which you sign on).

• 2 = The spooler (to store output for later printing).

• 63 = The view buffer.

OPEN 63 accepts a namespace, as shown in the following example:

 OPEN 63:"SAMPLES"

If you specify a nonexistent namespace, InterSystems IRIS issues a <NAMESPACE> error. If you specify a namespace
for which you do not have privileges, InterSystems IRIS issues a <PROTECT> error.

Device 3 is an invalid device; attempting to open it returns a <NOTOPEN> error without waiting for timeout expiration.

See About I/O Devices in I/O Device Guide for more information about device numbers.

Using a Device Alias

An alias is an alternate numeric device ID. It must be a valid device number, it must be unique and cannot conflict with an
assigned device number.

You can establish a numeric alias for a device. Go to the Management Portal, select System Administration, Configuration,
Device Settings, Devices to display the current list of devices and their aliases. For the desired device, click “edit” to edit
its Alias: option.

After you have assigned an alias to a device, you can use the OPEN command or the %IS utility to open the device using
this alias.

Exceeding the Open File Quota

InterSystems IRIS allocates each process' open file quota between database files and files opened with OPEN. When OPEN
causes too many files to be allocated to OPEN commands, you receive a <TOOMANYFILES> error. The InterSystems
IRIS maximum number of open files for a process is 1,024. The actual maximum number of open files for each process is
a platform-specific setting. For example, Windows defaults to a maximum of 998 open files per process.

Default Record Length

If the record size for sequential files is not specified in the OPEN command, InterSystems IRIS assumes a default record
length of 32,767 characters.

See Also
• CLOSE command

• USE command

• $TEST special variable

• $IO special variable

• I/O Devices and Commands in I/O Device Guide

• Terminal I/O in I/O Device Guide

112 ObjectScript Reference

ObjectScript Commands

• TCP Client/Server Communication in I/O Device Guide

• Sequential File I/O in I/O Device Guide

• The Spool Device in I/O Device Guide

• ^%IS global and %IS utility in I/O Device Guide

ObjectScript Reference 113

OPEN

QUIT
Terminates execution of a loop structure or a routine.

QUIT:pc expression
Q:pc expression

QUIT n
Q n

Arguments

Optional — A postconditional expression.pc

Optional — A value to return to the invoking routine; a valid expression.expression

Optional — Terminal prompt only: The number of program levels to clear; an
expression that resolves to a positive integer.

n

Description
The QUIT command is used in two different contexts:

• QUIT in program code

• QUIT at the Terminal prompt

In Program Code
The QUIT command terminates execution of the current context, exiting to the enclosing context. When invoked in a
routine, QUIT returns to the calling routine, or terminates the program if there is no calling routine. When invoked from
within a FOR, DO WHILE, or WHILE flow-of-control structure, or a TRY or CATCH block, the QUIT breaks out of
the structure and continues execution with the next command outside of that structure.

The similar RETURN command terminates execution of a routine at any point, including from within a FOR, DO WHILE,
or WHILE loop or nested loop structure, or a TRY or CATCH block. RETURN always exits the current routine, returning
to the calling routine or terminating the program if there is no calling routine.

The QUIT command has two forms:

• Without an argument

• With an argument

A postconditional is not considered an argument. The $QUIT special variable indicates whether or not an argumented
QUIT command is required to exit from the current context. Two $ECODE error codes are provided for this purpose: M16
“Quit with an argument not allowed” and M17 “Quit with an argument required.”

QUIT Without an Argument

QUIT without an argument exits from the current context without returning a value. It is used to terminate the execution
level of a process started with a DO or XECUTE command, or to exit from a FOR, DO WHILE, or WHILE flow-of-
control loop.

If DO, XECUTE, or an (unnested) flow-of-control loop command was issued from the Terminal prompt, QUIT returns
control to the Terminal. If the terminated operation contains any NEW commands before QUIT, QUIT automatically
KILLs the affected variables and restores them to their original values.

114 ObjectScript Reference

ObjectScript Commands

QUIT With an Argument

QUIT expression terminates a user-defined function or an object method and returns the value resulting from the specified
expression. QUIT with an argument cannot be used to exit a routine from within a FOR, DO WHILE, or WHILE command
loop. QUIT with an argument also cannot be used to exit from within a TRY block or a CATCH block.

If an argumented QUIT is invoked inside a subroutine, one of the following occurs:

• If an argumented QUIT is invoked inside a subroutine (instead of a function), the QUIT argument is evaluated (which
may produce side effects or throw an error) and the argument result is discarded. Execution returns to the caller of the
subroutine.

• If the subroutine was called by a DO command and is in the scope of that DO argument, then the QUIT command
evaluates its argument (and any side effects of that evaluation occur), but it does not return the argument. For example,
a subroutine called by DO that concludes with QUIT 4/0 generates a <DIVIDE> error.

At the Terminal Prompt
Issuing a QUIT at the Terminal prompt clears entities from the program stack.

• QUIT n clears the specified number of levels from the program stack. You can use the $STACK special variable to
determine the current number of levels on the program stack.

You can specify n as a literal, a variable, or an arithmetic expression. If n is larger than the current number of levels,
all levels are cleared from the program stack and no error is issued. A fractional number for n is truncated to its integer
value. If n resolves to a negative non-zero integer, QUIT clears all levels from the program stack. If n resolves to 0
(zero), the system generates a <COMMAND> error.

• QUIT clears all levels from the program stack.

The $STACK special variable contains the current number of context frames on the call stack. This number is also displayed
as part of the Terminal prompt.

The following example use QUIT with an integer argument to clear the specified number of levels from the program stack,
then uses argumentless QUIT to clear all remaining levels:

USER 5f0>QUIT 1

USER 4d0>QUIT 2

USER 2d0>QUIT

USER>

For further details see Processing Errors at the Terminal Prompt in the “Error Processing” chapter of Using ObjectScript.

Arguments

pc

An optional postconditional expression. InterSystems IRIS executes the command if the postconditional expression is true
(evaluates to a nonzero numeric value). InterSystems IRIS does not execute the command if the postconditional expression
is false (evaluates to zero). For further details, refer to Command Postconditional Expressions in Using ObjectScript. If the
QUIT command takes no other arguments, there must be two or more spaces between the postconditional and the next
command following it on the same line.

expression

Any valid ObjectScript expression. It can be used only within a user-defined function to return the evaluated result to the
calling routine.

ObjectScript Reference 115

QUIT

Examples
The following two examples contrast QUIT and RETURN behavior when issued from within a flow-of-control structure.
QUIT exits the FOR loop, continuing with the remainder of MySubroutine before returning to MyRoutine. RETURN
exits MySubroutine, returning to MyRoutine.

MyMain
 WRITE "In the main routine",!
 DO MySubroutine
 WRITE "Returned to main routine",!
 QUIT
MySubroutine
 WRITE "In MySubroutine",!
 FOR i=1:1:5 {
 WRITE "FOR loop:",i,!
 IF i=3 QUIT
 WRITE " loop again",!
 }
 WRITE "MySubroutine line displayed with QUIT",!
 QUIT

MyMain
 WRITE "In the main routine",!
 DO MySubroutine
 WRITE "Returned to main routine",!
 QUIT
MySubroutine
 WRITE "In MySubroutine",!
 FOR i=1:1:5 {
 WRITE "FOR loop:",i,!
 IF i=3 RETURN
 WRITE " loop again",!
 }
 WRITE "MySubroutine line not displayed with RETURN",!
 QUIT

In the following example, execution of the first QUIT command is controlled by a postconditional (:x>46). If the randomly
generated number is greater than 46 InterSystems IRIS does not perform the Cube procedure; the first QUIT takes the
postconditional, returning a string to the calling routine as num. If the randomly generated number is less than or equal to
46 the second QUIT returns the results of the expression x*x*x as num.

Main
 SET x = $RANDOM(99)
 WRITE "Number is: ",x,!
 SET num=$$Cube(x)
 WRITE "Cube is: ",num
 QUIT
Cube(x) QUIT:x>46 "a six-digit number."
 WRITE "Calculating the cube",!
 QUIT x*x*x

The following two examples contrast QUIT and RETURN behavior with TRY and CATCH. The TRY block attempts a
divide-by-zero operation, invoking the CATCH block; this CATCH block contains a nested TRY block which is exited
by either a QUIT or a RETURN. (For the purpose of demonstration, these programs do not include the recommended code
(QUIT or RETURN) to prevent “fall-through”.)

QUIT exits the nested TRY block to the enclosing block, continuing execution with the remainder of the CATCH block.
When it completes the CATCH block it execute the fall-through line outside of the TRY/CATCH structures:

116 ObjectScript Reference

ObjectScript Commands

 TRY {
 WRITE "In the TRY block",!
 SET x = 5/0
 WRITE "This line should never display"
 }
 CATCH exp1 {
 WRITE "In the CATCH block",!
 WRITE "Error Name: ",$ZCVT(exp1.Name,"O","HTML"),!
 TRY {
 WRITE "In the nested TRY block",!
 QUIT
 }
 CATCH exp2 {
 WRITE "In the nested CATCH block",!
 WRITE "Error Name: ",$ZCVT(exp1.Name,"O","HTML"),!
 }
 WRITE "QUIT displays this outer CATCH block line",!
 }
 WRITE "fall-through at the end of the program"

RETURN exits the routine. It therefore exits the nested TRY block and any enclosing blocks, and does not execute the
fall-through line outside of the TRY/CATCH structures:

 TRY {
 WRITE "In the TRY block",!
 SET x = 5/0
 WRITE "This line should never display"
 }
 CATCH exp1 {
 WRITE "In the CATCH block",!
 WRITE "Error Name: ",$ZCVT(exp1.Name,"O","HTML"),!
 TRY {
 WRITE "In the nested TRY block",!
 RETURN
 }
 CATCH exp2 {
 WRITE "In the nested CATCH block",!
 WRITE "Error Name: ",$ZCVT(exp1.Name,"O","HTML"),!
 }
 WRITE "RETURN does not display this outer CATCH block line",!
 }
 WRITE "fall-through at the end of the program"

In this example, the argument of the QUIT command is an object method. InterSystems IRIS terminates execution of the
method and returns control to the calling routine.

 QUIT inv.TotalNum()

Notes

QUIT Restores Variables

If a terminated process contains any NEW commands before QUIT, QUIT automatically KILLs the affected variables
and restores them to their original values.

QUIT and Flow-of-Control Structures

A QUIT can be used to break out of a FOR loop, a DO WHILE loop, or a WHILE loop. Execution continues with the
command that follows the end of the loop structure. If these loop structures are nested, the QUIT breaks out of the inner
loop from which it was called to the next enclosing outer loop.

If a QUIT command is encountered within an IF code block (or an ELSEIF code block or an ELSE code block) the QUIT
behaves as a regular QUIT command, as if the code block did not exist:

• If the IF code block is nested within a loop structure (such as a FOR code block), the QUIT exits the loop structure
block and continues execution with the command that follows the loop structure code block.

• If the IF code block is not nested within a loop structure, the QUIT terminates the current routine.

ObjectScript Reference 117

QUIT

Use with Indefinite FOR Loop

An indefinite FOR loop is a FOR without an argument; unless broken out of, it will loop infinitely. To control an indefinite
FOR loop, you must include within the loop structure either a QUIT with a postconditional, or an IF command that invokes
a QUIT. The QUIT within the IF terminates the enclosing FOR loop. Without one of these QUITs, the loop will be an
infinite loop and will execute endlessly.

In the following example, the indefinite FOR loop is exited using a QUIT with a postconditional. The loop continues to
execute as long as the user enters some value in response to the "Text =" prompt. Only when the user enters a null string
(that is, just presses Return or Enter) is QUIT executed and the loop terminated.

Main
 FOR {
 READ !,"Text =",var1
 QUIT:var1="" DO Subr1
 }
Subr1
 WRITE "Thanks for the input", !
 QUIT

This command requires at least two spaces between the postconditional on the QUIT command and the following DO
command on the same line. This is because InterSystems IRIS treats postconditionals as command modifiers, not as arguments.

Implicit QUIT

In the following cases, a QUIT command is not required, because InterSystems IRIS automatically issues an implicit QUIT
to prevent execution "falling through" to a separate unit of code.

• InterSystems IRIS executes an implicit QUIT at the end of a routine.

• InterSystems IRIS executes an implicit QUIT when it encounters a label with parameters. A label with parameters is
defined as one with parentheses, even if the parentheses contain zero parameters. All procedures begin with a label
with parameters (even if no parameters are defined). Many subroutines and functions also have a label with parameters.

You can, of course, code an explicit QUIT in any of these circumstances.

Behavior with DO

When encountered in a subroutine called by the DO command, QUIT terminates the subroutine and returns control to the
command following the DO command.

Behavior with XECUTE

When encountered in a line of code that is being executed, QUIT terminates execution of the line and returns control to
the command following the XECUTE command. No argument is allowed.

Behavior with User-Defined Functions

When encountered in a user-defined function, QUIT terminates the function and returns the value that results from the
specified expression. The expression argument is required.

In their use, user-defined functions are similar to DO commands with parameter passing. They differ from such DO com-
mands, however, in that they return the value of an expression directly, rather than through a variable. To invoke a user-
defined function, use the form:

$$name(parameters)

where name is the name of the function. It can be specified as label, ^routine, or label^routine.

parameters is a comma-separated list of parameters to be passed to the function. The label associated with the function
must also have a parameter list. The parameter list on the invoked function is known as the actual parameter list. The
parameter list on the function label is known as the formal parameter list.

118 ObjectScript Reference

ObjectScript Commands

In the following example, the FOR loop uses a READ command to first acquire the number to be squared and store it in
the num variable. (Note the two spaces after the argumentless FOR and the postconditional QUIT.) It then uses a WRITE
command to invoke the Square standard function, with num specified as the function parameter.

The only code for the function is the QUIT command followed by an expression to calculate the square. When it encounters
the QUIT command, InterSystems IRIS evaluates the expression, terminates the function, and returns the resulting value
directly to the WRITE command. The value of num is not changed.

Test WRITE "Calculate the square of a number",!
 FOR {
 READ !,"Number:",num QUIT:num=""
 WRITE !,$$Square(num),!
 QUIT
 }
Square(val)
 QUIT val*val

Using QUIT for Program Readability

InterSystems IRIS executes an implicit QUIT at the end of each routine, but you can include it explicitly to improve program
readability.

See Also
• DO command

• DO WHILE command

• FOR command

• NEW command

• RETURN command

• WHILE command

• XECUTE command

• $ECODE special variable

• $ESTACK special variable

• $QUIT special variable

• $STACK special variable

ObjectScript Reference 119

QUIT

READ
Accepts input and stores it in a variable.

READ:pc readargument,...
R:pc readargument,...

where readargument can be:

fchar
prompt
variable:timeout
*variable:timeout
variable#length:timeout

Arguments

Optional — A postconditional expression.pc

Optional — One or more format control characters. Permitted characters are !, #, ?,
and /.

fchar

Optional — A string literal that provides a prompt or message for user input. Enclose
in quotation marks.

prompt

The variable to receive the input data. Can be a local variable, a process-private global,
or a global. May be unsubscripted or subscripted.

variable

Optional — The number of characters to accept, specified as an integer, or an expression
or variable that evaluates to an integer. The preceding # symbol is mandatory.

length

Optional — The number of seconds to wait for the request to succeed, specified as an
integer. Fractional seconds are truncated to the integer portion. The preceding colon
(:) is mandatory. If omitted, InterSystems IRIS waits indefinitely.

timeout

You can specify more that one fchar or prompt argument by separating the arguments with commas.

Description
The READ command accepts input from the current device. The current device is established using the OPEN and USE
commands. The $IO special variable contains the device ID of the current device. By default, the current device is the user
terminal.

The READ command suspends program execution until it either receives input from the current device or times out. For
this reason, the READ command should not be used in programs executed as background (non-interactive) jobs if the
current device is the user terminal.

The variable argument receives the input characters. READ first defines variable, if it is undefined, or clears it if it has a
previous value. Therefore, if no data is input for variable (for example, if the READ times out before any characters are
entered) variable is defined and contains the null string. This is also true if the only character entered is a terminator char-
acter (for example, pressing the <Enter> key from the user terminal). For the effects of an interrupt (for example, <Ctrl-
C>) see below.

Note that for fixed-length and variable-length reads, variable does not store the terminator character used to terminate the
read operation. Single-character reads handle variable differently; for single-character read use of variable, see below.

120 ObjectScript Reference

ObjectScript Commands

If you specify the optional timeout value, a READ can time out before all characters are input. If a READ times out, those
characters input before the timeout are stored in variable. Entering a terminator character is not necessary in this case; the
characters entered before the timeout are transferred to variable, and the READ terminates, setting $TEST equal to 0.

There are three types of READ operations: variable-length read, fixed-length read, and single-character read. All of these
can be specified with or without a timeout argument. A single READ command can include multiple READ operations in
any combination of these three types. Each read operation is executed independently in left-to-right sequence. A READ
command can also contain any number of comma-separated prompt and fchar arguments.

The three types of READ operations are as follows:

• A variable-length read has the following format:

READ variable

A variable-length read accepts any number of input characters and stores them in the specified variable. Input is con-
cluded by a terminator character. For a terminal, this terminator is usually supplied by pressing the <Enter> key. The
input characters, but not the terminator character, are stored in variable.

• A fixed-length read has the following format:

READ variable#length

A fixed-length read accepts a maximum of length input characters and stores them in the specified variable. Input
concludes automatically when the specified number of characters is input, or when a terminator character is encountered.
For example, entering two characters in a four-character fix-length read, and then pressing the <Enter> key. The input
characters, but not the terminator character (if any), are stored in variable.

• A single-character read has the following format:

READ *variable

A single-character read accepts a single input character and stores its ASCII numeric value equivalent in the specified
variable. It stores the character itself in the $ZB and $KEY special variables. Input concludes automatically when a
single character is input. A terminator character is considered a single-character input, and is stored as such. If the
optional timeout argument is specified, and a timeout occurs, the timeout sets variable to –1.

Arguments

pc

An optional postconditional expression. InterSystems IRIS executes the command if the postconditional expression is true
(evaluates to a nonzero numeric value). InterSystems IRIS does not execute the command if the postconditional expression
is false (evaluates to zero). For further details, refer to Command Postconditional Expressions in Using ObjectScript.

fchar

Any of the following format control codes. When used with user input from the keyboard, these controls determine where
a specified prompt or the user input area will appear on the screen.

! starts a new line. You may specify multiple exclamation points

starts a new page. On a terminal, it clears the current screen and starts at the top of the new screen.

?n positions at the nth column location, where n is a positive integer.

/keyword(parameters) A device control mnemonic. Performs a device-specific operation, such as positioning the cursor
on a video terminal. The slash character (/) is followed by a keyword, which is optionally followed by one or more
parameters enclosed in parentheses. Multiple parameters are separated by commas. The keyword is an entry point label
into the current device’s mnemonic space routine.

You can establish the default mnemonic space for a device type in either of the following ways:

ObjectScript Reference 121

READ

• Go to the Management Portal, select System Administration, Configuration, Device Settings, IO Settings. View and edit
the File, Other, or Terminal mnemonic space setting.

• Include the /mnemonic space parameter in the OPEN or USE command for the device.

You can specify multiple format controls. For example: #!!!?20 means to start at the top of a new page (or screen), go
down three lines, and then position to column 20. You can intersperse format control characters with other comma-separated
READ arguments. For example:

 READ #!!,"Please enter",!,"your name: ",x,"THANK YOU"

Displays something like the following:

>

Please enter
your name: FRED
THANK YOU
>

prompt

A string literal that provides a prompt or message for user input with the terminal keyboard. Generally, a prompt argument
is followed by a variable, so that the user input area follows the displayed literal. You can specify a multi-line prompt or
message by using a comma-separated series of prompt and fchar arguments.

variable

The local variable, process-private global, or global that is to receive the input data. It can be either unsubscripted or sub-
scripted. If a specified variable does not already exist, InterSystems IRIS defines it at the beginning of the READ operation.
If a specified variable is defined and has a value, InterSystems IRIS clears this value at the beginning of the READ operation.

When you input characters, they are stored in variable as they are input. If the optional timeout argument is specified, and
the read operation is interrupted by a timeout, the characters typed up to that point are stored in variable. (However, note
the behavior of variable upon a encountered a <Ctrl-C> interrupt, as described below.)

Nonprinting characters (such as <Tab>) are stored in variable. A terminator character can be used to conclude any type of
read operation. For example, from a terminal, you press the <Enter> key to conclude a read operation. This terminator
character is not stored in variable for a variable-length or fixed-length read. The terminator character is stored in variable
for a single-character read.

length

A positive integer specifying the maximum number of characters to accept for a fixed-length read. The READ completes
either when the specified number of characters is input, or when it encounters a terminator character. This argument is
optional, but if specified the preceding # symbol is required.

Specifying zero or a negative number results in a <SYNTAX> error. However, leading zeros and the fractional portion of
a number are ignored, and the integer portion used. You can specify length as a variable or an expression that resolve to
an integer.

Note that READ a#1 and READ *a can both be used to input a single character. However the value stored in variable is
different: a#1 stores the input character in variable a; *a stores the ASCII numeric value for the input character in variable
a; both store the input character in the $ZB special variable. These two types of single-character input also differ in how
they handle terminator characters and how they handle a timeout.

timeout

The number of seconds to wait for the request to succeed. This argument is optional, but if specified, the preceding colon
is required. You must specify timeout as an integer or an expression that evaluates to an integer. The timeout argument sets
the $TEST special variable as follows:

122 ObjectScript Reference

ObjectScript Commands

• READ with timeout argument completes successfully (does not time out): $TEST set to 1 (TRUE).

• READ with timeout argument times out: $TEST set to 0 (FALSE).

• READ with no timeout argument: $TEST remains set to its previous value.

Note that $TEST can also be set by the user, or by a LOCK, OPEN, or JOB timeout.

If the timeout period expires before the READ completes and some characters have been input (for a variable-length or
fixed-length reads) the input characters are stored in variable. If no characters have been input (for a variable-length or
fixed-length reads), InterSystems IRIS defines variable (if necessary) and sets it to the null string. If no character has been
input for a single-character READ, InterSystems IRIS defines variable (if necessary) and sets it to –1.

Examples
The following example uses the variable-length form of READ to acquire any number of characters from the user. The
format control ! starts the prompt on a new line.

 READ !,"Enter your last name: ",lname

The following example uses the single-character form of READ to acquire one character from the user and store it as its
ASCII numeric value.

 READ !,"Enter option number (1,2,3,4): ",*opt
 WRITE !,"ASCII value input=",opt
 WRITE !,"Character input=",$KEY

The following example uses the fixed-length form of READ to acquire exactly three characters from the user.

 READ !,"Enter your 3-digit area code: ",area#3

The following example prompts for three parts of a name: a fixed-length given name (gname) of up to 12 characters, a
fixed-length (one-character) middle initial (iname), and a family name (fname) of any length. The gname and iname variables
are coded to time out after 10 seconds:

 READ "Given name:",gname#12:10,!,
 "Middle initial:",iname#1:10,!,
 "Family name:",fname
 WRITE $TEST

A timeout of a read operation causes the READ command to proceed to the next read operation. The first two read operations
set $TEST whether or not they time out. The third read operation does not set $TEST, so the value of $TEST in this
example reflects the result (success or timeout) of the second read operation.

The following example uses indirection to dynamically change the prompt associated with the READ command:

PromptChoice
 READ "Type 1 for numbers or 2 for names:",p,#!!!!
 IF p'=1,p'=2 {WRITE !,"Invalid input" RETURN }
 ELSE {DO DataInput(p) }
DataInput(dtype)
 SET MESS(1)="""ENTER A NUMBER:"""
 SET MESS(2)="""ENTER A NAME:"""
 SET x=1
 READ !,@MESS(dtype),val(x)
 IF val(x)="" {WRITE !,"Goodbye" RETURN
 }
 ELSE {
 IF dtype=1,1=$ISVALIDNUM(val(x)) { WRITE !,"You input number: ",val(x),! }
 ELSEIF dtype=2 { WRITE !,"You input string: ",val(x),! }
 ELSE { WRITE !,"That is not a number",! }
 SET x=x+1
 DO DataInput(dtype)
 }

The following example sets the length of a fixed-length read based on the number of digits of the first number input:

ObjectScript Reference 123

READ

FirstNum
 READ "ENTER LARGEST INTEGER (and press Return): ",val(1)
 SET ibuf=$LENGTH(val(1))
 WRITE !,"Your largest number is: ",val(1),!
 DO OtherNums(ibuf)
OtherNums(digits)
 SET x=2
 READ !,"ENTER NEXT INTEGER: ",val(x)#digits
 IF val(x)="" { WRITE !,"Goodbye" RETURN }
 ELSEIF val(x)>val(1) { WRITE !,"Number is too big",!
 DO OtherNums(digits) }
 ELSE { WRITE !,"You input: ",val(x),!
 SET x=x+1
 DO OtherNums(digits) }

Notes

READ Uses the Current Device

READ inputs character-oriented data from the current I/O device. You must open a device with the OPEN command, then
establish it as the current device with the USE command. InterSystems IRIS maintains the current device ID in the $IO
special variable.

While the most common use for READ is to acquire user input from the keyboard, you can also use it to input characters
from any byte-oriented device, such as a sequential disk file or a communications buffer.

Read Line Recall

Read line recall mode permits a READ command on a terminal device to receive as its input a previously input line. This
recalled input line can then be edited. The user must interactively conclude the input of a recalled line in the same way that
user-specified input is concluded. InterSystems IRIS supports read line recall for both variable-length terminal reads (READ
variable) and fixed-length terminal reads (READ variable#length). InterSystems IRIS does not support read line
recall for single-character terminal reads (READ *variable). To activate read line recall for the current process, use the
LineRecall() method of the %SYSTEM.Process class. To set the system-wide read line recall default, use the LineRecall
property of the Config.Miscellaneous class. You can also set the OPEN and USE protocols for terminals, as described in
the Terminal I/O chapter of the I/O Device Guide.

READ Terminators

InterSystems IRIS terminates a read operation when the input string reaches the specified length (for single-character READ
and fixed-length READ). For a variable-length READ, InterSystems IRIS terminates reading if the input string reaches
the maximum string length for the current process.

InterSystems IRIS also terminates reading when it encounters certain terminator characters. The terminators are determined
by the device type. For example, with terminals, the default terminators are RETURN (also known as the <Enter> key)
(ASCII 13), LINE FEED (ASCII 10), and ESCAPE (ASCII 27).

You can modify the terminator default when you issue an OPEN or USE command for a device. OPEN and USE allow
you to specify a terminator parameter value. See the Terminal I/O chapter of the I/O Device Guide for OPEN and USE
protocols for terminals. See the I/O Devices and Commands chapter of the I/O Device Guide for details about terminators
based on device type.

InterSystems IRIS does not store the input terminator with the input value for variable-length and fixed-length reads; it
records it in the $KEY and $ZB special variables. InterSystems IRIS does store the input terminator (if specified) as the
input value for a single-character read.

Timeout and the $ZA, $ZB, and $TEST Special Variables

InterSystems IRIS records the completion status of a READ in the $TEST, $ZA, and $ZB special variables, as follows:

124 ObjectScript Reference

ObjectScript Commands

$ZB value$ZA value$TEST
value

Variable dataType of READ

terminator
character

01input characters (or null
string if none)

Variable, ended with line
return

null string20input charactersVariable, some input, then
timeout

null string20null stringVariable, no input, timeout

the last character
entered

01input charactersFixed, all chars entered

terminator
character

01input characters (or null
string if none)

Fixed, line return

null string20input characters (or null
string if none)

Fixed, timed out

the input
character

01ASCII value of input
character

Single character, data input

terminator
character

0 <Enter>,
256 <Esc>

1ASCII value of terminator
character

Single character, terminator
character input

null string20–1Single character, timed out

$ZB and $KEY

The $ZB and $KEY special variables return the exact same value for every type of read, except one. When you perform
a fixed-length read and input the specified number of characters, the READ completes without a terminator. In this case,
$ZB contains the last character input (the terminating character), and $KEY contains the null string (there being no termi-
nator character).

Interrupts

If there is a pending CTRL-C interrupt when READ is invoked, READ dismisses this interrupt before reading from the
terminal.

If a read in progress is interrupted by a CTRL-C interrupt, variable reverts to its previous state. For example, if you input
several characters for a read operation, and then issue a CTRL-C, variable reverts to its state before the read operation. That
is, if it was undefined, it remains undefined; if it had a previous value, it contains the previous value. This behavior is
completely different than a read operation that times out. A read timeout retains the new state of variable, including any
characters input before the timeout occurred. If a READ command contains multiple read operations, the interrupt affects
only the read operation in progress. To commit or revert multiple read operations as a unit, use transaction processing.

For information on enabling and disabling CTRL-C interrupts, refer to the BREAK flag command and the $ZJOB special
variable.

Reading from Non-Keyboard Devices

As described earlier, READ can be used to acquire input from any character-oriented device. This includes devices such
as sequential disk files, as well terminal keyboards. However, you must first establish the device to read from as the current
device with the OPEN and USE commands.

With non-keyboard devices, you can use any of the three available forms (variable-length, single-character, and fixed-
length). The choice of which form to use in any given case depends on the type of terminator available. With fixed-length
READ, InterSystems IRIS treats terminators encountered within the input string the same as any other character.

ObjectScript Reference 125

READ

For example, if you are reading from a device that presents data in a line-oriented format with CARRIAGE RETURN/LINE
FEED as the line terminator, you can use the variable-length form. In this case, InterSystems IRIS reads each line into
variable in its entirety, terminating input only when it reaches the Return (ASCII code 13) at the end of the line. (Remember,
from the user input examples shown previously, that <Return> is the input terminator.)

On the other hand, if you are reading from a device that presents records as a series of fixed-length fields, you would use
the fixed-length (variable#length) form. For example, assume that you have a device that uses a record format consisting
of four fields of up to 8, 12, 4, and 6 characters, respectively. You might use code similar to the following to read in the
data:

 READ field1#8,field2#12,field3#4,field4#6

In this case, the #n value sets the input terminator for each field.

Which terminator is used for a given device can be set by the device parameters that you specify for that device on the
OPEN or USE command.

When reading block-oriented data, the $ZB special variable contains the number of bytes remaining in the I/O buffer. Its
function is entirely different than its use when reading character-oriented data. $ZB does not contain the read terminator
character or the last input character during block-oriented I/O. Refer to $ZB for further details.

Reading Nonprinting Characters

Nonprinting characters are characters outside the standard range of ASCII printable characters. In other words, they are
characters whose ASCII codes are less than ASCII 32 or greater than ASCII 127. They are characters that have no single
key equivalents on a standard keyboard.

The characters whose codes are less than ASCII 32 are usually used for control operations. They can be entered only in
conjunction with the Ctrl key. For example, ETX (ASCII 3) is entered as <Ctrl-C> and is used to assert a BREAK when
entered from the keyboard.

The characters whose codes are greater than ASCII 127 are usually used for graphics operations. As a rule, they cannot be
entered from the keyboard, but they can be read from other types of devices. For example, ASCII 179 produces the vertical
line character.

You can use the READ command to input nonprinting characters as well as the standard ASCII printable characters.
However, you must include code to handle the escape sequence used for each such character. An escape sequence is a
sequence of characters that starts with the Esc character (ASCII 27). For example, you can code a READ so that the user
is allowed to press a function key as a valid input response. Pressing the function key produces an escape sequence that
can be different for different types of terminals.

ObjectScript supports input of escape sequences by storing them in the $ZB and $KEY special variables, rather than in
the specified variable. For example, for a function key press, InterSystems IRIS stores the Esc code (ASCII 27) in $ZB
and $KEY. To handle an escape sequence, you must include code that tests the current value in $ZB or $KEY after each
READ because subsequent reads update these special variables and overwrite any previous value. ($ZB and $KEY are
very similar, but not identical; see $KEY for details.) To display a nonprinting character, such as an escape sequence, use
the ZZDUMP command or the $ASCII function.

Sequential File End-of-File

The behavior of READ when encountering an end-of-file for a sequential file depends on the system-wide default. Go to
the Management Portal, select System Administration, Configuration, Additional Settings, Compatibility. View and edit the
current setting of SetZEOF. This option controls the behavior when InterSystems IRIS encounters an unexpected end-of-
file when reading a sequential file. When set to “ true” , InterSystems IRIS sets the $ZEOF special variable to indicate that
you have reached the end of the file. When set to “ false” , InterSystems IRIS issues an <ENDOFFILE> error. The default
is “ false” .

To change this end-of-file behavior for the current process, use the SetZEOF() method of the %SYSTEM.Process class.
To set the system-wide default for end-of-file behavior, use the SetZEOF property of the Config.Miscellaneous class.

126 ObjectScript Reference

ObjectScript Commands

Default Record Length

If the number of characters to read is not specified, InterSystems IRIS assumes a default length of 32,767 characters.

See Also
• OPEN command

• WRITE command

• ZZDUMP command

• USE command

• $KEY special variable

• $TEST special variable

• $ZA special variable

• $ZB special variable

• $ZEOF special variable

• Terminal I/O in I/O Device Guide

• Sequential File I/O in I/O Device Guide

ObjectScript Reference 127

READ

RETURN
Terminates execution of a routine.

RETURN:pc expression
RET:pc expression

Arguments

Optional — A postconditional expression.pc

Optional — An ObjectScript expression.expression

Description
The RETURN command is used to terminate execution of a routine. In many contexts it is a synonym for the QUIT command.
RETURN and QUIT differ when issued from within a FOR, DO WHILE, or WHILE flow-of-control structure, or a
TRY or CATCH block.

• You can use RETURN to terminate execution of a routine at any point, including from within a FOR, DO WHILE,
or WHILE loop or nested loop structure. RETURN always exits the current routine, returning to the calling routine
or terminating the program if there is no calling routine. RETURN always behaves the same, regardless of whether it
is issued from within a code block. This includes a TRY block or a CATCH block.

• In contrast, QUIT exits only the current structure when issued from within a FOR loop, a DO WHILE loop, a WHILE
loop, or a TRY or CATCH block. QUIT exits the structure block and continues execution of the current routine with
the next command outside of that structure block. QUIT exits the current routine when issued outside of a block
structure or from within an IF, ELSEIF, or ELSE code block.

The RETURN command has two forms:

• Without an argument

• With an argument

A postconditional is not considered an argument. The $QUIT special variable indicates whether or not an argumented
RETURN command is required to exit from the current context. Two $ECODE error codes are provided for this purpose:
M16 “Quit with an argument not allowed” and M17 “Quit with an argument required.”

RETURN Without an Argument

RETURN without an argument exits from the current context without returning a value. It is used to terminate the execution
level of a process started with a DO or XECUTE command.

If DO or XECUTE is invoked from the Terminal prompt, RETURN returns control to the Terminal prompt. If the terminated
process contains any NEW commands before RETURN, RETURN automatically KILLs the affected variables and
restores them to their original values.

RETURN With an Argument

RETURN expression terminates a user-defined function or an object method and returns the value resulting from the
specified expression. RETURN with an argument can be used to exit a routine from within a FOR, DO WHILE, or
WHILE command loop, or from within a TRY block or a CATCH block.

If an argumented RETURN is invoked inside a subroutine, one of the following occurs:

128 ObjectScript Reference

ObjectScript Commands

• If an argumented RETURN is invoked inside a subroutine (instead of a function), the RETURN argument is evaluated
(which may produce side effects or throw an error) and the argument result is discarded. Execution returns to the caller
of the subroutine.

• If the subroutine was called by a DO command and is in the scope of that DO argument, then the RETURN command
evaluates its argument (and any side effects of that evaluation occur), but it does not return the argument. For example,
a subroutine called by DO that concludes with RETURN 4/0 generates a <DIVIDE> error.

Arguments

pc

An optional postconditional expression. InterSystems IRIS executes the command if the postconditional expression is true
(evaluates to a nonzero numeric value). InterSystems IRIS does not execute the command if the postconditional expression
is false (evaluates to zero). For further details, refer to Command Postconditional Expressions in Using ObjectScript. If the
RETURN command takes no other arguments, there must be two or more spaces between the postconditional and the next
command following it on the same line.

expression

Any valid ObjectScript expression. It can be used only within a user-defined function to return the evaluated result to the
calling routine.

Examples
The following two examples contrast RETURN and QUIT behavior when issued from within a flow-of-control structure.
RETURN exits MySubroutine, returning to MyRoutine. QUIT exits the FOR loop, continuing with the remainder of
MySubroutine before returning to MyRoutine:

MyMain
 WRITE "In the main routine",!
 DO MySubroutine
 WRITE "Returned to main routine",!
 QUIT
MySubroutine
 WRITE "In MySubroutine",!
 FOR i=1:1:5 {
 WRITE "FOR loop:",i,!
 IF i=3 RETURN
 WRITE " loop again",!
 }
 WRITE "MySubroutine line not displayed with RETURN",!
 QUIT

MyMain
 WRITE "In the main routine",!
 DO MySubroutine
 WRITE "Returned to main routine",!
 QUIT
MySubroutine
 WRITE "In MySubroutine",!
 FOR i=1:1:5 {
 WRITE "FOR loop:",i,!
 IF i=3 QUIT
 WRITE " loop again",!
 }
 WRITE "MySubroutine line displayed with QUIT",!
 QUIT

In the following example, execution of the first RETURN command is controlled by a postconditional (:x>46). If the ran-
domly generated number is greater than 46 InterSystems IRIS does not perform the Cube procedure; the first RETURN
takes the postconditional, returning a string to the calling routine as num. If the randomly generated number is less than or
equal to 46 the second RETURN returns the results of the expression x*x*x as num.

ObjectScript Reference 129

RETURN

Main
 SET x = $RANDOM(99)
 WRITE "Number is: ",x,!
 SET num=$$Cube(x)
 WRITE "Cube is: ",num
 QUIT
Cube(x) RETURN:x>46 "a six-digit number."
 WRITE "Calculating the cube",!
 RETURN x*x*x

The following two examples contrast QUIT and RETURN behavior with TRY and CATCH. The TRY block attempts a
divide-by-zero operation, invoking the CATCH block; this CATCH block contains a nested TRY block which is exited
by either a QUIT or a RETURN. (For the purpose of demonstration, these programs do not include the recommended code
(QUIT or RETURN) to prevent “fall-through”.)

RETURN exits the routine. It therefore exits the nested TRY block and any enclosing blocks, and does not execute the
fall-through line outside of the TRY/CATCH structures:

 TRY {
 WRITE "In the TRY block",!
 SET x = 5/0
 WRITE "This line should never display"
 }
 CATCH exp1 {
 WRITE "In the CATCH block",!
 WRITE "Error Name: ",$ZCVT(exp1.Name,"O","HTML"),!
 TRY {
 WRITE "In the nested TRY block",!
 RETURN
 }
 CATCH exp2 {
 WRITE "In the nested CATCH block",!
 WRITE "Error Name: ",$ZCVT(exp1.Name,"O","HTML"),!
 }
 WRITE "RETURN does not display this outer CATCH block line",!
 }
 WRITE "fall-through at the end of the program"

QUIT exits the nested TRY block to the enclosing block, continuing execution with the remainder of the CATCH block.
When it completes the CATCH block it execute the fall-through line outside of the TRY/CATCH structures:

 TRY {
 WRITE "In the TRY block",!
 SET x = 5/0
 WRITE "This line should never display"
 }
 CATCH exp1 {
 WRITE "In the CATCH block",!
 WRITE "Error Name: ",$ZCVT(exp1.Name,"O","HTML"),!
 TRY {
 WRITE "In the nested TRY block",!
 QUIT
 }
 CATCH exp2 {
 WRITE "In the nested CATCH block",!
 WRITE "Error Name: ",$ZCVT(exp1.Name,"O","HTML"),!
 }
 WRITE "QUIT displays this outer CATCH block line",!
 }
 WRITE "fall-through at the end of the program"

In this example, the argument of the RETURN command is an object method. InterSystems IRIS terminates execution of
the method and returns control to the calling routine.

 RETURN inv.TotalNum()

Notes

RETURN Restores Variables

If a terminated process contains any NEW commands before RETURN, RETURN automatically KILLs the affected
variables and restores them to their original values.

130 ObjectScript Reference

ObjectScript Commands

Implicit RETURN

In the following cases, a RETURN command is not required, because InterSystems IRIS automatically issues an implicit
RETURN to prevent execution "falling through" to a separate unit of code.

• InterSystems IRIS executes an implicit RETURN at the end of a routine.

• InterSystems IRIS executes an implicit RETURN when it encounters a label with parameters. A label with parameters
is defined as one with parentheses, even if the parentheses contain zero parameters. All procedures begin with a label
with parameters (even if no parameters are defined). Many subroutines and functions also have a label with parameters.

You can, of course, code an explicit RETURN in any of these circumstances.

Behavior with DO

When encountered in a subroutine called by the DO command, RETURN terminates the subroutine and returns control to
the command following the DO command.

Behavior with XECUTE

When encountered in a line of code that is being executed, RETURN terminates execution of the line and returns control
to the command following the XECUTE command. No argument is allowed.

Behavior with User-Defined Functions

When encountered in a user-defined function, RETURN terminates the function and returns the value that results from the
specified expression. The expression argument is required.

In their use, user-defined functions are similar to DO commands with parameter passing. They differ from such DO com-
mands, however, in that they return the value of an expression directly, rather than through a variable. To invoke a user-
defined function, use the form:

$$name(parameters)

where name is the name of the function. It can be specified as label, ^routine, or label^routine.

parameters is a comma-separated list of parameters to be passed to the function. The label associated with the function
must also have a parameter list. The parameter list on the invoked function is known as the actual parameter list. The
parameter list on the function label is known as the formal parameter list.

Clearing Levels from the Program Stack

Each invocation of RETURN removes a context frame from the call stack for your process. The $STACK special variable
contains the current number of context frames on the call stack.

You can use RETURN from the Terminal to clear some or all levels from the program stack. The following example clears
the top two levels from the stack:

 RETURN 2

The argumentless RETURN clears all the levels from the stack.

Using RETURN for Program Readability

InterSystems IRIS executes an implicit RETURN at the end of each routine, but you can include it explicitly to improve
program readability.

See Also
• DO command

• DO WHILE command

ObjectScript Reference 131

RETURN

• FOR command

• NEW command

• QUIT command

• WHILE command

• XECUTE command

• $ECODE special variable

• $QUIT special variable

• $STACK special variable

132 ObjectScript Reference

ObjectScript Commands

SET
Assigns a value to a variable.

SET:pc setargument,...
S:pc setargument,...

where setargument can be:

variable=value
(variable-list)=value

Arguments

Optional — A postconditional expression.pc

The variable to set to the corresponding value. variable can be a local variable,
a process-private global, a global, an object property, or a special variable.
(Not all special variables can be set by an application; see documentation of
individual special variables.)

variable

A comma-separated list, enclosed in parentheses, that consists of one or
more variable arguments. All of the variable arguments in variable-list are
assigned the same value.

variable-list

A literal value, or any valid ObjectScript expression that evaluates to a value.
Can be a JSON object or JSON array.

value

Description
The SET command assigns a value to a variable. It can set a single variable, or set multiple variables using any combination
of two syntactic forms. It can assign values to variables by specifying a comma-separated list of variable=value pairs.
For example:

 SET a=1,b=2,c=3
 WRITE a,b,c

There is no restriction in the number of assignments you can perform with a single invocation of SET
a=value,b=value,c=value,....

If a specified variable does not exist, SET creates it and assigns the value. If a specified variable exists, SET replaces the
previous value with the specified value. Because SET executes in left-to-right order, you can assign a value to a variable,
then assign that variable to another variable:

 SET a=1,b=a
 WRITE a,b

A value can be a string, a numeric, a JSON object, JSON array, or an expression that evaluates to one of these values. To
define an “empty” variable, you can set the variable to the empty string ("") value.

Setting Multiple Variables to the Same Value

You can use SET to assign the same value to multiple variables by specifying a comma-separated list of variables enclosed
in parentheses. For example:

 SET (a,b,c)=1
 WRITE a,b,c

ObjectScript Reference 133

SET

You can combine the two SET syntactic forms in any combination. For example:

 SET (a,b)=1,c=2,(d,e,f)=3
 WRITE a,b,c,d,e,f

The maximum number of assignments you can perform with a single invocation of SET (a,b,c,...)=value is 128. Exceeding
this number results in a <SYNTAX> error.

Restrictions on Setting Multiple Variables

• $LIST: You cannot use SET (a,b,c,...)=value syntax to assign a value to a $LIST function on the left side of the equal
sign. Attempting to do so results in a <SYNTAX> error. You must use SET a=value,$LIST(mylist,n)=value,c=value,...
syntax when using $LIST to set one of the items.

• $EXTRACT and $PIECE: You cannot use SET (a,b,c,...)=value syntax to assign a value to an $EXTRACT or $PIECE
function on the left side of the equal sign if that function uses relative offset syntax. In relative offset syntax an asterisk
represents the end of a string, and *-n and *+n represent a relative offset from the end of the string. For example, SET
(x,$PIECE(mylist,"^",3))=123 is valid, but SET (x,$PIECE(mylist,"^",*))=123 results in an
<UNIMPLEMENTED> error. You must use SET a=value,b=value,c=value,... syntax when setting one of these
functions using relative offset.

• Object Property: You cannot use SET (a,b,c,...)=value syntax to assign a value to an object property on the left side
of the equal sign. Attempting to do so results in an <OBJECT DISPATCH> error with a message such as the following:
Set property MyProp of class MyPackage.MyClass is not a direct reference and may

not be multiple SET arg. You must use SET a=value,oref.MyProp=value,c=value,... syntax when setting
an object property.

Arguments

pc

An optional postconditional expression. InterSystems IRIS executes the command if the postconditional expression is true
(evaluates to a nonzero numeric value). InterSystems IRIS does not execute the command if the postconditional expression
is false (evaluates to zero). For further details, refer to Command Postconditional Expressions in Using ObjectScript.

variable

The variable to receive the value resulting from the evaluation of value. It can be a local variable, a process-private global,
a global variable, or a special variable. A local variable, process-private global, or global variable can be either subscripted
or unsubscripted (see SET and Subscripts for further details). A global variable can be specified with extended global ref-
erence (see Global Structure in Using Globals).

Local variables, process-private globals, and special variables are specific to the current process; they are mapped to be
accessible from all namespaces. A global variable persists after the process that created it terminates.

A global is specific to the namespace in which it was created. By default, a SET assigns a global in the current namespace.
You can use SET to define a global (^myglobal) in another namespace by using syntax such as the following: SET
^["Samples"]myglobal="Ansel Adams". If you specify a nonexistent namespace, InterSystems IRIS issues a
<NAMESPACE> error. If you specify a namespace for which you do not have privileges, InterSystems IRIS issues a
<PROTECT> error, followed by the global name and database path, such as the following: <PROTECT>
^myglobal,c:\intersystems\iris\mgr\.

A variable can be a piece or segment of a variable as specified in the argument of a $PIECE or $EXTRACT function.

A variable can be represented as an object property using obj.property or .. property syntax, or by using the $PROPERTY
function. You can set an i%property instance variable reference using the following syntax:

 SET i%propname = "abc"

134 ObjectScript Reference

ObjectScript Commands

SET accepts a variable name of any length, but it truncates a long variable name to 31 characters before assigning it a
value. If a variable name is not unique within the first 31 characters this name truncation can cause unintended overwriting
of variable values, as shown in the following example:

 SET abcdefghijklmnopqrstuvwxyz2abc="30 characters"
 SET abcdefghijklmnopqrstuvwxyz2abcd="31 characters"
 SET abcdefghijklmnopqrstuvwxyz2abcde="32 characters"
 SET abcdefghijklmnopqrstuvwxyz2abcdef="33 characters"
 WRITE !,abcdefghijklmnopqrstuvwxyz2abc // returns "30 characters"
 WRITE !,abcdefghijklmnopqrstuvwxyz2abcd // returns "33 characters"
 WRITE !,abcdefghijklmnopqrstuvwxyz2abcde // returns "33 characters"
 WRITE !,abcdefghijklmnopqrstuvwxyz2abcdef // returns "33 characters"

Special variables are, by definition, set by system events. You can use SET to assign a value to certain special variables.
However, most special variables cannot be assigned a value using SET. See the reference pages for individual special
variables for further details.

Refer to the “Variables” chapter of Using ObjectScript for further details on variable types and naming conventions.

value

A literal value or any valid ObjectScript expression. Usually a value is a numeric or string expression. A value can be a
JSON object or JSON array.

• A numeric value is converted to canonical form before assignment: leading and trailing zeros, a plus sign or a trailing
decimal point are removed. Conversion from scientific notation and evaluation of arithmetic operations are performed.

• A string value is enclosed in quotation marks. A string is assigned unchanged, except that doubled quotation marks
within the string are converted to a single quotation mark. The null string ("") is a valid value.

• A numeric value enclosed in quotation marks is not converted to canonical form and no arithmetic operations are per-
formed before assignment.

• If a relational or logical expression is used, InterSystems IRIS assigns the truth value (0 or 1) resulting from the
expression.

• Object properties and object methods that return a value are valid expressions. Use the relative dot syntax (..) for
assigning a property or method value to a variable.

JSON Values
You can use the SET command to set a variable to a JSON object or a JSON array. For a JSON object, the value is a JSON
object delimited by curly braces. For a JSON array, the value is a JSON array delimited by square brackets.

Within these delimiters, the literal values are JSON literals, not ObjectScript literals. An invalid JSON literal generates a
<SYNTAX> error.

• String literal: You must enclose a JSON string in double quotes. To specify certain characters as literals within a JSON
string, you must specify the \ escape character, followed by the literal. If a JSON string contains a double-quote literal
character this character is written as \". JSON string syntax provides escapes for double quote (\"), backslash (\\), and
slash (\/). Line space characters can also be escaped: backspace (\b), formfeed (\f), newline (\n), carriage return (\r),
and tab (\t). Any Unicode character can be represented by a six character sequence: a backslash, followed by lowercase
letter u, followed by four hexadecimal digits. For example, \u0022 specifies a literal double quote character; \u03BC
specifies the Greek lowercase letter Mu.

• Numeric literal: JSON does not convert numbers to ObjectScript canonical form. JSON has its own conversion and
validation rules: Only a single leading minus sign is permitted; a leading plus sign is not permitted, multiple leading
signs are not permitted. The “E” scientific notation character is permitted, but not evaluated. Leading zeros are not
permitted; trailing zeros are preserved. A decimal separator must have a digit character on both sides of it. Therefore,
the JSON numerics 0, 0.0, 0.4, and 0.400 are valid. A negative sign on a zero value is preserved.

For IEEE floating-point numbers, additional rules apply. Refer to the $DOUBLE function for details.

ObjectScript Reference 135

SET

JSON fractional numbers are stored in a different format than ObjectScript numbers. ObjectScript floating point fractional
numbers are rounded when they reach their maximum precision, and trailing zeros are removed. JSON packed BCD
fractional numbers allow for greater precision, and trailing zeros are retained. This is shown in the following example:

 SET jarray=[1.23456789123456789876000,(1.23456789123456789876000)]
 WRITE jarray.%ToJSON()

• Special values: JSON supports the following special values: true, false, and null. These are literal values that
must be specified as an unquoted literal in lowercase letters. These JSON special values cannot be specified using a
variable, or specified in an ObjectScript expression.

• ObjectScript: To include an ObjectScript literal or expression within a JSON array element or a JSON object value,
you must enclose the entire string in parentheses. You cannot specify ObjectScript in a JSON object key. ObjectScript
and JSON use different escape sequence conventions. To escape a double quote character in ObjectScript, you double
it. In the following example, a JSON string literal and an ObjectScript string literal are specified in a JSON array:

 SET jarray=["This is a \"good\" JSON string",("This is a ""good"" ObjectScript string")]
 WRITE jarray.%ToJSON()

The following JSON array example specifies an ObjectScript local variable and performs ObjectScript numeric con-
version to canonical form:

 SET str="This is a string"
 SET jarray=[(str),(--0007.000)]
 WRITE jarray.%ToJSON()

The following example specifies an ObjectScript function in a JSON object value:

 SET jobj={"firstname":"Fred","namelen":($LENGTH("Fred"))}
 WRITE jobj.%ToJSON()

JSON Object

A value can be a JSON object delimited by curly braces. The variable is set to an OREF, such as the following:
3@%Library.DynamicObject. You can use the ZWRITE command with a specified local variable name to display the
JSON value:

 SET jobj={"inventory123":"Fred's \"special\" bowling ball"}
 ZWRITE jobj

You can use the %Get() method to retrieve the value of a specified key using the OREF. You can resolve the OREF to the
full JSON object value using the %ToJSON() method. This is shown in the following example:

 SET jobj={"inventory123":"Fred's \"special\" bowling ball"}
 WRITE "JSON object reference = ",jobj,!
 WRITE jobj.%Get("inventory123")," (data value in ObjectScript format)",!
 WRITE jobj.%Get("inventory123",,"json")," (data value in JSON format)",!
 WRITE jobj.%ToJSON()," (key and data value in JSON format)"

A valid JSON object has the following format:

• Begins with an open curly brace, ends with a close curly brace. The empty object {} is a valid JSON object.

• Within the curly braces, a key:value pair or a comma-separated list of key:value pairs. Both the key and the value
components are JSON literals, not ObjectScript literals.

• The key component must be a JSON quoted string literal. It cannot be an ObjectScript literal or expression enclosed
in parentheses.

• The value component can be a JSON string or a JSON numeric literal. These JSON literals follow JSON validation
criteria. A value component can be an ObjectScript literal or expression enclosed in parentheses. The value component
can be specified as a defined variable specifying a string, a numeric, a JSON object, or a JSON array. The value com-
ponent can contain nested JSON objects or JSON arrays. A value component can also be one of the following three

136 ObjectScript Reference

ObjectScript Commands

JSON special values: true, false, null, specified as an unquoted literal in lowercase letters; these JSON special values
cannot be specified using a variable.

The following are all valid JSON objects: {"name":"Fred"}, {"name":"Fred","city":"Bedrock"},
{"bool":true}, {"1":true,"0":false,"Else":null},
{"name":{"fname":"Fred","lname":"Flintstone"},"city":"Bedrock"},
{"name":["Fred","Wilma","Barney"],"city":"Bedrock"}.

A JSON object can specify a null property name and assign it a value, as shown in the following example:

 SET jobj={}
 SET jobj.""="This is the ""null"" property value"
 WRITE jobj.%Get(""),!
 WRITE "JSON null property object value = ",jobj.%ToJSON()

Note that the returned JSON string uses the JSON escape sequence (\") for a literal double quote character.

You can use the %Set() method to add a key:value pair to a JSON object.

You can use the %Get() method to return the value of a specified key in various formats. The syntax is:

jobj.%Get(keyname,default,format)

The default argument is the value returned if keyname does not exist.

The format argument specifies the format for the returned value. If no format is specified, the value is returned in ObjectScript
format; if format="json", the value is returned in JSON format; if format="string", all string and numeric values are
returned in ObjectScript format, but the JSON true and false special values are returned as JSON alphabetic strings
rather than boolean integers; the JSON null special value is returned in ObjectScript format as a zero-length null string.
This is shown in the following example:

 SET x={"yep":true,"nil":null}
 WRITE "IRIS: ",x.%Get("yep")," JSON: ",x.%Get("yep",,"json")," STRING: ",x.%Get("yep",,"string"),!
 /* IRIS: 1 JSON: true STRING: true */
 WRITE "IRIS: ",x.%Get("nil")," JSON: ",x.%Get("nil",,"json")," STRING: ",x.%Get("nil",,"string")
 /* IRIS: JSON: null STRING: */

For further details, see Using JSON.

JSON Array

A value can be a JSON array delimited by square brackets. The variable is set to an OREF, such as the following:
1@%Library.DynamicArray. You can use the ZWRITE command with a specified local variable name to display the
JSON value:

 SET jary=["Fred","Wilma","Barney"]
 ZWRITE jary

You can use the %Get() method to retrieve the value of a specified array element (counting from 0) using the OREF:
%Get(n) returns the ObjectScript value; %Get(n,,”json”) returns the JSON value. %Get(n,”no such element”,”json”)
specifies a default value to return if the specified array element does not exist. You can resolve the OREF to the full JSON
array value using the %ToJSON() function. This is shown in the following example:

 SET jary=["Fred","Wilma","Barney"]
 WRITE "JSON array reference = ",jary,!
 WRITE jary.%Get(1)," (array element value in ObjectScript format)",!
 WRITE jary.%Get(1,,"json")," (array element value in JSON format)",!
 WRITE jary.%ToJSON()," (array values in JSON format)"

A valid JSON array has the following format:

• Begins with an open square bracket, ends with a close square bracket. The empty array [] is a valid JSON array.

ObjectScript Reference 137

SET

• Within the square brackets, an element or a comma-separated list of elements. Each array element can be a JSON string
or JSON numeric literal. These JSON literals follow JSON validation criteria. An array element can be an ObjectScript
literal or expression enclosed in parentheses. An array element can be specified as a defined variable specifying a
string, a numeric, a JSON object, or a JSON array. An array element can contain one or more JSON objects or JSON
arrays. An array element can also be one of the following three JSON special values: true, false, null, specified as an
unquoted literal in lowercase letters; these JSON special values cannot be specified using a variable.

The following are all valid JSON arrays: [1], [5,7,11,13,17], ["Fred","Wilma","Barney"], [true,false],
["Bedrock",["Fred","Wilma","Barney"]], [{"name":"Fred"},{"name":"Wilma"}],
[{"name":"Fred","city":"Bedrock"},{"name":"Wilma","city":"Bedrock"}],
[{"names":["Fred","Wilma","Barney"]}].

You can use the %Push() method to add a new element to the end of the array. You can use the %Set() method to add a
new array element or update an existing array element by position.

For further details, see Using JSON.

SET Command with Objects
The following example contains three SET commands: the first sets a variable to an OREF (object reference); the second
sets a variable to the value of an object property; the third sets an object property to a value:

 SET myobj=##class(%SQL.Statement).%New()
 SET dmode=myobj.%SelectMode
 WRITE "Default select mode=",dmode,!
 SET myobj.%SelectMode=2
 WRITE "Newly set select mode=",myobj.%SelectMode

Note that dot syntax is used in object expressions; a dot is placed between the object reference and the object property name
or object method name.

To set a variable with an object property or object method value for the current object, use the double-dot syntax:

 SET x=..LastName

If the specified object property does not exist, InterSystems IRIS issues a <PROPERTY DOES NOT EXIST> error. If you
use double-dot syntax and the current object has not been defined, InterSystems IRIS issues a <NO CURRENT OBJECT>
error.

For further details, refer to Object-Specific ObjectScript Features in Defining and Using Classes.

The following command sets x to the value returned by the GetNodeName() method:

 SET x=##class(%SYS.System).GetNodeName()
 WRITE "the current system node is: ",x

A SET command for objects can take an expression with cascading dot syntax, as shown in the following examples:

 SET x=patient.Doctor.Hospital.Name

In this example, the patient.Doctor object property references the Hospital object, which contains the Name property. Thus,
this command sets x to the name of the hospital affiliated with the doctor of the specified patient. The same cascading dot
syntax can be used with object methods.

A SET command for objects can be used with system-level methods, such as the following data type property method:

 SET x=patient.NameIsValid(Name)

In this example, the NameIsValid() method returns its result for the current patient object. NameIsValid() is a boolean
method generated for data type validation of the Name property. Thus, this command sets x to 1 if the specified name is a
valid name, and sets x to 0 if the specified name is not a valid name.

138 ObjectScript Reference

ObjectScript Commands

SET Using an Object Method

You can specify an object method on the left side of a SET expression. The following example specifies the %Get()
method:

 SET obj=##class(test).%New() // Where test is class with a multidimensional property md
 SET myarray=[(obj)]
 SET index=0,subscript=2
 SET myarray.%Get(index).md(subscript)="value"
 IF obj.md(2)="value" {WRITE "success"}
 ELSE {WRITE "failure"}

Setting a List of Variables to an Object

When using SET with objects, multiple assignments set all of the variables in a list to the same OREF, as shown in the
following examples:

 SET (a,b,c)=##class(Sample.Person).%New()

 SET (dyna1,dyna2,dyn3) = ["default","default"]

To assign each variable a separate OREF, issue a separate SET command for each assignment, as shown in the following
examples:

 SET a=##class(Sample.Person).%New()
 SET b=##class(Sample.Person).%New()
 SET c=##class(Sample.Person).%New()

 SET dyna1 = ["default","default"]
 SET dyna2 = ["default","default"]
 SET dyna3 = ["default","default"]

You can also use the #Dim preprocessor directive to assign all of the variables in a list to individual OREFs, as shown in
the following examples:

#Dim a,b,c As %ClassDefinition
= ##class(Sample.Person).%New()

#Dim dyn1,dyn2,dyn3 As %DynamicArray = ["default","default"]

Examples
The following example specifies multiple arguments for the same SET command. Specifically, the command assigns values
to three variables. Note that arguments are evaluated in left-to-right order.

 SET var1=12,var2=var1*3,var3=var1+var2
 WRITE "var1=",var1,!,"var2=",var2,!,"var3=",var3

The following example shows the (variable-list)=value form of the SET command. It shows how to assign the
same value to multiple variables. Specifically, the command assigns the value 0 to three variables.

 SET (sum,count,average)=0
 WRITE "sum=",sum,!,"count=",count,!,"average=",average

The following example sets a subscripted global variable in a different namespace using extended global reference.

 NEW $NAMESPACE
 SET $NAMESPACE="%SYS"
 SET ^["user"]nametest(1)="fred"
 NEW $NAMESPACE
 SET $NAMESPACE="USER"
 WRITE ^nametest(1)
 KILL ^nametest

ObjectScript Reference 139

SET

Notes
Each variable assignment can be a local variable, a process-private global, or a global, the $PIECE function, the $EXTRACT
function, and certain special variables, including $ECODE, $DEVICE, $KEY, $TEST, $X, and $Y.

If the target variable does not already exist, SET creates it and then assigns the value. If it does exist, SET replaces the
existing value with the assigned value.

SET and Subscripts

You can set individual subscripted values (array nodes) for a local variable, process-private global, or a global. You can
set subscripts in any order. If the variable subscript level does not already exist, SET creates it and then assigns the value.
Each subscript level is treated as an independent variable; only those subscript levels set are defined. For example:

 KILL myarray
 SET myarray(1,1,1)="Cambridge"
 WRITE !,myarray(1,1,1)
 SET myarray(1)="address"
 WRITE !,myarray(1)

In this example, the variables myarray(1,1,1) and myarray(1) are defined and contain values. However, the variables myarray
and myarray(1,1) are not defined, and return an <UNDEFINED> error when invoked.

By default, you cannot set a null subscript. For example, SET ^x("")=123 results in a <SUBSCRIPT> error. However
you can set %SYSTEM.Process.NullSubscripts() method to allow null subscripts for global and process-private global
variables. You cannot set a null subscript for a local variable.

The maximum length of a subscript is 511 characters. Exceeding this length results in a <SUBSCRIPT> error.

The maximum number of subscript levels for a local variable is 255. The maximum number of subscript levels for a global
variable depends on the subscript level names, and may exceed 255 levels. Attempting to set a local variable to more than
255 subscript levels (either directly or by indirection) results in a <SYNTAX> error. For further information on subscripted
variables, refer to Global Structure in Using Globals.

Order of Evaluation

InterSystems IRIS evaluates the arguments of the SET command in strict left-to-right order. For each argument, it performs
the evaluation in the following sequence:

1. Evaluates occurrences of indirection or subscripts to the left of the equal sign in a left-to-right order to determine the
variable name(s). For more information, refer to Indirection in Using ObjectScript.

2. Evaluates the expression to the right of the equal sign.

3. Assigns the expression to the right of the equal sign to the variable name or references to the left of the equal sign.

Transaction Processing

A SET of a global variable is journaled as part of the current transaction; this global variable assignment is rolled back
during transaction rollback. A SET of a local variable or a process-private global variable is not journaled, and thus this
assignment is unaffected by a transaction rollback.

Defined and Undefined Variables

Most ObjectScript commands and functions require that a variable be defined before it is referenced. By default, attempting
to reference an undefined variable generates an <UNDEFINED> error. Attempting to reference an undefined object generates
a <PROPERTY DOES NOT EXIST> or <METHOD DOES NOT EXIST> error. Refer to $ZERROR for further details
on these error codes.

You can change InterSystems IRIS behavior when referencing an undefined variable by setting the
%SYSTEM.Process.Undefined() method.

140 ObjectScript Reference

ObjectScript Commands

The READ command and the $INCREMENT function can reference an undefined variable and assign a value to it. The
$DATA function can take an undefined or defined variable and return its status. The $GET function returns the value of a
defined variable; optionally, it can also assign a value to an undefined variable.

SET with $PIECE and $EXTRACT

You can use the $PIECE and $EXTRACT functions with SET on either side of the equals sign. For detailed descriptions,
refer to $PIECE and $EXTRACT.

When used on the right side of the equals sign, $PIECE and $EXTRACT extract a substring from a variable and assign
its value to the specified variable(s) on the left side of the equals sign. $PIECE extracts a substring using a specified
delimiter, and $EXTRACT extracts a substring using a character count.

For example, assume that variable x contains the string "HELLO WORLD". The following commands extract the substring
"HELLO" and assign it to variables y and z, respectively:

 SET x="HELLO WORLD"
 SET y=$PIECE(x," ",1)
 SET z=$EXTRACT(x,1,5)
 WRITE "x=",x,!,"y=",y,!,"z=",z

When used on the left side of the equals sign, $PIECE and $EXTRACT insert the value from the expression on the right
side of the equals sign into the specified portion of the target variable. Any existing value in the specified portion of the
target variable is replaced by the inserted value.

For example, assume that variable x contains the string "HELLO WORLD" and that variable y contains the string "HI
THERE". In the command:

 SET x="HELLO WORLD"
 SET y="HI THERE"
 SET $PIECE(x," ",2)=$EXTRACT(y,4,9)
 WRITE "x=",x

The $EXTRACT function extracts the string "THERE" from variable y and the $PIECE function inserts it into variable
x at the second field position, replacing the existing string "WORLD". Variable x now contains the string "HELLO THERE".

If the target variable does not exist, the system creates it and pads it with delimiters (in the case of $PIECE) or with spaces
(in the case of $EXTRACT) as needed.

In the following example, SET $EXTRACT is used to insert the value of z into strings x and y, overwriting the existing
values:

 SET x="HELLO WORLD"
 SET y="OVER EASY"
 SET z="THERE"
 SET $EXTRACT(x,7,11)=z
 SET $EXTRACT(y,*-3,*)=z
 WRITE "edited x=",x,!
 WRITE "edited y=",y

Variable x now contains the string "HELLO THERE" and y contains the string "OVER THERE". Note that because one
of the SET $EXTRACT operations in this example uses a negative offset (*-3) these operations must be done as separate
sets. You cannot set multiple variables with a single SET using enclosing parentheses if any of the variables uses negative
offset.

In the following example, assume that the global array ^client is structured so that the root node contains the client’s name,
with subordinate nodes containing the street address and city. For example, ^client(2,1,1) would contain the city address
for the second client stored in the array.

Assume further that the city node (x,1,1) contains field values identifying the city, state abbreviation, and ZIP code (postal
code), with the comma as the field separator. For example, a typical city node value might be "Cambridge,MA,02142".
The three SET commands in the following code each use the $PIECE function to assign a specific portion of the array
node value to the appropriate local variable. Note that in each case $PIECE references the comma (",") as the string sepa-
rator.

ObjectScript Reference 141

SET

ADDRESSPIECE
 SET ^client(2,1,1)="Cambridge,MA,02142"
 SET city=$PIECE(^client(2,1,1),",",1)
 SET state=$PIECE(^client(2,1,1),",",2)
 SET zip=$PIECE(^client(2,1,1),",",3)
 WRITE "City is ",city,!,
 "State or Province is ",state,!
 ,"Postal code is ",zip
 QUIT

The $EXTRACT function could be used to perform the same operation, but only if the fields were fixed length and the
lengths were known. For example, if the city field was known to contain only up to 9 characters and the state and ZIP fields
were known to contain only 2 and 5 characters, respectively, the SET commands could be coded with the $EXTRACT
function as follows:

ADDRESSEXTRACT
 SET ^client(2,1,1)="Cambridge,MA,02142"
 SET city=$EXTRACT(^client(2,1,1),1,9)
 SET state=$EXTRACT(^client(2,1,1),11,12)
 SET zip=$EXTRACT(^client(2,1,1),14,18)
 WRITE "City is ",city,!,
 "State or Province is ",state,!,
 "Postal code is ",zip
 QUIT

Notice the gaps between 9 and 11 and 12 and 14 to accommodate the comma field separators.

The following example replaces the first substring in A (originally set to 1) with the string "abc".

StringPiece
 SET A="1^2^3^4^5^6^7^8^9"
 SET $PIECE(A,"^")="abc"
 WRITE !,"A=",A
 QUIT

A="abc^2^3^4^5^6^7^8^9"

The following example uses $EXTRACT to replace the first character in A (again, a 1) with the string "abc".

StringExtract
 SET A="123456789"
 SET $EXTRACT(A)="abc"
 WRITE !,"A=",A
 QUIT

A="abc23456789"

The following example replaces the third through sixth pieces of A with the string "abc" and replaces the first character in
the variable B with the string "abc".

StringInsert
 SET A="1^2^3^4^5^6^7^8^9"
 SET B="123"
 SET ($PIECE(A,"^",3,6),$EXTRACT(B))="abc"
 WRITE !,"A=",A,!,"B=",B
 QUIT

A="1^2^abc^7^8^9"

B="abc23"

The following example sets $X, $Y, $KEY, and the fourth piece of a previously undefined local variable, A, to the value
of 20. It also sets the local variable K to the current value of $KEY. A includes the previous three pieces and their caret
delimiter (^).

SetVars
 SET ($X,$Y,$KEY,$PIECE(A,"^",4))=20,X=$X,Y=$Y,K=$KEY
 WRITE !,"A=",A,!,"K=",K,!,"X=",X,!,"Y=",Y
 QUIT

A="^^^20" K="20" X=20 Y=20

142 ObjectScript Reference

ObjectScript Commands

SET with $LIST and $LISTBUILD

The $LIST functions create and manipulate lists. They encode the length (and type) of each element within the list, rather
than using an element delimiter. They then use the encoded length specifications to extract specified list elements during
list manipulation. Because the $LIST functions do not use delimiter characters, the lists created using these functions should
not be input to $PIECE or other character-delimiter functions.

When used on the right side of the equal sign, these functions return the following:

$LIST

$LIST returns the specified element of the specified list.

$LISTBUILD

$LISTBUILD returns a list containing one element for each argument given.

When used on the left side of the equal sign, in a SET argument, these functions perform the following tasks:

$LIST

Replaces the specified element(s) with the value given on the right side of the equal sign.

 SET A=$LISTBUILD("red","blue","green","white")
 WRITE "Created list A=",$LISTTOSTRING(A),!
 SET $LIST(A,2)="yellow"
 WRITE "Edited list A=",$LISTTOSTRING(A)

 SET A=$LISTBUILD("red","blue","green","white")
 WRITE "Created list A=",$LISTTOSTRING(A),!
 SET $LIST(A,*-1,*)=$LISTBUILD("yellow")
 WRITE "Edited list A=",$LISTTOSTRING(A)

You cannot use parentheses with SET $LIST to assign the same value to multiple variables.

$LISTBUILD

Extracts several elements of a list in a single operation. The arguments of $LISTBUILD are variables, each of which
receives an element of the list corresponding to their position in the $LISTBUILD parameter list. Variable names may be
omitted for positions that are not of interest.

In the following example, $LISTBUILD (on the right side of the equal sign) is first used to return a list. Then $LISTBUILD
(on the left side of the equal sign) is used to extract two items from that list and set the appropriate variables.

SetListBuild
 SET J=$LISTBUILD("red","blue","green","white")
 SET $LISTBUILD(A,,B)=J
 WRITE "A=",A,!,"B=",B

In this example, A="red" and B="green".

See Also
• $LIST function

• $LISTBUILD function

• $EXTRACT function

• $PIECE function

• $X special variable

• $Y special variable

ObjectScript Reference 143

SET

TCOMMIT
Marks the successful completion of a transaction.

TCOMMIT:pc
TC:pc

Argument

Optional — A postconditional expression.pc

Description
TCOMMIT marks the successful end of a transaction initiated by the corresponding TSTART.

TCOMMIT decrements the value of the $TLEVEL special variable. InterSystems IRIS terminates the transaction only
if $TLEVEL goes to 0. Usually this is when TCOMMIT has been called as many times as TSTART. Changes made
during nested transactions are not committed until $TLEVEL=0.

Calling TCOMMIT when $TLEVEL is already 0 results in a <COMMAND> error. This can occur if you issue a
TCOMMIT when no transaction is in progress, when the number of TCOMMIT commands is larger than the number of
TSTART commands, or following a TROLLBACK command. The corresponding $ZERROR value consists of <COMMAND>,
the location of the error (for example +3^mytest), and the data literal *NoTransaction.

Argument

pc

An optional postconditional expression. InterSystems IRIS executes the command if the postconditional expression is true
(evaluates to a nonzero numeric value). InterSystems IRIS does not execute the command if the postconditional expression
is false (evaluates to zero). For further details, refer to Command Postconditional Expressions in Using ObjectScript.

Examples
You use TCOMMIT with the TROLLBACK and TSTART commands. See TROLLBACK and TSTART for examples
of how to use these transaction processing commands together.

Notes

Nested TSTART / TCOMMIT

InterSystems IRIS supports the nesting of the TSTART/TCOMMIT commands, so that modules can issue their
TSTART/TCOMMIT pairs correctly, independent of any other TSTART/TCOMMIT issued in the modules that called
them or in the modules they call. The current nesting level of the transaction is tracked by the special variable $TLEVEL.
The transaction is committed when the outermost matching TCOMMIT is issued; that is, when $TLEVEL goes back to
0.

You can roll back individual nested transactions by calling TROLLBACK 1 or roll back all current transactions by calling
TROLLBACK. TROLLBACK rolls back the whole transaction that is in effect — no matter how many levels of TSTART
were issued — and sets $TLEVEL to 0.

Synchronous Commit

A TCOMMIT command requests a flush of the journal data involved in that transaction to disk. Whether to wait for this
disk write operation to complete is a configurable option.

144 ObjectScript Reference

ObjectScript Commands

Go to the Management Portal, select System Administration, Configuration, Additional Settings, Compatibility. View and
edit the current setting of SynchCommit. When set to “ true” , TCOMMIT does not complete until the journal data write
operation completes. When set to “ false” , TCOMMIT does not wait for the write operation to complete. The default is
“ false” . A restart is required for a change to the SynchCommit setting to take effect.

SQL and Transactions

ObjectScript and SQL transaction commands are fully compatible and interchangeable, with the following exception:

ObjectScript TSTART and SQL START TRANSACTION both start a transaction if no transaction is current. However,
START TRANSACTION does not support nested transactions. Therefore, if you need (or may need) nested transactions,
it is preferable to start the transaction with TSTART. If you need compatibility with the SQL standard, use START
TRANSACTION.

ObjectScript transaction processing provides limited support for nested transactions. SQL transaction processing supplies
support for savepoints within transactions.

See Also
• TROLLBACK command

• TSTART command

• $TLEVEL special variable

• Using ObjectScript for Transaction Processing in Using ObjectScript

ObjectScript Reference 145

TCOMMIT

THROW
Explicitly throws an exception to the next exception handler.

THROW oref

Argument

Optional — An object reference (OREF) that is thrown to an exception handler. Optional,
but highly recommended.

oref

Description
The THROW command explicitly throws an exception. An exception can be a system error, a %Status exception, or a
user-defined exception. It throws this exception as an object reference (OREF) that inherits from the
%Exception.AbstractException object. The THROW command throws this exception to the next exception handler.

There are two ways to use THROW oref:

• TRY/CATCH: Use THROW oref to explicitly signal an exception from within a TRY block of code, transferring
execution from the TRY block to its corresponding CATCH block exception handler.

• Other Exception Handlers: Use THROW oref to explicitly signal an exception when not in a TRY block. This triggers
the current exception handler (for example, $ZTRAP), where the oref can be retrieved from the $THROWOBJ special
variable.

Note: Use of THROW without an argument is deprecated and not recommended for new code.

System Errors

InterSystems IRIS issues a system error when a runtime error occurs, such a referencing an undefined variable. A system
error generates a %Exception.SystemException object reference, sets the oref properties Code, Name, Location, and Data,
and also sets the $ZERROR and $ECODE special variables, and transfers control to the next error handler. This error
handler can be a CATCH exception handler, or a $ZTRAP error handler. A system error is an implicit error, which does
not use a THROW.

You can use THROW within an error handler to throw a system error object to a further error handler. This is known as
re-signalling a system error.

A THROW passes control up the execution stack to the next error handler. If the exception is an %Exception.SystemException

object, the next error handler can be either type (CATCH or $ZTRAP). Otherwise, there must be a CATCH to handle the
exception or InterSystems IRIS generates a <THROW> error.

Argument

oref

A reference to an exception object, which is an instance of any class that inherits from %Exception.AbstractException. A
exception object for a system error is an instance of the class %Exception.SystemException. A user-specified exception
object can be a %Status exception object (%Exception.StatusException), a general exception object (%Exception.General),
or SQL exception object (%Exception.SQL). The creation and population of a user exception object is the responsibility of
the programmer.

For information on OREFs, see “OREF Basics” in Defining and Using Classes.

146 ObjectScript Reference

ObjectScript Commands

THROW from a TRY Block
THROW oref can be issued from a TRY block to its corresponding CATCH block. This explicitly signals a user-defined
exception. This transfers execution from a TRY block to its corresponding CATCH block. The thrown oref is set as the
CATCH block’s exceptionvar argument.

To issue an argumented THROW from a CATCH exception handler, you can either throw to a non-CATCH exception
handler, or you can nest a TRY block (and associated nested CATCH block) within the CATCH exception handler, and
issue the THROW from this nested TRY block.

%Status Exceptions and User-Defined Exceptions

To trap a %Status exception or a user-defined exception, specify an object based on the %Exception.AbstractException

object as the oref argument. Define an exception class, then create an instance of the class using %New() and supply the
exception information. These types of exceptions must be handled by a CATCH exception handler. If no CATCH exists,
the system generates a <THROW> error.

A user-defined exception does not change the value of $ZERROR or $ECODE. In order to use either of these special
variables, your program must explicitly set them using the SET command.

General Exception

InterSystems IRIS supplies a general exception that you can supply as the THROW argument. This is the %Exception.General

subclass of the %Exception.AbstractException abstract class. Its use is shown in the following example:

 TRY {
 WRITE "In the TRY block",!!
 SET mygenex = ##class(%Exception.General).%New("My exception","999",,
 "My own special exception")
 THROW mygenex
 WRITE "This shouldn't display",!
 }
 CATCH stuff {
 WRITE "In the CATCH block",!
 WRITE stuff.Name,!
 WRITE stuff.Code,!
 WRITE stuff.Data,!
 WRITE "End of the CATCH block",!
 RETURN
 }

THROW when not in a TRY Block

If you issue a THROW outside of a TRY block, InterSystems IRIS generates a <THROW> error, such as the following:
<THROW>+3^myprog *%Exception.General MyErr 999 My user-definied error. This use of THROW
is useful for re-signalling an error.

The object reference (oref) specified in the THROW is stored in the $THROWOBJ special variable. For example,
9@%Exception.General. The $THROWOBJ value is cleared by the next successful THROW operation, or by SET
$THROWOBJ="".

In the following example, a THROW throws an exception to a $ZTRAP exception handler:

MainRou
 WRITE "In the Main Routine",!!
 SET $ZTRAP=^ErrRou
 SET mygenex = ##class(%Exception.General).%New("My exception","999",,
 "My own special exception")
 THROW mygenex
 WRITE "This shouldn't display",!
 RETURN

ObjectScript Reference 147

THROW

ErrRou
 WRITE "In $ZTRAP",!
 SET oref=$THROWOBJ
 SET $THROWOBJ=""
 WRITE oref.Name,!
 WRITE oref.Code,!
 WRITE oref.Data,!
 WRITE "End of $ZTRAP",!
 RETURN

THROW without an Argument

Argumentless THROW re-signals the current system error, transferring control to the next exception handler. The current
system error is the error referenced by the $ZERROR special variable. Thus, an argumentless THROW is equivalent to
the command ZTRAP $ZERROR.

Use of argumentless THROW is not recommended, because which system error is the current system error may change.
For instance, this would occur if the error handler changes the $ZERROR value, or if the error handler itself generates a
system error. It is therefore preferable to explicitly specify the system error to be thrown to the next exception handler by
using THROW oref.

Examples
Note that $ZCVT(myerr.Name,"O","HTML") is used in these examples because InterSystems IRIS error names are
enclosed in angle brackets and these examples are run from a web browser. In most other contexts, myerr.Name will
return the desired value.

The following example uses an instance of the %Exception.General class to throw a user-defined exception. It generates
birth dates in the TRY block; if it generates a birth date that is in the future, it uses THROW to issue a general exception,
passing the OREF of the user-defined exception to a general-purpose CATCH block. (You may have to run this example
more than once to generate a date that throws an exception):

 TRY {
 WRITE "In the TRY block",!
 SET badDOB=##class(%Exception.General).%New("<BAD DOB>","999",,"Birth date is in the future")
 FOR x=1:1:20 { SET rndDOB = $RANDOM(7)_$RANDOM(10000)
 IF rndDOB > $HOROLOG { WRITE !,"Birthdate ",$ZDATE(rndDOB,1,,4)," is invalid"
 THROW badDOB }
 ELSE { WRITE "Birthdate ",$ZDATE(rndDOB,1,,4)," is valid",! }
 }
 }
 CATCH err {
 WRITE !,"In the CATCH block"
 WRITE !,"Error code=",err.Code
 WRITE !,"Error name=",$ZCVT(err.Name,"O","HTML")
 WRITE !,"Error data=",err.Data
 RETURN
 }

The following example can issue either of two THROW commands with a user-defined argument. $RANDOM picks
which THROW to issue (random values 0 or 1) or to not issue a THROW (random value 2). Note that code execution
continues after the TRY / CATCH block pair, unless block execution ends with a RETURN command:

 TRY {
 SET errdatazero="this is the zero error"
 SET errdataone="this is the one error"
 /* Error Randomizer */
 SET test=$RANDOM(3)
 WRITE "Error test is ",test,!
 IF test=0 {
 WRITE !,"Throwing exception 998",!
 THROW ##class(Sample.MyException).%New("TestZeroError",998,,errdatazero)
 THROW myvar
 }
 ELSEIF test=1 {
 WRITE !,"Throwing exception 999",!
 THROW ##class(Sample.MyException).%New("TestOneError",999,,errdataone)
 }
 ELSE { WRITE !,"No THROW error this time" }
 }
 CATCH exp {
 WRITE !,"This is the exception handler"

148 ObjectScript Reference

ObjectScript Commands

 WRITE !,"Error code=",exp.Code
 WRITE !,"Error name=",exp.Name
 WRITE !,"Error data=",exp.Data
 RETURN
 }
 WRITE !!,"Execution after TRY block continues here"

The following example shows the use of THROW with a system error. THROW is commonly used in a CATCH exception
handler to forward the system error to another handler. This may occur when the system error received is an unexpected
type of system error. Note that this requires nesting a TRY block (and corresponding CATCH block) within the CATCH
block. It is used to THROW the system error to the nested CATCH block. This is shown in the following example, which
calls Calculate to perform a division operation and return the answer. There are three possible outcomes: If y = any non-
zero number, the division operation succeeds and no CATCH block code is executed. If y=0 (or any nonnumeric string),
the division operation attempts to divide by zero, throwing a system error to its CATCH block; this is caught by the calcerr
exception handler, which “corrects” this error and returns a value of 0. If, however, y is not defined (NEW y), calcerr catches
an unexpected system error, and throws this error to the myerr exception handler. To demonstrate these three possible
outcomes, this sample program uses $RANDOM to set the divisor (y):

Randomizer
 SET test=$RANDOM(3)
 IF test=0 { SET y=0 }
 ELSEIF test=1 { SET y=7 }
 ELSEIF test=2 { NEW y }
 /* Note: if test=2, y is undefined */
Main
 SET x=4
 TRY {
 SET result=$$Calculate(x,y)
 WRITE !,"Calculated value=",result
 }
 CATCH myerr {
 WRITE !,"this is the exception handler"
 WRITE !,"Error code=",myerr.Code
 WRITE !,"Error name=",$ZCVT(myerr.Name,"O","HTML")
 WRITE !,"Error data=",myerr.Data
 }
 QUIT

Calculate(arg1,arg2) PUBLIC {
 TRY {
 SET answer=arg1/arg2
 }
 CATCH calcerr {
 WRITE "In the CATCH Block",!
 TRY {
 IF calcerr.Name="<DIVIDE>" {
 WRITE !,"handling zero divide error"
 SET answer=0 }
 ELSE { THROW calcerr }
 RETURN
 }
 CATCH {
 WRITE "Unexpected error",!
 WRITE "Error name=",$ZCVT(myerr.Name,"O","HTML"),!
 }
 }
 QUIT answer
}

See Also
• CATCH command

• TRY command

• ZTRAP command

• $THROWOBJ special variable

• $ZERROR special variable

• $ZTRAP special variable

• Error Processing in Using ObjectScript

ObjectScript Reference 149

THROW

TROLLBACK
Rolls back an unsuccessful transaction.

TROLLBACK:pc
TRO:pc

TROLLBACK:pc 1
TRO:pc 1

Arguments

Optional — A postconditional expression.pc

Optional — The integer 1. Rolls back one level of nesting. Must be specified as a literal.1

Description
TROLLBACK terminates the current transaction and restores all journaled database values to the values they held at the
start of the transaction. TROLLBACK has two forms:

• TROLLBACK rolls back all transactions in progress (no matter how many levels of TSTART were issued) and resets
$TLEVEL to 0.

• TROLLBACK 1 rolls back the current level of nested transactions (the one initiated by the most recent TSTART)
and decrements $TLEVEL by 1. The 1 argument must be the literal number 1; it cannot be a variable or an expression
that resolve to 1. Numbers other than 1 are not supported.

You can determine the level of nested transactions from the $TLEVEL special variable. Calling TROLLBACK when
$TLEVEL is 0 has no effect.

You can use the GetImageJournalInfo() method of the %SYS.Journal.System class to search the journal file for TSTART
commands, and thus identify open transactions. A TSTART increments $TLEVEL and writes a journal file record: either
a “BT” (Begin Transaction) record if $TLEVEL was zero, or a “BTL” (Begin Transaction with Level) record if $TLEVEL
was greater than 0. Use the Sync() method of the %SYS.Journal.System class to flush the journal buffer following a suc-
cessful rollback operation.

TROLLBACK disables Ctrl-C interrupts for the duration of the rollback operation.

What Is and Isn’t Rolled Back

TROLLBACK rolls back all journaled operations. These include the following:

• TROLLBACK rolls back most changes to global variables, including SET and KILL operations. Global variables
underlie many InterSystems IRIS operations. Local variables are not reverted by a rollback operation.

TROLLBACK rolls back changes to bit string values in global variables during a transaction. However, a rollback
operation does not return the global variable bit string to its previous internal string representation.

• TROLLBACK rolls back insert, update, and delete changes to SQL data.

However, not all changes made by an application are journaled:

• TROLLBACK does not roll back changes to local variables or process-private globals.

• TROLLBACK does not roll back changes to special variables, such as $TEST.

• TROLLBACK does not roll back changes to the current namespace.

• TROLLBACK does not roll back LOCK command lock or unlock operations.

150 ObjectScript Reference

ObjectScript Commands

• TROLLBACK does not roll back $INCREMENT changes to global variables.

• TROLLBACK does not roll back $SEQUENCE changes to global variables.

InterSystems IRIS treats a SET or KILL of a global variable as a journaled transaction event; rolling back the transaction
reverses these operations. InterSystems IRIS does not treat a SET or KILL of a local variable or a process-private global
variable as a journaled transaction event; rolling back the transaction has no effect on these operations. By default, a SET
or KILL of a global variable is immediately visible by other processes while the transaction is in progress. To prevent the
SET or KILL of a global variable invoked within a transaction from being seen by other users before the transaction has
been committed, you must coordinate access to the global variable via the LOCK command.

Transaction Rollback Logging

If an error occurs during a roll back operation, InterSystems IRIS issues a <ROLLFAIL> error message, and logs an error
message in the messages.log operator messages log file. You can use the Management Portal System Operation option to
view messages.log: System Operation, System Logs, Messages Log.

By default, the messages.log operator messages log file is in the InterSystems IRIS system management directory (mgr).
This default location is configurable. Go to the Management Portal System Administration option, select Configuration,
then Additional Settings, then Advanced Memory. View and edit the current setting of ConsoleFile. By default this setting
is blank, routing console messages to messages.log in the mgr directory. You can specify a different directory location for
the messages.log file.

<ROLLFAIL> Errors

If TROLLBACK cannot successfully roll back the transaction, a <ROLLFAIL> error occurs. The process behavior depends
on the setting of the system-wide journal configuration setting flag Freeze on error (from Management Portal select System

Administration, Configuration, System Configuration, Journal Settings):

• If Freeze on error is not set (the default), the process gets a <ROLLFAIL> error. The transaction is closed and any
locks retained for the transaction are released. This option trades data integrity for system availability.

• If Freeze on error is set, the process halts and the clean job daemon (CLNDMN) retries rolling back the open transaction.
During the CLNDMN retry period, locks retained for the transaction are intact and, as a result, the system might hang.
This option trades system availability for data integrity.

For further details, refer to Journal IO Errors in the Data Integrity Guide.

When a <ROLLFAIL> occurs, the %msg records both the <ROLLFAIL> error itself, and the previous error that caused
the roll back. For example, attempting to update a date with an out-of-range value and then failing roll back might return
the following %msg: SQLCODE = -105 %msg = Unexpected error occurred: <ROLLFAIL>%0Ac+1^dpv
during TROLLBACK. Previous error: SQLCODE=-105, %msg='Field 'Sample.Person.DOB' (value

'5888326') failed validation'.

A <ROLLFAIL> occurs upon transaction rollback if within the transaction a global accessed a remote database, and then
the program explicitly dismounted that remote database.

A <ROLLFAIL> occurs upon transaction rollback if the process disabled journaling before making database changes and
an error occurred that invoked transaction rollback. A <ROLLFAIL> does not occur upon transaction rollback if the process
disabled journaling after all database changes had been made but before issuing the TROLLBACK command. Instead,
InterSystems IRIS temporarily enables journaling for the duration of the rollback operation. Upon completion of the rollback
operation InterSystems IRIS again disables journaling.

Transactions Suspended

The TransactionsSuspended() method of the %SYSTEM.Process class can be used to suspend and resume all current
transactions system-wide. Suspending transactions suspends journaling of changes. Therefore, if transaction suspension
occurred during the current transaction, TROLLBACK cannot roll back any changes made while transactions were sus-

ObjectScript Reference 151

TROLLBACK

pended; however, TROLLBACK rolls back any changes made during the current transaction that occurred before or after
the tranaction suspension was in effect.

For further details, refer to Using ObjectScript for Transaction Processing in Using ObjectScript.

SQL and Transactions

ObjectScript and SQL transaction commands are fully compatible and interchangeable, with the following exception:

ObjectScript TSTART and SQL START TRANSACTION both start a transaction if no transaction is current. However,
START TRANSACTION does not support nested transactions. Therefore, if you need (or may need) nested transactions,
it is preferable to start the transaction with TSTART. If you need compatibility with the SQL standard, use START
TRANSACTION.

ObjectScript transaction processing provides limited support for nested transactions. SQL transaction processing supplies
support for savepoints within transactions.

Purging Cached Queries

If during a transaction you call the Purge() method of %SYSTEM.SQL class to purge cached queries, the cached queries
are permanently deleted. A subsequent TROLLBACK will not restore purged cached queries.

Globals and TROLLBACK 1

TROLLBACK 1 rolls back and restores all globals changed within its nested transaction. However, if globals are changed
that are mapped to a remote system that does not support nested transactions, these changes are treated as occurring at the
outermost nested level. Such globals are only rolled back when a rollback resets $TLEVEL to 0, either by calling
TROLLBACK or by calling TROLLBACK 1 when $TLEVEL=1.

Locks and TROLLBACK 1

TROLLBACK 1 does not restore locks established during its nested transaction to their prior state. All locks established
during a transaction remain in the lock table until the transaction is concluded by a TROLLBACK to level 0 or a
TCOMMIT. At that point InterSystems IRIS releases all locks created during the nested transaction, and restores all pre-
existing locks to their state before TSTART.

A TCOMMIT of a nested transaction does not release the corresponding locks, so a subsequent TROLLBACK can effect
locks in a committed sub-transaction.

Arguments

pc

An optional postconditional expression. InterSystems IRIS executes the command if the postconditional expression is true
(evaluates to a nonzero numeric value). InterSystems IRIS does not execute the command if the postconditional expression
is false (evaluates to zero). For further details, refer to Command Postconditional Expressions in Using ObjectScript.

Examples
The following example uses a single-level transaction to transfer a random amount of money from one account to another.
If the transfer amount is more than the available balance, the program uses TROLLBACK to roll back the transaction:

SetupBankAccounts
 SET num=12345
 SET ^CHECKING(num,"balance")=500.99
 SET ^SAVINGS(num,"balance")=100.22
 IF $DATA(^NumberOfTransfers)=0 {SET ^NumberOfTransfers=0}
BankTransfer
 WRITE "Before transfer:",!,"Checking=$",^CHECKING(num,"balance")," Savings=$",^SAVINGS(num,"balance"),!

 // Transfer funds from one account to another
 SET transfer=$RANDOM(1000)
 WRITE "transfer amount $",transfer,!
 DO CkToSav(num,transfer)

152 ObjectScript Reference

ObjectScript Commands

 IF ok=1 {WRITE "sucessful transfer",!,"Number of transfers to date=",^NumberOfTransfers,!}
 ELSE {WRITE "*** INSUFFICIENT FUNDS ***",!}
 WRITE "After transfer:",!,"Checking=$",^CHECKING(num,"balance")," Savings=$",^SAVINGS(num,"balance"),!

 RETURN
CkToSav(acct,amt)
 TSTART
 SET ^CHECKING(acct,"balance") = ^CHECKING(acct,"balance") - amt
 SET ^SAVINGS(acct,"balance") = ^SAVINGS(acct,"balance") + amt
 SET ^NumberOfTransfers=^NumberOfTransfers + 1
 IF ^CHECKING(acct,"balance") > 0 {TCOMMIT SET ok=1 QUIT:ok}
 ELSE {TROLLBACK SET ok=0 QUIT:ok}

The following example shows the effects of TROLLBACK on nested transactions. Each TSTART increments $TLEVEL
and sets a global. Issuing a TCOMMIT on the inner nested transaction decrements $TLEVEL, but the commitment of
changes made in a nested transaction is deferred. In this case, the subsequent TROLLBACK on the outer transaction rolls
back all changes made, including those in the inner “committed” nested transaction.

 SET ^a(1)="[- - -]",^b(1)="[- - -]"
 WRITE !,"level:",$TLEVEL," ",^a(1)," ",^b(1)
 TSTART
 LOCK +^a(1)
 SET ^a(1)="hello"
 WRITE !,"level:",$TLEVEL," ",^a(1)," ",^b(1)
 TSTART
 LOCK +^b(1)
 SET ^b(1)="world"
 WRITE !,"level:",$TLEVEL," ",^a(1)," ",^b(1)
 TCOMMIT
 WRITE !,"After TCOMMIT"
 WRITE !,"level:",$TLEVEL," ",^a(1)," ",^b(1)
 TROLLBACK
 WRITE !,"After TROLLBACK"
 WRITE !,"level:",$TLEVEL," ",^a(1)," ",^b(1)
 QUIT

The following example shows how TROLLBACK rolls back global variables, but not local variables:

 SET x="default",^y="default"
 WRITE !,"level:",$TLEVEL
 WRITE !,"local:",x," global:",^y
 TSTART
 SET x="first",^y="first"
 WRITE !,"TSTART level:",$TLEVEL
 WRITE !,"local:",x," global:",^y
 TSTART
 SET x=x_" second",^y=^y_" second"
 WRITE !,"TSTART level:",$TLEVEL
 WRITE !,"local:",x," global:",^y
 TSTART
 SET x=x_" third",^y=^y_" third"
 WRITE !,"TSTART level:",$TLEVEL
 WRITE !,"local:",x," global:",^y
 TROLLBACK
 WRITE !!,"After Rollback:"
 WRITE !,"TROLLBACK level:",$TLEVEL
 WRITE !,"local:",x," global:",^y

The following example shows how $INCREMENT changes to a global are not rolled back.

 SET ^x=-1,^y=0
 WRITE !,"level:",$TLEVEL
 WRITE !,"Increment:",$INCREMENT(^x)," Add:",^y
 TSTART
 SET ^y=^y+1
 WRITE !,"level:",$TLEVEL
 WRITE !,"Increment:",$INCREMENT(^x)," Add:",^y
 TSTART
 SET ^y=^y+1,^z=^z_" second"
 WRITE !,"level:",$TLEVEL
 WRITE !,"Increment:",$INCREMENT(^x)," Add:",^y
 TSTART
 SET ^y=^y+1,^z=^z_" third"
 WRITE !,"level:",$TLEVEL
 WRITE !,"Increment:",$INCREMENT(^x)," Add:",^y
 TROLLBACK
 WRITE !!,"After Rollback"
 WRITE !,"level:",$TLEVEL
 WRITE !,"Increment:",^x," Add:",^y

ObjectScript Reference 153

TROLLBACK

See Also
• TCOMMIT command

• TSTART command

• $TLEVEL special variable

• Using ObjectScript for Transaction Processing in Using ObjectScript

154 ObjectScript Reference

ObjectScript Commands

TRY
Identifies a block of code to monitor for errors during execution.

TRY {
 . . .
}

Description
The TRY command takes no arguments. It is used to identify a block of ObjectScript code statements enclosed in curly
braces. This block of code is protected code for structured exception handling. If an exception occurs within this block of
code, InterSystems IRIS sets $ZERROR and $ECODE, then transfers execution to an exception handler, identified by
the CATCH command.

An exception may occur as a result of a runtime error, such as attempting to divide by 0, or it may be explicitly propagated
by issuing a THROW command. If no error occurs, execution continues with the next ObjectScript statement after the
CATCH block of code.

A TRY block must be immediately followed by a CATCH block. You cannot specify either executable code statements
or a label between the closing curly brace of the TRY code block and the CATCH command. However, you can specify
comments between the TRY and block and its CATCH block. Only one CATCH block is permitted for each TRY block.
However, it is possible to nest paired TRY/CATCH blocks, such as the following:

 TRY {
 /* TRY code */
 TRY {
 /* nested TRY code */
 }
 CATCH {
 /* nested CATCH code */
 }
 }
 CATCH {
 /* CATCH code */
 }

Commonly, an ObjectScript program consists of multiple TRY blocks, each TRY block immediately followed by its
associated CATCH block.

QUIT and RETURN

You exit a TRY block using QUIT or RETURN. QUIT exits the current block structure and continues execution with the
next command outside of that block structure. For example, if you are within a nested TRY block, issuing a QUIT exits
that TRY block to the enclosing block structure. Issuing a QUIT command within a TRY block transfers execution to the
first code line after the corresponding CATCH block. You cannot use an argumented QUIT to exit a TRY block; attempted
to do so results in a compile error. To exit a routine completely from within a TRY block, issue a RETURN statement.

In rare circumstances, a TRY block QUIT or RETURN command may generate an exception. This could happen if the
TRY created a new context and then deleted some aspect of the old context; attempting to revert to the old context would
cause an exception. A TRY block QUIT or RETURN exception does not invoke the CATCH block exception handler.

$ZTRAP

The TRY and CATCH commands perform error handling within an execution level. When an exception occurs within a
TRY block, InterSystems IRIS normally executes the CATCH block of exception handler code that immediately follows
the TRY block. This is the preferred error handling behavior.

You cannot set $ZTRAP within a TRY block.

If a $ZTRAP was set before entering the TRY block and an exception occurs within the TRY block, InterSystems IRIS
takes the CATCH block rather than the $ZTRAP.

ObjectScript Reference 155

TRY

GOTO and DO

You can use a GOTO or DO command to enter a TRY block at a label within the TRY block. If an exception occurs later
in the TRY block, the CATCH block exception handler is taken, just as if you had entered the TRY block at the TRY
keyword. However, for clarity of coding, entering a TRY block using GOTO or DO should be avoided.

You can, of course, issue a GOTO from within a TRY block or a CATCH block.

Using a GOTO or DO to enter a CATCH block is strongly discouraged.

DO Within a TRY Block

When using a TRY statement, a THROW causes a search of the frame stack trying to find the appropriate CATCH block.
When the frame stack indicates execution within a TRY block then execution will resume at the corresponding CATCH
block. However, InterSystems IRIS must remove any "local" calls within the current TRY block before executing the
CATCH block.

If a TRY block contains a DO statement that results in a reentry to that TRY block, one of two things may happen:

A “local” DO call (DO call that remains within the current TRY block): If the previous frame stack entry is a DO call
located in the same TRY block, that DO is assumed to be a "local" subroutine call within the current TRY block. In this
case, the CATCH is not immediately entered, but instead the frame stack is popped (possibly removing some recently
allocated NEW variables) and the search resumes at the DO call in the current TRY block. If the new previous frame stack
entry is not a DO from inside the current TRY block then the corresponding CATCH block is entered. However, if the
previous frame stack entry is another DO in the same TRY then the frame stack is popped again (along with recently
allocated NEW variables). This operation continues until the previous frame stack entry is not a DO, at which point the
CATCH block is entered.

A “recursive” DO call (DO call inside a TRY block that leaves the TRY block but later execution reenters that TRY
block): When searching for a CATCH block, if the previous frame stack entry is a DO inside the current TRY block, but
the target label of that previous stack frame is not within the current TRY block (including any nested TRY blocks) then
the frame stack is not popped (and no recently allocated local variables are popped) and theCATCH block is immediately
entered. Note that if that CATCH block does another THROW then it is possible that the current CATCH block will be
reentered because the recursive DO frame is still on the frame stack.

Examples
The examples in this section show runtime errors (%Exception.SystemException errors). For examples of user-specified
exceptions invoked by issuing a THROW, refer to the THROW and CATCH commands.

In the following examples, the TRY code block is executed. It attempts to set the local variable a. In the first example, the
code completes successfully, and the CATCH is skipped over. In the second example, the code fails with an <UNDEFINED>
error, and execution is passed to the CATCH exception handler.

TRY succeeds. CATCH block is skipped. Execution continues with the 2nd TRY block:

 TRY {
 WRITE "1st TRY block",!
 SET x="fred"
 WRITE "x is a defined variable",!
 SET a=x
 }
 CATCH exp
 {
 WRITE !,"This is the CATCH exception handler",!
 IF 1=exp.%IsA("%Exception.SystemException") {
 WRITE "System exception",!
 WRITE "Name: ",$ZCVT(exp.Name,"O","HTML"),!
 WRITE "Location: ",exp.Location,!
 WRITE "Code: ",exp.Code,!
 WRITE "Data: ",exp.Data,!!
 }
 ELSE { WRITE "not a system exception",!!}
 WRITE "$ZERROR: ",$ZERROR,!
 WRITE "$ECODE: ",$ECODE

156 ObjectScript Reference

ObjectScript Commands

 RETURN
 }
 TRY {
 WRITE !,"2nd TRY block",!
 WRITE "This is where the code falls through",!
 WRITE "$ZERROR: ",$ZERROR,!
 WRITE "$ECODE: ",$ECODE
 }
 CATCH exp2 {
 WRITE !,"This is the 2nd CATCH exception handler",!
 }

TRY fails. Execution continues with the CATCH block. CATCH block ends with RETURN, so 2nd TRY block is not
executed:

 TRY {
 WRITE "1st TRY block",!
 KILL x
 WRITE "x is an undefined variable",!
 SET a=x
 }
 CATCH exp {
 WRITE !,"This is the CATCH exception handler",!
 IF 1=exp.%IsA("%Exception.SystemException") {
 WRITE "System exception",!
 WRITE "Name: ",$ZCVT(exp.Name,"O","HTML"),!
 WRITE "Location: ",exp.Location,!
 WRITE "Code: ",exp.Code,!
 WRITE "Data: ",exp.Data,!!
 }
 ELSE { WRITE "not a system exception",!!}
 WRITE "$ZERROR: ",$ZERROR,!
 WRITE "$ECODE: ",$ECODE
 RETURN
 }
 TRY {
 WRITE !,"2nd TRY block",!
 WRITE "This is where the code falls through",!
 WRITE "$ZERROR: ",$ZERROR,!
 WRITE "$ECODE: ",$ECODE
 }
 CATCH exp2 {
 WRITE !,"This is the 2nd CATCH exception handler",!
 }

TRY quits. In the following example, the CATCH block is not executed because execution of the TRY block is ended by
either a QUIT or a RETURN, not an error. If RETURN, program execution stops. If QUIT, program execution continues
with the 2nd TRY block:

 TRY {
 WRITE "1st TRY block",!
 KILL x
 WRITE "x is an undefined variable",!
 SET decide=$RANDOM(2)
 IF decide=0 { WRITE "issued a QUIT",!
 QUIT }
 IF decide=1 { WRITE "issued a RETURN",!
 RETURN }
 WRITE "This should never display",!
 SET a=x
 }
 CATCH exp {
 WRITE !,"This is the CATCH exception handler",!
 IF 1=exp.%IsA("%Exception.SystemException") {
 WRITE "System exception",!
 WRITE "Name: ",$ZCVT(exp.Name,"O","HTML"),!
 WRITE "Location: ",exp.Location,!
 WRITE "Code: ",exp.Code,!
 WRITE "Data: ",exp.Data,!!
 }
 ELSE { WRITE "not a system exception",!!}
 WRITE "$ZERROR: ",$ZERROR,!
 WRITE "$ECODE: ",$ECODE
 RETURN
 }
 TRY {
 WRITE !,"2nd TRY block",!
 WRITE "This is where the code falls through",!
 WRITE "$ZERROR: ",$ZERROR,!
 WRITE "$ECODE: ",$ECODE
 }

ObjectScript Reference 157

TRY

 CATCH exp2 {
 WRITE !,"This is the 2nd CATCH exception handler",!
 }

See Also
• CATCH command

• THROW command

• Error Processing in Using ObjectScript

158 ObjectScript Reference

ObjectScript Commands

TSTART
Marks the beginning of a transaction.

TSTART:pc
TS:pc

Argument

Optional — A postconditional expression.pc

Description
TSTART marks the beginning of a transaction. Following TSTART, database operations are journaled to enable a subsequent
TCOMMIT or TROLLBACK command.

TSTART increments the value of the $TLEVEL special variable. A $TLEVEL value of 0 indicates that no transaction
is in effect. The first TSTART begins a transaction and increments $TLEVEL to 1. Subsequent TSTART commands can
create nested transactions, further incrementing $TLEVEL.

Not all operations that occur within a transaction can be rolled back. For example, setting global variables within a transaction
can be rolled back; setting local variables within a transaction cannot be rolled back. Refer to Using ObjectScript for
Transaction Processing in Using ObjectScript for further details.

By default, a lock issued within a transaction will be held until the end of the transaction, even if the lock is released within
the transaction. This default can be overridden when setting the lock. Refer to the LOCK command for more details.

Nested Transactions

If you issue a TSTART within a transaction it begins a nested transaction. Issuing a TSTART increments the $TLEVEL
value, indicating the number of levels of transaction nesting. You end a nested transaction by issuing either a TCOMMIT
to commit the nested transaction, or a TROLLBACK 1 to roll back the nested transaction. Ending a nested transaction
decrements the $TLEVEL value by 1.

• Issuing a TROLLBACK 1 for a nested transaction rolls back changes made in that nested transaction and decrements
$TLEVEL. You can issue a TROLLBACK to roll back the whole transaction, no matter how many levels of TSTART
were issued.

• Issuing a TCOMMIT for a nested transaction decrements $TLEVEL, but the actual commitment of the nested
transaction is deferred. Changes made during a nested transaction are only irreversibly committed when the outermost
transaction is committed; that is, when a TCOMMIT decrements the $TLEVEL value to 0.

You can use the GetImageJournalInfo() method of the %SYS.Journal.System class to search the journal file for TSTART
commands, and thus identify open transactions. A TSTART writes either a “BT” (Begin Transaction) journal file record
if $TLEVEL was zero, or a “BTL” (Begin Transaction with Level) journal file record if $TLEVEL was greater than 0.

The maximum number of levels of nested transactions is 255. Attempting to exceed this nesting levels limit results in a
<TRANSACTION LEVEL> error.

SQL and Transactions

ObjectScript and SQL transaction commands are fully compatible and interchangeable, with the following exception:

ObjectScript TSTART and SQL START TRANSACTION both start a transaction if no transaction is current. However,
START TRANSACTION does not support nested transactions. Therefore, if you need (or may need) nested transactions,
it is preferable to start the transaction with TSTART. If you need compatibility with the SQL standard, use START
TRANSACTION.

ObjectScript Reference 159

TSTART

ObjectScript transaction processing provides limited support for nested transactions. SQL transaction processing supplies
support for savepoints within transactions.

Argument

pc

An optional postconditional expression. InterSystems IRIS executes the TSTART command if the postconditional
expression is true and does not execute the TSTART command if the postconditional expression is false. For further details,
refer to Command Postconditional Expressions in Using ObjectScript.

Examples
The following example uses a single-level transaction to transfer a random amount of money from one account to another.
If the transfer amount is more than the available balance, the program rolls back the transaction:

SetupBankAccounts
 SET num=12345
 SET ^CHECKING(num,"balance")=500.99
 SET ^SAVINGS(num,"balance")=100.22
 IF $DATA(^NumberOfTransfers)=0 {SET ^NumberOfTransfers=0}
BankTransfer
 WRITE "Before transfer:",!,"Checking=$",^CHECKING(num,"balance")," Savings=$",^SAVINGS(num,"balance"),!

 // Transfer funds from one account to another
 SET transfer=$RANDOM(1000)
 WRITE "transfer amount $",transfer,!
 DO CkToSav(num,transfer)
 IF ok=1 {WRITE "sucessful transfer",!,"Number of transfers to date=",^NumberOfTransfers,!}
 ELSE {WRITE "*** INSUFFICIENT FUNDS ***",!}
 WRITE "After transfer:",!,"Checking=$",^CHECKING(num,"balance")," Savings=$",^SAVINGS(num,"balance"),!

 RETURN
CkToSav(acct,amt)
 TSTART
 SET ^CHECKING(acct,"balance") = ^CHECKING(acct,"balance") - amt
 SET ^SAVINGS(acct,"balance") = ^SAVINGS(acct,"balance") + amt
 SET ^NumberOfTransfers=^NumberOfTransfers + 1
 IF ^CHECKING(acct,"balance") > 0 {TCOMMIT SET ok=1 QUIT:ok}
 ELSE {TROLLBACK SET ok=0 QUIT:ok}

The following examples use TSTART to create nested transactions. They show three scenarios for rollback of nested
transactions:

Roll back the innermost transaction, commit the middle transaction, commit the outermost transaction:

 KILL ^a,^b,^c
 TSTART SET ^a=1 WRITE "tlevel=",$TLEVEL,!
 TSTART SET ^b=2 WRITE "tlevel=",$TLEVEL,!
 TSTART SET ^c=3 WRITE "tlevel=",$TLEVEL,!
 TROLLBACK 1 WRITE "tlevel=",$TLEVEL,!
 TCOMMIT WRITE "tlevel=",$TLEVEL,!
 TCOMMIT WRITE "tlevel=",$TLEVEL,!
 IF $DATA(^a) {WRITE "^a=",^a,!} ELSE {WRITE "^a is undefined",!}
 IF $DATA(^b) {WRITE "^b=",^b,!} ELSE {WRITE "^b is undefined",!}
 IF $DATA(^c) {WRITE "^c=",^c,!} ELSE {WRITE "^c is undefined",!}

Commit the innermost transaction, roll back the middle transaction, commit the outermost transaction:

 KILL ^a,^b,^c
 TSTART SET ^a=1 WRITE "tlevel=",$TLEVEL,!
 TSTART SET ^b=2 WRITE "tlevel=",$TLEVEL,!
 TSTART SET ^c=3 WRITE "tlevel=",$TLEVEL,!
 TCOMMIT WRITE "tlevel=",$TLEVEL,!
 TROLLBACK 1 WRITE "tlevel=",$TLEVEL,!
 TCOMMIT WRITE "tlevel=",$TLEVEL,!
 IF $DATA(^a) {WRITE "^a=",^a,!} ELSE {WRITE "^a is undefined",!}
 IF $DATA(^b) {WRITE "^b=",^b,!} ELSE {WRITE "^b is undefined",!}
 IF $DATA(^c) {WRITE "^c=",^c,!} ELSE {WRITE "^c is undefined",!}

Commit the innermost transaction, commit the middle transaction, roll back the outermost transaction:

160 ObjectScript Reference

ObjectScript Commands

 KILL ^a,^b,^c
 TSTART SET ^a=1 WRITE "tlevel=",$TLEVEL,!
 TSTART SET ^b=2 WRITE "tlevel=",$TLEVEL,!
 TSTART SET ^c=3 WRITE "tlevel=",$TLEVEL,!
 TCOMMIT WRITE "tlevel=",$TLEVEL,!
 TCOMMIT WRITE "tlevel=",$TLEVEL,!
 TROLLBACK 1 WRITE "tlevel=",$TLEVEL,!
 IF $DATA(^a) {WRITE "^a=",^a,!} ELSE {WRITE "^a is undefined",!}
 IF $DATA(^b) {WRITE "^b=",^b,!} ELSE {WRITE "^b is undefined",!}
 IF $DATA(^c) {WRITE "^c=",^c,!} ELSE {WRITE "^c is undefined",!}

Note that in this third case, TROLLBACK 1 and TROLLBACK would have the same result, because both would decrement
$TLEVEL to 0.

See Also
• TCOMMIT command

• TROLLBACK command

• $TLEVEL special variable

• Using ObjectScript for Transaction Processing in Using ObjectScript

ObjectScript Reference 161

TSTART

USE
Establishes a device as the current device.

USE:pc useargument,...
U:pc useargument,...

where useargument is:

device:(parameters):"mnespace"

Arguments

Optional — A postconditional expression.pc

The device to be selected as the current device, specified by a device ID or a device
alias. A device ID can be an integer (a device number), a device name, or the
pathname of a sequential file. If a string, it must be enclosed with quotation marks.

device

Optional — The list of parameters used to set device characteristics.The parameter
list is enclosed in parentheses, and the parameters in the list are separated by
colons. Parameters can either be positional (specified in a fixed order in the
parameter list) or keyword (specified in any order). A mix of positional and keyword
parameters is permitted.The individual parameters and their positions and keywords
are highly device-dependent.

parameters

Optional — The name of the mnemonic space that contains the control mnemonics
to use with this device, specified as a quoted string.

mnespace

Description
USE device establishes the specified device as the current device. The process must have already established ownership
of the device with the OPEN command.

The current device remains current until you issue another USE command to select another owned device as the current
device or until the process terminates.

The USE command can establish as the current device such devices as terminal devices, spool devices, TCP bindings,
interprocess pipes, named pipes, and inter-job communications. The USE command can also be used to open a sequential
file. The device argument specifies the file pathname as a quoted string.

The parameters available with the USE command are highly device-dependent. In many cases the available parameters
are the same as those available with the OPEN command; however, some device parameters can only be set using the
OPEN command, and other can only be set using the USE command.

The USE command can specify more than one useargument, separated by commas. However, you can only have one current
device at a time. If you specify more than one useargument, the device specified in the last useargument becomes the current
device. This form of USE may be used to set parameters for several devices, and then establish the last-named device as
the current device.

Arguments

pc

An optional postconditional expression. InterSystems IRIS executes the command if the postconditional expression is true
(evaluates to a nonzero numeric value). InterSystems IRIS does not execute the command if the postconditional expression
is false (evaluates to zero). For further details, refer to Command Postconditional Expressions in Using ObjectScript.

162 ObjectScript Reference

ObjectScript Commands

device

The device to be selected as the current device. Specify the same device ID (or other device identifier) as you specified in
the corresponding OPEN command. For more information on specifying devices, refer to the OPEN command.

parameters

The list of parameters used to set operating characteristics of the device to be used as the current device. The enclosing
parentheses are required if there is more than one parameter. (It is good programming practice to always use parentheses
when you specify a parameter.) Note the required colon before the left parenthesis. Within the parentheses, colons are used
to separate multiple parameters.

The parameters for a device can be specified using either positional parameters or keyword parameters. You can also mix
positional parameters and keyword parameters within the same parameter list.

In most cases, specifying contradictory, duplicate, or invalid parameter values does not result in an error. Wherever possible,
InterSystems IRIS ignores inappropriate parameter values and takes appropriate defaults.

The available parameters are, in many cases, the same as those supported for the OPEN command. For sequential files,
TCP devices, and interprocess communication pipes some parameters can only be set with the OPEN command; for
sequential files some parameters can only be set with the USE command. USE parameters are specific to the type of device
that is being selected and to the particular implementation. The USE command keyword parameters are listed by device
type in I/O Devices and Commands in the I/O Device Guide.

If you do not specify a list of USE parameters, InterSystems IRIS uses the device’s default OPEN parameters. The default
parameters for a device are configurable. Go to the Management Portal, select System Administration, Configuration, Device

Settings, Devices to display the current list of devices. For the desired device, click “edit” to display its Open Parameters:

option. Specify this value in the same way you specify the OPEN command parameters, including the enclosing parentheses.
For example, ("AVL":0:2048).

Positional Parameters

Positional parameters must be specified in a fixed sequence in the parameter list. You can omit a positional parameter (and
receive the default value), but you must retain the colon to indicate the position of the omitted positional parameter. Trailing
colons are not required; excess colons are ignored. The individual parameters and their positions are highly device-dependent.
There are two types of positional parameters: values and letter code strings.

A value can be an integer (for example, record size), a string (for example, host name), or a variable or expression that
evaluates to a value.

A letter code string uses individual letters to specify device characteristics for the open operation. For most devices, this
letter code string is one of the positional parameters. You can specify any number of letters in the string, and specify the
letters in any order. Letter codes are not case-sensitive. A letter code string is enclosed in quotation marks; no spaces or
other punctuation is allowed within a letter code string (exception: K and Y may be followed by a name delimited by
backslashes: thus: K\name\). For example, when opening a sequential file, you might specify a letter code string of “ANDFW”
(append to existing file, create new file, delete file, fix-length records, write access.) The position of the letter code string
parameter, and the meanings of individual letters is highly device-dependent.

Keyword Parameters

Keyword parameters can be specified in any sequence in the parameter list. A parameter list can consist entirely of keyword
parameters, or it can contain a mix of positional and keyword parameters. (Commonly, the positional parameters are spec-

ObjectScript Reference 163

USE

ified first (in their correct positions) followed by the keyword parameters.) You must separate all parameters (positional
or keyword) with a colon (:). A parameter list of keyword parameters has the following general syntax:

USE device:(/KEYWORD1=value1:/KEYWORD2=value2:.../KEYWORDn=valuen):"mnespace"

The individual parameters and their positions are highly device-dependent. As a general rule, you can specify the same
parameters and values using either a positional parameter or a keyword parameter. You can specify a letter code string as
a keyword parameter by using the /PARAMS keyword.

mnespace

The name of the mnemonic space that contains the device control mnemonics used by this device. By default, InterSystems
IRIS provides the mnemonic space ̂ %X364 (ANSI X3.64 compatible) for all devices and sequential files. Default mnemonic
spaces are assigned by device type.

Go to the Management Portal, select System Administration, Configuration, Device Settings, IO Settings. View and edit the
File, Other, or Terminal mnemonic space setting.

A mnemonic space is a routine that contains entry points for the device control mnemonics used by READ and WRITE
commands. The READ and WRITE commands invoke these device control mnemonics using the /mnemonic(params)
syntax. These device control mnemonics perform operations such as moving the cursor to a specified screen location.

Use the mnespace argument to override the default mnemonic space assignment. Specify an ObjectScript routine that
contains the control mnemonics entry points used with this device. The enclosing double quotes are required. Specify this
option only if you plan to use device control mnemonics with the READ or WRITE command. If the mnemonic space
does not exist, InterSystems IRIS issues a <NOROUTINE> error. For further details on mnemonic spaces, see I/O Devices
and Commands in the I/O Device Guide.

Examples
In this example, the USE command sets the sequential file "STUDENTS" as the current device and sets the file pointer so
that subsequent reads begin at offset 256 from the start of the file.

 USE "STUDENTS":256

Notes

Device Ownership

Device ownership is established with the OPEN command. The only exception is the principal device, which is assigned
to the process and is usually the terminal at which you sign on. If the device specified in the USE command is not owned
by the process, InterSystems IRIS issues a <NOTOPEN> error message.

The Current Device

The current device is the device used for I/O operations by the READ and WRITE commands. The READ command
acquires input from the current device and the WRITE command sends output to the current device.

InterSystems IRIS maintains the ID of the current device in the $IO special variable. If the USE request is successful,
InterSystems IRIS sets $IO to the ID of the specified device. The GetType() method of the %Library.Device class returns
the device type of the current device.

The Principal Device

The special device number 0 (zero) refers to the principal device. Each process has one principal device. InterSystems IRIS
maintains the ID of the principal device in the $PRINCIPAL special variable. The principal device is automatically opened
when you start up InterSystems IRIS. Initially, the principal device ($PRINCIPAL) and the current device ($IO) are the
same.

164 ObjectScript Reference

ObjectScript Commands

After you issue a USE command, your current device ($IO) is normally the one named in the last USE command you
executed.

While many processes can have the same principal device, only one at a time can own it. After a process successfully issues
an OPEN command for a device, no other process can issue OPEN for that device until the first process releases it, either
by explicitly issuing a CLOSE command, by halting, or because that user ends the session.

Although you can issue OPEN and USE for a device other than your principal device from the Terminal, each time Inter-
Systems IRIS returns to the > prompt, it implicitly issues USE 0. To continue using a device other than 0, you must issue
a USE command in each line you enter at the > prompt.

Your principal device automatically becomes your current device when you do any of the following:

• Log on.

• Issue a USE 0 command.

• Cause an error when an error trap is not set.

• Close the current device.

• Return to the Terminal prompt.

• Exit InterSystems IRIS by issuing a HALT command.

USE 0 implies an OPEN command to the principal device. If another process owns the device, this process hangs on the
implicit OPEN as it does when it encounters any OPEN.

Although USE 0 implies OPEN 0 for the principal device, issuing a USE command for any other device that the process
does not own (due to a previous OPEN command) produces a <NOTOPEN> error.

Note: While most InterSystems IRIS platforms allow you to close your principal input device, InterSystems IRIS for
UNIX® does not. Therefore, when a job that is the child of another job tries to perform I/O on your login terminal,
it hangs until you log off InterSystems IRIS. At that time, the output may or may not appear.

Using the Null Device on UNIX®

When you issue an OPEN and USE command to the null device (/dev/null on UNIX®), InterSystems IRIS treats the null
device as a dummy device. Subsequent READ commands immediately return a null string (""). Subsequent WRITE
commands immediately return success. No actual data is read or written. On systems based on UNIX®, the device /dev/null
bypasses the UNIX® open, write, and read system calls entirely.

Processes started by other processes with the JOB command have a principal device of /dev/null by default.

If you open /dev/null other than within InterSystems IRIS for example, by redirecting InterSystems IRIS output to /dev/null
from the UNIX® shell the UNIX® system calls operate as they do for any other device.

See Also
• OPEN command

• CLOSE command

• $IO special variable

• $PRINCIPAL special variable

• I/O Devices and Commands in I/O Device Guide

• Terminal I/O in I/O Device Guide

• TCP Client/Server Communication in I/O Device Guide

ObjectScript Reference 165

USE

• Sequential File I/O in I/O Device Guide

• The Spool Device in I/O Device Guide

166 ObjectScript Reference

ObjectScript Commands

VIEW
Reads and writes database blocks and modifies data in memory.

VIEW:pc viewargument
V:pc viewargument

where viewargument is one of the following:

block
offset:mode:length:newvalue

Arguments

Optional — A postconditional expression.pc

A block location, specified as an integer.block

An offset, in bytes, from a base address within the memory region specified by mode.offset

The memory region whose base address will be used to calculate the data to be
modified.

mode

The length of the data to be modified.length

The replacement value to be stored at the memory location.newvalue

Description
The VIEW command reads and writes database blocks and writes locations in memory. VIEW has two argument forms:

• VIEW block transfers data between the InterSystems IRIS database and memory.

• VIEW offset:mode:length:newvalue places newvalue in the memory location identified by offset, mode, and length.

You can examine data in memory with the $VIEW function.

Note: InterSystems recommends that you avoid use of the VIEW command. When used in any environment, it can
corrupt memory structures.

Arguments

pc

An optional postconditional expression. InterSystems IRIS executes the command if the postconditional expression is true
(evaluates to a nonzero numeric value). InterSystems IRIS does not execute the command if the postconditional expression
is false (evaluates to zero). For further details, refer to Command Postconditional Expressions in Using ObjectScript.

block

A block location, specified as an integer. If block is a positive integer, VIEW reads that number block into the view buffer.
If block is a negative integer, VIEW writes the block currently in the view buffer to that block address. The block and the
offset:mode:length:newvalue arguments are mutually exclusive.

If the block is already in a memory buffer, the current contents of the buffer will be copied.

Block location 0 is not a valid location. Attempting to specify VIEW 0 results in a <BLOCKNUMBER> error.

ObjectScript Reference 167

VIEW

offset

An offset, in bytes, from a base address within the memory region specified by mode.

mode

The memory region whose base address will be used to calculate the data to be modified. See Modifying Data in Memory
for a description of the possible values.

length

The length of the data to be modified.

Specify the number of bytes as an integer from 1 to 4, or 8. You can also use the letters C or P to indicate the size of an
address field (pointer) on the current platform.

If newvalue defines a string, specify the number of bytes as a negative integer, counting from 1. If the length of newvalue
exceeds this number, InterSystems IRIS ignores the extraneous characters. If the length of newvalue is less than this number,
InterSystems IRIS stores the supplied characters and leaves the rest of the memory location unchanged.

To store a byte value in reverse order (low-order byte at lowest address) append the letter O to the length number and
enclose both in double quotes.

newvalue

The replacement value to be stored at the memory location.

Examples
The following example reads the sixth block from the InterSystems IRIS database into the view buffer:

 VIEW 6

The following example writes the view buffer back to the sixth block of the InterSystems IRIS database, presumably after
the data has been modified:

 VIEW -6

The following example copies the string "WXYZ" into four bytes starting at offset ADDR in the view buffer. The expression
$VIEW(ADDR,0,-4) would then result in the value "WXYZ":

 VIEW ADDR:0:-4:"WXYZ"

Notes

Use VIEW with Caution

Use the VIEW command with caution. It is usually used for debugging and repair of InterSystems IRIS databases and
InterSystems IRIS system information. It is easy to corrupt memory or your InterSystems IRIS database by using VIEW
incorrectly.

VIEW Usage Restricted

The VIEW command is a restricted system capability. It is a protected command because the invoked code is located in
the IRISSYS database. For further details, refer to the “ IRISSYS Special Capabilities” in the Assets and Resources chapter
of the Security Administration Guide.

The View Buffer

When used to read and write database buffers, the VIEW command works with the view buffer (device 63). The view
buffer is a special memory area that you must open before you can perform any VIEW operations.

168 ObjectScript Reference

ObjectScript Commands

When you open the view buffer (with the OPEN command), you indicate the InterSystems IRIS database (IRIS.DAT) to
be associated with the view buffer. Using the VIEW command, you can then read individual blocks from the InterSystems
IRIS database into the view buffer.

After reading a block into the view buffer, you can use the $VIEW function to examine the data. Or, you can use the VIEW
command to modify the data. If you modify the data, you can use the VIEW command again to write the modified block
back to the InterSystems IRIS database.

Reading and Writing Data in an InterSystems IRIS Database

Before you can read and write data blocks in an InterSystems IRIS database with VIEW, you must first use the OPEN
command to open the view buffer.

1. Open the view buffer. The view buffer is designated as device number 63. Hence the command is:

 OPEN 63:location

where location is the namespace that contains the IRIS.DAT file to be associated with the view buffer. The location
is implementation specific. The OPEN 63 command creates the view buffer by allocating a region of system memory
whose size is equal to the block size used by the InterSystems IRIS database.

2. Use the VIEW block form to read in a block from the associated InterSystems IRIS database. Specify block as a positive
integer. For example:

 VIEW 4

This example reads the fourth block from the InterSystems IRIS database into the view buffer. Because the size of the
view buffer equals the block size used in the InterSystems IRIS database, the view buffer can contain only one block
at any given time. As you read in subsequent blocks, each new block overwrites the current block. To determine which
blocks to read in from the InterSystems IRIS database, you should be familiar with the structure of the file.

3. Examine the data in the block with the $VIEW function or modify it with the VIEW command.

4. If you changed any of the data in the view buffer, write it back to the InterSystems IRIS database. To write data, use
the VIEW block form but specify a negative integer for block. The block number usually matches the number of the
current block in the view buffer, but it does not have to. The specified block number identifies which block in the file
will be replaced (overwritten) by the block in the view buffer. For example, VIEW -5 replaces the fifth block in the
InterSystems IRIS database with the current block in the view buffer.

5. Close the view buffer using CLOSE 63.

Transferring a Block between InterSystems IRIS Databases

When you open the view buffer, InterSystems IRIS does not automatically clear the existing block. This allows you to
transfer a block of data from one InterSystems IRIS database to another using the following sequence:

1. Use OPEN 63 and specify the namespace that contains the first InterSystems IRIS database.

2. Use VIEW to read the desired block from the file into the view buffer.

3. If necessary, use VIEW to modify the data in the view buffer.

4. Use OPEN 63 again and specify the namespace that contains the second InterSystems IRIS database.

5. Use VIEW to write the block from the view buffer to the second InterSystems IRIS database.

6. Use CLOSE 63 to close the view buffer.

Modifying Data in Memory

In addition to reading and writing data from an InterSystems IRIS database, the VIEW command allows you to modify
data in memory either in the view buffer or in other system memory areas.

ObjectScript Reference 169

VIEW

To modify data, use the following form:

VIEW offset:mode:length:newvalue

All four arguments are required.

You modify data by storing a new value into a memory location, which is specified as a byte offset from the base address
indicated by mode. You specify the amount of memory affected in the length argument.

The possible values for mode are shown in the following table:

Base AddressMemory Management RegionMode

0Address space of process n, where n is the value of
$JOB for that process, a process ID (pid).

n>0

Beginning of view bufferThe view buffer0

Beginning of partitionThe process’s partition-1

Beginning of system tableThe system table-2

0The process’s address space-3

Reserved for InterSystems use-6

Special. See the High Availability
Guide.

Used only by the integrity checking utility-7

See Also
• OPEN command

• CLOSE command

• $VIEW function

170 ObjectScript Reference

ObjectScript Commands

WHILE
Executes code while a condition is true.

WHILE expression,... {
 code
}

Arguments

A test condition.You can specify one or more comma-separated test conditions,
all of which must be TRUE for execution of the code block.

expression

A block of ObjectScript commands enclosed in curly braces.code

Description
WHILE tests expression and, if expression evaluates to TRUE, it then executes the block of code (one or more commands)
between the opening and closing curly braces. WHILE can execute a block of code repeatedly, as long as expression
evaluates to TRUE. If expression is not TRUE, the block of code within the curly braces is not executed, and the next
command following the closing curly brace (}) is executed.

Programmers must be careful to avoid a WHILE infinite loop.

An opening or closing curly brace may appear on its own code line or on the same line as a command. An opening or
closing curly brace may even appear in column 1 (though this is not recommended). It is a recommended programming
practice to indent curly braces to indicate the beginning and end of a nested block of code. No whitespace is required before
or after an opening curly brace. No whitespace is required before a closing curly brace, including a curly brace that follows
an argumentless command. There is only one whitespace requirement for curly braces: a closing curly brace must be separated
from the command that follows it by a space, tab, or line return.

The block of code within the curly braces can consist of one or more ObjectScript commands and function calls. This block
of code may span several lines. Indents, line returns, and blank spaces are permitted within the block of code. Commands
within this code block and arguments within commands may be separated by one or more blank spaces or line returns.

Arguments

expression

A boolean test condition. It can take the form of a single expression or a comma-separated list of expressions. InterSystems
IRIS executes the WHILE loop if it evaluates expression as TRUE (any non-zero numeric value). Commonly expression
is a condition test, such as x<10 or "apple"="apple", but any value that evaluates to a non-zero number is TRUE. For
example 7, 00.1, “700”, “7dwarves” all evaluate to TRUE. Any value that evaluates to zero is FALSE. For example, 0, -0,
and any non-numeric string all evaluate to FALSE.

For an expression list, InterSystems IRIS evaluates the individual expressions in left-to-right order. It stops evaluation if
it encounters an expression that evaluates to 0 (FALSE). Any expressions to the right of an expression that evaluates to
FALSE are not validated or tested.

If all expressions evaluate to a non-zero numeric value (TRUE), InterSystems IRIS executes the WHILE loop code block.
As long as expression evaluates to TRUE, InterSystems IRIS continues to execute the WHILE loop repeatedly, testing
expression at the top of each loop. If any expression evaluates to FALSE, InterSystems IRIS executes the next line of code
after the WHILE closing curly brace.

ObjectScript Reference 171

WHILE

Examples
The following example performs a WHILE loop a specified number of times. It tests the expression before executing the
loop:

Mainloop
 SET x=1
 WHILE x<10 {
 WRITE !," Looping",x
 SET x=x+1
 }
 WRITE !,"DONE"
 QUIT

The following pair of examples perform two expression tests. The two tests are separated by a comma. If both tests evaluate
to true, it executes WHILE loop. Thus, these programs either return all of the items in a list, or a specified sample size of
the items in a list:

 SET mylist=$LISTBUILD("a","b","c","d","e")
 SET ptr=0,sampcnt=1,sampmax=4
 WHILE 1=$LISTNEXT(mylist,ptr,value),sampcnt<sampmax {
 WRITE value," is item ",sampcnt,!
 SET sampcnt=sampcnt+1
 }
 IF sampcnt<sampmax {WRITE "This is the whole list"}
 ELSE {WRITE "This is a ",sampcnt-1," item sample of the list"}

 SET mylist=$LISTBUILD("a","b","c","d","e")
 SET ptr=0,sampcnt=1,sampmax=10
 WHILE 1=$LISTNEXT(mylist,ptr,value),sampcnt<sampmax {
 WRITE value," is item ",sampcnt,!
 SET sampcnt=sampcnt+1
 }
 IF sampcnt<sampmax {WRITE "This is the whole list"}
 ELSE {WRITE "This is a ",sampcnt-1," item sample of the list"}

Notes

WHILE and FOR

You can use either a FOR or a WHILE to perform the same operation: loop until an event causes execution to break out
of the loop. However, which loop construct you use has consequences for performing single-step (BREAK "S+" or BREAK
"L+") debugging on the code module.

A FOR loop pushes a new level onto the stack. A WHILE loop does not change the stack level. When debugging a FOR
loop, popping the stack from within the FOR loop (using BREAK "C" GOTO or QUIT 1) allows you to continue single-
step debugging with the command immediately following the end of the FOR command construct. When debugging a
WHILE loop, issuing a using BREAK "C" GOTO or QUIT 1 does not pop the stack, and therefore single-step debugging
does not continue following the end of the WHILE command. The remaining code executes without breaking.

For further details, refer to the BREAK command and Debugging with BREAK in the “Command-line Routine Debugging”
chapter of Using ObjectScript.

WHILE and DO WHILE

The WHILE command tests expression before executing the loop. The DO WHILE command executes the loop once and
then tests expression.

WHILE and CONTINUE

Within the code block of a WHILE command, encountering a CONTINUE command causes execution to immediately
jump back to the WHILE command. The WHILE command then evaluates its expression test condition, and, based on
that evaluation, determines whether to re-execute the code block loop. Thus, the CONTINUE command has exactly the
same effect on execution as reaching the closing curly brace of the code block.

172 ObjectScript Reference

ObjectScript Commands

WHILE, QUIT, and RETURN

The QUIT command within the code block ends the WHILE loop and transfers execution to the command following the
closing curly brace, as shown in the following example:

Testloop
 SET x=1
 WHILE x < 10
 {
 WRITE !,"Looping",x
 QUIT:x=5
 SET x=x+1
 }
 WRITE !,"DONE"

This program writes Looping1 through Looping5 and then DONE.

WHILE code blocks may be nested. That is, a WHILE code block may contain another flow-of-control loop (another
WHILE, or a FOR or DO WHILE code block). A QUIT in an inner nested loop breaks out of the inner loop, to the next
enclosing outer loop. This is shown in the following example:

Nestedloops
 SET x=1,y=1
 WHILE x<6 {
 WRITE "outer loop ",!
 WHILE y<100 {
 WRITE "inner loop "
 WRITE " y=",y,!
 QUIT:y=7
 SET y=y+2
 }
 WRITE "back to outer loop x=",x,!!
 SET x=x+1
 }
 WRITE "Done"

You can use RETURN to terminate execution of a routine at any point, including from within a WHILE loop or nested
loop structure. RETURN always exits the current routine, returning to the calling routine or terminating the program if
there is no calling routine. RETURN always behaves the same, regardless of whether it is issued from within a code block.

WHILE and GOTO

A GOTO command within the block of code may direct execution to a label outside the loop, terminating the loop. A
GOTO command within the block of code may direct execution to a label within the same block of code; this label may
be in a nested code block.

A GOTO command should not direct execution to a label within another code block. While such a construct may execute,
it is considered “illegal” because it defeats the test condition for the code block it is entering.

The following forms of GOTO are legal:

mainloop ; GOTO to outside of the code block
 WHILE 1=1 {
 WRITE !,"In an infinite WHILE loop"
 GOTO label1
 WRITE !,"This should not display"
 }
 WRITE !,"This should not display"
label1
 WRITE !,"Went to label1 and quit"

mainloop ; GOTO to elsewhere within the same code block
 SET x=1
 WHILE x<3 {
 WRITE !,"In the WHILE loop"
 GOTO label1
 WRITE !,"This should not display"
label1
 WRITE !,"Still in the WHILE loop after GOTO"
 SET x=x+1
 WRITE !,"x=",x
 }
 WRITE !,"WHILE loop done"

ObjectScript Reference 173

WHILE

mainloop ; GOTO from an inner to an outer nested code block
 SET x=1,y=1
 WHILE x<6 {
 WRITE !,"Outer loop",!
 SET x=x+1
label1
 WRITE "outer loop iteration ",x-1,!
 WHILE y<4 {
 WRITE !," Inner loop iteration ",y,!
 SET y=y+1
 WRITE " return to "
 GOTO label1
 WRITE " This should not display",!
 }
 WRITE "Inner loop completed",!
 }
 WRITE "All done"

mainloop ; GOTO from an outer to an inner nested code block
 SET x=1,y=1
 WHILE x<6 {
 WRITE !,"Outer loop",!
 SET x=x+1
 WRITE "outer loop iteration ",x-1,!
 WRITE "Jumping into the "
 GOTO label1
 WRITE "This should not display",!
 WHILE y<4 {
 WRITE !," Inner loop iteration ",y,!
 SET y=y+1
label1
 WRITE "inner loop ",!
 }
 WRITE "Inner loop completed",!
 }
 WRITE "All done"

The following forms of GOTO may execute, but they are considered “illegal” because they defeat (ignore) the condition
test for the block that the GOTO enters into:

mainloop ; GOTO into a code block
 SET x=1
 WRITE "Jumped into the "
 GOTO label1
 WHILE x>1,x<6 {
 WRITE "Top of WHILE loop x=",x,!
label1
 WRITE "Bottom of WHILE loop x=",x,!!
 SET x=x+1
 }

mainloop ; GOTO from a code block into an IF clause block
 SET x=1
 WHILE x<6 {
 WRITE !,"WHILE loop interation=",x,!
 SET x=x+1
 GOTO label1
 WRITE "This should never display",!
 IF x#2 { WRITE "in the IF clause",!
label1
 WRITE "GOTO entry into the IF clause",!
 WRITE x," is an odd number",!
 }
 ELSE {WRITE "in the ELSE clause",!
 WRITE x," is an even number",! }
 WRITE "Bottom of WHILE loop",!
 }
 WRITE "All done"

See Also
• DO WHILE command

• FOR command

• IF command

• CONTINUE command

174 ObjectScript Reference

ObjectScript Commands

• GOTO command

• QUIT command

• RETURN command

ObjectScript Reference 175

WHILE

WRITE
Displays output to current device.

WRITE:pc writeargument,...
W:pc writeargument,...

where writeargument can be:

expression
f
*integer
*-integer

Arguments

Optional — A postconditional expression.pc

Optional — The value to write to the output device. Any valid
ObjectScript expression, including literals, variables, object methods,
and object properties that evaluates to either a numeric or a quoted
string.

expression

Optional — One or more format control characters that position the
output on the target device. Format control characters include !, #,
?, and /.

f

Optional — An integer code representing a character to write to the
output device. For ASCII, integers in the range 0 to 255; for Unicode,
integers in the range 0 to 65534. Any valid ObjectScript expression
that evaluates to an integer in the appropriate range. The asterisk
is mandatory.

*integer

Optional — A negative integer code specifying a device control
operation. The asterisk is mandatory.

*-integer

Description
The WRITE command displays the specified output on the current I/O device. (To set the current I/O device, use the USE
command, which sets the value of the $IO special variable.) WRITE has two forms:

• WRITE without an argument

• WRITE with arguments

Argumentless WRITE

Argumentless WRITE lists the names and values of all defined local variables. It does not list process-private globals,
global variables, or special variables. It lists defined local variables one variable per line in the following format:

varname1=value1
varname2=value2

Argumentless WRITE displays local variable values of all types as quoted strings. The exceptions are canonical numbers
and object references. A canonical number is displayed without enclosing quotes. An object reference (OREF) is displayed
as follows: myoref=<OBJECT REFERENCE>[1@%SQL.Statement]; a JSON array or JSON object is displayed as an
object reference (OREF). Bit string values and List values are displayed as quoted strings with the data value displayed in
encoded form.

176 ObjectScript Reference

ObjectScript Commands

The display of numbers and numeric strings is shown in the following example:

 SET str="fred"
 SET num=+123.40
 SET canonstr="456.7"
 SET noncanon1="789.0"
 SET noncanon2="+999"
 WRITE

canonstr=456.7
noncanon1="789.0"
noncanon2="+999"
num=123.4
str="fred"

Argumentless WRITE displays local variables in case-sensitive string collation order, as shown in the following WRITE
output example:

A="Apple"
B="Banana"
a="apple varieties"
a1="macintosh"
a10="winesap"
a19="northern spy"
a2="golden delicious"
aa="crabapple varieties"

Argumentless WRITE displays the subscripts of a local variable in subscript tree order, using numeric collation, as shown
in the following WRITE output example:

a(1)="United States"
a(1,1)="Northeastern Region"
a(1,1,1)="Maine"
a(1,1,2)="New Hampshire"
a(1,2)="Southeastern Region"
a(1,2,1)="Florida"
a(2)="Canada"
a(2,1)="Maritime Provinces"
a(10)="Argentina"

Argumentless WRITE executes control characters, such as Formfeed ($CHAR(12)) and Backspace ($CHAR(8)). Therefore,
local variables that define control characters would display as shown in the following example:

 SET name="fred"
 SET number=123
 SET bell=$CHAR(7)
 SET formfeed=$CHAR(10)
 SET backspace=$CHAR(8)
 WRITE

backspace="
bell=""
formfeed="
 "
name="fred"
number=123

Multiple backspaces display as follows, given a local variable named back: 1 backspace: back="; 2 backspaces: back"";
3 backspaces: bac"="; 4 backspaces: ba"k="; 5 backspaces: b"ck="; 6 backspaces: "ack="; 7 or more backspaces:
"ack=".

An argumentless WRITE must be separated by at least two blank spaces from a command following it on the same line.
If the command that follows it is a WRITE with arguments, you must provide the WRITE with arguments with the
appropriate line return f format control arguments. This is shown in the following example:

 SET myvar="fred"
 WRITE WRITE ; note two spaces following argumentless WRITE
 WRITE WRITE myvar ; formatting needed
 WRITE WRITE !,myvar ; formatting provided

Argumentless WRITE listing can be interrupted by issuing a CTRL-C, generating an <INTERRUPT> error.

ObjectScript Reference 177

WRITE

You can use argumentless WRITE to display all defined local variables. You can use the $ORDER function to return a
limited subset of the defined local variables.

WRITE with Arguments

WRITE can take a single writeargument or a comma-separated list of writearguments. A WRITE command can take any
combination of expression, f, *integer, and *-integer arguments.

• WRITE expression displays the data value corresponding to the expression argument. An expression can be the name
of a variable, a literal, or any expression that evaluates to a literal value.

• WRITE f provides any desired output formatting. Because the argumented form of WRITE provides no automatic
formatting to separate argument values or indicate strings, expression values will display as a single string unless
separated by f formatting.

• WRITE *integer displays the character represented by the integer code.

• WRITE *-integer provides device control operations.

WRITE arguments are separated by commas. For example:

 WRITE "numbers",1,2,3
 WRITE "letters","ABC"

displays as:

numbers123lettersABC

Note that WRITE does not append a line return to the end of its output string. In order to separate WRITE outputs, you
must explicitly specify f argument formatting characters, such as the line return (!) character.

 WRITE "numbers ",1,2,3,!
 WRITE "letters ","ABC"

displays as:

numbers 123
letters ABC

Arguments

pc

An optional postconditional expression. InterSystems IRIS executes the command if the postconditional expression is true
(evaluates to a nonzero numeric value). InterSystems IRIS does not execute the command if the postconditional expression
is false (evaluates to zero). You can specify a postconditional expression for an argumentless WRITE or a WRITE with
arguments. For further details, refer to Command Postconditional Expressions in Using ObjectScript.

expression

The value you wish to display. Most commonly this is either a literal (a quoted string or a numeric) or a variable. However,
expression can be any valid ObjectScript expression, including literals, variables, arithmetic expressions, object methods,
and object properties. For more information on expressions, see Using ObjectScript.

An expression can be a variable of any type, including local variables, process-private globals, global variables, and special
variables. Variables can be subscripted; WRITE only displays the value of the specified subscript node.

Data values, whether specified as a literal or a variable, are displayed as follows:

• Character strings display without enclosing quotes. Some non-printing characters do not display: $CHAR 0, 1, 2, 14,
15, 28, 127. Other non-printing characters display as a placeholder character: $CHAR 3, 16–26. Control characters
are executed: $CHAR 7–13, 27. For example, $CHAR(8) performs a backspace, $CHAR(11) performs a vertical tab.

178 ObjectScript Reference

ObjectScript Commands

• Numbers display in canonical form. Arithmetic operations are performed.

• Extended global references display as the value of the global, without indicating the namespace in which the global
variable is defined. If you specify a nonexistent namespace, InterSystems IRIS issues a <NAMESPACE> error. If you
specify a namespace for which you do not have privileges, InterSystems IRIS issues a <PROTECT> error, followed
by the global name and database path, such as the following: <PROTECT>
^myglobal,c:\intersystems\IRIS\mgr\.

• ObjectScript List structured data displays in encoded form.

• InterSystems IRIS bitstrings display in encoded form.

• Object References display as the OREF value. For example, ##class(%SQL.Statement).%New() displays as
the OREF 2@%SQL.Statement. A JSON dynamic object or a JSON dynamic array displays as an OREF value. For
information on OREFs, see “OREF Basics” in Defining and Using Classes.

• Object methods and properties display the value of the property or the value returned by the method. The value returned
by a Get method is the current value of the argument; the value returned by a Set method is the prior value of the
argument. You can specify a multidimensional property with subscripts; specifying a non-multidimensional property
with a subscript (or empty parentheses) results in an <OBJECT DISPATCH> error.

• %Status displays as either 1 (success), or a complex encoded failure status, the first character of which is 0.

f

A format control to position the output on the target device. You can specify any combination of format control characters
without intervening commas, but you must use a comma to separate a format control from an expression. For example,
when you issue the following WRITE to a terminal:

 WRITE #!!!?6,"Hello",!,"world!"

The format controls position to the top of a new screen (#), then issue three line returns (!!!), then indent six columns (?6).
The WRITE then displays the string Hello, performs a format control line return (!), then displays the string world!.
Note that the line return repositions to column 1; thus in this example, Hello is displayed indented, but world! is not.

Format control characters cannot be used with an argumentless WRITE.

For further details, see Using Format Controls with WRITE .

*integer

The *integer argument allows you to use a positive integer code to write a character to the current device. It consists of an
asterisk followed by any valid ObjectScript expression that evaluates to a positive integer that corresponds to a character.
The *integer argument may correspond to a printable character or a control character. An integer in the range of 0 through
255 evaluates to the corresponding 8-bit ASCII character. An integer in the range of 256 through 65534 evaluates to the
corresponding 16-bit Unicode character.

As shown in the following example, *integer can specify an integer code, or specify an expression that resolves to an
integer code. The following examples all return the word “touché”:

 WRITE !,"touch",*233
 WRITE !,*67,*97,*99,*104,*233
 SET accent=233
 WRITE !,"touch",*accent ; variables are evaluated
 WRITE !,"touch",*232+1 ; arithmetic operations are evaluated
 WRITE !,"touch",*00233.999 ; fractional numbers are truncated to integers

To write the name of the composer Anton Dvorak with the proper Czech accent marks, use:

 WRITE "Anton Dvo",*345,*225,"k"

ObjectScript Reference 179

WRITE

The integer resulting from the expression evaluation may correspond to a control character. Such characters are interpreted
according to the target device. A *integer argument can be used to insert control characters (such as the form feed: *12)
which govern the appearance of the display, or special characters such as *7, which rings the bell on a terminal.

For example, if the current device is a terminal, the integers 0 through 30 are interpreted as ASCII control characters. The
following commands send ASCII codes 7 and 12 to the terminal.

 WRITE *7 ; Sounds the bell
 WRITE *12 ; Form feed (blank line)

Here’s an example combining expression arguments with *integer specifying the form feed character:

 WRITE "stepping",*12,"down",*12,"the",*12,"stairs"

*integer and $X, $Y

An integer expression does not change the $X and $Y special variables when writing to a terminal. Thus, WRITE "a" and
WRITE $CHAR(97) both increment the column number value contained in $X, but WRITE *97 does not increment $X.

You can issue a backspace (ASCII 8), a line feed (ASCII 10), or other control character without changing the $X and $Y
values by using *integer. The following Terminal examples demonstrate this use of integer expressions.

Backspace:

 WRITE $X,"/",$CHAR(8),$X ; displays: 01
 WRITE $X,"/",*8,$X ; displays: 02

Linefeed:

 WRITE $Y,$CHAR(10),$Y
 /* displays: 1
 2 */
 WRITE $Y,*10,$Y
 /* displays: 4
 4 */

For further details, see the $X and $Y special variables, and “Terminal I/O” in I/O Device Guide.

*-integer

An asterisk followed by a negative integer is a device control code. WRITE supports the following general device control
codes:

Device OperationCode

Clears the input buffer upon the next READ.*-1

Disconnects a TCP device or a named pipe. See TCP Client/Server Communication and Local
Interprocess Communication in the I/O Device Guide.

*-2

Flushes the output buffer to the device. This forces a write to the file on disk.*-3

Truncates the contents of a sequential file at the current file pointer position. In order to truncate
a file, the file must be open (using the OPEN command with at least “RW” access) and must
be established as the current device (using the USE command). See Sequential File I/O in
the I/O Device Guide.

*-9

Clears the input buffer immediately.*-10

Sends compressed stream data. See TCP Client/Server Communication in the I/O Device
Guide.

*-99

180 ObjectScript Reference

ObjectScript Commands

Input Buffer Controls

The *-1 and *-10 controls are used for input from a terminal device. These controls clear the input buffer of any characters
that have not yet been accepted by a READ command. The *-1 control clears the input buffer upon the next READ. The
*-10 control clears the input buffer immediately. If there is a pending CTRL-C interrupt when WRITE *-1 or WRITE
*-10 is invoked, WRITE dismisses this interrupt before clearing the input buffer.

An input buffer holds characters as they arrive from the keyboard, even those the user types before the routine executes a
READ command. In this way, the user can type-ahead the answers to questions even before the prompts appear on the
screen. When the READ command takes characters from the buffer, InterSystems IRIS echoes them to the terminal so that
questions and answers appear together. When a routine detects errors it may use the *-1 or *-10 control to delete these
type-ahead answers. For further details, see Terminal I/O in the I/O Device Guide.

For use of *-1 in TCP Client/Server Communication refer to the I/O Device Guide.

Output Buffer Controls

The *-3 control is used to flush data from an output buffer, forcing a write operation on the physical device. Thus it first
flushes data from the device buffer to the operating system I/O buffer, then forces the operating system to flush its I/O
buffer to the physical device. This control is commonly used when forcing an immediate write to a sequential file on disk.
*-3 is supported on Windows and UNIX platforms. On other operating system platforms it is a no-op.

For use of *-3 in TCP Client/Server Communication refer to the I/O Device Guide.

Examples
In the following example, the WRITE command sends the current value in variable var1 to the current output device.

 SET var1="hello world"
 WRITE var1

In the following example, both WRITE commands display the Unicode character for pi. The first uses the $CHAR function,
the second a *integer argument:

 WRITE !,$CHAR(960)
 WRITE !,*960

The following example writes first name and last name values along with an identifying text for each. The WRITE command
combines multiple arguments on the same line. It is equivalent to the two WRITE commands in the example that follows
it. The ! character is a format control that produces a line break. (Note that the ! line break character is still needed when
the text is output by two different WRITE commands.)

 SET fname="Bertie"
 SET lname="Wooster"
 WRITE "First name: ",fname,!,"Last name: ",lname

is equivalent to:

 SET fname="Bertie"
 SET lname="Wooster"
 WRITE "First name: ",fname,!
 WRITE "Last name: ",lname

In the following example, assume that the current device is the user’s terminal. The READ command prompts the user for
first name and last name and stores the input values in variables fname and lname, respectively. The WRITE command
displays the values in fname and lname for the user’s confirmation. The string containing a space character (" ") is included
to separate the output names.

ObjectScript Reference 181

WRITE

Test
 READ !,"First name: ",fname
 READ !,"Last name: ",lname
 WRITE !,fname," ",lname
 READ !,"Is this correct? (Y or N) ",check#1
 IF "Nn"[check {
 GOTO Test
 }

The following example writes the current values in the client(1,n) nodes.

SetElementValues
 SET client(1,1)="Betty Smith"
 SET client(1,2)="123 Primrose Path"
 SET client(1,3)="Johnson City"
 SET client(1,4)="TN"
DisplayElementValues
 SET n=1
 WHILE $DATA(client(1,n)) {
 WRITE client(1,n),!
 SET n=n+1
 }
 RETURN

The following example writes the current value of an object instance property:

 SET myoref=##class(%SYS.NLS.Format).%New()
 WRITE myoref.MonthAbbr

where myoref is the object reference (OREF), and MonthAbbr is the object property name. Note that dot syntax is used in
object expressions; a dot is placed between the object reference and the object property name or object method name.

The following example writes the value returned by the object method GetFormatItem():

 SET myoref=##class(%SYS.NLS.Format).%New()
 WRITE myoref.GetFormatItem("MonthAbbr")

The following example writes the value returned by the object method SetFormatItem(). Commonly, the value returned
by a Set method is the prior value for the argument:

 SET myoref=##class(%SYS.NLS.Format).%New()
 SET oldval=myoref.GetFormatItem("MonthAbbr")
 WRITE myoref.SetFormatItem("MonthAbbr"," J F M A M J J A S O N D")
 WRITE myoref.GetFormatItem("MonthAbbr")
 WRITE myoref.SetFormatItem("MonthAbbr",oldval)
 WRITE myoref.GetFormatItem("MonthAbbr")

A write command for objects can take an expression with cascading dot syntax, as shown in the following example:

 WRITE patient.Doctor.Hospital.Name

In this example, the patient.Doctor object property references the Hospital object, which contains the Name property. Thus,
this command writes the name of the hospital affiliated with the doctor of the specified patient. The same cascading dot
syntax can be used with object methods.

A write command for objects can be used with system-level methods, such as the following data type property method:

 WRITE patient.AdmitDateIsValid(date)

In this example, the AdmitDateIsValid() property method returns its result for the current patient object. AdmitDateIsValid()
is a boolean method for data type validation of the AdmitDate property. Thus, this command writes a 1 if the specified date
is a valid date, and writes 0 if the specified date is not a valid date.

Note that any object expression can be further specified by declaring the class or superclass to which the object reference
refers. Thus, the above examples could also be written:

 WRITE ##class(Patient)patient.Doctor.Hospital.Name

 WRITE ##class(Patient)patient.AdmitDateIsValid(date)

182 ObjectScript Reference

ObjectScript Commands

Notes

WRITE with $X and $Y

A WRITE displays the characters resulting from the expression evaluation one at a time in left-to-right order. InterSystems
IRIS records the current output position in the $X and $Y special variables, with $X defining the current column position
and $Y defining the current row position. As each character is displayed, $X is incremented by one.

In the following example, the WRITE command gives the column position after writing the 11–character string Hello
world.

 WRITE "Hello world"," "_$X," is the column number"

Note that writing a blank space between the displayed string and the $X value (," ",$X) would cause that blank space
to increment $X before it is evaluated; but concatenating a blank space to $X (," "_$X) displays the blank space, but
does not increment the value of $X before it is evaluated.

Even using a concatenated blank, the display from $X or $Y does, of course, increment $X, as shown in the following
example:

 WRITE $Y," "_$X
 WRITE $X," "_$Y

In the first WRITE, the value of $X is incremented by the number of digits in the $Y value (which is probably not what
you wanted). In the second WRITE, the value of $X is 0.

With $X you can display the current column position during a WRITE command. To control the column position during
a WRITE command, you can use the ? format control character. The ? format character is only meaningful when $X is at
column 0. In the following WRITE commands, the ? performing indenting:

 WRITE ?5,"Hello world",!
 WRITE "Hello",!?5,"world"

Using Format Controls with WRITE

The f argument allows you to include any of the following format control characters. When used with output to the terminal,
these controls determine where the output data appears on the screen. You can specify any combination of format control
characters.

! Format Control Character

Advances one line and positions to column 0 ($Y is incremented by 1 and $X is set to 0). The actual control code sequence
is device-dependent; it generally either ASCII 13 (RETURN), or ASCII 13 and ASCII 10 (LINE FEED).

InterSystems IRIS does not perform an implicit new line sequence for WRITE with arguments. When writing to a terminal
it is a good general practice to begin (or end) every WRITE command with a ! format control character.

You can specify multiple ! format controls. For example, to advance five lines, WRITE !!!!!. You can combine ! format
controls with other format controls. However, note that the following combinations, though permitted, are not in most cases
meaningful: !# or !,# (advance one line, then advance to the top of a new screen, resetting $Y to 0) and ?5,! (indent by 5,
then advance one line, undoing the increment). The combination ?5! is not legal.

If the current device is a TCP device, ! does not output a RETURN and LINE FEED. Instead, it flushes any characters that
remain in the buffer and sends them across the network to the target system.

Format Control Character

Produces the same effect as sending the CR (ASCII 13) and FF (ASCII 12) characters to a pure ASCII device. (The exact
behavior depends on the operating system type, device, and record format.) On a terminal, the # format control character
clears the current screen and starts at the top of the new screen in column 0. ($Y and $X are reset to 0.)

ObjectScript Reference 183

WRITE

You can combine # format controls with other format controls. However, note that the following combinations, though
permitted, are not in most cases meaningful: !# or !,# (advance one line, then advance to the top of a new screen, resetting
$Y to 0) and ?5,# (indent by 5, then advance to the top of a new screen, undoing the increment). The combination ?5# is
not legal.

?n Format Control Character

This format control consists of a question mark (?) followed by an integer, or an expression that evaluates to an integer. It
positions output at the nth column location (counting from column 0) and resets $X. If this integer is less than or equal to
the current column location (n<$X), this format control has no effect. You can reference the $X special variable (current
column) when setting a new column position. For example, ?$X+3.

/mnemonic Format Control Character

This format control consists of a slash (/) followed by a mnemonic keyword, and (optionally) a list parameters to be passed
to the mnemonic.

/mnemonic(param1,param2,...)

InterSystems IRIS interprets mnemonic as an entry point name defined in the active mnemonic space. This format control
is used to perform such device functions as positioning the cursor on a screen. If there is no active mnemonic space, an
error results. A mnemonic may (or may not) require a parameter list.

You can establish the active mnemonic space in either of the following ways:

• Go to the Management Portal, select System Administration, Configuration, Device Settings, IO Settings. View and edit
the mnemonic space setting.

• Include the /mnemonic space parameter in the OPEN or USE command for the device.

The following are some examples of mnemonic device functions:

DescriptionMnemonic

Inserts spaces for n characters at the current cursor location, moving the rest of the
line to the right

/IC(n)

Deletes n characters to the right of the cursor and collapses the line/DC(n)

Erases n characters to the right of the cursor, leaving blanks in their stead/EC(n)

For further details on mnemonics, see the I/O Device Guide.

Specifying a Sequence of Format Controls

InterSystems IRIS allows you to specify a sequence of format controls and to intersperse format controls and expressions.
When specifying a sequence of format controls it is not necessary to include the comma separator between them (though
commas are permitted.) A comma separator is required to separate format controls from expressions.

In the following example, the WRITE command advances the output by two lines and positions the first output character
at the column location established by the input for the READ command.

 READ !,"Enter the number: ",num
 SET col=$X
 SET ans=num*num*num
 WRITE !!,"Its cube is: ",?col,ans

Thus, the output column varies depending on the number of characters input for the READ.

Commonly, format controls are specified as literal operands for each WRITE command. You cannot specify format controls
using variables, because they will be parsed as strings rather than executable operands. If you wish to create a sequence of

184 ObjectScript Reference

ObjectScript Commands

format controls and expressions to be used by multiple WRITE commands, you can use the #Define preprocessor directive
to define a macro, as shown in the following example:

#Define WriteMacro "IF YOU ARE SEEING THIS",!,"SOMETHING HAS GONE WRONG",##Continue
 $SYSTEM.Status.DisplayError($SYSTEM.Status.Error(x)),!!
 SET x=83
Module1
 /* code */
 WRITE $$$WriteMacro
Module2
 /* code */
 WRITE $$$WriteMacro

Escape Sequences with WRITE

The WRITE command, like the READ command, provides support for escape sequences. Escape sequences are typically
used in format and control operations. Their interpretation is specific to the current device type.

To output an escape sequence, use the form:

 WRITE *27,"char"

where *27 is the ASCII code for the escape character, and char is a literal string consisting of one or more control characters.
The enclosing double quotes are required.

For example, if the current device is a VT-100 compatible terminal, the following command erases all characters from the
current cursor position to the end of the line.

 WRITE *27,"[2J"

To provide device independence for a program that can run on multiple platforms, use the SET command at the start of
the program to assign the necessary escape sequences to variables. In your program code, you can then reference the variables
instead of the actual escape sequences. To adapt the program for a different platform, simply make the necessary changes
to the escape sequences defined with the SET command.

WRITE Compared with Other Write Commands

For a comparison of WRITE with the ZWRITE, ZZDUMP, and ZZWRITE commands, refer to the Display (Write)
Commands features tables in the “Commands” chapter of Using ObjectScript.

See Also
• USE command

• READ command

• ZWRITE command

• ZZDUMP command

• ZZWRITE command

• $X special variable

• $Y special variable

• Writing escape sequences for Terminal I/O and Interprocess Communications in the I/O Device Guide

• Terminal I/O in I/O Device Guide

• Sequential File I/O in I/O Device Guide

• The Spool Device in I/O Device Guide

ObjectScript Reference 185

WRITE

XECUTE
Executes the specified commands.

XECUTE:pc xecutearg,...
X:pc xecutearg,...

where xecutearg can be either of the following:

"cmdline":pc
("(fparams) cmdline",params):pc

Arguments

Optional — A postconditional expression.pc

An expression that resolves to a command line consisting of one or more valid
ObjectScript commands. Note that the cmdline or (fparams) cmdline must be specified
as a quoted string.

cmdline

Optional — A formal parameters list, specified as a comma-separated list enclosed
in parentheses. Formal parameters are variables use by cmdline, the values of which
are supplied by passing params. Note that the fparams are the first item within the
quoted code string.

fparams

Optional — A parameters list, specified as a comma-separated list. These are the
parameters passed to fparams. If params are specified, an equal or greater number
of fparams must be specified.

params

Description
XECUTE executes one or more ObjectScript command lines, each command line specified by an xecutearg. You can
specify multiple xecuteargs, separated by commas. These xecutearg are executed in left-to-right sequence, the execution
of each being governed by an optional postconditional expression. There are two syntactical forms of xecutearg:

• Without parameter passing. This form uses no parentheses.

• With parameter passing. This form requires enclosing parentheses.

An XECUTE can contain any combination of these two forms of xecutearg.

You can use the CheckSyntax() method of the %Library.Routine class to perform syntax checking on an xecutearg command
line string. CheckSyntax() requires one or more spaces before an executable line of ObjectScript code. CheckSyntax()
parses a line with no indentation as a label, or a label followed by executable code. XECUTE permits, but does not require
indentation of executable code; it does not permit specifying a label name. Neither XECUTE nor CheckSyntax() parse
macro preprocessor code.

In effect, each xecutearg is like a one-line subroutine called by a DO command and terminated when the end of the argument
is reached or a QUIT command is encountered. After InterSystems IRIS executes the argument, it returns control to the
point immediately after the xecutearg.

Each invocation of XECUTE places a new context frame on the call stack for your process. The $STACK special variable
contains the current number of context frames on the call stack.

The XECUTE command performs substantially the same operation as the $XECUTE function, with the following differ-
ences: The command can use postconditionals, the function cannot. The command can specify multiple xecuteargs, the

186 ObjectScript Reference

ObjectScript Commands

function can specify only one xecutearg. The command does not require a QUIT to complete execution; the function
requires an argumented QUIT for every execution path.

Arguments

pc

An optional postconditional expression. If a postconditional expression is appended to the command keyword, InterSystems
IRIS only executes the XECUTE command if the postconditional expression is true (evaluates to a nonzero numeric value).
InterSystems IRIS does not execute the XECUTE command if the postconditional expression is false (evaluates to zero).

If a postconditional expression is appended to an xecutearg, InterSystems IRIS evaluates the argument only if the postcon-
ditional expression is true (evaluates to a nonzero numeric value). If the postconditional expression is false, InterSystems
IRIS skips that xecutearg and evaluates the next xecutearg (if one exists). For further details, refer to Command Postcondi-
tional Expressions in Using ObjectScript.

cmdline

Each cmdline must evaluate to a string containing one or more ObjectScript commands. Note that in some cases two spaces
must be inserted between a command and the command following it. The cmdline string must not contain a tab character
at the beginning or a <Return> at the end. To specify quotation marks within the cmdline string, double the quotation marks.
The following example shows a single cmdline containing two commands:

 XECUTE "WRITE ""hello "",! WRITE ""world"",!"

Because a cmdline is a string, it cannot be simply broken across multiple code lines. You can divide a single cmdline
argument into separate strings joined with the concatenate operator:

 XECUTE "WRITE ""hello "",!"_
 " WRITE ""world"",!"

You can divide a single cmdline argument into multiple separate comma-separated cmdline arguments:

 XECUTE "WRITE ""hello "",!",
 "WRITE ""world"",!"

The maximum length for cmdline depends on the following considerations: InterSystems IRIS stores both the source cmdline
string and its generated object code as a single string. This resulting string must not exceed the InterSystems IRIS maximum
string length. For further details, refer to Maximum String Length in the “Data Types and Values” chapter of Using
ObjectScript.

You can embed /* text */ comments within a cmdline, between concatenated cmdline strings, or between comma-
separated cmdline arguments:

 XECUTE "SET x=""hello "" /* 1st val */ SET y=""world"" /* 2nd val */ "_
 " WRITE x,! /* part of 1st cmdline */ ",
 "WRITE y,! /* 2nd cmdline */ "

A cmdline can evaluate to a null string (""). In this case, InterSystems IRIS performs no action and continues execution
with the next xecutearg (if one exists).

If you are passing parameters, the fparams formal parameter list must precede the cmdline commands, with both elements
enclosed in the same quotation marks. While it is recommended that you separate fparams from the cmdline by one or more
spaces, no space is required.

 SET x=1
 XECUTE ("(in,out) SET out=in+3", x, .y)
 WRITE y
 QUIT

By default, all local variables used in cmdline are public variables. You can designate variables within the command line
as private variables by enclosing the command setting them within curly braces. For example:

ObjectScript Reference 187

XECUTE

 SET x=1
 XECUTE ("(in,out) { SET out=in+3 }", x, .y)
 WRITE y
 QUIT

You can override this designation of private variables for specific variables by specifying a public variable list, enclosed
in square brackets, immediately after the fparams formal parameter list. The following example specifies a public variable
list containing the variable x:

 SET x=1
 XECUTE ("(in,out) [x] { SET out=in+3 }", x, .y)
 WRITE y
 QUIT

fparams

A list of formal parameters, separated by commas and enclosed by parentheses. Formal parameter names must be valid
identifiers. Because these formal parameters are executed in another context, they must only be unique within their xecutearg;
they have no effect on local variables with the same name in the program that issued the XECUTE, or in another xecutearg.
You do not have to use any or all of the fparams in cmdline. However, the number of fparams must equal or exceed the
number of params specified, or a <PARAMETER> error is generated.

params

The actual parameters to be passed from the invoking program to fparams, specified as a comma-separated list. The params
must be defined variables within the calling program.

You can use a dot prefix to pass a parameter by reference. This is useful for passing a value out from a cmdline. An example
is provided below. For further details, refer to Passing by Reference in the “User-defined Code” chapter of Using
ObjectScript.

Examples
The following example passes a parameter to a command line that sets a global. Two command lines are provided. Execution
of each depends upon their postconditional setting.

 SET bad=0,good=1
 SET val="paid in full"
 XECUTE ("(pay) SET ^acct1=pay",val):bad,("(pay) SET ^acct2=pay",val):good

Here the first xecutearg is skipped because of the value of the bad postconditional. The second xecutearg is executed with
val being passed in as a parameter, supplying a value to the pay formal parameter used in the command line.

The following example uses passing by reference (.y) to pass a local variable value from the cmdline to the invoking
context.

CubeIt
 SET x=5
 XECUTE ("(in,out) SET out=in*in*in",x,.y)
 WRITE !,x," cubed is ",y

In the following example, the XECUTE command references the local variables x and y. x and y each contain a string literal
consisting of three separate ObjectScript commands that XECUTE invokes.

 SET x="SET id=ans QUIT:ans="""" DO Idcheck"
 SET y="SET acct=num QUIT:acct="""" DO Actcheck"
 XECUTE x,y

The following example uses XECUTE with a $SELECT construction.

 XECUTE "SET A=$SELECT(A>100:B,1:D)"

The following example executes the subroutine that is the value of A.

188 ObjectScript Reference

ObjectScript Commands

 SET A="WRITE ! FOR I=1:1:5 { WRITE ?I*5,I+1 }"
 XECUTE A

Notes

XECUTE and Objects

You can use XECUTE to call object methods and properties and execute the returned value, as shown in the following
examples:

 XECUTE patient.Name
 XECUTE "WRITE patient.Name"

XECUTE and FOR

If an XECUTE argument contains a FOR command, the scope of the FOR is the remainder of the argument. When the
outermost FOR in an XECUTE argument is terminated, the XECUTE argument is also terminated.

XECUTE and DO

If an XECUTE command contains a DO command, InterSystems IRIS executes the routine or routines specified in the
DO argument or arguments. When it encounters a QUIT, it returns control to the point immediately following the DO
argument.

For example, in the following commands, InterSystems IRIS executes the routine ROUT and returns to the point immediately
following the DO argument to write the string “DONE”.

 XECUTE "DO ^ROUT WRITE !,""DONE"""

XECUTE and GOTO

If an XECUTE argument contains a GOTO command, InterSystems IRIS transfers control to the point specified in the
GOTO argument. When it encounters a QUIT, it does not return to the point immediately following the GOTO argument
that caused the transfer. Instead, InterSystems IRIS returns control to the point immediately following the XECUTE
argument that contained the GOTO.

In the following example, InterSystems IRIS transfers control to the routine ROUT and returns control to the point imme-
diately following the XECUTE argument to write the string “FINISH”. It never writes the string “DONE”.

 XECUTE "GOTO ^ROUT WRITE !,""DONE""" WRITE !,"FINISH"

XECUTE and QUIT

There is an implied QUIT at the end of each XECUTE argument.

XECUTE with $TEXT

If you include a $TEXT function within a cmdline, it designates lines of code in the routine that contains the XECUTE.
For example, in the following program, the $TEXT function retrieves and executes a line.

A
 SET H="WRITE !!,$PIECE($TEXT(HELP+1),"","",3)"
 XECUTE H
 QUIT
HELP
 ;; ENTER A NUMBER FROM 1 TO 5

Running routine A extracts and writes “ENTER A NUMBER FROM 1 TO 5”.

Nested Invocation of XECUTE

ObjectScript supports the use of XECUTE within an XECUTE argument. However, you should use nested invocation of
XECUTE with caution because it can be difficult to determine the exact flow of processing at execution time.

ObjectScript Reference 189

XECUTE

Execution Time for Commands Called by XECUTE

The execution time for code called within XECUTE can be slower than the execution time for the same code encountered
in the body of a routine. This is because InterSystems IRIS compiles source code that is specified with the XECUTE
command or that is contained in a referenced global variable each time it processes the XECUTE.

Implementing Generalized Operations

A typical use for XECUTE is to implement generalized operations within an application. For example, assume that you
want to implement an inline mathematical calculator that would allow the user to perform mathematical operations on any
two numbers and/or variables. To make the calculator available from any point in the application, you might use a specific
function key (say, F1) to trigger the calculator subroutine.

A simplified version of the code to implement such a calculator might appear as follows.

Start SET ops=$CHAR(27,21)
 READ !,"Total amount (or F1 for Calculator): ",amt
 IF $ZB=ops { DO Calc
 ; . . .
 }
Calc READ !,"Calculator"
 READ !,"Math operation on two numbers and/or variables."
 READ !,"First number or variable name: ",inp1
 READ !,"Mathematical operator (+,-,*,/): ",op
 READ !,"Second number or variable name: ",inp2
 SET doit="SET ans="_inp1_op_inp2
 XECUTE doit
 WRITE !,"Answer (ans) is: ",ans
 READ !,"Repeat? (Y or N) ",inp
 IF (inp="Y")!(inp="y") { GOTO Calc+2 }
 QUIT

When executed, the Calc routine accepts the user inputs for the numbers and/or variables and the desired operation and
stores them as a string literal defining the appropriate SET command in variable doit. The XECUTE command references
doit and executes the command string that it contains. This code sequence can be called from any number of points in the
application, with the user supplying different inputs each time. The XECUTE performs the SET command each time,
using the supplied inputs.

XECUTE and ZINSERT

You use the XECUTE command to define and insert a single line of executable code from within a routine. You can use
the ZINSERT command from the Terminal to define and insert by line position a single line of executable code into the
current routine. You can use the ZREMOVE command from the Terminal to delete by line position one or more lines of
executable code from the current routine.

An XECUTE command cannot be used to define a new label. Therefore, XECUTE does not require an initial blank space
before the first command in its code line. ZINSERT can be used to define a new label. Therefore, ZINSERT does require
an initial blank space (or the name of a new label) before the first command in its command line.

See Also
• DO command

• GOTO command

• QUIT command

• ZINSERT command

• $TEXT function

• $XECUTE function

• $STACK special variable

190 ObjectScript Reference

ObjectScript Commands

ZKILL
Deletes a node while preserving the node’s descendants.

ZKILL:pc array-node,...
ZK:pc array-node,...

Arguments

Optional — A postconditional expression.pc

A local variable, a process-private global, or a global that is an array node, or a
comma-separated list of local, process-private global, or global array nodes.

array-node

Description
The ZKILL command removes the value of a specified array-node without killing that node’s descendants. In contrast,
the KILL command removes the value of a specified array node and all of that node’s descendants. An array node can be
a local variable, a process-private global, or a global variable.

By default, any subsequent reference to this killed array-node generates an <UNDEFINED> error. You can change Inter-
Systems IRIS behavior to not generate an <UNDEFINED> error when referencing an undefined subscripted variable by
setting the %SYSTEM.Process.Undefined() method.

Arguments

pc

An optional postconditional expression. InterSystems IRIS executes the command if the postconditional expression is true
(evaluates to a nonzero numeric value). InterSystems IRIS does not execute the command if the postconditional expression
is false (evaluates to zero). For further details, refer to Command Postconditional Expressions in Using ObjectScript.

array-node

A local, process-private global, or global array node. You can specify a single array node, or a comma-separated list of
array nodes. For further details on subscripts and nodes, refer to Global Structure in Using Globals.

Attempting to use ZKILL on a structured system variable (SSVN) (such as ^$GLOBAL) results in a <COMMAND>
error.

Example
In this example, the ZKILL command deletes node a(1), but does not remove node a(1,1).

 SET a(1)=1,a(1,1)=11
 SET x=a(1)
 SET y=a(1,1)
 ZKILL a(1)
 SET z=a(1,1)
 WRITE "x=",x," y=",y," z=",z

returns x=1 y=11 z=11. However, then issuing a:

 WRITE a(1)

generates an <UNDEFINED> error.

ObjectScript Reference 191

ZKILL

See Also
• KILL command

192 ObjectScript Reference

ObjectScript Commands

ZNSPACE
Sets the current namespace.

ZNSPACE:pc nspace
ZN:pc nspace

Arguments

Optional — A postconditional expression.pc

A string expression that evaluates to the name of an existing namespace.nspace

Description
ZNSPACE nspace changes the current namespace to the nspace value. nspace can be an explicit namespace name or an
implied namespace.

• From the Terminal command prompt ZNSPACE is the preferred way to change namespaces.

• Within a code routine NEW $NAMESPACE followed by SET $NAMESPACE=namespace is the preferred way to
change the current namespace. See $NAMESPACE special variable for details.

The following methods may assist you when using ZNSPACE:

• To return the name of the current namespace: return the $NAMESPACE or $ZNSPACE special variable value, or
invoke the NameSpace() method of the %SYSTEM.SYS class, as follows:

 WRITE $SYSTEM.SYS.NameSpace()

• To list all namespaces (explicit and implicit) available to the current process: invoke the ListAll() method of the
%SYS.Namespace class, as follows:

 DO ##class(%SYS.Namespace).ListAll(.result)
 ZWRITE result

When ListAll() lists an implied namespace, it delimits the system name using caret (^) delimiters.

To list all local and (optionally) remotely-mapped namespaces, invoke the List query of the %SYS.Namespace class,
as follows:

 SET ListRemote=1
 SET stmt=##class(%SQL.Statement).%New()
 SET status=stmt.%PrepareClassQuery("%SYS.Namespace","List")
 IF status'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(status) QUIT}
 SET rset= stmt.%Execute(ListRemote)
 DO rset.%Display()

This query returns each namespace name, its status (available or not), and whether it is mapped to a remote system.

Note that both of these listings list all namespaces, including those for which the user does not have access privileges.

• To test whether a namespace is defined: use the Exists() method of %SYS.Namespace class, as follows:

 WRITE ##class(%SYS.Namespace).Exists("USER"),! ; an existing namespace
 WRITE ##class(%SYS.Namespace).Exists("LOSER") ; a non-existent namespace

These methods are described in the InterSystems Class Reference.

For UNIX® systems, the system-wide default namespace is established as a System Configuration option. For Windows
systems, it is set using a command line start-up option.

ObjectScript Reference 193

ZNSPACE

For namespace naming conventions and namespace name translation, see Namespaces in the “Syntax Rules” chapter of
Using ObjectScript. For information on using namespaces, see Namespaces and Databases in the Orientation Guide for
Server-Side Programming. For information on creating and modifying namespaces, see Configuring Namespaces in the
System Administration Guide.

Changing the Current Namespace

You can change the current namespace by using the ZNSPACE command, the %CD utility (DO ^%CD), or by setting the
$NAMESPACE or $ZNSPACE special variables. From the Terminal prompt use of ZNSPACE or %CD is preferable,
because these provide more extensive error checking.

When you wish to temporarily change the current namespace, perform some operation, then revert to the prior namespace,
use NEW $NAMESPACE then SET $NAMESPACE. By using NEW $NAMESPACE and SET $NAMESPACE you
establish a namespace context that automatically reverts to the prior namespace when the routine concludes or an unexpected
error occurs.

Implied Namespace

An implied namespace specifies the namespace by system name and directory path. There are three forms:

• "^^." for the current namespace. This can be used to change the namespace prompt from an explicit namespace to
the corresponding implied namespace.

• "^^dir" specifying the namespace directory path dir on the current system.

• "^system^dir" specifying the namespace directory path dir on a specified remote system.

For dir, specify a directory path. This is shown in the following examples:

Windows example:

 ZNSPACE "^^c:\InterSystems\IRIS\mgr\user\"
 WRITE $NAMESPACE

Linux example:

 ZNSPACE "^RemoteLinuxSystem^/usr/IRIS/mgr/user/"
 WRITE $NAMESPACE

To return the full pathname of the current namespace, you can invoke the NormalizeDirectory() method, as shown in the
following example:

 WRITE ##class(%Library.File).NormalizeDirectory("")

Arguments

pc

Optional — An optional postconditional expression. InterSystems IRIS executes the command if the postconditional
expression is true (evaluates to a nonzero numeric value). InterSystems IRIS does not execute the command if the postcon-
ditional expression is false (evaluates to zero). For further details, refer to Command Postconditional Expressions in Using
ObjectScript.

nspace

Any valid string expression that evaluates to the name of the new namespace. nspace can be an explicit namespace name
or an implied namespace.

Namespace names are not case-sensitive. InterSystems IRIS always displays explicit namespace names in all uppercase
letters, and implied namespace names in all lowercase letters.

194 ObjectScript Reference

ObjectScript Commands

If nspace does not exist, the system generates a <NAMESPACE> error. If you do not have access privileges to a namespace,
the system generates a <PROTECT> error, followed by the database path. For example, the %Developer role does not have
access privileges to the %SYS namespace. If you have this role and attempt to access this namespace, InterSystems IRIS
issues the following error (on a Windows system): <PROTECT> *c:\intersystems\iris\mgr\.

Examples
The following example assumes that a namespace called "accounting" already exists. Otherwise, you receive a <NAMES-
PACE> error.

From the Terminal:

USER>ZNSPACE "Accounting"
ACCOUNTING>

By default, as shown in this example, the Terminal prompt displays the current namespace name. Namespace names are
always displayed in uppercase letters.

The following example tests for the existence of a namespace, then uses ZNSPACE to set the current namespace and uses
the TerminalPrompt() method to set the Terminal prompt either to the specified namespace or to USER:

 WRITE !,"Current namespace is ",$NAMESPACE
 SET ns="ACCOUNTING"
 IF 1=##class(%SYS.Namespace).Exists(ns) {
 WRITE !,"Changing namespace to: ",ns
 ZNSPACE ns
 DO ##class(%SYSTEM.Process).TerminalPrompt(2)
 WRITE !,"and ",$NAMESPACE," will display at the prompt"
 }
 ELSE {
 WRITE !,"Namespace ",ns," does not exist"
 SET ns="USER"
 WRITE !,"Changing namespace to: ",ns
 ZNSPACE ns
 DO ##class(%SYSTEM.Process).TerminalPrompt(2)
 WRITE !,"and ",$NAMESPACE," will display at the prompt"
 }

Notes

Namespaces with Default Directories

If the namespace you select has a default directory on a remote machine, ZNSPACE does not change the current directory
of your process to that namespace’s directory. Thus, your current namespace becomes the namespace you selected, but
your current directory remains the directory that was current before you issued the ZNSPACE command.

Implied Namespace Mapping

ZNSPACE creates additional default mappings from an implied namespace. These mappings are the same as for a normal
(explicit) namespace. They allow a process to find and execute the % routines and % globals that are physically located in
the IRISSYS and IRISLIB databases (the IRIS\mgr\ and IRIS\mgr\irislib directories).

Setting the $NAMESPACE or $ZNSPACE special variable or running the %CD routine with an implied namespace is
the same as issuing a ZNSPACE command.

% Routine Mapping

When a process switches namespaces using the ZNSPACE command, the system routines path mapping is normally reset.
This is true for both a normal (explicit) namespace and an implied namespace. The only exception to this is when the process
switches from an implied namespace to an implied namespace, in which case the existing mapping is preserved. For further
information on implied namespaces, see Global Structure in Using Globals.

You can override this remapping of system routines by using the SysRoutinePath() method of the %SYSTEM.Process

class. This can be used to override an existing system routine. Commonly, this is used to create an additional mapping

ObjectScript Reference 195

ZNSPACE

when debugging a % routine. The process must have Write permission for the IRISSYS database. This method should be
used with extreme caution.

CAUTION: Changing the mapping of a system routine supplied by InterSystems is strongly discouraged. Doing so
could break current or future library routines and methods supplied by InterSystems.

% Global Mapping

The first time a user uses ZNSPACE (or its equivalent) to go to an implied namespace, the system creates a mapping for
that implied namespace, as follows: InterSystems IRIS first maps to existing % globals in that implied namespace. Inter-
Systems IRIS then maps all other % globals to IRISSYS.

Once this mapping has been created for an implied namespace, the mapping is stored in shared memory. This means that
when any subsequent user goes to that implied namespace, InterSystems IRIS uses this pre-existing global mapping.

To update an implied namespace global mapping you must clear this shared memory storage. A system restart is one way
to clear shared memory.

Controlling Namespace Display

Terminal Prompt

By default, the Terminal prompt displays the current namespace name. This default is configurable:

Go to the Management Portal, select System Administration, Configuration, Additional Settings, Startup. View and edit the
current setting of TerminalPrompt. This also sets the prompt for Telnet windows.

To set this behavior for the current process, use the TerminalPrompt() method of the %SYSTEM.Process class. The system-
wide default behavior can be established by setting the TerminalPrompt property of the Config.Startup class.

The Terminal prompt can represent the current namespace as the explicit namespace name or the implied namespace. If
the implied namespace path is longer than 27 characters, the prompt is truncated to display an ellipsis, followed by the last
24 characters of the implied namespace path. For example: ...ersystems\iris\mgr\user\>

$NAME and $QUERY Functions

The $NAME and $QUERY functions can return the extended global reference form of a global variable, which includes
the namespace name. You can control whether these functions return namespace names as part of the global variable name.
You can set this extended global reference switch for the current process using the RefInKind() method of the
%SYSTEM.Process class. The system-wide default behavior can be established by setting the RefInKind property of the
Config.Miscellaneous class. For further information on extended global references, see Global Structure in Using Globals.

Changing Namespaces within Application Code

Object and SQL code assumes that it is running in a single namespace; hence, changing namespaces with open object
instances or SQL cursors can lead to code running incorrectly. Typically, there is no need to explicitly change namespaces,
as the various Object, SQL, and CSP servers automatically ensure that application code is run in the correct namespace.

Also, changing namespaces demands a relatively high amount of computing power compared to other commands; if possible,
application code should avoid it.

See Also
• JOB command

• $NAMESPACE special variable

• $ZNSPACE special variable

• Configuring Namespaces in System Administration Guide

196 ObjectScript Reference

ObjectScript Commands

ZTRAP
Forces an error with a specified error code.

ZTRAP:pc ztraparg

ZTRAP:pc $ZERROR
ZTRAP:pc $ZE

Arguments

Optional — A postconditional expression.pc

Optional — An error code string. An error code string is specified as a string literal or
an expression that evaluates to a string; only the first four characters of the string are
used.

ztraparg

The special variable $ZERROR, which can be abbreviated $ZE.$ZERROR

Description
The ZTRAP command accepts both a command postconditional and argument indirection. ZTRAP has three forms:

• Without an argument

• With a string argument

• With $ZERROR

ZTRAP without an argument forces an error with the error code <ZTRAP>.

ZTRAP ztraparg forces an error with the error code <Zxxxx>, where xxxx is the first four characters of the string specified
by ztraparg. If you specify an expression, rather than a quoted string literal, the compiler evaluates the expression and uses
the first four characters of the resulting string. When evaluating an expression, InterSystems IRIS strips the plus sign and
leading and trailing zeros from numbers. All remaining characters of ztraparg are ignored.

ZTRAP $ZERROR does not force a new error. It stops execution at the current program stack level and pops stack levels
until another error handler is found. Execution then continues in that error handler with the current error code.

Arguments

pc

An optional postconditional expression. InterSystems IRIS executes the command if the postconditional expression is true
(evaluates to a nonzero numeric value). InterSystems IRIS does not execute the command if the postconditional expression
is false (evaluates to zero). For further details, refer to Command Postconditional Expressions in Using ObjectScript.

ztraparg

A string literal or an expression that evaluates to a string. Any of the following values can be specified for ztraparg:

• A quoted string of any length containing any characters. ZTRAP uses only the first four characters to generate an error
code; if there are fewer than four characters, it uses the characters provided. Unlike system error codes, which are
always uppercase, case is preserved. Thus:

ObjectScript Reference 197

ZTRAP

 ZTRAP "FRED" ; generates <ZFRED>
 ZTRAP "Fred" ; generates <ZFred>
 ZTRAP "Freddy" ; generates <ZFred>
 ZTRAP "foo" ; generates <Zfoo>
 ZTRAP " foo" ; generates <Z foo>
 ZTRAP "@#$%" ; generates <Z@#$%>
 ZTRAP "" ; generates <Z>
 ZTRAP """" ; generates <Z">

• An expression that evaluates to a string.

 ZTRAP 1234 ; generates <Z1234>
 ZTRAP 2+2 ; generates <Z4>
 ZTRAP 10/3 ; generates <Z3.33>
 ZTRAP +0.700 ; generates <Z.7>
 ZTRAP $ZPI ; generates <Z3.14>
 ZTRAP $CHAR(64)_$CHAR(37) ; generates <Z@%>
 ZTRAP "" ; generates <Z>
 ZTRAP """" ; generates <Z">

The ZTRAP command accepts argument indirection. For more information, refer to Indirection in Using ObjectScript.

Passing Control to an Error Handler with $ZERROR

When the ZTRAP argument is the special variable $ZERROR, special processing is performed which is useful in $ZTRAP
error handlers. ZTRAP $ZERROR does not force a new error. It stops execution at the current program stack level and
pops stack levels until another error handler is found. Execution then continues in that error handler with the current error
code. This error handler may be located in a different namespace.

Examples
This example shows how you use the ZTRAP command with an expression to produce an error code:

 ; at this point the routine discovers an error ...
 ZTRAP "ER23"
 ...

When the routine is run and it discovers the anticipated error condition, the output appears as follows:

<ZER23>label+offset^routine

This example shows how the use of a postconditional affects the ZTRAP command:

 ;
 ZTRAP:y<0 "yNEG"
 ;

When the routine is run and y is negative, the output is:

<ZyNEG>label+offset^routine

This example shows how you use argument indirection in the ZTRAP command:

 ;
 SET ERPTR="ERMSG"
 SET ERMSG="WXYZ"
 ;
 ;
 ZTRAP @ERPTR

The output is:

<ZWXYZ>label+offset^routine

The following example shows a ZTRAP command that invokes a $ZTRAP error trap handler defined at a previous context
level.

198 ObjectScript Reference

ObjectScript Commands

Main
 NEW $ESTACK
 SET $ZTRAP="OnErr"
 WRITE !,"$ZTRAP set to: ",$ZTRAP
 WRITE !,"Main $ESTACK= ",$ESTACK // 0
 WRITE !,"Main $ECODE= ",$ECODE," $ZERROR=",$ZERROR
 DO SubA
 WRITE !,"Returned from SubA" // not executed
 WRITE !,"MainReturn $ECODE= ",$ECODE," $ZERROR=",$ZERROR
 QUIT
SubA
 WRITE !,"SubA $ESTACK= ",$ESTACK // 1
 ZTRAP
 WRITE !,"SubA $ECODE= ",$ECODE," $ZERROR=",$ZERROR
 QUIT
OnErr
 WRITE !,"OnErr $ESTACK= ",$ESTACK // 0
 WRITE !,"OnErr $ECODE= ",$ECODE," $ZERROR=",$ZERROR
 QUIT

See Also
• $ZERROR special variable

• $ZTRAP special variable

• Error Handling in Using ObjectScript

• Labels in Using ObjectScript

ObjectScript Reference 199

ZTRAP

ZWRITE
Displays variable names and their values and/or expression values.

ZWRITE:pc expression,...
ZW:pc expression,...

Arguments

Optional — A postconditional expression.pc

Optional — A variable or expression to display, or a comma-separated list of variables
and/or expressions to display. A comma-separated list can contain any combination of
variables and expressions.

expression

Description
The ZWRITE command lists names of variables and their values. It lists these variables and their descendents in the format
varname=value in canonical order, one variable per line, on the current device. ZWRITE also lists the values of expressions.
Expressions are listed as value, one per line, in the order specified. The ZWRITE command has two forms:

• Without an argument

• With arguments

ZWRITE can take an optional postconditional expression. InterSystems IRIS executes the command if the postconditional
expression is true (evaluates to a nonzero numeric value). InterSystems IRIS does not execute the command if the postcon-
ditional expression is false (evaluates to zero). For further details, refer to Command Postconditional Expressions in Using
ObjectScript.

ZWRITE listing can be interrupted by issuing a CTRL-C, generating an <INTERRUPT> error.

ZWRITE without an Argument
ZWRITE without an expression argument is functionally identical to WRITE without an argument. It displays the names
and values of all variables in the local variable environment (local variables), including private variables. It does not display
process-private globals or special variables. It lists variables by name in ASCII order. It lists subscripted variables in subscript
tree order.

ZWRITE without an argument displays an OREF value assigned to a local variable as variable=<OBJECT
REFERENCE>[oref]. It displays the same result for a local variable set to a JSON array or JSON object. It does not display
any further details about the OREF. For information on OREFs, see “OREF Basics” in Defining and Using Classes.

ZWRITE without an argument displays a bitstring assigned to a local variable as a compressed character string, which
(because it contains non-printing characters) may appear to be an empty string. It does not display any further details about
the bitstring.

For further details, refer to the WRITE command.

ZWRITE with Arguments
ZWRITE with an argument can specify one expression argument or a comma-separated list of expression arguments.
These arguments are evaluated in left-to-right order. Each argument can specify a variable or an expression. If expression
is a comma-separated list, each variable or expression is displayed on a separate line.

• Variables: displayed as varname=value

• Expressions: evaluated and the results displayed as value

200 ObjectScript Reference

ObjectScript Commands

• Special Variables: displayed as value

• InterSystems IRIS List Structures: displayed as $lb(element1,element2)

• Subscripted Globals, including those used to store SQL data values and SQL index values, displayed as $lb() List
structures

• Object References: displayed as <OBJECT REFERENCE>[oref]. This is the value displayed by ZWRITE without
an argument; ZWRITE with an object reference argument displays this value plus additional “general information”,
“attribute values”, and (where appropriate) “swizzled references” and “calculated references” information.

• JSON Arrays and JSON Objects: displayed as JSON values.

• Bit Strings: displayed as both the $ZWCHAR compressed binary string, and a user-readable representation of all of
the “1” bits in the bitstring.

ZWRITE displays a string containing one or more non-numeric characters as a quoted string.

ZWRITE displays a numeric value as a canonical number. ZWRITE displays a numeric string containing a number in
canonical form as an unquoted canonical number. ZWRITE displays a numeric string not in canonical form as a quoted
string. Note however that any arithmetic operation on a non-canonical numeric string converts it to a canonical number.
This is shown in the following example:

 SET numcanon=7.9 // returns number
 SET num=+007.90 // returns number
 SET strnum="+7.9" // returns string
 SET strcanon="7.9" // returns number
 SET strnumop=+"+7.90" // returns number
 ZWRITE numcanon,num,strnum,strcanon,strnumop

ZWRITE truncates the display of very long strings and appends ... to indicate that the string display was truncated.

ZWRITE displays values containing control characters (including those created with $LISTBUILD and $BIT) in a readable
format. If this formatting causes very long string values to exceed the maximum string length, ZWRITE truncates the
displayed string and appends ... to indicate that the string was truncated.

For a comparison of ZWRITE with the WRITE, ZZDUMP, and ZZWRITE commands, refer to the Display (Write)
Commands features tables in the “Commands” chapter of Using ObjectScript.

Variables

If expression is a variable, ZWRITE writes varname=value on a separate line. The variable can be a local variable, process-
private global, global variable, or object reference (OREF).

ZWRITE ignores undefined variables. It does not issue an error. If you specify one or more undefined variables in a
comma-separated list of variables, ZWRITE ignores the undefined variables and returns the defined variables. This
behavior allows you to display multiple variables without checking to determine if all of them are defined. If you specify
an undefined variable to WRITE, ZZDUMP, or ZZWRITE InterSystems IRIS issues an <UNDEFINED> error.

Variables can be subscripted. If the variable has defined subnodes, ZWRITE writes a separate varname=value line for
each subnode in subscript tree order. When you specify a root node, ZWRITE displays all of its subnodes, even when the
root node is undefined.

You can use extended global reference to specify a global variable not mapped to the current namespace. ZWRITE displays
extended global references even when the RefInKind() method of the %SYSTEM.Process class or the RefInKind property
of the Config.Miscellaneous class has been set to strip extended global references. If you specify a nonexistent namespace,
InterSystems IRIS issues a <NAMESPACE> error. If you specify a namespace for which you do not have privileges,
InterSystems IRIS issues a <PROTECT> error, followed by the global name and database path, such as the following:
<PROTECT> ^myglobal,c:\intersystems\iris\mgr\. For further information on subscripted variables and
extended global reference, refer to Global Structure in Using Globals.

ObjectScript Reference 201

ZWRITE

Non-Display Characters

ZWRITE displays all printable characters. It displays non-printable characters using the $CHAR function, representing
each non-printable character as a concatenated $c(n) value. It does not execute non-printing control characters. This is
shown in the following example:

 SET charstr=$CHAR(65,7,66,67,0,68,11,49,50)
 ZWRITE charstr

Expressions

If expression is a literal expression, ZWRITE evaluates the expression and writes the resulting value on a separate line. If
the expression contains an undefined variable, InterSystems IRIS issues an <UNDEFINED> error.

If the expression is a multidimensional property, ZWRITE will not display the property descendents. To display an entire
multidimensional property with ZWRITE, either MERGE it into a local array and display the array, or display the entire
object.

InterSystems IRIS List Structures

You can specify an InterSystems IRIS list structure (%List) to ZWRITE as a variable or an expression. ZWRITE displays
a list structure as $lb(element1,element2). This is shown in the following example:

 SET FullList = $LISTBUILD("Red","Blue","Green","Yellow")
 SET SubList = $LIST(FullList,2,4)
 SET StrList = $LISTFROMSTRING("Crimson^Azure^Lime","^")
 ZWRITE FullList,SubList,StrList

A Subscripted Global and its Descendants

The following example shows ZWRITE displaying the contents of a subscripted global variable and all of its descendent
nodes. This example displays the data defined for the Sample.Person persistent class that projects to an SQL table. The
global variable takes its name from the persistent class name (not the SQL table name) and is case-sensitive; a “D” is
appended to indicate a data global. Note that the descendent nodes contain list structures, which are displayed as $LISTBUILD
($lb) constructions:

 ZWRITE ^Sample.PersonD

To display a single data record, you can specify the RowID value as the global subscript, as shown in the following:

 ZWRITE ^Sample.PersonD(22)

To display the contents of an index, you can specify the persistent class name with an “I” appended, supplying the index
name as the subscript. The index name is case-sensitive:

 ZWRITE ^Sample.PersonI("NameIDX")

Additional non-printing characters used in lists are also displayed.

The following example shows ZWRITE using extended global reference to display the contents of a subscripted global
variable located in a specified namespace:

 ZWRITE ^["USER"]Sample.PersonD

The namespace name can be a different namespace or the current namespace. Namespace names are not case-sensitive.

ZWRITE always displays the extended global reference, regardless of the setting of the RefInKind method or property,
which can be set to strip extended global references from globals returned by $QUERY or $NAME.

202 ObjectScript Reference

ObjectScript Commands

Object References

You can specify an object reference (OREF) to ZWRITE as either a variable or an expression. If you have specified an
object reference, ZWRITE displays variable=<OBJECT REFERENCE>[oref] or <OBJECT REFERENCE>[oref]
and also displays General Information, Attribute Values, and (when appropriate) Swizzled References and Calculated
References for the properties of the object, one attribute per line.

Note: The <OBJECT REFERENCE> identifier prefix may not be displayed when executing ZWRITE through a browser
interface, because browsers interpret angle brackets as tags.

If the ZWRITE argument is an embedded object property, ZWRITE displays General Information and Attribute Values
for the array elements of the container property, one attribute per line. The display format is the same as the
%SYSTEM.OBJ.Dump() method.

The following example displays the OREF, followed by “general information”, “attribute values” and “swizzled references”:

 SET oref = ##class(%SQL.Statement).%New()
 ZWRITE oref

The following example displays the OREF, followed by “general information”, “attribute values”, and “calculated references”:

 SET doref=##class(%iKnow.Domain).%New("mytempdomain")
 DO doref.%Save()
 SET domId=doref.Id
 ZWRITE doref
 SET stat=##class(%iKnow.Domain).%DeleteId(domId)

The following examples displays the OREF, followed by “general information”, “attribute values”, “swizzled references”,
and “calculated references”:

 SET poref=##class(Sample.Person).%OpenId(1)
 ZWRITE poref

 SET myquery = "SELECT TOP 2 Name,DOB FROM Sample.Person"
 SET oref = ##class(%SQL.Statement).%New()
 SET qStatus = oref.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = oref.%Execute()
 ZWRITE rset

For information on OREFs, see “OREF Basics” in Defining and Using Classes.

JSON Arrays and JSON Objects

ZWRITE without an argument displays JSON dynamic arrays and JSON dynamic objects as object references, for example:

USER>SET jarray = ["apples","oranges"]
USER>SET jobj = {"fruit":"apples","count":24}
USER>ZWRITE
jarray=<OBJECT REFERENCE>[1@%Library.DynamicArray]
jobj=<OBJECT REFERENCE>[2@%Library.DynamicObject]

ZWRITE with an argument displays the values of JSON dynamic arrays and JSON dynamic objects. This is shown in the
following example:

A JSON array:

USER>SET jarray = ["apples","oranges"]
USER>SET jobj = {"fruit":"apples","count":24}
USER>ZWRITE jarray
jarray = ["apples","oranges"] ; <DYNAMIC ARRAY>
USER>ZWRITE jobj
jobj = {"fruit":"apples","count":24} ; <DYNAMIC OBJECT>

ZWRITE displays a NaN value using the representation ($DOUBLE(\"NAN\")) — an ObjectScript $DOUBLE(\"NAN\")
call inside of parentheses; it displays +INF as ($DOUBLE(\"INF\")), and –INF as ($DOUBLE(\"-INF\")).

ObjectScript Reference 203

ZWRITE

ZWRITE displays an OREF value within a JSON object using a format like ("6@%SQL.Statement"), as shown in the
following example:

USER>SET oref = ##class(%SQL.Statement).%New()
USER>SET jobj = {"ObjRef":(oref)}
USER>ZWRITE jobj
jobj={"ObjRef":("6@%SQL.Statement")} ; <DYNAMIC OBJECT>

For further details on handling JSON in ObjectScript, refer to the SET command. For information on object references
(OREFs), see “OREF Basics” in Defining and Using Classes.

Bitstrings

You can specify a bitstring to ZWRITE as either a variable or an expression. If the ZWRITE argument is an InterSystems
IRIS compressed bitstring (created using the $BIT function), ZWRITE displays the decimal representation of the compressed
binary string as $ZWCHAR ($zwc) two-byte (wide) characters.

ZWRITE also displays a comment that lists the uncompressed “1” bits in left-to-right order as a comma-separated list. If
there are three or more consecutive “1” bits, it lists them as a range (inclusive) with two dot syntax (n..m). For example,
the bitstring [1,0,1,1,1,1,0,1] is shown as /*$bit(1,3..6,8)*/. The bitstring [1,1,1,1,1,1,1,1] is shown as
/*$bit(1..8)*/. The bitstring [0,0,0,0,0,0,0,0] is shown as /*$bit()*/. The following example shows ZWRITE
bitstring output:

 SET $BIT(a,1) = 0
 SET $BIT(a,2) = 0
 SET $BIT(a,3) = 1
 SET $BIT(a,4) = 0
 SET $BIT(a,5) = 1
 SET $BIT(a,6) = 1
 SET $BIT(a,7) = 1
 SET $BIT(a,8) = 0
 ZWRITE a

Examples

ZWRITE Without an Argument

In following example, ZWRITE without an argument lists all defined local variables in ASCII name order.

 SET A="A",a="a",AA="AA",aA="aA",aa="aa",B="B",b="b"
 ZWRITE

returns:

A="A"
AA="AA"
B="B"
a="a"
aA="aA"
aa="aa"
b="b"

In the following example ZWRITE without an argument lists canonical and non-canonical numeric values:

 SET w=10
 SET x=++0012.00
 SET y="6.5"
 SET z="007"
 SET a=w+x+y+z
 ZWRITE

returns:

a=35.5
w=10
x=12
y=6.5
z="007"

204 ObjectScript Reference

ObjectScript Commands

ZWRITE with Arguments

In the following example, ZWRITE displays three variables as varname=value, each on its own line:

 SET alpha="abc"
 SET x=100
 SET y=80
 SET sum=x+y
 ZWRITE x,sum,alpha

In the following example, ZWRITE evaluates an expression in the first argument. It returns the expression as value, and
the variable as varname=value:

 SET x=100
 SET y=80
 ZWRITE x+y,y

The following example compares ZWRITE and WRITE when displaying different variable values. ZWRITE returns
quotation marks delimiting strings, WRITE does not:

 SET a=+007.00
 SET b=9E3
 SET c="+007.00"
 SET d=""
 SET e="Rhode Island"
 SET f="Rhode"_"Island"
 ZWRITE a,b,c,d,e,f
 WRITE !,a,!,b,!,c,!,d,!,e,!,f

ZWRITE Displaying Subscript Subnodes

The following example shows ZWRITE displaying the contents of subscripted process-private global variables. ZWRITE
displays the subscripts of the variable in hierarchical order:

 SET ^||fruit(1)="apple",^||fruit(4)="banana",^||fruit(8)="cherry"
 SET ^||fruit(1,1)="Macintosh",^||fruit(1,2)="Delicious",^||fruit(1,3)="Granny Smith"
 SET ^||fruit(1,2,1)="Red Delicious",^||fruit(1,2,2)="Golden Delicious"
 SET ^||fruit="Fruits"
 WRITE "global arg ZWRITE:",!
 ZWRITE ^||fruit

Note that specifying a root node displays all subnodes, even when the root node itself is undefined:

 SET fruit(1)="apple",fruit(4)="banana",fruit(8)="cherry"
 SET fruit(1,1)="Macintosh",fruit(1,2)="Delicious",fruit(1,3)="Granny Smith"
 SET fruit(1,2,1)="Red Delicious",fruit(1,2,2)="Golden Delicious"
 WRITE "global arg ZWRITE:",!
 ZWRITE fruit

See Also
• WRITE command

• ZZDUMP command

• ZZWRITE command

• Display (Write) Commands in the “Commands” chapter of Using ObjectScript

ObjectScript Reference 205

ZWRITE

ZZDUMP
Displays an expression in hexadecimal dump format.

ZZDUMP:pc expression,...

Arguments

Optional — A postconditional expression.pc

The data to be displayed in hexadecimal dump format.You can specify a number,
a string (enclosed in quotation marks), or a variable that resolves to one of these.
You can specify a single expression, or a comma-separated list of expressions.

expression

Description
ZZDUMP displays an expression in hexadecimal dump format. ZZDUMP is primarily of interest to system programmers,
but it can be useful in viewing strings that contain control characters.

ZZDUMP returns a number or string value in the following format:

position: hexdata printdata

Arguments

pc

InterSystems IRIS executes the ZZDUMP command if the postconditional expression is true (evaluates to a nonzero
numeric value). InterSystems IRIS does not execute the command if the postconditional expression is false (evaluates to
zero). For further details, refer to Command Postconditional Expressions in Using ObjectScript.

expression

You can specify expression as a numeric, a string literal, or a variable that resolves to one of these. You can specify a single
expression, or a comma-separated list of expressions. Specifying a comma-separated list of expressions is parsed as issuing
a separate ZZDUMP command for each expression. Execution of a comma-separated list stops when the first error occurs.

An expression can be a variable of any type, including local variables, process-private globals, global variables, and special
variables. You can use extended reference to specify a global variable in another namespace. If you specify a nonexistent
namespace, InterSystems IRIS issues a <NAMESPACE> error. If you specify a namespace for which you do not have
privileges, InterSystems IRIS issues a <PROTECT> error, followed by the global name and database path, such as the
following: <PROTECT> ^myglobal,c:\intersystems\iris\mgr\.

Non-printing characters are represented in hexdata by their hexadecimal value, and in printdata by a placeholder dot (.).
Control characters are not executed.

Examples
The following example shows ZZDUMP returning hex dumps for two single-character string variables. Note that each
comma-separated expression is treated as a separate invocation of ZZDUMP:

 SET x="A"
 SET y="B"
 ZZDUMP x,y

0000: 41 A
0000: 42 B

206 ObjectScript Reference

ObjectScript Commands

The following example shows ZZDUMP returning a hex dump for a string variable too long for a single dump line. Note
that the position for the second dump line (0010:) is in hexadecimal:

 SET z="ABCDEFGHIJKLMNOPQRSTUVWXYZ"
 ZZDUMP z

0000: 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 ABCDEFGHIJKLMNOP
0010: 51 52 53 54 55 56 57 58 59 5A QRSTUVWXYZ

The following example shows ZZDUMP returning hex dumps for three variables. Note that no hex dump (not even a blank
line) is returned for a null string variable. Also note that a number is converted to canonical form (leading and trailing zeros
and plus sign removed); a string containing a number is not converted to canonical form:

 SET x=+007
 SET y=""
 SET z="+007"
 ZZDUMP x,y,z

0000: 37 7
0000: 2B 30 30 37 +007

Notes

Unicode

If one or more characters in a ZZDUMP expression is a wide (Unicode) character, all characters in that expression are
represented as wide characters. The following examples show variables containing a Unicode characters. In all cases, all
characters are displayed as wide characters.

 SET x=$CHAR(987)
 SET y=$CHAR(987)_"ABC"
 ZZDUMP x,y

0000: 03DB ?
0000: 03DB 0041 0042 0043 ?ABC

ZZDUMP Compared with Write Commands

For tables comparing ZZDUMP with the WRITE, ZWRITE, and ZZWRITE commands, refer to the Display (Write)
Commands in the “Commands” chapter of Using ObjectScript.

See Also
• WRITE command

• ZWRITE command

• ZZWRITE command

• $CHAR function

• $DOUBLE function

• $LISTBUILD function

• $ZHEX function

• Display (Write) Commands in the “Commands” chapter of Using ObjectScript

ObjectScript Reference 207

ZZDUMP

ZZWRITE
Displays the values of variables or expressions.

ZZWRITE:pc expression,...

Arguments

Optional — A postconditional expression.pc

A variable or expression to display, or a comma-separated list of variables and/or
expressions to display. A comma-separated list can contain any combination of variables
and expressions.

expression

Description
The ZZWRITE command evaluates an expression and displays a value on the current device. This expression can be a
literal, local variable, process-private global, global variable, or special variable. ZZWRITE can evaluate a comma-separated
list of expressions; it displays the results in the order specified, one expression per line. ZZWRITE displays the result of
each expression as %val=value.

ZZWRITE without an argument is a no-op. It performs no operation and issues no error.

ZZWRITE and ZWRITE

ZZWRITE, like ZWRITE, displays non-printing characters and encoded data such as InterSystems IRIS lists, bitstrings,
and %Status strings in a human-readable format. It does not execute control characters. Both commands provide an extensive
display of object reference (oref) values, consisting of the oref value followed by the same “general information”, “attribute
values”, and (where appropriate) “swizzled references” and “calculated references” returned by the %SYSTEM.OBJ.Dump()
method.

ZZWRITE displays the same data values as ZWRITE with an argument, with the following differences:

• Variable Names: ZZWRITE displays the value of every expression or variable as %val=value. ZWRITE displays
local, process-private, and global variables as varname=value, and literals, expressions, and special variables as value.

• Undefined Variables: ZZWRITE issues an <UNDEFINED> error for an undefined variable. ZWRITE ignores
undefined variables.

• Subscripts: ZZWRITE displays the value of the specified subscript node. ZWRITE displays the subscript node and
all defined subnodes in subscript tree order.

• Extended Global Reference: ZZWRITE displays the value of an extended global reference as %val=value (like any
other expression), giving no indication that the value is defined in another namespace. ZWRITE displays an extended
global reference variable name showing the namespace that contains the global.

For further details on how various data values are displayed, refer to ZWRITE.

For tables comparing ZZWRITE with the WRITE, ZWRITE, and ZZDUMP commands, refer to the Display (Write)
Commands features tables in the “Commands” chapter of Using ObjectScript.

208 ObjectScript Reference

ObjectScript Commands

Arguments

pc

An optional postconditional expression. InterSystems IRIS executes the command if the postconditional expression is true
(evaluates to a nonzero numeric value). InterSystems IRIS does not execute the command if the postconditional expression
is false (evaluates to zero). For further details, refer to Command Postconditional Expressions in Using ObjectScript.

expression

An expression to evaluate, or a comma-separated list of expressions. An expression can consist of, or contain local variables,
process-private globals, global variables, or special variables. It cannot be a private variable. Variables can be subscripted.
Expressions are evaluated in strict left-to-right order.

You can use extended global reference to specify a global variable not mapped to the current namespace. If you specify a
nonexistent namespace, InterSystems IRIS issues a <NAMESPACE> error. If you specify a namespace for which you do
not have privileges, InterSystems IRIS issues a <PROTECT> error, followed by the global name and database path, such
as the following: <PROTECT> ^myglobal,c:\intersystems\iris\mgr\. For further information on subscripted
variables and extended global reference, refer to Global Structure in Using Globals.

See Also
• WRITE command

• ZWRITE command

• ZZDUMP command

• Display (Write) Commands in the “Commands” chapter of Using ObjectScript

ObjectScript Reference 209

ZZWRITE

Routine and Debugging Commands

The following are reference pages for routine and debugging commands supported by ObjectScript. These commands
supplement the ObjectScript general commands described earlier in this document. Commands are listed in alphabetical
order.

Further introductory information on ObjectScript command syntax and conventions is provided at the beginning of the
general commands reference pages. Additional information on ObjectScript commands can be found in the Commands
chapter of Using ObjectScript.

ObjectScript Reference 211

PRINT
Displays lines of code from the current routine on the current device.

PRINT:pc lineref1:lineref2
ZP:pc lineref1:lineref2

Arguments

Optional — A postconditional expression.pc

Optional — The line to be displayed, or the first line in a range of lines to be displayed,
specified as a literal. Can be a label name, a numeric offset (+n) or a label name and
a numeric offset. If omitted, the entire current routine is displayed.

lineref1

Optional — The last line in a range of lines to be displayed, specified as a literal. To
define a range, lineref1 must be specified.

:lineref2

Description
The PRINT command displays lines of code from the currently loaded routine. Use ZLOAD to load a routine. ZLOAD
loads the INT code version of a routine. For the name of the current routine, access the $ZNAME special variable.

The output is sent to the current device. When invoked from the Terminal, the current output device defaults to the Terminal.
You can establish the current device with the USE command. For the device ID of the current device, access the $IO special
variable.

Note: The PRINT and ZPRINT commands are functionally identical.

PRINT displays the INT code version of a routine. INT code does not count or include preprocessor statements. Completely
blank lines from the MAC version of the routine, whether in the source code or within a multiline comment, are removed
by the compiler and are therefore neither displayed nor counted in the INT routine. For this reason, PRINT displays and
counts the following multi-line comment in the MAC routine as two lines, not three:

 /* This comment includes

 a blank line */

The #;, ##;, and /// comments in the MAC code may not appear in the INT code, and thus may affect line counts and
offsets. Refer to Comments in MAC Code for Routines and Methods for further details.

PRINT sets the edit pointer to the end of the lines it printed. For example, specifying PRINT then ZINSERT " SET y=2"
inserts the line at the end of the routine; specifying PRINT +1:+4 then ZINSERT " SET y=2" inserts the line as line
5. The $TEXT function prints a single line from the current routine but does not change the edit pointer.

PRINT has two forms:

• Without arguments

• With arguments

PRINT without arguments displays all the lines of code in the currently loaded routine.

PRINT with arguments displays the specified lines of code. PRINT lineref1 displays the line specified by lineref1. PRINT
lineref1:lineref2 displays the range of lines starting with lineref1 and ending with lineref2 (inclusive).

The lineref arguments count lines and line offsets using the INT code version of the routine. After modifying a routine,
you must re-compile the routine for PRINT to correctly count lines and line offsets that correspond to the source (MAC)
version.

212 ObjectScript Reference

Routine and Debugging Commands

You can use the $TEXT function to return a single line of INT code.

Arguments

pc

An optional postconditional expression. InterSystems IRIS executes the PRINT command if the postconditional expression
is true (evaluates to a nonzero numeric value). InterSystems IRIS does not execute the command if the postconditional
expression is false (evaluates to zero). For further details, refer to Command Postconditional Expressions in Using
ObjectScript.

lineref1

The line to be printed or the first in a range of lines to be displayed or printed. Can be specified in either of the following
syntactical forms:

• +offset where offset is a positive integer specifying the line number within the current routine. +1 is the first line in
the routine, which may be a label line. +0 always returns the empty string.

• label[+offset] where label is a label within the routine and offset is the line number counting from the label (with the
label itself counting as offset 0). If you omit the offset option, or specify label+0, InterSystems IRIS prints the label
line. label+1 prints the line after the label.

A label may be longer than 31 characters, but must be unique within the first 31 characters. PRINT matches only the first
31 characters of a specified label. Label names are case-sensitive, and may contain Unicode characters.

lineref2

The last line in a range of lines to be displayed. Specify in the same way as lineref1.lineref1 must be specified to specify
lineref2. lineref1 and lineref2 are separated by a colon (:) character. No whitespace may appear between the colon and
lineref2.

If lineref2 specifies a label or offset earlier in the line sequence than lineref1, PRINT ignores lineref2 and displays the
single line of code specified by lineref1.

If lineref2 specifies a non-existent label or offset, PRINT displays from lineref1 to the end of the routine.

Examples
Given the following lines of code:

AviationLetters
Abc
 WRITE "A is Abel",!
 WRITE "B is Baker",!
 WRITE "C is Charlie",!
Def WRITE "D is Delta",!
 WRITE "E is Epsilon",!
 /* Not sure about E */
 WRITE "F is Foxtrot",!

PRINT with no lineref arguments displays all nine lines, including the comment line.

PRINT +0 displays the empty string.

PRINT +1 displays the AviationLetters label.

PRINT +8 displays the /* Not sure about E */ comment line.

PRINT +10 displays the empty string.

PRINT Def or PRINT Def+0 display the Def WRITE "D is Delta",! line. This is a label line that also includes
executable code.

ObjectScript Reference 213

PRINT

PRINT Def+1 displays the WRITE "E is Epsilon",! line.

Range Examples

PRINT +0:+3 displays the empty string.

PRINT +1:+3 displays the first three lines.

PRINT +3:+3 displays the third line.

PRINT +3:+1 displays the third line; lineref2 is ignored.

PRINT +3:Abc+1 displays the third line. Both lineref1 and lineref2 are specifying the same line.

PRINT +3:abc+1 displays from the third line to the end of the routine. Line labels are case-sensitive, so the range endpoint
was not found.

PRINT Abc+1:+4 displays lines 3 and 4.

PRINT Abc+1:Abc+2 displays lines 3 and 4.

PRINT Abc:Def displays lines 2, 3, 4, 5, and 6.

PRINT Abc+1:Def displays lines 3, 4, 5, and 6.

PRINT Def:Abc displays the Def WRITE "D is Delta",! line. Because lineref2 is earlier in the code, it is ignored.

See Also
• ZPRINT command

• ZINSERT command

• ZLOAD command

• ZREMOVE command

• ZSAVE command

• ZZPRINT command

• $TEXT function

• $IO special variable

• $ZNAME special variable

• Comments in Using ObjectScript

• Labels in Using ObjectScript

• The Spool Device in I/O Device Guide

214 ObjectScript Reference

Routine and Debugging Commands

ZBREAK
Sets a breakpoint or watchpoint.

ZBREAK:pc
ZB:pc

ZBREAK:pc location:action:condition:execute_code
ZB:pc location:action:condition:execute_code

ZBREAK:pc /command:option
ZB:pc /command:option

Arguments

Optional — A postconditional expression.pc

Specifies a code line location (that sets a breakpoint), a local variable *var
(which sets a watchpoint), or $ (the single step breakpoint). If the location
specified already has a breakpoint/watchpoint defined, the new specification
completely replaces the old one.

You can optionally preface location with a sign: +, –, or – –. A location without
a sign prefix sets the specified breakpoint/watchpoint. A – (minus) prefix
disables the breakpoint/watchpoint. A + (plus) prefix re-enables a disabled
breakpoint/watchpoint. A –– (minus-minus) prefix removes the break-
point/watchpoint.

The following signs can be specified without a location: – (minus) = disable
all breakpoints and watchpoints. + (plus) = re-enable all disabled breakpoints
and watchpoints.

location

Optional — Specifies the action to take when the breakpoint/watchpoint is
triggered, specified as an alphabetic code. Action code letters may be
uppercase or lowercase, but must be enclosed in quotation marks. If omitted,
default is “B”. If omitted, and either :condition or :execute_code is specified,
the colon must appear as a placeholder.

:action

Optional — Specifies an expression that will be evaluated to a boolean value
when the breakpoint/watchpoint is triggered. The expression must be
surrounded by quotation marks. If true, action is carried out. If not specified,
the default is true. If omitted, and :execute_code is specified, the colon must
appear as a placeholder.

:condition

Optional — Specifies ObjectScript code to be executed if :condition is true.
The code must be surrounded by quotation marks if it is a literal.

:execute_code

A command governing all breakpoints and watchpoints. The slash (/) prefix
is mandatory. Available commands are: /CLEAR, /DEBUG, /TRACE,
/ERRORTRAP, /INTERRUPT, /STEP, and /NOSTEP. All except /CLEAR
take an option, as described below. Most /command names can be specified
as a single-letter abbreviation: /C, /T, and so forth.

/command:option

Description
ZBREAK sets breakpoints at specific lines of code and watchpoints on specific local variables to allow you to interrupt
program execution for debugging. Once established, a breakpoint or watchpoint persists for the duration of the current

ObjectScript Reference 215

ZBREAK

process, or until explicitly removed or cleared. Breakpoints and watchpoints are persistent across namespaces. You can
establish a maximum of 20 breakpoints and 20 watchpoints per process. These maximums include both enabled and disabled
breakpoints and watchpoints. Attempting to set more than 20 breakpoints or watchpoints results in a <COMMAND> error.

Various ways to use the ZBREAK command are described in the Debugging chapter in Using ObjectScript. The use of
watchpoints in a FOR loop is described in “FOR and Watchpoints” section of the FOR command reference page.

Required Permission

To use ZBREAK statements when running code, the user must be assigned to a role (such as %Developer or %Manager)
that provides the %Development resource with U (use) permission. A user is assigned to a role either through the SQL
GRANT statement, or by using the Management Portal System Administration, Security, Users option. Select a user name
to edit its definition, then select the Roles tab to assign that user to a role.

To use ZBREAK the user must have WRITE access for the database in which the code resides. Otherwise, stepping,
breakpoints, and watchpoints will be disabled. For example, a user who does not have WRITE access to the %SYS (IRISSYS)
or the IRISLIB database will not be able to debug routines in that database. InterSystems IRIS disables debugging when a
routine in one of these databases is entered, and only restores debugging once the routine quits. This has the effect that any
other code called by that routine will also have debugging disabled, regardless of whether the user has WRITE access for
that code's database.

Listing Breakpoints

The argumentless ZBREAK command lists the current breakpoints and watchpoints. It lists both enabled and disabled
breakpoints and watchpoints.

Listing Local Variable Values

You can follow any ZBREAK command with an argumentless WRITE command on the same line. (Note that an argumentless
ZBREAK must be followed by two spaces.) The argumentless WRITE lists the values of all local variables at the time
when the ZBREAK line is encountered; not when it is put into effect.

Disable/Enable All Existing Breakpoints/Watchpoints

A ZBREAK command can be followed by a sign with no location specification. A minus sign (–) argument disables all
current breakpoints and watchpoints. A plus sign (+) argument re-enables all previously disabled breakpoints and watchpoints.
The following ZBREAK without location commands are supported:

Disables all existing breakpoints and watchpoints.ZBREAK -

Re-enables all previously disabled breakpoints and
watchpoints.You cannot re-enable removed
breakpoints/watchpoints.

ZBREAK +

ZBREAK Help Text

To view online help text about ZBREAK at the terminal prompt, specify a question mark, as follows:

USER>ZBREAK ?

Arguments

pc

An optional postconditional expression. InterSystems IRIS executes the command if the postconditional expression is true
(evaluates to a nonzero numeric value). InterSystems IRIS does not execute the command if the postconditional expression
is false (evaluates to zero). For further details, refer to Command Postconditional Expressions in Using ObjectScript.

216 ObjectScript Reference

Routine and Debugging Commands

location

The location argument is required if you wish to set or unset breakpoints or watchpoints. It can consist of a sign (plus,
minus, or minus-minus) followed by a breakpoint or watchpoint specification. Various combinations of signs and break-
point/watchpoint specifications are supported:

• *varname: a local variable. Establishes a watchpoint each time the variable value is set. The asterisk prefix is mandatory.
Setting a watchpoint for an undefined local variable does not generate an error. You can optionally specify an action,
condition, and/or execute_code for each watchpoint. Any of these optional arguments may be omitted, but if specified
or skipped, the mandatory colon separators (:) must be specified.

• $: a single step breakpoint.

• A line reference, specified as label+offset^routine to specify a breakpoint. You can specify any combination
of label, +offset, and ^routine (in that order). If you omit label, the breakpoint location is counted by offset
from the top of the routine (ZBREAK statements are counted as offset lines). If you omit +offset, the breakpoint
location is the specified label line. If you omit ^routine, the breakpoint location is assumed to be in the currently
loaded routine; you can use ^routine to specify a routine location other than the currently loaded routine. Setting a
breakpoint for a nonexistent label, offset, or routine does not generate an error.

To set a breakpoint, specify the label+offset^routine location and, optionally, the action, condition, and/or
execute_code, as follows: label+offset^routine:action:condition:execute_code. Any of these optional
arguments may be omitted, but if an argument is skipped, the mandatory colon separator (:) must be specified.

ZBREAK does not move the edit pointer.

Optionally, a location argument may be prefixed by a sign which indicates what to do with an existing breakpoint or
watchpoint at the specified location. You can specify no sign (set), a minus sign (disable), a plus sign (re-enable), or two
minus signs (remove). You can also specify a sign before a $ single-step breakpoint. Attempting to disable, re-enable, or
remove a non-existent breakpoint or watchpoint generates a <COMMAND> error.

MeaningSign Prefix

Set breakpoint/watchpoint at location.location

Disable breakpoint/watchpoint at location. The optional #delay integer specifies the
number of iterations to disable this breakpoint or watchpoint before breaking. The
default is to disable all encounters with the breakpoint or watchpoint. No spaces are
permitted before the # symbol.

–location#delay

Re-enable breakpoint/watchpoint at location.+location

Remove breakpoint/watchpoint at location.To remove all breakpoints and watchpoints
use ZBREAK /CLEAR.

-–location

A line reference location must occur on a command boundary. A variable that is set within a command expression cannot
be used as a location. This type of variable setting occurs in the target parameters of the $DATA, $ORDER, and $QUERY
functions.

action

A code that specifies the action to take when the breakpoint/watchpoint is triggered. For breakpoints, the action occurs
before the line of code is executed. For watchpoints, the action occurs after the command that modifies the local variable.
An action can only be specified when setting a breakpoint/watchpoint; not when disabling or re-enabling.

ObjectScript Reference 217

ZBREAK

DescriptionAction Code

Suspends execution and displays the line at which the break occurred, with a caret
(^) indicating the location within the line. A GOTO resumes execution. “B” is the
default.

“B”

Suspends execution for single-step execution of lines using GOTO. Single-step
mode suspended during DO, XECUTE, or user-defined functions.

“L”

Suspends execution for single-step execution of lines using GOTO. Single-step
mode also applies to DO, XECUTE, and user-defined functions.

“L+”

Suspends execution for single-step execution of commands using GOTO. Single-step
mode suspended during DO, FOR, XECUTE, or user-defined functions.

“S”

Suspends execution for single-step execution of commands using GOTO. Single-step
mode also applies to DO, FOR, XECUTE, and user-defined functions.

“S+”

Outputs a trace message to the trace device. Can be combined with any other action
code. For example “TB” means suspend execution (“B”) and output trace message
(“T”). “T” by itself does not suspend execution. This action only works if a previous
ZBREAK command or the current ZBREAK specifies ZBREAK /TRACE:ON. See
/TRACE below.

“T”

Take no action at this breakpoint or watchpoint.“N”

condition

A boolean expression. When true (1), the action should be taken and the execute_code (if present) executed. When false
(0), the action and execute_code are ignored. Default is true (1).

execute_code

The ObjectScript code to be executed. This code is executed before the action being carried out. Before the code is executed,
the value of $TEST is saved. After the code has executed, the value of $TEST as it existed in the program being debugged
is restored.

The execute_code is performed internally by an XECUTE command. An XECUTE can access only public variables.
However, you can specify parameter passing in the execute_code to pass private variables to the XECUTE.

Because an XECUTE argument contains a quoted string, quotes must be doubled when the code is passed via the ZBREAK
execute_code argument. The easiest way to do this correctly is to first write the code as an actual XECUTE command,
then double all the quotes to create the corresponding the ZBREAK execute_code.

For example, to display the new value of the variable var when it is changed, first write an XECUTE command to display
it:

 XECUTE ("(arg) WRITE ""now var="",arg,!",$GET(var,"<UNDEFINED>"))

Then the equivalent ZBREAK command will be:

 ZBREAK *var:::"(""(arg) WRITE """"now var="""",arg,!"",$GET(var,""<UNDEFINED>""))"

/command:option

A command keyword used to set the ZBREAK environment for subsequent ZBREAK commands. The /CLEAR command
takes no option. The other command keywords are followed by an option, separated by a colon. No spaces are permitted.

DescriptionKeyword

Remove all breakpoints./CLEAR

218 ObjectScript Reference

Routine and Debugging Commands

DescriptionKeyword

Clear or set debug device./DEBUG:device

Enable or disable sending trace messages to the trace device (the “T” action in
subsequent ZBREAK commands.) Options are :ON=enable trace. :OFF=disable
trace. :ALL=trace all lines.You can redirect output with the :ON or :ALL options by
specifying a device. For example ZBREAK /TRACE:ON:device.

/TRACE

Enable or disable $ZTRAP and TRY / CATCH error trapping. Options are :ON and
:OFF.

/ERRORTRAP

Specify Ctrl-C action. Options are :NORMAL and :BREAK. If NORMAL, a Ctrl-C
interrupts execution with an <INTERRUPT> error. If BREAK, a Ctrl-C interrupts
execution with a <BREAK> error and establishes a new stack frame.

/INTERRUPT

Enable stepping through code modules. Options are :EXT (user language extensions);
:METHOD (object methods); :DESTRUCT (the %Destruct object method).

/STEP

Disable stepping through code modules. Options are :EXT (user language
extensions); :METHOD (object methods); :DESTRUCT (the %Destruct object
method).

/NOSTEP

/TRACE

The /TRACE command keyword specifies a trace output device that is used to receive trace messages. It must be specified
before issuing a ZBREAK with action=“T”. It can be specified as a separate ZBREAK command (ZBREAK
/TRACE:ON:device) , or these two commands can be combined ZBREAK S:"T",/TRACE:ON:device.

Only one trace output device can be active at a time. Only trace messages are written to the trace output device; normal
WRITE operations continue to write to the user terminal.

• /TRACE:ON activates the InterSystems Terminal as the recipient for trace messages.

• /TRACE:ON:device activates an existing output device (commonly a .txt file) as the recipient for trace messages.
You must use the OPEN command to open the device before invoking ZBREAK /TRACE:ON:device. If you specify
a device that is not open, InterSystems IRIS issues a <NOTOPEN> error. To open a sequential file, the directory must
exist, and either the file must exist, or the OPEN command must specify the "N" option to create the file. This sequence
of operations is shown in the following Windows example of a Terminal session:

 USER>SET btrace="C:\Logs\mydebugtrace.txt"

USER>OPEN btrace:"WN"

USER>ZBREAK /TRACE:ON:btrace

USER>ZBREAK
BREAK: Trace ON
 Trace device=C:\Logs\mydebugtrace.txt
 No breakpoints
 No watchpoints

If a prior ZBREAK /TRACE:ON:device1 has already activated a trace output device, ZBREAK /TRACE:ON:device2
replaces the device1 trace device with the device2 trace device.

• /TRACE:ALL enables line stepping, writing a message to the trace device for each line. This line stepping does not
stop, but proceeds through the code being debugged. You can specify either ZBREAK /TRACE:ALL or ZBREAK
/TRACE:ALL:device. /TRACE:ALL enables trace line stepping; you can invoke this option before or after activating
a trace device using /TRACE:ON:device. /TRACE:ALL:device both activates a trace device and enable line stepping
to that trace device. You must use the OPEN command to open the device before invoking /TRACE:ALL:device. If
you specify a device that is not open, InterSystems IRIS issues a <NOTOPEN> error. To open a sequential file, the

ObjectScript Reference 219

ZBREAK

directory must exist, and either the file must exist, or the OPEN command must specify the "N" option to create the
file. This sequence of operations is shown in the following Windows example of a Terminal session:

 USER>SET steptrace="C:\Logs\mysteptrace.txt"

USER>OPEN steptrace:"WN"

USER>ZBREAK /TRACE:ALL:steptrace

USER>ZBREAK
ZBREAK
BREAK:L+ Trace ON
 Trace device=C:\Logs\mysteptrace.txt
$ (single step) F:ET S:0 C: E:
 No watchpoints

USER>

• /TRACE:OFF de-activates the current trace output device; it does not close the device. You can specify either ZBREAK
/TRACE:OFF or ZBREAK /TRACE:OFF:device. /TRACE:OFF deactivates the current trace output device; if no
trace device is active, InterSystems IRIS performs no operation and issues no error. /TRACE:OFF:device deactivates
the specified trace output device. If the specified device is not the current trace output device, /TRACE:OFF:device
issues a <NOTOPEN> error.

/STEP and /NOSTEP

The /STEP and /NOSTEP command keywords control whether the debugger steps through certain types of code modules:

• The :EXT option governs user-written language extensions created in %ZLANG. To an application, these language
extensions appear as a single command or function call. By default, the debugger does not step through these %ZLANG
routines, regardless of the action argument setting.

• The :METHOD option governs stepping through object methods called by the application. By default, the debugger
steps through object method code.

• The :DESTRUCT option governs stepping through the %Destruct object method. The %Destruct method is implicitly
called whenever an object is destroyed. By default, the debugger does not step through %Destruct object method code.

You can specify more than one /STEP or /NOSTEP option, as shown in the following example:

 ZBREAK /STEP:METHOD:DESTRUCT

Examples
The following example shows how ZBREAK with no arguments lists breakpoints and watchpoints. The first ZBREAK
lists no breakpoints or watchpoints. The program then sets two watchpoints on the x and y local variables, and ZBREAK
displays this. Next the program sets a $ single-step breakpoint, and ZBREAK displays the breakpoint and the two watchpoints.
Next the program disables the x local variable watchpoint; this has no effect on the ZBREAK display. Finally, the program
removes the x local variable watchpoint; this watchpoint disappears from the ZBREAK display:

 ZBREAK
 ZBREAK *x:"B"
 ZBREAK *y:"B"
 ZBREAK
 ZBREAK $
 ZBREAK
 ZBREAK -*x
 ZBREAK
 ZBREAK --*x
 ZBREAK
 ZBREAK /CLEAR

For further examples of ZBREAK usage, refer to the Debugging chapter in Using ObjectScript.

220 ObjectScript Reference

Routine and Debugging Commands

See Also
• BREAK command

• FOR command

• OPEN command

• USE command

• Debugging chapter in Using ObjectScript

ObjectScript Reference 221

ZBREAK

ZINSERT
Inserts one or more lines of code into the current routine.

ZINSERT:pc "code":location ,...
ZI:pc "code":location ,...

Arguments

Optional — A postconditional expression.pc

A line of ObjectScript code, specified as a string literal (enclosed in quotation marks) or
a variable that contains a string literal. For executable code, the first character must be a
space. A line beginning with no space is treated as a label name. A line of code can include
a label name followed by executable code.

code

Optional — The line after which ZINSERT inserts the code. Can be a label name, a numeric
offset (+n) or a label name and a numeric offset. If you omit location, the code is inserted
at the current line location (edit pointer).

:location

Description
This command inserts a line of ObjectScript source code into the currently loaded routine and advances the edit pointer to
immediately after the inserted line. You can insert multiple lines of ObjectScript source code as a comma-separated series
of code:location arguments. Lines of code are inserted as separate insert operations in the order specified.

From the Terminal, use ZLOAD to load a routine. ZLOAD loads the INT code version of a routine. INT code does not
count or include preprocessor statements. INT code does not count or include completely blank lines from the MAC version
of the routine, whether in the source code or within a multiline comment. Once a routine is loaded, it becomes the currently
loaded routine for the current process in all namespaces. Therefore, you can insert or remove lines, display, execute, or
unload the currently loaded routine from any namespace, not just the namespace from which it was loaded.

You can only use the ZINSERT command when you enter it from the Terminal or when you call it using an XECUTE
command or a $XECUTE function. Specifying ZINSERT in the body of a routine results in a compile error. Any attempt
to execute ZINSERT from within a routine also generates an error.

• ZINSERT "code" inserts a specified line of ObjectScript code in the current routine at the current edit pointer position.

• ZINSERT "code":location inserts the specified line of code in the current routine after the specified line location. You
can specify a line location as the number of lines offset from the beginning of the routine, as a label, or as the number
of lines offset from a specified label.

After ZINSERT inserts a line of code, it resets the edit pointer to the end of this new line of code. This means the next
ZINSERT (or the next line of code in a ZINSERT comma-separated sequence of arguments) places its line of code directly
after the last inserted line, unless the next ZINSERT explicitly specifies a location.

ZINSERT incrementally compiles each line. You can execute the current routine using the DO command.

ZINSERT effects only the local copy of the current routine. It does not change the routine as stored on disk. To store
inserted lines, you must use the ZSAVE command to save the current routine.

You can access the $ZNAME special variable to determine the name of the current routine. You can use ZPRINT to display
multiple lines of the currently loaded routine.

The Edit Pointer

CAUTION: ZINSERT moves the edit pointer.

222 ObjectScript Reference

Routine and Debugging Commands

The edit pointer is set as follows:

• ZLOAD sets the edit pointer to the beginning of the routine.

• ZINSERT sets the edit pointer to immediately after the line it inserts. For example, specifying ZINSERT " SET
x=1":+4 then ZINSERT " SET y=2" inserts lines 5 and 6.

• ZREMOVE sets the edit pointer to the line it removes. For example, specifying ZREMOVE +4 then ZINSERT "
SET y=2" removes line 4 and replaces line 4 with the inserted line.

• ZPRINT (or PRINT) sets the edit pointer to the end of the lines it printed. For example, specifying ZPRINT then
ZINSERT " SET y=2" inserts the line at the end of the routine; specifying ZPRINT +1:+4 then ZINSERT " SET
y=2" inserts the line as line 5. The $TEXT function prints a single line from the current routine but does not change
the edit pointer.

• ZSAVE does not change the edit pointer.

• DO does not change the edit pointer.

Arguments

pc

An optional postconditional expression. InterSystems IRIS executes the command if the postconditional expression is true
(evaluates to a nonzero numeric value). InterSystems IRIS does not execute the command if the postconditional expression
is false (evaluates to zero). For further details, refer to Command Postconditional Expressions in Using ObjectScript.

code

A line of ObjectScript code, specified as a string literal (in quotes), or a variable that contains a string literal. This line of
code can contain one or more ObjectScript commands, a new label name, or both a label and one or more commands.
Because the code is inserted into a routine, it must follow ObjectScript formatting. Therefore, the first character of the code
string literal must either be a blank space (standard ObjectScript indentation) or a label. The enclosing quotation marks are
required. Since quotation marks enclose the line of code you are inserting, quotes within the code itself must be doubled.

You can use the CheckSyntax() method of the %Library.Routine class to perform syntax checking on a line of code before
inserting it. Both CheckSyntax() and ZINSERT require one or more spaces before an executable line of ObjectScript
code, and parse a line with no indentation as a label, or a label followed by executable code. Neither CheckSyntax() nor
ZINSERT parse macro preprocessor code.

location

The line after which ZINSERT will insert the code. It can take either of the following forms:

An expression that resolves to a positive integer that identifies a line location
as an offset number of lines from the beginning of the routine. ZINSERT inserts
its code line immediately after this specified line. To insert a line at the
beginning of the routine, specify +0. The plus sign is mandatory. If you omit
+offset, the line identified by label is located.

+offset

A existing line label in the current routine. Must be a literal value; a variable
cannot be used to specify label. Line labels are case-sensitive. If omitted,
+offset is counted from the beginning of the routine.

label

Specifies a label and a line count offset within the labelled section. If you omit
the +offset value, or specify label+0, InterSystems IRIS locates the label line
and inserts immediately after it.

label+offset

ObjectScript Reference 223

ZINSERT

Note: ZINSERT is only for use with the current routine. Attempting to specify label^routine for the location generates
a <SYNTAX> error.

Lines of code are numbered beginning with 1. Thus a location of +1 inserts a line of code after the first line of the routine.
To insert a line at the start of the routine or the start of a labelled section (before the existing first line), use an offset of +0.
For example:

 ZINSERT "Altstart SET c=12,d=8":+0

inserts the code line at the start of the routine. By using an offset of +0 (or omitting the location), you can insert a line into
an otherwise empty current routine.

You can use the ^ROUTINE global to return the line numbering for an INT routine. Note that ^ROUTINE returns the
version of the INT routine saved on disk; it does not return any unsaved changes made to the current routine. ^ROUTINE
does not change the edit pointer.

A label may be longer than 31 characters, but must be unique within the first 31 characters. ZINSERT matches only the
first 31 characters of a specified label. Label names are case-sensitive, and may contain Unicode characters.

The INT code lines include all labels, comments, and whitespace, with the exception that entirely blank lines in a MAC
routine, which are removed by the compiler, are neither displayed nor counted. Blank lines in a multi-line comment are
also removed. The #;, ##;, and /// comments in the MAC code may not appear in the INT code, and thus may affect
line counts and offsets. Refer to Comments in MAC Code for Routines and Methods for further details.

Examples
The following example inserts the code line SET x=24 after the fourth line within the current routine. Because this inserted
code line does not begin with a label, an initial space must be included as the required line start character.

 ZINSERT " SET x=24":+4

The following example inserts three code lines. It inserts SET x=24 after the fourth line within the current routine. It then
inserts SET z=1 at the current edit pointer position (just after SET x=24) because the second code line does not specify
a location It then sets SET y=1 at the new line location +5 (between SET x=24 and SET z=1):

 ZINSERT " SET x=24":+4," SET z=1"," SET y=1":+5

In the following example, assume that the currently loaded routine contains a label called "Checktest". The ZINSERT
command inserts a new line after the sixth line within Checktest (Checktest+6). This new line contains the label "Altcheck"
and the command SET y=0.

 ZINSERT "Altcheck SET y=0":Checktest+6

Note that because the inserted code line begins with the label “Altcheck”, no initial space is required after the quotation
mark.

The following example inserts the code line SET x=24 WRITE !,"x is set to ",x after the fourth line within the
current routine. Because an inserted code line is enclosed in quotation marks, the quotation marks in the WRITE command
must be doubled.

 ZINSERT " SET x=24 WRITE !,""x is set to "",x":+4

Notes

ZINSERT and ZREMOVE

You can use the ZREMOVE command to remove one or more lines of code from the currently executing routine. Thus
by using ZREMOVE and ZINSERT, you can substitute a new code line for an existing code line. These operations only
affect the copy of the routine currently being run by your process.

224 ObjectScript Reference

Routine and Debugging Commands

Note: ZINSERT inserts a line after the specified location. ZREMOVE removes a line at the specified location. For
example, if you insert a line with ZINSERT " SET x=1":+4, to remove this line you must specify ZREMOVE
+5.

ZINSERT, XECUTE, and $TEXT

You use the XECUTE command to define and insert a single line of executable code from within a routine. You use the
ZINSERT command to define and insert by line position a single line of executable code from outside a routine.

An XECUTE command cannot be used to define a new label. Therefore, XECUTE does not require an initial blank space
before the first command in its code line. ZINSERT can be used to define a new label. Therefore ZINSERT does require
an initial blank space (or the name of a new label) before the first command in its command line.

The $TEXT function permits you to extract a line of code by line position from within a routine. $TEXT simply copies
the specified line of code as a text string; it does not affect the execution of that line or change the current line location
(edit pointer) when extracting from the current routine. (Using $TEXT to extract code from a routine other than the current
routine does change the current line location.) $TEXT can supply a line of code to the XECUTE command. $TEXT can
also supply a line of code to a WRITE command, and thus supply a code line to the Terminal.

Using ZINSERT to Create a Routine

If there is no current routine, you can use ZINSERT to create an unnamed routine as the current routine.

1. At the Terminal prompt, issue a ZINSERT command specifying the first line of ObjectScript code. Commonly, this
line is either a label name or a label name followed by executable ObjectScript code. If this first line contains a label
name, you can use DO to execute this routine without saving it. Otherwise, you must use ZSAVE routine to name and
save this routine before you can execute this code.

2. At the Terminal prompt, issue additional ZINSERT commands to add lines to the current routine.

3. If you wish to save the routine, issue ZSAVE routine at the Terminal prompt to save this routine with the specified
name.

4. When done, use argumentless ZREMOVE to unload the current routine.

See Also
• XECUTE command

• ZLOAD command

• ZPRINT command

• ZREMOVE command

• ZSAVE command

• $TEXT function

• $ZNAME special variable

ObjectScript Reference 225

ZINSERT

ZLOAD
Loads a routine into the current routine buffer.

ZLOAD:pc routine
ZL:pc routine

Arguments

Optional — A postconditional expression.pc

Optional — The routine to be loaded, specified as a simple literal. The routine value is not
enclosed with quotes. It is does not have a caret (^) prefix or a file type suffix. It cannot be
specified using a variable or expression. If omitted, InterSystems IRIS loads an unnamed
routine from the current device.

routine

Description
The ZLOAD command loads the INT code version of an ObjectScript routine as the current routine. ZLOAD has two
forms:

• ZLOAD without an argument

• ZLOAD with an argument

You can only use the ZLOAD command when you enter it from the Terminal or when you call it using an XECUTE
command or a $XECUTE function. It should not be coded into the body of a routine because its operation would affect
the execution of that routine. Specifying ZLOAD in a routine results in a compile error. Any attempt to execute ZLOAD
from within a routine also generates an error.

Once you use ZLOAD to load a routine as the current routine, you can execute the current routine using the DO command,
edit the current routine using ZINSERT and argumented ZREMOVE, display routine lines with ZPRINT, save (and
optionally rename) the edited current routine using ZSAVE, and finally unload the current routine using an argumentless
ZREMOVE.

ZLOAD without an Argument

The ZLOAD command without an argument loads an unnamed ObjectScript routine into the routine buffer as the current
routine for the current process. You can subsequently name this routine using ZSAVE routine. Note that because the routine
is unnamed you cannot use the $ZNAME special variable to determine if a current routine is loaded.

Argumentless ZLOAD can be used in two ways:

• To load a routine from a sequential file or other device.

• To create a routine using the Terminal.

An argumentless ZLOAD command can specify a postconditional expression.

Load a Routine from a Device

To load a routine from a device, execute the following:

1. Issue an OPEN command to open the device.

2. Issue a USE command to make the device the current device.

3. Issue an argumentless ZLOAD command to load the routine from the device as the current routine.

226 ObjectScript Reference

Routine and Debugging Commands

Line loading will continue until InterSystems IRIS reads a null string line (""). This loaded routine has no name until you
file it with the ZSAVE routine command.

Create a Routine from the Terminal

You can use an argumentless ZLOAD to create an unnamed routine as the current routine from the Terminal:

1. At the Terminal prompt, issue an argumentless ZLOAD command.

2. On the line following, type the first ObjectScript command of the routine (not enclosed with quotes), then press Enter

twice. Commonly, this line is a label name or a label name followed by executable ObjectScript code. Executable
ObjectScript code must be indented.

3. At the Terminal prompt, issue ZINSERT commands to add more lines to this current routine.

4. Optionally, at the Terminal prompt, issue ZSAVE routine to save this routine with the specified name.

5. When done, use argumentless ZREMOVE to unload the current routine.

Alternatively, you can use ZINSERT to create an unnamed routine as the current routine from the Terminal.

ZLOAD with an Argument

ZLOAD routine loads the INT code version of an existing ObjectScript routine from the current namespace into the routine
buffer as the current routine for the current process. INT code does not count or include preprocessor statements.

ZLOAD does an implicit argumentless ZREMOVE when it loads the routine. That is, ZLOAD deletes any routine previously
loaded, replacing it with the specified routine. You can use the $ZNAME special variable to determine the currently loaded
routine. When ZLOAD loads a routine, it positions the line pointer at the beginning of the routine.

Once loaded, a routine remains the current routine for the process until you load another routine explicitly with a ZLOAD
command, remove it with an argumentless ZREMOVE, or implicitly load another routine with a DO or a GOTO command.

As long as the routine is current, you can edit the routine (with ZINSERT and ZREMOVE commands), display one or more
lines with the ZPRINT command, or return a single line with the $TEXT function.

Arguments

pc

An optional postconditional expression. InterSystems IRIS executes the command if the postconditional expression is true
(evaluates to a nonzero numeric value). InterSystems IRIS does not execute the command if the postconditional expression
is false (evaluates to zero). For further details, refer to Command Postconditional Expressions in Using ObjectScript.

routine

The name of an existing ObjectScript routine in the current namespace to be loaded as the current routine. Routine names
are case-sensitive.

You must have execute permission for routine to be able to ZLOAD it. If you do not have this permission, InterSystems
IRIS generates a <PROTECT> error.

If the specified routine does not exist, the system generates a <NOROUTINE> error. Note that a failed attempt to ZLOAD
a routine removes the currently loaded routine.

All subsequent errors for this process append the name of the currently loaded routine. This occurs whether or not the error
has any connection to the routine, and occurs across namespaces. For further details, refer to the $ZERROR special variable.

ObjectScript Reference 227

ZLOAD

Notes

Namespaces

ZLOAD can only load a routine that exists in the current namespace. Once a routine is loaded, it becomes the currently
loaded routine for this process in all namespaces. Therefore, you can insert or remove lines, display, execute, or unload the
currently loaded routine from any namespace, not just the namespace from which it was loaded. ZSAVE saves the currently
loaded routine in the current namespace. Therefore, if the ZLOAD namespace differs from the ZSAVE namespace, the
modified version of the routine is saved in the namespace that is current when ZSAVE is issued. Changes are not saved in
the version of the routine in the ZLOAD namespace.

Routine Behavior with ZLOAD

If you specify ZLOAD routine, InterSystems IRIS looks for the routine in the pool of routine buffers in memory. If the
routine is not there, InterSystems IRIS loads the ObjectScript object code version of the routine into one of the buffers.
The ObjectScript INT (intermediate) code remains in the corresponding ^ROUTINE global of the current namespace, but
is updated if you make edits then use ZSAVE to save the changes.

For example, ZLOAD MyTest loads the object code version of the routine MyTest (if it is not already loaded). The MyTest
routine must be in the current namespace.

In a multi-user environment, you should establish a LOCK protocol to prevent more than one user concurrently loading
and modifying the same routine. Each user should acquire an exclusive lock before issuing a ZLOAD on the corresponding
routine.

If you omit routine, ZLOAD loads new lines of code that you enter from the current device, usually the keyboard, until you
terminate the code by entering a null line (that is, just press <Return>). This routine has no name until you save it with a
subsequent ZSAVE command.

^rINDEX Routine Timestamp and Size

You can use the ^rINDEX global to return the local timestamp and number of characters for the MAC, INT, and OBJ code
versions of a routine, as shown in the following Terminal example:

USER>ZWRITE ^rINDEX("MyTest")
^rINDEX("MyTest","INT")=$lb("2019-12-13 06:37:49",475)
^rINDEX("MyTest","MAC")=$lb("2019-12-13 06:34:04.235011",452)
^rINDEX("MyTest","OBJ")=$lb("2019-12-13 06:37:49",476)
USER>

The MAC timestamp is when the MAC code was last saved after being modified. The INT and OBJ timestamps are when
the MAC code was last compiled. Issuing a ZSAVE after modifying the INT code version updates the INT and OBJ
timestamps and character counts. Issuing a ZSAVE without modifying the INT code updates just the OBJ timestamp.

INT Code and the ^ROUTINE Global

The ObjectScript INT (intermediate) code for a routine is stored in the ^ROUTINE global. ^ROUTINE can only access
routines in the current namespace. ̂ ROUTINE displays the INT code version of the routine on disk, not the currently loaded
routine.

• You can display the INT code for the specified routine using the ZWRITE command:

 ZWRITE ^ROUTINE("MyRoutine")

This display includes the following ^ROUTINE subscripts for the routine MyRoutine:

– ^ROUTINE("MyRoutine",0)="65309,36923.81262": The local date and time in $HOROLOG format
when the INT code version of this routine was last compiled. This timestamp is updated even if no changes were
made to the MAC code before re-compiling. If the specified routine is the currently loaded routine, issuing a
ZSAVE updates this value if changes were made to the currently loaded routine.

228 ObjectScript Reference

Routine and Debugging Commands

– ^ROUTINE("MyRoutine",0,0)=8: The number of lines in the INT code version of the routine.

– ^ROUTINE("MyRoutine",0,1)="Main": The first line of the INT code version of the routine. In this case,
the label Main.

– ^ROUTINE("MyRoutine",0,2)=" WRITE ""This is line 2"",!": The second line of the INT code
version of the routine. In this case, an indented line of executable ObjectScript code. Additional lines of code
follow the same pattern.

^ROUTINE does not reflect ZINSERT, and ZREMOVE changes to the current routine until these changes are saved
using ZSAVE.

If the routine was loaded from a MAC code source, the following ^ROUTINE subscripts are also displayed:

– ^ROUTINE("MyRoutine","GENERATED")=1: Indicating that the INT code was generated.

– ^ROUTINE("MyRoutine","INC","%occStatus")="65301,60553": If the MAC version contains #Include
files, one of these subscripts is included for each #Include file, specifying the timestamp when the #Include file
was created.

– ^ROUTINE("MyRoutine","SIZE")=134: The number of characters in the INT code version of the source
file.

– ^ROUTINE("MyRoutine","MAC")="65309,36920.45721": The local date and time in $HOROLOG format
when the MAC version of the routine was last saved. This timestamp is only updated if the MAC code was modified,
saved, and then re-compiled.

• You can view and edit the contents of the ^ROUTINE global using the Management Portal. Select System Explorer,
Globals, then select the desired namespace from the drop-down list of namespaces in the left-hand column.

• You can delete the ObjectScript INT (intermediate) code using the KILL command:

 KILL ^ROUTINE("MyRoutine")

If the INT code for the routine is unavailable (has been KILLed), the routine can still be executed, but the INT code
cannot be modified in the currently loaded routine. ZLOAD, ZINSERT, and ZREMOVE issue no errors, but ZSAVE
fails with a <NO SOURCE> error.

ZLOAD and Language Modes

When a routine is loaded, the current language mode changes to the loaded routine’s language mode. At the conclusion of
called routines, the language mode is restored to the language mode of the calling routine. However, at the conclusion of
a routine loaded with ZLOAD the language mode is not restored to the previous language mode. For further details on
checking and setting language modes, refer to the LanguageMode() method of the %SYSTEM.Process class.

Examples
The following Terminal example establishes an exclusive lock, then loads the corresponding routine MyRoutine. It displays
the first 10 lines of the source code, adds a line of ObjectScript code as line 2, re-displays the source code, saves the changes
and releases the lock:

USER>LOCK +^ROUTINE("MyRoutine")

USER>ZLOAD MyRoutine

USER>ZPRINT +1:+10

USER>ZINSERT " WRITE ""Hello, World!""":+1

USER>ZPRINT +1:+11

USER>ZSAVE

USER>LOCK -^ROUTINE("MyRoutine")

ObjectScript Reference 229

ZLOAD

The following Terminal example loads the first routine from the device dev:

USER>OPEN dev
USER>USE dev
USER>ZLOAD

See Also
• DO command

• OPEN command

• USE command

• XECUTE command

• ZREMOVE command

• ZSAVE command

• $XECUTE function

• $ZNAME special variable

230 ObjectScript Reference

Routine and Debugging Commands

ZPRINT
Displays lines of code from the current routine on the current device.

ZPRINT:pc lineref1:lineref2
ZP:pc lineref1:lineref2

Arguments

Optional — A postconditional expression.pc

Optional — The line to be displayed, or the first line in a range of lines to be displayed,
specified as a literal. Can be a label name, a numeric offset (+n) or a label name and
a numeric offset. If omitted, the entire current routine is displayed.

lineref1

Optional — The last line in a range of lines to be displayed, specified as a literal. To
define a range, lineref1 must be specified.

:lineref2

Description
The ZPRINT command displays lines of code from the currently loaded routine. Use ZLOAD to load a routine. ZLOAD
loads the INT code version of a routine. For the name of the current routine, access the $ZNAME special variable.

The output is sent to the current device. When invoked from the Terminal, the current output device defaults to the Terminal.
You can establish the current device with the USE command. For the device ID of the current device, access the $IO special
variable.

Note: The ZPRINT and PRINT commands are functionally identical.

ZPRINT displays the INT code version of a routine. INT code does not count or include preprocessor statements. Completely
blank lines from the MAC version of the routine, whether in the source code or within a multiline comment, are removed
by the compiler and are therefore neither displayed nor counted in the INT routine. For this reason, ZPRINT displays and
counts the following multi-line comment in the MAC routine as two lines, not three:

 /* This comment includes

 a blank line */

The #;, ##;, and /// comments in the MAC code may not appear in the INT code, and thus may affect line counts and
offsets. Refer to Comments in MAC Code for Routines and Methods for further details.

ZPRINT sets the edit pointer to the end of the lines it printed. For example, specifying ZPRINT then ZINSERT " SET
y=2" inserts the line at the end of the routine; specifying ZPRINT +1:+4 then ZINSERT " SET y=2" inserts the line
as line 5. The $TEXT function prints a single line from the current routine but does not change the edit pointer.

ZPRINT has two forms:

• Without arguments

• With arguments

ZPRINT without arguments displays all the lines of code in the currently loaded routine.

ZPRINT with arguments displays the specified lines of code. ZPRINT lineref1 displays the line specified by lineref1.
ZPRINT lineref1:lineref2 displays the range of lines starting with lineref1 and ending with lineref2 (inclusive).

The lineref arguments count lines and line offsets using the INT code version of the routine. After modifying a routine,
you must re-compile the routine for ZPRINT to correctly count lines and line offsets that correspond to the source (MAC)
version.

ObjectScript Reference 231

ZPRINT

You can use the $TEXT function to return a single line of INT code.

Arguments

pc

An optional postconditional expression. InterSystems IRIS executes the ZPRINT command if the postconditional expression
is true (evaluates to a nonzero numeric value). InterSystems IRIS does not execute the command if the postconditional
expression is false (evaluates to zero). For further details, refer to Command Postconditional Expressions in Using
ObjectScript.

lineref1

The line to be printed or the first in a range of lines to be displayed or printed. Can be specified in either of the following
syntactical forms:

• +offset where offset is a positive integer specifying the line number within the current routine. +1 is the first line in
the routine, which may be a label line. +0 always returns the empty string.

• label[+offset] where label is a label within the routine and offset is the line number counting from the label (with the
label itself counting as offset 0). If you omit the offset option, or specify label+0, InterSystems IRIS prints the label
line. label+1 prints the line after the label.

A label may be longer than 31 characters, but must be unique within the first 31 characters. ZPRINT matches only the
first 31 characters of a specified label. Label names are case-sensitive, and may contain Unicode characters.

lineref2

The last line in a range of lines to be displayed. Specify in the same way as lineref1.lineref1 must be specified to specify
lineref2. lineref1 and lineref2 are separated by a colon (:) character. No whitespace may appear between the colon and
lineref2.

If lineref2 specifies a label or offset earlier in the line sequence than lineref1, ZPRINT ignores lineref2 and displays the
single line of code specified by lineref1.

If lineref2 specifies a non-existent label or offset, ZPRINT displays from lineref1 to the end of the routine.

Examples
Given the following lines of code:

AviationLetters
Abc
 WRITE "A is Abel",!
 WRITE "B is Baker",!
 WRITE "C is Charlie",!
Def WRITE "D is Delta",!
 WRITE "E is Epsilon",!
 /* Not sure about E */
 WRITE "F is Foxtrot",!

ZPRINT with no lineref arguments displays all nine lines, including the comment line.

ZPRINT +0 displays the empty string.

ZPRINT +1 displays the AviationLetters label.

ZPRINT +8 displays the /* Not sure about E */ comment line.

ZPRINT +10 displays the empty string.

ZPRINT Def or ZPRINT Def+0 display the Def WRITE "D is Delta",! line. This is a label line that also includes
executable code.

232 ObjectScript Reference

Routine and Debugging Commands

ZPRINT Def+1 displays the WRITE "E is Epsilon",! line.

Range Examples

ZPRINT +0:+3 displays the empty string.

ZPRINT +1:+3 displays the first three lines.

ZPRINT +3:+3 displays the third line.

ZPRINT +3:+1 displays the third line; lineref2 is ignored.

ZPRINT +3:Abc+1 displays the third line. Both lineref1 and lineref2 are specifying the same line.

ZPRINT +3:abc+1 displays from the third line to the end of the routine. Line labels are case-sensitive, so the range endpoint
was not found.

ZPRINT Abc+1:+4 displays lines 3 and 4.

ZPRINT Abc+1:Abc+2 displays lines 3 and 4.

ZPRINT Abc:Def displays lines 2, 3, 4, 5, and 6.

ZPRINT Abc+1:Def displays lines 3, 4, 5, and 6.

ZPRINT Def:Abc displays the Def WRITE "D is Delta",! line. Because lineref2 is earlier in the code, it is ignored.

See Also
• PRINT command

• ZINSERT command

• ZLOAD command

• ZREMOVE command

• ZSAVE command

• ZZPRINT command

• $TEXT function

• $IO special variable

• $ZNAME special variable

• Comments in Using ObjectScript

• Labels in Using ObjectScript

• The Spool Device in I/O Device Guide

ObjectScript Reference 233

ZPRINT

ZREMOVE
Deletes a line or a range of lines from the current routine, or unloads the current routine.

ZREMOVE:pc lineref1:lineref2 ,...
ZR:pc lineref1:lineref2 ,...

Arguments

Optional — A postconditional expression.pc

Optional — The position of a single line, or the first line in a range of lines to be removed.
Can be specified as a literal (+5) or a variable (+a). If you omit lineref1, ZREMOVE
deletes the entire current routine.

lineref1

Optional — The position of the last line in a range of lines to be removed.:lineref2

Description
The ZREMOVE command operates on the currently loaded routine for the current process. Use ZLOAD to load the current
routine. ZLOAD loads the INT code version of a routine. INT code does not count or include preprocessor statements.
INT code does not count or include completely blank lines from the MAC version of the routine, whether in the source
code or within a multiline comment. Once a routine is loaded, it becomes the currently loaded routine for the current process
in all namespaces. Therefore, you can insert or remove lines, display, execute, or unload the currently loaded routine from
any namespace, not just the namespace from which it was loaded.

You can only use the ZREMOVE command when you enter it from the Terminal or when you call it using an XECUTE
command or a $XECUTE function. Specifying ZREMOVE in the body of a routine results in a compile error. Any attempt
to execute ZREMOVE from within a routine also generates an error.

ZREMOVE has two forms:

• Without an argument unloads the current routine.

• With arguments removes one or more lines of ObjectScript source code from the current routine.

Without an Argument

ZREMOVE without an argument removes (unloads) the currently loaded routine. Following an argumentless ZREMOVE,
$ZNAME returns the empty string rather than the name of the current routine, and ZPRINT displays no lines. Because the
routine has been removed, you cannot use ZSAVE to save the routine; attempting to do so results in a <COMMAND>
error.

The following Terminal session shows this operation:

USER>ZLOAD myroutine

USER>WRITE $ZNAME
myroutine
USER>ZREMOVE

USER>WRITE $ZNAME

USER>

An argumentless ZREMOVE can specify a postconditional expression.

ZREMOVE with an argument can remove all the lines of the current routine, but does not remove the current routine itself.
For example, ZREMOVE +1:NonexistentLabel removes all of the lines of the current routine, but you can use ZINSERT
to insert new lines and use ZSAVE to save the routine.

234 ObjectScript Reference

Routine and Debugging Commands

With Arguments

ZREMOVE with arguments erases code lines in the current routine. ZREMOVE lineref1 erases the specified line.
ZREMOVE lineref1:lineref2 erases the range for lines starting with the first line reference and ending with the second
line reference, inclusive. It advances the edit pointer to immediately after the removed line(s). Therefore a ZREMOVE
lineref1 followed by a ZINSERT replaces the specified line.

ZREMOVE can remove multiple lines (or multiple ranges) of ObjectScript source code by specifying a comma-separated
series of any combination of lineref1 or lineref1:lineref2 arguments. Each specified line or range of lines of code is removed
as a separate remove operation in the order specified.

You can use ZPRINT to display multiple lines of the currently loaded routine. You can execute the current routine using
the DO command.

Only the local copy of the routine is affected, not the routine as stored on disk. To store the modified code, you must use
the ZSAVE command to save the routine.

The following Terminal session shows this operation. This example uses a dummy routine (^myroutine) in which each line
sets a variable to a string naming that line:

USER>ZLOAD myroutine

USER>ZPRINT +8
 WRITE "this is line 8",!
USER>ZREMOVE +8

USER>PRINT +8
 WRITE "this is line 9",!
USER>

Arguments

pc

An optional postconditional expression. InterSystems IRIS executes the command if the postconditional expression is true
(evaluates to a nonzero numeric value). InterSystems IRIS does not execute the command if the postconditional expression
is false (evaluates to zero). For further details, refer to Command Postconditional Expressions in Using ObjectScript.

lineref1

The line to be removed, or the first in a range of lines to be removed. It can take any of the following formats:

Specifies a line number within the routine. A positive integer, counting from 1.+offset

Specifies a label within the routine. ZREMOVE label erases only the label line
itself. This includes any code that follows the label on that line.

label

Specifies a label and the number of line to offset within the labeled section,
counting the label line as line 1.

label+offset

A label may be longer than 31 characters, but must be unique within the first 31 characters. ZREMOVE matches only the
first 31 characters of a specified label. Label names are case-sensitive, and may contain Unicode characters.

You can use lineref1 to specify a single line of code to remove. You specify the code line either as an offset from the
beginning of the routine (+lineref1) or as an offset from a specified label (label+lineref1).

• ZREMOVE +7: removes the 7th line counting from the beginning of the routine.

• ZREMOVE +0: performs no operation, generates no error.

• ZREMOVE +999: if 999 is greater than the number of lines in the routine, performs no operation, generates no error.

• ZREMOVE Test1: removes the label line Test1.

ObjectScript Reference 235

ZREMOVE

• ZREMOVE Test1+0: removes the label line Test1.

• ZREMOVE Test1+1: removes the first line following label line Test1.

• ZREMOVE Test1+999: removes the 999th line following label line Test1. This line may be in another labeled module.
If 999 is greater than the number of lines from label Test1 to the end of the routine, performs no operation, generates
no error.

The INT code lines include all labels, comments, and whitespace found in the MAC version of the routine, with the
exception that entirely blank lines in a MAC routine, which are removed by the compiler, are neither displayed nor counted
in INT code. Blank lines in a multi-line comment are also removed. The #;, ##;, and /// comments in the MAC code
may not appear in the INT code, and thus may affect line counts and offsets. Refer to Comments in MAC Code for Routines
and Methods for further details.

lineref2

The last line in a range of lines to be removed. Specify lineref2 in any of the formats used for lineref1. The colon prefix (:)
is mandatory.

You specify a range of lines as +lineref1:+lineref2. ZREMOVE removes the range of lines, inclusive of lineref1 and
lineref2. If lineref1 and lineref2 refer to the same line, ZREMOVE removes that single line.

If lineref2 appears earlier in the routine code than lineref1, no operation is performed and no error is generated. For example:
ZREMOVE +7:+2, ZREMOVE Test1+1:Test1, ZREMOVE Test2:Test1 would perform no operation.

Note: Use caution when specifying a label name in lineref2. Label names are case-sensitive. If lineref2 contains a label
name that does not exist in the routine, ZREMOVE removes the range of lines from lineref1 through the end of
the routine.

Examples
This command erases the fourth line within the current routine.

 ZREMOVE +4

This command erases the sixth line after the label Test1; Test1 is counted as the first line.

 ZREMOVE Test1+6

This command erases lines three through ten, inclusive, within the current routine.

 ZREMOVE +3:+10

This command erases the label line Test1 through the line that immediately follows it, within the current routine.

 ZREMOVE Test1:Test1+1

This command erases all of the line from label Test1 through label Test2, inclusive of both labels, within the current routine.

 ZREMOVE Test1:Test2

See Also
• PRINT command

• XECUTE command

• ZINSERT command

• ZLOAD command

• ZSAVE command

236 ObjectScript Reference

Routine and Debugging Commands

• $ZNAME special variable

ObjectScript Reference 237

ZREMOVE

ZSAVE
Saves the current routine.

ZSAVE:pc routine
ZS:pc routine

Arguments

Optional — A postconditional expression.pc

Optional — A new name for the routine, specified as a simple literal. Must be a valid
identifier. Routine names are case-sensitive.The routine value is not enclosed with quotes.
It is does not have a caret (^) prefix or a file type suffix. It cannot be specified using a
variable or expression.

routine

Description
The ZSAVE command saves the current routine. You use ZLOAD to load the routine, then use ZSAVE to save any changes
you have made to the routine with ZINSERT and ZREMOVE commands.

You can only use the ZSAVE command when you enter it from the Terminal or when you call it using an XECUTE
command or a $XECUTE function. It should not be coded into the body of a routine because its operation would affect
the execution of that routine. Specifying ZSAVE in a routine results in a compile error. Any attempt to execute ZSAVE
from within a routine also generates an error.

ZSAVE does not move the edit pointer.

If you ZLOAD a routine as the current routine, then:

• ZSAVE the current routine after modifying it using ZINSERT and/or ZREMOVE: InterSystems IRIS updates the
^rINDEX("MyRoutine","INT") and ^rINDEX("MyRoutine","OBJ") globals to the current timestamp and
character count, and updates and the ^ROUTINE("MyRoutine",0) global.

• ZSAVE the current routine without modifying the current routine: InterSystems IRIS updates the
^rINDEX("MyRoutine","OBJ") global; it does not change the ̂ rINDEX("MyRoutine","INT") global or the
^ROUTINE("MyRoutine",0) global.

Refer to INT Code and the ^ROUTINE Global for further details.

ZSAVE has two forms:

• Without an argument

• With an argument

ZSAVE Without an Argument

ZSAVE without an argument saves the current routine under its current name. This is the name specified in ZLOAD, or
the name under which you previously saved it using ZSAVE. ZSAVE saves the routine in the current namespace.

The following example loads a routine from the USER namespace, modifies the routine, then changes to a different
namespace and performs a ZSAVE. The results of these operations are that there are now routines named MyRoutine in
both the USER and SAMPLES namespace. The MyRoutine in SAMPLES contains the inserted line of code. The MyRoutine
in USER does not contain the inserted line of code:

USER>ZLOAD MyRoutine

USER>ZPRINT +1:+4

238 ObjectScript Reference

Routine and Debugging Commands

 WRITE "this is line 1",!
 WRITE "this is line 2",!
 WRITE "this is line 3",!
 WRITE "this is line 4",!

USER>ZINSERT " WRITE 123,!":+3

USER>ZPRINT +1:+5
 WRITE "this is line 1",!
 WRITE "this is line 2",!
 WRITE "this is line 3",!
 WRITE 123,!
 WRITE "this is line 4",!

USER>ZNSPACE "SAMPLES"

SAMPLES>ZPRINT +1:+5
 WRITE "this is line 1",!
 WRITE "this is line 2",!
 WRITE "this is line 3",!
 WRITE 123,!
 WRITE "this is line 4",!

SAMPLES>ZSAVE

If the current routine does not yet have a name, an argumentless ZSAVE generates a <COMMAND> error.

An argumentless ZSAVE command can specify a postconditional expression.

ZSAVE With an Argument

ZSAVE routine saves the current routine to disk as the specified routine name. It makes the specified routine the current
routine. For example, if you load a routine named MyRoutine, modify it, then save it with ZSAVE MyNewRoutine, the
current routine is now MyNewRoutine, which contains the changes. The routine named MyRoutine does not contain these
changes, and it is no longer loaded as the current routine.

ZSAVE routine saves the current routine in the current namespace. For example, if you load a routine named MyRoutine
from the USER namespace, modify the routine, then change to the SAMPLES namespace and performs a ZSAVE
MyNewRoutine, MyNewRoutine is saved in namespace SAMPLES, not the USER namespace.

If use the XECUTE command to invoke ZSAVE routine, the system creates a Load frame to preserve the current routine.
When the XECUTE command concludes, InterSystems IRIS uses this Load frame to restore the routine name prior to the
XECUTE as the current routine. This is shown in the following example:

 WRITE "Current routine name",!
 WRITE "initial name: ",$ZNAME,!
 SET x = "WRITE $ZNAME"
 SET y = "ZSAVE mytest"
 SET z = "WRITE "" changed to "",$ZNAME,!"
 XECUTE x,y,z
 WRITE "restored name: ",$ZNAME,!

ZSAVE routine is used to name a routine loaded with an argumentless ZLOAD.

ZSAVE routine is used to name a nameless routine created by ZINSERT commands.

Arguments

pc

An optional postconditional expression. InterSystems IRIS executes the command if the postconditional expression is true
(evaluates to a nonzero numeric value). InterSystems IRIS does not execute the command if the postconditional expression
is false (evaluates to zero). For further details, refer to Command Postconditional Expressions in Using ObjectScript.

routine

A name under which to save the routine. routine must be a valid routine name. You can use the $ZNAME("string",1)
function to determine if string is a valid routine name. You can use the $ZNAME special variable to determine the name
of the currently loaded routine.

ObjectScript Reference 239

ZSAVE

Commonly, routine is a new name for the routine, but it can be the current routine name. If a routine by that name already
exists in the current namespace, InterSystems IRIS overwrites it. Note that you are not asked to confirm the overwrite. A
routine name must be unique within the first 255 characters; routine names longer than 220 characters should be avoided.

If you omit routine, the system saves the routine under its current name. If no current name exists, ZSAVE generates a
<COMMAND> error.

Example
The following Terminal session example executes a ZSAVE command to save the currently loaded routine:

USER>DO ^myroutine
this is line 8
this is line 9
USER>ZLOAD myroutine

USER>PRINT +8
WRITE "this is line 8",!
USER>ZREMOVE +8

USER>PRINT +8
WRITE "this is line 9",!
USER>ZSAVE myroutine

USER>DO ^myroutine
this is line 9
USER>

Notes

ZSAVE and Routine Recompilation

If you have issued a command that modifies source code, ZSAVE recompiles and saves the routine. If the source code for
the routine is unavailable, ZSAVE fails with a <NO SOURCE> error and does not replace the existing object code. For
example, the following commands load the %SS object code routine, attempt to remove lines from the (nonexistent) source
code, and then attempt to save to the ^test global. This operation fails with a <NO SOURCE> error:

 ZLOAD %SS ZREMOVE +3 ZSAVE ^test

If you have not issued a command that modifies source code, ZSAVE saves the object code in the specified routine.
(Obviously, no recompile occurs.) For example, the following commands load the %SS object code routine and then save
it to the ^test global. This operation succeeds:

 ZLOAD %SS ZSAVE ^test

ZSAVE with % Routines

You receive a <PROTECT> error if you try to ZSAVE a %routine to a remote dataset, even if that dataset is the current
dataset for the process. The percent sign prefix is used for the names of non-modifiable routines, such as system utilities.

Concurrent ZSAVE Operations

When using ZSAVE in a networked environment, a situation may occur in which two different jobs might concurrently
save a routine and assign it the same name. This operation has the potential for one routine overwriting part of the other,
producing unpredictable results. When this possibility exists, acquire an advisory lock on the routine before the ZSAVE
operation. For example, LOCK ^ROUTINE("name"). For further details, refer to the LOCK command. When running a
job across ECP, the saved source is more vulnerable to such concurrent saves because local buffer protection is not visible
to other clients.

See Also
• XECUTE command

• ZLOAD command

240 ObjectScript Reference

Routine and Debugging Commands

• ZINSERT command

• ZREMOVE command

• $ZNAME special variable

ObjectScript Reference 241

ZSAVE

ZZPRINT
Displays one or more source code lines from a routine.

ZZPRINT:pc "entry+offset^routine":before:after

Arguments

Optional — A postconditional expression.pc

Optional — The name of an entry (label) within routine. If omitted, ZZPRINT begins at the
start of routine (line 0).

entry

Optional — An integer specifying the number of lines to offset from entry (if specified), or
from the beginning of routine (if entry is omitted). An offset requires the plus sign (+) prefix.
Commonly offset is a positive integer. An offset can be a negative number; for example,
"subsect+-3^mytest", which displays the line 3 lines prior to subsect. If offset is omitted,
display begins at start of entry.

offset

The routine from which to display source code lines. A routine name is always preceded
by a caret (^) prefix.

routine

Optional — A positive integer count specifying the number of lines before the line specified
in "entry+offset^routine" to display. Does not include the "entry+offset^routine"
line.

before

Optional — A positive integer count specifying the number of lines after the line specified
in "entry+offset^routine" to display. Does not include the "entry+offset^routine"
line.

after

Description
The ZZPRINT command displays one or more source code lines from a specified ObjectScript routine. It can display a
designated line of code and a specified number of lines that appear before and/or after that designated line of source code,
enabling you to see it in context. The entry value specifies a starting point for display. However, ZZPRINT does not limit
its display to the specified entry; offset, before, and after may include source code lines in prior or subsequent entries.

The displayed lines include all labels, comments, and whitespace, with the exception of entirely blanks lines. A blank line,
whether in code or within a multiline comment, is neither displayed nor counted. For this reason, ZZPRINT displays and
counts the following multi-line comment as two lines, not three:

 /* This comment includes

 a blank line */

ZZPRINT does not count or display preprocessor statements.

Command Delimiters and Blank Space Requirements

The delimiting quotation marks (" ") are required. The opening quotation mark must appear exactly one space after the
command name or postconditional expression. Any number of spaces can appear following the opening quotation mark or
proceeding or following the closing quotation mark.

The caret (^) prefix to the routine name is required. If you specify an offset, any number of spaces can precede the caret
prefix. If you do not specify an offset, there must be no spaces between the entry name and caret prefix to the routine name.

The plus sign (+) is required to specify an offset. The plus sign must immediately follow the entry name (if specified). A
plus sign not immediately followed by an integer represents an offset of zero. For example, a plus sign immediately followed

242 ObjectScript Reference

Routine and Debugging Commands

by the caret (^) prefix, by a space, or by a non-number character all represent an offset of zero. A plus sign immediately
followed by a integer represents a positive offset. A plus sign immediately followed by a negative integer represents a
negative offset.

A colon (:) delimiter is required to specify a before line count. To specify an after line count you must specify both colon
delimiters, whether or not you specify a before value. Any number of spaces are permitted before or after these colon
delimiters.

Arguments

pc

An optional postconditional expression. InterSystems IRIS executes the command if the postconditional expression is true
(evaluates to a nonzero numeric value). InterSystems IRIS does not execute the command if the postconditional expression
is false (evaluates to zero). For further details, refer to Command Postconditional Expressions in Using ObjectScript.

entry

The name of an entry within routine. Entry names are case-sensitive. If routine does not contain the specified entry, the
system generates a <NOLABEL> error.

offset

An integer specifying the number of lines to offset from the beginning of entry (if specified), or the beginning of routine.
Omitting offset is the same as an offset of zero. An offset of zero from entry is the entry label line itself (line 1). An offset
of zero from routine is the (nonexistent) line prior to the beginning of the routine (line 0). Therefore, to display a comment
line at the beginning of a routine, you must specify an offset of 1 ("+1^mytest").

Offset counts include all source code lines except preprocessor statements and completely blank lines. These are neither
displayed nor counted. An offset that exceeds the available lines in routine when counting from the specified (or implied)
entry point returns a null string.

routine

The name of the routine from which to display source code lines. Routine names are case-sensitive. If the specified routine
does not exist, the system generates a <NOROUTINE> error.

You must have read permission for routine to be able to ZZPRINT it. If you do not have this permission, InterSystems
IRIS generates a <PROTECT> error.

before

A positive integer specifying the number of lines to display before the specified line. This enables you to view a source
code line in the context of the lines immediately prior to it. This is a count of lines backwards from a designated program
line. The before count does not include the program line designated by "entry+offset^routine". If the before count
is larger than the number of available code lines, ZZPRINT displays the available code lines; it does not issue an error.

after

A positive integer specifying the number of lines to display after the specified line. This enables you to view a source code
line in the context of the lines immediately following it. This is a count of lines forwards from a designated program line.
The after count does not include the program line designated by "entry+offset^routine". If the after count is larger
than the number of available code lines, ZZPRINT displays the available code lines; it does not issue an error.

When you specify an after value, you can specify or omit a before value:

• To display a designated program line and a specified number of lines after that line, specify a positive integer for after
and a value of 0 for before.

ObjectScript Reference 243

ZZPRINT

• To display all lines in the routine prior to the designated program line and a specified number of lines after that line,
specify an after value without specifying a before value. (Just specify the placeholder colon.) If you specify an after
without a before, ZZPRINT displays from the start of routine to the location after the designated program line specified
by the after line count.

• To display a specified number of lines before and after a designated program line, specify a positive integer for before
and a positive integer for after.

See Also
• PRINT command

• ZPRINT command

• $TEXT function

• Comments in Using ObjectScript

• Labels in Using ObjectScript

244 ObjectScript Reference

Routine and Debugging Commands

ObjectScript Functions

A function performs an operation and returns a value. This value may be the result of the operation, or an indicator that the
operation completed successfully or failed. By convention, InterSystems IRIS® functions that set a variable to a value set
the variable, then return the value of that variable prior to the operation.

This document describes system functions (also known as intrinsic functions). System functions are identified by a $
character prefix to the name and parentheses following the name. The parentheses are not specified when referring to a
function in documentation. You can supplement these system functions by creating user-supplied functions (also known
as extrinsic functions). User-supplied functions are identified by a $$ prefix.

The names of ObjectScript special variables also begin with a $ character, but special variables have no parentheses.

For more information on ObjectScript functions generally, see the Functions description in the “ Introducing ObjectScript”
chapter of Using ObjectScript; for more information on defining your own functions, see User-Defined Code in Using
ObjectScript.

To invoke a system function, use the form:

$name(parameters)

The name of the function. The preceding dollar sign ($) is required. Function names
are shown here in all uppercase letters, but they are, in fact, not case-sensitive.You
can abbreviate most function names. In the Synopsis for each function, the full name
syntax is first presented, and below it is shown the abbreviated name (if one exists).

name

One or more values to be passed to the function. Function arguments, or parameters,
are always enclosed in parentheses and follow the function name. The parentheses
are mandatory, even if the function has no parameters.

Multiple parameters are separated from each other by commas.The parameters are
positional and must match the order of the parameters expected by the function.
Missing parameters in this sequence can be indicated by supplying the appropriate
number of commas; no trailing commas are required for parameters missing from
the end of the parameter list.

Spaces are permitted anywhere in the parameter list. No spaces are permitted
between name and the open parenthesis character.

parameters

The Synopsis for each function contains only literal syntactical punctuation. The Synopsis does not include punctuation
for format conventions, such as what parameters of the syntax are optional. This information is provided in the table of
parameters immediately following the Synopsis.

The one exception is the ellipsis (...). An ellipsis following a comma indicates that the parameter (or parameter group)
preceding the comma can be repeated multiple times as a comma-separated list.

Any platform-specific function is marked with the name of the platform that supports it. Any function that is not marked
with a platform abbreviation is supported by all InterSystems IRIS® platforms.

ObjectScript Reference 245

$ASCII
Converts a character to a numeric code.

$ASCII(expression,position)
$A(expression,position)

Parameters

The character to be converted.expression

Optional — The position of a character within a character string, counting from 1.
The default is 1.

position

Description
$ASCII returns the character code value for a single character specified in expression. This character can be an 8-bit
(extended ASCII) character or a 16-bit (Unicode) character. The returned value is a positive integer.

The expression parameter may evaluate to a single character or to a string of characters. If expression evaluates to a string
of characters, you can include the optional position parameter to indicate which character you want to convert.

Parameters

expression

An expression that evaluates to a quoted string of one or more characters. The expression can be specified as the name of
a variable, a numeric value, a string literal, or any valid ObjectScript expression. If expression yields a string of more than
one character, use position to select the desired character. If you omit position for a character string, $ASCII returns the
numeric code for the first character. $ASCII returns -1 if the expression evaluates to a null string.

position

The position must be specified as a nonzero positive integer. It may be signed or unsigned. You can use a noninteger
numeric value in position; however, InterSystems IRIS ignores the fractional portion and only considers the integer portion
of the numeric value. If you do not include position, $ASCII returns the numeric value of the first character in expression.
$ASCII returns -1 if the integer value of position is larger than the number of characters in expression or less than 1.

Examples
The following example returns 87, the ASCII numeric value of the character W.

 WRITE $ASCII("W")

The following example returns 960, the numeric equivalent for the Unicode character "pi".

 WRITE $ASCII($CHAR(959+1))

The following example returns 84, the ASCII numeric equivalent for the first character in the variable Z.

 SET Z="TEST"
 WRITE $ASCII(Z)

The following example returns 83, the ASCII numeric equivalent for the third character in the variable Z.

 SET Z="TEST"
 WRITE $ASCII(Z,3)

246 ObjectScript Reference

ObjectScript Functions

The following example returns a -1 because the second argument specifies a position greater than the number of characters
in the string.

 SET Z="TEST"
 WRITE $ASCII(Z,5)

The following example uses $ASCII in a FOR loop to convert all of the characters in variable x to their ASCII numeric
equivalents. The $ASCII reference includes the position parameter, which is updated for each execution of the loop. When
position reaches a number that is greater than the number of characters in x, $ASCII returns a value of -1, which terminates
the loop.

 SET x="abcdefghijklmnopqrstuvwxyz"
 FOR i=1:1 {
 QUIT:$ASCII(x,i)=-1
 WRITE !,$ASCII(x,i)
 }
 QUIT

The following example generates a simple checksum for the string X. When $CHAR(CS) is concatenated with the string,
the checksum of the new string is always zero. Therefore, validation is simplified.

CXSUM
 SET x="Now is the time for all good men to come to the aid of their party"
 SET CS=0
 FOR i=1:1:$LENGTH(x) {
 SET CS=CS+$ASCII(x,i)
 WRITE !,"Checksum is:",CS
 }
 SET CS=128-CS#128
 WRITE !,"Final checksum is:",CS

The following example converts a lowercase or mixed-case alphabetic string to all uppercase.

ST
 SET String="ThIs Is a MiXeDCAse stRiNg"
 WRITE !,"Input: ",String
 SET Len=$LENGTH(String),Nstring=" "
 FOR i=1:1:Len { DO CNVT }
 QUIT
CNVT
 SET Char=$EXTRACT(String,i),Asc=$ASCII(Char)
 IF Asc>96,Asc<123 {
 SET Char=$CHAR(Asc-32)
 SET Nstring=Nstring_Char
 }
 ELSE {
 SET Nstring=Nstring_Char
 }
 WRITE !,"Output: ",Nstring
 QUIT

Notes

Unicode Support

The $ASCII function supports both 8-bit and 16-bit characters. For 8-bit characters, it returns the numeric values 0 through
255. For 16-bit (Unicode) characters it returns numeric codes up to 65535.

The Unicode value for a character is usually expressed as a 4-digit number in hexadecimal notation, using the digits 0-9
and the letters A-F (for 10 through 15, respectively). However, standard functions in the ObjectScript language generally
identify characters according to ASCII numeric codes, which are base-10 decimal values, not hexadecimal.

Hence, the $ASCII function supports Unicode encoding by returning the decimal Unicode value of the inputted character,
instead of the hexadecimal value that the Unicode standard recommends. This way, the function remains backward com-
patible, while also supporting Unicode. To convert a decimal number to hexadecimal, use the $ZHEX function.

For further details on InterSystems IRIS Unicode support, refer to Unicode in Using ObjectScript.

ObjectScript Reference 247

$ASCII

Surrogate Pairs

$ASCII does not recognize surrogate pairs. Surrogate pairs are used to represent some Chinese characters and to support
the Japanese JIS2004 standard. You can use the $WISWIDE function to determine if a string contains a surrogate pair.
The $WASCII function recognizes and correctly parses surrogate pairs. $ASCII and $WASCII are otherwise identical.
However, because $ASCII is generally faster than $WASCII, $ASCII is preferable for all cases where a surrogate pair is
not likely to be encountered.

Note: $WASCII should not be confused with $ZWASCII, which always parses characters in pairs.

Related Functions

The $CHAR function is the inverse of $ASCII. You can use it to convert an integer code to a character.

$ASCII converts a single character to an integer. To convert a 16-bit (wide) character string to an integer use $ZWASCII.
To convert a 32-bit (long) character string to an integer use $ZLASCII. To convert a 64-bit (quad) character string to an
integer use $ZQASCII. To convert a 64-bit character string to an IEEE floating-point number ($DOUBLE data type) use
$ZDASCII.

See Also
• READ command

• WRITE command

• $CHAR function

• $WASCII function

• $WISWIDE function

• $ZLASCII function

• $ZWASCII function

• $ZQASCII function

• $ZDASCII function

248 ObjectScript Reference

ObjectScript Functions

$BIT
Returns and or sets the bit value of a specified position in a bitstring.

$BIT(bitstring,position)

SET $BIT(bitstring,position) = value

Parameters

An expression that evaluates to a bitstring.

For $BIT, bitstring can be any expression that resolves to a bitstring, including a
variable of any type, $FACTOR, a user-defined function, or an oref.prop, ..prop,
or i%prop instance variable property reference.

For SET $BIT, bitstring can be a variable of any type, including an i%Prop() property
instance variable.

bitstring

The bit position within bitstring. A literal or an expression that evaluates to a positive
integer. Bit positions are counted from 1.

position

The bit value to set at position. A literal or an expression that evaluates to the integer
0 or 1.

value

Description
$BIT is used to return a bit value from a compressed bit string. $BIT(bitstring,position) returns the bit value (0 or 1) at the
specified position, position, in the given bitstring expression bitstring. If no value has been defined for a position, $BIT
returns 0 for that position. The position is counted from 1; if position is less than 1 (0 or a negative number) or is greater
than the length of the bitstring, the function returns 0.

If bitstring is an undefined variable or the null string ("") the $BIT function returns 0. If bitstring is not a valid bitstring
value an <INVALID BIT STRING> error occurs.

For general information on $BIT and other bitstring functions, see below.

SET $BIT

SET $BIT is used to set a specified bit value in a bitstring compressed bit string. If the bitstring is not defined, SET $BIT
defines the bitstring variable as a compressed bit string and sets the specified bit value.

SET $BIT(bitstring,position) = value performs an atomic bit set on the bitstring specified by bitstring. If value is 1, then
the bit at position position is set to 1. If value is 0, the bit is cleared (set to 0). Only an integer value of 0 or 1 should be
used; InterSystems IRIS converts any non-numeric value, such as “true” or “false” to 0.

The bit position is counted from 1. If bitstring is shorter than the specified position, InterSystems IRIS pads the bitstring
with 0 bits to the specified position. If you specify a position of 0, the system generates a <VALUE OUT OF RANGE>
error.

The bitstring variable must be either an undefined variable, a variable already set to a bitstring value, or a variable set to
the empty string (""). Attempting to use SET $BIT on a variable already set to a non-bitstring value results in an <INVALID
BIT STRING> error.

The SET $BIT bitstring parameter does not support oref.property or .. property syntax.

ObjectScript Reference 249

$BIT

The SET $BIT bitstring parameter supports i%property instance variable syntax for both local (non-inherited) properties
and properties inherited from a super class. If attempting to set inherited property in existing code is generating a
<FUNCTION> error, recompiling the routine should resolve this error and allow setting of the inherited property.

Displaying a Bitstring

As shown in the examples, you can you can use WRITE to display the contents of an individual bit in a bitstring as the
return value of $BIT.

InterSystems IRIS has several commands to display the contents of a variable. However, because a $BIT bitstring is a
compressed binary string, WRITE does not display a useful value. ZZDUMP displays the hexadecimal representation of
the compressed binary string, which is also not a useful value for most purposes.

ZWRITE and ZZWRITE display the decimal representation of the compressed binary string as $ZWCHAR ($zwc) two-
byte (wide) characters. However, they also display a comment that lists the uncompressed “1” bits in left-to-right order as
a comma-separated list. If there are three or more consecutive “1” bits, it lists them as a range (inclusive) with two dot
syntax (n..m). For example, the bitstring [1,0,1,1,1,1,0,1] is shown as /*$bit(1,3..6,8)*/. The bitstring [1,1,1,1,1,1,1,1]
is shown as /*$bit(1..8)*/. The bitstring [0,0,0,0,0,0,0,0] is shown as /*$bit()*/.

$DATA returns 1 for a compressed binary string variable, including an all-zeros bitstring, such as [0,0,0,0,0,0,0,0]. $GET
returns the empty string for a compressed binary string, regardless of its value; $GET also returns the empty string for an
undefined variable.

Examples
Note in the following examples that a bit that has not been set always has a value of 0.

The following example uses SET $BIT to create a compressed bitstring. It then invokes $BIT repeatedly to display the
bits in the bitstring:

 SET $BIT(a,1) = 0
 SET $BIT(a,2) = 0
 SET $BIT(a,3) = 1
 SET $BIT(a,4) = 0
 SET $BIT(a,5) = 0
 SET $BIT(a,6) = 1
 SET $BIT(a,7) = 1
 SET $BIT(a,8) = 0
 // Test single bits within the bitstring
 WRITE "bit #2 value: ",$BIT(a,2),!
 WRITE "bit #7 value: ",$BIT(a,7),!
 WRITE "bit #8 value: ",$BIT(a,8),!
 WRITE "bit #13 value: ",$BIT(a,13),!
 // Write the bitstring
 WRITE "bitstring value: "
 FOR x=1:1:8 {WRITE $BIT(a,x) }
 WRITE !!,"compressed bitstring: "
 ZZDUMP a

Because InterSystems IRIS pads the bitstring with 0 bits to the specified position, the following example returns the exact
same bitstring data value. However, note that because the #8 bit is not defined, the compressed bitstring a is not identical
to the compressed bitstring b:

 SET $BIT(b,3) = 1
 SET $BIT(b,6) = 1
 SET $BIT(b,7) = 1
 // Test single bits within the bitstring
 WRITE "bit #2 value: ",$BIT(b,2),!
 WRITE "bit #7 value: ",$BIT(b,7),!
 WRITE "bit #8 value: ",$BIT(b,8),!
 WRITE "bit #13 value: ",$BIT(b,13),!
 // Write the bitstring
 WRITE "bitstring value: "
 FOR x=1:1:8 {WRITE $BIT(b,x) }
 WRITE !!,"compressed bitstring: "
 ZZDUMP b

250 ObjectScript Reference

ObjectScript Functions

For this reason, it is a recommended programming practice to always explicitly set the highest defined bit in the bitstring,
even when its assigned value is 0.

You can use a FOR expr comma-separated list to set multiple bits, as shown in the following example:

 FOR i=3,6,7 { SET $BIT(b,i) = 1 }
 // Test single bits within the bitstring
 WRITE "bit #2 value: ",$BIT(b,2),!
 WRITE "bit #7 value: ",$BIT(b,7),!
 WRITE "bit #8 value: ",$BIT(b,8),!
 WRITE "bit #13 value: ",$BIT(b,13),!
 // Write the bitstring
 WRITE "bitstring value: "
 FOR x=1:1:8 {WRITE $BIT(b,x) }
 WRITE !!,"compressed bitstring: "
 ZZDUMP b

In the following example, successive invocations of $BIT return the bits of the bitstring generated by $FACTOR:

 FOR i=1:1:32 {WRITE $BIT($FACTOR(2*31-1),i) }

The following example returns a random 16-bit bitstring:

 SET x=$RANDOM(65536)
 FOR i=1:1:16 {WRITE $BIT($FACTOR(x),i) }

General Information on Bitstring Functions
Bitstring functions manipulate encoded bit-based data. Although a bitstring can be used with any ObjectScript command
or function, it is generally meaningful only within the context of the bit functions.

The $BIT bitstring functions perform atomic operations. Therefore, no locking is required when performing bitstring
operations.

The $BIT bitstring functions perform internal compression of bitstrings. Therefore, the actual data length of a bitstring and
its physical space allocation may differ. $BIT bitstring functions use the data length of bitstrings. In most circumstances,
the physical space allocation should be invisible to the user. bitstring compression is invisible to users of the $BIT functions.

However, because this compressed binary representation is optimized for each bitstring, one cannot assume that two
"identical" bitstrings (which were created differently) have identical internal representations. InterSystems IRIS selects
from four separate bitstring internal representations to optimize for both sparse bitstrings and non-sparse bitstrings. Therefore,
while matching operations on individual bits yield predictable results, comparisons of entire bitstrings may not.

$BIT bitstring functions support a maximum bitstring length of 262,104 bits (32763 x 8) for InterSystems IRIS. (Unlike
with certain InterSystems legacy products, it is not an error in InterSystems IRIS to perform an operation on a bit that is
beyond the bitstring length.) However, it is strongly recommended for performance reasons that you divide long bitstrings
into chunks of less than 65,280 bits. This is the maximum number of bits that can fit in a single 8KB database block.

Bits in a bitstring are numbered with the first (leftmost) bit as position 1. All bitstring comparisons are performed left-to-
right.

In the examples, bitstrings are shown within matching square brackets ([...]), with the bits delimited by commas. For
example, a bitstring of four 1 bits is shown as [1,1,1,1], with the least significant bits to the right.

In all the bitstring functions, variables named bitstring are bitstrings that can be specified as values, variables, or expressions.

See Also
• $BITCOUNT function

• $BITFIND function

• $BITLOGIC function

• $FACTOR function

ObjectScript Reference 251

$BIT

• $ZBOOLEAN function

252 ObjectScript Reference

ObjectScript Functions

$BITCOUNT
Returns the number of bits in a bitstring.

$BITCOUNT(bitstring,bitvalue)

Parameters

An expression that evaluates to a bitstring. Can be a variable of any type, $FACTOR,
a user-defined function, or an oref.prop, ..prop, or i%prop (instance variable)
property reference.

bitstring

Optional — The value (0 or 1) to count within the bitstring.bitvalue

Description
The $BITCOUNT function counts the number of bits within a bitstring. A bitstring is an encoded string which is interpreted
by the system as a series of bits. You can create a bitstring using $BIT or $BITLOGIC.

$BITCOUNT(bitstring) returns the number of bits in bitstring.

$BITCOUNT(bitstring, bitvalue) returns the number of bits of type bitvalue (0 or 1) in bitstring.

The maximum bitstring length is 262,104 bits (32763 x 8).

Specifying a bitstring value that is not an InterSystems IRIS encoded bitstring generates an <INVALID BIT STRING>
error. For further information, refer to General Information on Bitstring Functions.

Examples
If bitstring= [0,0,1,1,0], then the result of $BITCOUNT(bitstring) is 5:

 SET $BIT(a,1) = 0
 SET $BIT(a,2) = 0
 SET $BIT(a,3) = 1
 SET $BIT(a,4) = 1
 SET $BIT(a,5) = 0
 WRITE !,$BITCOUNT(a)

If bitstring = [0,0,1,1,0], then the result of $BITCOUNT(bitstring,0) would be 3.

 SET $BIT(a,1) = 0
 SET $BIT(a,2) = 0
 SET $BIT(a,3) = 1
 SET $BIT(a,4) = 1
 SET $BIT(a,5) = 0
 WRITE !,"number of zero bits:",$BITCOUNT(a,0)
 WRITE !,"number of one bits: ",$BITCOUNT(a,1)

The following example returns the number of 1 bits in a random 16-bit bitstring generated by $FACTOR:

 SET x=$RANDOM(65536)
 FOR i=1:1:16 {WRITE $BIT($FACTOR(x),i) }
 WRITE !,"Number of 1 bits=",$BITCOUNT($FACTOR(x),1)

See Also
• $BIT function

• $BITFIND function

• $BITLOGIC function

• $FACTOR function

ObjectScript Reference 253

$BITCOUNT

• $ZBOOLEAN function

254 ObjectScript Reference

ObjectScript Functions

$BITFIND
Returns the position of the specified bit value within a bitstring.

$BITFIND(bitstring,bitvalue,position,direction)

Parameters

An expression that evaluates to a bitstring. Can be a variable of any type, $FACTOR,
a user-defined function, or an oref.prop, ..prop, or i%prop (instance variable)
property reference.

bitstring

The value (0 or 1) to search for within the bitstring.bitvalue

Optional — The bit position from which the search begins, specified as a positive
integer. Bit positions are counted from 1 from the beginning of the bit string. Search is
inclusive of this position. A position value of 0 is treated as specifying position 1.

position

Optional — A direction flag. Available values are 1 and -1. 1 = Search forward (left to
right) from the beginning of the bitstring (or from position) towards the end (this is the
default). -1 = Search backward from the end of the bitstring (or from position) towards
the beginning.

direction

Description
$BITFIND(bitstring,bitvalue) returns the position of the first occurrence of the specified bitvalue (0 or 1) within the bitstring
bitstring. Bit positions are counted from 1.

$BITFIND(bitstring,bitvalue,position) returns the position of the first occurrence at or after position of the specified bitvalue
in bitstring.

If the desired bit value is not found, or if position (searching forward) is greater than the number of bits within the bitstring,
the return value is 0. If the specified bitstring is an undefined variable, the return value is 0. If the specified bitstring is not
a valid bitstring, an <INVALID BIT STRING> error is issued.

There is also general information on bitstring functions available.

Examples
If bitstring = [0,0,1,1,0], then the result of $BITFIND(bitstring,1) would be 3:

 // Set a to [0,0,1,1,0]
 SET $BIT(a,1) = 0
 SET $BIT(a,2) = 0
 SET $BIT(a,3) = 1
 SET $BIT(a,4) = 1
 SET $BIT(a,5) = 0
 // Find first 1 bit within a
 WRITE !,$BITFIND(a,1)

If bitstring = [0,0,1,1,0], when searching from position 3, the first bit of value 1 is bit position 3 (because search is inclusive
of the position bit) and the first bit of value 0 is bit position 5:

 // Set a to [0,0,1,1,0]
 SET $BIT(a,1) = 0
 SET $BIT(a,2) = 0
 SET $BIT(a,3) = 1
 SET $BIT(a,4) = 1
 SET $BIT(a,5) = 0
 // Find first 1 bit from position 3
 WRITE !,"found a 1 at bit position:",$BITFIND(a,1,3)
 // Find first 0 bit from position 3
 WRITE !,"found a 0 at bit position:",$BITFIND(a,0,3)

ObjectScript Reference 255

$BITFIND

If bitstring = [0,0,1,1,0], when searching backwards from position 99, the first bit of value 1 is bit position 4 and the first
bit of value 0 is bit position 5:

 // Set a to [0,0,1,1,0]
 SET $BIT(a,1) = 0
 SET $BIT(a,2) = 0
 SET $BIT(a,3) = 1
 SET $BIT(a,4) = 1
 SET $BIT(a,5) = 0
 WRITE !,"found a 1 at bit position:",$BITFIND(a,1,99,-1)
 WRITE !,"found a 0 at bit position:",$BITFIND(a,0,99,-1)

The following example returns a list of all of the 1 bit positions and a list of all of the 0 bit positions:

 // Set a to [0,0,1,1,0]
 SET $BIT(a,1) = 0
 SET $BIT(a,2) = 0
 SET $BIT(a,3) = 1
 SET $BIT(a,4) = 1
 SET $BIT(a,5) = 0
 SET pos=0
 WRITE !,"Bit positions with value 1: "
 FOR { SET pos=$BITFIND(a,1,pos+1) QUIT:'pos WRITE pos,", " }
 WRITE !,"Bit positions with value 0: "
 FOR { SET pos=$BITFIND(a,0,pos+1) QUIT:'pos WRITE pos,", " }

The following example returns the position of the first 1 bit in a random 16-bit bitstring generated by $FACTOR:

 SET x=$RANDOM(65536)
 FOR i=1:1:16 {WRITE $BIT($FACTOR(x),i) }
 WRITE !,"The first 1 bit is at position ",$BITFIND($FACTOR(x),1)

See Also
• $BIT function

• $BITCOUNT function

• $BITLOGIC function

• $FACTOR function

• $ZBOOLEAN function

256 ObjectScript Reference

ObjectScript Functions

$BITLOGIC
Performs bit-wise operations on bitstrings.

$BITLOGIC(bitstring_expression,length)

Parameters

A logical expression consisting of one or more bitstring variables
and the logical operators &, |, ^, and ~. A bitstring can be specified
as a local variable, a process-private global, a global, an object
property, or the constant "". The null string ("") has a bitstring length
of 0. A bitstring cannot be specified using a function (such as
$FACTOR) that returns a bitstring.

bitstring_expression

Optional — The length, in bits, of the resulting bitstring. If length is
not specified it defaults to the length of the longest bitstring in
bitstring_expression.

length

Description
$BITLOGIC evaluates a bit-wise operation on one or more bitstring values, as specified by bitstring_expression, and
returns the resulting bitstring.

A bitstring is an encoded (compressed) string which is interpreted as a series of bits. Only bitstrings created using $BIT,
$FACTOR, or $BITLOGIC, or the null string (""), should be supplied to the $BITLOGIC function. Typically, bitstrings
are used for index operations. Refer to general information on bitstring functions in $BIT for further details.

$BITLOGIC and $ZBOOLEAN use different data formats. The results of one cannot be used as input to the other.

Bitstring Optimization

The most basic $BITLOGIC operation is $BITLOGIC(a). Seemingly, this operation does not do anything: bitstring a is
input and the same bitstring a is output. However, $BITLOGIC performs bitstring compression which it optimizes by
selecting from several compression algorithms. Therefore, if bitstring a has undergone substantial changes since its creation,
passing it through $BITLOGIC can result in re-optimization of the bitstring. Refer to $BIT for further details.

For example, following a large number of delete operations an index bitstring may have become a sparse bitstring, consisting
wholly or mainly of zeros. Passing this index bitstring through $BITLOGIC may result in substantial performance
improvements.

Bitstring Logical Operators

$BITLOGIC can evaluate only the bitstring operators listed in the following table:

MeaningOperator

AND&

OR|

XOR (exclusive OR)^

NOT (one’s complement)~

The bitstring_expression can contain a single bitstring (~A), two bitstrings (A&B), or more than two bitstrings (A&B|C),
up to the current maximum of 31 bitstrings. Evaluation is performed left-to-right. Logical operations may be grouped by

ObjectScript Reference 257

$BITLOGIC

parentheses within the bitstring_expression, following standard ObjectScript order of operations. If a variable used within
$BITLOGIC is undefined, it is treated as a null string ("").

$BITLOGIC treats a null string as a bitstring of indefinite length, in which all bits are set to 0’s.

Note: When $BITLOGIC is supplied more than two bitstring operands, it must create bitstring temporaries to hold the
intermediate results. Under some extreme circumstances (many bitstrings and/or extremely large bitstrings), it
can exhaust the space allocated to hold such temporaries. Bitstring pair operations do not have this limitation,
and are thus preferable for large bitstring operations.

The NOT (~) operator can be used as a unary operator (for example, ~A), or can be used in combination with other operators
(for example, A&~B). It performs the one’s complement operation on a string, turning all 1’s to 0’s and all 0’s to 1’s.
Multiple NOT operators can be used (for example, ~~~A).

The length Argument

If length is not specified, it defaults to the length of the longest bitstring in bitstring_expression.

If length is specified, it specifies the logical length of the resulting bitstring.

• If length is larger than one or more of the bitstrings in bitstring_expression, those bitstrings are zero-filled to that length
before bitstring logic operations are performed.

• If length is smaller than one or more of the bitstrings in bitstring_expression, those bitstrings are truncated to that
length before bitstring logic operations are performed.

• If length is 0, a bitstring of length 0 (a null string) is returned.

Examples
The following example creates some simple bitstrings and demonstrates the use of $BITLOGIC on them:

 // Set a to [1,1]
 SET $BIT(a,1) = 1
 SET $BIT(a,2) = 1
 // Set b to [0,1]
 SET $BIT(b,1) = 0
 SET $BIT(b,2) = 1
 WRITE !,"bitstring a=",$BIT(a,1),$BIT(a,2)
 WRITE !,"bitstring b=",$BIT(b,1),$BIT(b,2)
 SET c = $BITLOGIC(~b)
 WRITE !,"The one's complement of b=",$BIT(c,1),$BIT(c,2)
 // Find the intersection (AND) of a and b
 SET c = $BITLOGIC(a&b) // c should be [0,1]
 WRITE !,"The AND of a and b=",$BIT(c,1),$BIT(c,2)
 SET c = $BITLOGIC(a&~b) // c should be [1,0]
 WRITE !,"The AND of a and ~b=",$BIT(c,1),$BIT(c,2)
 // Find the union (OR) of a and b
 SET c = $BITLOGIC(a|b) // c should be [1,1]
 WRITE !,"The OR of a and b=",$BIT(c,1),$BIT(c,2)
 SET c = $BITLOGIC(a^b) // c should be [1,0]
 WRITE !,"The XOR of a and b=",$BIT(c,1),$BIT(c,2)
 QUIT

The following example shows the results of specifying a length greater than the input bitstring. The string is zero-filled
before the logic operation is performed.

 // Set a to [1,1]
 SET $BIT(a,1) = 1
 SET $BIT(a,2) = 1
 WRITE !,"bitstring a=",$BIT(a,1),$BIT(a,2)
 SET c = $BITLOGIC(~a,7)
 WRITE !,"~a (length 7)="
 WRITE $BIT(c,1),$BIT(c,2),$BIT(c,3),$BIT(c,4)
 WRITE $BIT(c,5),$BIT(c,6),$BIT(c,7),$BIT(c,8)

258 ObjectScript Reference

ObjectScript Functions

Here the one’s complement (~) of 11 is 0011111. Bits 3 through 7 were set to zero before the ~ operation was performed.
This example also displays an eighth bit, which is beyond the specified string length and thus unaffected by the $BITLOGIC
operation. It is, of course, displayed as 0.

The following example shows the results of specifying a length less than the input bitstring. The bitstring is truncated to
the specified length before logical operations are performed. All bits beyond the specified length default to 0.

 // Set a to [1,1,1]
 SET $BIT(a,1) = 1
 SET $BIT(a,2) = 1
 SET $BIT(a,3) = 1
 WRITE !,"bitstring a=",$BIT(a,1),$BIT(a,2),$BIT(a,3)
 SET c = $BITLOGIC(a,2)
 WRITE !," a (length 2)="
 WRITE $BIT(c,1),$BIT(c,2),$BIT(c,3),$BIT(c,4)
 SET c = $BITLOGIC(~a,2)
 WRITE !,"~a (length 2)="
 WRITE $BIT(c,1),$BIT(c,2),$BIT(c,3),$BIT(c,4)

The following example shows that when length is not specified, it defaults to the length of the longest bitstring. Shorter
bitstrings are zero-filled before the logical operation is performed.

 // Set a to [1,1,1]
 SET $BIT(a,1) = 1
 SET $BIT(a,2) = 1
 SET $BIT(a,3) = 1
 // Set b to [1,1]
 SET $BIT(b,1) = 1
 SET $BIT(b,2) = 1
 SET c = $BITLOGIC(a&~b)
 WRITE !," a&~b="
 WRITE $BIT(c,1),$BIT(c,2),$BIT(c,3)
 SET c = $BITLOGIC(a&~b,3)
 WRITE !,"a&~b,3="
 WRITE $BIT(c,1),$BIT(c,2),$BIT(c,3)

Here the two $BITLOGIC operations (with and without a length argument) both return the same value: 001.

See Also
• $BIT function

• $BITCOUNT function

• $BITFIND function

• $ZBOOLEAN function

• Operators in Using ObjectScript

ObjectScript Reference 259

$BITLOGIC

$CASE
Compares expressions and returns the value of the first matching case.

$CASE(target,case:value,case:value,...,:default)

Parameters

A literal or expression the value of which is to be matched against cases.target

A literal or expression the value of which is to be matched with the results of the evaluation
of target.

case

The value to be returned upon a successful match of the corresponding case.value

Optional — The value to be returned if no case matches target.default

Description
The $CASE function compares target to a list of cases (literals or expressions), and returns the value of the first matching
case. An unlimited number of case:value pairs can be specified. Cases are matched in the order specified (left-to-right);
matching stops when the first exact match is encountered.

If there is no matching case, default is returned. If there is no matching case and no default is specified, InterSystems IRIS
issues an <ILLEGAL VALUE> error.

InterSystems IRIS permits specifying $CASE with no case:value pairs. It always returns the default value, regardless of
the target value.

Parameters

target

$CASE evaluates this expression once, then matches the result to each case in left-to-right order.

case

A case can be a literal or an expression; matching of literals is substantially more efficient than matching expressions,
because literals can be evaluated at compile time. Each case must be paired with a value. An unlimited number of case and
value pairs may be specified.

value

A value can be a literal or an expression. Using $CASE as an argument of a GOTO command or a DO command restricts
value as follows:

• When using a $CASE statement with a GOTO command, each value must be a valid line label. It cannot be an
expression.

• When using a $CASE statement with a DO command, each value must be a valid DO argument. These DO arguments
can include parameters. Like all DO command arguments, $CASE can take a postconditional parameter when called
by DO.

default

The default is specified like a case:value pair, except that there is no case specified between the comma (used to separate
pairs) and the colon (used to pair items). The default is optional. If specified, it is always the final parameter in a $CASE
function. The default value follows the same GOTO and DO restrictions as the value parameter.

260 ObjectScript Reference

ObjectScript Functions

If there is no matching case and no default is specified, InterSystems IRIS issues an <ILLEGAL VALUE> error.

Examples
The following example takes a day-of-week number and returns the corresponding day name. Note that a default value
“entry error” is provided:

 SET daynum=$ZDATE($HOROLOG,10)
 WRITE $CASE(daynum,
 1:"Monday",2:"Tuesday",3:"Wednesday",
 4:"Thursday",5:"Friday",
 6:"Saturday",0:"Sunday",:"entry error")

The following example takes as input the number of bases achieved by a baseball batter and writes out the appropriate
baseball term:

 SET hit=$RANDOM(5)
 SET atbat=$CASE(hit,1:"single",2:"double",3:"triple",4:"home run",:"strike out")
 WRITE hit," = ",atbat

The following example uses $CASE as the DO command argument. It calls the routine appropriate for the exp exponent
value:

Start ; Raise an integer to a randomly-selected power.
 SET exp=$RANDOM(6)
 SET num=4
 DO $CASE(exp,0:NoMul(),2:Square(num),3:Cube(num),:Exponent(num,exp))
 WRITE !,num," ",result,!
 RETURN
Square(n)
 SET result=n*n
 SET result="Squared = "_result
 RETURN
Cube(n)
 SET result=n*n*n
 SET result="Cubed = "_result
 RETURN
Exponent(n,x)
 SET result=n
 FOR i=1:1:x-1 { SET result=result*n }
 SET result="exponent "_x_" = "_result
 RETURN
NoMul()
 SET result="multiply by zero"
 RETURN

The following example tests whether the character input is a letter or some other character:

 READ "Input a letter: ",x
 SET chartype=$CASE(x?1A,1:"letter",:"other")
 WRITE chartype

The following example uses $CASE to determine which subscripted variable to return:

 SET dabbrv="W"
 SET wday(1)="Sunday",wday(2)="Monday",wday(3)="Tuesday",
 wday(4)="Wednesday",wday(5)="Thursday",wday(6)="Friday",wday(7)="Saturday"
 WRITE wday($CASE(dabbrv,"Su":1,"M":2,"Tu":3,"W":4,"Th":5,"F":6,"Sa":7))

The following example specifies no case:value pairs. It return the default string “not defined”:

 SET dummy=3
 WRITE $CASE(dummy,:"not defined")

See Also
• DO command

• GOTO command

• IF command

ObjectScript Reference 261

$CASE

• $SELECT function

262 ObjectScript Reference

ObjectScript Functions

$CHAR
Converts the integer value of an expression to the corresponding ASCII or Unicode character.

$CHAR(expression,...)
$C(expression,...)

Parameter

The integer value to be converted.expression

Description
$CHAR returns the character that corresponds to the decimal (base-10) integer value specified by expression. This character
can be an 8-bit (ASCII) character, or a 16-bit (Unicode) character. For 8-bit characters, the value in expression must eval-
uate to a positive integer in the range 0 to 255. For 16-bit characters, specify integers in the range 256 through 65535 (hex
FFFF). Values larger than 65535 return an empty string. Values from 65536 (hex 10000) through 1114111 (hex 10FFFF)
are used to represent Unicode surrogate pairs; these characters can be returned using $WCHAR.

You can specify expression as a comma-separated list, in which case $CHAR returns the corresponding character for each
expression in the list.

The $ASCII function is the inverse of $CHAR.

Parameter

expression

The expression can be an integer value, the name of a variable that contains an integer value, or any valid ObjectScript
expression that evaluates to an integer value. To return characters for multiple integer values, specify a comma-separated
list of expressions.

You can use the $ZHEX function to specify character using a hexadecimal character code, rather than a decimal (base-10)
character code. In the following example, both $CHAR statements return the Greek letter pi:

 WRITE $CHAR(960),!
 WRITE $CHAR($ZHEX("3C0"))

Examples
The following example uses $CHAR in a FOR loop to output the characters for all ASCII codes in the range 65 to 90.
These are the uppercase alphabetic characters.

 FOR i=65:1:90 {
 WRITE !,$CHAR(i) }

The following example uses $CHAR in a FOR loop to output the Japanese Hiragana characters:

 FOR i=12353:1:12435 {
 WRITE !,$CHAR(i) }

The following two examples show the use of multiple expression values. The first returns “AB” and the second returns
“AaBbCcDdEeFfGgHhIiJjKk”:

 WRITE $CHAR(65,66),!
 FOR i=65:1:75 {
 WRITE $CHAR(i,i+32) }

ObjectScript Reference 263

$CHAR

Notes

$CHAR with the WRITE Command

When you use $CHAR to write characters with the WRITE command, the output characters reset the positions of the
special variables $X and $Y. This is true even for the NULL character (ASCII 0), which is not the same as a null string
(""). As a rule, you should use $CHAR with caution when writing nonprinting characters, because such characters may
produce unpredictable cursor positioning and screen behavior.

$CHAR and %List Structures

Because a %List structure (%Library.List) is an encoded string using non-printing characters, certain $CHAR values result
in a %List structure containing a single element. The $CHAR combinations that return a %List structure are as follows:

• $CHAR(1) returns an empty list: $lb().

• $CHAR(1,1) returns a two-element empty list: $lb(,).

• $CHAR(2,1), $CHAR(2,2), or $CHAR(2,12) returns a list containing the empty string: $lb("").

• $CHAR(2,4) returns $lb(0).

• $CHAR(2,5) returns $lb(-1).

• $CHAR(2,8) or $CHAR(2,9) returns $lb($double(0)).

$CHAR combinations that involve more than two characters and result in a single-element list have the following syntax:

$CHAR(count,flag,string)

count is the total number of characters. For example, $CHAR(5,1,65,66,67) or $CHAR(5,1)_"ABC".

flag is an integer specifying how string should be represented. Valid flag values include 1, 2, 4, 5, 6, 7, 8, 9, 12, and 13.
These flag interpretations have nothing to do with the usual ASCII interpretation of this non-print character.

• flag=1, flag=12, and flag=13 return the literal string value as the list element.

• flag=2 is only valid if count is an even number. It returns a list element containing one or more wide Unicode characters
derived from string, often one or more Chinese characters.

• flag=4 returns the positive ASCII numeric code for the character(s) as the list element. flag=4 cannot be used when
count>10.

• flag=5 returns a negative integer ASCII numeric code for the character(s) as the list element. flag=5 cannot be used
when count>10.

• flag=6 returns a positive integer derived from string as the list element:

– $CHAR(3,6,n) always returns $lb(0).

– $CHAR(count,6,string) when count > 3 returns a (usually) large positive integer derived from the ASCII numeric
value. The number of trailing zeros corresponds to the ASCII value of the first character in string, the leading
numeric value to the ASCII value of the second character in string. For example, $CHAR(4,6,0,7) returns
$lb(7); $CHAR(4,6,3,7) returns $lb(7000).

flag=6 cannot be used when count>11.

• flag=7 returns a negative integer derived from string as the list element:

– $CHAR(3,7,n) returns a negative number with the number of zeros corresponding to the value of n: 0 = –1, 1 =
–10, 2= –100, 3 = –1000, etc.

264 ObjectScript Reference

ObjectScript Functions

– $CHAR(count,7,string) when count > 3 returns a (usually) large negative integer. The number of trailing zeros
corresponds to the ASCII value of the first character in string.

flag=7 cannot be used when count>11.

• flag=8 returns $DOUBLE(x) where x is a small number. flag=8 cannot be used when count>6.

• flag=9 returns $DOUBLE(x) where x is a large number. flag=9 cannot be used when count>10.

string is a numeric or string of count – 2 characters. For example, a string of three characters can be represented as either
$CHAR(5,flag,65,66,67) or $CHAR(5,flag)_"ABC". The string value becomes the list element, its value represented
as specified by flag.

For further details, refer to $LISTBUILD and $LISTVALID.

Numeric Values in $CHAR Arguments

You can use signed numeric values for expression. InterSystems IRIS ignores negative numbers and only evaluates positive
or unsigned numbers. In the following example, the $CHAR with signed integers returns only the first and third expression,
ignoring the second expression, which is a negative integer.

 WRITE !,$CHAR(65,66,67)
 WRITE !,$CHAR(+65,-66,67)

ABC

AC

You can use floating point numeric values for expression. InterSystems IRIS ignores the fractional portion of the argument
and only considers the integer portion. In the following example, $CHAR ignores the fractional portion of the number and
produces the character represented by character code 65, an uppercase A.

 WRITE $CHAR(65.5)

Unicode Support

$CHAR supports Unicode characters represented by decimal (base-10) integers.

The Unicode value for a character is usually expressed as a 4-digit number in hexadecimal notation, using the digits 0-9
and the letters A-F. However, standard functions in the ObjectScript language generally identify characters according to
ASCII codes, which are decimal values, not hexadecimal.

Hence, the $CHAR function supports Unicode encoding by returning a character based on the decimal Unicode value that
was input, not the more standard hexadecimal value. You can specify a hexadecimal Unicode value using the $ZHEX
function using quotes, as follows $CHAR($ZHEX("hexnum")). You can also use $ZHEX without quotes to convert a
decimal number to hexadecimal, as follows: hexnum = $ZHEX(decnum).

For further details refer to Unicode in Using ObjectScript.

Surrogate Pairs

$CHAR does not recognize surrogate pairs. Surrogate pairs are used to represent some Chinese characters and to support
the Japanese JIS2004 standard. You can use the $WISWIDE function to determine if a string contains a surrogate pair.
The $WCHAR function recognizes and correctly parses surrogate pairs. $CHAR and $WCHAR are otherwise identical.
However, because $CHAR is generally faster than $WCHAR, $CHAR is preferable for all cases where a surrogate pair
is not likely to be encountered.

Note: $WCHAR should not be confused with $ZWCHAR, which always parses characters in pairs.

ObjectScript Reference 265

$CHAR

Functions Related to $CHAR

The $ASCII function is the inverse of $CHAR. You can use it to convert a character to its equivalent numeric value.
$ASCII converts all characters, including Unicode characters. In addition, all InterSystems IRIS platforms support the
related functions, $ZLCHAR and $ZWCHAR. They are similar to $CHAR, but operate on a word (two bytes) or a long
word (four bytes). You can use $ZISWIDE to determine if there are any multibyte (“wide”) characters in the expression
of $CHAR.

See Also
• READ command

• WRITE command

• $ASCII function

• $WCHAR function

• $WISWIDE function

• $ZHEX function

• $ZLCHAR function

• $ZWCHAR function

• $X special variable

• $Y special variable

266 ObjectScript Reference

ObjectScript Functions

$CLASSMETHOD
Executes a named class method in the designated class.

$CLASSMETHOD(classname, methodname, arg1, arg2, arg3, ...)

Parameters

Optional — An expression that evaluates to a string. The content of the string
must match exactly the name of an existing, accessible, previously compiled
class. In the case of references to InterSystems IRIS classes, the name may be
either in its canonical form (%Library.String), or its abbreviated form (%String).

If classname is omitted, the current class context is used. (You can use $THIS
to determine the current class context.) Note that when classname is omitted the
placeholder comma must be specified.

classname

An expression which evaluates to a string. The value of the string must match
the name of an existing class method in the class identified by classname.

methodname

Optional — A series of expressions to be substituted sequentially for the arguments
to the designated method. The values of the expressions can be of any type. It
is the responsibility of the implementor to make sure that the type of the supplied
expressions match what the method expects, and have values within the bounds
declared. (If the specified method expects no arguments then no arguments
beyond the methodname need be given in the function invocation. If the method
requires arguments, the rules that govern what must be supplied are those of the
target method.)

arg1, arg2, arg3, ...

Description
$CLASSMETHOD permits an ObjectScript program to invoke an arbitrary class method in an arbitrary class. Both the
class name and the method name may be computed at runtime or supplied as string constants. To invoke an instance method
rather than a class method, use the $METHOD function.

If the method takes arguments, they are supplied by the list of arguments that follow the method name. A maximum of 255
argument values may be passed to the method.

The invocation of $CLASSMETHOD as a function or a procedure determines the invocation of the target method. You
can invoke $CLASSMETHOD using the JOB command or the DO command, discarding the return value. Like all DO
command arguments, $CLASSMETHOD can take a postconditional parameter when called by DO.

An attempt to invoke a nonexistent class results in a <CLASS DOES NOT EXIST> error, followed by the current namespace
name and the specified class name. For example, attempting to invoke the nonexistent classname “Fred” results in the
error <CLASS DOES NOT EXIST> *User.Fred. Specifying the empty string for classname results in <CLASS DOES
NOT EXIST> *(No name).

An attempt to invoke a nonexistent class method results in a <METHOD DOES NOT EXIST> error.

Examples
The following example shows $CLASSMETHOD used as a function:

 SET classname = "%Dictionary.ClassDefinition"
 SET classmethodname = "NormalizeClassname"
 SET singleargument = "%String"
 WRITE $CLASSMETHOD(classname,classmethodname,singleargument),!

ObjectScript Reference 267

$CLASSMETHOD

It returns %Library.String.

The following example shows $CLASSMETHOD with two parameters:

 WRITE $CLASSMETHOD("%Library.Persistent","%PackageName"),!
 WRITE $CLASSMETHOD("%Library.Persistent","%ClassName")

These calls return %Library and %Persistent.

The following example uses $CLASSMETHOD to execute a Dynamic SQL query:

 SET q1="SELECT Age,Name FROM Sample.Person "
 SET q2="WHERE Age > ? AND Age < ? "
 SET q3="ORDER by Age"
 SET myquery=q1_q2_q3
 SET rset=$CLASSMETHOD("%SQL.Statement","%ExecDirect",,myquery,12,20)
 DO rset.%Display()
 WRITE !,"Teenagers in Sample.Person"

See Also
• $CLASSNAME function

• $METHOD function

• $PARAMETER function

• $PROPERTY function

• $THIS special variable

268 ObjectScript Reference

ObjectScript Functions

$CLASSNAME
Returns the name of a class.

$CLASSNAME(n)

Parameter

Optional — An object reference (OREF) to an class instance. If omitted, the class name of the current
class is returned.

n

Description
$CLASSNAME returns the name of a class. Commonly, it takes an object reference (OREF) and returns the corresponding
class name. $CLASSNAME with no argument returns the name of the current class. $CLASSNAME always returns the
full class name (for example, %SQL.Statement), not the short version of the class name omitting the package name (for
example, Statement).

$CLASSNAME is functionally equivalent to the %ClassName(1) method of the %Library.Base superclass. The
$CLASSNAME function gives better performance than the %ClassName(1) method for returning the full class name. To
return the short version of the class name, you can use either %ClassName() or %ClassName(0).

For information on OREFs, see “OREF Basics” in Defining and Using Classes.

Examples
The following example creates an instance of a class. $CLASSNAME takes the instance OREF and returns the corresponding
class name:

 SET dynoref = ##class(%SQL.Statement).%New()
 WRITE "instance class name: ",$CLASSNAME(dynoref)

In the following example, $CLASSNAME with no parameter returns the class name of the current class context. In this
case, it is the DocBook.Utils class. This is the same class name contained in the $THIS special variable:

 WRITE "class context: ",$CLASSNAME(),!
 WRITE "class context: ",$THIS

The following example shows that the $CLASSNAME function and the %ClassName(1) method return the same values.
It also shows use of the %ClassName() method (with no argument or with a 0 argument) to return the short version of the
class name:

CurrentClass
 WRITE "current full class name: ",$CLASSNAME(),!
 WRITE "current full class name: ",..%ClassName(1),!
 WRITE "current short class name: ",..%ClassName(0),!
 WRITE "current short class name: ",..%ClassName(),!!
ClassInstance
 SET x = ##class(%SQL.Statement).%New()
 WRITE "oref full class name: ",$CLASSNAME(x),!
 WRITE "oref full class name: ",x.%ClassName(1),!
 WRITE "oref short class name: ",x.%ClassName(0),!
 WRITE "oref short class name: ",x.%ClassName()

See Also
• $CLASSMETHOD function

• $METHOD function

• $PARAMETER function

ObjectScript Reference 269

$CLASSNAME

• $PROPERTY function

• $THIS special variable

270 ObjectScript Reference

ObjectScript Functions

$COMPILE
Compiles source code, producing executable object code.

$COMPILE(source,language,errors,object)

$COMPILE(source,language,errors,object,,,rname)

Parameters

A local or global variable that specifies a subscripted array containing the source code
to be compiled.

source

An integer flag specifying the programming language of the source code. 0 = ObjectScript.language

An unsubscripted local variable that receives any errors that occur during compilation.
This variable is a List structure, with one element for each error reported. Each error is
itself a List structure, specifying error location and type (see below).

errors

1st Syntax — An unsubscripted local or global variable that is used to generate an array
used to hold the compiled object code.

2nd Syntax — This parameter is optional. If specified, object is cleared of its prior value,
but not set. Commonly, 2nd syntax omits object and specifies a placeholder comma.

object

2nd Syntax — A string specifying a routine name used to store the compiled object code
in the ^rOBJ global.

rname

Description
$COMPILE compiles source code and produces OBJ (object) code (the executable form of the routine). $COMPILE
reports compilation errors, and can be used to check source code for compilation errors without actually producing object
code. $COMPILE takes as input INT code, not MAC code. Therefore, before compiling, any macros in the source code
must be resolved by a preprocessor such as the ObjectScript macro preprocessor.

Note: InterSystems IRIS provides several powerful tools for compiling source code, Studio being one of them. Commonly,
source code compilation is performed using these tools, rather than this $COMPILE function.

$COMPILE has two syntactic forms:

• The first $COMPILE syntax form returns the object code in the object array. It first kills the object variable. After
the compilation the object array is set to the size of the compiled object code.

The object array contains the object code in the same format as it would be in the ^rOBJ global. The object code in
^rOBJ can be replaced with the new object code by the command MERGE ^rOBJ(rname)=object(1). However,
the MERGE command is not atomic when setting multiple nodes, so this operation could cause unpredictable results
if another process is concurrently loading the same routine.

If you omit the object parameter, the source code is compiled and checked for errors, but no object code is created.

• The second $COMPILE syntax form returns the object code directly into a routine named rname This OBJ code can
be viewed by returning ^rOBJ(rname). The $COMPILE operation internally locks ^rOBJ(rname), preventing any
other process from loading the routine object code until the new object code is completely stored.

If you omit the rname parameter, the source code is compiled and checked for errors, but no object code is created.

ObjectScript Reference 271

$COMPILE

Commonly, the object parameter (4th parameter) is omitted with this syntactic form. If you specify the object parameter,
the object variable is killed, but is not set. The other omitted parameters (represented by placeholder commas) are for
internal use and should not be specified.

$COMPILE returns an integer code as follows: 0 = no errors were detected and object code was created. 1 = errors were
detected and object code was created. -1 = errors were detected and no object code was created. The same return codes are
returned when the parameter that holds the object code (1st syntax: object; 2nd syntax rname) was omitted.

When the ObjectScript compiler detects an error, it creates object code at that point which throws an error when that line
is executed.

To compile a class, use the Compile() method of the %SYSTEM.OBJ class.

Parameters

source

An array containing the source code to be compiled (in the format of an INT routine). The array element source(0) must
contain the number of lines of source code, and each source(n) contains line number n of the source code. The source lines
must be numbered consecutively from 1 through n with no omitted lines. Executable ObjectScript code must be indented.
For example:

 SET mysrc(0)=6
 SET mysrc(1)=" SET x=1"
 SET mysrc(2)="Main" // a label
 SET mysrc(3)=" WRITE ""x is:"",x,!"
 SET mysrc(4)=" SET x=x+1"
 SET mysrc(5)=" IF x=4 {WRITE ""x is:"",x,"" all done"" QUIT}"
 SET mysrc(6)=" GOTO Main"
 SET rtn=$COMPILE(mysrc,0,errs,,,,"myobj")
 IF rtn=0 {WRITE "OBJ code successfully generated",!}
 ELSE {WRITE "no OBJ code generated return code: ",rtn,! QUIT}
 WRITE "Running the code",!!
 DO ^myobj

The source parameter can be an unsubscripted local variable name, or a possibly subscripted global name.

If source(0) is undefined, the system generates an <UNDEFINED> error, regardless of the %SYSTEM.Process.Undefined()
method setting.

If a source(0) value is larger than the number of lines of source code, or a consecutive source code line is missing, the
system generates an <UNDEFINED> error, followed by the name of the missing source code line. This behavior can be
changed by setting the %SYSTEM.Process.Undefined() method. These types of errors are shown in the following
examples:

 SET src(0)=4,src(1)="TestA ",src(2)=" WRITE 123",src(3)=" WRITE 456,!"
 SET stat=$COMPILE(src,0,errs,TestA) /* generates <UNDEFINED> *src(4) */

 SET src(0)=4,src(1)="TestA ",src(3)=" WRITE 123",src(4)=" WRITE 456,!"
 SET stat=$COMPILE(src,0,errs,TestA) /* generates <UNDEFINED> *src(2) */

 SET src(0)=3,src(1)="TestA ",src(3)=" WRITE 123",src(4)=" WRITE 456,!"
 SET stat=$COMPILE(src,0,errs,TestA) /* generates <UNDEFINED> *src(2) */

language

The language mode specifying the type of source to be compiled. Use 0 for ObjectScript.

Other values specify legacy modes and should be used only after consultation with InterSystems support.

errors

An unsubscripted local variable that is set to any errors detected by the compiler. Any existing value is killed. If no errors
are detected, the variable is set to the empty string (""). If errors are detected, the errors variable is set to a $LIST structure

272 ObjectScript Reference

ObjectScript Functions

with one element for each error. Each error is itself a $LIST structure with the format $LISTBUILD(line,offset,errnum,text)
where:

• line = the line number where the error was detected

• offset = the offset in the source line of the error

• errnum = an error number for the type of error

• text = text describing the error

object

An array that receives the object code output of the compiler. The object parameter can be an unsubscripted local variable
name, or a possibly subscripted global name. The contents of the object array are described above.

rname

The routine name that specifies where the object code should saved in the ^rOBJ subscripted global. $COMPILE kills
any existing contents of ^rOBJ(rname) before saving the new object code. In the following examples, rname=”myobj”:

To view the OBJ code:

 WRITE ^rOBJ("myobj")

or

 ZWRITE ^rOBJ("myobj")

To execute the OBJ code:

 DO ^myobj

To list the creation timestamp and length of the OBJ code:

 ZWRITE ^rINDEX("myobj")

Note that ^rINDEX() only list an OBJ code line, because code created by $COMPILE has no corresponding stored MAC
or INT code version.

Interrupting a Compile
You can issue a Ctrl-C or invoke the ̂ RESJOB utility to interrupt a compile in progress. These compile interrupts are supported
for all language modes.

Compiler Version
You can use the %SYSTEM.Version.GetCompilerVersion() method to return the current compiler version. InterSystems
IRIS can only execute object code compiled with the same major compiler version number. It can execute object code
compiled with any minor compiler version number that is less than or equal to the current minor compiler version.

Examples
The following example compiles a four-line ObjectScript program using the first $COMPILE format:

ObjectScript Reference 273

$COMPILE

SourceCode
 SET src(0)=4
 SET src(1)="TestA "
 SET src(2)=" WRITE ""Hello "" "
 SET src(3)=" WRITE ""World"",!"
 SET src(4)=" QUIT"
CompileSource
 SET stat=$COMPILE(src,0,errs,TestA)
 IF stat=0 {WRITE "Compile successful" }
 ELSE {WRITE "status=",stat,!
 WRITE "number of compile errors=",$LISTLENGTH(errs) }

The following example compiles the same four-line ObjectScript program using the second $COMPILE format:

SourceCode
 SET src(0)=4
 SET src(1)="TestB "
 SET src(2)=" WRITE ""Hello "" "
 SET src(3)=" WRITE ""World"",!"
 SET src(4)=" QUIT"
CompileSource
 SET stat=$COMPILE(src,0,errs,,,,"TestB")
 IF stat=0 {WRITE "Compile successful",!
 DO ^TestB }
 ELSE {WRITE "status=",stat,!
 WRITE "number of compile errors=",$LISTLENGTH(errs) }

The following example performs compilation error checking on a seven-line ObjectScript program. Note that this $COMPILE
only tests for errors; it does not provide a variable to receive the object code from a successful compile. In this example
every line of source code contains an error; $COMPILE only returns the compile-time errors in lines 1, 3, 5, 6, and 7, not
runtime errors such as a divide-by-zero error (line 2) or an undefined variable error (line 4):

SourceCode
 SET src(0)=7
 SET src(1)="?TestC "
 SET src(2)=" SET a=2/0"
 SET src(3)=" SET b=3+#2"
 SET src(4)=" SET c=xxx"
 SET src(5)=" SET? d=5"
 SET src(6)=" SET 123=""abc"""
 SET src(7)=" SETT f=7"
CompileSource
 SET stat=$COMPILE(src,0,errs)
 IF stat {WRITE $LISTLENGTH(errs)," Compile Errors ",!
 FOR i=1:1:$LISTLENGTH(errs) {
 WRITE !,i,": "
 SET errn=$LIST(errs,i)
 FOR j=1:1:$LISTLENGTH(errn) {
 WRITE $LIST(errn,j)," "
 }
 }
 }
 ELSE {WRITE "Compile successful",!
 WRITE "but no object code generated" }

See Also
• XECUTE command

• ZLOAD command

• ZSAVE command

• “ObjectScript Macros and the Macro Preprocessor” in Using ObjectScript

• Using Studio

274 ObjectScript Reference

ObjectScript Functions

$DATA
Checks if a variable contains data.

$DATA(variable,target)
$D(variable,target)

Parameters

The variable whose status is to be checked. A local or global variable, subscripted or
unsubscripted. The variable may be undefined.You cannot specify a simple object
property reference as variable; you can specify a multidimensional property reference
as variable with the syntax obj.property.

variable

Optional — A variable into which $DATA returns the current value of variable.target

Description
You can use $DATA to test whether a variable contains data before attempting an operation on it. $DATA returns status
information about the specified variable. The variable parameter can be the name of any variable (local variable, process-
private global, or global), and can include a subscripted array element. It can be a multidimensional object property; it
cannot be a non-multidimensional object property.

The possible status values that may be returned are as follows:

MeaningStatus Value

The variable is undefined. Any reference would cause an <UNDEFINED> error.0

The variable exists and contains data, but has no descendants. Note that the null string ("")
qualifies as data.

1

The variable identifies an array element that has descendants (contains a downward pointer
to another array element) but does not contain data. Any direct reference to such a variable
will result in an <UNDEFINED> error. For example, if y(1) is defined, but y is not, $DATA(y)
returns 10, set x=y will produce an <UNDEFINED> error.

10

The variable identifies an array element that has descendants (contains a downward pointer
to another array element) and contains data. Variables of this type can be referenced in
expressions.

11

You can use modulo 2 (#2) arithmetic to return a boolean value from $DATA: $DATA(var)#2 returns 0 for the undefined
status codes (0 and 10), and returns 1 for the defined status codes (1 and 11).

Status values 1 and 11 indicate only the presence of data, not the type of data.

You can use the Undefined() method of the %SYSTEM.Process class to set behavior when encountering an undefined
variable. For more information on <UNDEFINED> errors, refer to the $ZERROR special variable.

$DATA Tests Locks, Routines, Jobs, and Globals

• $DATA(^$LOCK(lockname)) tests for the existence of a lock. Note that the return values are different: 0 = lock does
not exist; 10 = lock exists. Lock descendants cannot be determined. Values 1 and 11 are never returned. Refer to
^$LOCK for further details.

ObjectScript Reference 275

$DATA

• $DATA(^$ROUTINE(routinename)) tests for the existence of the OBJ code version of a routine. Note that the return
values are different: 0 = routine OBJ code does not exist; 1 = routine OBJ code exists. Values 10 and 11 are never
returned. Refer to ^$ROUTINE for further details.

• $DATA(^$JOB(jobnum)) tests for the existence of a job. Note that the return values are different: 0 = job does not
exist; 1 = job exists. Values 10 and 11 are never returned. Refer to ^$JOB for further details.

• $DATA(^$GLOBAL(globalname)) tests for the existence of a global. The return codes are the same as for variables:
0, 1, 10, and 11. Refer to ^$GLOBAL for further details.

Parameters

variable

The variable that is being tested for the presence of data:

• variable can be a local variable, a global variable, or a process-private global (PPG) variable. It can be subscripted or
unsubscripted.

If a global variable, it can contain an extended global reference. If a subscripted global variable, it can be specified
using a naked global reference. Even when referencing an undefined subscripted global variable, variable resets the
naked indicator, affecting future naked global references, as described below.

• variable can be a multidimensional object property. It cannot be a non-multidimensional object property. Attempting
to use $DATA on a non-multidimensional object property results in an <OBJECT DISPATCH> error.

For example, the %SQL.StatementMetadata class has a multidimensional property columnIndex, and a non-multidimen-
sional property columnCount. In the following example, the first $DATA returns a value; the second $DATA results
in an <OBJECT DISPATCH> error:

 SET x=##class(%SQL.StatementMetadata).%New()
 WRITE "columnIndex defined: ",$DATA(x.columnIndex),!
 WRITE "columnCount defined: ",$DATA(x.columnCount)

• If variable is the ^$ROUTINE structured system variable, the possible returned status values are 1 or 0.

target

An optional parameter. Specify the name of a local variable, a process-private global, or a global. This target variable does
not need to be defined. If target is specified, $DATA writes the current data value of variable into target. If variable is
undefined, the target value remains unchanged.

The ZBREAK command cannot specify the target parameter as a watchpoint.

Examples
This example writes a selected range of records from the ^client array, a sparse array consisting of three levels. The first
level contains the client’s name, the second the client’s address, and the third the client’s accounts, account numbers, and
balances. A client can have up to four separate accounts. Because ^client is a sparse array there may be undefined elements
at any of the three levels. The contents for a typical record might appear as follows:

^client(5) John Jones
^client(5,1) 23 Bay Rd./Boston/MA 02049
^client(5,1,1) Checking/45673/1248.00
^client(5,1,2) Savings/27564/3270.00
^client(5,1,3) Reserve Credit/32456/125.00
^client(5,1,4) Loan/81263/460.00

The code below provides a separate subroutine to handle the output for each of the three array levels. It uses the $DATA
function at the start of each subroutine to test the current array element.

276 ObjectScript Reference

ObjectScript Functions

The $DATA=0 test in Level1, Level2, and Level3 tests whether the current array element is undefined. If TRUE, it causes
the code to QUIT and revert to the previous level.

The $DATA=10 test in Level1 and Level2 tests whether the current array element contains a pointer to a subordinate element,
but no data. If TRUE, it causes the code to write out a “No Data” message. The code then skips to the FOR loop processing
for the next lower level. There is no $DATA=10 test in Level3 because there are no elements subordinate to this level.

The WRITE commands in Level2 and Level3 use the $PIECE function to extract the appropriate information from the
current array element.

Start Read !,"Output how many records: ",n
 Read !,"Start with record number: ",s
 For i=s:1:s+(n1) {
 If $Data(^client(i)) {
 If $Data(^client(i))=10 {
 Write !," Name: No Data"
 }
 Else {
 Write !," Name: " ,^client(i)
 }
 If $Data(^client(i,1)) {
 If $Data(^client(i,1))=10 {
 Write !,"Address: No Data"
 }
 Else {
 Write !,"Address: ",$Piece(^client(i,1),"/",1)
 Write " , ",$Piece(^client(i,1),"/",2)
 Write " , ",$Piece(^client(i,1),"/",3)
 }
 }
 For j=1:1:4 {
 If $Data(^client(i,1,j)) {
 Write !,"Account: ",$Piece(^client(i,1,j),"/",1)
 Write " #: ",$Piece(^client(i,1,j),"/",2)
 Write " Balance: ",$Piece(^client(i,1,j),"/",3)
 }
 }
 }
 }
 Write !,"Finished."
 Quit

When executed, this code might produce output similar to the following:

Output how many records: 3
Start with record number: 10
Name: Jane Smith
Address: 74 Hilltop Dr., Beverly, MA 01965
Account: Checking #: 34218 Balance: 876.72
Account: Reserve Credit #: 47821 Balance: 1200.00
Name: Thomas Brown
Address: 46 Huron Ave., Medford, MA 02019
Account: Checking #: 59363 Balance: 205.45
Account: Savings #: 41792 Balance: 1560.80
Account: Reserve Credit #: 64218 Balance: 125.52
Name: Sarah Copley
Address: No Data
Account: Checking #: 30021 Balance: 762.28

Notes

Naked Global References

$DATA sets the naked indicator when used with a global variable. The naked indicator is set even if the specified global
variable is not defined (Status Value = 0).

Subsequent references to the same global variable can use a naked global reference, as shown in the following example:

 IF $DATA(^A(1,2,3))#2 {
 SET x=^(3) }

For further details on using $DATA with global variables and naked global references, see Using Multidimensional Storage
(Globals) in Using Globals.

ObjectScript Reference 277

$DATA

Global References in a Networked Environment

Using $DATA to repeatedly reference a global variable that is not defined (for example, $DATA(^x(1)) where ^x is not
defined) always requires a network operation to test if the global is defined on the ECP data server.

Using $DATA to repeatedly reference undefined nodes within a defined global variable (for example, $DATA(^x(1))
where any other node in ^x is defined) does not require a network operation once the relevant portion of the global (^x) is
in the client cache.

For further details, refer to Developing Distributed Cache Applications in the Scalability Guide.

Functions Related to $DATA

For related information, see $GET and $ORDER. Since $ORDER selects the next element in an array that contains data,
it avoids the need to perform $DATA tests when looping through array subscripts.

See Also
• KILL command

• SET command

• $GET function

• $ORDER function

• Using Multidimensional Storage (Globals) in Using Globals

278 ObjectScript Reference

ObjectScript Functions

$DECIMAL
Returns a number converted to an InterSystems IRIS floating point value.

$DECIMAL(num,digits)

Parameters

The numeric value to be converted. Commonly this is an IEEE floating point number.num

Optional — An integer that specifies the number of significant digits to return.
$DECIMAL rounds the return value to that number of digits, using the IEEE floating
point rounding algorithm. Valid values are 1 through 38, and 0. If digits is greater
than the number of digits the value is returned unchanged. If digits is 0, no rounding
is performed on num unless it has more than 20 significant digits (see below for
details on 0 value).

digits

Description
$DECIMAL returns a floating-point number converted to the InterSystems IRIS decimal floating-point data type. This
function is used to convert a fractional number in IEEE double-precision (64-bit) binary floating-point format to the corre-
sponding fractional number in InterSystems IRIS decimal floating-point format. This is the inverse of the operation performed
by the $DOUBLE function.

The InterSystems IRIS SQL data types DOUBLE and DOUBLE PRECISION represent IEEE floating point numbers; the
NUMERIC data type represents standard InterSystems IRIS fractional numbers.

IEEE floating point numbers are represented internally using 53 binary bits. Because most fractional decimal numbers have
no exact binary representation, a fractional number in $DOUBLE format will usually differ slightly from its $DECIMAL
conversion. Standard InterSystems IRIS fractional numbers have an approximate precision of 18.96 decimal digits on all
supported InterSystems IRIS system platforms. When an IEEE floating point number is displayed as a fractional number
the binary bits are often converted to a fractional number with far more than 18 decimal digits. This does not mean that
IEEE floating point numbers are more precise than standard InterSystems IRIS fractional numbers.

The num value can be specified as a number or a numeric string. It is resolved to canonical form (leading and trailing zeros
removed, multiple plus and minus signs resolved, etc.) before $DECIMAL conversion. If the num value is outside of the
range of values that can be converted to NUMERIC data type, $DECIMAL generates a <MAXNUMBER> error. Specifying
a nonnumeric string to num returns 0. Specifying a mixed-numeric string (for example "7dwarves" or "7.5.4") to num
truncates the input value at the first nonnumeric character then converts the numeric portion.

Default rounding is done as follows:

• Fractional Numbers: If digits is not specified and num has more than 19 significant digits, $DECIMAL rounds the
fractional portion so that the resulting number is 19 digits (or fewer, if the rounding results in trailing zeros). $DECIMAL
always rounds to the nearest fractional value with the greater absolute value.

• Very Large Integer Numbers: If digits is not specified and num has more than 19 significant integer digits to the left
of the decimal point, $DECIMAL rounds so that the resulting integer has 19 significant digits, with the remaining
integer digits represented by zeros.

• Very Small Fractional Numbers less than 1: If digits is not specified and num is a fractional number with more than
19 zeroes to the right of the decimal point before the significant value, $DECIMAL preserves the zeros and then
rounds so that the significant portion of the fraction is rounded to 19 significant digits.

ObjectScript Reference 279

$DECIMAL

• Integers with Very Small Fractional Numbers: If digits is not specified and num is a number contains a non-zero integer
portion with more than 19 zeroes to the right of the decimal point before a significant value, $DECIMAL rounds to
the integer.

The digits argument can be used to round the return value to a specified number of digits. Trailing zeros are always deleted.
If digits is a positive integer, rounding is done using the IEEE rounding standard. If num has more than 38 significant digits
(and digits=38) $DECIMAL rounds the fractional portion of the number at the 38th digit and represents all of the following
num digits with zeros. If digits is greater than 38, an <ILLEGAL VALUE> error is generated.

If digits is 0, the number is cast to string collation; this is equivalent to (+num)_"". If num is 20 digits or less, digits=0 is
the same as digits=20.

However, if digits is 0 and num is more than 20 digits, special rounding (not IEEE rounding) is performed, as follows.
Rounding is performed to return 20 digits. Special rounding is then performed on the 20th digit if it rounds to a 0 or a 5.
In the case when the 20th digit would round up to a 0 or a 5, InterSystems IRIS rounds it down to a 9 or a 4, respectively.
In the case when the 20th digit would round down to a 0 or a 5, InterSystems IRIS rounds it up to a 1 or a 6, respectively.
Other 20th digit values are returned unchanged. This rounding algorithm is used to provide correct numeric collation and
avoid rounding inconsistencies.

Integer Divide

With certain values, InterSystems IRIS decimal floating-point and IEEE double numbers yield a different integer divide
product. For example:

 WRITE !,"Integer divide operations:"
 WRITE !,"IRIS \: ",$DECIMAL(4.1)\.01 // 410
 WRITE !,"Double \: ",$DOUBLE(4.1)\.01 // 409

For further details on arithmetic operations involving IEEE double numbers, see the appendix “Numeric Computing in
InterSystems Applications” in the Orientation Guide for Server-Side Programming.

INF and NAN

If num is INF, a <MAXNUMBER> error is generated. If num is NAN, an <ILLEGAL VALUE> error is generated. These
invalid values are shown in the following example:

 SET i=$DOUBLE("INF")
 SET n=$DOUBLE("NAN")
 WRITE $DECIMAL(i),!
 WRITE $DECIMAL(n)

Examples
The following example demonstrates that $DECIMAL has no effect when applied to a fractional number that is already
in InterSystems IRIS format:

 SET x=$DECIMAL($ZPI)
 SET y=$ZPI
 IF x=y { WRITE !,"Identical:"
 WRITE !,"IRIS $DECIMAL: ",x
 WRITE !,"Native IRIS: ",y }
 ELSE { WRITE !,"Different:"
 WRITE !,"IRIS $DECIMAL: ",x
 WRITE !,"Native IRIS: ",y }

The following example returns the value of pi as a $DOUBLE value and as a standard InterSystems IRIS numeric value.
This example shows that equality operations should not be attempted between $DOUBLE and standard InterSystems IRIS
numbers, and that equivalence cannot be restored by using $DECIMAL to convert IEEE back to InterSystems IRIS:

280 ObjectScript Reference

ObjectScript Functions

 SET x=$DECIMAL($ZPI)
 SET y=$DOUBLE($ZPI)
 SET z=$DECIMAL(y)
 IF x=y { WRITE !,"IRIS & IEEE Same" }
 ELSEIF x=z { WRITE !,"IRIS & IEEE-to-IRIS same" }
 ELSE { WRITE !,"All three different"
 WRITE !,"IRIS decimal: ",x
 WRITE !,"IEEE float: ",y
 WRITE !,"IEEE to IRIS: ",z }

The following example returns the $DECIMAL conversion of pi as a $DOUBLE value. These conversions are rounded
by different digits argument values:

 SET x=$DOUBLE($ZPI)
 WRITE !,$DECIMAL(x)
 /* returns 3.141592653589793116 (19 digits) */
 WRITE !,$DECIMAL(x,1)
 /* returns 3 */
 WRITE !,$DECIMAL(x,8)
 /* returns 3.1415927 (note rounding) */
 WRITE !,$DECIMAL(x,12)
 /* returns 3.14159265359 (note rounding) */
 WRITE !,$DECIMAL(x,18)
 /* returns 3.14159265358979312 */
 WRITE !,$DECIMAL(x,19)
 /* returns 3.141592653589793116 (19 digits) */
 WRITE !,$DECIMAL(x,20)
 /* returns 3.141592653589793116 (19 digits) */
 WRITE !,$DECIMAL(x,21)
 /* returns 3.141592653589793116 (19 digits) */
 WRITE !,$DECIMAL(x,0)
 /* returns 3.1415926535897931159 (20 digits) */

See Also
• ZZDUMP command

• $DOUBLE function

• $FNUMBER function

• $NUMBER function

• Data Types in InterSystems SQL Reference

• Operators in Using ObjectScript

• Numeric Computing in InterSystems Applications in Orientation Guide for Server-Side Programming

ObjectScript Reference 281

$DECIMAL

$DOUBLE
Returns a number converted to a 64-bit floating-point value.

$DOUBLE(num)

Parameter

The numeric value to be converted.You can also specify the strings “NAN” and
“INF” (and their variants).

num

Description
$DOUBLE returns a number converted to the IEEE double-precision (64-bit) binary floating-point data type. This type of
floating-point number can contain up to 20 digits. If num has more than 20 digits, $DOUBLE rounds the fractional portion
to the appropriate number of digits. If the integer portion of num is more than 20 digits, $DOUBLE rounds the integer to
20 significant digits and represents the additional digits with zeros.

$DOUBLE converts an InterSystems IRIS floating-point number to an IEEE double-precision floating-point number.
$DECIMAL performs the inverse operation, converting an IEEE double-precision floating-point number to a standard
InterSystems IRIS floating-point number (NUMERIC data type).

$DOUBLE generates floating-point numeric values that accord with the IEEE double-precision (64-bit) binary floating
point standard. It is primarily intended for interchange and compatibility with applications that use this data type standard.
IEEE floating-point numbers are represented using binary notation. They have a precision of 53 binary bits, which corresponds
to 15.95 decimal digits. (Note that the binary representation does not correspond exactly to a decimal fraction.)

IEEE floating-point numbers have greater min/max value range than standard InterSystems IRIS floating-point numbers.
However, standard InterSystems IRIS floating-point numbers have a greater degree of precision. In most cases, standard
InterSystems IRIS floating-point numbers are preferable.

Note: An InterSystems IRIS numeric string literal that exceeds the min/max range supported by InterSystems IRIS
floating-point data types (for example, “1E128”) is automatically converted to an IEEE double-precision floating-
point number. This conversion is only performed on numeric literals; it is not performed on the results of mathe-
matical operations. This automatic conversion can be controlled on a per-process basis using the
TruncateOverflow() method of the %SYSTEM.Process class. The system-wide default behavior can be established
by setting the TruncateOverflow property of the Config.Miscellaneous class.

The num value can be specified as a number or a numeric string. It is resolved to canonical form (leading and trailing zeros
removed, multiple plus and minus signs resolved, etc.) before $DOUBLE conversion. Specifying a nonnumeric string to
num returns 0. Specifying a mixed-numeric string (for example "7dwarves" or "7.5.4") to num truncates the input value at
the first nonnumeric character then converts the numeric portion. A $DOUBLE numeric value supplied to a JSON array
or JSON object follows different validation and conversion rules.

The InterSystems SQL data types DOUBLE and DOUBLE PRECISION represent IEEE floating-point numbers; the
NUMERIC data type represents standard InterSystems IRIS floating-point numbers.

Equality Comparisons and Mixed Arithmetic

Because numbers generated by $DOUBLE are converted to a binary representation that does not correspond exactly to
decimal digits, equality comparisons between $DOUBLE values and standard InterSystems IRIS floating-point number
values may yield unexpected results and should generally be avoided. Comparisons between $DOUBLE values and standard
InterSystems IRIS floating-point number values are performed exactly, without rounding.

282 ObjectScript Reference

ObjectScript Functions

Mixed arithmetic operations involving a $DOUBLE value and one or more standard InterSystems IRIS numbers return a
$DOUBLE value. In mixed arithmetic, InterSystems IRIS automatically converts all of the numbers to $DOUBLE values
before performing the arithmetic operation. InterSystems IRIS handles conversions to/from $DOUBLE numeric represen-
tations and comparisons between numeric representations; these operations are, therefore, the same on all platforms.
However, arithmetic operations involving $DOUBLE values are governed by the underlying operating system, and thus
may occasionally differ between platforms. For further details on arithmetic operations involving IEEE double numbers,
see the appendix “Numeric Computing in InterSystems Applications” in the Orientation Guide for Server-Side Programming.

Integer Divide

With certain values, InterSystems IRIS decimal floating-point and IEEE double numbers yield a different integer divide
product. For example:

 WRITE !,"Divide operations:"
 WRITE !,"IRIS /: ",4.1/.01 // 410
 WRITE !,"Double /: ",$DOUBLE(4.1)/.01 // 410
 WRITE !,"Integer divide operations:"
 WRITE !,"IRIS \: ",4.1\.01 // 410
 WRITE !,"Double \: ",$DOUBLE(4.1)\.01 // 409

Platform Independence

Standard InterSystems IRIS decimal floating-point numbers ($DECIMAL numbers) have an approximate precision of
18.96 decimal digits. This precision is consistent across all system platforms that InterSystems IRIS supports.

IEEE double-precision floating-point numbers ($DOUBLE numbers) have a standard internal representation that is platform-
independent. Conversions and comparisons between $DOUBLE and $DECIMAL numbers are consistent across all system
platforms that InterSystems IRIS supports. However, other computations on $DOUBLE numbers may show slight differences
based on the system platform.

INF and NAN
Following the IEEE standard, $DOUBLE can return the strings INF (infinity) and NAN (not a number). INF can be positive
or negative (INF and -INF); NAN is always unsigned. While these are valid IEEE return values, they are not actual numbers.

INF and NAN as Input Values

One way to cause $DOUBLE to return INF and NAN is to specify the corresponding string as the num input value. These
input strings are not case-sensitive, and can take leading plus and minus signs (INF resolves signs, NAN ignores signs).
To return NAN, specify “NAN”, “sNAN”, “+NAN”, “-NAN”. To return INF, specify “INF”, “+INF”, “Infinity”. To return
-INF, specify “-INF”, “+-INF”.

IEEEError

IEEEError controls how $DOUBLE responds to a numeric conversion that cannot be resolved. If IEEEError is set to 0,
$DOUBLE returns INF and NAN when it cannot resolve a conversion. If IEEEError is set to 1, $DOUBLE generates
standard InterSystems IRIS error codes when it cannot resolve a conversion. The default is 1.

This behavior can be controlled on a per-process basis using the IEEEError() method of the %SYSTEM.Process class.
The system-wide default behavior can be established by setting the IEEEError property of the Config.Miscellaneous class.

Returning INF and NAN

$DOUBLE can return INF and NAN when you specify an extremely large number, or when you specify an unresolvable
arithmetic operation. These values are only returned when IEEEError is set to return INF and NAN.

Extremely large floating-point numbers are not supported. The maximum supported value for a $DOUBLE binary floating-
point number is 1.7976931348623158079e308. The minimum supported value for a $DOUBLE binary floating-point
number is 1.0E-323. A num value smaller than this returns 0.

ObjectScript Reference 283

$DOUBLE

Note: The maximum supported value for an InterSystems IRIS decimal floating-point number is
9.223372036854775807e145. The minimum supported value for an InterSystems IRIS decimal floating-point
number is either 2.2250738585072013831e-308 (normal) or 4.9406564584124654417e-324 (denormalized).

The following table shows the value returned or error generated by unresolvable arithmetic operations:

IEEEError=1IEEEError=0Input Value

<MAXNUMBER>INF> 1.0E308

00< 1.0E-323

<DIVIDE>INF1/$DOUBLE(0)

<DIVIDE>–INF1/$DOUBLE(–0)

<DIVIDE>INF$DOUBLE(1)/0

<ILLEGAL VALUE>NAN$DOUBLE(0)/0

<DIVIDE>–INF$ZLOG($DOUBLE(0))

Comparing INF and NAN

INF can be compared as if it were a numerical value. Thus INF = INF, INF '= –INF, –INF = –INF, and INF > –INF.

NAN cannot be compared as if it were a numerical value. Because NAN (Not A Number) cannot be meaningfully compared
using numerical operators, InterSystems IRIS operations (such as equal to, less than, or greater than) that attempt to compare
$DOUBLE(“NAN”) to another $DOUBLE(“NAN”) fail. Comparisons with NAN <= or >= are a special case, which is
described in the appendix “Numeric Computing in InterSystems Applications” in the Orientation Guide for Server-Side
Programming.

$LISTSAME does consider a $DOUBLE(“NAN”) list element to be identical to another $DOUBLE(“NAN”) list element.

InterSystems IRIS does not distinguish between different NAN representations (NAN, sNAN, etc.). InterSystems IRIS
considers all NANs to be the same, regardless of their binary representation.

$ISVALIDNUM, $INUMBER, and $FNUMBER

These ObjectScript functions provide support for $DOUBLE numbers.

$ISVALIDNUM supports INF and NAN. Although these strings are not numbers, $ISVALIDNUM returns 1 for these
values, just as if they were numbers. When $DOUBLE is specified with a nonnumeric string, for example $DOUBLE(""),
InterSystems IRIS returns a value of 0. For this reason, $ISVALIDNUM($DOUBLE("")) returns 1, because 0 is a number.

$INUMBER and $FNUMBER provide a “D” format option that supports $DOUBLE values. $INUMBER converts a
numeric to a IEEE floating-point number. $FNUMBER “D” support includes case conversion of INF and NAN, and
choosing whether $DOUBLE(-0) should return 0 or -0.

INF and NAN with Operators

You can perform arithmetic and logical operations on INF and NAN. Use of operators with INF and NAN is not recom-
mended; if such an operation is performed, the following are the results:

Arithmetic operators:

284 ObjectScript Reference

ObjectScript Functions

Division (/, \, or #
operators)

MultiplicationSubtractionAddition

NAN/NAN=NANNAN*NAN=NANNAN-NAN=NANNAN+NAN=NAN

NAN/INF=NANNAN*INF=NANNAN-INF=NANNAN+INF=NAN

INF/NAN=NANINF-NAN=NAN

INF/INF=NANINF*INF=INFINF-INF=NANINF+INF=INF

Logical operators:

INFNANEquality (=)

00NAN

10INF

INFNANLess Than (<) or Greater Than (>)

00NAN

00INF

Other operators, such as pattern matching and concatenation, treat NAN and INF as three-character alphabetic strings.

For further details on operations involving IEEE double numbers, see the appendix “Numeric Computing in InterSystems
Applications” in the Orientation Guide for Server-Side Programming.

INF and NAN Examples

$DOUBLE returns an INF value (or a -INF for negative numbers) when the numeric value exceeds the available precision,
as shown in the following example:

 SET rtn=##class(%SYSTEM.Process).IEEEError(0)
 SET x=$DOUBLE(1.2e300)
 WRITE !,"Double: ",x
 WRITE !,"Is number? ",$ISVALIDNUM(x)
 SET y= $DOUBLE(x*x)
 WRITE !,"Double squared: ",y
 WRITE !,"Is number? ",$ISVALIDNUM(y)

$DOUBLE returns a NAN (not a number) value when the numeric value is invalid. For example, when an arithmetic
expression involves two INF values, as shown in the following example. (An arithmetic expression involving a single INF
value returns INF.)

 SET rtn=##class(%SYSTEM.Process).IEEEError(0)
 SET x=$DOUBLE(1.2e500)
 WRITE !,"Double: ",x
 WRITE !,"Is number? ",$ISVALIDNUM(x)
 SET y= $DOUBLE(x-x)
 WRITE !,"Double INF minus INF: ",y
 WRITE !,"Is number? ",$ISVALIDNUM(y)

JSON Numeric Literals
JSON validation of numeric literals is described in the SET command. $DOUBLE numeric literals specified in a JSON
array or JSON object are subject to the following additional rules:

• INF, -INF, and NAN values can be stored in JSON structures, but cannot be returned by %ToJSON(). Attempting to
do so results in an <ILLEGAL VALUE> error, as shown in the following example:

ObjectScript Reference 285

$DOUBLE

 SET jary=[123,($DOUBLE("INF"))] // executes successfully
 WRITE jary.%ToJSON() // fails with <ILLEGAL VALUE> error

• $DOUBLE(-0) is stored in a JSON structure as -0.0. $DOUBLE(0) or $DOUBLE(+0) is stored in a JSON structure
as 0.0. This is shown in the following example:

 SET jary=[0,-0,($DOUBLE(0)),($DOUBLE(-0))]
 WRITE jary.%ToJSON() // returns [0,-0,0.0,-0.0]

Examples
The following example returns floating-point numbers of 20 digits:

 WRITE !,$DOUBLE(999.12345678987654321)
 WRITE !,$DOUBLE(.99912345678987654321)
 WRITE !,$DOUBLE(999123456789.87654321)

The following example returns the value of pi as a $DOUBLE value and as a standard InterSystems IRIS numeric value.
This example shows that equality operations should not be attempted between $DOUBLE and standard InterSystems IRIS
numbers, and that the number of digits returned is greater for standard InterSystems IRIS numbers:

 SET x=$ZPI
 SET y=$DOUBLE($ZPI)
 IF x=y { WRITE !,"Same" }
 ELSE { WRITE !,"Different"
 WRITE !,"standard: ",x
 WRITE !,"IEEE float: ",y }

The following examples show that a floating-point number is not necessarily equivalent to a numeric string of the same
value:

 SET x=123.4567891234560
 SET y=123.4567891234567
 IF x=$DOUBLE(x) { WRITE !,"Same" }
 ELSE { WRITE !,"Different" }
 IF y=$DOUBLE(y) { WRITE !,"Same" }
 ELSE { WRITE !,"Different" }

 SET x=1234567891234560
 SET y=1234567891234567
 IF x=$DOUBLE(x) { WRITE !,"Same" }
 ELSE { WRITE !,"Different" }
 IF y=$DOUBLE(y) { WRITE !,"Same" }
 ELSE { WRITE !,"Different" }

See Also
• ZZDUMP command

• $DECIMAL function

• $FNUMBER function

• $NUMBER function

• Data Types in InterSystems SQL Reference

• Operators in Using ObjectScript

• Numeric Computing in InterSystems Applications in Orientation Guide for Server-Side Programming

286 ObjectScript Reference

ObjectScript Functions

$EXTRACT
Extracts a substring from a character string by position, or replaces a substring by position.

$EXTRACT(string,from,to)
$E(string,from,to)

SET $EXTRACT(string,from,to)=value
SET $E(string,from,to)=value

Parameters

The target string in which substrings are identified. Specify string as an expression that
evaluates to a quoted string or a numeric value. In SET $EXTRACT syntax, string must be
a variable or a multi-dimensional property.

string

Optional — Specifies the starting position within the target string. Characters are counted
from 1. Permitted values are n (a positive integer specifying the character count from the
beginning of string), * (specifying the last character in string), and *-n (offset integer count of
characters backwards from end of string). SET $EXTRACT syntax also supports *+n (offset
integer count of characters to append beyond the end of string). A from without a to specifies
a single character. A from with a to specifies a range of characters. If from is not specified,
it defaults to 1.

from

Optional — Specifies the end position (inclusive) for a range of characters. Must be used
with from. Permitted values are n (a positive integer specifying the character count from the
beginning of string), * (specifying the last character in string), and *-n (offset integer count of
characters backwards from end of string). SET $EXTRACT syntax also supports *+n (offset
integer count of the end of a range of characters to append beyond the end of string).

to

Description
$EXTRACT identifies substrings within string by character count, either from the beginning of string or the end of string.
A substring can be a single character or a range of characters.

$EXTRACT can be used in two ways:

• To return a substring from string. This uses the $EXTRACT(string,from,to) syntax.

• To replace a substring within string. The replacement substring may be the same length, longer, or shorter than the
original substring. This uses the SET $EXTRACT(string,from,to)=value syntax.

Returning a Substring

$EXTRACT returns a substring by character position from string. The nature of this substring extraction depends on the
parameters used.

• $EXTRACT(string) extracts the first character in the string.

 SET mystr="ABCD"
 WRITE $EXTRACT(mystr)

• $EXTRACT(string,from) extracts a single character in the position specified by from. The from value can be an integer
count from the beginning of the string, an asterisk specifying the last character of the string, or an asterisk with a neg-
ative integer specifying a count backwards from the end of the string.

The following example extracts single letters from the string “ABCD”:

ObjectScript Reference 287

$EXTRACT

 SET mystr="ABCD"
 WRITE !,$EXTRACT(mystr,2) // "B" the 2nd character
 WRITE !,$EXTRACT(mystr,*) // "D" the last character
 WRITE !,$EXTRACT(mystr,*-2) // "B" the offset 2 characters from end
 WRITE !,$EXTRACT(mystr,*-0) // "D" the last character by 0 offset

• $EXTRACT(string,from,to) extracts the range of characters starting with the from position and ending with the to
position (inclusive). For example, if variable var2 contains the string “1234Alabama567”, the following $EXTRACT
functions both return the string “Alabama”:

 SET var2="1234Alabama567"
 WRITE !,$EXTRACT(var2,5,11)
 WRITE !,$EXTRACT(var2,*-9,*-3)

Parameters

string

The target string in which the substring is identified.

When $EXTRACT is used to return a substring, string can be a string literal enclosed in quotation marks, a canonical
numeric, a variable, an object property, or any valid ObjectScript expression that evaluates to a string or a numeric. If you
specify a null string ("") as the target string, $EXTRACT always returns the null string, regardless of the other parameter
values.

When $EXTRACT is used with SET on the left hand side of the equals sign to replace a substring, string can be a variable
name or a multidimensional property reference; it cannot be a non-multidimensional object property.

from

The from parameter can specify a single character, or the beginning of a range of characters.

• If from is n (a positive integer), $EXTRACT counts characters from the beginning of string.

• If from is * (asterisk), $EXTRACT returns the last character in string.

• If from is *-n (an asterisk followed by a negative number), $EXTRACT counts characters by offset from the end of
string. Thus, *-0 is the last character in string, *-1 is the next-to-last character in string (an offset of 1 from the end).

• For SET $EXTRACT syntax only — If from is *+n (an asterisk followed by a positive number), SET $EXTRACT
appends characters by offset beyond the end of string. Thus, *+1 appends a character beyond the end of string, *+2
appends a character two positions beyond the end of string, padding the skipped position with a blank space. *+0 is
the last character in string.

If the from integer value is greater than the number of characters in the string, $EXTRACT returns a null string. With a
from *-n value, if n is equal to or greater than the number of characters in the string, $EXTRACT returns a null string. If
the from value is 0 or a negative number, $EXTRACT returns a null string; however, if from is used with to, a from value
of 0 or a negative number is treated as a value of 1.

If from is used with the to parameter, from identifies the start of the range to be extracted and must be less than the value
of to. If from equals to, $EXTRACT returns the single character at the specified position. If from is greater than to,
$EXTRACT returns a null string. If used with the to parameter, a from value less than 1 (zero, or a negative number) is
treated as if it were the number 1.

to

The to parameter must be used with the from parameter. It must be a positive integer, * (asterisk), or *-n (an asterisk followed
by a negative integer). If the to value is an integer greater than or equal to the from value, $EXTRACT returns the specified
substring. If the to value is an asterisk, $EXTRACT returns the substring beginning with the from character through the
end of the string. If to is an integer greater than the length of the string, $EXTRACT also returns the substring beginning
with the from character through the end of the string.

288 ObjectScript Reference

ObjectScript Functions

If the from and to positions are the same,$EXTRACT returns a single character. If the to position is closer to the beginning
of the string than the from position, $EXTRACT returns the null string.

If you omit the to parameter, only one character is returned. If from is specified, $EXTRACT returns the character identified
by from. If both to and from are omitted, $EXTRACT returns the first character of string.

For SET $EXTRACT syntax only — If to is *+n, SET $EXTRACT appends a range of characters by offset beyond the
end of string, padding with blank spaces as needed. If from represents a character position after the end of string, SET
$EXTRACT appends characters. If from represents a character position before the end of string, SET $EXTRACT may
both replace and append characters.

Specifying *-n and *+n Parameter Values

When using a variable to specify *-n or *+n, you must always specify the asterisk and a sign character in the parameter
itself.

The following are valid specifications of *-n:

 SET count=2
 SET alph="abcd"
 WRITE $EXTRACT(alph,*-count)

 SET count=-2
 SET alph="abcd"
 WRITE $EXTRACT(alph,*+count)

The following is a valid specification of *+n:

 SET count=2
 SET alph="abcd"
 SET $EXTRACT(alph,*+count)="F"
 WRITE alph

Whitespace is permitted within these parameter values.

Examples: Returning a Substring

The following example returns “D”, the fourth character in the string:

 SET x="ABCDEFGHIJK"
 WRITE $EXTRACT(x,4)

The following example returns “K”, the last character in the string:

 SET x="ABCDEFGHIJK"
 WRITE $EXTRACT(x,*)

In the following example, all the $EXTRACT functions return “J” the next-to-last character in the string:

 SET n=-1
 SET m=1
 SET x="ABCDEFGHIJK"
 WRITE !,$EXTRACT(x,*-1)
 WRITE !,$EXTRACT(x,*-m)
 WRITE !,$EXTRACT(x,*+n)
 WRITE !,$EXTRACT(x,*-1,*-1)

Note that a minus or plus sign is needed between the asterisk and the integer variable.

The following example shows that the one-argument format is equivalent to the two-argument format when the from value
is “1”. Both $EXTRACT functions return “H”.

 SET x="HELLO"
 WRITE !,$EXTRACT(x)
 WRITE !,$EXTRACT(x,1)

The following example returns a substring “THIS IS” which is composed of the first through seventh characters.

ObjectScript Reference 289

$EXTRACT

 SET x="THIS IS A TEST"
 WRITE $EXTRACT(x,1,7)

The following example also returns the substring “THIS IS”. When the from variable contains a value less than 1,
$EXTRACT treats that value as 1. Thus, the following example returns a substring composed of the first through seventh
characters.

 SET X="THIS IS A TEST"
 WRITE $EXTRACT(X,-1,7)

The following example returns the last four characters of the string:

 SET X="THIS IS A TEST"
 WRITE $EXTRACT(X,*-3,*)

The following example also returns the last four characters of the string:

 SET X="THIS IS A TEST"
 WRITE $EXTRACT(X,*-3,14)

The following example extracts a substring from an object property:

 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SchemaPath="MyTests,Sample,Cinema"
 WRITE "whole schema path: ",tStatement.%SchemaPath,!
 WRITE "start of schema path: ",$EXTRACT(tStatement.%SchemaPath,1,10),!

Replacing a Substring Using SET $EXTRACT
You can use $EXTRACT with the SET command to replace a specified character or range of characters with another
value. You can also use it to append characters to the end of a string.

When $EXTRACT is used with SET on the left hand side of the equals sign, string can be a valid variable name. If the
variable does not exist, SET $EXTRACT defines it. The string parameter can also be a multidimensional property reference;
it cannot be a non-multidimensional object property. Attempting to use SET $EXTRACT on a non-multidimensional
object property results in an <OBJECT DISPATCH> error.

You cannot use SET (a,b,c,...)=value syntax with $EXTRACT (or $PIECE or $LIST) on the left of the equals sign, if
the function uses relative offset syntax: * representing the end of a string and *-n or *+n representing relative offset from
the end of the string. You must instead use SET a=value,b=value,c=value,... syntax.

The simplest form of SET $EXTRACT is a one-for-one substitution:

 SET alph="ABZD"
 SET $EXTRACT(alph,3)="C"
 WRITE alph ; "ABCD"

You can append characters to string either by specifying to as a positive integer that is 1 larger than the length of string,
or by specifying to as *+1, as shown in the following examples:

 SET alph="ABCD"
 SET $EXTRACT(alph,5)="E"
 WRITE alph ; "ABCDE"

 SET alph="ABCD"
 SET $EXTRACT(alph,*+1)="E"
 WRITE alph ; "ABCDE"

If you specify to larger than the string plus 1, $EXTRACT pads with blank spaces:

 SET alph="ABCD"
 SET len=$LENGTH(alph)
 SET $EXTRACT(alph,len+2)="F"
 WRITE alph ; "ABCD F"

 SET alph="ABCD"
 SET $EXTRACT(alph,*+2)="F"
 WRITE alph ; "ABCD F"

290 ObjectScript Reference

ObjectScript Functions

You can also extract a string and replace it with a string of a different length. For example, the following command extracts
the string “Rhode Island” from foo and replaces it with the string “Texas”, with no padding.

 SET foo="Deep in the heart of Rhode Island"
 SET $EXTRACT(foo,22,33)="Texas"
 WRITE foo ; "Deep in the heart of Texas"

You can extract a string and set it to the null string, removing the extracted characters from the string:

 SET alph="ABCzzzzzD"
 SET $EXTRACT(alph,4,8)=""
 WRITE alph ; "ABCD"

If you specify from larger than to, no replacement occurs:

 SET alph="ABCD"
 SET $EXTRACT(alph,4,3)="X"
 WRITE alph ; "ABCD"

In the following example, assume that variable x does not exist.

 KILL x
 SET $EXTRACT(x,1,4)="ABCD"
 WRITE x ; "ABCD"

The SET command creates variable x and assigns it the value “ABCD”.

SET $EXTRACT performs leading padding with blank spaces as required, but does not perform trailing padding. The
following example inserts the value “F” in the sixth position past the end of the string, but inserts no additional characters
in positions 7 and 8:

 SET alph="ABCD"
 SET $EXTRACT(alph,6,8)="F"
 WRITE alph ; "ABCD F"

The following example inserts the value “F” in the sixth position and adds characters past the specified range:

 SET alph="ABCD"
 SET $EXTRACT(alph,6,8)="FGHIJ"
 WRITE alph ; "ABCD FGHIJ"

The following example shortens a character string by extracting a from,to range larger than the number of values in the
replacement string.

 SET x="ABCDEFGH"
 SET $EXTRACT(x,3,6)="Z"
 WRITE x

inserts the value “Z” in the third position and removes positions 4, 5 and 6. Variable x now contains the value “ABZGH”
and has a length of 5.

Notes

$EXTRACT and Unicode

The $EXTRACT function operates on characters, not bytes. Therefore, Unicode strings are handled the same as ASCII
strings, as shown in the following example using the Unicode character for “pi” ($CHAR(960)):

 SET a="QT PIE"
 SET b="QT "_$CHAR(960)
 SET a1=$EXTRACT(a,-33,4)
 SET a2=$EXTRACT(a,4,4)
 SET a3=$EXTRACT(a,4,99)
 SET b1=$EXTRACT(b,-33,4)
 SET b2=$EXTRACT(b,4,4)
 SET b3=$EXTRACT(b,4,99)
 WRITE !,"ASCII form returns ",!,a1,!,a2,!,a3
 WRITE !,"Unicode form returns ",!,b1,!,b2,!,b3

ObjectScript Reference 291

$EXTRACT

For further details, refer to Unicode in Using ObjectScript.

Surrogate Pairs

$EXTRACT does not recognize surrogate pairs. Surrogate pairs are used to represent some Chinese characters and to
support the Japanese JIS2004 standard. You can use the $WISWIDE function to determine if a string contains a surrogate
pair. The $WEXTRACT function recognizes and correctly parses surrogate pairs. $EXTRACT and $WEXTRACT are
otherwise identical. However, because $EXTRACT is generally faster than $WEXTRACT, $EXTRACT is preferable
for all cases where a surrogate pair is not likely to be encountered.

$EXTRACT Compared with $PIECE and $LIST

$EXTRACT determines a substring by counting characters from the beginning of a string. $EXTRACT takes as input
any ordinary character string. $PIECE and $LIST both work on specially prepared strings.

$PIECE determines a substring by counting user-defined delimiter characters within the string.

$LIST determines an element from an encoded list by counting elements (not characters) from the beginning of the list.
$LIST cannot be used on ordinary strings, and $EXTRACT cannot be used on encoded lists.

See Also
• SET command

• $FIND function

• $LENGTH function

• $PIECE function

• $REVERSE function

• $WEXTRACT function

• $WFIND function

• $WISWIDE function

292 ObjectScript Reference

ObjectScript Functions

$FACTOR
Converts an integer to a $BIT bitstring.

$FACTOR(num,scale)

Parameters

An expression that evaluates to a number. num is converted to a positive integer before bitstring
conversion. A negative number is converted to a positive number (its absolute value). A fractional
number is rounded to an integer.

num

Optional — An integer used as a power-of-ten exponent (scientific notation) multiplier for num.
The default is 0.

scale

Description
$FACTOR returns the $BIT format bitstring that corresponds to the binary representation of the supplied integer. It performs
the following operations:

• If you specify a negative number, $FACTOR takes the absolute value of the number.

• If you specify a scale $FACTOR multiplies the integer by 10**scale.

• If you specify a fractional number $FACTOR rounds this number to an integer. When rounding numbers, InterSystems
IRIS rounds the fraction .5 up to the next highest integer.

• $FACTOR converts the integer to its binary representation.

• $FACTOR converts this binary number to $BIT encoded binary format.

The binary string returned specifies bit positions starting from the least significant bit at position 1 (one's place at position
1). This corresponds to the bitstrings used by the various $BIT functions.

Parameters

num

A number (or an expression that evaluates to a number). $FACTOR applies the scale parameter (if supplied), converts
this number to an integer by rounding, and then returns the corresponding bitstring. num can be positive or negative. If num
is a mixed numeric string (for example “7dwarves” or “5.6.8”) $FACTOR converts the numeric part of the string (in our
example, 7 and 5.6) until it encounters a nonnumeric character. If num is zero, or rounds to zero, or is the null string (""),
or a nonnumeric string, $FACTOR returns an empty string. The $DOUBLE values INF, –INF, and NAN return the empty
string.

scale

An integer that specifies the scientific notation exponent to apply to num. For example, if scale is 2, then scale represents
10 exponent 2, or 100. This scale value is multiplied by num. For example, $FACTOR(7,2) returns the bitstring that cor-
responds to the integer 700. This multiplication is done before rounding num to an integer. By default, scale is 0.

Examples
The following example show the conversion of the integers 1 through 9 to bitstrings:

ObjectScript Reference 293

$FACTOR

 SET x=1
 WHILE x<10 {
 WRITE !,x,"="
 FOR i=1:1:8 {
 WRITE $BIT($FACTOR(x),i) }
 SET x=x+1 }

The following example show $FACTOR conversion of negative numbers and fractions to positive integers:

 FOR i=1:1:8 {WRITE $BIT($FACTOR(17),i)}
 WRITE " Positive integer",!
 FOR i=1:1:8 {WRITE $BIT($FACTOR(-17),i)}
 WRITE " Negative integer (absolute value)",!
 FOR i=1:1:8 {WRITE $BIT($FACTOR(16.5),i)}
 WRITE " Positive fraction (rounded up)",!
 FOR i=1:1:8 {WRITE $BIT($FACTOR(-16.5),i)}
 WRITE " Negative fraction (rounded up)"

The following example show the bitstring returned when the scale parameter is specified:

 SET x=2.7
 WRITE !,x," scaled then rounded to an integer:",!!
 FOR i=1:1:12 {
 WRITE $BIT($FACTOR(x),i) }
 WRITE " binary = ",$NORMALIZE(x,0)," decimal",!
 SET scale=1
 SET y=x*(10**scale)
 FOR i=1:1:12 {
 WRITE $BIT($FACTOR(x,scale),i) }
 WRITE " binary = ",$NORMALIZE(y,0)," decimal",!
 SET scale=2
 SET y=x*(10**scale)
 FOR i=1:1:12 {
 WRITE $BIT($FACTOR(x,scale),i) }
 WRITE " binary = ",$NORMALIZE(y,0)," decimal"

See Also
• $BIT function

• $BITCOUNT function

• $BITFIND function

• $BITLOGIC function

• $DOUBLE function

294 ObjectScript Reference

ObjectScript Functions

$FIND
Finds a substring by value and returns an integer specifying its end position in the string.

$FIND(string,substring,position)
$F(string,substring,position)

Parameters

The target string that is to be searched. It can be a variable name, a numeric value, a
string literal, or any valid ObjectScript expression that resolves to a string.

string

The substring that is to be searched for. It can be a variable name, a numeric value,
a string literal, or any valid ObjectScript expression that resolves to a string.

substring

Optional — A position within the target string at which to start the search. It must be
a positive integer.

position

Description
$FIND returns an integer specifying the end position of a substring within a string. $FIND searches string for substring.
$FIND is case-sensitive. If substring is found, $FIND returns the integer position of the first character following substring.
If substring is not found, $FIND returns a value of 0.

Because $FIND returns the position of the character following the substring, when substring is a single character that
matches the first character of string $FIND returns 2. When substring is the null string (""), $FIND returns 1.

You can include the position option to specify a starting position for the search. If position is greater than the number of
characters in string, $FIND returns a value of 0.

$FIND counts characters, not bytes. Therefore, it can be used with strings containing 8-bit or 16-bit (Unicode) characters.
For further details on InterSystems IRIS Unicode support, refer to Unicode in Using ObjectScript.

Examples
For example, if variable var1 contains the string “ABCDEFG” and variable var2 contains the string “BCD,” the following
$FIND returns the value 5, indicating the position of the character (“E”) that follows the var2 string:

 SET var1="ABCDEFG",var2="BCD"
 WRITE $FIND(var1,var2)

The following example returns 4, the position of the character immediately to the right of the substring “FOR”.

 SET X="FOREST"
 WRITE $FIND(X,"FOR")

In the following examples, $FIND searches for a substring that is not in string, for a null substring, and for a substring that
is the first character of string. The examples return 0, 1, and 2, respectively:

 WRITE !,$FIND("aardvark","z") ; returns 0
 WRITE !,$FIND("aardvark","") ; returns 1
 WRITE !,$FIND("aardvark","a") ; returns 2

The following examples show what happens when string is a null string:

 WRITE !,$FIND("","z") ; returns 0
 WRITE !,$FIND("","") ; returns 1

The following example returns 14, the position of the character immediately to the right of the first occurrence of “R” after
the seventh character in X.

ObjectScript Reference 295

$FIND

 SET X="EVERGREEN FOREST",Y="R"
 WRITE $FIND(X,Y,7)

In the following example, $FIND begins its search after the last character in string. It returns zero (0):

 SET X="EVERGREEN FOREST",Y="R"
 WRITE $FIND(X,Y,20)

The following example uses $FIND with $REVERSE to perform a search operation from the end of the string. This
example locates the last example of a string within a line of text. It returns the position of that string as 33:

 SET line="THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG."
 SET position=$LENGTH(line)+2-$FIND($REVERSE(line),$REVERSE("THE"))
 WRITE "The last THE in the line begins at ",position

The following example uses name indirection to return 6, the position of the character immediately to the right of the substring
“THIS”:

 SET Y="x",x="""THIS IS A TEST"""
 WRITE $FIND(@Y,"THIS")

For more information, refer to Indirection in Using ObjectScript.

Notes

$FIND, $EXTRACT, $PIECE, and $LIST

• $FIND locates a substring by value and returns a position.

• $EXTRACT locates a substring by position and returns the substring value.

• $PIECE locates a substring by a delimiter character or delimiter string, and returns the substring value.

• $LIST operates on specially encoded strings. It locates a substring by substring count and returns the substring value.

The $FIND, $EXTRACT, $LENGTH, and $PIECE functions operate on standard character strings. The various $LIST
functions operate on encoded character strings, which are incompatible with standard character strings. The sole exception
is the one-argument and two-argument forms of $LIST, which take an encoded character string as input, but output a single
element value as a standard character string.

Surrogate Pairs

$FIND does not recognize surrogate pairs. Surrogate pairs are used to represent some Chinese characters and to support
the Japanese JIS2004 standard. You can use the $WISWIDE function to determine if a string contains a surrogate pair.
The $WFIND function recognizes and correctly parses surrogate pairs. $FIND and $WFIND are otherwise identical.
However, because $FIND is generally faster than $WFIND, $FIND is preferable for all cases where a surrogate pair is
not likely to be encountered.

See Also
• $EXTRACT function

• $LENGTH function

• $LIST function

• $PIECE function

• $REVERSE function

• $WEXTRACT function

• $WFIND function

296 ObjectScript Reference

ObjectScript Functions

• $WISWIDE function

ObjectScript Reference 297

$FIND

$FNUMBER
Formats a numeric value with a specified format; optionally rounds or zero fills to a specified precision.

$FNUMBER(inumber,format,decimal)
$FN(inumber,format,decimal)

Parameters

The number to be formatted. It can be a numeric literal, a variable, or any valid ObjectScript
expression that evaluates to a numeric value.

inumber

Optional — Specifies how the number is to be formatted. Specified as a quoted string
consisting of zero or more format codes, in any order. Format codes are described below.
Note that some format codes are incompatible and result in an error. For default formatting,
with or without the decimal parameter, you can specify the empty string (""). If omitted,
defaults to the empty string ("").

format

Optional — The number of fractional decimal digits to be included in the returned number.
If format is omitted, include a placeholder comma before specifying decimal.

decimal

Description
$FNUMBER returns the number specified by inumber in the specified format.

Parameters

inumber

An expression that resolves to a number. Before $FNUMBER performs any operation, InterSystems IRIS performs its
standard numeric resolution on inumber as follows: it resolves variables, performs string operations such as concatenation,
converts strings to numerics, performs numeric expression operations, then converts the resulting numeric to canonical
form. This is the number that $FNUMBER formats.

If inumber is a string, InterSystems IRIS first converts it to a number, truncating at the first non-numeric character. If the
first character of the string is a non-numeric character, InterSystems IRIS converts the string to 0.

format

The possible format codes are as follows. You can specify them singly or in combination. Alphabetic codes are not case-
sensitive.

DescriptionCode

Empty string. Returns inumber in canonical number format.This format is the same as "L" format.""

Returns a nonnegative number prefixed by the PlusSign property of the current locale (“+” by
default). If the number is negative, it returns the number prefixed by the MinusSign property of
the current locale (“-” by default).

+

Returns the absolute value of a number. Always returns a negative number without the MinusSign
character. Returns a positive number without the PlusSign character. When combined with the
“+” format code ("-+", returns positive numbers with a plus sign, negative numbers with no sign.
This code cannot be used with the “P” format code; attempting to do so results in a <SYNTAX>
error.

-

298 ObjectScript Reference

ObjectScript Functions

DescriptionCode

Returns the number with the value of the NumericGroupSeparator property of the current locale
inserted every NumericGroupSize numerals to the left of the decimal point. Combining “,” with
either “.” or “N” formats results in a <FUNCTION> error.

,

Returns the number using standard European formatting, regardless of the current locale settings.
Sets DecimalSeparator to comma (,), NumericGroupSeparator to period (.), NumericGroupSize
to 3, PlusSign to plus (+), MinusSign to minus (-). Combining “.” with either “,” or “O” formats
results in a <FUNCTION> error.

.

$DOUBLE special formatting. This code has two effects:

“D” specifies that $DOUBLE(-0) should return -0; otherwise, $DOUBLE(-0) returns 0. However,
“-D” overrides the negative sign and returns 0.

You can specify “D” or “d” for this code; a returned INF or NAN will be expressed in the corre-
sponding uppercase or lowercase letters. The default is upper case.

D

E-notation (scientific notation). Returns the number in scientific notation. If you omit the decimal
number of fractional digits, 6 is used as the default.You can specify “E” or “e” for this code; the
returned value will contain the corresponding uppercase or lowercase symbol. The exponent
portion of the returned value is two digits in length with a leading sign, unless three exponent
digits are required. “E” and “G” are incompatible and result in a <FUNCTION> error.

E

E-notation or fixed decimal notation. If the number of fractional digits that would result from
conversion to scientific notation is larger than the decimal value (or the default of 6 decimal digits),
the number is returned in scientific notation. For example, $FNUMBER(1234.99,"G",2) returns
1.23E+03. If the number of fractional digits that would result from conversion to scientific notation
is equal to or smaller than the decimal value (or the default of 6 decimal digits), the number is
returned in fixed decimal (standard) notation. For example, $FNUMBER(1234.99,"G",3) returns
1235.You can specify “G” or “g” for this code; the returned scientific notation value will contain
the corresponding uppercase “E” or lowercase “e”. “E” and “G” are incompatible and result in a
<FUNCTION> error.

G

Leading sign. Sign, if present, must precede the numerical portion of inumber. Parentheses are
not permitted. This code cannot be used with the “P” or “T” format codes; attempting to do so
results in a <SYNTAX> or <FUNCTION> error. Leading sign is the default format.

L

No NumericGroupSeparator. Does not allow the use of a numeric group separator. This format
code is incompatible with the comma (,) format code.When used with the dot format code ("N.")
the number is formatted with the European decimal separator but no numeric group separators.

N

ODBC locale. Overrides the current locale, and instead uses the standard ODBC locale with the
following values: PlusSign=+; MinusSign=-; DecimalSeparator=.; NumericGroupSeparator=,;
NumericGroupSize=3. By itself, the “O” format code uses only the ODBC MinusSign and
DecimalSeparator.This format code is incompatible with the dot (.) format code. When used with
the comma format code ("O,") the number is formatted with the ODBC decimal separator and
ODBC numeric group separators.

O

Parentheses sign. Returns a negative number in parentheses and without a leading MinusSign
locale property value. Otherwise, it returns the number without parentheses, but with a leading
and trailing space character. This code cannot be used with the “+”, “-”, “L”, or “T” format codes;
attempting to do so results in a <SYNTAX> error.

P

ObjectScript Reference 299

$FNUMBER

DescriptionCode

Trailing sign. Returns the number with a trailing sign if a prefix sign would otherwise have been
generated. However, it does not force a trailing sign. To produce a trailing sign for a nonnegative
number (positive or zero), you must also specify the “+” format code. To produce a trailing sign
for a negative number, you must not specify the “-” format code. The trailing sign used is
determined by the PlusSign and MinusSign properties of the current locale respectively. A trailing
space character, but no sign, is inserted in the case of a nonnegative number with “+” omitted or
in the case of a negative number with “-” specified. Parentheses are not permitted. This code
cannot be used with the “L” or “P” format codes; attempting to do so results in a <SYNTAX> or
<FUNCTION> error.

T

In InterSystems IRIS, fractional numbers less than 1 are represented in InterSystems IRIS canonical form without a zero
integer: 0.66 becomes .66. This is the $FNUMBER default. However, most $FNUMBER format options return fractional
numbers less than 1 with a leading zero integer: .66 becomes 0.66. Two-parameter $FNUMBER with a format of "" (empty
string), "L" (which is functionally identical to empty string), and "D" return fractional numbers less than 1 in canonical
form: .66. All other two-parameter $FNUMBER format options, and all three-parameter $FNUMBER format options,
return fractional numbers less than 1 with a single leading zero integer: 000.66 or .66 both becomes 0.66. This is the fractional
number format for JSON numbers.

The $DOUBLE function can return the values INF (infinite) and NAN (not a number). INF can take a negative sign; format
codes represent INF as if it were a number. For example: +INF, INF-, (INF). NAN does not take a sign; the only format
code that affects NAN is “d”, which returns it in lowercase letters. The “E” and “G” codes have no effect on INF and NAN
values.

decimal

The decimal parameter specifies the number of fractional digits to include in the returned value. Specify decimal as a pos-
itive integer, or any valid ObjectScript variable or expression that evaluates to a positive integer. If decimal is a negative
number, InterSystems IRIS treats it as a 0 value. If decimal is a fractional number, InterSystems IRIS truncates to its integer
component.

• If decimal is greater than the number of fractional digits in inumber, the remaining positions are zero filled.

• If decimal is less than the number of fractional digits in inumber, InterSystems IRIS rounds inumber to the appropriate
number of fractional digits.

• If decimal is 0, inumber is returned as an integer with no decimal separator character. InterSystems IRIS rounds inumber
to the appropriate integer.

If inumber is less than 1 and decimal greater than 0, $FNUMBER always returns a single zero in the integer position before
the decimal separator character, regardless of the format value. This representation of fractional numbers differs from
InterSystems IRIS canonical form.

You can specify the decimal parameter to control the number of fractional digits returned, after rounding is performed. For
example, assume that variable c contains the number 6.25198.

 SET c="6.25198"
 SET x=$FNUMBER(c,"+",3)
 SET y=$FNUMBER(c,"+",8)
 WRITE !,x,!,y

The first $FNUMBER returns +6.252 and the second returns +6.25198000.

Examples
The following examples show how the different formatting designations can affect the behavior of $FNUMBER. These
examples assume that the current locale is the default locale.

300 ObjectScript Reference

ObjectScript Functions

The following example shows the effects of sign codes on a positive number:

 SET a=1234
 WRITE $FNUMBER(a),! ; returns 1234
 WRITE $FNUMBER(a,""),! ; returns 1234
 WRITE $FNUMBER(a,"+"),! ; returns +1234
 WRITE $FNUMBER(a,"-"),! ; returns 1234
 WRITE $FNUMBER(a,"L"),! ; returns 1234
 WRITE $FNUMBER(a,"T"),! ; returns 1234 (with a trailing space)
 WRITE $FNUMBER(a,"T+"),! ; returns 1234+

The following example shows the effects of sign codes on a negative number:

 SET b=-1234
 WRITE $FNUMBER(b,""),! ; returns -1234
 WRITE $FNUMBER(b,"+"),! ; returns -1234
 WRITE $FNUMBER(b,"-"),! ; returns 1234
 WRITE $FNUMBER(b,"L"),! ; returns -1234
 WRITE $FNUMBER(b,"T"),! ; returns 1234-

The following example shows the effects of the “P” format code on positive and negative numbers. This example writes
asterisks before and after the number to show that a positive number is returned with a leading and a trailing blank:

 WRITE "*",$FNUMBER(-123,"P"),"*",! ; returns *(123)*
 WRITE "*",$FNUMBER(123,"P"),"*",! ; returns * 123 *

The following example returns 1,234,567.81. The "," format returns x in American format, inserting commas as numeric
group separators and a period as the decimal separator:

 SET x=1234567.81
 WRITE $FNUMBER(x,",")

The following example returns 1.234.567,81. The "." format returns x in European format, inserting periods as numeric
group separators and a comma as the decimal separator:

 SET x=1234567.81
 WRITE $FNUMBER(x,".")

The following 3-parameter example returns 124,329.00. $FNUMBER inserts a comma as numeric group separator, adds
a period as the decimal separator, and appends two zeros as fractional digits to the value of x.

 SET x=124329
 WRITE $FNUMBER(x,",",2)

The following 3-parameter example returns 124329.00. The omitted format is represented by a placeholder comma; decimal
appends two zeros as fractional digits to the value of x.

 SET x=124329
 WRITE $FNUMBER(x,,2)

The following 3-parameter example returns 0.78. The omitted format is represented by a placeholder comma; decimal
rounds to 2 fractional digits; decimal also appends the integer 0, overriding the format default:

 SET x=.7799
 WRITE $FNUMBER(x,,2)

Notes

Decimal Separator

$FNUMBER uses the DecimalSeparator property value for the current locale (“.” by default) as the delimiter character
between the integer part and the fractional part of the returned number. When the “.” format code is specified, this delimiter
is a “,” regardless of the current locale setting.

To determine the DecimalSeparator character for your locale, invoke the GetFormatItem() method:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("DecimalSeparator")

ObjectScript Reference 301

$FNUMBER

Numeric Group Separator and Size

When the format string includes “,” $FNUMBER uses the NumericGroupSeparator property value from the current locale
as the delimiter between groups of digits in the integer part of the returned number. The size of these groups is determined
by the NumericGroupSize property of the current locale.

The English language locale defaults to a comma (“,”) as the NumericGroupSeparator and 3 as the NumericGroupSize.
Many European locales use a period (“.”) as the NumericGroupSeparator. The Russian (rusw), Ukrainian (ukrw), and Czech
(csyw) locales use a blank space as the NumericGroupSeparator. The NumericGroupSize defaults to 3 for all locales,
including Japanese. (Users of Japanese may wish to group integer digits in units of either 3 or 4, depending upon context.)

When the format string includes “.” (and does not include “N”) $FNUMBER uses NumericGroupSeparator=”.” and
NumericGroupSize=3 to format the return value, regardless of your current locale settings.

To determine the NumericGroupSeparator character and NumericGroupSize number for your locale, invoke the
GetFormatItem() method:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("NumericGroupSeparator"),!
 WRITE ##class(%SYS.NLS.Format).GetFormatItem("NumericGroupSize")

Plus Sign and Minus Sign

$FNUMBER uses the PlusSign and MinusSign property values for the current locale (“+” and “-” by default). When the
“.” format code is specified, these signs are set to “+” and “-”, regardless of the current locale.

To determine the PlusSign and MinusSign characters for your locale, invoke the GetFormatItem() method:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("PlusSign"),!
 WRITE ##class(%SYS.NLS.Format).GetFormatItem("MinusSign")

Differences between $FNUMBER and $INUMBER

Most format codes have similar meanings in the $FNUMBER and $INUMBER functions, but the exact behavior triggered
by each code differs by function because of the nature of the validations and conversions being performed.

In particular, the “-” and “+” format codes do not have quite the same meaning for $FNUMBER as they do for $INUMBER.
With $FNUMBER, “-” and “+” are not mutually exclusive, and “-” only affects the MinusSign (by suppressing it), and
“+” only affects the PlusSign (by inserting it). With $INUMBER, “-” and “+” are mutually exclusive. “-” means no sign
is permitted, and “+” means there must be a sign.

See Also
• $DOUBLE function

• $JUSTIFY function

• $INUMBER function

• $ISVALIDNUM function

• $NORMALIZE function

• $NUMBER function

• More information on locales in the section on “System Classes for National Language Support” in Specialized System
Tools and Utilities.

302 ObjectScript Reference

ObjectScript Functions

$GET
Returns the data value of a specified variable.

$GET(variable,default)
$G(variable,default)

Parameters

A local variable, global variable, or process-private global variable, subscripted or
unsubscripted. The variable may be undefined. variable may be specified as a
multidimensional object property with the syntax obj.property.

variable

Optional — The value to be returned if the variable is undefined. If a variable, it must be
defined.

default

Description
$GET returns the data value of a specified variable. The handling of undefined variables depends on whether you specify
a default parameter.

• $GET(variable) returns the value of the specified variable, or the null string if the variable is undefined. The variable
parameter value can be the name of any variable, including a subscripted array element (either local or global).

• $GET(variable,default) provides a default value to return if the variable is undefined. If the variable is defined, $GET
returns its value.

Parameters

variable

The variable whose data value is to be returned.

• variable can be a local variable, a global variable, or a process-private global (PPG) variable. It can be subscripted or
unsubscripted. It cannot be an ObjectScript special variable or a structured system variable (SSVN).

The variable does not need to be a defined variable. $GET returns the null string for an undefined variable; it does not
define the variable. A variable can be defined and set to the null string (""). If a global variable, it can contain an
extended global reference. If a subscripted global variable, it can be specified using a naked global reference. Even
when referencing an undefined subscripted global variable, variable resets the naked indicator, affecting future naked
global references, as described below.

• variable can be a multidimensional object property; it cannot be a non-multidimensional object property. Attempting
to use $GET on a non-multidimensional object property results in an <OBJECT DISPATCH> error.

For example, the %SQL.StatementMetadata class has a multidimensional property columnIndex, and a non-multidimen-
sional property columnCount. In the following example, the first $GET returns a value; the second $GET results in
an <OBJECT DISPATCH> error:

 SET x=##class(%SQL.StatementMetadata).%New()
 WRITE $GET(x.columnIndex,"columnIndex property is undefined"),!
 WRITE $GET(x.columnCount,"columnCount property is undefined")

default

The data value to be returned if variable is undefined. It can any expression, including a local variable or a global variable,
either subscripted or unsubscripted. If a global variable, it can contain an extended global reference. If a subscripted global

ObjectScript Reference 303

$GET

variable, it can be specified using a naked global reference. If present, default resets the naked indicator, affecting future
naked global references, as described below.

If default is an undefined variable, by default $GET issues an <UNDEFINED> error, even when variable is defined. You
can change InterSystems IRIS behavior to not generate an <UNDEFINED> error when referencing an undefined variable
by setting the %SYSTEM.Process.Undefined() method. If the Undefined() method is set to not generate an <UNDEFINED>
error, $GET returns variable when default is undefined.

You can specify an ObjectScript special variable as default. However, specifying $ZORDER may result in an <UNDEFINED>
error, even when variable is defined.

Examples
In the following example, the variable test is defined and the variable xtest is undefined. (The ZWRITE command is used
because it explicitly returns a null string value.)

 KILL xtest
 SET test="banana"
 SET tdef=$GET(test),tundef=$GET(xtest)
 ZWRITE tdef ; $GET returned value of test
 ZWRITE tundef ; $GET returned null string for xtest
 WRITE !,$GET(xtest,"none")
 ; $GET returns default of "none" for undefined variable

Notes

$GET Compared to $DATA

$GET provides an alternative to $DATA tests for both undefined variables ($DATA=0) and array nodes that are downward
pointers without data ($DATA=10). If the variable is either undefined or a pointer array node without data, $GET returns
a null string ("") without an undefined error. For example, you can recode the following lines:

 IF $DATA(^client(i))=10 {
 WRITE !!,"Name: No Data"
 GOTO Level1+3
 }

as:

 IF $GET(^client(i))="" {
 WRITE !!,"Name: No Data"
 GOTO Level1+3
 }

Note that $DATA tests are more specific than $GET tests because they allow you to distinguish between undefined elements
and elements that are downward pointers only. For example, the lines:

 IF $DATA(^client(i))=0 { QUIT }
 ELSEIF $DATA(^client(i))=10 {
 WRITE !!,"Name: No Data"
 GOTO Level1+3
 }

could not be re-coded as:

 IF $GET(^client(i))="" { QUIT }
 ELSEIF $GET(^client(i))="" {
 WRITE !!,"Name: No Data"
 GOTO Level1+3
 }

The two lines perform different actions depending on whether the array element is undefined or a downward pointer without
data. If $GET were used here, only the first action (QUIT) would ever be performed. You could use $DATA for the first
test and $GET for the second, but not the reverse ($GET for the first test and $DATA for the second).

304 ObjectScript Reference

ObjectScript Functions

Defaults with $GET and $SELECT

$GET(variable,default) allows you to return a default value when a specified variable is undefined. The same operation
can be performed using a $SELECT function.

However, unlike $SELECT, the second argument in $GET is always evaluated.

The fact that $GET always evaluates both of its arguments is significant if variable and default both make subscripted
global references and thus both modify the naked indicator. Because the arguments are evaluated in left-to-right sequence,
the naked indicator is set to the default global reference, regardless of the whether $GET returns the default value. For
further details on using $GET with global variables and the naked indicator, see Using Multidimensional Storage (Globals)
in Using Globals.

Handling Undefined Variables

$GET defines handling behavior if a specified variable is undefined. The basic form of $GET returns a null string ("") if
the specified variable is undefined.

$DATA tests if a specified variable is defined. It returns 0 if the variable is undefined.

You can define handling behavior for all undefined variables on a per-process basis using the Undefined() method of the
%SYSTEM.Process class. The system-wide default behavior can be established by setting the Undefined property of the
Config.Miscellaneous class. Setting Undefined has no effect on $GET or $DATA handling of specified variables.

See Also
• $DATA function

• $SELECT function

• Using Multidimensional Storage (Globals) in Using Globals

ObjectScript Reference 305

$GET

$INCREMENT
Adds a specified increment to the numeric value of a variable.

$INCREMENT(variable,num)
$I(variable,num)

Parameters

The variable whose value is to be incremented. It can specify a local variable, a
process-private global, or a global variable and can be either subscripted or
unsubscripted. The variable need not be defined. If the variable is not defined, or is set
to the null string (""), $INCREMENT treats it as having an initial value of zero and
increments accordingly. A literal value cannot be specified here.You cannot specify a
simple object property reference as variable; you can specify a multidimensional property
reference as variable with the syntax obj.property.

variable

Optional — The numeric increment you want to add to variable. The value can be a
number (integer or non-integer, positive or negative), a string containing a number, or
any expression which evaluates to a number. Leading and trailing blanks and multiple
signs are evaluated. A string is evaluated until the first nonnumeric character is
encountered. The null string ("") is evaluated as zero.

If you do not specify num for the second argument, InterSystems IRIS defaults to
incrementing variable by 1.

num

Description
$INCREMENT resets the value of a variable by adding a specified increment to the existing value of the variable and
returning the incremented value. This is shown in the following example:

 SET a=7
 SET result=$INCREMENT(a)
 WRITE !,result /* result is 8 (a+1) */
 WRITE !,a /* variable a is also now 8 */

You can use the $GET function to return the current value of a variable.

$INCREMENT performs this increment as an atomic operation, which does not require the use of the LOCK command.

If multiple processes simultaneously increment the same global through $INCREMENT, each process receives a unique,
increasing number (or decreasing number if num is negative). In some situations, certain numbers may be skipped due to
timing issues. For further details on using $INCREMENT with global variables, see Using Multidimensional Storage
(Globals) in Using Globals.

InterSystems IRIS does not restore the original, non-incremented value if $INCREMENT is in a transaction that is rolled
back.

Parameters

variable

The variable whose data value is to be incremented. It must be a variable, it cannot be a literal. The variable does not need
to be defined. $INCREMENT defines an undefined variable, setting its value to num (1, by default).

306 ObjectScript Reference

ObjectScript Functions

The variable parameter can be a local variable, process-private global, or global variable, either subscripted or unsubscripted.
If a global variable, it can contain an extended global reference. If a subscripted global variable, it can be specified using
a naked global reference.

The variable parameter can be a multidimensional property reference. For example, $INCREMENT(..Count). It cannot
be a non-multidimensional object property. Attempting to increment a non-multidimensional object property results in an
<OBJECT DISPATCH> error.

$INCREMENT cannot increment special variables, even those that can be modified using SET. Attempting to increment
a special variable results in a <SYNTAX> error.

num

The amount to increment (or decrement) by. The num parameter can be a positive number, incrementing the value of
variable, or a negative number, decrementing the value of variable. It can be an integer or a fractional number. num can
be zero (no increment). A numeric string is treated as a number. An empty string ("") or a non-numeric string is treated as
an increment of zero. If you do not specify an increment, InterSystems IRIS uses the default increment of one (1).

$INCREMENT or $SEQUENCE
$SEQUENCE and $INCREMENT can be used as alternatives, or can be used in combination with each other. $SEQUENCE
is intended specifically for integer increment operations involving multiple simultaneous processes. $INCREMENT is a
more general increment/decrement function.

• $SEQUENCE increments global variables. $INCREMENT increments local variables, global variables, or process-
private globals.

• $SEQUENCE increments an integer by 1. $INCREMENT increments or decrements any numeric value by any
specified numeric value.

• $SEQUENCE can allocate a range of increments to a process. $INCREMENT allocates only a single increment.

• SET $SEQUENCE can be used to change or undefine (kill) a global. $INCREMENT cannot be used on the left side
of the SET command.

$INCREMENT and Global Variables
You can use $INCREMENT on a global variable or a subscript node of a global variable. You can access a global variable
mapped to another namespace using an extended global reference. You can access a subscripted global variable using a
naked global reference.

InterSystems IRIS evaluates parameters in left-to-right order. If num (the amount to increment) is a subscripted global,
InterSystems IRIS uses this global reference to set the naked indicator, affecting all subsequent naked global references.

DO $INCREMENT
You can execute $INCREMENT as an argument of the DO command. DO $INCREMENT differs in two ways from
calling $INCREMENT as a function:

• DO ignores the return value from a function. Therefore, DO $INCREMENT(variable,num) increments variable,
but does not return the incremented value.

• DO $INCREMENT(variable,num) never issues a <MAXINCREMENT> error. In circumstances where
$INCREMENT fails to increment the DO command completes without error and variable is not incremented.

You can append an argument postconditional expression to DO $INCREMENT. For example, DO $INCREMENT(myvar):x
does not increment myvar when x=0. A postconditional expression prevents execution, but does not prevent argument
evaluation. Therefore, DO $INCREMENT(myvar($INCREMENT(subvar))):x when x=0 does not increment myvar,
but does increment subvar.

ObjectScript Reference 307

$INCREMENT

Incrementing Strings
$INCREMENT is generally used for incrementing a variable containing a numeric value. However, it does accept a
variable containing a string. The following rules apply when using $INCREMENT on a string:

• A null string ("") is treated as having a value of zero.

• A numeric string ("123" or "+0012.30") is treated as having that numeric value. The string is converted to canonical
form: leading and trailing zeros and the plus sign are removed.

• A mixed numeric/nonnumeric string ("12AB" or "1,000") is treated as the numeric value up to the first nonnumeric
character and then truncated at that point. (Note that a comma is a nonnumeric character.) The resulting numeric substring
is converted to canonical form: leading and trailing zeros and the plus sign are removed.

• A nonnumeric string ("ABC" or "$12") is treated as having a value of zero.

• Scientific notation conversion is performed. For example, if strvar="3E2", $INCREMENT treats it as having a value
of 300.

• Arithmetic operations are not performed. For example, if strvar="3+7", $INCREMENT will truncate the string at the
plus sign (treating it as a nonnumeric character) and increment strvar to 4.

• Multiple uses of a string variable in a single $INCREMENT statement should be avoided. For example, avoid con-
catenating a string variable to the increment of that variable: strvar_$INCREMENT(strvar). This returns unpre-
dictable results.

Failure to Increment
If $INCREMENT cannot increment variable, it issues a <MAXINCREMENT> error. This only occurs when the num
increment value is extremely small, and/or the variable value is extremely large.

An increment by zero (num=0) always returns the original number, regardless of its size. It does not issue a <MAXINCRE-
MENT> error.

<MAXINCREMENT> occurs when the numeric types of the parameters differ and the resulting type conversion and
rounding would result in no increment. If you use $INCREMENT on a very large number, the default increment of 1 (or
some other small positive or negative value of num) is too small to be significant. Similarly, if you specify a very small
fractional num value, its value is too small to be significant. Rather than returning the original variable number without
incrementing it, $INCREMENT generates a <MAXINCREMENT> error.

In the following example, 1.2E18 is a number that can be incremented or decremented by 1; 1.2E20 is a number that is too
large to be incremented or decremented by 1. The first three $INCREMENT functions successfully increment or decrement
the number 1.2E18. The fourth and fifth $INCREMENT functions increment by zero, and so always return the original
number unchanged, regardless of the size of the original number. The sixth and seventh $INCREMENT functions provide
a num increment sufficiently large to successfully increment or decrement the number 1.2E20. The eighth $INCREMENT
function attempts to increment 1.2E20 by 1, and thus generates a <MAXINCREMENT> error.

 SET x=1.2E18
 WRITE "E18 :",x,!
 WRITE "E18+1 :",$INCREMENT(x),!
 WRITE "E18+4 :",$INCREMENT(x,4),!
 WRITE "E18-6 :",$INCREMENT(x,-6),!
 WRITE "E18+0 :",$INCREMENT(x,0),!
 SET y=1.2E20
 WRITE "E20 :",y,!
 WRITE "E20+0 :",$INCREMENT(y,0),!
 WRITE "E20-10000:",$INCREMENT(y,-10000),!
 WRITE "E20+10000:",$INCREMENT(y,10000),!
 WRITE "E20+1 :",$INCREMENT(y),!

A <MAXINCREMENT> is only issued when $INCREMENT is called as a function. DO $INCREMENT does not issue
a <MAXINCREMENT> error.

308 ObjectScript Reference

ObjectScript Functions

Locking and Simultaneous Global Increments
$INCREMENT does not perform a lock operation when it increments variable nor does using the LOCK command on
variable prevent $INCREMENT from incrementing or decrementing its value. For example, suppose process 1 executes
a lock on ^COUNTER:

 LOCK ^COUNTER

Then suppose, process 2 increments ^COUNTER:

 SET x=$INCREMENT(^COUNTER,VAL)

Process 2 is not prevented from incrementing ^COUNTER by the lock held by process 1.

The two processes are not guaranteed their own unique ^COUNTER values unless both are using $INCREMENT.

$INCREMENT and Transaction Processing
The common usage for $INCREMENT is to increment a counter before adding a new entry to a database. $INCREMENT
provides a way to do this very quickly, avoiding the use of the LOCK command.

The trade off for this is that the counter is not locked. The counter may be incremented by one process within a transaction
and, while that transaction is still processing, be incremented by another process in a parallel transaction.

In the event either transaction (or any other transaction that uses $INCREMENT) must be rolled back (with the
TROLLBACK command), counter increments are ignored. The counter variables are not decremented since it is not clear
whether the resulting counter value would be valid. In all likelihood, such a rollback would be disastrous for other transactions.

For further details on using $INCREMENT in a distributed database environment, refer to “The $INCREMENT Function
and Application Counters” in the “Horizontally Scaling Systems for User Volume with InterSystems Distributed Caching”
chapter of the Scalability Guide.

Examples
The following example increments the value of myvar by n. Note that myvar does not have to be a prior defined variable:

 SET n=4
 KILL myvar
 SET VAL=$INCREMENT(myvar,n) ; returns 4
 WRITE !,myvar
 SET VAL=$INCREMENT(myvar,n) ; returns 8
 WRITE !,myvar
 SET VAL=$INCREMENT(myvar,n) ; returns 12
 WRITE !,myvar

The following example adds incremental values to the process-private global ^||xyz using $INCREMENT. The one-
argument form of $INCREMENT increments by 1; the two-argument form increments by the value specified in the second
argument. In this case, the second argument is a non-integer value.

 KILL ^||xyz
 WRITE !,$INCREMENT(^||xyz) ; returns 1
 WRITE !,$INCREMENT(^||xyz) ; returns 2
 WRITE !,$INCREMENT(^||xyz) ; returns 3
 WRITE !,$INCREMENT(^||xyz,3.14) ; returns 6.14

The following example shows the effects of incrementing by zero (0) and incrementing by a negative number:

 KILL xyz
 WRITE !,$INCREMENT(xyz,0) ; initialized as zero
 WRITE !,$INCREMENT(xyz,0) ; still zero
 WRITE !,$INCREMENT(xyz) ; increments by 1 (default)
 WRITE !,$INCREMENT(xyz) ; increments by 1 (=2)
 WRITE !,$INCREMENT(xyz,-1) ; decrements by -1 (=1)
 WRITE !,$INCREMENT(xyz,-1) ; decrements by -1 (=0)
 WRITE !,$INCREMENT(xyz,-1) ; decrements by -1 (=-1)

ObjectScript Reference 309

$INCREMENT

The following example shows the effects of incrementing using mixed (numeric and nonnumeric) num strings and the null
string:

 KILL xyz
 WRITE !,$INCREMENT(xyz,"")
 ; null string initializes to 0
 WRITE !,$INCREMENT(xyz,2)
 ; increments by 2
 WRITE !,$INCREMENT(xyz,"")
 ; null string increments by 0 (xyz=2)
 WRITE !,$INCREMENT(xyz,"3A4")
 ; increments by 3 (rest of string ignored)
 WRITE !,$INCREMENT(xyz,"A4")
 ; nonnumeric string evaluates as zero (xyz=5)
 WRITE !,$INCREMENT(xyz,"1E2")
 ; increments by 100 (scientific notation)

See Also
• $SEQUENCE function

• $GET function

• TROLLBACK command

• Using ObjectScript for Transaction Processing in Using ObjectScript

310 ObjectScript Reference

ObjectScript Functions

$INUMBER
Validates a numeric value and converts it to internal format.

$INUMBER(fnumber,format,erropt)
$IN(fnumber,format,erropt)

Parameters

The numeric value to be converted to the internal format. It can be a numeric or string
value, a variable name, or any valid ObjectScript expression.

fnumber

A format specification indicating which external numeric formats are valid representations
of numbers. Specified as a quoted string consisting of zero or more format codes, in any
order. Format codes are described below. Note that some format codes are incompatible
and result in an error. For default formatting, with or without the erropt parameter, you can
specify the empty string ("").

format

Optional — The expression returned if fnumber is considered invalid based on format.erropt

Description
The $INUMBER function validates the numeric value fnumber using the formats specified in format. It then converts it
to the internal InterSystems IRIS format.

If fnumber does not correspond to the specified format and you have not specified erropt, the system generates an <ILLEGAL
VALUE> error. If you have specified erropt, an invalid numeric value returns the erropt string.

Parameters

format

The possible format codes are as follows. You can specify them singly or in combination to instruct $INUMBER to adhere
strictly to the format rules. If no format codes are entered, $INUMBER will be as flexible as possible in validating fnumber
(see Null Format Provides Maximum Flexibility for more information).

ObjectScript Reference 311

$INUMBER

DescriptionCode

Mandatory sign. The fnumber value must have a explicit sign. Even the number 0 must be
signed (+0 or -0). The sign can be either leading or trailing, unless restricted by either an “L”
or a “T” format code. Parentheses cannot be used. The only value that does not require a sign
is NAN, which can be specified with or without a sign when using code “D+”.

+

Unsigned. No sign may be present in fnumber.-

$DOUBLE numbers. This code converts fnumber to an IEEE floating point number. This is
equivalent to $DOUBLE(fnumber). If “D” is specified, you can input the quoted strings “INF”
and “NAN” as an fnumber value. INF and NAN can be specified in any combination of uppercase
and lowercase letters, with or without leading or trailing signs or enclosing parentheses. (Signs
are accepted, but ignored, for NAN.) The variant forms INFINITY and SNAN are also supported.

D

E-notation (scientific notation). This code allows you to specify fnumber as a string in scientific
notation format. This code permits, but does not require, that you specify fnumber in scientific
notation.

E or G

No NumericGroupSeparator. Does not allow the use of a numeric group separator. This format
code is incompatible with the comma (,) format code.

N

ODBC locale. Overrides the current locale, and instead uses the standard ODBC locale with
the following values: PlusSign=+; MinusSign=-; DecimalSeparator=.; NumericGroupSeparator=,;
NumericGroupSize=3. This format code is incompatible with the dot (.) format code.

O

Negative numbers must be enclosed in parentheses. Nonnegative numbers must be unsigned,
and may have or omit leading and trailing spaces.

P

Leading sign. Sign, if present, must precede the numerical portion of fnumber. Parentheses
are not permitted.

L

Trailing sign. Sign, if present, must follow the numerical portion of fnumber. Parentheses are
not permitted.

T

Expects fnumber to use the format specified by properties in the current locale. The
NumericGroupSeparator (“,” by default) may or may not appear in fnumber, but if present, it
must consistently appear every NumericGroupSize (3 by default) digits to the left of the decimal
point.

,

Requires standard European formatting, regardless of the current locale settings. Requires
DecimalSeparator as comma (,), NumericGroupSeparator as period (.), NumericGroupSize as
3, PlusSign as plus (+), MinusSign as minus (-). Periods are optional, but if present must
consistently appear every three digits to the left of the decimal comma.

.

When “+”,“-” and “P” Format Codes are Absent

When format does not include any of the “+”, “-”, or “P” codes, then fnumber may contain any one of the following:

• No sign or parentheses.

• Either the PlusSign locale property (“+” by default) or the MinusSign locale property (“-” by default) but not both.
The position of this sign is determined by the “L” or the “T” format code if specified.

• Leading and trailing parentheses.

312 ObjectScript Reference

ObjectScript Functions

When “L”,“T” and “P” Format Codes are Absent

When format does not include any of the “L”, “T”, or “P” format codes, any sign present in fnumber may be either leading
or trailing (but not both).

When “,” and “.” Format Codes are Absent

When format does not include either the “,” or “.” format codes, fnumber may optionally have NumericGroupSeparator
symbols appear anywhere to the left or right of the DecimalSeparator, if any. However, each NumericGroupSeparator must
have at least one digit to its immediate left and one to its immediate right. When format includes “N”, no NumericGroupSep-
arator symbols are permitted.

Mutually Exclusive Format Codes

Some format codes conflict with each other. Each of the following pairs of format codes are mutually exclusive and result
in an error:

• “-+” results in a <FUNCTION> error

• “-P” or “+P” result in a <SYNTAX> error

• “TP” or “LP” result in a <SYNTAX> error

• “TL” results in a <FUNCTION> error

• “,.” results in a <FUNCTION> error

• “,N” results in a <FUNCTION> error

• “.O” results in a <FUNCTION> error

A <FUNCTION> error is also generated if you specify an invalid format code character.

Null Format Provides Maximum Flexibility

You can specify format as a null string. This is called a null format. When a null format is specified, $INUMBER accepts
a fnumber value with any one of the following sign conventions:

• No sign or parentheses.

• Either a leading or trailing MinusSign, but not both.

• Either a leading or trailing PlusSign, but not both.

• Leading and trailing parentheses.

When a null format is specified, fnumber may optionally have NumericGroupSeparator symbols appear anywhere to the
left or right of the DecimalSeparator, if any. However, each NumericGroupSeparator must have at least one digit to its
immediate left and one to its immediate right. Sign rules are flexible, and leading and trailing blanks and zeros are ignored.
Thus, the following two commands:

 WRITE !,$INUMBER("+1,23,456,7.8,9,100","")
 WRITE !,$INUMBER("0012,3456,7.891+","")

are both valid and return the same number, formatted according to the default locale. However,

 WRITE $INUMBER("1,23,,345,7.,8,9,","")

is invalid because of the adjacent commas, the adjacent period and comma, and the trailing comma. It generates an
<ILLEGAL VALUE> error.

ObjectScript Reference 313

$INUMBER

Behavior Common to All Formats

Regardless of the specified format codes, $INUMBER always ignores leading and trailing blank spaces or zeros, but con-
siders fnumber to be invalid if it has any of the following characteristics:

• Both a PlusSign and a MinusSign

• More than one PlusSign or MinusSign

• Parentheses and a PlusSign

• Parentheses and a MinusSign

• More than one DecimalSeparator

• Embedded Spaces

• Any characters other than the following:

– Numeric digits

– “(“

– “)”

– Leading or trailing spaces

– The DecimalSeparator specified by the current locale (if format does not include “.”)

– The NumericGroupSeparator specified by the current locale (if format does not include “.”)

– The PlusSign property specified by the current locale (if format does not include “.”)

– The MinusSign property specified by the current locale (if format does not include “.”)

– “.” (if format includes “.”)

– “,” (if format includes “.”)

– “+” (if format includes “.”)

– “-” (if format includes “ .”)

• The strings “INF” and “NAN” (and their variants) if format includes “D”.

Examples
These examples illustrate how different formats affect the behavior of $INUMBER. All of these examples assume the
current locale is the default locale.

In the following example, $INUMBER accepts a leading minus sign because of the “L” format code and returns -
123456789.12345678:

 WRITE $INUMBER("-123,4,56,789.1234,5678","L")

In the following example, $INUMBER generates an <ILLEGAL VALUE> error because the sign is leading but the “T”
format code specifies that trailing signs must be used:

 WRITE $INUMBER("-123,4,56,789.1234,5678","T")

In the following example, the first $INUMBER succeeds and returns a negative number. The second $INUMBER generates
an <ILLEGAL VALUE> error because fnumber includes a sign but the “P” format code specifies that negative numbers
must be enclosed in parentheses rather than signed:

 WRITE !,$INUMBER("(123,4,56,789.1234,5678)","P")
 WRITE !,$INUMBER("-123,4,56,789.1234,5678","P")

314 ObjectScript Reference

ObjectScript Functions

In the following example, $INUMBER generates an <ILLEGAL VALUE> error because a sign is present but the “-” format
code specifies that numbers must be unsigned:

 WRITE $INUMBER("-123,4,56,789.1234,5678","-")

In the following example, $INUMBER fails but does not generate an error due to the illegal use of a sign, but instead
returns as its value the string “ERR” specified as the erropt:

 WRITE $INUMBER("-123,4,56,789.1234,5678","-","ERR")

The following example returns -23456789.123456789; $INUMBER accepts the specified fnumber as valid because the
leading sign follows the formatting specified by “L” and the strict spacing of commas every three digits to the left of the
decimal place with no commas to its right follows the strict formatting specified by the “,” code:

 WRITE $INUMBER("-23,456,789.123456789","L,")

In the following example, the “E” code permits conversion of a scientific notation string to a number. Note that all format
codes support scientific notation as a numeric literal, but only “E” (or “G”) support scientific notation as a string. This
example uses variables and concatenation to provide the scientific notation string values:

 SET num=1.234
 SET exp=-14
 WRITE $INUMBER(1.234E-14,"E","E-lit-err"),!
 WRITE $INUMBER(num_"E"_exp,"E","E-string-err"),!
 WRITE $INUMBER(1.234E-14,"L","L-lit-err"),!
 WRITE $INUMBER(num_"E"_exp,"L","L-string-err"),!

The following example compares the values returned by “L” code and a “D” code for a fractional number and for the constant
pi. The “D” code converts to an IEEE floating point ($DOUBLE) number:

 WRITE $INUMBER(1.23E-23,"L"),!
 WRITE $INUMBER(1.23E-23,"D"),!
 WRITE $INUMBER($ZPI,"L"),!
 WRITE $INUMBER($ZPI,"D"),!

Notes

Differences between $INUMBER and $FNUMBER

Most format codes have similar meanings in the $INUMBER and $FNUMBER functions, but the exact behavior triggered
by each code differs by function because of the nature of the validations and conversions being performed.

In particular, the “-” and “+” format codes do not have quite the same meaning for $INUMBER as they do for $FNUMBER.
With $FNUMBER, “-” and “+” are not mutually exclusive, and “-” only affects the MinusSign (by suppressing it), and
“+” only affects the PlusSign (by inserting it). With $INUMBER, “-” and “+” are mutually exclusive. “-” means no sign
is permitted, and “+” means there must be a sign.

Decimal Separator

$INUMBER uses the DecimalSeparator property value for the current locale (“.” by default) as the delimiter character
between the integer part and the fractional part of fnumber. When the “.” format code is specified, this delimiter is a “,”
regardless of the current locale.

To determine the DecimalSeparator character for your locale, invoke the GetFormatItem() method:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("DecimalSeparator")

Numeric Group Separator and Size

$INUMBER uses the NumericGroupSeparator property value from the current locale (“,” by default) as the delimiter
between groups of digits in the integer part of fnumber. The size of these groups is determined by the NumericGroupSize

ObjectScript Reference 315

$INUMBER

property of the current locale (“3” by default). When the “.” format code is specified, this delimiter is a “.” and appears
every three digits regardless of the current locale.

To determine the NumericGroupSeparator character and NumericGroupSize number for your locale, invoke the
GetFormatItem() method:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("NumericGroupSeparator"),!
 WRITE ##class(%SYS.NLS.Format).GetFormatItem("NumericGroupSize")

Plus Sign and Minus Sign

$INUMBER uses the PlusSign and MinusSign property values from the current locale (“+” and “-” by default). When the
“.” format code is specified, these signs are set to “+” and “-”, regardless of the current locale.

To determine the PlusSign and MinusSign characters for your locale, invoke the GetFormatItem() method:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("PlusSign"),!
 WRITE ##class(%SYS.NLS.Format).GetFormatItem("MinusSign")

See Also
• $DOUBLE function

• $FNUMBER function

• $ISVALIDNUM function

• $NORMALIZE function

• $NUMBER function

• More information on locales in the section on “System Classes for National Language Support” in Specialized System
Tools and Utilities.

316 ObjectScript Reference

ObjectScript Functions

$ISOBJECT
Returns whether an expression is an object reference (OREF).

$ISOBJECT(expr)

Parameter

A ObjectScript expression.expr

Description
$ISOBJECT returns 1 if expr is an object reference (OREF). $ISOBJECT returns 0 if expr is not an object reference
(OREF).

$ISOBJECT returns –1 if expr is a reference to an invalid object. Invalid objects should not occur in normal operations;
an invalid object could be caused, for example, by recompiling the class while instances of the class are active.

To remove an object reference, set the variable to the null string (""). The obsolete %Close() method cannot be used to
remove an object reference. %Close() performs no operation and always returns successful completion. Do not use %Close()
when writing new code.

For information on OREFs, see “OREF Basics” in Defining and Using Classes.

Parameter

expr

Any ObjectScript expression.

Examples
The following example shows the values returned by $ISOBJECT for an object reference and a non-object reference (in
this case, a string reference):

 SET a="certainly not an object"
 SET o=##class(%SQL.Statement).%New()
 WRITE !,"non-object a: ",$ISOBJECT(a)
 WRITE !,"object ref o: ",$ISOBJECT(o)

The following example shows that JSON values are object references:

 SET a=["apple","banana","orange"]
 SET b={"fruit":"orange","color":"orange"}
 WRITE !,"JSON array: ",$ISOBJECT(a)
 WRITE !,"JSON object: ",$ISOBJECT(b)

The following Dynamic SQL example shows that a stream field is an OID, not an object reference. You need to use the
SQL %OBJECT function to return the object reference:

 SET myquery=2
 SET myquery(1)="SELECT TOP 1 Name,Notes,%OBJECT(Notes) AS NoteObj "
 SET myquery(2)="FROM Sample.Employee WHERE Notes IS NOT NULL"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WHILE rset.%Next() {
 WRITE "Stream field oid: ",$ISOBJECT(rset.Notes),!
 WRITE "Stream field oref: ",$ISOBJECT(rset.NoteObj),!
 }

ObjectScript Reference 317

$ISOBJECT

The following example shows how to remove an object reference. The %Close() method does not change the object reference.
Setting an object reference to the null string deletes the object reference:

 SET o=##class(%SQL.Statement).%New()
 WRITE !,"objref o: ",$ISOBJECT(o)
 DO o.%Close() ; this is a no-op
 WRITE !,"objref o: ",$ISOBJECT(o)
 SET o=""
 WRITE !,"objref o: ",$ISOBJECT(o)

See Also
• $SYSTEM special variable

318 ObjectScript Reference

ObjectScript Functions

$ISVALIDDOUBLE
Validates a $DOUBLE numeric value and returns a boolean; optionally provides range checking.

$ISVALIDDOUBLE(num,scale,min,max)

Parameters

The numeric value to be validated. It can be a numeric or string value, a variable name, or any
valid ObjectScript expression. If a valid number, num is converted to a IEEE double-precision
floating point type.

num

Optional — The number of significant decimal digits for min and max range comparisons.scale

Optional — The minimum permitted numeric value. The value you supply is converted to a
IEEE double-precision floating point type. If not specified, min defaults to $DOUBLE(“-INF”).

min

Optional — The maximum permitted numeric value. The value you supply is converted to a
IEEE double-precision floating point type. If not specified, max defaults to $DOUBLE(“INF”).

max

Description
The $ISVALIDDOUBLE function determines whether num passes validation tests for an IEEE double-precision floating
point number and returns a boolean value. It optionally performs a range check using min and max values, which are auto-
matically converted to IEEE numbers. The scale parameter is used during range checking to specify how many fractional
digits to compare. A boolean value of 1 means that num is a properly formed IEEE double-precision number value and
passes the range check, if one is specified. $ISVALIDDOUBLE is a validation function; it does not determine if num is
a number of data type DOUBLE, or if it has been generated using the $DOUBLE function.

$ISVALIDDOUBLE validates American format numbers, which use a period (.) as the decimal separator. It does not
validate European format numbers, which use a comma (,) as the decimal separator. $ISVALIDDOUBLE does not consider
valid a number that contains numeric group separators; it returns 0 (invalid) for any number containing a comma or a blank
space, regardless of the current locale.

Parameters

num

The number to be validated may be an integer, a fractional number, a number in scientific notation (with the letter “E” or
“e”). It may be a string, expression, or variable that resolves to a number. It may be signed or unsigned, and may contain
leading or trailing zeros.

ObjectScript converts a number to canonical form before supplying it to $ISVALIDDOUBLE for validation. Therefore,
any arithmetic expression, numeric concatenation, or multiple leading + and – signs are resolved prior to evaluation by the
function. ObjectScript does not convert a numeric string to canonical form prior to evaluation. However, prefacing a numeric
string with a + sign forces numeric evaluation (and thus canonical conversion) of a numeric string.

Validation fails ($ISVALIDDOUBLE returns 0) if:

• num contains any characters other than the digits 0–9, a leading + or – sign, a decimal point (.), and a letter “E” or “e”.

• num contains more than one + or – sign, decimal point, or letter “E” or “e”. If num is a number, ObjectScript resolves
multiple leading + and – signs. If num is a numeric string, it cannot contain more than one leading + or – sign.

• The optional + or – sign is not the first character of num.

• The letter “E” or “e” indicating a base-10 exponent is not followed by an integer in a numeric string. With a number,
“E” not followed by an integer results in a <SYNTAX> error.

ObjectScript Reference 319

$ISVALIDDOUBLE

• num is the null string.

If num is INF (with or without a + or – sign), it is a valid $DOUBLE number; the boolean value returned by
$ISVALIDDOUBLE depends on whether num passes the specified range check.

If num is NAN $ISVALIDDOUBLE returns 1.

scale

The scale parameter is used during range checking to specify how many fractional digits to compare. Specify an integer
value for scale; any fractional digits in the scale value are ignored. You can specify a scale value larger than the number
of fractional digits specified in the other parameters. You can specify a scale value of –1; all other negative scale values
result in a <FUNCTION> error.

A nonnegative scale value causes num to be rounded to that number of fractional digits before performing min and max
range checking. A scale value of 0 causes num to be rounded to an integer value (3.9 = 4) before performing range checking.
A scale value of –1 causes num to be truncated to an integer value (3.9 = 3) before performing range checking. To compare
all specified digits without rounding or truncating, omit the scale parameter. A scale value that is nonnumeric or the null
string is equivalent to a scale value of 0.

Rounding is performed for all scale values except –1. A value of 5 or greater is always rounded up.

The scale parameter value causes evaluation using rounded or truncated versions of the num value. The actual value of the
num variable is not changed by $ISVALIDDOUBLE processing.

If you omit the scale parameter, retain the comma as a place holder.

min and max

You can specify a minimum allowed value, a maximum allowed value, neither, or both. If specified, the num value (after
the scale operation) must be greater than or equal to the min value, and less than or equal to the max value. The values are
converted to IEEE floating point numbers before being used for range checking. A null string as a min or max value is
equal to zero. If a value does not meet these criteria, $ISVALIDDOUBLE returns 0.

The NAN value is always valid, regardless of the min or max value.

If you omit a parameter, retain the comma as a place holder. For example, when omitting scale and specifying min or max,
or when omitting min and specifying max. Trailing commas are ignored.

Examples
In the following example, each invocation of $ISVALIDDOUBLE returns 1 (valid number):

 WRITE !,$ISVALIDDOUBLE(0) ; All integers OK
 WRITE !,$ISVALIDDOUBLE(4.567) ; Fractional numbers OK
 WRITE !,$ISVALIDDOUBLE("4.567") ; Numeric strings OK
 WRITE !,$ISVALIDDOUBLE(-.0) ; Signed numbers OK
 WRITE !,$ISVALIDDOUBLE(-+--123) ; Multiple signs resolved for numbers OK
 WRITE !,$ISVALIDDOUBLE(+004.500) ; Leading/trailing zeroes OK
 WRITE !,$ISVALIDDOUBLE(4E2) ; Scientific notation OK

In the following example, each invocation of $ISVALIDDOUBLE returns 0 (invalid number):

 WRITE !,$ISVALIDDOUBLE("") ; Null string is invalid
 WRITE !,$ISVALIDDOUBLE("4,567") ; Commas are not permitted
 WRITE !,$ISVALIDDOUBLE("4A") ; Invalid character
 WRITE !,$ISVALIDDOUBLE("-+--123") ; Multiple signs not resolved for strings

In the following example, each invocation of $ISVALIDDOUBLE returns 1 (valid number), even though INF (infinity)
and NAN (Not A Number) are, strictly speaking, not numbers:

 WRITE !,$ISVALIDDOUBLE($DOUBLE($ZPI)) ; DOUBLE numbers OK
 WRITE !,$ISVALIDDOUBLE($DOUBLE("INF")) ; DOUBLE INF OK
 WRITE !,$ISVALIDDOUBLE($DOUBLE("NAN")) ; DOUBLE NAN OK

320 ObjectScript Reference

ObjectScript Functions

In the following example, specifying a min value eliminates -INF but not INF:

 WRITE !,$ISVALIDDOUBLE($DOUBLE("-INF"),,99999999999)
 WRITE !,$ISVALIDDOUBLE($DOUBLE("INF"),,99999999999)

The following example shows the use of the min and max parameters. All of the following return 1 (number is valid and
also passes the range check):

 WRITE !,$ISVALIDDOUBLE(4,,3,5) ; scale can be omitted
 WRITE !,$ISVALIDDOUBLE(4,2,3,5) ; scale can be larger than
 ; number of fractional digits
 WRITE !,$ISVALIDDOUBLE(4,0,,5) ; min or max can be omitted
 WRITE !,$ISVALIDDOUBLE(4,0,4,4) ; min and max are inclusive
 WRITE !,$ISVALIDDOUBLE(-4,0,-5,5) ; negative numbers
 WRITE !,$ISVALIDDOUBLE(4.00,2,04,05) ; leading/trailing zeros
 WRITE !,$ISVALIDDOUBLE(.4E3,0,3E2,400) ; base-10 exponents expanded

The following example shows the use of the scale parameter with min and max. All of the following return 1 (number is
valid and also passes the range check):

 WRITE !,$ISVALIDDOUBLE(4.55,,4.54,4.551)
 ; When scale is omitted, all digits of num are checked.
 WRITE !,$ISVALIDDOUBLE(4.1,0,4,4.01)
 ; When scale=0, num is rounded to an integer value
 ; (0 fractional digits) before min & max check.
 WRITE !,$ISVALIDDOUBLE(3.85,1,3.9,5)
 ; num is rounded to 1 fractional digit,
 ; (with values of 5 or greater rounded up)
 ; before min check.
 WRITE !,$ISVALIDDOUBLE(4.01,17,3,5)
 ; scale can be larger than number of fractional digits.
 WRITE !,$ISVALIDDOUBLE(3.9,-1,2,3)
 ; When scale=-1, num is truncated to an integer value

Notes

$ISVALIDDOUBLE and $ISVALIDNUM Compared

The $ISVALIDDOUBLE and $ISVALIDNUM functions both validate American format numbers and return a boolean
value (0 or 1).

• Both functions accept as valid numbers the INF, –INF, and NAN values returned by $DOUBLE. $ISVALIDDOUBLE
also accepts as valid numbers the not case-sensitive strings “NAN” and “INF”, as well as the variants “Infinity” and
“sNAN”, and any of these strings beginning with a single plus or minus sign. $ISVALIDNUM rejects all of these
strings as invalid, and returns 0.

 WRITE !,$ISVALIDNUM($DOUBLE("NAN")) ; returns 1
 WRITE !,$ISVALIDDOUBLE($DOUBLE("NAN")) ; returns 1
 WRITE !,$ISVALIDNUM("NAN") ; returns 0
 WRITE !,$ISVALIDDOUBLE("NAN") ; returns 1

• Both functions parse signed and unsigned integers (including –0), scientific notation numbers (with “E” or “e”), real
numbers (123.45) and numeric strings (“123.45”).

• Neither function recognizes the European DecimalSeparator character (comma (,)) or the NumericGroupSeparator
character (American format: comma (,); European format: period (.)). For example, both reject the string “123,456”
as an invalid number, regardless of the current locale setting.

• Both functions parse multiple leading signs (+ and –) for numbers. Neither accepts multiple leading signs in a quoted
numeric string.

See Also
• $DOUBLE function

• $FNUMBER function

ObjectScript Reference 321

$ISVALIDDOUBLE

• $INUMBER function

• $ISVALIDNUM function

• $NORMALIZE function

• $NUMBER function

• More information on locales in the section on “System Classes for National Language Support” in Specialized System
Tools and Utilities.

322 ObjectScript Reference

ObjectScript Functions

$ISVALIDNUM
Validates a numeric value and returns a boolean; optionally provides range checking.

$ISVALIDNUM(num,scale,min,max)

Parameters

The numeric value to be validated. It can be a numeric or string value, a variable name, or any
valid ObjectScript expression.

num

Optional — The number of significant fractional digits for min and max range comparisons.scale

Optional — The minimum permitted numeric value.min

Optional — The maximum permitted numeric value.max

Description
The $ISVALIDNUM function validates num and returns a boolean value. It optionally performs a range check using min
and max values. The scale parameter is used during range checking to specify how many fractional digits to compare. A
boolean value of 1 means that num is a properly formed number and passes the range check, if one is specified.

$ISVALIDNUM validates American format numbers, which use a period (.) as the decimal separator. It does not validate
European format numbers, which use a comma (,) as the decimal separator. $ISVALIDNUM does not consider valid a
number that contains numeric group separators; it returns 0 (invalid) for any number containing a comma or a blank space,
regardless of the current locale.

Parameters

num

The number to be validated may be an integer, a real number, or a scientific notation number (with the letter “E” or “e”).
It may be a string, expression, or variable that resolves to a number. It may be signed or unsigned, and may contain leading
or trailing zeros. Validation fails ($ISVALIDNUM returns 0) if:

• num is the empty string ("").

• num contains any characters other than the digits 0–9, a leading + or – sign, a decimal point (.), and a letter “E” or “e”.

• num contains more than one + or – sign, decimal point, or letter “E” or “e”.

• The optional + or – sign is not the first character of num.

• The letter “E” or “e” indicating a base-10 exponent is not followed by an integer in a numeric string.

With the exception of $ISVALIDNUM, specifying a base-10 number with a non-integer exponent in any expression results
in a <SYNTAX> error. For example, WRITE 7E3.5.

The scale parameter value causes evaluation using rounded or truncated versions of the num value. The actual value of the
num variable is not changed by $ISVALIDNUM processing.

If num is the INF, –INF, or NAN value returned by $DOUBLE, $ISVALIDNUM returns 1.

The largest floating point number that InterSystems IRIS supports is 1.7976931348623157081E308. Specifying a larger
number in any InterSystems IRIS numeric operation generates a <MAXNUMBER> error. The largest InterSystems IRIS
decimal floating point number specified as a string that $ISVALIDNUM supports is 9.223372036854775807E145. For
floating point number strings larger than this, use $ISVALIDDOUBLE. For further details, refer to “Extremely Large
Numbers” in the “Data Types and Values” chapter of Using ObjectScript.

ObjectScript Reference 323

$ISVALIDNUM

scale

The scale parameter is used during range checking to specify how many fractional digits to compare. Specify an integer
value for scale; fractional digits in the scale value are ignored. You can specify a scale value larger than the number of
fractional digits specified in the other parameters. You can specify a scale value of –1; all other negative scale values result
in a <FUNCTION> error.

A nonnegative scale value causes num to be rounded to that number of fractional digits before performing min and max
range checking. A scale value of 0 causes num to be rounded to an integer value (3.9 = 4) before performing range checking.
A scale value of –1 causes num to be truncated to an integer value (3.9 = 3) before performing range checking. To compare
all specified digits without rounding or truncating, omit the scale parameter. A scale value that is nonnumeric or the null
string is equivalent to a scale value of 0.

Rounding is performed for all scale values except –1. A value of 5 or greater is always rounded up.

If you omit the scale parameter, retain the comma as a place holder.

When rounding numbers, be aware that IEEE floating point numbers and standard InterSystems IRIS fractional numbers
differ in precision. $DOUBLE IEEE floating point numbers are encoded using binary notation. They have a precision of
53 binary bits, which corresponds to 15.95 decimal digits of precision. (Note that the binary representation does not correspond
exactly to a decimal fraction.) Because most decimal fractions cannot be exactly represented in this binary notation, an
IEEE floating point number may differ slightly from the corresponding standard InterSystems IRIS floating point number.
Standard InterSystems IRIS fractional numbers have a precision of 18 decimal digits on all supported InterSystems IRIS
system platforms. When an IEEE floating point number is displayed as a fractional number, the binary bits are often converted
to a fractional number with far more than 18 decimal digits. This does not mean that IEEE floating point numbers are more
precise than standard InterSystems IRIS fractional numbers.

min and max

You can specify a minimum allowed value, a maximum allowed value, neither, or both. If specified, the num value (after
the scale operation) must be greater than or equal to the min value, and less than or equal to the max value. A null string
as a min or max value is equal to zero. If a value does not meet these criteria, $ISVALIDNUM returns 0.

If you omit a parameter, retain the comma as a place holder. For example, when omitting scale and specifying min or max,
or when omitting min and specifying max. Trailing commas are ignored.

If the num, min, or max value is a $DOUBLE number, then all three of these numbers are treated as a $DOUBLE number
for this range check. This prevents unexpected range errors caused by the small generated fractional part of a $DOUBLE
number.

Examples
In the following example, each invocation of $ISVALIDNUM returns 1 (valid number):

 WRITE !,$ISVALIDNUM(0) ; All integers OK
 WRITE !,$ISVALIDNUM(4.567) ; Real numbers OK
 WRITE !,$ISVALIDNUM("4.567") ; Numeric strings OK
 WRITE !,$ISVALIDNUM(-.0) ; Signed numbers OK
 WRITE !,$ISVALIDNUM(+004.500) ; Leading/trailing zeroes OK
 WRITE !,$ISVALIDNUM(4E2) ; Scientific notation OK

In the following example, each invocation of $ISVALIDNUM returns 0 (invalid number):

 WRITE !,$ISVALIDNUM("") ; Null string is invalid
 WRITE !,$ISVALIDNUM("4,567") ; Commas are not permitted
 WRITE !,$ISVALIDNUM("4A") ; Invalid character

In the following example, each invocation of $ISVALIDNUM returns 1 (valid number), even though INF (infinity) and
NAN (Not A Number) are, strictly speaking, not numbers:

324 ObjectScript Reference

ObjectScript Functions

 DO ##class(%SYSTEM.Process).IEEEError(0)
 WRITE !,$ISVALIDNUM($DOUBLE($ZPI)) ; DOUBLE numbers OK
 WRITE !,$ISVALIDNUM($DOUBLE("INF")) ; DOUBLE INF OK
 WRITE !,$ISVALIDNUM($DOUBLE("NAN")) ; DOUBLE NAN OK
 WRITE !,$ISVALIDNUM($DOUBLE(1)/0) ; generated INF OK

The following example shows the use of the min and max parameters. All of the following return 1 (number is valid and
also passes the range check):

 WRITE !,$ISVALIDNUM(4,,3,5) ; scale can be omitted
 WRITE !,$ISVALIDNUM(4,2,3,5) ; scale can be larger than
 ; number of fractional digits
 WRITE !,$ISVALIDNUM(4,0,,5) ; min or max can be omitted
 WRITE !,$ISVALIDNUM(4,0,4,4) ; min and max are inclusive
 WRITE !,$ISVALIDNUM(-4,0,-5,5) ; negative numbers
 WRITE !,$ISVALIDNUM(4.00,2,04,05) ; leading/trailing zeros
 WRITE !,$ISVALIDNUM(.4E3,0,3E2,400) ; base-10 exponents expanded

The following example shows the use of the scale parameter with min and max. All of the following return 1 (number is
valid and also passes the range check):

 WRITE !,$ISVALIDNUM(4.55,,4.54,4.551)
 ; When scale is omitted, all digits of num are checked.
 WRITE !,$ISVALIDNUM(4.1,0,4,4.01)
 ; When scale=0, num is rounded to an integer value
 ; (0 fractional digits) before min & max check.
 WRITE !,$ISVALIDNUM(3.85,1,3.9,5)
 ; num is rounded to 1 fractional digit,
 ; (with values of 5 or greater rounded up)
 ; before min check.
 WRITE !,$ISVALIDNUM(4.01,17,3,5)
 ; scale can be larger than number of fractional digits.
 WRITE !,$ISVALIDNUM(3.9,-1,2,3)
 ; When scale=-1, num is truncated to an integer value

Notes

$ISVALIDNUM and $ISVALIDDOUBLE Compared

The $ISVALIDNUM and $ISVALIDDOUBLE functions both validate numbers and return a boolean value (0 or 1).

• Both functions accept as valid numbers the INF, –INF, and NAN values returned by $DOUBLE. $ISVALIDDOUBLE
also accepts as valid numbers the not case-sensitive strings “NAN” and “INF”, as well as the variants “Infinity” and
“sNAN”, and any of these strings beginning with a single plus or minus sign. $ISVALIDNUM rejects all of these
strings as invalid, and returns 0.

 WRITE !,$ISVALIDNUM($DOUBLE("NAN")) ; returns 1
 WRITE !,$ISVALIDDOUBLE($DOUBLE("NAN")) ; returns 1
 WRITE !,$ISVALIDNUM("NAN") ; returns 0
 WRITE !,$ISVALIDDOUBLE("NAN") ; returns 1

• Both functions parse signed and unsigned integers (including –0), scientific notation numbers (with “E” or “e”), real
numbers (123.45) and numeric strings (“123.45”).

• Neither function recognizes the European DecimalSeparator character (comma (,)) or the NumericGroupSeparator
character (American format: comma (,); European format: period (.)). For example, both reject the string “123,456”
as an invalid number, regardless of the current locale setting.

• Both functions parse multiple leading signs (+ and –) for numbers. Neither accepts multiple leading signs in a quoted
numeric string.

If a numeric string is too big to be represented by an InterSystems IRIS floating point number, the default is to automatically
convert it to an IEEE double-precision number. However, such large numbers fail the $ISVALIDNUM test, as shown in
the following example:

ObjectScript Reference 325

$ISVALIDNUM

 WRITE !,"E127 no IEEE conversion required"
 WRITE !,$ISVALIDNUM("9223372036854775807E127")
 WRITE !,$ISVALIDDOUBLE("9223372036854775807E127")
 WRITE !,"E128 automatic IEEE conversion"
 WRITE !,$ISVALIDNUM("9223372036854775807E128")
 WRITE !,$ISVALIDDOUBLE("9223372036854775807E128")

$ISVALIDNUM, $NORMALIZE, and $NUMBER Compared

The $ISVALIDNUM, $NORMALIZE, and $NUMBER functions all validate numbers. $ISVALIDNUM returns a
boolean value (0 or 1). $NORMALIZE and $NUMBER return a validated version of the specified number.

These three functions offer different validation criteria. Select the one that best meets your needs.

• American format numbers are validated by all three functions. European format numbers are only validated by the
$NUMBER function.

• All three functions parse signed and unsigned integers (including –0), scientific notation numbers (with “E” or “e”),
and numbers with a fractional part. However, $NUMBER can be set (using the “I” format) to reject numbers with a
fractional part (including scientific notation with a negative base-10 exponent). All three functions parse both numbers
(123.45) and numeric strings (“123.45”).

• Leading and trailing zeroes are stripped out by all three functions. The decimal character is stripped out unless followed
by a nonzero value.

• DecimalSeparator: $NUMBER validates the decimal character (American format: period (.) or European format:
comma (,)) based on its format parameter (or the default for the current locale). The other functions only validate
American format decimal numbers, regardless of the current locale setting.

• NumericGroupSeparator: $NUMBER accepts NumericGroupSeparator characters (in American format: comma (,) or
blank space; in European format: period (.) or blank space). It accepts and strips out any number of NumericGroupSep-
arator characters, regardless of position. For example, in American format it validate “12 3,,4,56.9,9” as the number
123456.99. $NORMALIZE does not recognize NumericGroupSeparator characters. It validates character-by-character
until it encounters a nonnumeric character; for example, it validates “123,456.99” as the number 123. $ISVALIDNUM
rejects the string “123,456” as an invalid number.

• Multiple leading signs (+ and –) are interpreted by all three functions for numbers. However, only $NORMALIZE
accepts multiple leading signs in a quoted numeric string.

• Trailing + and – signs: All of the three functions reject trailing signs in numbers. However, in a quoted numeric string
$NUMBER parses one (and only one) trailing sign, $NORMALIZE parses multiple trailing signs, and $ISVALIDNUM
rejects any string containing a trailing sign as an invalid number.

• Parentheses: $NUMBER parses parentheses surrounding an unsigned number in a quoted string as indicating a negative
number. $NORMALIZE and $ISVALIDNUM reject parentheses.

• Numeric strings containing multiple decimal characters: $NORMALIZE validates character-by-character until it
encounters the second decimal character. For example, in American format it validates “123.4.56” as the number 123.4.
$NUMBER and $ISVALIDNUM reject any string containing more than one decimal character as an invalid number.

Numeric strings containing other nonnumeric characters: $NORMALIZE validates character-by-character until it
encounters an alphabetic character. It validates “123A456” as the number 123. $NUMBER and $ISVALIDNUM
validate the entire string, they reject “123A456” as an invalid number.

• The null string: $NORMALIZE parses the null string as zero (0). $NUMBER and $ISVALIDNUM reject the null
string.

The $ISVALIDNUM and $NUMBER functions provide optional min/max range checking.

$ISVALIDNUM, $NORMALIZE, and $NUMBER all provide rounding of numbers to a specified number of fractional
digits. $ISVALIDNUM and $NORMALIZE can round fractional digits, and round or truncate a number with a fractional

326 ObjectScript Reference

ObjectScript Functions

part to return an integer. For example, $NORMALIZE can round 488.65 to 488.7 or 489, or truncate it to 488. $NUMBER
can round both fractional digits and integer digits. For example, $NUMBER can round 488.65 to 488.7, 489, 490 or 500.

See Also
• $DOUBLE function

• $FNUMBER function

• $INUMBER function

• $ISVALIDDOUBLE function

• $NORMALIZE function

• $NUMBER function

• More information on locales in the section on “System Classes for National Language Support” in Specialized System
Tools and Utilities.

ObjectScript Reference 327

$ISVALIDNUM

$JUSTIFY
Right-aligns an expression within a specified width, rounding to a specified number of fractional digits.

$JUSTIFY(expression,width,decimal)
$J(expression,width,decimal)

Parameters

The value that is to be right-aligned. It can be a numeric value, a string literal, the
name of a variable, or any valid ObjectScript expression.

expression

The number of characters within which expression is to be right-aligned. A positive
integer or an expression that evaluates to a positive integer.

width

Optional — The number of fractional digits. A positive integer or an expression that
evaluates to a positive integer. InterSystems IRIS rounds or pads the number of
fractional digits in expression to this value. If you specify decimal, InterSystems
IRIS treats expression as a numeric.

decimal

Description
$JUSTIFY returns the value specified by expression right-aligned within the specified width. You can include the decimal
parameter to decimal-align numbers within width.

• $JUSTIFY(expression,width): the 2-parameter syntax right-justifies expression within width. It does not perform
any conversion of expression. The expression can be a numeric or a nonnumeric string.

• $JUSTIFY(expression,width,decimal): the 3-parameter syntax converts expression to a canonical number,
rounds or zero pads fractional digits to decimal, then right-justifies the resulting numeric value within width. If expression
is a nonnumeric string, InterSystems IRIS converts it to 0, pads it, then right-justifies it.

$JUSTIFY recognizes the DecimalSeparator character for the current locale. It adds or deletes a DecimalSeparator character
as needed. The DecimalSeparator character depends upon the locale; commonly it is either a period (.) for American-format
locales, or a comma (,) for European-format locales. To determine the DecimalSeparator character for your locale, invoke
the following method:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("DecimalSeparator")

Commonly, $JUSTIFY is used to format numbers with fractional digits: every number is given the same number of fractional
digits, and the numbers are right-aligned so that the DecimalSeparator characters align in a column of numbers. $JUSTIFY
is especially useful for outputting formatted values using the WRITE command.

Parameters

expression

The value to be right-justified, and optionally expressed as a numeric with a specified number of fractional digits.

• If string justification is desired, do not specify decimal. The expression can contain any characters. $JUSTIFY right-
justifies expression, as described in width. You can specify the null string ("") to create a string of blank spaces of the
specified width.

• If numeric justification is desired, specify decimal. If decimal is specified, $JUSTIFY converts expression to a
canonical number. It resolves leading plus and minus signs and removes leading and trailing zeros. It truncates expression
at the first nonnumeric character. If expression begins with a nonnumeric character (such as a currency symbol),
$JUSTIFY converts the expression value to 0. For further details on how InterSystems IRIS converts a numeric to a

328 ObjectScript Reference

ObjectScript Functions

canonical number, and InterSystems IRIS handling of a numeric string containing nonnumeric characters, refer to the
Numbers section of the “Data Types and Values” chapter of Using ObjectScript.

After $JUSTIFY converts expression to a canonical number, it zero-pads or rounds this canonical number to decimal
number of fractional digits, then right-justifies the result, as described in width. $JUSTIFY does not recognize
NumericGroupSeparator characters, currency symbols, multiple DecimalSeparator characters, or trailing plus or minus
signs.

width

The width in which to right-justify the converted expression. If width is greater than the length of expression (after numeric
and fractional digit conversion), InterSystems IRIS right-justifies to width, left-padding as needed with blank spaces. If
width is less than the length of expression (after numeric and fractional digit conversion), InterSystems IRIS sets width to
the length of the expression value.

Specify width as a positive integer. A width value of 0, the null string (""), or a nonnumeric string is treated as a width of
0, which means that InterSystems IRIS sets width to the length of the expression value.

decimal

The number of fractional digits. If expression contains more fractional digits, $JUSTIFY rounds the fractional portion to
this number of fractional digits. If expression contains fewer fractional digits, $JUSTIFY pads the fractional portion with
zeros to this number of fractional digits, adding a Decimal Separator character, if needed. If decimal=0, $JUSTIFY rounds
expression to an integer value and deletes the Decimal Separator character.

If the expression value is less than 1, $JUSTIFY inserts a leading zero before the DecimalSeparator character.

The $DOUBLE values INF, -INF, and NAN are returned unchanged by $JUSTIFY, regardless of the decimal value.

$JUSTIFY and $FNUMBER

You can use $FNUMBER to format a number for display. Both $JUSTIFY and $FNUMBER can round (or zero pad) to
a specified number of fractional digits. $FNUMBER can also be used to add NumericGroupSeparator characters. However,
note the following:

• $FNUMBER cannot format a number once it has been right-aligned using $JUSTIFY. ($FNUMBER interprets the
leading spaces as nonnumeric characters.)

• $JUSTIFY cannot perform numeric justification on a number once you have added NumericGroupSeparator characters
or have prepended a currency symbol. ($JUSTIFY interprets NumericGroupSeparators or currency symbols as non-
numeric characters.)

Therefore, to properly add NumericGroupSeparators, round fractional digits, prepend a currency symbol, and right-align
the resulting number, you use $FNUMBER to perform rounding and inserting of NumericGroupSeparators. You then use
$JUSTIFY with 2-parameter syntax to right-align the resulting string:

 SET num=123456.789
 SET fmtnum=$FNUMBER(num,",",2)
 SET money="$"_fmtnum
 SET rmoney=$JUSTIFY(money,15)
 WRITE ">",rmoney,"<"

Examples
The following example performs right-justification on strings. No numeric conversion is performed:

 WRITE ">",$JUSTIFY("right",10),"<",!
 WRITE ">",$JUSTIFY("aligned",10),"<",!
 WRITE ">",$JUSTIFY("+0123.456",10),"<",!
 WRITE ">",$JUSTIFY("string longer than width",10),"<",!

The following example performs numeric right-justification with a specified number of fractional digits:

ObjectScript Reference 329

$JUSTIFY

 SET var1 = 250.50999
 SET var2 = 875
 WRITE !,$JUSTIFY(var1,20,2),!,$JUSTIFY(var2,20,2)
 WRITE !,$JUSTIFY("_________",20)
 WRITE !,$JUSTIFY("TOTAL",9),$JUSTIFY(var1+var2,11,2)

return the following lines:

 250.51
 875.00

TOTAL 1125.51

The following example performs numeric right-justification with the $DOUBLE values INF and NAN:

 SET rtn=##class(%SYSTEM.Process).IEEEError(0)
 SET x=$DOUBLE(1.2e500)
 WRITE !,"Double: ",x
 WRITE !,">",$JUSTIFY(x,12,2),"<"
 SET y=$DOUBLE(x-x)
 WRITE !,"Double INF minus INF: ",y
 WRITE !,">",$JUSTIFY(y,12,2),"<"

See Also
• $FNUMBER function

• $X special variable

330 ObjectScript Reference

ObjectScript Functions

$LENGTH
Returns the number of characters or delimited substrings in a string.

$LENGTH(expression,delimiter)
$L(expression,delimiter)

Parameters

The target string. It can be a numeric value, a string literal, a variable name, or any
valid expression that resolves to a string.

expression

Optional — A string that demarcates separate substrings in the target string. It can
be a variable name, a numeric value, a string literal, or any valid expression that
resolves to a string.

delimiter

Description
$LENGTH returns the number of characters in a specified string or the number of delimited substrings in a specified string,
depending on the parameters used. Note that length counts the number of characters; an 8-bit character and a 16-bit wide
(Unicode) character are both counted as one character. For further details, refer to Unicode in Using ObjectScript.

• $LENGTH(expression) returns the number of characters in the string. If the expression is a null string, $LENGTH
returns a 0. If expression is a numeric expression, it is converted to canonical form before determining its length. If
expression is a string numeric expression, no conversion is performed. If expression is the $DOUBLE values INF, -
INF, or NAN, the lengths returned are 3, 4, and 3, respectively.

This syntax can be used with the $EXTRACT function, which locates a substring by position and returns the substring
value.

• $LENGTH(expression,delimiter) returns the number of substrings within the string. $LENGTH returns the number
of substrings separated from one another by the indicated delimiter. This number is always equal to the number of
delimiters in the string, plus one.

This syntax can be used with the $PIECE function, which locates a substring by a delimiter and returns the substring
value.

If the delimiter is the null string, $LENGTH returns a 0. If the delimiter is any other valid string literal and the string
is a null string, $LENGTH returns a 1.

Encoded Strings

InterSystems IRIS supports strings that contain internal encoding. Because of this encoding, $LENGTH should not be
used to determine the data content of a string.

• $LENGTH should not be used for a List structure string created using $LISTBUILD or $LIST. Because an InterSystems
IRIS List string is encoded, the length returned does not meaningfully indicate the number of characters in the list
elements. The sole exception is the one-argument and two-argument forms of $LIST, which take an encoded InterSys-
tems IRIS List string as input, but outputs a single List element value as a standard character string. You can use the
$LISTLENGTH function to determine the number of substrings (list elements) in an encoded list string.

• $LENGTH should not be used for a bit string. Because an InterSystems IRIS bit string is encoded, the length returned
does not meaningfully indicate the number of bits in the bit string. You can use the $BITCOUNT function, which
returns the number of bits in the string.

ObjectScript Reference 331

$LENGTH

• $LENGTH should not be used for a JSON string. The value assigned by setting a variable to a JSON object or a JSON
array is an object reference. Therefore the length of that variable value would be the length of the object reference,
which has no connection to the length of the data encoded in the JSON string.

Surrogate Pairs

$LENGTH does not recognize surrogate pairs. Surrogate pairs are used to represent some Chinese characters and to support
the Japanese JIS2004 standard. You can use the $WISWIDE function to determine if a string contains a surrogate pair.
The $WLENGTH function recognizes and correctly parses surrogate pairs. $LENGTH and $WLENGTH are otherwise
identical. However, because $LENGTH is generally faster than $WLENGTH, $LENGTH is preferable for all cases
where a surrogate pair is not likely to be encountered.

Examples
In the following example, both $LENGTH functions return 4, the number of characters in the string.

 SET roman="test"
 WRITE !,$LENGTH(roman)," characters in: ",roman
 SET greek=$CHAR(964,949,963,964)
 WRITE !,$LENGTH(greek)," characters in: ",greek

In the following example, the first $LENGTH returns 5. This is the length of 74000, the canonical version of the specified
number. The second $LENGTH returns 8, the length of the string “+007.4e4”.

 WRITE !,$LENGTH(+007.4e4)
 WRITE !,$LENGTH("+007.4e4")

In the following example, the first WRITE returns 11 the number of characters in var1 (including, of course, the space
character). The second WRITE returns 2, the number of substrings in var1 using the space character as the substring
delimiter.

 SET var1="HELLO WORLD"
 WRITE !,$LENGTH(var1)
 WRITE !,$LENGTH(var1," ")

The following example returns 3, the number of substrings within the string, as delimited by the dollar sign ($) character.

 SET STR="ABCDEFEFG",DELIM="$"
 WRITE $LENGTH(STR,DELIM)

If the specified delimiter is not found in the string $LENGTH returns 1, because the only substring is the string itself.

The following example returns a 0 because the string tested is the null string.

 SET Nstring = ""
 WRITE $LENGTH(Nstring)

The following example shows the values returned when a delimiter or its string is the null string.

 SET String = "ABC"
 SET Nstring = ""
 SET Delim = "$"
 SET Ndelim = ""
 WRITE !,$LENGTH(String,Delim) ; returns 1
 WRITE !,$LENGTH(Nstring,Delim) ; returns 1
 WRITE !,$LENGTH(String,Ndelim) ; returns 0
 WRITE !,$LENGTH(Nstring,Ndelim) ; returns 0

See Also
• $EXTRACT function

• $PIECE function

• $WISWIDE function

332 ObjectScript Reference

ObjectScript Functions

• $WLENGTH function

ObjectScript Reference 333

$LENGTH

$LIST
Returns or replaces elements in a list.

$LIST(list,position,end)
$LI(list,position,end)

$LIST(list,start1:end1,start2:end2...)
$LI(list,position1:end1,position2:end2...)

SET $LIST(list,position,end)=value
SET $LI(list,position,end)=value

Parameters

An expression that evaluates to a valid list. Because lists contain encoding, list must
be created using $LISTBUILD or $LISTFROMSTRING, or extracted from another list
using $LIST. In SET $LIST syntax, list must be a variable or a multi-dimensional property.

list

Optional $LIST(list,position,end) syntax — An integer code specifying the starting
position in list from which to retrieve a sublist. Permitted values are n (integer count
from beginning of list), * (last element in list), and *-n (relative offset count backwards
from end of list). SET $LIST syntax also supports *+n (relative offset integer count of
elements to append beyond the end of list). Thus, the first element in the list is 1, the
second element is 2, the last element in the list is *, and the next-to-last element is *-1.
If position is omitted, it defaults to 1.

-1 may be used in older code to specify the last element in the list.This deprecated use
of -1 should not be combined with *, *-n, or *+n relative offset syntax.

position

Optional $LIST(list,position,end) syntax — A code specifying the ending position of
a sublist of list. Can be a positive integer specifying position count from the beginning
of list or a symbolic code counting from the end of list. Used with position and uses the
same code values as position. If omitted, only the single element specified by position
is returned.

end

Optional $LIST(list,start1:end1,start2:end2) syntax — A pair of integers specifying
the starting and ending position of a range to retrieve from list. start and end are con-
nected by a colon. Only positive integers counts of elements from the beginning of list
may be specified. A range pair may include integer counts beyond the end of list. start
must be less than or equal to end.

You can specify any number of start:end range pairs as a comma-separated list. Range
pairs may be specified in any order. Range pairs may overlap or may repeat list elements.

start1:end1

Description
$LIST can be used in three ways:

• To retrieve a single range of elements) from list. This uses the $LIST(list,position,end) syntax. It locates
elements by offset from either the beginning or the end of list. It returns a single element as a string. It return a range
of elements as a list.

• To retrieve multiple ranges of elements) from list. This uses the $LIST(list,position1:end1,position2:end2)
syntax. It locates elements by offset from the beginning of list. It concatenates the ranges retrieved and returns the
concatenated results as a list.

334 ObjectScript Reference

ObjectScript Functions

• To replace an element (or elements) within list. The replacement element may be the same length, longer, or shorter
than the original element. This uses the SET $LIST(list,position,end)=value syntax.

Returning a Single Sublist

$LIST(list,position,end) syntax:

$LIST returns a single sublist of elements. This sublist can contain one or more elements. The elements returned depend
on the parameters used.

• $LIST(list) returns the first element in list as a string.

• $LIST(list,position) returns the element of list specified by position as a string. The specified position cannot be a
positive integer count beyond the end of list or a negative integer count before the beginning of list.

• $LIST(list,position,end) returns a “sublist” (an encoded list string) containing a range of elements retrieved from list.
The range is from the specified start position through the specified end position (inclusive). If position and end specify
the same element, $LIST returns this element as an encoded list.

The specified position cannot be a positive integer count beyond the end of list or a negative integer count before the
beginning of list. The specified end can be a positive integer count beyond the end of list but only the existing list
elements are returned; no element padding is performed.

Note: $LIST should not be used in a loop structure to return multiple successive element values. While this will work,
it is highly inefficient, because $LIST must evaluate the list from the beginning with each iteration. The $LIST-
NEXT function is a far more efficient way to return multiple successive element values.

Returning Multiple Sublists

$LIST(list,start1:end1,start2:end2) syntax:

$LIST retrieves multiple range sublists of elements, then concatenates them into a single returned list. You can specify
one or more start:end ranges; multiple ranges are separated by a comma. The retuned value is always a list structure, even
if only one element is returned.

A range pair must consist of two positive integers, paired using a colon. This specifies a range of elements counting from
the beginning of list; the start and end values are inclusive. The start value must be less than or equal to the end value. For
example, 3:4 retrieves the third and fourth elements of list; 3:3 retrieves the third element of list; 4:3 is an invalid range
and is skipped over without retrieving any elements. No values other than positive integers are permitted for start and end.
Elements are counted from 1, zero should be avoided. If zero is specified it is converted to 1; therefore, 1:1, 0:1, 0:0, and
1:0 all retrieve the first element of list.

The specified start and/or end values can be a positive integer count beyond the end of list. A range sublist containing that
range of elements is generated; if the range includes existing list elements they are included in the sublist, if the range
includes elements beyond the end of list the sublist is padded with the appropriate number of null elements. Note that
ZWRITE or $LISTTOSTRING(list,,1) must be used to display results that include null elements; WRITE does not display
null elements, $LISTTOSTRING (by default) generates a <NULL VALUE> error.

The most efficient use of this syntax is to specify non-overlapping range pairs in ascending order:
$LIST(mylist,2:2,4:7,10:20). However, comma-separated range pairs can be specified in any order. An element
of list can be retrieved multiple times by different range pairs.

The following example retrieves four range pairs and concatenates them into a single list:

 SET mylist=$LISTBUILD("a","b","c","d","e","f","g")
 SET result=$LIST(mylist,2:2,1:4,7:9,1:2)
 ZWRITE result

returns: result=$lb("b","a","b","c","d","g",,,"a","b")

ObjectScript Reference 335

$LIST

Parameters

list

An encoded list string containing one or more elements. Lists can be created using $LISTBUILD or $LISTFROMSTRING,
or extracted from another list by using the $LIST function. (The empty string ("") and certain $CHAR non-printing char-
acter combinations, such as $CHAR(1), $CHAR(2,1), and $CHAR(3,1,asciicode) can also return an encoded empty
or one-element list.)

When returning an element (or elements), list can be a variable or an object property.

When $LIST is used with SET on the left hand side of the equals sign to replace an element (or elements), list can be a
variable or a multidimensional property reference; it cannot be a non-multidimensional object property.

The following are valid list arguments:

 SET myList = $LISTBUILD("Red","Blue","Green","Yellow")
 WRITE !,$LIST(myList,2) ; prints Blue
 SET subList = $LIST(myList,2,4)
 WRITE !,$LIST(subList,2) ; prints Green

In the following example, subList is not a valid list argument, because it is a single element returned as an ordinary string,
not an encoded list string:

 SET myList = $LISTBUILD("Red","Blue","Green","Yellow")
 SET subList = $LIST(myList,2)
 WRITE $LIST(subList,1)

In SET $LIST syntax form, list cannot be a non-multidimensional object property.

position

The position (element count) of the list element to return (or replace). A single element is returned as a string. List elements
are counted from 1. If position is omitted, $LIST returns the first element.

• If position is a positive integer, $LIST counts elements from the beginning of list. If position is greater than the number
of elements in list, InterSystems IRIS issues a <NULL VALUE> error.

• If position is * (asterisk), $LIST returns the last element in list.

• If position is *-n (an asterisk followed by a negative number), $LIST counts elements by offset backwards from the
end of list. Thus, *-0 is the last element in the list, *-1 is the next-to-last list element (an offset of 1 from the end). If
the position relative offset count is equal to the number of elements in list (and thus specifies the 0th element), Inter-
Systems IRIS issues a <NULL VALUE> error. If the position relative offset count is greater than the number of elements
in list, InterSystems IRIS issues a <RANGE> error.

• For SET $LIST syntax only — If position is *+n (an asterisk followed by a positive number), SET $LIST appends
elements by offset beyond the end of list. Thus, *+1 appends an element beyond the end of list, *+2 appends an element
two positions beyond the end of list, padding with a null string element.

• If position is 0 or -0, InterSystems IRIS issues a <NULL VALUE> error.

If the end parameter is specified, position specifies the first element in a range of elements. A range of elements is always
returned as an encoded list string. Even when only one element is returned (when position and end are the same number)
this value is returned as an encoded list string. Thus, $LIST(x,2) is the same element, but not the same data value as
$LIST(x,2,2).

end

The position of the last element in a range of elements, specified as an integer. You must specify position to specify end.
If end is a fractional number, it is truncated to its integer part.

336 ObjectScript Reference

ObjectScript Functions

When end is specified, the value returned is an encoded list string. Because of this encoding, such strings should only be
processed by other $LIST functions.

• position < end: If end and position are positive integers, and position < end, $LIST returns an encoded sublist containing
the specified list of elements, inclusive of the position and end elements. If position is 0 or 1, the sublist begins with
the first element in list. If end is greater than the number of elements in list, $LIST returns an encoded sublist containing
all of the elements from position through the end of the list. If end is *-n, position can be a positive integer or a *-n
value greater than or equal to this end position. Thus, $LIST(fourlist,*-1,*), $LIST(fourlist,*-3,*-2),
$LIST(fourlist,2,*-1) are all valid sublists.

• position = end: If end and position evaluate to the same element, $LIST returns an encoded sublist containing that
single element. For example, in a list with four elements, end and position may be identical ($LIST(fourlist,2,2),
$LIST(fourlist,*,*), or $LIST(fourlist,*-2,*-2)) or they may specify the same element
($LIST(fourlist,4,*), $LIST(fourlist,3,*-1)).

• position > end: If position > end, $LIST returns the null string (""). For example, in a list with four elements,
$LIST(fourlist,3,2), $LIST(fourlist,7,*), or $LIST(fourlist,*-1,*-2) all return the null string.

• position=0, with end: If end is specified, and position is zero (0) or a negative offset that evaluates to position zero,
position 0 is equivalent to 1. Therefore, if end evaluates to an element position greater than zero, $LIST returns an
encoded sublist containing the elements from position 1 through the end position. If end also evaluates to element
position zero, $LIST returns the null string (""), because position > end.

• For SET $LIST syntax only — If end is *+n (an asterisk followed by a positive number), SET $LIST appends a
range of elements by offset beyond the end of list. If position is *+n, SET $LIST appends a range of values. If position
is a positive integer, or *-n SET $LIST both replaces and appends values. To replace the last element and append
elements, specify SET $LIST(mylist,*+0,*+n). If the start of the specified range is beyond the end of list, the
list is padded with a null string elements as needed. If end is larger than the supplied range of values, trailing padding
is not performed.

Deprecated –1 Values

In older code, a position or end value of -1 represents the last element in the list. A value of -1 cannot be used with *, *+n,
or *-n syntax.

Specifying *-n and *+n Parameter Values

When using a variable to specify *-n or *+n, you must always specify the asterisk and a sign character in the parameter
itself.

The following are valid specifications of *-n:

 SET count=2
 SET alph=$LISTBUILD("a","b","c","d")
 WRITE $LIST(alph,*-count)

 SET count=-2
 SET alph=$LISTBUILD("a","b","c","d")
 WRITE $LIST(alph,*+count)

The following is a valid specification of *+n:

 SET count=2
 SET alph=$LISTBUILD("a","b","c","d")
 SET $LIST(alph,*+count)="F"
 WRITE $LISTTOSTRING(alph,"^",1)

Whitespace is permitted within these parameter values.

$LIST Errors
The following $LIST parameter values generate an error:

ObjectScript Reference 337

$LIST

• If the list parameter does not evaluate to a valid list, $LIST generates a <LIST> error. You can use the $LISTVALID
function to determine if a list is valid.

• If the list parameter evaluate to a valid list that contains a null value, or concatenates a list and a null value, $LIST(list)
syntax generates a <NULL VALUE> error because this syntax is trying to return a null value as a string. All of the
following are valid lists (according to $LISTVALID) for which $LIST generate a <NULL VALUE> error:

 WRITE $LIST(""),!
 WRITE $LIST($LB()),!
 WRITE $LIST($LB(UndefinedVar)),!
 WRITE $LIST($LB(,))
 WRITE $LIST($LB()_$LB("a","b","c"))

If the $LIST(list,position) syntax position parameter specifies a null (non-existent) element, $LIST generates a <NULL
VALUE> error because this syntax is trying to return a null value as a string:

 SET mylist=$LISTBUILD("A",,"C")
 ZZDUMP $LIST(mylist,2) ; generates a <NULL VALUE> error

 SET mylist2=$LISTBUILD("A","B","C")
 WRITE $LIST(mylist2,4) ; generates a <NULL VALUE> error

• If the $LIST(list,position) syntax specifies a position parameter of 0, or a negative relative offset that specifies the 0th
element, $LIST generates a <NULL VALUE> error. If end is specified, 0 is a valid position value and is parsed as 1.

• If the *-n value of the position or end parameter specifies an n value larger than the number of element positions in
list, $LIST generates a <RANGE> error.

 SET list2=$LISTBUILD("Brown","Black")
 WRITE $LIST(list2,*-2) ; generates a <NULL VALUE> error
 WRITE $LIST(list2,*-3) ; generates a <RANGE> error

Because $LISTLENGTH("") is 0, a position or end of *-1 or greater results in a <RANGE> error:

 WRITE $LIST("",*-0) ; generates a <NULL VALUE> error
 WRITE $LIST("",*-1) ; generates a <RANGE> error
 WRITE $LIST("",0,*-1) ; generates a <RANGE> error

• If the value of the position parameter or the end parameter is less than -1, $LIST generates a <RANGE> error.

Replacing Elements Using SET $LIST
• You can use SET $LIST(list,position) to remove an element, replace an element’s value, or append an element to the

list. In this two-parameter form, you specify the new element value as a string.

• You can use SET $LIST(list,position,end) to remove one or more elements, replace one or more element values, or
append one or more elements to the list. In this three-parameter form, you must specify the new element value(s) as
an encoded list.

(SET $LIST does not support $LIST(list,start1:end1,start2:end2) syntax.)

When $LIST is used with SET on the left hand side of the equals sign, list can be a valid variable name. If the variable
does not exist, SET $LIST defines it. The list parameter can also be a multidimensional property reference; it cannot be a
non-multidimensional object property. Attempting to use SET $LIST on a non-multidimensional object property results
in an <OBJECT DISPATCH> error.

You cannot use SET (a,b,c,...)=value syntax with $LIST (or $PIECE or $EXTRACT) on the left of the equals sign, if
the function uses relative offset syntax: * representing the end of a string and *-n or *+n representing relative offset from
the end of the string. You must instead use SET a=value,b=value,c=value,... syntax.

You can also use $LISTUPDATE to replace one or more elements in a list or append element to a list by element position.
$LISTUPDATE replaces list elements, performing a boolean test for each element replacement. Unlike SET $LIST,
$LISTUPDATE does not modify the initial list, but returns a copy of that list with the specified element replacements.

338 ObjectScript Reference

ObjectScript Functions

Two Parameter Operations

You can perform the following two-parameter operations. Note that two-parameter operations specify an element value as
a string. Specifying an element value as a list creates a sublist within the list.

• Replace one element value with a new value:

 SET $LIST(fruit,2)="orange" ; count from beginning of list
 SET $LIST(fruit,*)="pear" ; element at end of list
 SET $LIST(fruit,*-2)="peach" ; offset from end of list

• Remove an element value (this sets the value to the null string; it does not remove the element position):

 SET $LIST(fruit,2)=""

• Append an element to a list. You can append to the end of the list, or to a location past the end of the list, by using *+n
syntax. SET $LIST inserts null value elements as needed to pad to the specified position:

 SET $LIST(fruit,*+1)="plum"

• Replace one element with a sublist of elements:

 SET $LIST(fruit,3)=$LISTBUILD("orange","banana")

Three Parameter Operations

You can perform the following three-parameter (range) operations. Note that range operations specify an element values
as a list, even when specifying a single element value.

• Replace one element with several elements:

 SET $LIST(fruit,3,3)=$LISTBUILD("orange","banana")

• Replace a range of element values with the same number of new values:

 SET $LIST(fruit,2,3)=$LISTBUILD("orange","banana")

• Replace a range of element values with a larger or smaller number of new values:

 SET $LIST(fruit,2,3)=$LISTBUILD("orange","banana","peach")

• Remove a range of element values (this sets the element values to the null string; it does not remove the element
positions):

 SET $LIST(fruit,2,3)=$LISTBUILD("","")

• Remove a range of element values and their positions:

 SET $LIST(fruit,2,3)=""

• Append a range of element to a list. You can append to the end of the list, or to a location past the end of the list, by
using *+n syntax. SET $LIST inserts null value elements as needed to pad to the specified position:

 SET $LIST(fruit,*+1,*+2)=$LISTBUILD("plum","pear")

SET $LIST only appends the specified element values. If the end position is larger than the specified elements, empty
trailing element positions are not created.

ObjectScript Reference 339

$LIST

Examples

Examples of Returning Elements with $LIST

The following examples use the 2-parameter form of $LIST to return a list element as a string:

The following two $LIST statements return “Red”, the first element in the list. The first returns the first element by default,
the second returns the first element because the position parameter is set to 1. The value is returned as a string:

 SET colorlist=$LISTBUILD("Red","Orange","Yellow","Green","Blue","Violet")
 WRITE $LIST(colorlist),!
 WRITE $LIST(colorlist,1)

The following two $LIST statements return “Orange”, the second element in the list. The first counts from the beginning
of the list, the second counts backwards from the end of the list. The value is returned as a string:

 SET colorlist=$LISTBUILD("Red","Orange","Yellow","Green","Blue","Violet")
 WRITE $LIST(colorlist,2),!
 WRITE $LIST(colorlist,*-4)

The following examples use the 3-parameter form of $LIST to return one or more elements as an encoded list string.
Because a list contains non-printing encoding character, you must use $LISTTOSTRING to convert the sublist to a
printable string.

The following two $LIST statements return “Blue”, the fifth element in the list as an encoded list string. The first counts
from the beginning of the list, the second counts backwards from the end of the list. Because the element is specified as a
range, it is retrieved as a list consisting of one element:

 SET colorlist=$LISTBUILD("Red","Orange","Yellow","Green","Blue","Violet")
 WRITE $LISTTOSTRING($LIST(colorlist,5,5))
 WRITE $LISTTOSTRING($LIST(colorlist,*-1,*-1))

The following example returns “Red Orange Yellow”, a three-element list string beginning with the first element and ending
with the third element in the list:

 SET colorlist=$LISTBUILD("Red","Orange","Yellow","Green","Blue","Violet")
 WRITE $LISTTOSTRING($LIST(colorlist,1,3))

The following example returns “Green Blue Violet”, a three-element list string beginning with the fourth element and
ending with the last element in the list:

 SET colorlist=$LISTBUILD("Red","Orange","Yellow","Green","Blue","Violet")
 WRITE $LISTTOSTRING($LIST(colorlist,4,*))

The following example returns a list element from a property:

 SET cfg=##class(%iKnow.Configuration).%New("Trilingual",1,$LB("en","fr","es"))
 WRITE $LIST(cfg.Languages,2)

Examples of Replacing, Removing, or Appending Elements with SET $LIST

The following example shows SET $LIST replacing the second element:

 SET fruit=$LISTBUILD("apple","onion","banana","pear")
 WRITE !,$LISTTOSTRING(fruit,"/")
 SET $LIST(fruit,2)="orange"
 WRITE !,$LISTTOSTRING(fruit,"/")

The following example shows SET $LIST replacing the second and third elements:

 SET fruit=$LISTBUILD("apple","potato","onion","pear")
 WRITE !,$LISTTOSTRING(fruit,"/")
 SET $LIST(fruit,2,3)=$LISTBUILD("orange","banana")
 WRITE !,$LISTTOSTRING(fruit,"/")

The following example shows SET $LIST replacing the second and third elements with four elements:

340 ObjectScript Reference

ObjectScript Functions

 SET fruit=$LISTBUILD("apple","potato","onion","pear")
 WRITE !,$LISTTOSTRING(fruit,"/")
 SET $LIST(fruit,2,3)=$LISTBUILD("orange","banana","peach","tangerine")
 WRITE !,$LISTTOSTRING(fruit,"/")

The following example shows SET $LIST appending an element to the end of the list:

 SET fruit=$LISTBUILD("apple","orange","banana","peach")
 WRITE $LL(fruit)," ",$LISTTOSTRING(fruit,"/",1),!
 SET $LIST(fruit,*+1)="pear"
 WRITE $LL(fruit)," ",$LISTTOSTRING(fruit,"/",1)

The following example shows SET $LIST appending an element three positions past the end of the list:

 SET fruit=$LISTBUILD("apple","orange","banana","peach")
 WRITE $LL(fruit)," ",$LISTTOSTRING(fruit,"/",1),!
 SET $LIST(fruit,*+3)="tangerine"
 WRITE $LL(fruit)," ",$LISTTOSTRING(fruit,"/",1)

The following four examples show SET $LIST using *-n syntax to replace elements by offset from the end of the list.
Note that SET $LIST(x,*-n) and SET $LIST(x,n,*-n perform different operations: SET $LIST(x,*-n) replaces
the value of the specified element; SET $LIST(x,n,*-n) deletes the specified range of elements, then appends the
specified list.

To replace the next-to-last element with a single value, use SET $LIST(x,*-1):

 SET fruit=$LISTBUILD("apple","banana","orange","potato","pear")
 WRITE !,"list length is ",$LISTLENGTH(fruit)," "
 WRITE $LISTTOSTRING(fruit,"/")
 SET $LIST(fruit,*-1)="peach"
 WRITE !,"list length is ",$LISTLENGTH(fruit)," "
 WRITE $LISTTOSTRING(fruit,"/")

To remove a single element by offset from the end of the list, use SET $LIST(x,*-n,*-n)="":

 SET fruit=$LISTBUILD("apple","banana","orange","potato","pear")
 WRITE !,"list length is ",$LISTLENGTH(fruit)," "
 WRITE $LISTTOSTRING(fruit,"/")
 SET $LIST(fruit,*-1,*-1)=""
 WRITE !,"list length is ",$LISTLENGTH(fruit)," "
 WRITE $LISTTOSTRING(fruit,"/")

To replace a single element by offset from the end of the list with a list of elements, use SET $LIST(x,*-n,*-n)=list:

 SET fruit=$LISTBUILD("apple","banana","potato","orange","pear")
 WRITE !,"list length is ",$LISTLENGTH(fruit)," "
 WRITE $LISTTOSTRING(fruit,"/")
 SET $LIST(fruit,*-2,*-2)=$LISTBUILD("peach","plum","quince")
 WRITE !,"list length is ",$LISTLENGTH(fruit)," "
 WRITE $LISTTOSTRING(fruit,"/")

To replace a single element by offset from the end of the list with a sublist, use SET $LIST(x,*-n)=list:

 SET fruit=$LISTBUILD("apple","banana","potato","orange","pear")
 WRITE !,"list length is ",$LISTLENGTH(fruit)," "
 WRITE $LISTTOSTRING(fruit,"/")
 SET $LIST(fruit,*-2)=$LISTBUILD("peach","plum","quince")
 WRITE !,"list length is ",$LISTLENGTH(fruit)," "
 WRITE $LISTTOSTRING(fruit,"/")

The following example shows SET $LIST removing elements from the list, beginning with the third element through the
end of the list:

 SET fruit=$LISTBUILD("apple","orange","onion","peanut","potato")
 WRITE !,"list length is ",$LISTLENGTH(fruit)," "
 WRITE $LISTTOSTRING(fruit,"/")
 SET $LIST(fruit,3,*)=""
 WRITE !,"list length is ",$LISTLENGTH(fruit)," "
 WRITE $LISTTOSTRING(fruit,"/")

ObjectScript Reference 341

$LIST

Notes

Unicode

If one Unicode character appears in a list element, that entire list element is represented as Unicode (wide) characters. Other
elements in the list are not affected.

The following example shows two lists. The y list consists of two elements which contain only ASCII characters. The z
list consists of two elements: the first element contains a Unicode character ($CHAR(960) = the pi symbol); the second
element contains only ASCII characters.

 SET y=$LISTBUILD("ABC"_$CHAR(68),"XYZ")
 SET z=$LISTBUILD("ABC"_$CHAR(960),"XYZ")
 WRITE !,"The ASCII list y elements: "
 ZZDUMP $LIST(y,1)
 ZZDUMP $LIST(y,2)
 WRITE !,"The Unicode list z elements: "
 ZZDUMP $LIST(z,1)
 ZZDUMP $LIST(z,2)

Note that InterSystems IRIS encodes the first element of z entirely in wide Unicode characters. The second element of z
contains no Unicode characters, and thus InterSystems IRIS encodes it using narrow ASCII characters.

$LIST Compared with $EXTRACT and $PIECE

$LIST determines an element from an encoded list by counting elements (not characters) from the beginning (or end) of
the list.

$EXTRACT determines a substring by counting characters from the beginning (or end) of a string. $EXTRACT takes as
input an ordinary character string.

$PIECE determines a substring by counting user-defined delimiter characters within the string. $PIECE takes as input an
ordinary character string containing multiple instances of a character (or string) intended for use as a delimiter.

$LIST cannot be used on ordinary strings. $PIECE and $EXTRACT cannot be used on encoded lists.

See Also
• $LISTBUILD function

• $LISTDATA function

• $LISTFIND function

• $LISTFROMSTRING function

• $LISTGET function

• $LISTLENGTH function

• $LISTNEXT

• $LISTSAME function

• $LISTTOSTRING function

• $LISTUPDATE function

• $LISTVALID function

342 ObjectScript Reference

ObjectScript Functions

$LISTBUILD
Builds a list of elements from the specified expressions.

$LISTBUILD(element,...)
$LB(element,...)

SET $LISTBUILD(var1,var2,...)=list
SET $LB(var1,var2,...)=list

Parameters

An expression that specifies a list element value. Can be a single expression or an
expression in a comma-separated list of expressions. A placeholder comma can be specified
for an omitted element.

element

A variable, specified as a single variable or as a variable in a comma-separated list of
variables. A placeholder comma can be specified for an omitted variable. A var may be a
variable of any type: local, process-private, or global, unsubscripted or subscripted.

var

An expression that evaluates to a valid list. Because lists contain encoding, list must be
created using $LISTBUILD or $LISTFROMSTRING, or extracted from another list using
$LIST.

list

Description
$LISTBUILD has two syntax forms: $LISTBUILD and SET $LISTBUILD:

• $LISTBUILD(element1,element2,...) takes one or more expressions and returns an encoded list structure with one
element for each expression. Elements are placed in the list in the order specified. Elements are counted from 1.

• SET $LISTBUILD(var1,var2,...)=list extracts multiple elements from a list into variables. It is similar to SET
$LISTGET(var1,var2,...)=list. They differ in how they handle variables that are not assigned an explicit value: SET
$LISTGET defines these variables (thus avoiding an <UNDEFINED> error), and assigns them the empty string (null
value, overwriting any prior value. SET $LISTBUILD does not define these variables; if the variable had no prior
value it generates an <UNDEFINED> error, if the variable had a prior value, this value is preserved.

$LISTBUILD(element1,element2,...)

The following functions can be used to create a list:

• $LISTBUILD, which creates a list from multiple data items (strings or numerics), one list element per data item.
$LISTBUILD can also be used to create list elements containing no data.

• $LISTFROMSTRING, which creates a list from a single string containing multiple delimited elements.

• $LIST, which extracts a sublist from an existing list.

• The null string ("") is also considered to be a valid list. The null string ("") is used to represent a null list, a list containing
no elements. Because it contains no list elements, $LISTLENGTH("") returns an element count of 0.

• Certain $CHAR non-printing character combinations, such as $CHAR(1), $CHAR(2,1), and
$CHAR(3,1,asciicode) can also return an encoded empty or one-element list.

You can use the $LISTVALID function to determine if an expression is a valid list.

$LISTBUILD is used with the other $LIST functions: $LISTDATA, $LISTFIND, $LISTGET, $LISTNEXT,
$LISTLENGTH, $LISTSAME, and $LISTTOSTRING.

ObjectScript Reference 343

$LISTBUILD

If one or more characters in a list element is a wide (Unicode) character, all characters in that element are represented as
wide characters. To ensure compatibility across systems, $LISTBUILD always stores these bytes the same way, regardless
of the hardware platform. Wide characters are represented as byte strings.

Note: $LISTBUILD and the other $LIST functions use an optimized binary representation to store data elements. For
this reason, equivalency tests may not work as expected when comparing encoded lists. Data that might, in other
contexts, be considered equivalent, may have a different internal representation. For example, $LISTBUILD(1)
is not equal to $LISTBUILD(“1”) and $LISTBUILD(1.0) is not equal to $LISTBUILD(1). However, list display
functions, such as $LIST and $LISTTOSTRING return numeric list element values in canonical form. Therefore
$LIST($LISTBUILD(1),1)=$LIST($LISTBUILD("1"),1).

For the same reason, an encoded list value returned by $LISTBUILD should not be used in character search and
parse functions that use a delimiter character, such as $PIECE and the two-argument form of $LENGTH. Elements
in a list created by $LISTBUILD are not marked by a character delimiter, and thus can contain any character.

SET $LISTBUILD

When used on the left side of the equal sign in a SET command, the $LISTBUILD function extracts multiple elements
from a list as a single operation. The syntax is as follows:

SET $LISTBUILD(var1,var2,...)=list

The var arguments of SET $LISTBUILD are a comma-separated list of variables, each of which is set to the value of the
list element in the corresponding position. Thus, var1 is set to the value of the first list element, var2 is set to the value of
the second list element, and so forth. The var arguments do not have to be existing variables; the variable is defined when
SET $LISTBUILD assigns it a value.

• The number of var arguments may be less than or greater than the number of list elements. Unspecified var values
retain their prior value; if previously undefined they remain undefined. Compare this behavior with SET $LISTGET.
Excess list elements are ignored.

• The var arguments and/or the list elements may contain omitted values, represented by placeholder commas. An
omitted var argument is undefined. An omitted list element causes the corresponding var value to retain its prior value;
if previously undefined it remains undefined. Compare this behavior with SET $LISTGET.

SET $LISTBUILD is an atomic operation. The maximum number of var arguments is 1024. Attempting to exceed this
number results in a <SYNTAX> error.

If a var argument is an object property (object.property) the property must be multidimensional. Any property may be ref-
erenced as an i%property instance variable within an object method.

In the following examples, $LISTBUILD (on the right side of the equal sign) creates a list with four elements.

In the following example, SET $LISTBUILD extracts the first two elements from a list into two variables:

 SET colorlist=$LISTBUILD("red","blue","green","white")
 SET $LISTBUILD(a,b)=colorlist
 WRITE "a=",a," b=",b /* a="red" b="blue" */

In the following example, SET $LISTBUILD extracts elements from a list into five variables. Because the specified list
does not have a 5th element, the corresponding var variable (e) contains its prior value:

 SET (a,b,c,d,e)=0
 SET colorlist=$LISTBUILD("red","blue","green","white")
 SET $LISTBUILD(a,b,c,d,e)=colorlist
 WRITE "a=",a," b=",b," c=",c," d=",d," e=",e
 /* a="red" b="blue" c="green" d="white" e=0 */

In the following example, SET $LISTBUILD extracts elements from a list into four variables. Because the specified list
does not have a 3rd element, the corresponding var variable (c) contains its prior value:

344 ObjectScript Reference

ObjectScript Functions

 SET (a,b,c,d)=0
 SET colorlist=$LISTBUILD("red","blue",,"white")
 SET $LISTBUILD(a,b,c,d)=colorlist
 WRITE "a=",a," b=",b," c=",c," d=",d
 /* a="red" b="blue" c=0 d="white" */

In the following example, SET $LISTBUILD extracts elements from a list into four variables. Because the 3rd list element
value is a nested list, the corresponding var variable (c) contains a list value:

 SET (a,b,c,d)=0
 SET colorlist=$LISTBUILD("red","blue",$LISTBUILD("green","yellow"),"white")
 SET $LISTBUILD(a,b,c,d)=colorlist
 WRITE "a=",a," b=",b," c=",c," d=",d
 /* a="red" b="blue" c=$LB("green","yellow") d="white" */

Examples
Many of the examples shown here use the $LISTTOSTRING function to convert the $LISTBUILD return value for display;
$LISTBUILD returns an encoded string that cannot be displayed directly.

The following example produces the three-element list "Red,Blue,Green":

 SET colorlist=$LISTBUILD("Red","Blue","Green")
 WRITE $LISTTOSTRING(colorlist,"^")

The following example creates a list of six numeric elements that display as "3^0^44^5.6^33^400". Note that $LISTBUILD
encodes numeric element values based on an optimized binary representation, which may not be the same as canonical
form. List display functions such as $LIST and $LISTTOSTRING return numeric element values in canonical form:

 SET numlist=$LISTBUILD(003,0.00,44.0000000,5.6,+33,4E2)
 WRITE $LISTTOSTRING(numlist,"^")

Omitting Elements

Omitting an element expression defines an encoded element, but the data value of that element is undefined.

In the following example, the $LISTBUILD statements both produce a valid three-element list whose second element has
an undefined value. Omitting an element and specifying an undefined variable for an element produces exactly the same
result. $LISTBUILD can take an undefined variable as a list element without generating an error and the resulting list
passes the $LISTVALID test. However, referencing an undefined list element with a list function such as $LIST or
$LISTTOSTRING generates a <NULL VALUE> error:

 KILL a
 SET list1=$LISTBUILD("Red",,"Green")
 SET list2=$LISTBUILD("Red",a,"Green")
 WRITE "List lengths:",$LISTLENGTH(list1)," ",$LISTLENGTH(list2),!
 IF $LISTVALID(list1)=1,$LISTVALID(list2)=1 {
 WRITE "These are valid lists",! }
 IF list1=list2 {WRITE "and they're identical"}
 ELSE {WRITE "They're not identical"}

The following example shows that an undefined element can be specified at the end of a list, as well as within a list. A list
with trailing undefined elements is a valid list. However, referencing this undefined element with any list function generates
a <NULL VALUE> error:

 KILL z
 SET list3=$LISTBUILD("Red",)
 SET list4=$LISTBUILD("Red",z)
 WRITE "List lengths:",$LISTLENGTH(list3)," ",$LISTLENGTH(list4),!
 IF $LISTVALID(list3)=1,$LISTVALID(list4)=1 {
 WRITE "These are valid lists",! }
 IF list3=list4 {WRITE "and they're identical"}
 ELSE {WRITE "They're not identical"}

However, the following example produces a three-element list whose second element has a data value: the empty string.
No error condition occurs when referencing the second element:

ObjectScript Reference 345

$LISTBUILD

 SET list5=$LISTBUILD("Red","","Green")
 SET list5len=$LISTLENGTH(list5)
 WRITE "List length: ",list5len,!
 FOR i=1:1:list5len {
 WRITE "Element ",i," value: ",$LIST(list5,i),! }

Lists with No Data or Null String Data

Any list created using $LISTBUILD contains at least one encoded list element. That element may or may not contain data.
Because $LISTLENGTH counts elements, not data, any list created using $LISTBUILD has a list length of at least 1.

Referencing a $LISTBUILD element whose data value is undefined generates a <NULL VALUE> error. The following
are all valid $LISTBUILD statements that create “empty” lists. However, attempting to reference an element is such a list
results in a <NULL VALUE> error:

 TRY {
 SET x=$LISTBUILD(UndefinedVar)
 SET y=$LISTBUILD(,)
 SET z=$LISTBUILD()
 IF $LISTVALID(x)=1,$LISTVALID(y)=1,$LISTVALID(z)=1 {
 WRITE "These are valid lists",! }
 WRITE "$LB(UndefinedVar) contains ",$LISTLENGTH(x)," elements",!
 WRITE "$LB(,) contains ",$LISTLENGTH(y)," elements",!
 WRITE "$LB() contains ",$LISTLENGTH(z)," elements",!
 /* Attempt to use null lists */
 WRITE "$LB(UndefinedVar) list value ",$LISTTOSTRING(x,"^"),!
 WRITE "$LB(,) list value ",$LISTTOSTRING(y,"^"),!
 WRITE "$LB() list value ",$LISTTOSTRING(z,"^"),!
 }
 CATCH exp { WRITE !!,"In the CATCH block",!
 IF 1=exp.%IsA("%Exception.SystemException") {
 WRITE "System exception",!
 WRITE "Name: ",$ZCVT(exp.Name,"O","HTML"),!
 WRITE "Location: ",exp.Location,!
 WRITE "Code: "
 }
 ELSE { WRITE "Some other type of exception",! RETURN }
 WRITE exp.Code,!
 WRITE "Data: ",exp.Data,!
 RETURN
 }

The following are valid $LISTBUILD statements that create a list element that contains data, though this data has a null
string value:

 SET x=$LISTBUILD("")
 WRITE "list contains ",$LISTLENGTH(x)," elements",!
 WRITE "list value is ",$LISTTOSTRING(x,"^"),!
 SET y=$LISTBUILD($CHAR(0))
 WRITE "list contains ",$LISTLENGTH(y)," elements",!
 WRITE "list value is ",$LISTTOSTRING(y,"^")

Nesting Lists

An element of a list may itself be a list. For example, the following statement produces a three-element list whose third
element is the two-element list, "Walnut,Pecan":

 SET nlist=$LISTBUILD("Apple","Pear",$LISTBUILD("Walnut","Pecan"))
 WRITE "Nested list length is ",$LISTLENGTH($LIST(nlist,3)),!
 WRITE "Full list length is ",$LISTLENGTH(nlist),!
 WRITE "List is ",$LISTTOSTRING(nlist,"^"),!

Concatenating Lists

The result of concatenating two lists with the Concatenate operator (_) is a list that combines the two lists.

In the following example, concatenating two lists creates a list that is identical to a list with the same elements created using
LISTBUILD:

346 ObjectScript Reference

ObjectScript Functions

 SET list1=$LISTBUILD("A","B")
 SET list2=$LISTBUILD("C","D","E")
 SET clist=list1_list2
 SET list=$LISTBUILD("A","B","C","D","E")
 IF clist=list {WRITE "they're identical",!}
 ELSE {WRITE "they're not identical",!}
 WRITE "concatenated ",$LISTTOSTRING(clist,"^"),!
 WRITE "same list as ",$LISTTOSTRING(list,"^")

You cannot concatenate a string to a list. Attempting to do so generates a <LIST> error the first time you attempt to access
the result:

 TRY {
 SET list=$LISTBUILD("A","B")_"C"
 WRITE "$LISTBUILD completed without error",!
 SET listlen=$LISTLENGTH(list)
 WRITE "$LISTLENGTH completed without error",!
 SET listval=$LISTTOSTRING(list,"^")
 WRITE "$LISTTOSTRING completed without error",!
 }
 CATCH exp { WRITE !!,"In the CATCH block",!
 IF 1=exp.%IsA("%Exception.SystemException") {
 WRITE "System exception",!
 WRITE "Name: ",$ZCVT(exp.Name,"O","HTML"),!
 WRITE "Location: ",exp.Location,!
 WRITE "Code: "
 }
 ELSE { WRITE "Some other type of exception",! RETURN }
 WRITE exp.Code,!
 WRITE "Data: ",exp.Data,!
 RETURN
 }

For further details on concatenation, see Operators in Using ObjectScript.

See Also
• SET command

• ZZDUMP command

• $LIST function

• $LISTDATA function

• $LISTFIND function

• $LISTFROMSTRING function

• $LISTGET function

• $LISTLENGTH function

• $LISTNEXT

• $LISTSAME function

• $LISTTOSTRING function

• $LISTUPDATE function

• $LISTVALID function

ObjectScript Reference 347

$LISTBUILD

$LISTDATA
Indicates whether the specified element exists and has a data value.

$LISTDATA(list,position,var)
$LD(list,position,var)

Parameters

An expression that evaluates to a valid list.list

Optional — An expression interpreted as a position in the specified list. Either a positive,
non-zero integer or -1.

position

Optional — A variable that contains the element value at the specified list position. If
$LISTDATA returns a value of a 1, var is written; if $LISTDATA returns a value of a 0,
var is unchanged.

var

Description
$LISTDATA checks for data in the requested element in a list and returns a boolean value. $LISTDATA returns a value
of 1 if the element indicated by the position parameter is in the list and has a data value. $LISTDATA returns a value of
a 0 if the element is not in the list or does not have a data value.

Optionally, $LISTDATA can write the element value to the var variable.

Note: $LISTDATA should not be used in a loop structure to return multiple successive element values. While this will
work, it is highly inefficient, because $LISTDATA must evaluate the list from the beginning with each iteration.
The $LISTNEXT function is a far more efficient way to return multiple successive element values.

Parameters

list

A list is an encoded string containing multiple elements. A list must have been created using $LISTBUILD or $LISTFROM-
STRING, or extracted from another list using $LIST.

You can use the $LISTVALID function to determine if an expression is a valid list. If the expression in the list parameter
does not evaluate to a valid list, a <LIST> error occurs. If a valid list contains no data at the specified position, $LISTDATA
returns 0.

position

The integer position of the element in the list, counting from 1. If you omit the position parameter, $LISTDATA evaluates
the first element. If the value of the position parameter is -1, it is equivalent to specifying the final element of the list.

$LISTDATA returns 0 if position refers to a nonexistent list member. A position of 0 always returns 0. If the value of
position is less than -1, invoking the $LISTDATA function generates a <RANGE> error.

var

If $LISTDATA returns a value of a 1, InterSystems IRIS writes the value of the requested element to var. If $LISTDATA
returns a value of a 0, var is unchanged. The var parameter can be a local, global, or process-private global variable, with
or without subscripts. It does not need to be defined; the first call to $LISTDATA that returns 1 defines and sets var. If
the first call to $LISTDATA returns 0, var remains undefined.

348 ObjectScript Reference

ObjectScript Functions

The var parameter cannot be a non-multidimensional object property. Attempting to write a value to a non-multidimensional
object property results in an <OBJECT DISPATCH> error.

The var parameter cannot be a special variable. Attempting to write a value to a special variable results in a <SYNTAX>
error.

Examples
The following two examples show the results of the various values of the position parameter.

The following $LISTDATA statements return a value of 0:

 KILL y
 SET x=$LISTBUILD("Red",,y,"","Green",)
 WRITE !,$LISTDATA(x,2) ; second element is undefined
 WRITE !,$LISTDATA(x,3) ; third element is a killed variable
 WRITE !,$LISTDATA(x,-1) ; the last element is undefined
 WRITE !,$LISTDATA(x,0) ; the 0th position
 WRITE !,$LISTDATA(x,6) ; 6th position in 5-element list

The following $LISTDATA statements return a value of 1:

 SET x=$LISTBUILD("Red",,y,"","Green",)
 WRITE !,$LISTDATA(x) ; first element (by default)
 WRITE !,$LISTDATA(x,1) ; first element specified
 WRITE !,$LISTDATA(x,4) ; fourth element, value=null string
 WRITE !,$LISTDATA(x,5) ; fifth element

The following 3-parameter $LISTDATA statement tests for the presence of an element value and updates the evalue
variable with that value. Note that when $LISTDATA returns 0, evalue remains unchanged:

 SET x=$LISTBUILD("Red",,y,"","Green",)
 FOR i=1:1:$LISTLENGTH(x) {
 WRITE "element ",i," data? ",$LISTDATA(x,i,evalue)," value ",evalue,!
 }
 WRITE i," list elements"

All of the following $LISTDATA statements return a value of 0:

 WRITE !,$LISTDATA($LB()) ; null list
 WRITE !,$LISTDATA($LB(UndefinedVar)) ; null list
 WRITE !,$LISTDATA("") ; null string is a valid list
 ; but contain no data
 WRITE !,$LISTDATA($LB(,)) ; two-element null list

The following $LISTDATA statements return a value of 1:

 WRITE !,$LISTDATA($LB("")) ; data is null string
 WRITE !,$LISTDATA($LB($CHAR(0))) ; data is non-display character

See Also
• $LIST function

• $LISTBUILD function

• $LISTFIND function

• $LISTFROMSTRING function

• $LISTGET function

• $LISTLENGTH function

• $LISTNEXT

• $LISTSAME function

• $LISTTOSTRING function

ObjectScript Reference 349

$LISTDATA

• $LISTUPDATE function

• $LISTVALID function

350 ObjectScript Reference

ObjectScript Functions

$LISTFIND
Searches a specified list for the requested value.

$LISTFIND(list,value,startafter)
$LF(list,value,startafter)

Parameters

An expression that evaluates to a valid list. A list is an encoded string containing
one or more elements. A list must be created using $LISTBUILD or
$LISTFROMSTRING, or extracted from another list using $LIST.

list

An expression containing the desired element value.value

Optional — An integer expression interpreted as a list position. The search starts
with the element after this position; thus 0 means to start with position 1, 1 means
to start with position 2. startafter=-1 is a valid value, but always returns no match.
Only the integer portion of the startafter value is used.

startafter

Description
$LISTFIND searches the specified list for the first instance of the requested value. A match must be exact and consist of
the full element value. Letter comparisons are case-sensitive. Numbers are compared in canonical form. If an exact match
is found, $LISTFIND returns the position of the matching element. If value is not found, $LISTFIND returns a 0.

The search begins with the element after the position indicated by the startafter parameter. If you omit the startafter
parameter, $LISTFIND assumes a startafter value of 0 and starts the search with the first element (element 1).

If no match is found, $LISTFIND returns a 0. $LISTFIND will also return a 0 if the value of the startafter parameter
refers to a nonexistent list member.

You can use the $LISTVALID function to determine if list is a valid list. If list is not a valid list, the system generates a
<LIST> error.

If the value of the startafter parameter is less than -1, invoking the $LISTFIND function generates a <RANGE> error.

Empty Strings and Empty Lists

The $LISTFIND function can be used to locate an empty string value, as shown in the following example:

 SET x=$LISTBUILD("A","","C","D")
 WRITE $LISTFIND(x,"") ; returns 2

$LISTFIND can be used with lists containing omitted elements, but cannot be used to locate an omitted element. The fol-
lowing example finds a value in a list with omitted elements:

 SET x=$LISTBUILD("A",,"C","D")
 WRITE $LISTFIND(x,"C") ; returns 3

The following $LISTFIND example returns 1:

 WRITE $LISTFIND($LB(""),"") ; returns 1

The following $LISTFIND examples returns 0:

 WRITE $LISTFIND("",""),! ; returns 0
 WRITE $LISTFIND($LB(),""),! ; returns 0

ObjectScript Reference 351

$LISTFIND

The following examples list consists of an empty list concatenated to a list containing data. Prepending the empty list
changes the list position of elements in the resulting concatenated list:

 SET x=$LISTBUILD("A","B","C","D")
 WRITE $LISTFIND(x,"B"),! ; returns 2
 WRITE $LISTFIND(""_x,"B"),! ; returns 2
 WRITE $LISTFIND($LB()_x,"B"),! ; returns 3
 WRITE $LISTFIND($LB(,,,)_x,"B") ; returns 6

However, concatenating a null string to value has no effect on $LISTFIND:

 SET x=$LISTBUILD("A","B","C","D")
 WRITE $LISTFIND(x,"B"),! ; returns 2
 WRITE $LISTFIND(x,"B"_""),! ; returns 2
 WRITE $LISTFIND(x,""_"B"),! ; returns 2

Examples
The following example returns 2, the position of the first occurrence of the requested string:

 SET x=$LISTBUILD("A","B","C","D")
 WRITE $LISTFIND(x,"B")

The following example returns 0, indicating the requested string was not found:

 SET x=$LISTBUILD("A","B","C","D")
 WRITE $LISTFIND(x,"E")

The following examples show the effect of using the startafter parameter. The first example does not find the requested
string and returns 0 because the string occurs at the startafter position:

 SET x=$LISTBUILD("A","B","C","D")
 WRITE $LISTFIND(x,"B",2)

The second example finds the second occurrence of the requested string and returns 4, because the first occurs before the
startafter position:

 SET y=$LISTBUILD("A","B","C","A")
 WRITE $LISTFIND(y,"A",2)

The $LISTFIND function only matches complete elements. Thus, the following example returns 0 because no element of
the list is equal to the string “B”, though all of the elements contain “B”:

 SET mylist = $LISTBUILD("ABC","BCD","BBB")
 WRITE $LISTFIND(mylist,"B")

The following numeric examples all return 0, because numbers are converted to canonical form before matching. In these
cases, the string numeric value and the canonical form number do not match:

 SET y=$LISTBUILD("1.0","+2","003","2*2")
 WRITE $LISTFIND(y,1.0),!
 WRITE $LISTFIND(y,+2),!
 WRITE $LISTFIND(y,003),!
 WRITE $LISTFIND(y,4)

The following numeric examples match because numeric values are compared in their canonical forms:

 SET y=$LISTBUILD(7.0,+6,005,2*2)
 WRITE $LISTFIND(y,++7.000),! ; returns 1
 WRITE $LISTFIND(y,0006),! ; returns 2
 WRITE $LISTFIND(y,8-3),! ; returns 3
 WRITE $LISTFIND(y,--4.0) ; returns 4

The following examples all return 0, because the specified startafter value results in no match:

352 ObjectScript Reference

ObjectScript Functions

 SET y=$LISTBUILD("A","B","C","D")
 WRITE $LISTFIND(y,"A",1),!
 WRITE $LISTFIND(y,"B",2),!
 WRITE $LISTFIND(y,"B",99),!
 WRITE $LISTFIND(y,"B",-1)

The following example shows how $LISTFIND can be used to find a nested list. Note that InterSystems IRIS treats a
multi-element nested list as a single list element with a list value:

 SET y=$LISTBUILD("A",$LB("x","y"),"C","D")
 WRITE $LISTFIND(y,$LB("x","y"))

See Also
• $LIST function

• $LISTBUILD function

• $LISTDATA function

• $LISTFROMSTRING function

• $LISTGET function

• $LISTLENGTH function

• $LISTNEXT

• $LISTSAME function

• $LISTTOSTRING function

• $LISTUPDATE function

• $LISTVALID function

ObjectScript Reference 353

$LISTFIND

$LISTFROMSTRING
Creates a list from a string.

$LISTFROMSTRING(string,delimiter)
$LFS(string,delimiter)

Parameters

A string to be converted into an InterSystems IRIS list. This string contains one or more
elements, separated by a delimiter. The delimiter does not become part of the resulting
InterSystems IRIS list.

string

Optional — The delimiter used to separate substrings (elements) in string. Specify delimiter
as a quoted string. If no delimiter is specified, the default is the comma (,) character.

delimiter

Description
$LISTFROMSTRING takes a quoted string containing delimited elements and returns a list. A list represents data in an
encoded format which does not use delimiter characters. Thus a list can contain all possible characters, and is ideally suited
for bitstring data. Lists are handled using the ObjectScript $LIST functions.

You can use the ZWRITE command to display a list in non-encoded format.

Parameters

string

A string literal (enclosed in quotation marks), a numeric, or a variable or expression that evaluates to a string. This string
can contain one or more substrings (elements), separated by a delimiter. The string data elements must not contain the
delimiter character (or string), because the delimiter character is not included in the output list.

delimiter

A character (or string of characters) used to delimit substrings within the input string. It can be a numeric or string literal
(enclosed in quotation marks), the name of a variable, or an expression that evaluates to a string.

Commonly, a delimiter is a designated character which is never used within string data, but is set aside solely for use as a
delimiter separating substrings. A delimiter can also be a multi-character string, the individual characters of which can be
used within string data.

If you specify no delimiter, the default delimiter is the comma (,) character. You cannot specify a null string ("") as a
delimiter; attempting to do so results in a <STRINGSTACK> error.

Example
The following example takes a string of names which are separated by a blank space, and creates a list:

 SET namestring="Deborah Noah Martha Bowie"
 SET namelist=$LISTFROMSTRING(namestring," ")
 WRITE !,"1st element: ",$LIST(namelist,1)
 WRITE !,"2nd element: ",$LIST(namelist,2)
 WRITE !,"3rd element: ",$LIST(namelist,3)

See Also
• $LISTTOSTRING function

• $LISTBUILD function

354 ObjectScript Reference

ObjectScript Functions

• $LIST function

• $PIECE function

• $LISTDATA function

• $LISTFIND function

• $LISTGET function

• $LISTLENGTH function

• $LISTNEXT function

• $LISTSAME function

• $LISTUPDATE function

• $LISTVALID function

ObjectScript Reference 355

$LISTFROMSTRING

$LISTGET
Returns an element in a list, or a specified default value if the requested element is undefined.

$LISTGET(list,position,default)
$LG(list,position,default)

SET $LISTGET(var1,var2,...)=list
SET $LG(var1,var2,...)=list

Parameters

An expression that evaluates to a valid list.list

Optional — An integer code specifying the starting position in list. Permitted values are
n (count from beginning of list), * (last element in list), and *-n (relative offset count
backwards from end of list). Thus, the first element in the list is 1, the second element
is 2, the last element in the list is *, and the next-to-last element is *-1. If position is a
fractional number, it is truncated to its integer part. If position is omitted, it defaults to 1.

-1 may be used in older code to specify the last element in the list. This deprecated use
of -1 should not be combined with * or *-n relative offset syntax.

position

Optional — An expression that provides the value to return if the list element has an
undefined value. If default is omitted, it defaults to the null string (““).You must specify
a position parameter value to specify a default value.

default

A variable, specified as a single variable or as a variable in a comma-separated list of
variables. A placeholder comma can be specified for an omitted variable. A var may be
a variable of any type: local, process-private, or global, unsubscripted or subscripted.

var

Description
$LISTGET has two syntax forms: $LISTGET and SET $LISTGET:

• $LISTGET(list,position,default) returns the requested element in the specified list. If the value of position refers to
a nonexistent element or identifies an element with an undefined value, the default value is returned.

The $LISTGET function is identical to the one- and two-argument forms of the $LIST function except that, under
conditions that would cause $LIST to produce a <NULL VALUE> error, $LISTGET returns a default value. See the
description of the $LIST function for more information on conditions that generate <NULL VALUE> errors.

• SET $LISTGET(var1,var2,...)=list extracts multiple elements from a list into variables. It is similar to SET
$LISTBUILD(var1,var2,...)=list. They differ in how they handle variables that are not assigned an explicit value:
SET $LISTGET defines these variables (thus avoiding an <UNDEFINED> error), and assigns them the null string
value, overwriting any prior value. SET $LISTBUILD does not define these variables; if the variable had no prior
value it generates an <UNDEFINED> error, if the variable had a prior value, this value is preserved.

Parameters

list

A list can be created using $LISTBUILD or $LISTFROMSTRING, or extracted from another list using $LIST. The null
string ("") is also treated as a valid list. You can use $LISTVALID to determine if list is a valid list. An invalid list causes
$LISTGET to generate a <LIST> error.

356 ObjectScript Reference

ObjectScript Functions

position

The position (element count) of the list element to return. An element is returned as a string. List elements are counted
from 1. If position is omitted, $LISTGET returns the first element.

• If position is n (a positive integer), $LISTGET counts elements from the beginning of list. If position is greater than
the number of elements in list, $LISTGET returns the default value.

• If position is *, $LIST returns the last element in list.

• If position is *-n (an asterisk followed by a negative integer), $LIST counts elements by relative offset from the end
of list. Thus, *-0 is the last element in the list, *-1 is the next-to-last list element (an offset of 1 from the end). If the
*-n offset specifies the position before the first element of list (for example, *-3 for a 3–element list), $LISTGET
returns the default value. If the *-n offset specifies a position prior to that (for example, *-4 for a 3–element list),
InterSystems IRIS issues a <RANGE> error.

• If position is 0 or -0, $LISTGET returns the default value.

The numeric portion of the position parameter evaluates to an integer. InterSystems IRIS truncates a fractional number to
its integer portion. Specifying position as -1 (indicating last element of the list) is deprecated and should not be used in
new code; a position negative number less than -1 generates a <RANGE> error.

When using a variable to specify *-n you must always specify the asterisk and a sign character in the parameter itself.

The following are valid specifications of *-n:

 SET count=2
 SET alph=$LISTBUILD("a","b","c","d")
 WRITE $LISTGET(alph,*-count,"blank")

 SET count=-2
 SET alph=$LISTBUILD("a","b","c","d")
 WRITE $LISTGET(alph,*+count,"blank")

default

An expression that evaluates to a string or numeric value. $LISTGET returns default if the element specified by position
does not exist. This may occur if position is beyond the end of the list, if position specifies an element that has no value,
if position is 0, or if list contains no elements. However, if a position of *-n specifies a position before the 0th element of
list, InterSystems IRIS issues a <RANGE> error.

If you omit the default parameter, the null string ("") is returned as the default value.

SET $LISTGET
When used on the left side of the equal sign in a SET command, the $LISTGET function extracts multiple elements from
a list as a single operation. The syntax is as follows:

SET $LISTGET(var1,var2,...)=list

The var arguments of SET $LISTGET are a comma-separated list of variables, each of which is set to the value of the list
element in the corresponding position. Thus, var1 is set to the value of the first list element, var2 is set to the value of the
second list element, and so forth. The var arguments do not have to be existing variables; the variable is defined when SET
$LISTGET assigns it a value.

• The number of var arguments may be less than or greater than the number of list elements. Unspecified var values are
assigned the null string value: if previously defined, the prior value is replaced with the null string; if previously
undefined, the variable is defined. Compare this behavior with SET $LISTBUILD. Excess list elements are ignored.

• The var arguments and/or the list elements may contain omitted values, represented by placeholder commas. An
omitted var argument is undefined. An omitted list element causes the corresponding var value to be set to the null

ObjectScript Reference 357

$LISTGET

string: if previously defined, the prior value is deleted; if previously undefined, the variable is defined. Compare this
behavior with SET $LISTBUILD.

SET $LISTGET is an atomic operation. The maximum number of var arguments is 1024. Attempting to exceed this
number results in a <SYNTAX> error.

If a var argument is an object property (object.property) the property must be multidimensional. Any property may be ref-
erenced as an i%property instance variable within an object method.

In the following examples, $LISTBUILD (on the right side of the equal sign) creates a list with four elements.

In the following example, SET $LISTGET extracts the first two elements from a list into two variables:

 SET colorlist=$LISTBUILD("red","blue","green","white")
 SET $LISTGET(a,b)=colorlist
 WRITE "a=",a," b=",b /* a="red" b="blue" */

In the following example, SET $LISTGET extracts elements from a list into five variables. Because the specified list does
not have a 5th element, the corresponding var variable (e) is defined, with a value of the null string (""):

 SET (a,b,c,d,e)=0
 SET colorlist=$LISTBUILD("red","blue","green","white")
 SET $LISTGET(a,b,c,d,e)=colorlist
 WRITE "a=",a," b=",b," c=",c," d=",d," e=",e
 /* a="red" b="blue" c="green" d="white" e= */

In the following example, SET $LISTGET extracts elements from a list into four variables. Because the specified list does
not have a 3rd element, the corresponding var variable (c) is defined with a value of the null string (""):

 SET (a,b,c,d)=0
 SET colorlist=$LISTBUILD("red","blue",,"white")
 SET $LISTGET(a,b,c,d)=colorlist
 WRITE "a=",a," b=",b," c=",c," d=",d
 /* a="red" b="blue" c= d="white" */

In the following example, SET $LISTGET extracts elements from a list into four variables. Because the 3rd list element
value is a nested list, the corresponding var variable (c) contains a list value:

 SET (a,b,c,d)=0
 SET colorlist=$LISTBUILD("red","blue",$LISTBUILD("green","yellow"),"white")
 SET $LISTGET(a,b,c,d)=colorlist
 WRITE "a=",a," b=",b," c=",c," d=",d
 /* a="red" b="blue" c=$LB("green","yellow") d="white" */

Examples
The $LISTGET functions in the following example return the value of the list element specified by position (the position
default is 1):

 SET list=$LISTBUILD("A","B","C")
 WRITE !,$LISTGET(list) ; returns "A"
 WRITE !,$LISTGET(list,1) ; returns "A"
 WRITE !,$LISTGET(list,3) ; returns "C"
 WRITE !,$LISTGET(list,*) ; returns "C"
 WRITE !,$LISTGET(list,*-1) ; returns "B"

The $LISTGET functions in the following example return a value upon encountering the undefined 2nd element in the
list. The first two returns a question mark (?), which the user has defined as the default value. The second two returns a
null string because the user has not specified a default value:

 WRITE "returns:",$LISTGET($LISTBUILD("A",,"C"),2,"?"),!
 WRITE "returns:",$LISTGET($LISTBUILD("A",,"C"),*-1,"?"),!
 WRITE "returns:",$LISTGET($LISTBUILD("A",,"C"),2),!
 WRITE "returns:",$LISTGET($LISTBUILD("A",,"C"),*-1)

The following example returns all of the element values in the list. It also lists the positions before and after the ends of
the list. Where a value is non-existent, it returns the default value:

358 ObjectScript Reference

ObjectScript Functions

 SET list=$LISTBUILD("a","b",,"d",,,"g")
 SET llen=$LISTLENGTH(list)
 FOR x=0:1:llen+1 {
 WRITE "position ",x,"=",$LISTGET(list,x," no value"),!
 }
 WRITE "end of the list"

The following example returns all of the element values in the list in reverse order. Where a value is omitted, it returns the
default value:

 SET list=$LISTBUILD("a","b",,"d",,,"g")
 SET llen=$LISTLENGTH(list)
 FOR x=0:1:llen {
 WRITE "position *-",x,"=",$LISTGET(list,*-x," no value"),!
 }
 WRITE "beginning of the list"

The $LISTGET functions in the following example return the list element value of the null string; they do not return the
default value:

 WRITE "returns:",$LISTGET($LB(""),1,"no value"),!
 WRITE "returns:",$LISTGET($LB(""),*,"no value"),!
 WRITE "returns:",$LISTGET($LB(""),*-0,"no value")

The $LISTGET functions in the following example all return the default value:

 WRITE $LISTGET("",1,"no value"),!
 WRITE $LISTGET($LB(),1,"no value"),!
 WRITE $LISTGET($LB(UndefinedVar),1,"no value"),!
 WRITE $LISTGET($LB(,),1,"no value"),!
 WRITE $LISTGET($LB(,),*,"no value"),!
 WRITE $LISTGET($LB(,),*-1,"no value"),!
 WRITE $LISTGET($LB(""),2,"no value"),!
 WRITE $LISTGET($LB(""),*-1,"no value")

See Also
• $LIST function

• $LISTBUILD function

• $LISTDATA function

• $LISTFIND function

• $LISTFROMSTRING function

• $LISTLENGTH function

• $LISTNEXT

• $LISTSAME function

• $LISTTOSTRING function

• $LISTUPDATE function

• $LISTVALID function

ObjectScript Reference 359

$LISTGET

$LISTLENGTH
Returns the number of elements in a specified list.

$LISTLENGTH(list)
$LL(list)

Parameter

Any expression that evaluates to a list. A list can be created using $LISTBUILD or
$LISTFROMSTRING, or extracted from another list using $LIST.

list

Description
$LISTLENGTH returns the number of elements in list. $LISTLENGTH counts as a list element every designated list
position, whether or not that position contains data.

You can use the $LISTVALID function to determine if list is a valid list. If list is not a valid list, the system generates a
<LIST> error.

An “empty” list created by $LISTBUILD defines an encoded list element, although that list element contains no data.
Because $LISTLENGTH counts list elements (not elements containing data), an “empty” list has a $LISTLENGTH
count of 1.

The null string ("") is used to represent a null list, a list containing no elements. Because it contains no list elements, it has
a $LISTLENGTH count of 0.

Examples
The following example returns 3, because there are 3 elements in the list:

 WRITE $LISTLENGTH($LISTBUILD("Red","Blue","Green"))

The following example also returns 3, even though the second element in the list contains no data:

 WRITE $LISTLENGTH($LISTBUILD("Red",,"Green"))

The following examples all return 1. $LISTLENGTH makes no distinction between an empty list element and a list element
containing data:

 WRITE $LISTLENGTH($LB()),!
 WRITE $LISTLENGTH($LB(UndefinedVar)),!
 WRITE $LISTLENGTH($LB("")),!
 WRITE $LISTLENGTH($LB($CHAR(0))),!
 WRITE $LISTLENGTH($LB("John Smith"))

The following example returns 0. $LISTVALID considers the null string a valid list, but it contains no list elements:

 WRITE $LISTLENGTH("")

The following example returns 3, because the two placeholder commas represent 3 empty list elements:

 WRITE $LISTLENGTH($LB(,,))

$LISTLENGTH and Concatenation

Concatenating two lists always results in a $LISTLENGTH equal to the sum of the lengths of the lists. This is true even
when concatenating empty lists, or concatenating a null string to a list.

The following example all return a list length of 3:

360 ObjectScript Reference

ObjectScript Functions

 WRITE $LISTLENGTH($LB()_$LB("a","b")),!
 WRITE $LISTLENGTH($LB("a")_$LB(UndefinedVar)_$LB("c")),!
 WRITE $LISTLENGTH($LB("")_$LB()_$LB(UndefinedVar)),!
 WRITE $LISTLENGTH(""_$LB("a","b","c")),!
 WRITE $LISTLENGTH($LB("a","b")_""_$LB("c"))

$LISTLENGTH and Nested Lists

The following example returns 3, because $LISTLENGTH does not recognize the individual elements in a nested list,
and treats it as a single list element:

 WRITE $LISTLENGTH($LB("Apple","Pear",$LB("Walnut","Pecan")))

The following examples all return 1, because $LISTLENGTH counts only the outermost nested list:

 WRITE $LISTLENGTH($LB($LB($LB()))),!
 WRITE $LISTLENGTH($LB($LB($LB("Fred")))),!
 WRITE $LISTLENGTH($LB($LB("Barney"_$LB("Fred")))),!
 WRITE $LISTLENGTH($LB("Fred"_$LB("Barney"_$LB("Wilma"))))

See Also
• $LIST function

• $LISTBUILD function

• $LISTDATA function

• $LISTFIND function

• $LISTFROMSTRING function

• $LISTGET function

• $LISTNEXT

• $LISTSAME function

• $LISTTOSTRING function

• $LISTUPDATE function

• $LISTVALID function

ObjectScript Reference 361

$LISTLENGTH

$LISTNEXT
Retrieves elements sequentially from a list.

$LISTNEXT(list,ptr,value)

Parameters

Any expression that evaluates to a list.list

A pointer to the next element in the list.You must specify ptr as a local variable initialized to 0.
This value points to the beginning of list. InterSystems IRIS increments ptr using an internal
address value algorithm (not a predictable integer counter). Therefore, the only value you can
use to set ptr is 0. ptr cannot be a global variable or a subscripted variable.

ptr

A local variable used to hold the data value of a list element. value does not have to be initialized
before invoking $LISTNEXT. value cannot be a global variable or a subscripted variable.

value

Description
$LISTNEXT sequentially returns elements in a list. You initialize ptr to 0 before the first invocation of $LISTNEXT.
This causes $LISTNEXT to begin returning elements from the beginning of the list. Each successive invocation of
$LISTNEXT advances ptr and returns the next list element value to value. The $LISTNEXT function returns 1, indicating
that a list element has been successfully retrieved.

When $LISTNEXT reaches the end of the list, it returns 0, resets ptr to 0, and leaves value unchanged from the previous
invocation. Because ptr has been reset to 0, the next invocation of $LISTNEXT would start at the beginning of the list.

Note: Because ptr is an index into the internal structure of list, the list should not be modified while $LISTNEXT is
being used on it. Modifying list may make the ptr value invalid and cause the next invocation of $LISTNEXT
to issue a <FUNCTION> error.

You can use $LISTVALID to determine if list is a valid list. An invalid list causes $LISTNEXT to generate a <LIST>
error.

When $LISTNEXT encounters an omitted list element (an element with a null value), it returns 1 indicating that a list
element has been successfully retrieved, advances ptr to the next element, and resets value to be an undefined variable.
This can happen when encountering an omitted list element, such as the second invocation of $LISTNEXT on
list=$LB("a",,"b"), or with any of the following valid lists: list=$LB(), list=$LB(UndefinedVar), or list=$LB(,).

$LISTNEXT("",ptr,value) returns 0, and does not advance the pointer or set value.
$LISTNEXT($LB(""),ptr,value) returns 1, advances the pointer, and set value to the null string ("").

$LISTNEXT and Performance

An InterSystems IRIS list is the most efficient way to process large numbers of data values. You can use lists to hold large
numbers of values for processing, rather than using an array or other data structure. For further details, refer to Maximum
String Length in the “Data Types and Values” chapter of Using ObjectScript.

Using $LISTNEXT to return a large number of elements from a list is substantially more efficient than using $LIST to
perform the same operation.

The following example rapidly accesses the elements in mylist:

 SET ptr=0
 WHILE $LISTNEXT(mylist,ptr,value) {
 /* perform some operation on value */
 }

362 ObjectScript Reference

ObjectScript Functions

It is substantially faster than the following equivalent example:

 FOR i=1:1:$LISTLENGTH(mylist) {
 SET value=$LIST(mylist,i)
 /* perform some operation on value */
 }

$LISTNEXT and Nested Lists

The following example returns three elements, because $LISTNEXT does not recognize the individual elements in nested
lists:

 SET list=$LISTBUILD("Apple","Pear",$LISTBUILD("Walnut","Pecan"))
 SET ptr=0,count=0
 WHILE $LISTNEXT(list,ptr,value) {
 SET count=count+1
 WRITE !,value
 }
 WRITE !,"End of list: ",count," elements found"
 QUIT

Example
The following example sequentially returns all the elements in the list. When it encounters an omitted element, the $SELECT
returns the default value “omitted”:

 SET list=$LISTBUILD("Red","Blue",,"Green")
 SET ptr=0,count=0
 WHILE $LISTNEXT(list,ptr,value) {
 SET count=count+1
 WRITE !,count,": ",$SELECT($DATA(value):value,1:"omitted")
 }
 WRITE !,"End of list: ",count," elements found"
 QUIT

See Also
• $LIST function

• $LISTBUILD function

• $LISTDATA function

• $LISTFIND function

• $LISTFROMSTRING function

• $LISTGET function

• $LISTLENGTH function

• $LISTSAME function

• $LISTTOSTRING function

• $LISTUPDATE function

• $LISTVALID function

ObjectScript Reference 363

$LISTNEXT

$LISTSAME
Compares two lists and returns a boolean value.

$LISTSAME(list1,list2)
$LS(list1,list2)

Parameters

Any expression that evaluates to a list. A list can be created using $LISTBUILD or
$LISTFROMSTRING, or extracted from another list using $LIST. The null string ("") is also
treated as a valid list.

list1

Any expression that evaluates to a list. A list can be created using $LISTBUILD or
$LISTFROMSTRING, or extracted from another list using $LIST. The null string ("") is also
treated as a valid list.

list2

Description
$LISTSAME compares the contents of two lists and returns 1 if the lists are identical. If the lists are not identical,
$LISTSAME returns 0. $LISTSAME compares list elements using their string representations. $LISTSAME comparisons
are case-sensitive.

$LISTSAME compares the two lists element-by-element in left-to-right order. Therefore $LISTSAME returns a value of
0 when it encounters the first non-identical pair of list elements; it does not check subsequent items to determine if they
are valid list elements. If a $LISTSAME comparison encounters an invalid item, it issues a <LIST> error.

Examples
The following example returns 1, because the two lists are identical:

 SET x = $LISTBUILD("Red","Blue","Green")
 SET y = $LISTBUILD("Red","Blue","Green")
 WRITE $LISTSAME(x,y)

The following example returns 0, because the two lists are not identical:

 SET x = $LISTBUILD("Red","Blue","Yellow")
 SET y = $LISTBUILD("Red","Yellow","Blue")
 WRITE $LISTSAME(x,y)

Identical Lists
$LISTSAME considers two lists to be identical if the string representations of the two lists are identical.

When comparing a numeric list element and a string list element, the string list element must represent the numeric in
canonical form; this is because InterSystems IRIS always reduces numerics to canonical form before performing a compar-
ison. In the following example, $LISTSAME compares a string and a numeric. The first three $LISTSAME functions
return 1 (identical); the fourth $LISTSAME function returns 0 (not identical) because the string representation is not in
canonical form:

 WRITE $LISTSAME($LISTBUILD("365"),$LISTBUILD(365)),!
 WRITE $LISTSAME($LISTBUILD("365"),$LISTBUILD(365.0)),!
 WRITE $LISTSAME($LISTBUILD("365.5"),$LISTBUILD(365.5)),!
 WRITE $LISTSAME($LISTBUILD("365.0"),$LISTBUILD(365.0))

$LISTSAME comparison is not the same equivalence test as the one used by other list operations, which test using the
internal representation of a list. This distinction is easily seen when comparing a number and a numeric string, as in the
following example:

364 ObjectScript Reference

ObjectScript Functions

 SET x = $LISTBUILD("365")
 SET y = $LISTBUILD(365)
 IF x=y
 { WRITE !,"Equal sign: number/numeric string identical" }
 ELSE { WRITE !,"Equal sign: number/numeric string differ" }
 IF 1=$LISTSAME(x,y)
 { WRITE !,"$LISTSAME: number/numeric string identical" }
 ELSE { WRITE !,"$LISTSAME: number/numeric string differ" }

The equality (=) comparison tests the internal representations of these lists (which are not identical). $LISTSAME performs
a string conversion on both lists, compares them, and finds them identical.

The following example shows two lists with various representations of numeric elements. $LISTSAME considers these
two lists to be identical:

 SET x = $LISTBUILD("360","361","362","363","364","365","366")
 SET y = $LISTBUILD(00360.000,(19*19),+"362",363,364.0,+365,"3"_"66")
 WRITE !,$LISTSAME(x,y)," lists are identical"

Numeric Maximum

A number larger than 2**63 (9223372036854775810) or smaller than -2**63 (–9223372036854775808) exceeds the
maximum numeric range for $LISTSAME list comparison. $LISTSAME returns 0 when such extremely large numbers
are compared, as shown in the following example:

 SET bignum=$LISTBUILD(9223372036854775810)
 SET bigstr=$LISTBUILD("9223372036854775810")
 WRITE $LISTSAME(bignum,bigstr),!
 SET bignum=$LISTBUILD(9223372036854775811)
 SET bigstr=$LISTBUILD("9223372036854775811")
 WRITE $LISTSAME(bignum,bigstr)

Null String and Null List

A list containing the null string (an empty string) as its sole element is a valid list. The null string by itself is also considered
a valid list. However these two (a null string and a null list) are not considered identical, as shown in the following example:

 WRITE !,$LISTSAME($LISTBUILD(""),$LISTBUILD(""))," null lists"
 WRITE !,$LISTSAME("","")," null strings"
 WRITE !,$LISTSAME($LISTBUILD(""),"")," null list and null string"

Normally, a string is not a valid $LISTSAME argument, and $LISTSAME issues a <LIST> error. However, the following
$LISTSAME comparisons complete successfully and return 0 (values not identical). The null string and the string “abc”
are compared and found not to be identical. These null string comparisons do not issue a <LIST> error:

 WRITE !,$LISTSAME("","abc")
 WRITE !,$LISTSAME("abc","")

The following $LISTSAME comparisons do issue a <LIST> error, because a list (even a null list) cannot be compared
with a string:

 SET x = $LISTBUILD("")
 WRITE !,$LISTSAME("abc",x)
 WRITE !,$LISTSAME(x,"abc")

Comparing “Empty” Lists

$LISTVALID considers all of the following as valid lists:

 WRITE $LISTVALID(""),!
 WRITE $LISTVALID($LB()),!
 WRITE $LISTVALID($LB(UndefinedVar)),!
 WRITE $LISTVALID($LB("")),!
 WRITE $LISTVALID($LB($CHAR(0))),!
 WRITE $LISTVALID($LB(,))

$LISTSAME considers only the following pairs as identical:

ObjectScript Reference 365

$LISTSAME

 WRITE $LISTSAME($LB(),$LB(UndefinedVar)),!
 WRITE $LISTSAME($LB(,),$LB(UndefinedVarA,UndefinedVarB)),!
 WRITE $LISTSAME($LB(,),$LB()_$LB())

Empty Elements

A $LISTBUILD can create empty elements by including extra commas between elements or appending one or more
commas to either end of the element list. $LISTSAME is aware of empty elements, and does not treat them as equivalent
to null string elements.

The following $LISTSAME examples all return 0 (not identical):

 WRITE $LISTSAME($LISTBUILD(365,,367),$LISTBUILD(365,367)),!
 WRITE $LISTSAME($LISTBUILD(365,366,),$LISTBUILD(365,366)),!
 WRITE $LISTSAME($LISTBUILD(365,366,,),$LISTBUILD(365,366,)),!
 WRITE $LISTSAME($LISTBUILD(365,,367),$LISTBUILD(365,"",367))

$DOUBLE List Elements

$LISTSAME considers all forms of zero to be identical: 0, –0, $DOUBLE(0), and $DOUBLE(-0).

$LISTSAME considers a $DOUBLE(“NAN”) list element to be identical to another $DOUBLE(“NAN”) list element.
However, because NAN (Not A Number) cannot be meaningfully compared using numerical operators, InterSystems IRIS
operations (such as equal to, less than, or greater than) that attempt to compare $DOUBLE(“NAN”) to another $DOU-
BLE(“NAN”) fail, as shown in the following example:

 SET x = $DOUBLE("NAN")
 SET a = $LISTBUILD(1,2,x)
 SET b = $LISTBUILD(1,2,x)
 WRITE !,$LISTSAME(a,b) /* 1 (NAN list elements same) */
 WRITE !,x=x /* 0 (NAN values not equal) */

Nested and Concatenated Lists

$LISTSAME does not support nested lists. It cannot compare two lists that contain lists, even if their contents are identical.

 SET x = $LISTBUILD("365")
 SET y = $LISTBUILD(365)
 WRITE !,$LISTSAME(x,y)," lists identical"
 WRITE !,$LISTSAME($LISTBUILD(x),$LISTBUILD(y))," nested lists not identical"

In the following example, both $LISTSAME comparisons returns 0, because these lists are not considered identical:

 SET x=$LISTBUILD("Apple","Pear","Walnut","Pecan")
 SET y=$LISTBUILD("Apple","Pear",$LISTBUILD("Walnut","Pecan"))
 SET z=$LISTBUILD("Apple","Pear","Walnut","Pecan","")
 WRITE !,$LISTSAME(x,y)," nested list"
 WRITE !,$LISTSAME(x,z)," null string is list item"

$LISTSAME does support concatenated lists. The following example returns 1, because the lists are considered identical:

 SET x=$LISTBUILD("Apple","Pear","Walnut","Pecan")
 SET y=$LISTBUILD("Apple","Pear")_$LISTBUILD("Walnut","Pecan")
 WRITE !,$LISTSAME(x,y)," concatenated list"

See Also
• $LIST function

• $LISTBUILD function

• $LISTDATA function

• $LISTFIND function

• $LISTFROMSTRING function

• $LISTGET function

366 ObjectScript Reference

ObjectScript Functions

• $LISTLENGTH function

• $LISTNEXT function

• $LISTTOSTRING function

• $LISTUPDATE function

• $LISTVALID function

• $DOUBLE function

ObjectScript Reference 367

$LISTSAME

$LISTTOSTRING
Creates a string from a list.

$LISTTOSTRING(list,delimiter,flag)
$LTS(list,delimiter,flag)

Parameters

An InterSystems IRIS list, created using $LISTBUILD or $LISTFROMSTRING, or extracted
from another list using $LIST.

list

Optional — A delimiter used to separate substrings. Specify delimiter as a quoted string.
If no delimiter is specified, the default is the comma (,) character.

delimiter

Optional — A boolean value that specifies how to handle an omitted list element. 0 issues
a <NULL VALUE> error. 1 inserts an empty string for the element. The default is 0.

flag

Description
$LISTTOSTRING takes an InterSystems IRIS list and converts it to a string. In the resulting string, the elements of the
list are separated by the delimiter.

A list represents data in an encoded format which does not use delimiter characters. Thus a list can contain all possible
characters, and is ideally suited for bitstring data. $LISTTOSTRING converts this list to a string with delimited elements.
It sets aside a specified character (or character string) to serve as a delimiter. These delimited elements can be handled
using the $PIECE function.

Note: The delimiter specified here must not occur in the source data. InterSystems IRIS makes no distinction between
a character serving as a delimiter and the same character as a data character.

You can use the ZWRITE command to display a list in non-encoded format.

Parameters

list

An InterSystems IRIS list, which contains one or more elements. A list is created using $LISTBUILD or extracted from
another list using $LIST.

If the expression in the list parameter does not evaluate to a valid list, a <LIST> error occurs.

 SET x=$CHAR(0,0,0,1,16,27,134,240)
 SET a=$LISTTOSTRING(x,",") // generates a <LIST> error

delimiter

A character (or string of characters) used to delimit substrings within the output string. It can be a numeric or string literal
(enclosed in quotation marks), the name of a variable, or an expression that evaluates to a string.

Commonly, a delimiter is a designated character which is never used within string data, but is set aside solely for use as a
delimiter separating substrings. A delimiter can also be a multi-character string, the individual characters of which can be
used within string data.

If you specify no delimiter, the default delimiter is the comma (,) character. You can specify a null string ("") as a delimiter;
in this case, substrings are concatenated with no delimiter. To specify a quote character as a delimiter, specify the quote
character twice ("""") or use $CHAR(34).

368 ObjectScript Reference

ObjectScript Functions

flag

A boolean flag used to specify how to handle omitted elements in list. In the following example, the $LISTBUILD creates
a list with an omitted element, and the flag=1 option is specified to handle this list element:

 SET colorlist=$LISTBUILD("Red",,"Blue")
 WRITE $LISTTOSTRING(colorlist,,1)

If the flag option was omitted or set to 0, the $LISTTOSTRING would generate a <NULL VALUE> error.

Note that if flag=1, an element with an empty string value is indistinguishable from an omitted element. Thus
$LISTBUILD("Red","","Blue") and $LISTBUILD("Red",,"Blue") would return the same $LISTTOSTRING
value. This flag=1 behavior is compatible with the implementation of $LISTTOSTRING in InterSystems SQL, as described
in the InterSystems SQL Reference.

Examples
The following example creates a list of four elements, then converts it to a string with the elements delimited by the colon
(:) character:

 SET namelist=$LISTBUILD("Deborah","Noah","Martha","Bowie")
 WRITE $LISTTOSTRING(namelist,":")

returns "Deborah:Noah:Martha:Bowie"

The following example creates a list of four elements, then converts it to a string with the elements delimited by the *sp*
string:

 SET namelist=$LISTBUILD("Deborah","Noah","Martha","Bowie")
 WRITE $LISTTOSTRING(namelist,"*sp*")

returns "Deborah*sp*Noah*sp*Martha*sp*Bowie"

The following example creates a list with one omitted element and one element with an empty string value.
$LISTTOSTRING converts it to a string with the elements delimited by the colon (:) character. Because of the omitted
element, flag=1 is required to avoid a <NULL VALUE> error. However, when flag=1, the omitted element and the empty
string value are indistinguishable:

 SET namelist=$LISTBUILD("Deborah",,"","Bowie")
 WRITE $LISTTOSTRING(namelist,":",1)

returns "Deborah:::Bowie"

$LISTVALID considers all of the following valid lists. With flag=1, $LISTTOSTRING returns the null string ("") for
all of them:

 WRITE "1",$LISTTOSTRING("",,1),!
 WRITE "2",$LISTTOSTRING($LB(),,1),!
 WRITE "3",$LISTTOSTRING($LB(UndefinedVar),,1),!
 WRITE "4",$LISTTOSTRING($LB(""),,1)

With flag=0, $LISTTOSTRING returns the null string ("") for only the following:

 WRITE "1",$LISTTOSTRING("",,0),!
 WRITE "4",$LISTTOSTRING($LB(""),,0)

The others generate a <NULL VALUE> error.

See Also
• $LISTFROMSTRING function

• $LISTBUILD function

ObjectScript Reference 369

$LISTTOSTRING

• $LIST function

• $PIECE function

• $LISTDATA function

• $LISTFIND function

• $LISTGET function

• $LISTLENGTH function

• $LISTNEXT function

• $LISTSAME function

• $LISTUPDATE function

• $LISTVALID function

370 ObjectScript Reference

ObjectScript Functions

$LISTUPDATE
Updates a list by optionally replacing a specified list element or sequence of elements.

$LISTUPDATE(list,position,bool:val...)
$LU(list,position,bool:val...)

Parameters

Any expression that evaluates to a list. A list can be created using $LISTBUILD or
$LISTFROMSTRING, or extracted from another list using $LIST. The null string ("") is also
treated as a valid list.

list

A positive integer specifying the position in list to update, counting from 1. If position is larger
than the number of elements in list, $LISTUPDATE appends the element, padding if necessary.

position

Optional — A boolean variable specifying whether or not to update the specified list element. If
omitted, bool defaults to 1, causing this element to be updated.

bool:

The value used to update the list at the specified position.You can specify a comma-separated
list of value parameters or bool:value pair parameters in any combination.

value

Description
$LISTUPDATE returns a copy of a list updated by replacing or adding one or more list elements by position. The position
specifies the position in the list at which to begin updating elements. Elements are updated sequentially, starting from this
position. The position can be larger than the number of elements in the list. If so, additional null elements are added to the
list (if necessary) to insert a new element at the specified position. Note that position must be a positive integer;
$LISTUPDATE cannot insert a new element at the beginning of the list. Setting position=0 performs no operation.
$LISTUPDATE also cannot specify end-of-list, except by position count from the beginning of the list.

$LISTUPDATE can specify or more than one bool:value pairs. Multiple bool:value pairs are separated by commas. These
bool:value pairs update sequential elements, beginning with the position element. If bool=1, InterSystems IRIS updates
that element with value; if bool=0, InterSystems IRIS does not update that element and proceeds to the next element.

Sequential elements that are not to be updated in a sequence of bool:value pairs do not have to be specified; they can be
represented by placeholder commas. The bool: parameter is optional for each value; if omitted, it defaults to 1. If you omit
bool also omit the colon (:) separator character. Thus the following are permitted ways to specify a bool:value pair:

• Element to update: either 1:"newval", or "newval" (bool defaults to 1).

• Element to not update: either 0:"newval", or a placeholder comma.

$LISTUPDATE is commonly used to return an updated version of an existing list. You can use $LISTUPDATE to create
a list by specifying list="".

You can also use SET $LIST to update one or more elements in an existing list.

Examples
The following example replaces the list element at position 2 with the specified value:

 SET caps=1
 SET mylist = $LISTBUILD("Red","White","Blue")
 SET newlist = $LISTUPDATE(mylist,2,caps:"WHITE")
 ZWRITE newlist

The following example does not replace the list element at position 2 with the specified value:

ObjectScript Reference 371

$LISTUPDATE

 SET caps=0
 SET mylist = $LISTBUILD("Red","White","Blue")
 SET newlist = $LISTUPDATE(mylist,2,caps:"WHITE")
 ZWRITE newlist

The following example replaces the list element at position 2 with null:

 SET caps=1
 SET mylist = $LISTBUILD("Red","White","Blue")
 SET newlist = $LISTUPDATE(mylist,2,caps:"")
 ZWRITE newlist

The following example appends the list at position 7 with the specified value, padding null elements at positions 5 and 6:

 SET bool=1
 SET mylist = $LISTBUILD("Red","Orange","Yellow","Green")
 SET newlist = $LISTUPDATE(mylist,7,bool:"Purple")
 ZWRITE newlist

The following example does not append the list at position 7 with the specified value. The unchanged list is returned with
no null element padding:

 SET bool=0
 SET mylist = $LISTBUILD("Red","Orange","Yellow","Green")
 SET newlist = $LISTUPDATE(mylist,7,bool:"Purple")
 ZWRITE newlist

The following three examples are all functionally identical. Each replaces the elements at positions 2 and 4, and appends
a new element at position 7. It does not replace elements 3 and 5. Element 6 is created as a null element:

 SET mylist = $LISTBUILD("Red","Orange","Yellow","Green","Blue")
 SET newlist = $LISTUPDATE(mylist,2,1:"ORANGE",0:"YELLOW",
 1:"GREEN",0:"BLUE",
 0:"INDIGO",1:"VIOLET")
 ZWRITE newlist

Here the bool parameter is only specified when it is 0:

 SET mylist = $LISTBUILD("Red","Orange","Yellow","Green","Blue")
 SET newlist = $LISTUPDATE(mylist,2,"ORANGE",0:"YELLOW",
 "GREEN",0:"BLUE",
 0:"INDIGO","VIOLET")
 ZWRITE newlist

Here placeholder commas are used to skip elements that are not updated:

 SET mylist = $LISTBUILD("Red","Orange","Yellow","Green","Blue")
 SET newlist = $LISTUPDATE(mylist,2,"ORANGE",,"GREEN",,,"VIOLET")
 ZWRITE newlist

See Also
• $LIST function

• $LISTBUILD function

• $LISTDATA function

• $LISTFIND function

• $LISTFROMSTRING function

• $LISTGET function

• $LISTLENGTH function

• $LISTNEXT function

• $LISTSAME function

• $LISTTOSTRING function

372 ObjectScript Reference

ObjectScript Functions

• $LISTVALID function

ObjectScript Reference 373

$LISTUPDATE

$LISTVALID
Determines if an expression is a list.

$LISTVALID(exp)
$LV(exp)

Parameter

Any valid expression.exp

Description
$LISTVALID determines whether exp is a list, and returns a Boolean value: If exp is a list, $LISTVALID returns 1; if
exp is not a list, $LISTVALID returns 0.

A list can be created using $LISTBUILD or $LISTFROMSTRING, or extracted from another list using $LIST. A list
containing the empty string ("") as its sole element is a valid list. The empty string ("") by itself is also considered a valid
list. (Certain $CHAR non-printing character combinations, such as $CHAR(1), $CHAR(2,1), and
$CHAR(3,1,asciicode) can also return a valid empty or one-element list.)

Examples
The following examples all return 1, indicating a valid list:

 SET w = $LISTBUILD("Red","Blue","Green")
 SET x = $LISTBUILD("Red")
 SET y = $LISTBUILD(365)
 SET z = $LISTBUILD("")
 WRITE !,$LISTVALID(w)
 WRITE !,$LISTVALID(x)
 WRITE !,$LISTVALID(y)
 WRITE !,$LISTVALID(z)

The following examples all return 0. Numbers and strings (with the exception of the null string) are not valid lists:

 SET x = "Red"
 SET y = 44
 WRITE !,$LISTVALID(x)
 WRITE !,$LISTVALID(y)

The following examples all return 1. Concatenated, nested, and omitted value lists are all valid lists:

 SET w=$LISTBUILD("Apple","Pear")
 SET x=$LISTBUILD("Walnut","Pecan")
 SET y=$LISTBUILD("Apple","Pear",$LISTBUILD("Walnut","Pecan"))
 SET z=$LISTBUILD("Apple","Pear",,"Pecan")
 WRITE !,$LISTVALID(w_x) ; concatenated
 WRITE !,$LISTVALID(y) ; nested
 WRITE !,$LISTVALID(z) ; omitted element

The following examples all return 1. $LISTVALID considers all of the following “empty” lists as valid lists. $LISTBUILD
can take an undefined variable as a list element without generating an error.

 WRITE $LISTVALID(""),!
 WRITE $LISTVALID($LB()),!
 WRITE $LISTVALID($LB(UndefinedVar)),!
 WRITE $LISTVALID($LB("")),!
 WRITE $LISTVALID($LB($CHAR(0))),!
 WRITE $LISTVALID($LB(,))

See Also
• $LIST function

374 ObjectScript Reference

ObjectScript Functions

• $LISTBUILD function

• $LISTDATA function

• $LISTFIND function

• $LISTFROMSTRING function

• $LISTGET function

• $LISTLENGTH function

• $LISTNEXT function

• $LISTSAME function

• $LISTTOSTRING function

• $LISTUPDATE function

ObjectScript Reference 375

$LISTVALID

$LOCATE
Locates the first match of a regular expression in a string.

$LOCATE(string,regexp,start,end,val)

Parameters

The string to be matched.string

A regular expression to match against string. A regular expression consists of one
or more meta-characters, and may also contain literal characters.

regexp

Optional — An integer specifying the starting position within string from which to
match the regexp.

If you omit start, matching begins at the beginning of string. If you omit start and
specify end and/or val, you must specify the place-holder comma.

start

Optional — $LOCATE assigns an integer value to this variable if the match is
successful. This integer is the next character position after the matched string.
InterSystems IRIS passes end by reference. This parameter must be a local
variable. It cannot be an array, a global variable, or a reference to an object
property.

end

Optional — $LOCATE assigns a string value to this variable if the match is
successful.This string consists of the matched substring. InterSystems IRIS passes
val by reference. This parameter must be a local variable. It cannot be an array,
a global variable, or a reference to an object property.

val

Description
$LOCATE matches a regular expression against successive substrings of a specified string. It returns an integer specifying
the starting location of the first regexp match within string. It counts locations from 1. It returns 0 if regexp does not match
any subset of string.

Optionally, it can also assign the matching substring to a variable.

If you omit an optional parameter and specify a later parameter, you must specify the appropriate place-holder comma(s).

ObjectScript support for regular expressions consists of the $LOCATE and $MATCH functions:

• $LOCATE matches a regular expression to successive substrings of string and returns the location (and, optionally,
the value) of the first match.

• $MATCH matches a regular expression to the full string and returns a boolean indicating whether a match occurred.

The Locate() method of the %Regex.Matcher class provides similar functionality as $LOCATE. The %Regex.Matcher

class methods provide substantial additional functionality for using regular expressions.

Other ObjectScript matching operations use InterSystems IRIS pattern match operators.

Parameters

string

An expression that evaluates to a string. The expression can be specified as the name of a variable, a numeric value, a string
literal, or any valid ObjectScript expression. A string can contain control characters.

376 ObjectScript Reference

ObjectScript Functions

If string is the empty string and regexp cannot match the empty string, $LOCATE returns 0; end and val are not set.

If string is the empty string and regexp can match the empty string, $LOCATE returns 1; end is set to 1, and val is set to
the empty string.

regexp

A regular expression used to match against string to locate the desired substring. A regular expression is an expression that
evaluates to a string consisting of some combination of meta-characters and literals. Meta-characters specify character types
and match patterns. Literals specify one or more matching single characters, ranges of characters, or substrings. An extensive
regular expression syntax is supported. For details, refer to the “Regular Expressions” chapter of Using ObjectScript .

start

An integer specifying the starting position within string from which to match the regexp. 1 or 0 specify starting at the
beginning of string. A start value equal to the length of string + 1 always returns 0. A start value greater than the length
of string + 1 generates a <REGULAR EXPRESSION> error with ERROR #8351.

Regardless of the start position, $LOCATE returns the position of the first match as a count from the beginning of the
string.

end

An output variable that $LOCATE assigns an integer value if the locate operation found a match. The assigned value is
the location of the first character position after the matched substring, counting from the beginning of the string. If the
match occurs at the end of the string, this character position can be one more that the total string length. If a match was not
found, the end value is left unchanged. If end has not been previously set, the variable remains undefined.

The end variable cannot be a reference to an object property.

By using the same variable for start and end, you can invoke $LOCATE repeatedly to find all of the matches in the string.
This is shown in the following example, which locates the positions of the vowels in the alphabet:

 SET alphabet="abcdefghijklmnopqrstuvwxyz"
 SET pos=1
 SET val=""
 FOR i=1:1:5 {
 WRITE $LOCATE(alphabet,"[aeiou]",pos,pos,val)
 WRITE " is the position of the ",i,"th vowel: ",val,! }

val

An output variable that $LOCATE assigns a string value if the locate operation found a match. This string value is the
matching substring. If a match was not found, the val value is left unchanged. If val has not been previously set, the variable
remains undefined.

The val variable cannot be a reference to an object property.

Examples
The following example returns 4, because the regexp literal “de” matches at the 4th character of the string:

 WRITE $LOCATE("abcdef","de")

The following example returns 8, because regexp specifies a lowercase letter string of three characters, which is first found
here as the substring “fga” starting a position 8:

 WRITE $LOCATE("ABC-de-fgabc123ABC","[[:lower:]]{3}")

The following example returns 5, because the specified regexp format of spaces (\s) and non-space characters (\S) is found
beginning at the 5th character of the string. This example omits the start parameter; it sets the end variable to 11, which is
the character after the matched substring.

ObjectScript Reference 377

$LOCATE

 WRITE $LOCATE("AAAAA# $ 456789","\S\S\s\S\s\S",,end)

The following example returns 9, because regexp specifies a letter string of three characters, and the start parameter states
it must begin at or after position 6:

 SET end="",val=""
 WRITE $LOCATE("abc-def-ghi-jkl","[[:alpha:]]{3}",6,end,val),!
 WRITE "the position after the matched string is: ",end,!
 WRITE "the matched value is: ",val

The end parameter is set to 12, and the val parameter is set to “ghi”.

The following example shows that a numeric is resolved to canonical form before regexp is matched to the resulting string.
The end parameter is set to 5, one character beyond the end of the 4–character string “1.23”:

 WRITE $LOCATE(123E-2,"\.\d*",1,end,val),!
 WRITE "end is: ",end,!
 WRITE "value is: ",val,!

The following example sets the start parameter to a value greater than the length of string+1. This results in an error, as
shown:

 TRY {
 SET str="abcdef"
 SET strlen=$LENGTH(str)
 WRITE "start=string length, match=",$LOCATE(str,"\p{L}",strlen),!
 WRITE "start=string length+1, match=",$LOCATE(str,"\p{L}",strlen+1),!
 WRITE "start=string length+2, match=",$LOCATE(str,"\p{L}",strlen+2),!
 }
 CATCH exp {
 WRITE !!,"CATCH block exception handler:",!
 IF 1=exp.%IsA("%Exception.SystemException") {
 WRITE "System exception",!
 WRITE "Name: ",$ZCVT(exp.Name,"O","HTML"),!
 WRITE "Location: ",exp.Location,!
 WRITE "Code: ",exp.Code,!!
 WRITE "%Regex.Matcher status:"
 SET err=##class(%Regex.Matcher).LastStatus()
 DO $SYSTEM.Status.DisplayError(err) }
 ELSE {WRITE "Unexpected exception type",! }
 RETURN
 }

See Also
• $CHAR function

• $MATCH function

• Regular Expressions in Using ObjectScript

• Pattern Matching in Using ObjectScript

378 ObjectScript Reference

ObjectScript Functions

$MATCH
Matches a regular expression to a string.

$MATCH(string,regexp)

Parameters

The string to be matched.string

A regular expression to match against string. A regular expression consists of one
or more meta-characters, and may also contain literal characters.

regexp

Description
$MATCH is a boolean function that returns 1 if string and regexp match, and 0 if string and regexp do not match. By
default, matching is case-sensitive.

ObjectScript support for regular expressions consists of the $LOCATE and $MATCH functions:

• $MATCH matches a regular expression to the full string and returns a boolean indicating whether a match occurred.

• $LOCATE matches a regular expression to successive substrings of string and returns the location (and, optionally,
the value) of the first match.

The Match() method of the %Regex.Matcher class provides the same functionality. The %Regex.Matcher class provides
additional functionality for using regular expressions.

Other ObjectScript matching operations use InterSystems IRIS pattern match operators.

Parameters

string

An expression that evaluates to a string. The expression can be specified as the name of a variable, a numeric value, a string
literal, or any valid ObjectScript expression. A string can contain control characters.

regexp

A regular expression used to match against string. A regular expression is an expression that evaluates to a string consisting
of some combination of meta-characters and literals. Meta-characters specify character types and match patterns. Literals
specify one or more matching single characters, ranges of characters, or substrings. An extensive regular expression syntax
is supported. For details, refer to the “Regular Expressions” chapter of Using ObjectScript .

Examples
The following example matches a string with a regular expression that specifies that the first character must be an uppercase
letter (\p{LU}), followed by at least one additional character (+ quantifier), and that this second character, and all subsequent
characters, must be word characters (letters, numbers, or the underscore character) (\w):

 SET strng(1)="Assembly_17"
 SET strng(2)="Part5"
 SET strng(3)="SheetMetalScrew"
 SET n=1
 WHILE $DATA(strng(n)) {
 IF $MATCH(strng(n),"\p{LU}\w+")
 { WRITE strng(n)," : successful match",! }
 ELSE { WRITE strng(n)," : invalid string",! }
 SET n=n+1 }

ObjectScript Reference 379

$MATCH

The following example returns 1, because the hexadecimal regular expression (hex 41) matches the letter “A”:

 WRITE $MATCH("A","\x41")

The following example returns 1, because the specified string matches the format of spaces (\s) and non-space characters
(\S) specified in the regular expression:

 WRITE $MATCH("A# $ 4","\S\S\s\S\s\S")

The following example returns 1, because the specified date matches the format of digits and literals specified in the regular
expression:

 SET today=$ZDATE($HOROLOG)
 WRITE $MATCH(today,"^\d\d/\d\d/\d\d\d\d$")

Note that this format requires that the day and month each be specified as two digits, so a leading zero is required for values
smaller than 10.

The following example returns 1, because each letter in the string is within the corresponding letter range in the regular
expression:

 WRITE $MATCH("HAL","[G-I][A-C][K-Z]")

The following example specifies an invalid regexp parameter. This results in an error, as shown:

 TRY {
 SET str="abcdef"
 WRITE "match=",$MATCH(str,"\p{}"),!
 }
 CATCH exp {
 WRITE !!,"CATCH block exception handler:",!
 IF 1=exp.%IsA("%Exception.SystemException") {
 WRITE "System exception",!
 WRITE "Name: ",$ZCVT(exp.Name,"O","HTML"),!
 WRITE "Location: ",exp.Location,!
 WRITE "Code: ",exp.Code,!!
 WRITE "%Regex.Matcher status:"
 SET err=##class(%Regex.Matcher).LastStatus()
 DO $SYSTEM.Status.DisplayError(err) }
 ELSE {WRITE "Unexpected exception type",! }
 RETURN
 }

See Also
• $CHAR function

• $LOCATE function

• $ZSTRIP function

• Regular Expressions in Using ObjectScript

• Pattern Matching in Using ObjectScript

380 ObjectScript Reference

ObjectScript Functions

$METHOD
Supports calls to an instance method.

$METHOD(instance, methodname, arg1, arg2, arg3, ...)

Parameters

An expression that evaluates to an object reference. The value of the expression
must be that of an in-memory instance of a class.

instance

An expression that evaluates to a string. The value of the string must exactly
match the name of an existing method in the instance of the class given as the
first argument.

methodname

A series of expressions to be substituted for the arguments to the designated
method. The values of the expressions can be of any type. It is the responsibility
of the implementer to make sure that the supplied expressions both match in type
and have values with the bounds that the method expects. (If the specified method
expects no arguments then nothing beyond classname and methodname need
be used in the function invocation. If the method requires arguments, the rules
that govern what must be supplied are those of the target method.)

arg1, arg2, arg3, ...

Description
$METHOD executes a named instance method for a specified instance of a designated class.

This function permits an ObjectScript program to call an arbitrary method in an existing instance of some class. Since the
first argument must be a reference to an object, it is computed at execution time. The method name may be computed at
runtime or supplied as a string literal. If the method takes arguments, they are supplied from the list of arguments that follow
the method name. A maximum of 255 argument values may be passed to the method. If the method requires arguments,
the rules that govern what must be supplied are those of the target method. To invoke a class method rather than an instance
method, use the $CLASSMETHOD function.

The invocation of $METHOD as a function or a procedure determines the invocation of the target method. You can invoke
$METHOD using the DO command, discarding the return value. Like all DO command arguments, $METHOD can take
a postconditional parameter when called by DO.

When used within one method of a class instance to refer to another method of that instance, the $METHOD may omit
instance. The comma that would normally follow Instance is still required, however.

If there is an attempt to invoke a method that is nonexistent or that is declared to be a class method, this results in a <METHOD
DOES NOT EXIST> error.

Example
The following example shows $METHOD used as a function:

 SET ListOfStuff = ##class(%Library.ListOfDataTypes).%New()
 FOR i = "First", "Second", "Third", "Fourth"
 {
 DO ListOfStuff.Insert((i _ "-Element"))
 }
 SET methodname = "Count"
 SET elements = $METHOD(ListOfStuff,methodname)
 WRITE "Elements: ",elements,!
 SET i = $RANDOM(elements) + 1
 WRITE "Element #", i , " = " , $METHOD(ListOfStuff,"GetAt", i), !

ObjectScript Reference 381

$METHOD

See Also
• $CLASSMETHOD function

• $CLASSNAME function

• $PARAMETER function

• $PROPERTY function

• $THIS special variable

382 ObjectScript Reference

ObjectScript Functions

$NAME
Returns the name value of a variable or a portion of a subscript reference.

$NAME(variable,integer)
$NA(variable,integer)

Parameters

The variable whose name value is to be returned. It can specify a local or global variable,
which can be either subscripted or unsubscripted. It does not need to be a defined
variable. However, it may not be a defined private variable. If variable is a subscripted
global, you can specify a naked global reference.

variable

Optional — A numeric value that specifies which portion (level) of a subscript reference
to return. It can be a positive integer, the name of a variable, or an expression. When
used, variable must be a subscripted reference.

integer

Description
$NAME returns a formatted form of the variable name reference supplied as variable. It does not check whether this variable
is defined or has a data value. The value $NAME returns depends on the parameters used.

• $NAME(variable) returns the name value of the specified variable in canonical form; that is, as a fully expanded ref-
erence.

• $NAME(variable,integer) returns a portion of a subscript reference. Specifically, integer controls the number of sub-
scripts returned by the function.

Execution of this function does not affect the naked indicator.

Parameters

variable

variable can be a local variable, a process-private global variable, or a global variable. It can be unsubscripted or subscripted.
If variable is a global it can use extended global reference. $NAME returns the extended global reference as specified,
without checking whether the specified namespace exists or whether the user has access privileges for the namespace. It
does not capitalize the namespace name. If variable is a naked global reference, $NAME returns the full global reference.
If variable is a private variable, a compile error occurs.

It can be a multidimensional object property; it cannot be a non-multidimensional object property. Attempting to use
$NAME on a non-multidimensional object property results in an <OBJECT DISPATCH> error.

$NAME cannot return a special variable, even those that can be modified using SET. Attempting to return a special variable
results in a <SYNTAX> error.

integer

The integer parameter is used when variable is a subscripted reference. If the value of integer is 0, $NAME returns only
the name of the variable. If the value of integer is less than the number of subscripts in variable, $NAME returns the
number of subscripts indicated by the value of integer. If integer is greater than the number of subscripts in variable,
$NAME returns the full subscripted reference.

If variable is an unsubscripted variable, the value of integer is ignored; $NAME returns the variable name. If integer is
the null string ("") or a nonnumeric string, $NAME returns the variable name with no subscripts.

ObjectScript Reference 383

$NAME

The value of integer receives standard integer parsing. For example, leading zeros and the plus sign are ignored. Fractional
digits are truncated and ignored. A negative integer value results in a <FUNCTION> error.

Examples
In this example, the integer parameter specifies the level to return. If the specified number of subscripts in integer matches
or exceeds the number of subscript levels (in this case, 3), then $NAME returns all defined levels, behaving as if you
specified the one-parameter form. If you specify an integer level of zero (0), the null string (""), or any nonnumeric string
(such as "A"), $NAME returns the name of the array (in this case “^client”)

 SET ^client(4)="Vermont"
 SET ^client(4,1)="Brattleboro"
 SET ^client(4,1,1)="Yankee Ingenuity"
 SET ^client(4,1,2)="Vermonster Systems"
 WRITE !,$NAME(^client(4,1,1),1) ; returns 1 level
 WRITE !,$NAME(^client(4,1,1),2) ; returns 2 levels
 WRITE !,$NAME(^client(4,1,1),3) ; returns 3 levels
 WRITE !,$NAME(^client(4,1,1),4) ; returns all (3) levels
 WRITE !,$NAME(^client(4,1,1),0) ; returns array name
 WRITE !,$NAME(^client(4,1,1),"") ; returns array name
 WRITE !,$NAME(^client(4,1,1)) ; returns all (3) levels

In the following example, $NAME is used with a naked reference in a loop to output the values for all elements in the
current (user-supplied) array level.

 READ !,"Array element: ",ary
 SET x=@ary ; dummy operation to set current array and level
 SET y=$ORDER(^("")) ; null string to find beginning of level
 FOR i=0:0 {
 WRITE !,@$NAME(^(y))
 SET y=$ORDER(^(y))
 QUIT:y=""
 }

The first SET command performs a dummy assignment to establish the user-supplied array and level as the basis for the
subsequent naked references. The $ORDER function is used with a naked reference to return the number of the first subscript
(whether negative or positive) at the current level.

The WRITE command in the FOR loop uses $NAME with a naked global reference and argument indirection to output
the value of the current element. The SET command uses $ORDER with a naked global reference to return the subscript
of the next existing element that contains data. Finally, the postconditional QUIT checks the value returned by $ORDER
to detect the end of the current level and terminate the loop processing.

You can use the returned $NAME string value for name or subscript indirection or pass it as a parameter to a routine or
user-defined function. For more information, refer to Indirection in Using ObjectScript. Consider the routine ^DESCEND
that lists descendant nodes of the specified node.

DESCEND(ROOT) ;List descendant nodes
 NEW REF
 SET REF=ROOT
 IF ROOT'["(" {
 FOR {
 SET REF=$QUERY(@REF)
 QUIT:REF=""
 WRITE REF,! }
 }
 ELSE {
 SET $EXTRACT(ROOT,$LENGTH(ROOT))=","
 FOR {
 SET REF=$QUERY(@REF)
 QUIT:REF'[ROOT
 WRITE REF,! }
 }

The following example demonstrates how you can use $NAME to pass a parameter to the ^DESCEND routine defined in
the previous example.

 FOR var1="ONE","TWO","THREE" {
 DO ^DESCEND($NAME(^X(var1))) }

384 ObjectScript Reference

ObjectScript Functions

^X("ONE",2,3)

Notes

Uses for $NAME

You typically use $NAME to return the name values of array elements for use with the $DATA and $ORDER functions.

If a reference to an array element contains expressions, $NAME evaluates the expressions before returning the canonical
form of the name. For example:

 SET x=1+2
 SET y=$NAME(^client(4,1,x))
 WRITE y

$NAME evaluates the variable x and returns the value ^client(4,1,3).

Naked Global References

$NAME also accepts a naked global reference and returns the name value in its canonical form (that is, a full (non-naked)
reference). A naked reference is specified without the array name and designates the most recently executed global reference.
In the following example, the first SET command establishes the global reference and the second SET command uses the
$NAME function with a naked global reference.

 SET ^client(5,1,2)="Savings/27564/3270.00"
 SET y=$NAME(^(3))
 WRITE y

In this case, $NAME returns the value ^client(5,1,3). The supplied subscript value (3) replaces the existing subscript value
(2), at the current level.

For more details, see Naked Global Reference in Using Globals.

Extended Global References

You can control whether $NAME returns name values in extended global reference form on a per-process basis using the
RefInKind() method of the %SYSTEM.Process class. The system-wide default behavior can be established by setting the
RefInKind property of the Config.Miscellaneous class.

With extended reference mode in effect, the following example returns the defined namespace and name
^["PAYROLL"]MyRoutine (as shown in the first example), and not just ̂ MyRoutine (as shown in the second example):

 DO ##class(%SYSTEM.Process).RefInKind(0)
 WRITE $NAME(^["PAYROLL"]MyRoutine)

 DO ##class(%SYSTEM.Process).RefInKind(1)
 WRITE $NAME(^["PAYROLL"]MyRoutine)

For a description of extended global reference syntax, see the Global Structure chapter in Using Globals.

See Also
• $DATA function

• $ORDER function

• $GET function

ObjectScript Reference 385

$NAME

$NCONVERT
Converts a number to a binary value encoded in a string of 8-bit characters.

$NCONVERT(n,format,endian)
$NC(n,format,endian)

Parameters

Any number, which can be specified as a value, a variable, or an expression. Additional limitations
on valid values are imposed by the format selected.

n

One of the following format codes, specified as a quoted string: S1, S2, S4, S8, U1, U2, U4, F4,
or F8.

format

Optional — A boolean value, where 0 = little-endian and 1 = big-endian. The default is 0.endian

Description
$NCONVERT uses the specified format to convert the number n to an encoded string of 8-bit characters. The values of
these characters are in the range $CHAR(0) through $CHAR(255).

The following are the supported format codes:

Signed integer encoded into a string of one 8-bit byte. The value must be in the range -128
through 127, inclusive.

S1

Signed integer encoded into a string of two 8-bit bytes. The value must be in the range
-32768 through 32767, inclusive.

S2

Signed integer encoded into a string of four 8-bit bytes. The value must be in the range
-2147483648 through 2147483647, inclusive.

S4

Signed integer encoded into a string of eight 8-bit bytes. The value must be in the range
-9223372036854775808 through 9223372036854775807, inclusive.

S8

Unsigned integer encoded into a string of one 8-bit byte. The maximum value is 255.U1

Unsigned integer encoded into a string of two 8-bit bytes. The maximum value is 65535.U2

Unsigned integer encoded into a string of four 8-bit bytes. The maximum value is
4294967295.

U4

IEEE floating point number encoded into a string of four 8-bit bytes.F4

IEEE floating point number encoded into a string of eight 8-bit bytes.F8

Values beyond the range of format limits result in a <VALUE OUT OF RANGE> error. Specifying a negative number for
an Unsigned format results in a <VALUE OUT OF RANGE> error. If n is a non-numeric value (contains any non-numeric
characters) InterSystems IRIS performs conversion of a string to a numeric value. A string beginning with a non-numeric
character is converted to 0.

InterSystems IRIS rounds a fractional number to an integer value for all formats except F4 and F8.

You can use the IsBigEndian() class method to determine which bit ordering is used on your operating system platform:
1=big-endian bit order; 0=little-endian bit order.

 WRITE $SYSTEM.Version.IsBigEndian()

386 ObjectScript Reference

ObjectScript Functions

$SCONVERT provides the inverse of the $NCONVERT operation.

Examples
The following example converts a series of unsigned numbers to two-byte encoded values:

 FOR x=250:1:260 {
 ZZDUMP $NCONVERT(x,"U2") }
 QUIT

The following example performs the same operation in big-endian order:

 FOR x=250:1:260 {
 ZZDUMP $NCONVERT(x,"U2",1) }
 QUIT

See Also
• $SCONVERT function

ObjectScript Reference 387

$NCONVERT

$NORMALIZE
Validates and returns a numeric value; rounds to a specified precision.

$NORMALIZE(num,scale)

Parameters

The numeric value to be validated. It can be a numeric or string value, a variable name, or any
valid ObjectScript expression.

num

The number of significant digits to round num to as the returned value. This number can be
larger or smaller than the actual number of fractional digits in num. Permitted values are 0
(round to integer), –1 (truncate to integer), and positive integers (round to specified number of
fractional digits). There is no maximum scale value. However, the functional maximum cannot
exceed the numeric precision. For standard InterSystems IRIS fractional numbers the functional
scale maximum is 18 (minus the number of integer digits – 1).

scale

Description
The $NORMALIZE function validates num and returns the normalized form of num. It performs rounding (or truncation)
of fractional digits using the scale parameter. You can use the scale parameter to round a real number to a specified number
of fractional digits, to round a real number to an integer, or to truncate a real number to an integer.

After rounding, $NORMALIZE removes trailing zeros from the return value. For this reason, the number of fractional
digits returned may be less than the number specified in scale, as shown in the following example:

 WRITE $NORMALIZE($ZPI,11),!
 WRITE $NORMALIZE($ZPI,12),! /* trailing zero removed */
 WRITE $NORMALIZE($ZPI,13),!
 WRITE $NORMALIZE($ZPI,14)

Parameters

num

The number to be validated may be an integer, a real number, or a scientific notation number (with the letter “E” or “e”).
It may be a string, expression, or variable that resolves to a number. It may be signed or unsigned, and may contain leading
or trailing zeros. $NORMALIZE validates character-by-character. It stops validation and returns the validated portion of
the string if:

• num contains any characters other than the digits 0–9, + or – signs, a decimal point (.), and a letter “E” or “e”.

• num contains more than one decimal point, or letter “E” or “e”.

• If a + or – sign is found after a numeric in num it is considered a trailing sign, and no further numerics are parsed.

• The letter “E” or “e” is not followed by an integer.

The scale parameter value causes the returned value to be a rounded or truncated version of the num value. The actual value
of the num variable is not changed by $NORMALIZE processing.

scale

The mandatory scale parameter is used to specify how many fractional digits to round to. Depending on the value specified,
scale can have no effect on fractional digits, round to a specified number of fractional digits, round to an integer, or truncate
to an integer.

388 ObjectScript Reference

ObjectScript Functions

A nonnegative scale value causes num to be rounded to that number of fractional digits. When rounding, a value of 5 or
greater is always rounded up. To avoid rounding a number, make scale larger than the number of possible fractional digits
in num. A scale value of 0 causes num to be rounded to an integer value (3.9 = 4). A scale value of –1 causes num to be
truncated to an integer value (3.9 = 3). A scale value which is nonnumeric or the null string is equivalent to a scale value
of 0.

Specify an integer value for scale; decimal digits in the scale value are ignored. You can specify a scale value larger than
the number of decimal digits specified in num. You can specify a scale value of –1; all other negative scale values result
in a <FUNCTION> error.

Examples
In the following example, each invocation of $NORMALIZE returns the normalized version of num with the specified
rounding (or integer truncation):

 WRITE !,$NORMALIZE(0,0) ; All integers OK
 WRITE !,$NORMALIZE("",0) ; Null string is parsed as 0
 WRITE !,$NORMALIZE(4.567,2) ; Real numbers OK
 WRITE !,$NORMALIZE("4.567",2) ; Numeric strings OK
 WRITE !,$NORMALIZE(-+.0,99) ; Leading/trailing signs OK
 WRITE !,$NORMALIZE(+004.500,1) ; Leading/trailing 0's OK
 WRITE !,$NORMALIZE(4E2,-1) ; Scientific notation OK

In the following example, each invocation of $NORMALIZE returns a numeric subset of num:

 WRITE !,$NORMALIZE("4,567",0)
 ; NumericGroupSeparators (commas) are not recognized
 ; here validation halts at the comma, and 4 is returned.
 WRITE !,$NORMALIZE("4A",0)
 ; Invalid (nonnumeric) character halts validation
 ; here 4 is returned.

The following example shows the use of the scale parameter to round (or truncate) the return value:

 WRITE !,$NORMALIZE(4.55,2)
 ; When scale is equal to the fractional digits of num,
 ; all digits of num are returned without rounding.
 WRITE !,$NORMALIZE(3.85,1)
 ; num is rounded to 1 fractional digit,
 ; (with values of 5 or greater rounded up)
 ; here 3.9 is returned.
 WRITE !,$NORMALIZE(4.01,17)
 ; scale can be larger than number of fractional digits,
 ; and no rounding is peformed; here 4.01 is returned.
 WRITE !,$NORMALIZE(3.85,0)
 ; When scale=0, num is rounded to an integer value.
 ; here 4 is returned.
 WRITE !,$NORMALIZE(3.85,-1)
 ; When scale=-1, num is truncated to an integer value.
 ; here 3 is returned.

Notes

$DOUBLE Numbers

$DOUBLE IEEE floating point numbers are encoded using binary notation. Most decimal fractions cannot be exactly
represented in this binary notation. When a $DOUBLE value is input to $NORMALIZE with a scale value, the return
value frequently contains more fractional digits than specified in scale because the fractional decimal result is not representable
in binary, so the return value must be rounded to the nearest representable $DOUBLE value, as shown in the following
example:

 SET x=1234.1234
 SET y=$DOUBLE(1234.1234)
 WRITE "Decimal: ",$NORMALIZE(x,2),!
 WRITE "Double: ",$NORMALIZE(y,2),!
 WRITE "Dec/Dub: ",$NORMALIZE($DECIMAL(y),2)

ObjectScript Reference 389

$NORMALIZE

If you are normalizing a $DOUBLE value for decimal formatting, you should convert the $DOUBLE value to decimal
representation before normalizing the result, as shown in the above example.

$NORMALIZE handles $DOUBLE("INF") and $DOUBLE("NAN") values, and returns INF and NAN.

DecimalSeparator Value Ignored

$NORMALIZE is intended to operate on numbers. A num string is interpreted as a number. InterSystems IRIS converts
a number to a canonical form before supplying it to $NORMALIZE. This conversion to a canonical number does not use
the DecimalSeparator property value for the current locale.

For example, if you specify for num the string "00123.4500", $NORMALIZE treats this as the canonical number 123.45,
regardless of the current DecimalSeparator value. If you specify the string "00123,4500", $NORMALIZE treats this as
the canonical number 123 (truncating at the first non-numeric character), regardless of the current DecimalSeparator value.

If you want a function that takes a string as input, use $INUMBER. If you want a function that produces a string result use
$FNUMBER.

$NORMALIZE, and $NUMBER Compared

The $NORMALIZE, and $NUMBER functions both validate numbers and return a validated version of the specified
number.

These two functions offer different validation criteria. Select the one that best meets your needs.

• Both functions parse signed and unsigned integers (including –0), scientific notation numbers (with “E” or “e”), and
real numbers. However, $NUMBER can be set (using the “I” format) to reject numbers with a fractional part
(including scientific notation with a negative base-10 exponent). Both functions parse both numbers (123.45) and
numeric strings (“123.45”).

• Both functions strip out leading and trailing zeroes. The decimal character is stripped out unless followed by a nonzero
value.

• Numeric strings containing a NumericGroupSeparator: $NUMBER parses NumericGroupSeparator characters
(American format: comma (,); European format: period (.) or apostrophe (')) and the decimal character (American
format: period (.) or European format: comma (,)) based on its format parameter (or the default for the current locale).
It accepts and strips out any number of NumericGroupSeparator characters. For example, in American format it validate
“123,,4,56.99” as the number 123456.99. $NORMALIZE does not recognize NumericGroupSeparator characters. It
validates character-by-character until it encounters a nonnumeric character; for example, it validates “123,456.99” as
the number 123.

• Multiple leading signs (+ and –) are interpreted by both functions for numbers. Only $NORMALIZE accepts multiple
leading signs in a quoted numeric string.

• Trailing + and – signs: Both functions reject trailing signs in numbers. In a quoted numeric string $NUMBER parses
one (and only one) trailing sign. $NORMALIZE parses multiple trailing signs.

• Parentheses: $NUMBER parses parentheses surrounding an unsigned number in a quoted string as indicating a negative
number. $NORMALIZE treats parentheses as nonnumeric characters.

• Numeric strings containing multiple decimal characters: $NORMALIZE validates character-by-character until it
encounters the second decimal character. For example, in American format it validates “123.4.56” as the number 123.4.
$NUMBER rejects any string containing more than one decimal character as an invalid number.

Numeric strings containing other nonnumeric characters: $NORMALIZE validates character-by-character until it
encounters an alphabetic character. It validates “123A456” as the number 123. $NUMBER validates or rejects the
entire string; it reject “123A456” as an invalid number.

• The null string: $NORMALIZE parses the null string as zero (0). $NUMBER rejects the null string.

390 ObjectScript Reference

ObjectScript Functions

The $NUMBER function provide optional min/max range checking. This is also available using the $ISVALIDNUM
function.

$NORMALIZE, $NUMBER, and $ISVALIDNUM all provide rounding of numbers to a specified number of fractional
digits. $NORMALIZE can round fractional digits, and round or truncate a real number to return an integer. For example,
$NORMALIZE can round 488.65 to 488.7 or 489, or truncate it to 488. $NUMBER can round real numbers or integers.
For example, $NUMBER can round 488.65 to 488.7, 489, 490 or 500.

See Also
• $DOUBLE function

• $FNUMBER function

• $INUMBER function

• $ISVALIDNUM function

• $NUMBER function

• More information on locales in the section on “System Classes for National Language Support” in Specialized System
Tools and Utilities.

ObjectScript Reference 391

$NORMALIZE

$NOW
Returns the local date and time with fractional seconds for the current process.

$NOW(tzmins)

Parameter

Optional — A positive or negative integer value that specifies the desired time zone
offset from the Greenwich meridian, in minutes. A value of 0 corresponds to the
Greenwich meridian. Positive integers correspond to time zones west of Greenwich;
negative integers correspond to time zones east of Greenwich. For example, a value
of 300 corresponds to United States Eastern Standard Time, 5 hours (300 minutes)
west of Greenwich.The range of permitted values is -1440 through 1440; values beyond
this range result in an <ILLEGAL VALUE> error.

If you omit tzmins, the $NOW function returns the local date and time based on the
$ZTIMEZONE special variable value.The range of $ZTIMEZONE values that the $NOW
function supports is -1440 through 1440; values beyond this range result in an <ILLEGAL
VALUE> error.

tzmins

Description
$NOW can return the following:

• The current local date and time with fractional seconds for the current process.

• The local date and time for a specified time zone, with fractional seconds, for the current process.

The $NOW function returns a character string that consists of two numeric values, separated by a comma. The first number
is an integer that represents the current local date. The second is a fractional number that represents the current local time.
These values are counters, not user-readable dates and times.

$NOW returns the date and time in InterSystems IRIS storage ($HOROLOG) format, with the additional feature of fractional
seconds. $NOW returns the current local date and time in the following format: ddddd,sssss.ffffff

The first integer (ddddd) is the number of days since December 31, 1840, where day 1 is January 1, 1841. The maximum
value for this date integer is 2980013, which corresponds to December 31, 9999.

The second number (sssss.ffffff) is the number of seconds (and fractional seconds) since midnight of the current day. Inter-
Systems IRIS increments the sssss field from 0 to 86399 seconds. When it reaches 86399 at midnight, InterSystems IRIS
resets the sssss field to 0 and increments the date field by 1. Note that within the first second after midnight, seconds are
represented as 0.ffffff (for example, 0.123); this number is not in ObjectScript canonical form (for example, .123), which
affects the string sorting order of these values. You can prepend a plus sign (+) to force conversion of a number to canonical
form before performing a sort operation. The number of ffffff fractional digits is the maximum precision supported by the
current operating system. For more on Windows fractional seconds, see below.

The $NOW function can be invoked with or without a parameter value. The parentheses are mandatory.

392 ObjectScript Reference

ObjectScript Functions

$NOW with no parameter value returns the current local date and time for the current process. It determines the local time
zone from the value set in the $ZTIMEZONE special variable. Setting $ZTIMEZONE changes the time portion of $NOW,
and this change of time can also change the date portion of $NOW.

CAUTION: The $NOW local time value may not correspond to local clock time. $NOW determines local time using
the $ZTIMEZONE value. $ZTIMEZONE is continuous throughout the year; it does not adjust for
Daylight Saving Time (DST) or other local time variants.

Offset from UTC time is calculated using a count of time zones from the Greenwich meridian. It is not a
comparison of your local time with local Greenwich time. The term Greenwich Mean Time (GMT) may
be confusing; local time at Greenwich is the same as UTC during the winter; during the summer it differs
from UTC by one hour. This is because a local time variant, known as British Summer Time, is applied.
$NOW ignores all local time variants.

Also, because $NOW resynchronizes its time value with the system clock, comparisons of time values
between $NOW and other InterSystems IRIS time functions and special variables may show slight variations.
This variation is limited to 0.05 seconds; however, within this range of variation, comparisons may yield
misleading results. For example, WRITE $NOW(),!,$HOROLOG may yield results such as the following:

61438,38794.002085
61438,38793

This anomaly is caused both by the 0.05 second resynchronization variation and by $HOROLOG truncation
of fractional seconds.

$NOW with a parameter value returns the time and date that correspond to the time zone specified in tzmins. The value of
$ZTIMEZONE is ignored.

Time Functions Compared

The various ways to return the current date and time are compared, as follows:

• $NOW returns the local date and time for the current process. $NOW returns the date and time in InterSystems IRIS
storage format. It includes fractional seconds; the number of fractional digits is the maximum precision supported by
the current operating system.

– $NOW() determines the local time zone from the value of the $ZTIMEZONE special variable. The local time
is not adjusted for local time variants, such as Daylight Saving Time. It therefore may not correspond to local
clock time.

– $NOW(tzmins) returns the time and date that correspond to the specified tzmins time zone parameter. The value
of $ZTIMEZONE is ignored.

• $HOROLOG contains the local, variant-adjusted date and time in InterSystems IRIS storage format. The local time
zone is determined from the current value of the $ZTIMEZONE special variable, and then adjusted for local time
variants, such as Daylight Saving Time. It returns whole seconds only; fractions of a second are truncated.

• $ZTIMESTAMP contains the UTC (Coordinated Universal Time) date and time, with fractional seconds, in InterSys-
tems IRIS storage format. Fractional seconds are expressed in three digits of precision (on Windows systems), or six
digits of precision (on UNIX® systems). For this reason, $NOW(0) may return UTC time with greater fractional second
precision than $ZTIMESTAMP.

Microseconds on Windows

The precision of microseconds on Windows systems is generally less accurate than other platforms. This is due to the lim-
itations of the QueryPerformanceCounter() Windows library routine. InterSystems IRIS determines microseconds by
comparing the result computed by QueryPerformanceCounter() with the system clock used for other date/time functions,
which has at best 1 millisecond precision (and usually between 1 and 20 milliseconds of accuracy depending on the hardware

ObjectScript Reference 393

$NOW

running Windows.) When the $NOW microsecond precision clock differs from the millisecond precision clock by more
than 50 milliseconds, InterSystems IRIS adjusts the microsecond precision clock forward or backwards to agree with the
more accurate (but less precise) millisecond precision clock.

Because of this, on Windows, the $NOW function is suitable for measuring microsecond precision time intervals only over
a very short duration, lasting no longer than a small number of seconds. On systems with multiple CPU cores, the InterSystems
IRIS Windows process for each core will make microsecond adjustments that are local to the individual process. This means
that $NOW values returned on different InterSystems IRIS CPU processes can disagree with each other. This discrepancy
among CPU processes is more pronounced when Windows is running on a virtual machine that is hosted on a multi-core
CPU chip.

Separating Date and Time

To get just the date portion or just the time portion of $NOW, you can use the $PIECE function, specifying the comma as
the delimiter character:

 SET dateval=$PIECE($NOW(),",",1)
 SET timeval=$PIECE($NOW(),",",2)
 WRITE !,"Date and time: ",$NOW()
 WRITE !,"Date only: ",dateval
 WRITE !,"Time only: ",timeval

Setting the Date

The value returned by $NOW and $ZTIMESTAMP cannot be set using the FixedDate() method of the %SYSTEM.Process

class.

The value contained in $HOROLOG can be set to a user-specified date for the current process using the FixedDate()
method of the %SYSTEM.Process class.

Examples
The following example shows two ways to return the current local date and time:

 WRITE $ZDATETIME($NOW(),1,1,3)," $NOW() date & time",!
 WRITE $ZDATETIME($HOROLOG,1,1,3)," $HOROLOG date & time"

Note that $HOROLOG adjusts for local time variants, such as Daylight Saving Time. $NOW does not adjust for local
time variants.

The following example uses $ZDATE to convert the date field in $NOW to a date format.

 WRITE $ZDATE($PIECE($NOW(),",",1))

returns a value formatted like this: 04/29/2009

The following example converts the time portion of $NOW to a time in the form of hours:minutes:seconds.ffff on a 12-
hour (a.m. or p.m.) clock.

CLOCKTIME
 NEW
 SET Time=$PIECE($NOW(),",",2)
 SET Sec=Time#60
 SET Totmin=Time\60
 SET Min=Totmin#60
 SET Milhour=Totmin\60
 IF Milhour=12 { SET Hour=12,Meridian=" pm" }
 ELSEIF Milhour>12 { SET Hour=Milhour-12,Meridian=" pm" }
 ELSE { SET Hour=Milhour,Meridian=" am" }
 WRITE !,Hour,":",Min,":",Sec,Meridian
 QUIT

See Also
• $ZDATE function

394 ObjectScript Reference

ObjectScript Functions

• $ZDATEH function

• $ZDATETIME function

• $ZDATETIMEH function

• $ZTIME function

• $ZTIMEH function

• $HOROLOG special variable

• $ZTIMESTAMP special variable

• $ZTIMEZONE special variable

ObjectScript Reference 395

$NOW

$NUMBER
Validates and returns a numeric value; optionally provides rounding and range checking.

$NUMBER(num,format,min,max)
$NUM(num,format,min,max)

Parameters

The numeric value to be validated and then converted to InterSystems IRIS canonical form.
It can be a numeric or string value, a variable name, or any valid ObjectScript expression.

num

Optional — Specifies which processing options to apply to num. These processing options
dictate primarily how to recognize and handle numbers containing decimal points.

format

Optional — The minimum acceptable numeric value.min

Optional — The maximum acceptable numeric value.max

Description
The $NUMBER function converts and validates the num numeric value using the specified format. It accepts numbers
supplied with a variety of punctuation formats and returns numbers in InterSystems IRIS canonical form. You can use
format to test whether a number is an integer. If min or max are specified, the number must fall within that range of values.

$NUMBER can be used for American format numbers, European format numbers, and Russian/Czech format numbers.

Using $NUMBER on the $DOUBLE values INF, –INF, or NAN always returns the empty string.

Parameters

format

The possible format codes are as follows. These format codes may be specified in any order. A nonnumeric format must
be specified as a quoted string. Any or all of the following format codes may be omitted. If format is invalid, $NUMBER
generates a <SYNTAX> error.

• Decimal character: either “.” or “,” indicating whether to use the American (“.”) or European (“,”) convention for
validating the decimal point. You can specify either of these characters, or no decimal character. If you omit the decimal
character, the number takes the DecimalSeparator of the current locale. Refer to European and American Decimal
Separators below

• Rounding factor: an integer indicating how many digits to round to. This integer can be preceded by an optional + or
- sign. If the rounding factor is positive (or unsigned) the number is rounded to the specified number of fractional
digits. If the rounding factor is 0, the number is rounded to an integer. If the rounding factor is a negative integer, the
number is rounded the indicated number of places to the left of the decimal separator. For example, a rounding factor
of -2 rounds 234.45 to 200. The number “5” is always rounded up; thus a rounding factor of 1 rounds 123.45 to 123.5.
After rounding, trailing zeros are removed; thus rounding 4.0043 to two fractional digits returns 4, not 4.00. For
rounding of IEEE floating point numbers refer to $DOUBLE Numbers below.

• Integer indicator: the letter “I” (uppercase or lowercase) which specifies that the number must resolve to an integer.
For example, –07.00 resolves to an integer, but –07.01 does not. If the number does not resolve to an integer,
$NUMBER returns the null string. In the following example, only the first three $NUMBER functions returns an
integer. The other three return the null string:

396 ObjectScript Reference

ObjectScript Functions

 WRITE $NUMBER(-07.00,"I")," non-canonical integer numeric",!
 WRITE $NUMBER(+"-07.00","I")," string forced as integer numeric",!
 WRITE $NUMBER("-7","I")," canonical integer string numeric",!
 WRITE $NUMBER("-07.00","I")," non-canonical integer string numeric",!
 WRITE $NUMBER(-07.01,"I")," fractional numeric",!
 WRITE $NUMBER("-07.01","I")," fractional string numeric",!

min and max

You can specify a minimum allowed value, a maximum allowed value, neither, or both. If specified, the num value (after
rounding) must be greater than or equal to the min value, and less than or equal to the max value. A null string as a min or
max value is equal to zero. If a value does not meet these criteria, $NUMBER returns the null string.

Thus in the following examples, the first is valid because num (4.0) equals max (4). The second is valid because num (4.003)
still equals max (4) within the format range (two fractional digits). However, the third is not valid because $NUMBER
rounds num up to a value (4.01) greater than max within the format range. It returns a null string.

 WRITE !,$NUMBER(4.0,2,0,4)
 WRITE !,$NUMBER(4.003,2,0,4)
 WRITE !,$NUMBER(4.006,2,0,4)

You can omit parameters, retaining the commas as place holders. The first line of the following example sets a max value,
but no format or min value. The second line sets no format value, but sets a min value of the null string, which is equivalent
to zero. Thus the first line returns –7, and the second line fails the min criteria and returns the null string.

 SET max=10
 WRITE !,$NUMBER(-7,,,max)
 WRITE !,$NUMBER(-7,,"",max)

You cannot specify trailing commas. The following results in a <SYNTAX> error:

 WRITE $NUMBER(mynum,,min,)

Notes

Order of Operations

$NUMBER performs the following series of conversions and validations. If the number fails any validation step, $NUMBER
returns a null string (""). If the number passes all validation steps, $NUMBER returns the resulting converted InterSystems
IRIS canonical form number.

1. $NUMBER uses the decimal character format to determine which character is the group separator and strips out all
group separator characters (regardless of their location in the number). It uses the following rule: If the decimal char-
acter specified in format is a period (.), then the group separator is a comma (,) or blank space. If the decimal character
specified in format is a comma (,), then the group separator is a period (.) or blank space. If no decimal character is
specified in format, the group separator is the NumericGroupSeparator property of the current locale. (The Russian
(rusw), Ukrainian (ukrw), and Czech (csyw) locales use a blank space as the numeric group separator.)

2. $NUMBER validates that the number is well-formed. A well-formed number can contain any of the following:

• Numbers

• An optional decimal indicator character, as defined above (one or none, but not more than one).

• An optional plus (+) or minus (-) sign character (leading or trailing, but not more than one).

• Optional parentheses enclosing the number to indicate a negative value (debit). The number within the parentheses
cannot have a sign character.

• An optional base-10 exponent, indicated by an “E” (uppercase or lowercase) followed by an integer. If “E” is
specified, an exponent integer must be present. The exponent integer may be preceded by a sign character.

ObjectScript Reference 397

$NUMBER

3. If the integer indicator is present in format, $NUMBER checks for integers. An integer cannot contain a decimal
indicator character. Numeric strings (“123.45”) and numbers (123.45) are parsed differently. Numeric strings fail this
integer test even if there are no digits following the decimal indicator character, or if expansion of scientific notation
or rounding would eliminate the fractional digits. Numbers pass these validation tests. If a number fails the integer
indicator check, $NUMBER returns the null string ("").

4. $NUMBER converts the number to an InterSystems IRIS canonical form number. It expands scientific notation,
replaces enclosing parentheses with a negative sign character, strips off leading and trailing zeros, and deletes a decimal
indicator character if it is not followed by any nonzero digits.

5. $NUMBER uses the rounding factor (if present) to round the number the specified number of digits. It then strips off
any leading or trailing zeros and the decimal indicator character if it is not followed by any digits.

6. $NUMBER validates the number against the minimum value, if specified.

7. $NUMBER validates the number against the maximum value, if specified.

8. $NUMBER returns the resulting number.

European and American Decimal Separators

$NUMBER returns a number in canonical form, removing all numeric group separators and includes at most one decimal
separator character. You can use the format values “,” or “.” to identify the decimal separator used in num; by specifying
the decimal separator, you are also implicitly specifying the numeric group separator.

To determine the DecimalSeparator character for your locale, invoke the following method:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("DecimalSeparator")

To determine the NumericGroupSeparator character and NumericGroupSize number for your locale, invoke the following
methods:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("NumericGroupSeparator"),!
 WRITE ##class(%SYS.NLS.Format).GetFormatItem("NumericGroupSize")

In following examples, a comma is specified as the decimal separator:

 SET num="123,456"
 WRITE !,$NUMBER(num,",")
 // converts to the fractional number "123.456"
 // (comma is identified as decimal separator)
 SET num="123,45,6"
 WRITE !,$NUMBER(num,",")
 // returns the null string
 // (invalid number, too many decimal separators)
 SET num="123.456"
 WRITE !,$NUMBER(num,",")
 // converts to the integer "123456"
 // removing group separator
 // (if comma is decimal, then period is group separator)
 SET num="123.4.56"
 WRITE !,$NUMBER(num,",")
 // converts to the integer "123456"
 // removing group separators
 // (number and placement of group separators ignored)

$DOUBLE Numbers

$DOUBLE IEEE floating point numbers are encoded using binary notation. Most decimal fractions cannot be exactly
represented in this binary notation. When a $DOUBLE value is input to $NUMBER with a rounding factor, the return
value frequently contains more fractional digits than specified in the rounding factor. This is because the fractional decimal
result is not representable in binary, so the return value must be rounded to the nearest representable $DOUBLE value, as
shown in the following example:

398 ObjectScript Reference

ObjectScript Functions

 SET x=1234.5678
 SET y=$DOUBLE(1234.5678)
 WRITE "Decimal: ",x," rounded ",$NUMBER(x,2),!
 WRITE "Double: ",y," rounded ",$NUMBER(y,2)

When using $DOUBLE numbers be aware that IEEE floating point numbers and standard InterSystems IRIS fractional
numbers differ in precision. $DOUBLE IEEE floating point numbers are encoded using binary notation. They have a pre-
cision of 53 binary bits, which corresponds to 15.95 decimal digits of precision. (Note that the binary representation does
not correspond exactly to a decimal fraction.) Because most decimal fractions cannot be exactly represented in this binary
notation, an IEEE floating point number may differ slightly from the corresponding standard InterSystems IRIS floating
point number. Standard InterSystems IRIS fractional numbers have a precision of 18 decimal digits on all supported Inter-
Systems IRIS system platforms. When an IEEE floating point number is displayed as a fractional number, the binary bits
are often converted to a fractional number with far more than 18 decimal digits. This does not mean that IEEE floating
point numbers are more precise than standard InterSystems IRIS fractional numbers.

If you are using $NUMBER to round a $DOUBLE value and wish to return a specific number of fractional digits, you
should convert the $DOUBLE value to decimal representation before rounding the result.

$NUMBER returns $DOUBLE("INF") or $DOUBLE("NAN") as the empty string.

See Also
• $DOUBLE function

• $FNUMBER function

• $INUMBER function

• $ISVALIDNUM function

• $NORMALIZE function

• More information on locales in the section on “System Classes for National Language Support” in Specialized System
Tools and Utilities.

ObjectScript Reference 399

$NUMBER

$ORDER
Returns the next local variable or the subscript of a local or global variable.

$ORDER(variable,direction,target)
$O(variable,direction,target)

Parameters

A subscripted local, process-private global, or global variable. If an array, the subscript
is required.You cannot specify just the array name.You can specify an unsubscripted
local variable using indirection (see example below).You cannot specify a simple
object property reference as variable; you can specify a multidimensional property
reference as variable with the syntax obj.property.

variable

Optional — The subscript order in which to traverse the target array. Values for
subscripted variables can be: 1 = ascending subscript order (the default) or –1 =
descending subscript order. For unsubscripted local variables, 1 (the default) is the
only permitted value.

direction

Optional — Returns the current data value of the next or previous node of variable.
Whether it is the next or previous depends on the setting of direction.You must specify
a direction value to specify a target. For unsubscripted local variables, direction must
be set to 1. If variable is undefined, the target value remains unchanged. The target
parameter cannot be used with structured system variables (SSVNs) such as
^$ROUTINE.

target

Description
$ORDER is primarily used to loop through subscripted variables at a specified subscript level from a specified starting
point. It returns sequential variables in collation sequence. It allows for gaps in the subscript sequence.

The value $ORDER returns depends on the parameters used.

• $ORDER(variable) returns the number of the next defined subscript if variable is a subscripted variable. The returned
subscript is at the same level as that specified for the variable. For example, $ORDER(^client(4,1,6)) returns
the next third-level subscript. That would be 7, if the variable ^client(4,1,7) exists.

$ORDER(variable) returns the name of the next defined local variable in alphabetic collating sequence, if variable is
an unsubscripted local variable. For example, $ORDER would return the following defined local variables in the fol-
lowing sequence: a, a0a, a1, a1a, aa, b, bb, c. (See example below).

• $ORDER(variable,direction) returns either the next or the previous subscript for the variable. You can specify direction
as 1 (next, the default) or –1 (previous).

For unsubscripted local variables, $ORDER returns variables in direction 1 (next) order only. You cannot specify a
direction of -1 (previous); attempting to do so results in a <FUNCTION> error.

• $ORDER(variable,direction,target) returns the subscript for the variable, and sets target to its current data value. This
can be either the next or the previous subscript for a subscripted variable, depending on the direction setting. For an
unsubscripted local variable, direction must be set to 1 to return the current data value to target. The target parameter
cannot be used with structured system variables (SSVNs) such as ^$ROUTINE. The ZBREAK command cannot
specify the target parameter as a watchpoint.

400 ObjectScript Reference

ObjectScript Functions

First Subscript Returned

You can either start a $ORDER loop with the variable following a specified variable, or with the first variable:

• Start at specified point: SET key=$ORDER(^mydata(99)) returns the next higher subscript after 99 — subscript
100, if it exists. Note that the node you specify in the argument (here subscript 99) need not exist. To return all positive
subscripts you can specify SET key=$ORDER(^mydata(-1)). To return all negative subscripts you can specify
SET key=$ORDER(^mydata(0),-1).

• Start at beginning: SET key=$ORDER(^mydata("")) returns the first subscripted variable in collation sequence.
This technique is required if the level may contain negative as well as positive subscripts.

The following example returns both negative and positive first-level subscripts in ascending numeric sequence.

 SET mydata(1)="a",mydata(-3)="C",mydata(5)="e",mydata(-5)="E"
 // Get first subscript
 SET key=$ORDER(mydata(""))
 WHILE (key'="") {
 WRITE key,!
 // Get next subscript
 SET key = $ORDER(mydata(key))
 }

When $ORDER reaches the end of the subscripts for the given level, it returns a null string (""). If you use $ORDER in
a loop, your code should always include a test for this value.

The $ORDER start code and failure code values are both the null string (""). Because $ORDER starts and finishes on the
null string, it correctly returns nodes having both negative and positive subscripts.

You can use $ORDER to return a limited subset of the defined local variables. You can use argumentless WRITE to display
all defined local variables.

Examples
The examples shown here return local variables. $ORDER can also return subscripted global variables and subscripted
process-private global variables.

The following example uses $ORDER in a WHILE loop to return all of the first-level subscripts in the mydata(n) global:

 SET mydata(1)="a",mydata(3)="c",mydata(7)="g"
 // Get first subscript
 SET key=$ORDER(mydata(""))
 WHILE (key'="") {
 WRITE key,!
 // Get next subscript
 SET key = $ORDER(mydata(key))
 }

The following example uses $ORDER in a WHILE loop to return all of the second-level subscripts in the mydata(1,n)
global. Note that the first-level and third-level subscripts are ignored. This example returns both the subscript numbers and
the corresponding variable values:

 SET mydata(1,1)="a",mydata(1,3)="c",mydata(1,3,1)="lcase",mydata(1)="A",mydata(1,7)="g"
 SET key=$ORDER(mydata(1,""),1,target)
 WHILE (key'="") {
 WRITE key," = ",target,!
 // Get next subscript
 SET key = $ORDER(mydata(1,key),1,target)
 }

The following example uses $ORDER in a WHILE loop to return unsubscripted local variables. Local variables are
returned in collation sequence. This example returns both the local variable names and their values. Note that the @ indi-
rection operator must be used when looping through unsubscripted local variables. This example starts with the next local
variable in collation sequence after b (in this case, bminus). It then loops through all defined local variables that follow it
in collation sequence. To avoid listing the variables foo and target, these variables are defined as process-private globals,
rather than local variables:

ObjectScript Reference 401

$ORDER

 SET a="great",b="good",bminus="pretty good",c="fair",d="poor",f="failure"
 SET ^||foo="b"
 SET ^||foo=$ORDER(@^||foo,1,^||target)
 WHILE ^||foo '= "" {
 WRITE ^||foo," = ",^||target,!
 SET ^||foo=$ORDER(@^||foo,1,^||target)
 }

Notes

Uses for $ORDER

$ORDER is typically used with loop processing to traverse the nodes in an array that doesn’t use consecutive integer
subscripts. $ORDER simply returns the subscript of the next existing node. For example:

 SET struct=""
 FOR {
 SET struct=$ORDER(^client(struct))
 QUIT:struct=""
 WRITE !,^client(struct)
 }

The above routine writes the values for all the top-level nodes in the ^client global array.

$ORDER returns subscripts of existing nodes, but not all nodes contain a value. If you use $ORDER in a loop to feed a
command (such as WRITE) that expects data, you must include a $DATA check for valueless nodes. For example, you
could specify the WRITE command in the previous example with a postconditional test, as follows:

 WRITE:($DATA(^client(struct))#10) !,^client(struct)

This test covers the case of both a valueless pointer node and a valueless terminal node. If your code becomes too cumbersome
for a simple FOR loop, you can relegate part of it to a block-structured DO.

Global References

If a variable is global variable, it can include an extended global reference, specifying a global in a different namespace.
If you specify a nonexistent namespace, InterSystems IRIS issues a <NAMESPACE> error. If you specify a namespace
for which you do not have privileges, InterSystems IRIS issues a <PROTECT> error, followed by the global name and
database path, such as the following: <PROTECT> ^myglobal(1),c:\intersystems\iris\mgr\. If the global
variable has subscript mapping to a namespace for which the user does not have Read permission, the <PROTECT> error
information shows the original global reference because you cannot see a subscript in a namespace for which you do not
have privileges. However, the <PROTECT> error database path shows the protected database, not the original database.

If variable is a subscripted global variable, it can be a naked global reference. A naked global reference is specified without
the array name and designates the most recently executed global reference. For example:

 SET var1=^client(4,5)
 SET var2=$ORDER(^(""))
 WRITE "var1=",var1,!,"var2=",var2

The first SET command establishes the current global reference, including the subscript level for the reference. The
$ORDER function uses a naked global reference to return the first subscript for this level. For example, it would return
the value 1, indicating ^client(4,1), if that subscripted global is defined. If ^client(4,1) is not defined, it would return the
value 2, indicating ^client(4,2) if that subscripted global is defined, and so forth.

All three parameters of $ORDER can take a naked global reference, or specify the global reference. However, if direction
specifies an explicit global reference, subsequent naked global references do not use the direction global reference. They
continue to use the prior established global reference, as shown in the following example:

 SET ^client(4,3)="Jones"
 SET ^client(4,5)="Smith"
 SET ^dir(1)=-1
 SET rtn=$ORDER(^client(4,5),-1)
 WRITE $ZREFERENCE,!
 /* naked global ref is ^client(4,5) */
 SET rtn=$ORDER(^client(4,5),^dir(1))

402 ObjectScript Reference

ObjectScript Functions

 WRITE $ZREFERENCE,!
 /* NOTE: naked global ref is ^client(4,5) */
 SET rtn=$ORDER(^client(4,5),^dir(1),^(1))
 WRITE $ZREFERENCE
 /* NOTE: naked global ref is ^client(4,1) */
 WRITE ^client(4,1),!
 SET rtn=$ORDER(^client(4,5),^dir(1),^targ(1))
 WRITE $ZREFERENCE
 /* naked global ref is ^targ(1) */
 WRITE ^targ(1),!
 SET ^rtn(1)=$ORDER(^client(4,5),^dir(1),^targ(2))
 WRITE $ZREFERENCE
 /* naked global ref is ^rtn(1) */
 WRITE ^targ(2)

For more details, see Naked Global Reference in Using Globals.

$ORDER and $DOUBLE Subscripts

$DOUBLE floating point numbers can be used as subscript identifiers. However, when used as a subscript identifier, the
$DOUBLE number is converted to a string. When $ORDER returns a subscript of this type, it returns it as a numeric
string, not a $DOUBLE floating point number.

See Also
• $DATA function

• $GET function

• $QUERY function

• Global Structure chapter in Using Globals

ObjectScript Reference 403

$ORDER

$PARAMETER
Returns the value of the specified class parameter.

$PARAMETER(class,parameter)

Parameters

Optional — Either a class name or an object reference (OREF) to a class instance.
If omitted, uses the object reference of the current class instance. When omitted,
you must specify the placeholder comma.

class

The name of a parameter. An expression which evaluates to a string. The value
of the string must match the name of an existing parameter of the class identified
by class.

parameter

Description
$PARAMETER returns the value of a specified class parameter. $PARAMETER can look up this parameter in the current
class context or in a specified class context. You can specify a class name as a quoted string, specify an OREF, or omit the
class parameter and take as default the current instance (see $THIS). Specifying class is optional; specifying the comma
separator is mandatory.

For example:

 WRITE $PARAMETER("%Library.Boolean","XSDTYPE")

There are several ways to return the value of a parameter using object syntax, as shown in the following example:

 WRITE "ObjectScript function:",!
 WRITE $PARAMETER("Sample.Person","EXTENTQUERYSPEC")
 WRITE !,"class parameter:",!
 WRITE ##class(Sample.Person).#EXTENTQUERYSPEC
 WRITE !,"instance parameter:",!
 SET myinst=##class(Sample.Person).%New()
 WRITE myinst.%GetParameter("EXTENTQUERYSPEC")
 WRITE !,"instance parameter:",!
 WRITE myinst.#EXTENTQUERYSPEC

Invalid Values

• $PARAMETER("","XMLTYPE"): attempting to invoke an invalid OREF (such as the empty string, an integer, or a
fractional number) results in an <INVALID OREF> error.

• $PARAMETER("bogus","XMLTYPE"): attempting to invoke a nonexistent class results in a <CLASS DOES NOT
EXIST> error, followed by the specified class name. If a package name is not specified, InterSystems IRIS assumes
the default. For example, attempting to invoke the nonexistent class “bogus” results in the error <CLASS DOES NOT
EXIST> *User.bogus.

• $PARAMETER(,"XMLTYPE"): attempting to default to the current object instance when none has been established
results in a <NO CURRENT OBJECT> error.

• $PARAMETER("%SYSTEM.Task",""): attempting to reference an invalid parameter name (for example, an empty
string) or to reference a parameter by number generates an <ILLEGAL VALUE> error.

• $PARAMETER("%SYSTEM.Task","MakeCoffee"): attempting to reference a nonexistent parameter name returns
the empty string ("").

404 ObjectScript Reference

ObjectScript Functions

Examples
The following example specifies class names and returns the class default values for the XMLTYPE and XSDTYPE
parameters:

 WRITE $PARAMETER("%SYSTEM.Task","XMLTYPE"),!
 WRITE $PARAMETER("%Date","XSDTYPE")

The following example specifies an OREF and returns the value of the XMLTYPE parameter for this instance:

 SET oref=##class(%SYSTEM.Task).%New()
 WRITE $PARAMETER(oref,"XMLTYPE")

The following example returns a system parameter using $PARAMETER syntax and using class syntax:

 WRITE $PARAMETER("%SYSTEM.SQL","%RandomSig"),!
 WRITE ##class(%SYSTEM.SQL).#%RandomSig

See Also
• $CLASSMETHOD function

• $CLASSNAME function

• $METHOD function

• $PROPERTY function

• $THIS special variable

ObjectScript Reference 405

$PARAMETER

$PIECE
Returns or replaces a substring, using a delimiter.

$PIECE(string,delimiter,from,to)
$P(string,delimiter,from,to)

SET $PIECE(string,delimiter,from,to)=value
SET $P(string,delimiter,from,to)=value

Parameters

The target string in which delimited substrings are identified. Specify string as an
expression that evaluates to a quoted string or a numeric value. In SET $PIECE syntax,
string must be a variable or a multi-dimensional property.

string

A delimiter used to identify substrings within string. Specify delimiter as an expression
that evaluates to a quoted string containing one or more characters.

delimiter

Optional — An expression that evaluates to a code specifying the location of a substring,
or the beginning of a range of substrings, within string. Substrings are separated by a
delimiter, and counted from 1. Permitted values are n (a positive integer specifying the
substring count from the beginning of string), * (specifying the last substring in string),
and *-n (offset integer count of substrings counting backwards from end of string). SET
$PIECE syntax also supports *+n (offset integer count of substrings to append beyond
the end of string).Thus, the first delimited substring is 1, the second delimited substring
is 2, the last delimited substring is *, and the next-to-last delimited substring is *-1. If
from is omitted, it defaults to the first delimited substring.

from

Optional — An expression that evaluates to a code specifying the ending substring for
a range of substrings within string. Must be used with from. Permitted values are n (a
positive integer specifying the substring count from the beginning of string), * (specifying
the last substring in string), and *-n (offset integer count of substrings from end of
string). SET $PIECE syntax also supports *+n (offset integer for a range of substrings
to append beyond the end of string). If to is prior to from in string, no operation is
performed and no error is generated.

to

Description
$PIECE identifies substrings within string by the presence of a delimiter. If the delimiter does not occur in string, the
entire string is treated as a single substring.

$PIECE can be used in two ways:

• To return a substring from string. This uses the $PIECE(string,delimiter,from,to) syntax.

• To replace a substring within string. It identifiers a substring and replaces it with another substring. The replacement
substring may be the same length, longer, or shorter than the original substring. This uses the SET
$PIECE(string,delimiter,from,to)=value syntax.

Returning a Substring

When returning a specified substring (piece) from string, the substring returned depends on the parameters used:

• $PIECE(string,delimiter) returns the first substring in string. If delimiter occurs in string, this is the substring that
precedes the first occurrence of delimiter. If delimiter does not occur in string, the returned substring is string.

406 ObjectScript Reference

ObjectScript Functions

• $PIECE(string,delimiter,from) returns a substring whose location is specified by the from parameter. Substrings are
delimited by delimiters and the beginning and end of string. The delimiter itself is not returned.

• $PIECE(string,delimiter,from,to) returns a range of substrings including the substring specified in from through the
substring specified in to (inclusive). This four-argument form of $PIECE returns a substring that includes any inter-
mediate occurrences of delimiter that occur between the from and to substrings. If to is greater than the number of
substrings, the returned substring includes all substrings to the end of string.

Parameters

string

When $PIECE is used to return a substring, string can be a string literal enclosed in quotation marks, a canonical numeric,
a variable, an object property, or any valid ObjectScript expression that evaluates to a string or a numeric. If you specify
a null string ("") as the target string, $PIECE always returns the null string, regardless of the other parameter values.

A target string usually contains instances of a character (or character string) which are used as delimiters. This character
or character string cannot also be used as a data value within string.

When $PIECE is used with SET on the left hand side of the equals sign to replace a substring, string can be a variable or
a multidimensional property reference; it cannot be a non-multidimensional object property.

delimiter

The search string to be used to delimit substrings within string. It can be a string literal enclosed in quotation marks, a
canonical numeric, a variable or any valid ObjectScript expression that evaluates to a string or a numeric.

Commonly, a delimiter is a designated character which is never used as data within string, but is set aside solely for use as
a delimiter separating substrings. For example, if delimiter is “^”, the string “Red^Orange^Yellow” contains three delimited
substrings.

A delimiter can be a multi-character string, the individual characters of which can be used within string data. For example,
if delimiter is “^#”, the string “Red^Orange^#^Yellow#Green#^Blue” contains two delimited substrings: “Red^Orange”
and “^Yellow#Green#^Blue”.

Commonly, string does not begin or end with a delimiter. If string begins or ends with a delimiter, $PIECE treats this
delimiter as demarcating a substring with a null string ("") value. For example, if delimiter is “^”, the string
“^Red^Orange^Yellow^” contains five delimited substrings; substrings 1 and 5 have null string values.

If the specified delimiter is not in string, $PIECE returns the entire string. If the specified delimiter is the null string (""),
$PIECE returns the null string.

from

The location of a substring within string. Use n (a positive integer) to count delimited substrings from the beginning of
string. Use * to specify the last delimited substring in string. Use *-n to count delimited substrings by offset from the last
delimited substring in string.

• 1 specifies the first substring of string (the substring that precedes the first occurrence of delimiter). If string does not
contain the specified delimiter, a from value of 1 returns string. If from is omitted, it defaults to 1.

• 2 specifies the second substring of string (the substring that appears between the first and second occurrences of
delimiter, or between the first occurrence of delimiter and the end of string).

• * specifies the last substring of string (the substring that follows the last occurrence of delimiter). If string does not
contain the specified delimiter, a from value of * returns string.

• *-1 specifies the next-to-last substring of string. *-n counts by offset from the last substring of string. *-0 is the last
substring of string; * and *-0 are functionally identical.

ObjectScript Reference 407

$PIECE

• For SET $PIECE syntax only — *+n (an asterisk followed by a positive number) appends delimited substrings by
offset beyond the end of string. Thus, *+1 appends a delimited substring beyond the end of string, *+2 appends a
delimited substring two positions beyond the end of string, padding with delimiters.

• If from is the null string (""), zero, a negative number, or specifies a count or offset beyond the number of substrings
in string, $PIECE returns a null string.

$PIECE converts a from numeric to canonical form (resolving leading plus and minus signs and removing leading zeros),
then truncates it to an integer.

If the from parameter is used with the to parameter, it identifies the start of a range of substrings to be returned as a string,
and should be less than the value of to.

to

The number of the substring within string that ends the range initiated by the from parameter. The returned string includes
both the from and to substrings, as well as any intermediate substrings and the delimiters separating them. The to parameter
must be used with from and should be greater than the value of from.

Use n (a positive integer) to count delimited substrings from the beginning of string. Use * to specify the last delimited
substring in string. Use *-n to count delimited substrings by offset backwards from the last delimited substring in string.

For SET $PIECE syntax only — *+n (an asterisk followed by a positive number) specifies the end of a range of substrings
to append beyond the end of string.

• If from is less than to, $PIECE returns a string consisting of all of the delimited substrings within this range, including
the from and to substrings. This returned string contains the substrings and the delimiters within this range. If to is
greater than the number of delimited substrings, the returned string contains all the string data (substrings and delimiters)
beginning with the from substring and continuing to the end of string.

• If from is equal to to, $PIECE returns the from substring. This can occur if from and to are the same value, or are dif-
ferent values that reference the same substring.

• If from is greater than to, is zero (0), or is the null string (""), $PIECE returns a null string.

$PIECE converts a to numeric to canonical form (resolving leading plus and minus signs and removing leading zeros),
then truncates it to an integer.

Specifying *-n and *+n Parameter Values

When using a variable to specify *-n or *+n, you must always specify the asterisk and a sign character in the parameter
itself.

The following are valid specifications of *-n:

 SET count=2
 SET alph="a^b^c^d"
 WRITE $PIECE(alph,"^",*-count)

 SET count=-2
 SET alph="a^b^c^d"
 WRITE $PIECE(alph,"^",*+count)

The following is a valid specification of *+n:

 SET count=2
 SET alph="a^b^c^d"
 SET $PIECE(alph,"^",*+count)="F"
 WRITE alph

Whitespace is permitted within these parameter values.

408 ObjectScript Reference

ObjectScript Functions

Examples: Returning a Delimited Substring

In the following example, each $PIECE returns the specified substring as identified by the "," delimiter:

 SET colorlist="Red,Green,Blue,Yellow,Orange,Black"
 WRITE $PIECE(colorlist,","),! ; returns "Red" (substring 1) by default
 WRITE $PIECE(colorlist,",",3),! ; returns "Blue" the third substring
 WRITE $PIECE(colorlist,",",*),! ; returns "Black" the last substring
 WRITE $PIECE(colorlist,",",*-1),! ; returns "Orange" the next-to-last substring

In the following example, $PIECE returns the integer and fractional parts of a number:

 SET int=$PIECE(123.999,".")
 SET frac=$PIECE(123.999,".",*)
 WRITE "integer=",int," fraction =.",frac

The following example returns "Blue,Yellow,Orange", the third through fifth substrings in colorlist, as delimited by ",":

 SET colorlist="Red,Green,Blue,Yellow,Orange,Black"
 SET extract=$PIECE(colorlist,",",3,5)
 WRITE extract

The following WRITE statements all return the first substring “123”, showing that these formats are equivalent when from
and to have a value of 1:

 SET numlist="123#456#789"
 WRITE !,"2-arg=",$PIECE(numlist,"#")
 WRITE !,"3-arg=",$PIECE(numlist,"#",1)
 WRITE !,"4-arg=",$PIECE(numlist,"#",1,1)

In the following example, both $PIECE functions returns the entire string string, because there are no occurrences of
delimiter in string:

 SET colorlist="Red,Green,Blue,Yellow,Orange,Black"
 SET extract1=$PIECE(colorlist,"#")
 SET extract2=$PIECE(colorlist,"#",1,4)
 WRITE "# =",extract1,!,"#,1,4=",extract2

The following example $PIECE returns the second substring from an object property:

 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SchemaPath="MyTests,Sample,Cinema"
 WRITE "whole schema path: ",tStatement.%SchemaPath,!
 WRITE "2nd piece of schema path: ",$PIECE(tStatement.%SchemaPath,",",2),!

The following two examples use more complex delimiters.

This example uses a delimiter string “#-#” to return three substrings of the string numlist. Here, the component characters
of the delimiter string, “#” and “-”, can be used as data values; only the specified sequence of characters (#-#) is set aside:

 SET numlist="1#2-3#-#45##6#-#789"
 WRITE !,$PIECE(numlist,"#-#",1)
 WRITE !,$PIECE(numlist,"#-#",2)
 WRITE !,$PIECE(numlist,"#-#",3)

The following example uses a non-ASCII delimiter character (in this case, the Unicode character for pi), specified using
the $CHAR function, and inserted into string by using the concatenate operator (_):

 SET a = $CHAR(960)
 SET colorlist="Red"_a_"Green"_a_"Blue"
 SET extract1=$PIECE(colorlist,a)
 SET extract2=$PIECE(colorlist,a,2)
 SET extract3=$PIECE(colorlist,a,2,3)
 WRITE extract1,!,extract2,!,extract3

Replacing a Substring Using SET $PIECE
When making assignments with the SET command, you can use $PIECE to the left, as well as to the right, of the equals
sign. When used to the left of the equals sign, $PIECE designates a substring to be replaced by the assigned value.

ObjectScript Reference 409

$PIECE

When $PIECE is used with SET on the left hand side of the equals sign, string can be a valid variable name. If the variable
does not exist, SET $PIECE defines it. The string parameter can also be a multidimensional property reference; it cannot
be a non-multidimensional object property. Attempting to use SET $PIECE on a non-multidimensional object property
results in an <OBJECT DISPATCH> error.

The use of $PIECE (and $LIST and $EXTRACT) in this context differs from other standard functions because it modifies
an existing value, instead of just returning a value. You cannot use SET (a,b,c,...)=value syntax with $PIECE (or $LIST
or $EXTRACT) on the left of the equals sign, if the function uses relative offset syntax: * representing the end of a string
and *-n or *+n representing relative offset from the end of the string. You must instead use SET a=value,b=value,c=value,...
syntax.

Examples: Replacing a Delimited Substring

The following example changes the value of colorlist to "Magenta,Green,Cyan,Yellow,Orange,Black":

 SET colorlist="Red,Green,Blue,Yellow,Orange,Black"
 WRITE colorlist,!
 SET $PIECE(colorlist,",",1)="Magenta"
 WRITE colorlist,!
 SET $PIECE(colorlist,",",*-3)="Cyan"
 WRITE colorlist,!

The replacement substring may, of course, be longer or shorter than the original, and may include delimiters:

 SET colorlist="Red,Green,Blue,Yellow,Orange,Black"
 WRITE colorlist,!
 SET $PIECE(colorlist,",",3)="Turquoise,Aqua,Teal"
 WRITE colorlist,!

If you specify a from and to argument, the included substrings are replaced by the specified value, in this case the 4th
through 6th delimited substrings:

 SET colorlist="Red,Blue,Yellow,Green,Orange,Black"
 WRITE !,colorlist
 SET $PIECE(colorlist,",",4,6)="Yellow+Blue,Yellow+Red"
 WRITE !,colorlist

You can append one or more delimited substrings either by delimited substring count (using n), or by offset from the end
of string (using *+n). SET $PIECE appends additional delimiters as needed to append the delimited substring(s) at the
specified location. The following examples both change the value of colorlist to "Green^Blue^^Red", padding with an
extra empty string delimited substring:

 SET colorlist="Green^Blue"
 SET $PIECE(colorlist,"^",4)="Red"
 WRITE colorlist

 SET colorlist="Green^Blue"
 SET $PIECE(colorlist,"^",*+2)="Red"
 WRITE colorlist

If delimiter doesn't appear in string, $PIECE treats string as a single piece and performs the same substitutions described
above. If there is no from argument specified, the new value replaces the original string:

 SET colorlist="Red,Green,Blue"
 WRITE colorlist,!
 SET $PIECE(colorlist,"^")="Purple^Orange"
 WRITE colorlist

If delimiter doesn't appear in string, and from is specified as an integer greater than 1, $PIECE appends from-1 delimiters
and the supplied value to the end of string:

 SET colorlist="Red,Green,Blue"
 WRITE colorlist,!
 SET $PIECE(colorlist,"^",3)="Purple"
 WRITE colorlist

If from represents a position prior to the beginning of the string, InterSystems IRIS performs no operation:

410 ObjectScript Reference

ObjectScript Functions

 SET colorlist="Red,Green,Blue"
 WRITE colorlist,!
 SET $PIECE(colorlist,",",*-7)="Purple"
 WRITE colorlist

If from represents a position prior to the beginning of the string and to is provided, InterSystems IRIS treats from as position
1:

 SET colorlist="Red,Green,Blue"
 WRITE colorlist,!
 SET $PIECE(colorlist,",",*-7,1)="Purple"
 WRITE colorlist

Initializing a String Variable

The string variable does not need to be defined before being assigned a value. The following example initializes newvar
to the character pattern ">>>>>>TOTAL":

 SET $PIECE(newvar,">",7)="TOTAL"
 WRITE newvar

See the "SET with $PIECE and $EXTRACT" section of the SET command documentation for more information.

Delimiter is Null String

If the delimiter is the null string, the new value replaces the original string, regardless of the values of the from and to
arguments.

The following two examples both set colorlist to “Purple”:

 SET colorlist="Red,Green,Blue"
 WRITE !,colorlist
 SET $PIECE(colorlist,"")="Purple"
 WRITE !,colorlist

 SET colorlist="Red,Blue,Yellow,Green,Orange,Black"
 WRITE !,colorlist
 SET $PIECE(colorlist,"",3,5)="Purple"
 WRITE !,colorlist

Notes

Using $PIECE to Unpack Data Values

$PIECE is typically used to "unpack" data values that contain multiple fields delimited by a separator character. Typical
delimiter characters include the slash (/), the comma (,), the space (), and the semicolon (;). The following sample values
are good candidates for use with $PIECE:

"John Jones/29 River St./Boston MA, 02095"
"Mumps;Measles;Chicken Pox;Diptheria"
"45.23,52.76,89.05,48.27"

$PIECE and $LENGTH

The two-argument form of $LENGTH returns the number of substrings in a string, based on a delimiter. Use $LENGTH
to determine the number of substrings in a string, and then use $PIECE to extract individual substrings, as shown in the
following example:

 SET sentence="The quick brown fox jumped over the lazy dog's back."
 SET delim=" "
 SET countdown=$LENGTH(sentence,delim)
 SET countup=1
 FOR reps=countdown:-1:1 {
 SET extract=$PIECE(sentence,delim,countup)
 WRITE !,countup," ",extract
 SET countup=countup+1
 }
 WRITE !,"All done!"

ObjectScript Reference 411

$PIECE

Null Values

$PIECE does not distinguish between a delimited substring with a null string value, and a nonexistent substring. Both
return a null string value. For example, the following examples both return the null string for a from value of 7:

 SET colorlist="Red,Green,Blue,Yellow,Orange,Black"
 SET extract1=$PIECE(colorlist,",",6)
 SET extract2=$PIECE(colorlist,",",7)
 WRITE "6=",extract1,!,"7=",extract2

 SET colorlist="Red,Green,Blue,Yellow,Orange,Black,"
 SET extract1=$PIECE(colorlist,",",6)
 SET extract2=$PIECE(colorlist,",",7)
 WRITE "6=",extract1,!,"7=",extract2

In the first case, there is no seventh substring; a null string is returned. In the second case there is a seventh substring, as
indicted by the delimiter at the end of the string; the value of this seventh substring is the null string.

The following example shows null values within a string. It extracts substrings 1 and 3. These substrings exists, but both
contain a null string. (Substring 1 is defined as the string preceding the first delimiter character):

 SET colorlist=",Red,,Blue,"
 SET extract1=$PIECE(colorlist,",")
 SET extract3=$PIECE(colorlist,",",3)
 WRITE !,"sub1=",extract1,!,"sub3=",extract3

The following examples also returns a null string, because the specified substrings do not exist:

 SET colorlist="Red,Green,Blue,Yellow,Orange,Black"
 SET extract=$PIECE(colorlist,",",0)
 WRITE !,"Length=",$LENGTH(extract),!,"Value=",extract

 SET colorlist="Red,Green,Blue,Yellow,Orange,Black"
 SET extract=$PIECE(colorlist,",",8,20)
 WRITE !,"Length=",$LENGTH(extract),!,"Value=",extract

Forcing Numeric Evaluation

Prefacing $PIECE (or any ObjectScript function) with a unary + sign forces numeric evaluation of the return value. It
returns a numeric substring in canonical form. It returns a non-numeric substring as 0. It returns the leading numeric part
of a mixed numeric substring. It returns 0 for a null string value or a nonexistent substring.

This forced numeric evaluation is shown in the following example:

 SET str="snow white,7dwarves,+007.00,99.90,,-0,"
 WRITE "Substrings:",!
 FOR i=1:1:7 {WRITE i,"=",$PIECE(str,",",i)," "}
 WRITE !,"Forced Numerics:",!
 FOR i=1:1:7 {WRITE i,"=",+$PIECE(str,",",i)," "}

Nested $PIECE Operations

To perform complex extractions, you can nest $PIECE references within each other. The inner $PIECE returns a substring
that is operated on by the outer $PIECE. Each $PIECE uses its own delimiter. For example, the following returns the state
abbreviation “MA”:

 SET patient="John Jones/29 River St./Boston MA 02095"
 SET patientstateaddress=$PIECE($PIECE(patient,"/",3)," ",2)
 WRITE patientstateaddress

The following is another example of nested $PIECE operations, using a hierarchy of delimiters. First, the inner $PIECE
uses the caret (^) delimiter to find the second piece of nestlist: "A,B,C". Then the outer $PIECE uses the comma (,)
delimiter to return the first and second pieces ("A,B") of the substring "A,B,C":

 SET nestlist="1,2,3^A,B,C^@#!"
 WRITE $PIECE($PIECE(nestlist,"^",2),",",1,2)

412 ObjectScript Reference

ObjectScript Functions

$PIECE Compared with $EXTRACT and $LIST

$PIECE determines a substring by counting user-defined delimiter characters within the string. $PIECE takes as input an
ordinary character string containing multiple instances of a character (or string) intended for use as a delimiter.

$EXTRACT determines a substring by counting characters from the beginning of a string. $EXTRACT takes as input an
ordinary character string.

$LIST determines an element from an encoded list by counting elements (not characters) from the beginning of the list.
The $LIST functions specify substrings without using a designated delimiter. If setting aside a delimiter character or
character sequence is not appropriate to the type of data (for example, bitstring data), you should use the $LISTBUILD
and $LIST functions to store and retrieve substrings. You can convert a delimited string into a list using the $LISTFROM-
STRING function. You can convert a list to a delimited string using the $LISTTOSTRING function.

The data storage strategies used by $PIECE and the $LIST functions are incompatible, and their use should not be combined.
For example, attempted to use $PIECE on a list created using $LISTBUILD yields unpredictable results and should be
avoided.

See Also
• SET command

• $EXTRACT function

• $LENGTH function

• $LIST function

• $LISTBUILD function

• $LISTFROMSTRING function

• $LISTTOSTRING function

• $REVERSE function

ObjectScript Reference 413

$PIECE

$PREFETCHOFF
Ends pre-fetching of globals.

$PREFETCHOFF(gref,gref2)

Parameters

Optional — A global reference.gref

Optional — A global reference used to establish a range.gref2

Description
$PREFETCHOFF turns off the pre-fetching of global nodes established by $PREFETCHON.

There are three forms of $PREFETCHOFF:

• $PREFETCHOFF() turns off all pre-fetching established for the current process.

• $PREFETCHOFF(gref) turns off pre-fetching of the gref node and all of its descendents. The gref value must corre-
spond exactly to the $PREFETCHON value.

• $PREFETCHOFF(gref,gref2) turns off pre-fetching of the nodes in the range gref through gref2. gref and gref2
must be nodes of the same global. The gref and gref2 values must correspond exactly to the $PREFETCHON values.
You cannot turn off part of a range of values.

Upon successful completion, $PREFETCHOFF() returns 0. It returns 0 even if there were no pre-fetches to turn off.

Upon successful completion, $PREFETCHOFF(gref) and $PREFETCHOFF(gref,gref2) return a string of six integers
separated by commas. These six values are: number of blocks prefetched, number of I/Os performed, number of prefetch
operations, milliseconds of prefetch disk time, background job: number of blocks prefetched, and background job: number
of I/Os performed.

Upon failure, all forms of $PREFETCHOFF return -1. $PREFETCHOFF(gref) and $PREFETCHOFF(gref,gref2)
return -1 if there is no corresponding $PREFETCHON that exactly matches the specified global or range of globals, or if
the specified prefetch global or range of globals has already been turned off.

Parameters

gref

A global reference, either a global or a process-private global. The global does not need to be defined at the time that the
pre-fetch is turned off.

You can specify this global using @ indirection. Refer to Indirection in Using ObjectScript.

You cannot specify a structured system variable name (SSVN) for this parameter.

gref2

A global reference used to establish a range with gref. Therefore, gref2 must be a global node lower in the same global tree
as gref.

You can specify this global using @ indirection. Refer to Indirection in Using ObjectScript.

Examples
The following example establishes two pre-fetches, then turns them off individually:

414 ObjectScript Reference

ObjectScript Functions

 SET ret=$PREFETCHON(^a)
 IF ret=1 { WRITE !,"prefetch established" }
 ELSE { WRITE !,"prefetch not established" }
 SET ret2=$PREFETCHON(^b)
 IF ret2=1 { WRITE !,"prefetch established" }
 ELSE { WRITE !,"prefetch not established" }
 SET retoff=$PREFETCHOFF(^a)
 IF retoff'=-1 { WRITE !,"prefetch turned off. Values:",retoff }
 ELSE { WRITE !,"prefetch not turned off" }
 SET retoff2=$PREFETCHOFF(^b)
 IF retoff2'=-1 { WRITE !,"prefetch turned off. Values:",retoff2 }
 ELSE { WRITE !,"prefetch not turned off" }

The following example establishes two pre-fetches, then turns off all pre-fetches for the current process:

 SET ret=$PREFETCHON(^a)
 IF ret=1 { WRITE !,"prefetch established" }
 ELSE { WRITE !,"prefetch not established" }
 SET ret2=$PREFETCHON(^b)
 IF ret2=1 { WRITE !,"prefetch established" }
 ELSE { WRITE !,"prefetch not established" }
 SET retoff=$PREFETCHOFF()
 IF retoff=0 { WRITE !,"all prefetches turned off" }
 ELSE { WRITE !,"prefetch not turned off" }

See Also
• $PREFETCHON function

• Globals in Using ObjectScript

ObjectScript Reference 415

$PREFETCHOFF

$PREFETCHON
Establishes pre-fetch for specified globals.

$PREFETCHON(gref,gref2)

Parameters

A global reference.gref

Optional — A global reference used to establish a range.gref2

Description
$PREFETCHON improves performance by turning on pre-fetching for a global or a range of globals. $PREFETCHON
returns 1 indicating successful completion (pre-fetching is enabled). $PREFETCHON returns 0 indicating the desired
pre-fetch could not be established. A 0 might be returned if the specified range includes two different global names, or if
there is some other problem that prevents pre-fetching. A returned 0 is not an error; it does not interrupt program execution,
and processing of global references in the specified range is not impaired. It simply means that these global operations do
not have the performance boost of pre-fetching.

Note: Pre-fetching of globals is not supported on a remote database.

$PREFETCHOFF turns off pre-fetching.

There are two forms of $PREFETCHON:

• $PREFETCHON(gref) pre-fetches the gref node and all of its descendents. For example, $PREFETCHON(^abc(4))
pre-fetches all of the descendents of ̂ abc(4), such as ̂ abc(4,1), ̂ abc(4,2,2), and so forth. It does not pre-fetch ̂ abc(5).

• $PREFETCHON(gref,gref2) pre-fetches the nodes in the range gref through gref2. This does not include the
descendents of gref2. gref and gref2 must be nodes of the same global. For example,
$PREFETCHON(^abc(4),^abc(7,5)) pre-fetches all of the global nodes in the range of ̂ abc(4) through ̂ abc(7,5),
including ^abc(4,2,2), ^abc(5), and ^abc(7,1,2). However, it does not pre-fetch ^abc(7,5,1).

Pre-fetching is not restricted to read access; it also works well when a large number of SET operations are being performed.

Pre-fetching and Performance

When you invoke $PREFETCHON, one or more pre-fetch background processes (daemons) are started as required. These
pre-fetch daemons are shared systemwide by all processes. Because each pre-fetch daemon processes only one pre-fetch
request at a time, it is usually advantageous to have several pre-fetch daemons running on your system. However, large
numbers of concurrent pre-fetch daemons can have a performance impact on interactive system access.

Pre-fetching can improve performance when running an application that reads a large number of disk blocks containing
nodes from the same global tree. Pre-fetching is most efficient when:

• Data is accessed in generally ascending order, meaning that data blocks of the global tree are generally accessed in
left-to-right order. However, there is no requirement for adhering strictly to ascending order. Pre-fetching works best
when either the data blocks of the global tree are generally accessed in left-to-right order, or when at least one data
block within the range is likely to be accessed prior to most of its neighbors to the right in the logical tree.

• Most of the data blocks in the specified range are accessed. However, the initial pre-fetch does not fetch as many blocks
as subsequent fetches, in case the user decides to cancel the operation after accessing only a small portion of the data.

• Less than 100 pre-fetches are active at any given time.

416 ObjectScript Reference

ObjectScript Functions

Parameters

gref

A global reference, either a global or a process-private global. The global does not need to be defined at the time that the
pre-fetch is established.

You can specify this global using @ indirection. Refer to Indirection in Using ObjectScript.

You cannot specify a structured system variable name (SSVN) for this parameter.

gref2

A global reference used to establish a range with gref. Therefore, gref2 must be a global node lower in the same global tree
as gref.

You can specify this global using @ indirection. Refer to Indirection in Using ObjectScript.

Examples
The following example establishes pre-fetch for the global ^a.

 SET ^a="myglobal"
 SET x=^a
 SET ret=$PREFETCHON(^a)
 IF ret=1 { WRITE !,"prefetch established" }
 ELSE { WRITE !,"prefetch not established" }
 SET ret=$PREFETCHOFF()

The following example establishes pre-fetch for the range of globals ^||a(1) through ^a||(50).

 SET ret=$PREFETCHON(^||a(1),^||a(50))
 IF ret=1 { WRITE !,"prefetch established" }
 ELSE { WRITE !,"prefetch not established" }

See Also
• $PREFETCHOFF function

• Globals in Using ObjectScript

ObjectScript Reference 417

$PREFETCHON

$PROPERTY
Supports reference to a particular property of an instance.

$PROPERTY(instance, propertyname, index1, index2, index3...)

Parameters

Optional — An expression that evaluates to an object instance reference (OREF).
The value of the expression must be that of an in-memory instance of the desired
class. If omitted, defaults to the current object.

instance

An expression that evaluates to a string. The value of the string must match the
name of an existing property defined in the class identified by instance.

propertyname

Optional — If propertyname is a multidimensional value, then this series of
expressions is treated as indices into the array represented by the property. (If
the specified property is not multidimensional, the presence of extra arguments
causes an error at runtime.)

index1, index2, index3,
...

Description
$PROPERTY gets or sets the value of a property in an instance of the designated class. This function permits an ObjectScript
program to select the value of an arbitrary property in an existing instance of some class. Since the first argument must be
an instance of a class, it is computed at execution time. The property name may be computed at runtime or supplied as a
string literal. The contents of the string must match exactly the name of a property declared in the class. Property names
are case-sensitive.

If the property is declared to be multidimensional, then the arguments after the property name are treated as indices into a
multidimensional array. A maximum of 255 argument values may be used for the index.

$PROPERTY may also appear on the left side of an assignment. When $PROPERTY appears to the left of an assignment
operator, it provides the location to which a value is assigned. When it appears to the right, it is the value being used in the
calculation.

If instance is not a valid in-memory OREF, an <INVALID OREF> error occurs. If propertyname is not a valid property,
a <PROPERTY DOES NOT EXIST> error occurs. If you specify an index1 and propertyname is not multidimensional,
an <OBJECT DISPATCH> error occurs.

Remarks

The $PROPERTY function calls the Get() or Set() methods of the property passed to it. It is functionally the same as
using the “ Instance.PropertyName” syntax, where “ Instance” and “PropertyName” are equivalent to the arguments as
listed in the function’s signature. Because of this, $PROPERTY should not be called within a property’s Get() or Set()
method, if one exists. For more information on Get() and Set() methods, see the chapter “Using and Overriding Property
Methods” in Defining and Using Classes.

When used within a method to refer to a property of the current instance, $PROPERTY may omit instance. The comma
that would normally follow instance is still required, however.

An attempt to get a multidimensional value from a property which is not declared to be multidimensional results in a
<FUNCTION> error; likewise for attempting to set a multidimensional value into a property that is not multidimensional.

Examples
The following example returns the current NLS Language property value:

418 ObjectScript Reference

ObjectScript Functions

 SET nlsoref=##class(%SYS.NLS.Locale).%New()
 WRITE $PROPERTY(nlsoref,"Language")

The following example shows $PROPERTY used as a function:

 SET TestName = "%Library.File"
 SET ClassDef = ##class(%Library.ClassDefinition).%OpenId(TestName)
 FOR i = "Name", "Super", "Persistent", "Final"
 {
 WRITE i, ": ", $PROPERTY(ClassDef, i), !
 }

The following example shows $PROPERTY used on both sides of an assignment operator:

 SET TestFile = ##class(%Library.File).%New("AFile")
 WRITE "Initial file name: ",$PROPERTY(TestFile,"Name"),!
 SET $PROPERTY(TestFile,"Name") =
 $PROPERTY(TestFile,"Name") _ "Renamed"
 WRITE "File name afterward: ",$PROPERTY(TestFile,"Name"),!

The following example returns a property value from the current object, in this case the SQL Shell. $PROPERTY is
specified with its first parameter omitted:

USER>DO $SYSTEM.SQL.Shell()
SQL Command Line Shell
--

The command prefix is currently set to: <<nothing>>.
Enter <command>, 'q' to quit, '?' for help.
[SQL]USER>>set path="a,b,c"

path="a,b,c"
[SQL]USER>>! WRITE "The schema search path is ",$PROPERTY(,"Path")
The schema search path is "a,b,c"
[SQL]USER>>

See Also
• $CLASSMETHOD function

• $CLASSNAME function

• $METHOD function

• $PARAMETER function

• $THIS special variable

ObjectScript Reference 419

$PROPERTY

$QLENGTH
Returns the number of subscript levels in a variable.

$QLENGTH(var)
$QL(var)

Parameter

A string, or expression that evaluates to a string, that contains the name of a variable.
The variable name can specify no subscripts or one or more subscripts.

var

Description
$QLENGTH returns the number of subscript levels in var. $QLENGTH simply counts the number of subscript levels
specified in var. The var variable does not have to be defined for $QLENGTH to return the number of subscript levels.

Parameter

var

A quoted string, or expression that evaluates to a string, which specifies a variable. It can be a local variable, a process-
private global, or a global variable.

If the string is a global reference, var can specify an extended global reference by including a namespace name. Because
var is a quoted string, the quotes around a namespace reference must be doubled to be parsed correctly as literal quotation
marks. For example, "^|""SAMPLES""|myglobal(1,4,6)". The same applies to the quotes in a process-private global
with "^" syntax. For example, "^|""^""|ppgname(3,6)". $QLENGTH does not check whether the specified namespace
exists or whether the user has access privileges for the namespace.

A var must specify a variable name in canonical form (a fully expanded reference). To use $QLENGTH with a naked
global reference, or with indirection, you can use the $NAME function to return the corresponding fully expanded reference.

Examples
The following example show the results of $QLENGTH when used with subscripted and unsubscripted globals. The first
$QLENGTH takes a global with no subscripts and returns 0. The second $QLENGTH takes a global with two subscript
levels and returns 2. Note that quotes found in the variable name are doubled because var is specified as a quoted string.

 WRITE !,$QLENGTH("^|""USER""|test")
 ; returns 0
 SET name="^|""USER""|test(1,""customer"")"
 WRITE !,$QLENGTH(name)
 ; returns 2

The following example returns the $QLENGTH value for a process-private global with three subscript levels. The
$ZREFERENCE special variable contains the name of the most recently referenced variable.

 SET ^||myppg("food","fruit",1)="apples"
 WRITE !,$QLENGTH($ZREFERENCE) ; returns 3

The following example returns the $QLENGTH value for a process-private global specified as a naked global reference.
The $NAME function is used to expand the naked global reference to canonical form:

 SET ^grocerylist("food","fruit",1)="apples"
 SET ^(2)="bananas"
 WRITE !,$QLENGTH($NAME(^(2))) ; returns 3

420 ObjectScript Reference

ObjectScript Functions

See Also
• $QUERY function

• $QSUBSCRIPT function

• $NAME function

• $ZREFERENCE special variable

• Global Structure in Using Globals

ObjectScript Reference 421

$QLENGTH

$QSUBSCRIPT
Returns a variable name or a subscript name.

$QSUBSCRIPT(namevalue,intexpr)
$QS(namevalue,intexpr)

Parameters

A string, or an expression that evaluates to a string, which is the name of a local variable,
process-private global, or global variable, with or without subscripts.

namevalue

An integer code that specifies which name to return: variable name, subscript name,
or namespace name.

intexpr

Description
$QSUBSCRIPT returns the variable name, or the name of a specified subscript of namevalue, depending on the value of
intexpr. If namevalue is a global variable, you can also return the namespace name, if it was explicitly specified.
$QSUBSCRIPT does not return a default namespace name.

Parameters

namevalue

A quoted string, or expression that evaluates to a string, which is a local or global reference. It can have the form:
Name(s1,s2,...,sn).

If the string is a global reference, it can contain a namespace reference. Because namevalue is a quoted string, the quotes
around a namespace reference must be doubled to be parsed correctly as literal quotation marks.

A namevalue must reference a variable name in canonical form (a fully expanded reference). To use $QSUBSCRIPT with
a naked global reference, or with indirection, you can use the $NAME function to return the corresponding fully expanded
reference.

intexpr

An integer expression code that indicates which value to return. Assume that the namevalue parameter has the form
NAME(s1,s2,...,sn), where n is the ordinal number of the last subscript. The intexpr parameter can have any of the following

values:

Return ValueCode

Generates a <FUNCTION> error; these numbers are reserved for future extensions.< -1

Returns the namespace name if a global variable namevalue includes one; otherwise, returns
the null string ("").

-1

Returns the variable name. Returns ^NAME for a global variable, and ^||NAME for a
process-private global variable. Does not return a namespace name.

0

Returns the subscript name for the level of subscription specified by the integer n, with 1 being
the first subscript level and n being the highest defined subscript level.

<=n

An integer > n returns the null string (""), where n is the highest defined subscript level.>n

422 ObjectScript Reference

ObjectScript Functions

Examples
The following example returns $QSUBSCRIPT values when namevalue is a subscripted global with one subscript level
and a specified namespace:

 SET global="^|""account""|%test(""customer"")"
 WRITE !,$QSUBSCRIPT(global,-1) ; account
 WRITE !,$QSUBSCRIPT(global,0) ; ^%test
 WRITE !,$QSUBSCRIPT(global,1) ; customer
 WRITE !,$QSUBSCRIPT(global,2) ; null string

The following example returns $QSUBSCRIPT values when namevalue is a process-private global with two subscript
levels. The $ZREFERENCE special variable contains the name of the most recently referenced variable.

 SET ^||myppg(1,3)="apples"
 WRITE !,$QSUBSCRIPT($ZREFERENCE,-1) ; null string
 WRITE !,$QSUBSCRIPT($ZREFERENCE,0) ; ^||myppg
 WRITE !,$QSUBSCRIPT($ZREFERENCE,1) ; 1
 WRITE !,$QSUBSCRIPT($ZREFERENCE,2) ; 3

The following example returns the $QSUBSCRIPT value for a global variable specified as a naked global reference. The
$NAME function is used to expand the naked global reference to canonical form:

 SET ^grocerylist("food","fruit",1)="apples"
 SET ^(2)="bananas"
 WRITE !,$QSUBSCRIPT($NAME(^(2)),2) ; returns "fruit"

See Also
• $QUERY function

• $QLENGTH function

• $NAME function

• $ZREFERENCE special variable

• Global Structure in Using Globals

ObjectScript Reference 423

$QSUBSCRIPT

$QUERY
Performs a physical scan of a local or global array.

$QUERY(reference,direction,target)
$Q(reference,direction,target)

Parameters

A reference that evaluates to the name (and optionally subscripts) of a public local or
global variable.You cannot specify a simple object property as reference; you can
specify a multidimensional property as reference with the syntax obj.property.

reference

Optional — The direction to traverse the array. Forward = 1, backwards = -1. The
default is forward.

direction

Optional — Returns the current data value of reference.target

Description
$QUERY performs a physical scan of a public local or global array; it returns the full reference, name and subscripts, of
the defined node next in sequence to the specified array node. If no such node exists, $QUERY returns the null string.

Parameters

reference

This parameter must evaluate to a public variable or a global. $QUERY cannot scan a private variable.

This parameter can be a multidimensional object property. It cannot be a non-multidimensional object property. Attempting
to use $QUERY on a non-multidimensional object property results in an <OBJECT DISPATCH> error.

The returned global reference can be at the same level, a lower level, or a higher level as the level specified in the reference
parameter. If you specify reference without specifying subscripts, $QUERY returns the first defined node in the array.

direction

If no direction is specified, the default direction is forward. If you wish to specify a direction, a parameter value of 1 will
traverse the array forward, a value of -1 will traverse the array backward.

target

If you wish to specify a target, you must specify a direction. If the variable identified in the reference parameter is undefined,
the target value remains unchanged.

The ZBREAK command cannot specify the target parameter as a watchpoint.

Example
This example presents a generalized routine for outputting the data values for all the nodes in a user-specified array. It can
accommodate arrays with any number of levels. The code performs the same operation as the code shown in the example
under the $ORDER function. Instead of requiring 23 lines, however, it requires only six and is not restricted as to the
number of levels it can handle.

424 ObjectScript Reference

ObjectScript Functions

Start READ !,"Array name: ",ary QUIT:ary=""
 SET queryary=$QUERY(@ary@(""))
 WRITE !,@queryary
 FOR {
 SET queryary=$QUERY(@queryary)
 QUIT:queryary=""
 WRITE !,@queryary
 }
 WRITE !,"Finished."
 QUIT

The first SET command uses $QUERY with subscript indirection to initialize the global reference to the first existing node
that contains data. For more information, refer to Indirection in Using ObjectScript. (Like $ORDER, $QUERY accepts a
null string to designate the first subscript in an array.) The first WRITE command outputs the value of the first node found.
If it were omitted, the first node would be skipped.

In the FOR loop, $QUERY is used to retrieve the next node and update the global reference, whose contents are then
output by the WRITE command. The postconditional QUIT terminates the loop when it finds a null string (""), indicating
that $QUERY has reached the end of the array.

No $DATA tests are required, unless you wish to distinguish between pointer nodes ($DATA=11) and terminal nodes
($DATA=1).

Notes

Using $QUERY to Traverse an Array

Used repetitively, $QUERY can traverse an entire array in left-to-right, top-to-bottom fashion, returning the entire sequence
of defined nodes. $QUERY can start at the point determined by the subscript specified for reference. It proceeds along
both the horizontal and vertical axes. For example:

 SET exam=$QUERY(^client(4,1,2))

Based on this example, $QUERY might return any of the following values, assuming a three-level array:

Returned by the $QUERY Function If...Value

If ^client(4,1,3) exists and contains data.^client(4,1,3)

If ^client(4,1,3) does not exist or does not contain data and if ^client(4,2) does exist
and contains data.

^client(4,2)

If ̂ client(4,1,3) and ̂ client(4,2) do not exist or do not contain data and if ̂ client(5) does
exist and contains data.

^client(5)

If none of the previous global references exist or contain data; $QUERY has reached
the end of the array.

null string ("")

With a direction value of -1, $QUERY can traverse an entire array in reverse order in right-to-left, bottom-to-top fashion.

$QUERY Compared to $ORDER

$QUERY differs from the $ORDER function in that $QUERY returns a full global reference, while $ORDER returns
only the subscript of the next node. $ORDER proceeds along only the horizontal axis, across nodes at one level.

$QUERY also differs from $ORDER in that it selects only those existing nodes that contain data. $ORDER selects
existing nodes, regardless of whether or not they contain data. Where $ORDER performs an implicit test for existence
($DATA'=0), $QUERY performs an implicit test for both existence and data ($DATA'=0 and $DATA'=10). Note, however,
that $QUERY does not distinguish between pointer nodes ($DATA=11) and terminal nodes ($DATA=1) that contain data.
To make this distinction, you must include appropriate $DATA tests in your code.

ObjectScript Reference 425

$QUERY

Like $ORDER, $QUERY is typically used with loop processing to traverse the nodes in an array that doesn’t use consec-
utive integer subscripts. $QUERY simply returns the global reference of the next node with a value. $QUERY provides
very compact code for accessing global arrays.

Like the $NAME and $ORDER functions, $QUERY can be used with a naked global reference, which is specified without
the array name and designates the most recently executed global reference. For example:

 SET a=^client(1)
 SET x=2
 SET z=$QUERY(^(x))

The first SET command establishes the current global reference, including the level for the reference. The second SET
command sets up a variable for use with subscripts. The $QUERY function uses a naked global reference to return the full
global reference for the next node following ^client(2). For example, the returned value might be ^client(2,1) or ^client(3).

$QUERY and Extended Global References

You can control whether $QUERY returns global references in Extended Global Reference form on a per-process basis
using the RefInKind() method of the %SYSTEM.Process class. The system-wide default behavior can be established by
setting the RefInKind property of the Config.Miscellaneous class.

For further details on extended global references, see the Global Structure chapter in Using Globals.

See Also
• $DATA function

• $NAME function

• $ORDER function

• $QLENGTH function

• $QSUBSCRIPT function

426 ObjectScript Reference

ObjectScript Functions

$RANDOM
Returns a pseudo-random integer value in the specified range.

$RANDOM(range)
$R(range)

Parameter

A nonzero positive integer used to specify the upper bound of the range of possible random
numbers.

range

Description
$RANDOM returns a pseudo-random integer value between 0 and range-1 (inclusive). Thus $RANDOM(3) returns 0, 1,
2, but not 3. Returned numbers are uniformly distributed across the specified range.

$RANDOM is sufficiently random for most purposes. Applications that require strictly random values should use the
GenCryptRand() method of the %SYSTEM.Encryption class.

Parameters

range

This value specifies the upper bound of the range of possible random numbers; the highest random number being range
minus 1. The range value can be a nonzero positive integer value, the name of an integer variable, or any valid ObjectScript
expression that evaluates to a nonzero positive integer. The maximum range value is 1E17 (100000000000000000); spec-
ifying a value beyond this maximum results in a <FUNCTION> error. $RANDOM(1) is valid, but always returns 0.
$RANDOM(0) results in a <FUNCTION> error.

Examples
The following example returns a random number from 0 through 24 (inclusive).

 WRITE $RANDOM(25)

To return a random number with a fractional portion, you can use the concatenation operator (_) or the addition operator
(+), as shown in the following example:

 SET x=$RANDOM(10)_$RANDOM(10)/10
 WRITE !,x
 SET y=$RANDOM(10)+($RANDOM(10)/10)
 WRITE !,y

This program returns numbers with one fractional digit, ranging between .0 and 9.9 (inclusive). Using either operator,
InterSystems IRIS deletes any leading and trailing zeros (and the decimal point, if the fractional portion is zero). However,
if both $RANDOM functions return zero (0 and .0), InterSystems IRIS returns a zero (0).

The following example simulates the roll of two dice:

Dice
 FOR {
 READ "Roll dice? ",reply#1
 IF "Yy"[reply,reply'="" {
 WRITE !,"Pair of dice: "
 WRITE $RANDOM(6)+1,"+",$RANDOM(6)+1,! }
 ELSE { QUIT }
 }

ObjectScript Reference 427

$RANDOM

$REPLACE
Returns a new string that consists of a string-for-string substring replacement from an input string.

$REPLACE(string,searchstr,replacestr,start,count,case)

Parameters

The source string. It can be a numeric value, a string literal, the name of a variable,
or any valid ObjectScript expression. If string is an empty string (""), $REPLACE
returns an empty string.

string

The substring to search for in string. It can be a numeric value, a string literal, the
name of a variable, or any valid ObjectScript expression. If searchstr is an empty
string (""), $REPLACE returns string.

searchstr

The replacement substring substituted for instances of searchstr in string. It can be
a numeric value, a string literal, the name of a variable, or any valid ObjectScript
expression. If replacestr is an empty string (""), $REPLACE returns string with the
occurrences of searchstr removed.

replacestr

Optional — Character count position within string where substring search is to begin.
String characters are counted from 1. A value of 0, a negative number, a nonnumeric
string or an empty string are equivalent to 1. If omitted, 1 is assumed. If start > 1,
the substring of string beginning with that character is returned, with substring
substitutions (if any) performed. If start > $LENGTH(string), $REPLACE returns
the empty string ("").

start

Optional — Number of substring substitutions to perform. If omitted, the default
value is -1, which means perform all possible substitutions. A value of 0, a negative
number other than -1, a nonnumeric string or an empty string are equivalent to 0
which means perform no substitutions. If start is specified, count begins substring
substitutions from the start position.

count

Optional — Boolean flag indicating whether matching of searchstr in string is to be
case-sensitive. 0 = case-sensitive (the default). 1 = not case-sensitive. Any nonzero
number is equivalent to 1. Any nonnumeric value is equivalent to 0. Placeholder
commas can be supplied when start or count are not specified.

case

Description
The $REPLACE function returns a new string that consists of a string-for-string replacement of the input string. It searches
string for the searchstr substring. If $REPLACE finds one or more matches, it replaces the searchstr substring with
replacestr and returns the resulting string. The replacestr parameter value may be long or shorter than searchstr; replacestr
may be an empty string.

By default, $REPLACE begins at the start of string and replaces every instance of searchstr. You can use the optional
start parameter to begin comparisons at a specified character count location within the string. The returned string is a substring
of string that begins at the start location and replaces every instance of searchstr from that point.

You can use the optional count parameter to replace only a specified number of matching substrings.

By default, $REPLACE substring matching is case-sensitive. You can use the optional case parameter to specify not case-
sensitive matching.

428 ObjectScript Reference

ObjectScript Functions

Note: Because $REPLACE can change the length of a string, you should not use $REPLACE on encoded string values,
such as an ObjectScript $List or a %List object property.

$REPLACE and $TRANSLATE

$REPLACE performs string-for-string matching and replacement. $TRANSLATE performs character-for-character
matching and replacement. $REPLACE can replace a single specified substring of one or more characters with another
substring. $TRANSLATE can replace multiple specified characters with corresponding specified new characters. By
default, both functions replace all matching instances in the string.

$REPLACE matching is case-sensitive by default, but can be invoked as not case-sensitive; $TRANSLATE matching is
always case-sensitive. $REPLACE can specify the starting point for matching and/or the number of replacements to perform;
$TRANSLATE replaces all matches in the source string.

Examples
The following example shows two ways of using $REPLACE. The first $REPLACE does not change the input string
value. The second $REPLACE changes the input string value by setting it equal to the function’s return value:

 SET str="The quick brown fox"
 // creates a new string, does not change str value
 SET newstr=$REPLACE(str,"brown","red")
 WRITE "source string: ",str,!,"new string: ",newstr,!!
 // creates a new string and replaces str with new string value
 SET str=$REPLACE(str,"brown","silver")
 WRITE "revised string: ",str

In the following example, invocations of $REPLACE match and substitute for the all instances of a substring, and the first
two instances of a substring:

 SET str="1110/1110/1100/1110"
 WRITE !,"before conversion ",str
 SET newall=$REPLACE(str,"111","AAA")
 WRITE !,"after replacement ",newall
 SET newsome=$REPLACE(str,"111","AAA",1,2)
 WRITE !,"after replacement ",newsome

In the following example, invocations of $REPLACE perform case-sensitive and not case-sensitive matching and
replacement of all occurrences in the string:

 SET str="Yes/yes/Y/YES/Yes"
 WRITE !,"before conversion ",str
 SET case=$REPLACE(str,"Yes","NO")
 WRITE !,"after replacement ",case
 SET nocase=$REPLACE(str,"Yes","NO",1,-1,1)
 WRITE !,"after replacement ",nocase

The following example compares the $REPLACE and $TRANSLATE functions:

 SET str="A mom, o plom, o comal, Pomama"
 WRITE !,"before conversion ",str
 SET s4s=$REPLACE(str,"om","an")
 WRITE !,"after replacement ",s4s
 SET c4c=$TRANSLATE(str,"om","an")
 WRITE !,"after translation ",c4c

$REPLACE returns "A man, o plan, o canal, Panama"

$TRANSLATE returns "A nan, a plan, a canal, Panana"

In the following example, the four-parameter form of $REPLACE returns only the part of the string beginning with the
start point, with the string-for-string replacements performed:

 SET str="A mon, a plon, a conal, Ponama"
 WRITE !,"before start replacement ",str
 SET newstr=$REPLACE(str,"on","an",8)
 WRITE !,"after start replacement ",newstr

ObjectScript Reference 429

$REPLACE

$REPLACE returns "a plan, a canal, Panama"

See Also
• $TRANSLATE function

• $EXTRACT function

• $PIECE function

• $REVERSE function

• $ZCONVERT function

430 ObjectScript Reference

ObjectScript Functions

$REVERSE
Returns the characters in a string in reverse order.

$REVERSE(string)
$RE(string)

Parameter

A string or expression that evaluates to a string.string

Description
$REVERSE returns the characters in string in reverse order. The string can contain 8-bit characters or 16-bit Unicode
characters. For further details on InterSystems IRIS Unicode support, refer to Unicode in Using ObjectScript.

Surrogate Pairs

$REVERSE does not recognize surrogate pairs. Surrogate pairs are used to represent some Chinese characters and to
support the Japanese JIS2004 standard. You can use the $WISWIDE function to determine if a string contains a surrogate
pair. The $WREVERSE function recognizes and correctly parses surrogate pairs. $REVERSE and $WREVERSE are
otherwise identical. However, because $REVERSE is generally faster than $WREVERSE, $REVERSE is preferable for
all cases where a surrogate pair is not likely to be encountered.

Examples
The following WRITE commands shows the return value from $REVERSE. The first returns “CBA”, the second returns
321.

 WRITE !,$REVERSE("ABC")
 WRITE !,$REVERSE(123)

You can use the $REVERSE function with other functions to perform search operations from the end of the string. The
following example demonstrates how you can use $REVERSE with the $FIND and $LENGTH functions to locate the
last example of a string within a line of text. It returns the position of that string as 33:

 SET line="THE QUICK BROWN FOX JUMPED OVER THE LAZY DOG."
 SET position=$LENGTH(line)+2-$FIND($REVERSE(line),$REVERSE("THE"))
 WRITE "The last THE in the line begins at ",position

See Also
• $FIND function

• $EXTRACT function

• $LENGTH function

• $PIECE function

• $WISWIDE function

• $WLENGTH function

• $WREVERSE function

ObjectScript Reference 431

$REVERSE

$SCONVERT
Converts a binary encoded value to a number.

$SCONVERT(s,format,endian,position)
$SC(s,format,endian,position)

Parameters

A string of 8-bit bytes which encode for a number. Limitations on valid values are imposed by the
format selected.

s

One of the following format codes, specified as a quoted string: S1, S2, S4, S8, U1, U2, U4, F4,
or F8.

format

Optional — A boolean value, where 0 = little-endian and 1 = big-endian. The default is 0.endian

Optional — The character position in the string of 8-bit bytes at which to begin conversion. Character
positions are counted from 1.The default value is 1. If you specify position, you must either specify
endian or a placeholder comma.

position

Description
$SCONVERT converts s from an encoded string of 8-bit bytes to a numeric value, using the specified format.

The following are the supported format codes:

Signed integer encoded into a string of one 8-bit bytes. The value must be in the range
-128 through 127, inclusive.

S1

Signed integer encoded into a string of two 8-bit bytes. The value must be in the range
-32768 through 32767, inclusive.

S2

Signed integer encoded into a string of four 8-bit bytes. The value must be in the range
-2147483648 through 2147483647, inclusive.

S4

Signed integer encoded into a string of eight 8-bit bytes. The value must be in the range
-9223372036854775808 through 9223372036854775807, inclusive.

S8

Unsigned integer encoded into a string of one 8-bit bytes. The maximum value is 256.U1

Unsigned integer encoded into a string of two 8-bit bytes. The maximum value is 65535.U2

Unsigned integer encoded into a string of four 8-bit bytes. The maximum value is
4294967295.

U4

IEEE floating point number encoded into a string of four 8-bit bytes.F4

IEEE floating point number encoded into a string of eight 8-bit bytes.F8

String s must contain sufficient characters starting at and following the specified character position to satisfy the number
of 8-bit bytes required by the format code. For example, $SCONVERT(s,"S4",0,9) requires that the length of s be at
least 12 characters because the decoded result comes from the character positions 9, 10, 11 and 12. Values beyond this
range result in a <VALUE OUT OF RANGE> error.

$SCONVERT is intended only for use on 8-bit byte strings.

If argument s is a numeric value, it is converted to a string containing its canonical numeric form before it is decoded.

432 ObjectScript Reference

ObjectScript Functions

You can use the IsBigEndian() class method to determine which bit ordering is used on your operating system platform:
1=big-endian bit order; 0=little-endian bit order.

 WRITE $SYSTEM.Version.IsBigEndian()

$SCONVERT provides the inverse of the $NCONVERT operation.

Examples
In the following example, $SCONVERT converts a two-byte binary encoded value to a number:

 SET x=$NCONVERT(258,"U2")
 ZZDUMP x
 SET y=$SCONVERT(x,"U2")
 WRITE !,y

The following example, $SCONVERT converts a two-byte binary encoded value in big-endian order to a number:

 SET x=$NCONVERT(258,"U2",1)
 ZZDUMP x
 SET y=$SCONVERT(x,"U2",1)
 WRITE !,y

See Also
• $NCONVERT function

ObjectScript Reference 433

$SCONVERT

$SELECT
Returns the value associated with the first true expression.

$SELECT(expression:value,...)
$S(expression:value,...)

Parameters

The select test for the associated value parameter.expression

The value to be returned if the associated expression evaluates to true.value

Description
The $SELECT function returns the value associated with the first expression that evaluates to true (1). Each $SELECT
argument is a pair of expressions separated by a colon. The left half is a truth-valued expression. The right half can be any
expression. In the following example, the truth values of the first three expressions are tested; if none of them evaluate to
true, the final expression (which always evaluates to true) returns its value:

 WRITE $SELECT(x=1:"1st is True",x=2:"2nd is True",x=3:"3rd is True",1:"The Default")

The specified list of expression:value pairs can be of any length. $SELECT evaluates the parameters from left to right.
When $SELECT discovers a truth-valued expression with the value of true (1), it returns the matching expression to the
right of the colon. $SELECT stops evaluation after it discovers the left-most true truth-valued expression. It never evaluates
later pairs on the parameter list.

You can construct complex logic by nesting $SELECT functions. Like all evaluated truth conditions, a NOT logical
operator (') can be applied to a nested $SELECT.

Parameters

expression

The select test for the associated value parameter. It can be any valid InterSystems IRIS relational or logical expression. If
no expression evaluates to true, the system generates a <SELECT> error. To prevent an error from disrupting an executing
routine, the final expression can be the value 1, which always evaluates to true.

When expression is a string or numeric, any non-zero numeric value evaluates to true. A zero numeric value or a non-
numeric string evaluates to false.

value

The value to be returned if the associated expression evaluates to true. It can be a numeric value, a string literal, a variable
name, or any valid ObjectScript expression. If you specify an expression for value, it is evaluated only after the associated
expression evaluates to true. If value contains a subscripted global reference, it changes the naked indicator when it is
evaluated. For this reason, be careful when using naked global references either within or immediately after a $SELECT
function. For more details on the naked indicator, see Naked Global Reference in Using Globals.

Examples
To ensure that a <SELECT> error never results, you should always include the value 1 as the last expression with an
appropriate default value. This is shown in the following example:

434 ObjectScript Reference

ObjectScript Functions

Start
 READ !,"Which level?: ",a
 QUIT:a=""
 SET x=$SELECT(a=1:"Level1",a=2:"Level2",a=3:"Level3",1:"Start")
 DO @x
Level1()
 WRITE !,"This is Level 1"
Level2()
 WRITE !,"This is Level 2"
Level3()
 WRITE !,"This is Level 3"

If the user enters a value other then 1, 2, 3, or the null string, control is passed back to the top of the routine.

You can use $SELECT to replace multiple IF clauses. The following example uses IF, ELSEIF, and ELSE clauses to
determine whether a number is odd or even:

OddEven()
 READ !,"Enter an Integer: ",x
 QUIT:x=""
 WRITE !,"The input value is "
 IF 0=$ISVALIDNUM(x) { WRITE "not a number" }
 ELSEIF x=0 { WRITE "zero" }
 ELSEIF ""=$NUMBER(x,"I") { WRITE "not an integer" }
 ELSEIF x#2=1 { WRITE "odd" }
 ELSE { WRITE "even" }
 DO OddEven

The following example also accepts a number and determines if the number is odd or even. It uses $SELECT to replace
the IF command in the previous example:

OddEven()
 READ !,"Enter an Integer: ",x
 QUIT:x=""
 WRITE !,"The input value is "
 WRITE $SELECT(0=$ISVALIDNUM(x):"not a number",x=0:"zero",
 ""=$NUMBER(x,"I"):"not an integer",x#2=1:"odd",1:"even")
 DO OddEven

See Also
• $CASE function

ObjectScript Reference 435

$SELECT

$SEQUENCE
Increments a global variable shared by multiple processes.

$SEQUENCE(gvar)
$SEQ(gvar)

SET $SEQUENCE(gvar)=value
SET $SEQ(gvar)=value

Parameter

The variable whose value is to be incremented. Commonly, gvar is a global variable
(^gvar), either subscripted or unsubscripted. The variable need not be defined. If gvar
is not defined, or is set to the null string (""), $SEQUENCE treats it as having an initial
value of zero and increments accordingly, returning a value of 1.

You cannot specify a literal value for gvar.You cannot specify a simple object property
reference as gvar; you can specify a multidimensional property reference as gvar with
the syntax obj.property.

gvar

Description
$SEQUENCE provides a fast way for multiple processes to obtain unique (non-duplicate) integer indices for the same
global variable. For each process, $SEQUENCE allocates a sequence (range) of integer values. Subsequent calls to
$SEQUENCE increment to the next value in the allocated sequence for that process. When a process consumes all of the
integer values in its allocated sequence, it is automatically assigned a new sequence of integer values. $SEQUENCE
automatically determines the size of the sequence of integer values to allocate. It determines the size of the allocated
sequence separately for each sequence allocation. In some cases, this sequence may be a single integer.

$SEQUENCE always increments an integer value by 1. By default, $SEQUENCE assigns positive integers, beginning
with 1. However, $SEQUENCE can be set to a negative integer; negative integers are incremented towards zero. If
$SEQUENCE was set to a negative integer, a subsequent call can assign zero as an increment. Setting gvar to a non-integer
numeric value generates an <ILLEGAL VALUE> error.

$SEQUENCE is intended to be used when multiple processes concurrently increment the same global. Both $SEQUENCE
and $INCREMENT can perform this operation, but $SEQUENCE commonly provides better performance. The order in
which $SEQUENCE allocates indices is different from the $INCREMENT order. $SEQUENCE can allocate a sequential
range of increments to a process, rather than the $INCREMENT behavior of allocating single integer increments to each
process. This can substantially improve performance by reducing process collision and synchronization. It can also improve
data block performance when inserting records, because sequential record IDs are grouped by process.

When a process calls $SEQUENCE, one of the following occurs:

• The ^gvar global variable is undefined because no process has defined this variable. The integers returned by
$SEQUENCE will start with 1.

• The ^gvar global variable was last modified by a $SEQUENCE call from another process. The integers returned by
$SEQUENCE will start with the first integer after the sequence allocated to the other process.

• The ^gvar global variable was last modified by a SET $SEQUENCE called from any process. The integers returned
by $SEQUENCE will start with the first integer after the value to which $SEQUENCE was set.

The size of the sequence that $SEQUENCE allocates to a process depends on an internal timestamp. When a process
invokes $SEQUENCE for the second time, InterSystems IRIS compares the prior timestamp with the current time.

436 ObjectScript Reference

ObjectScript Functions

Depending on the duration between these $SEQUENCE calls, InterSystems IRIS allocates either a single increment or a
calculated sequence of increments to the process:

• Allocated sequence is 1: $SEQUENCE behaves like $INCREMENT.

• Allocated sequence is > 1: $SEQUENCE uses this per-process sequence of increments. Each process uses its allocated
sequence, then is assigned a new sequence.

For example, Process A and Process B are both incrementing the same global. The first time each process increments the
global it is a single increment. The next time each process increments the global, InterSystems IRIS compares the two
$SEQUENCE operations and calculates a sequence of increments (this sequence may be one integer). Subsequent
$SEQUENCE operations use up these per-process sequences before re-allocating increments. This might result in increments
such as the following: A1, B2 (single increments setting the clock), A3 (compares A1 & A3, allocates 4, 5, 6, 7 to Process
A), B8 (compares B2 and B8, allocates 9, 10, 11 to Process B). The full increment sequence might be as follows: A1, B2,
A3, A4, B8, A5, A6, B9, A7, B10, B11.

If a process does not use all of its allocated sequence, the remaining numbers are unused, gaps in the increment sequence.

The following example shows the difference between the increment integer returned by $SEQUENCE (the current sequence
number) and the value of gvar (the highest allocated sequence number):

 SET $SEQUENCE(^myseq)=""
 FOR i=1:1:15 {WRITE "increment:",$SEQ(^myseq)," allocated:",^myseq,! }

For further details on using $SEQUENCE with global variables, see Using Multidimensional Storage (Globals) in Using
Globals.

Dedicated Global Variable

Once a sequence has been started by the first call on $SEQUENCE(^gvar), all future changes to the value of ̂ gvar during
the life of that sequence can only be made by calling $SEQUENCE(^gvar). Using any other function or statement to
change the value of ^gvar causes the sequence to become undefined.

Restrictions on the use of $SEQUENCE and $INCREMENT on the same global are described below.

SET $SEQUENCE

You can use SET $SEQUENCE to kill or reset a $SEQUENCE global. SET $SEQUENCE resets the global variable
and deallocates sequences of integers allocated to other processes.

• SET $SEQUENCE(^gvar)="" kills the specified global node and notifies all jobs with cached $SEQUENCE numbers
to purge their current increment value. The first call to $SEQUENCE increments to 1. SET $SEQUENCE(^gvar)=""
only kills the specified global node; it does not kill that node’s descendants (if any).

• SET $SEQUENCE(^gvar)=n (where n is an integer) resets the specified global node to n, and notifies all jobs with
cached $SEQUENCE numbers to purge their current increment value. Subsequent invocations of $SEQUENCE on
all jobs will use the new n increment starting value.

If SET $SEQUENCE attempts to set ^gvar to a fractional number, an <ILLEGAL VALUE> error occurs. If SET
$SEQUENCE attempts to set ^gvar to a non-numeric string, ^gvar is set to 0.

You cannot use KILL ^gvar or SET ^gvar to kill or reset a $SEQUENCE global because these commands do not deal-
locate sequences of integers allocated to processes.

ObjectScript Reference 437

$SEQUENCE

Parameter

gvar

A variable containing an integer value to be incremented. The variable does not need to be defined; the first call to
$SEQUENCE defines an undefined variable as 0 then increments its value to 1. The gvar value must be a positive or
negative integer.

Commonly, the gvar parameter is a global variable, either subscripted or unsubscripted: ^gvar. It can contain an extended
global reference. If a subscripted global variable, it can be specified using a naked global reference.

The gvar parameter can be a local variable or process-private global. However, because $SEQUENCE is intended for use
across processes, this usage is not meaningful, in most cases. Using $SEQUENCE on a local variable or process-private
global is the same as using $INCREMENT with a numeric increment of 1. The $SEQUENCE restrictions described below
concerning locking, journaling, and transaction rollback do not apply to local variables or process-private globals. Using
$SEQUENCE on a local variable or process-private global has the same error behavior as $INCREMENT; this is different
from the error behavior for $SEQUENCE on a global variable, as described in the next section.

The gvar parameter can be a multidimensional property reference. For example, $SEQUENCE(..Count). It cannot be a
non-multidimensional object property. Attempting to increment a non-multidimensional object property results in an
<OBJECT DISPATCH> error.

$SEQUENCE cannot increment special variables, even those that can be modified using SET. Attempting to increment
a special variable results in a <SYNTAX> error.

Incrementing Very Large Numbers
The integers returned by $SEQUENCE are in the range -9223372036854775807 to 9223372036854775806 (-2**63+1 to
2**63-2). Attempting a SET $SEQUENCE on a global variable with an integer beyond this range generates an <ILLEGAL
VALUE> error.

In the following example, $SEQUENCE on a global variable can be set to 9.223372036854775800E18, but incrementing
this number past the range limit generates a <MAXINCREMENT> error. You can run this example repeatedly to perform
“slow increments” and “fast increments”. Note that “fast increments” in this example may result in <MAXINCREMENT>
before actually incrementing to the range limit, because $SEQUENCE is attempting to allocate a sequence of numbers
beyond the range limit:

 TRY {
 SET rand=$RANDOM(2)
 SET $SEQUENCE(^bignum)=9.223372036854775800E18
 IF rand=0 { WRITE "slow increments:",!
 FOR x=1:1:10 {WRITE $SEQUENCE(^bignum)," increment #",x,!
 HANG .5 }
 }
 IF rand=1 {WRITE "fast increments:",!
 FOR i=1:1:10 {WRITE $SEQUENCE(^bignum)," increment #",i,!}
 }
 }
 CATCH exp { WRITE !,"In the CATCH block",!
 IF 1=exp.%IsA("%Exception.SystemException") {
 WRITE "System exception",!
 WRITE "Name: ",$ZCVT(exp.Name,"O","HTML"),!
 WRITE "Location: ",exp.Location,!
 }
 ELSE { WRITE "unknown error",! }
 }

These types of errors only occur when incrementing a global variable.

$SEQUENCE or $INCREMENT
$SEQUENCE is intended specifically for integer increment operations involving multiple simultaneous processes.
$INCREMENT is a more general increment/decrement function:

438 ObjectScript Reference

ObjectScript Functions

• $SEQUENCE increments an integer by 1. $INCREMENT increments or decrements any numeric value by any
specified numeric value.

• $SEQUENCE can allocate a sequence of increments to a process. $INCREMENT allocates only a single increment.

• SET $SEQUENCE can be used to change or undefine (kill) a global. $INCREMENT cannot be used on the left side
of the SET command.

Note: $SEQUENCE and $INCREMENT may be used on the same global variable only when performing an operation
that simply increments a numeric value, such as Id allocation. Any other use of $SEQUENCE and $INCREMENT
on the same global may produce unpredictable results and is not recommended.

Locking and Simultaneous Global Increments
$SEQUENCE uses special, efficient locking techniques that only synchronize $SEQUENCE calls with other $SEQUENCE
calls. Attempting to use the LOCK command on a global used by $SEQUENCE will have no effect on $SEQUENCE.
For example, suppose Process 1 executes a lock on ^COUNTER:

 LOCK ^COUNTER

Then suppose, Process 2 increments ^COUNTER:

 SET x=$SEQUENCE(^COUNTER)

Process 2 is not prevented from incrementing ^COUNTER by the lock held by Process 1.

$SEQUENCE and Transaction Processing
• Locking: The common usage for $SEQUENCE is to increment a counter before adding a new entry to a database.

$SEQUENCE provides a way to do this very quickly, avoiding the use of the LOCK command. The trade-off for this
is that gvar is not locked. The gvar may be incremented by one process within a transaction and, while that transaction
is still processing, be incremented by another process in a parallel transaction.

• Rollback: Calls to $SEQUENCE are not journaled. Therefore, rolling back a transaction will not change the value of
gvar. Any integer values allocated by $SEQUENCE during a rolled back transaction will not be available for allocation
by any future $SEQUENCE call.

For further details on using $SEQUENCE in a distributed database environment, refer to Use the $Increment Function for
Application Counters in the “Horizontally Scaling Systems for User Volume with InterSystems Distributed Caching”
chapter of the Scalability Guide.

See Also
• $INCREMENT function

• TROLLBACK command

• $GET function

• Using ObjectScript for Transaction Processing in Using ObjectScript

ObjectScript Reference 439

$SEQUENCE

$SORTBEGIN
Initiates a sorting mode to improve performance of multiple sets to a global.

$SORTBEGIN(set_global)

Parameter

A global variable name.set_global

Description
$SORTBEGIN initiates a special sorting mode during which SET operations to the specified target global are redirected
to a process-private temporary area and sorted into subsets. This mode is ended with a call to $SORTEND which copies
the data into the target global reference. When the special sorting mode is in effect, all sets to the target global reference
and any of its descendants are affected.

$SORTBEGIN is designed to help the performance of operations, such as index building, where a large amount of unordered
data needs to be written to a global. When the amount of data written approaches or exceeds the amount of available buffer
pool memory, performance can suffer drastically. $SORTBEGIN solves this problem by guaranteeing that data is written
to the target global in sequential order, thus minimizing the number of physical disk accesses needed. It does this by writing
and sorting data into one or more temporary buffers (using space in the IRISTEMP database if needed) and then, when
$SORTEND is called, copying the data sequentially into the target global.

While $SORTBEGIN is in effect, data read from the target global will not reflect any SET operations. You cannot use
$SORTBEGIN in cases where you need to read global values from the same global in which you are inserting values.

InterSystems IRIS object and InterSystems SQL applications automatically make use of $SORTBEGIN for index and
temporary index creation.

The $SORTBEGIN sorting mode can be terminated without writing data to the target global by calling $SORTEND with
it optional second parameter set to 0.

If successful, $SORTBEGIN returns a nonzero integer value. If unsuccessful, $SORTBEGIN returns zero.

Sorting Mode Errors

Invoking some operations between the $SORTBEGIN and $SORTEND result in InterSystems IRIS issuing an error code:

• If the mapping of the namespace of set_global is changed between $SORTBEGIN and $SORTEND, a <NAMESPACE>
error occurs when you invoke $SORTEND. However, if $SORTBEGIN specifies set_global with an implied
namespaces, subsequent namespace mapping changes have no effect on $SORTEND. Global references with implied
namespace and global references with explicit namespaces should not be mixed in the same sort operation. For infor-
mation on modifying namespaces, see Configuring Namespaces in the System Administration Guide.

• If you establish a $SORTBEGIN global, and then issue a $SORTBEGIN for an ancestor or descendent of that global,
InterSystems IRIS issues a <DUPLICATEARG> error. For example, if you invoke $SORTBEGIN(^test(1,2,3)),
the following function calls result in a <DUPLICATEARG> error: $SORTBEGIN(^test(1,2)) or
$SORTBEGIN(^test(1,2,3,4)).

See Also
• $SORTEND function

440 ObjectScript Reference

ObjectScript Functions

$SORTEND
Concludes the sorting mode initiated by $SORTBEGIN.

$SORTEND(set_global,dosort)

Parameters

Optional — A global variable that was specified in a corresponding $SORTBEGIN.
If omitted, $SORTEND concludes all $SORTBEGIN operations for the current
process.

set_global

Optional — A flag parameter. If 1, InterSystems IRIS performs the sort operation
initiated by $SORTBEGIN and copies the sorted data into set_global. If 0,
InterSystems IRIS terminates the sort operation without copying any data.The default
is 1.

dosort

Description
$SORTEND specifies the end of a special sorting mode initiated by $SORTBEGIN on a specific target global. The value
of the $SORTEND set_global must match the corresponding $SORTBEGIN set_global.

If you omit set_global, $SORTEND ends all current sorting modes initiated by all active $SORTBEGIN functions for
the current process. Therefore, $SORTEND() or $SORTEND(,1) end and commit all current sorting modes for the process;
$SORTEND(,0) aborts all current sorting modes for the process.

• If successful, $SORTEND returns a positive integer count of the total number of global nodes set. When set_global
is specified, this is the number of sets applied to the specified set_global variable. When set_global is omitted, this is
the number of sets applied to all current $SORTBEGIN set_global variables. This integer count is returned regardless
of the dosort flag setting.

• If unsuccessful, $SORTEND returns -1. For example, if $SORTEND specifies a set_global that does not have a cor-
responding active $SORTBEGIN.

• If no-op, $SORTEND returns 0. This can occur if you there are no sets applied to the specified set_global variable,
or if there is no active $SORTBEGIN when you issue a $SORTEND that does not specify a set_global.

If the mapping of the namespace of set_global is changed between $SORTBEGIN and $SORTEND, a <NAMESPACE>
error occurs when you invoke $SORTEND. However, if $SORTBEGIN specifies set_global with an implied namespaces,
subsequent namespace mapping changes have no effect on $SORTEND. Global references with implied namespace and
global references with explicit namespaces should not be mixed in the same sort operation. For information on modifying
namespaces, see Configuring Namespaces in the System Administration Guide.

Examples
The following example applies three sets to the global ^myyestest. $SORTEND returns 3. Because dosort is 1, these sets
are applied, as shown by the $DATA function return values:

 WRITE $SORTBEGIN(^myyestest),!
 SET ^myyestest(1)="apple"
 SET ^myyestest(2)="orange"
 SET ^myyestest(3)="banana"
 WRITE $SORTEND(^myyestest,1),!
 WRITE $DATA(^myyestest(1)),!
 WRITE $DATA(^myyestest(2)),!
 WRITE $DATA(^myyestest(3))
 KILL ^myyestest

ObjectScript Reference 441

$SORTEND

The following example applies three sets to the global ^mynotest. $SORTEND returns 3. Because dosort is 0, these sets
are not applied, as shown by the $DATA function return values:

 WRITE $SORTBEGIN(^mynotest),!
 SET ^mynotest(1)="apple"
 SET ^mynotest(2)="orange"
 SET ^mynotest(3)="banana"
 WRITE $SORTEND(^mynotest,0),!
 WRITE $DATA(^mynotest(1)),!
 WRITE $DATA(^mynotest(2)),!
 WRITE $DATA(^mynotest(3))
 KILL ^mynotest

The following two examples specify two $SORTBEGIN operations, and within them apply three sets to the global ̂ mytesta
and two sets to the global ̂ mytestb. $SORTEND does not specify a set_global, and therefore ends all current $SORTBEGIN
operations and returns 5. Note that in both examples $SORTEND returns 5, though the first example commits these sets
and the second example aborts these sets.

 WRITE $SORTBEGIN(^mytesta),!
 SET ^mytesta(1)="apple"
 SET ^mytesta(2)="orange"
 SET ^mytesta(3)="banana"
 WRITE $SORTBEGIN(^mytestb),!
 SET ^mytestb(1)="corn"
 SET ^mytestb(2)="carrot"
 WRITE "$SORTEND returns: ",$SORTEND(,1),!
 WRITE "global sets committed?: ",$DATA(^mytesta(2))
 KILL ^mytesta,^mytestb

 WRITE $SORTBEGIN(^mytesta),!
 SET ^mytesta(1)="apple"
 SET ^mytesta(2)="orange"
 SET ^mytesta(3)="banana"
 WRITE $SORTBEGIN(^mytestb),!
 SET ^mytestb(1)="corn"
 SET ^mytestb(2)="carrot"
 WRITE "$SORTEND returns: ",$SORTEND(,0),!
 WRITE "global sets committed?: ",$DATA(^mytesta(2))
 KILL ^mytesta,^mytestb

See Also
• $SORTBEGIN function

442 ObjectScript Reference

ObjectScript Functions

$STACK
Returns information about active contexts saved on the process call stack.

$STACK(context_level,code_string)
$ST(context_level,code_string)

Parameters

An integer specifying the zero-based context level number of the context for
which information is requested. Supported values include 0, positive integers,
and -1.

context_level

Optional — A keyword string that specifies the kind of context information that
is requested. supported values are “PLACE”, “MCODE”, and “ECODE”

code_string

Description
The $STACK function returns information on either the current execution stack or the current error stack, depending on
the value of the $ECODE special variable. $STACK is most commonly used to return information on the current execution
stack (also known as the process call stack).

Each time a routine invokes a DO command, an XECUTE command, or a user-defined function (but not a GOTO command),
the context of the currently executing routine is saved on the call stack and execution starts in the newly created context
of the called routine. The called routine, in turn, can call another routine, and so on, causing more saved contexts to be
placed on the call stack.

The $STACK function returns information about these active contexts saved on your process call stack. $STACK also
can return information about the currently executing context. However, during error processing, $STACK returns a snapshot
of all the context information that is available when an error occurs in your application.

You can use the $STACK special variable to determine the current context level.

$ECODE and $STACK

The values returned by $STACK are dependent on the $ECODE special variable. If $ECODE is clear (set to the null
string), $STACK returns the current execution stack. If $ECODE contains a non-null value, $STACK returns the current
error stack.

Error stack context information is only available when the $ECODE special variable contains a non-null value. This can
occur either when an error has occurred or when $ECODE is explicitly set to a non-null value. In this case, $STACK
returns information about the error stack context rather than an active stack context at the specified context level.

When error stack context information is not available ($ECODE="") and you specify the current context level with the two-
argument form of $STACK, InterSystems IRIS returns information about the currently executing command. To ensure
consistent behavior when accessing the current execution stack, specify SET $ECODE="" before calling $STACK.

See Error Handling in Using ObjectScript for more detailed information about error processing and your error process
stack.

The One-Argument Form of $STACK

$STACK(context_level) returns a string that indicates how the specified context level was established. The following table
describes the string values that can be returned:

ObjectScript Reference 443

$STACK

Returned when the specified context was established by a DO command.DO

Returned when the specified context was established by an XECUTE command or a BREAK
command.

XECUTE

Returned when the specified context was established by a user-defined function reference.$$

The error code value of the error that caused the specified context to be added to the error
stack. For example, ,M26,. When an error occurs at a context level where an error has
already occurred, the context information is placed at the next higher error stack level; it is
only returned when context information at the specified error stack context level is relocated
information.

An ECODE
string

When the specified context level is zero (0) or is undefined, $STACK returns the null string.

You can also specify a -1 for the context level in the one-argument form of the $STACK function. In this case, $STACK
returns the maximum context level for the information that is available that, during normal processing, is the context level
number of the currently executing context. However, during error processing, $STACK(-1) returns whichever is greater:

• The maximum context level of your process error stack

• The context level number of the currently executing context

The Two-Argument Form of $STACK

$STACK(context_level,code_string) returns information about the specified context level according to the code_string
you specify. A code_string must be specified as a quoted string; code_string values are not case-sensitive. For example,
$STACK(1,"PLACE") or $STACK(1,"place").

The following describes the code strings and the information returned when you specify each.

• PLACE — Returns the entry reference and command number of the last command executed at a specified context
level. The value is returned in the following format for DO and user-defined function contexts: "label[+offset][^routine
name] +command". For XECUTE contexts, the following format is used: "@ +command".

• MCODE — Returns the source routine line, or XECUTE string, that contains the last command executed at the
specified context level. (Routine lines are returned in the same manner as those returned by the $TEXT function.)

Note: During error processing, if memory is low while the error stack is being built or updated, you may not have
enough memory to store the source line. In this case, the return value for the MCODE code string is the null
string. However, the return value for the PLACE code string indicates the location.

• ECODE — The error code of any error that occurred at the specified context level (available only in error stack contexts).

When the requested information is not available at the specified context level, the two argument form of $STACK returns
the null string.

Example
The following example demonstrates some of the information that $STACK can return:

444 ObjectScript Reference

ObjectScript Functions

STAC ;
 SET $ECODE=""
 XECUTE "DO First"
 QUIT
First SET varSecond=$$Second()
 QUIT
Second() FOR loop=0:1:$STACK(-1) {
 WRITE !,"Context level:",loop,?25,"Context type: ",$STACK(loop)
 WRITE !,?5,"Current place: ",$STACK(loop,"PLACE")
 WRITE !,?5,"Current source: ",$STACK(loop,"MCODE")
 WRITE ! }
 QUIT 1

>DO ^STAC
Context level: 0 Context type:
 Current place: @ +1
 Current source: DO ^STAC
Context level: 1 Context type: DO
 Current place: STAC+2^STAC +1
 Current source: XECUTE "DO First"
Context level: 2 Context type: XECUTE
 Current place: @ +1
 Current source: DO First
Context level: 3 Context type: DO
 Current place: First^STAC +1
 Current source: First SET Second=$$Second
Context level: 4 Context type: $$
 Current place: Second+2^STAC +4
 Current source: WRITE !,?5,"Current source: ",$STACK(loop,"MCODE")

Notes

Cross-Namespace Routine Calls

If a routine calls a routine in a different namespace, $STACK returns the namespace name as part of the routine name. For
example, if a routine in the USER namespace calls a routine in the SAMPLES namespace, $STACK returns
^|"SAMPLES"|routinename.

$STACK uses the caret (^) character as a delimiter. Therefore, if an implied namespace name includes the caret (^) char-
acter, InterSystems IRIS displays this namespace name character as the @ character.

$STACK Counts Multiple-Argument Commands

When you specify a multiple-argument command, the command count includes command keywords and all command
arguments beyond the first. Consider the following multiple-argument command:

TEST
 SET X=1,Y=Z

In InterSystems IRIS, the $STACK statement, $STACK(1,"PLACE") returns "TEST^TEST +2" because the Y=Z argument
counts as a separate command.

$STACK with <STORE> Errors or Low Memory Conditions

After a <STORE> error or under low-memory conditions, the information available normally through the application of
the two-argument form of $STACK may not be available.

See Also
• DO command

• XECUTE command

• $ECODE special variable

• $ESTACK special variable

• $STACK special variable

• Error Handling in Using ObjectScript

ObjectScript Reference 445

$STACK

• Using %STACK to Display the Stack in the “Command-line Routine Debugging” chapter of Using ObjectScript

446 ObjectScript Reference

ObjectScript Functions

$TEXT
Returns a line of source code found at the specified location.

$TEXT(label+offset^routine)
$T(label+offset^routine)

$TEXT(@expr_atom)
$T(@expr_atom)

Parameters

Optional — A line label in a routine. Must be a literal value; a variable cannot be
used to specify label. Line labels are case-sensitive. If omitted, +offset is counted
from the beginning of the routine.

label

Optional — An expression that resolves to a positive integer that identifies the line
to be returned as an offset number of lines. If omitted, the line identified by label is
returned.

+offset

Optional — The name of a routine. Must be a literal value; a variable cannot be
used to specify routine. (Note that the ^ character is a separator character, not part
of the routine name.) If the routine is not in the current namespace, you can specify
the namespace that contains the routine using an extended routine reference, as
follows: ^|"namespace"|routine. If omitted, defaults to the currently loaded
routine.

^routine

An expression atom that uses indirection to supply a location. Resolves to some
form of label+offset^routine.

@expr_atom

Description
$TEXT returns a line of code found at the specified location. If $TEXT does not find source code at the specified location,
it returns the null string.

To identify a single line of source code, you must specify either a label, an +offset, or both. By default, $TEXT accesses
the currently loaded routine. Either $TEXT is coded in the currently executing routine, or accesses the currently loaded
routine as the static routine most recently loaded using ZLOAD. You can use ^routine to specify a routine location other
than the currently loaded routine. You can use indirection (@expr_atom) to specify a location.

$TEXT returns the specified line from the INT code version of a routine. INT code does not count or include preprocessor
statements. INT code includes all labels and most comments, but does not count or include completely blank lines from
the MAC version of the routine, whether in the source code or within a multiline comment.

The +offset argument counts lines using the INT code version of the routine. After modifying a routine, you must re-compile
the routine for $TEXT to correctly count lines and line offsets that correspond to the INT version.

In the returned source code, if the first whitespace character in the line is a tab, $TEXT replaces it with a single space
character. All other tabs and space characters are returned unchanged. Thus $PIECE($TEXT(line)," ",1) always
returns a label, and $PIECE($TEXT(line)," ",2,*) returns all code except a label.

When a routine is distributed as object code only, the ;; comment is the only comment type retained in the object code.
Thus only ;; comments are available to $TEXT in those routines. For a ;; comment to be returned by $TEXT, it must either
appear on its own line, or on the same line as a label. It cannot appear on a line containing a command, or a line declaring
a function or subroutine. For further details on the different types of InterSystems IRIS comments, refer to Comments in
Using ObjectScript.

ObjectScript Reference 447

$TEXT

You can use the PRINT or ZPRINT commands to display a single line (or multiple lines) of source code from the currently
loaded routine. ZPRINT (or PRINT) sets the edit pointer to the end of the lines it printed. $TEXT does not change the
edit pointer.

Parameters

label

The label within the current routine or, if the routine parameter is also supplied, a label in the specified routine. Must be
specified as a literal, without quotes. Label names are case-sensitive, and may contain Unicode characters. A label may be
longer than 31 characters, but must be unique within the first 31 characters. $TEXT matches only the first 31 characters
of a specified label.

If you omit the offset option, or specify label+0, InterSystems IRIS prints the label line. label+1 prints the line after the
label. If label is not found in the routine, $TEXT returns the empty string.

offset

A positive integer specifying a line count, or as an expression that evaluates to a positive integer. The leading plus sign (+)
is mandatory. If specified alone, the +offset specifies a line count from the beginning of the routine, with +1 being the first
line of the routine. If specified with the label parameter, the line count is calculated from the label location, with +0 being
the label line itself, and +1 being the line after the label. If +offset is larger than the number of lines in the routine (or the
number of lines from label to the end of the routine) $TEXT returns the empty string.

You can specify an offset of +0. When label is specified, $TEXT(mylabel+0) is the same as $TEXT(mylabel). If you
invoke $TEXT(+0), it returns the name of the currently loaded routine.

InterSystems IRIS resolves an +offset value to a canonical positive integer. A negative integer offset value generates a
<NOLINE> error.

Note that InterSystems IRIS resolves numbers and numeric strings to canonical form, which involves removal of the leading
plus sign (+). For this reason, you must specify the plus sign in the $TEXT function to use it as an offset.

To use a variable as the offset it must be preceded by a plus sign as shown in the following example:

 SET x=7
 WRITE $TEXT(x) /* because there is no plus sign, search for a label named x */
 WRITE $TEXT(+x) /* locates the offset +7 code line */

routine

If specified alone, it indicates the first line of code in the routine. If specified with only the label parameter, the line found
at that specified label within the routine is returned. If specified with only the offset parameter, the line at the specified
offset within the routine is returned. If both label and offset are supplied, the line found at the specified offset within the
specified label within the routine is returned.

The routine argument must be specified as a literal, without quotes. You cannot use a variable to specify the routine name.
The leading caret (^) is mandatory.

By default, InterSystems IRIS searches for the routine in the current namespace. If the desired routine resides in another
namespace, you can specify that namespace using extended global reference. For example,
$TEXT(mylabel+2^|"SAMPLES"|myroutine). Note that only vertical bars can be used here; square brackets cannot
be used. You can specify the namespace portion of ^routine as a variable.

$TEXT returns the empty string if the specified routine or namespace does not exist, or if the user does not have access
privileges for the namespace.

448 ObjectScript Reference

ObjectScript Functions

expression atom (@expr_atom)

An indirect argument that evaluates to a $TEXT argument (label+offset^routine). For more information, refer to Indirection
in Using ObjectScript.

Examples
The following four examples demonstrate a routine saved with object code only. The first two examples return the referenced
line, including the ;; comment. The third and fourth examples return the null string:

Start ;; this comment is on a label line
 WRITE $TEXT(Start)

Start
 ;; this comment is on its own line
 WRITE $TEXT(Start+1)

Start
 SET x="fred" ;; this comment is on a command line
 WRITE $TEXT(Start+1)

MyFunc() ;; this comment is on a function declaration line
 WRITE $TEXT(MyFunc)

The following example shows that only the first 31 characters of label are matched with the specified label:

StartabcdefghijklmnopqrstuvwxyzA ;; 32-character label
 WRITE $TEXT(StartabcdefghijklmnopqrstuvwxyzB)

The following example shows the $TEXT(label) form, which returns the line found at the specified label within the current
routine. The label is also returned. If the user enters "?", the Info text is written out, along with the line label, and control
returns to the initial prompt:

Start
 READ !,"Array name or ? for Info: ",ary QUIT:ary=""
 IF ary="?" {
 WRITE !,$TEXT(Info),!
 GOTO Start }
 ELSE { DO ArrayOutput(ary) }
 QUIT
Info ;; This routine outputs the first-level subscripts of a variable.
 QUIT
ArrayOutput(val)
 SET i=1
 WHILE $DATA(@val@(i)) {
 WRITE !,"subscript ",i," is ",@val@(i)
 SET i=i+1
 }
 QUIT

The following example shows the $TEXT(label+offset) form, which returns the line found at the offset within the specified
label, which must be within the current routine. If the offset is 0, the label line, with the label, is returned. This example
uses a FOR loop to access multiline text, avoiding displaying the label or the multiline comment delimiters:

Start
 READ !,"Array name or ? for Info: ",ary QUIT:ary=""
 IF ary="?" {
 DO Info
 GOTO Start }
 ELSE { DO ArrayOutput(ary) }
 QUIT
Info FOR loop=2:1:6 { WRITE !,$TEXT(Info+loop) }
 /*
 This routine outputs the first-level subscripts of a variable.
 Specifically, it asks you to supply the name of the variable
 and then writes out the current values for each subscript
 node that contains data. It stops when it encounters a node
 that does not contain data.
 */
 QUIT
ArrayOutput(val)
 SET i=1
 WHILE $DATA(@val@(i)) {

ObjectScript Reference 449

$TEXT

 WRITE !,"subscript ",i," is ",@val@(i)
 SET i=i+1
 }
 QUIT

The following example uses extended routine reference to access a line of code from a routine in the SAMPLES namespace.
It accesses the first line of code after the ErrorTest label in the routine named myroutine. It can be executed from any
namespace:

 WRITE $TEXT(ErrorTest+1^|"SAMPLES"|myroutine)

Notes

Argument Indirection

Indirection of the entire $TEXT argument is a convenient way to make an indirect reference to both the line and the routine.
For example, if the variable ENTRYREF contains both a line label and a routine name, you can reference the variable:

$TEXT(@ENTRYREF)

rather than referencing the line and the routine separately:

$TEXT(@$PIECE(ENTRYREF,"^",1)^@$PIECE(ENTRYREF,"^",2))

See Also
• PRINT command

• ZINSERT command

• ZLOAD command

• ZPRINT command

• ZREMOVE command

• ZSAVE command

• ZZPRINT command

• Comments in Using ObjectScript

• Labels in Using ObjectScript

• Indirection in Using ObjectScript

450 ObjectScript Reference

ObjectScript Functions

$TRANSLATE
Returns a new string that consists of character-for-character replacement of a source string.

$TRANSLATE(string,identifier,associator)
$TR(string,identifier,associator)

Parameters

The source string. It can be a numeric value, a string literal, the name of a variable,
or any valid ObjectScript expression.

string

A string consisting of one or more characters to search for in string. It can be a
numeric value, a string literal, the name of a variable, or any valid ObjectScript
expression.

identifier

Optional — A string consisting of one or more replacement characters that
correspond positionally to each character in identifier. It can be a numeric value, a
string literal, the name of a variable, or any valid ObjectScript expression.

associator

Description
The $TRANSLATE function returns a new string that consists of a character-for-character replacement of the source string.
A $TRANSLATE operation can replace multiple different characters, but it can only replace a single character with (at
most) a single character. It processes the string parameter one character at a time. It compares each character in the input
string with each character in the identifier parameter. If $TRANSLATE finds a match, it performs one of the following
actions on that character:

• The two-parameter form of $TRANSLATE removes those characters in the identifier parameter from the returned
string.

• The three-parameter form of $TRANSLATE replaces the identifier character(s) found in the string with the positionally
corresponding character(s) from the associator parameter and returns the resulting string. Replacement is performed
on a character, not a string, basis. If the identifier parameter contains fewer characters than the associator parameter,
the excess character(s) in the associator parameter are ignored. If the identifier parameter contains more characters
than the associator parameter, the excess character(s) in the identifier parameter are deleted in the output string.

$TRANSLATE is case-sensitive.

The string, identifier, and associator parameters are normally specified as quoted strings. If the value of one of these
parameters is purely numeric, string quotes are not required; however, because InterSystems IRIS will convert the param-
eter value to a canonical number before supplying the value to $TRANSLATE, this usage is not recommended.

$TRANSLATE and $REPLACE

$TRANSLATE performs character-for-character matching and replacement. $REPLACE performs string-for-string
matching and replacement. $REPLACE can replace a single specified substring of one or more characters with another
substring, or remove multiple instances of a specified substring. $TRANSLATE can replace multiple specified characters
with corresponding specified replacement characters.

$TRANSLATE matching is always case-sensitive; $REPLACE matching is case-sensitive by default, but can be invoked
as not case-sensitive. $TRANSLATE always replaces all matches in the source string; $REPLACE can specify the starting
point for matching and/or the number of replacements to perform.

ObjectScript Reference 451

$TRANSLATE

Examples
The following example shows two ways of using $TRANSLATE. The first $TRANSLATE does not change the input
string value. The second $TRANSLATE changes the input string value by setting it equal to the function’s return value:

 SET str="The quick brown fox"
 SET newstr=$$TRANSLATE(str,"qbf","QBF")
 WRITE "source string: ",str,!,"new string: ",newstr,!!
 // creates a new string, does not change str value
 SET str=$$TRANSLATE(str,"qbf","QBF")
 WRITE "revised string: ",str
 // creates a new string and replaces str with new string value

In the following example, a two-parameter $TRANSLATE removes Numeric Group Separators based on the setting for
the current locale:

AppropriateInput
 SET ds=##class(%SYS.NLS.Format).GetFormatItem("DecimalSeparator")
 IF ds="." {SET x="+1,462,543.33"}
 ELSE {SET x="+1.462.543,33"}
TranslateNum
 WRITE !,"before translation ",x
 SET ngs=##class(%SYS.NLS.Format).GetFormatItem("NumericGroupSeparator")
 IF ngs="," {SET x=$TRANSLATE(x,",") }
 ELSEIF ngs="." {SET x=$TRANSLATE(x,".") }
 ELSEIF ngs=" " {SET x=$TRANSLATE(x," ") }
 ELSE {WRITE "Non-standard NumericGroupSeparator:", ngs
 RETURN }
 WRITE !,"after translation ",x

In the following example, a three-parameter $TRANSLATE replaces various Date Separator Characters with slashes. Note
that the associator must specify “/” as many times as the number of characters in identifier:

 SET x(1)="06-23-2014"
 SET x(2)="06.24.2014"
 SET x(3)="06/25/2014"
 SET x(4)="06|26|2014"
 SET x(5)="06 27 2014"
 FOR i=1:1:5{
 SET x(i)=$TRANSLATE(x(i),"- .|","////")
 WRITE "x(",i,") :",x(i),!
 }

In the following example, a three-parameter $TRANSLATE “simplifies” Spanish to basic ASCII by replacing accented
letters with non-accented letters and removing the question and exclamation sentence prefix punctuation:

 SET esp="¿Sabes lo que ocurrirá en el año 2016?"
 WRITE "Spanish:",!,esp,!
 SET iden=$CHAR(225)_$CHAR(233)_$CHAR(237)_$CHAR(241)_$CHAR(243)_$CHAR(250)_$CHAR(161)_$CHAR(191)
 SET asso="aeinou"
 WRITE "Identifier: ",iden,!
 WRITE "Associator: ",asso,!
 SET spanglish=$TRANSLATE(esp,iden,asso)
 WRITE "Spanglish:",!,spanglish

Needless to say, this is not a recommended conversion for use on actual Spanish text.

See Also
• $EXTRACT function

• $PIECE function

• $REPLACE function

• $REVERSE function

• $ZCONVERT function

452 ObjectScript Reference

ObjectScript Functions

$VIEW
Returns the contents of memory locations.

$VIEW(offset,mode,length)
$V(offset,mode,length)

Parameters

Positive Integer: an offset, in bytes, from a base address within the memory region specified
by mode. Interpretation is mode-dependent (see below.)

-1: a flag to return process summary information.

offset

Optional — The memory region whose base address will be used to locate the data. Default
is -1.

mode

Optional — The length of the data to be returned, in bytes. May also contain a letter “O”
reverse order suffix. Default is 1.

When returning process summary information , a returned value format flag: 1=caret–sepa-
rated string (the default); 2=$list-structured string.

length

Description
$VIEW returns the contents of memory locations.

The view buffer is a special memory area used to store blocks of data read from the InterSystems IRIS database (IRIS.DAT)

with the VIEW command. After reading a block into the view buffer, you can use the $VIEW function with mode 0 to
examine the contents of the view buffer. You must open the view buffer as device 63 in order to access it; when finished,
you should close device 63.

You can also use $VIEW to return process summary information.

The $VIEW function is usually used when debugging and repairing InterSystems IRIS databases and system information.

Parameters

offset

The value of this argument depends upon the mode argument, as follows:

• When mode is 0, -1, or -2, specify a positive integer as the offset from the base address, in bytes, counting from 0.

• When mode is -3, or a positive integer, specify an address in the process address space. The value -1 can be used to
retrieve a summary of the process state, as described in “Process Summary Information” below.

• When mode is -5, specify a positive integer that specifies the number of global nodes in the current block. In this case,
odd values return full global references and even values return pointers or data.

mode

The possible values for mode are shown in the following table. If mode is omitted, the default is -1. Note that some values
are implementation specific. Implementation restrictions are noted in the table.

ObjectScript Reference 453

$VIEW

Base AddressMemory Management RegionMode

Beginning of view bufferThe view buffer0

Beginning of partitionThe process’s partition (default)-1

Beginning of system tableThe system table-2

0The address space for the current process.-3

Special. See “Using Mode -5,” later in
the Notes section.

Global reference and data-5

Reserved for InterSystems use-6

Special.Used only by the integrity checking utility-7

0When n is a positive number, the address space for
the running process n, where n is the pid (value of the
$JOB special variable) for that process. Treats offset
and length the same as mode -3.

n

length

A length in bytes, or a flag character. Interpretation depends on the mode and offset values:

• When mode is 0, -1, or -2, -3, or a positive integer (a pid), and offset is a positive integer, the length parameter can be:

– A negative integer from -1 to the maximum string length (as a negative integer) to return that length of data as a
string. $VIEW returns the specified number of characters starting at the address indicated by offset.

– A positive integer in the range 1 through 8 (inclusive) to return the decimal value of the data. $VIEW returns from
one to four contiguous bytes, or eight contiguous bytes, starting at the address indicated by offset.

– A letter C or P as a quoted string to indicate a four-byte address on 32-bit systems, or an eight-byte address on
64-bit systems. When specifying C or P, you do not specify a length integer value.

To return a byte value in reverse order (low-order byte at lowest address) append a letter O suffix to the length value
and enclose the resulting string in double quotes.

If the length parameter is omitted, the default is 1.

• When mode is -3, or a positive integer (a pid), and offset is -1, the length parameter is a flag that specifies the format
of the summary information. Specify a length of 1 to return this summary as a delimited string, or 2 to return this
summary as a $LIST structure. If the length parameter is omitted, the default is 1.

• When mode is -5, do not specify a length parameter.

Notes

$VIEW Usage Restricted

The $VIEW function is a restricted system capability. It is a protected command because the invoked code is located in
the IRISSYS database. For further details, refer to the “ IRISSYS Special Capabilities” in the Assets and Resources chapter
of the Security Administration Guide.

Process Summary Information

When offset is -1, you can use mode -3 to return summary information from the current process address space as a ^
delimited string, as shown in this example:

454 ObjectScript Reference

ObjectScript Functions

 WRITE $VIEW(-1,-3,1)

You can also return the same information as a $LIST structure, as follows:

 SET infolist = $VIEW(-1,-3,2)
 ZWRITE infolist

To return summary information from the address space of a specified process, provide the Process ID (pid) for that process
as a positive integer for the mode argument, as shown in this example:

 SET pid=$PIECE($IO,"|",4)
 WRITE $VIEW(-1,pid,1)

The following Terminal example returns more than one currently open devices in the dev field. It first returns just the current
process. It then opens a spool device (device 2), and returns the open devices as a comma-separated list:

USER>WRITE $VIEW(-1,-3)
8484^*^|TRM|:|8484*,^116^...
USER>OPEN 2:(3:12)

USER>WRITE $VIEW(-1,-3)
8484^*^|TRM|:|8484*,2,^118^...

The summary information return value is in the following format:

pid^mode^dev^mem^dir^rou^stat^prio^uic^loc^blk^^^defns^lic^jbstat^mempeak^roles^loginroles

The fields are defined as follows:

The process ID. See the Pid property of the SYS.Process class.pid

* if in at the Terminal prompt. + or – if the job is part of a callin connection. Omitted
for daemons.

mode

Current open device(s), returned as a comma-separated list. The current device
(the $IO device) is indicated by an asterisk (*) suffix. See the OpenDevices property
of the SYS.Process class. Note that the dev value includes a trailing comma, the
OpenDevices value does not.

dev

Memory in use in the process partition (in KBs), if the process is not a daemon.
Similar to but not identical to the MemoryUsed property of the SYS.Process class.

mem

Default directory.dir

Routine name.rou

A comma-separated pair of integer counts, bol,gcnt, where bol is the beginning
of line token, specifying the number of lines executed, and gcnt is the global count,
specifying the total number of FOR loops and XECUTE commands performed.

stat

User’s current base priority. See the Priority property of the SYS.Process class.prio

Obsolete, defaults to 0,0.uic

Location, for daemon processes only.loc

Number of 2K blocks that can be used for buddy block queues. This is the
maximum size of user memory space (also known as partition space). See the
MemoryAllocated property of the SYS.Process class.

blk

Default namespace. See the NameSpace property of the SYS.Process class.defns

License bits.lic

ObjectScript Reference 455

$VIEW

Job status, specified as high,low representing the high and low order bits. Refer
to $ZJOB special variable for details.

jbstat

Peak memory usage for the process, in kilobytes. This value is approximate to
the nearest 64K. See the MemoryPeak property of the SYS.Process class.

mempeak

The roles that the process currently has, returned as a comma-separated list.
Same as $ROLES value. See the Roles property of the SYS.Process class.

roles

The roles that the process had when it was initiated, returned as a
comma-separated list. See the LoginRoles property of the SYS.Process class.

loginroles

Using Mode -5

If the current block in the view buffer contains part of a global, specifying -5 for mode returns the global references and
the values contained in the block. The length parameter is not valid for a mode of -5.

With a mode of -5, the offset value specifies the number of global nodes in the block, rather than a byte offset from the base
address. Odd values return full global references and even values return pointers or data.

For example, to return the full global reference of the nth node in the view buffer, specify n*2-1 for offset. To return the
value of the nth node, specify n*2. To return the global reference of the last node in the block, specify -1 for the offset
value.

$VIEW returns the nodes in collating sequence (that is, numeric). This is the same sequence that the $ORDER function
uses. By writing code that expects this sequence, you can quickly perform a sequential scan through a global in the view
buffer. (Several of the ObjectScript utilities use this technique.) $VIEW returns a null string ("") if the offset specifies a
location beyond the last node in the view buffer. Be sure to include a test for this value in your code.

If the current block is a pointer block, the values returned are InterSystems IRIS block numbers, which are pointers. If the
block is a data block, the values returned are the data values associated with the nodes.

If $VIEW issues a <DATABASE> or <FUNCTION> error, it means that the information in the block is neither a valid
global reference nor valid data.

The following example shows generalized code for examining the contents of the view buffer. The code first opens the
view buffer and prompts for the number of the block to be read in. The FOR loop then cycles through all the offsets in the
current block. The $VIEW function uses a mode of -5 to return the value at each offset. The WRITE commands output
the resulting offset-value pairs.

When the end of the block is reached, $VIEW returns a null string (""). The IF command tests for this value and writes
out the “End of block” message. The QUIT command then terminates the loop and control returns to the prompt so the
user can read in another block.

Start OPEN 63
 WRITE !,"Opening view buffer."
 READ !!,"Number of block to read in: ",block QUIT:block=""
 VIEW block
 FOR i=1:1 {
 SET x=$VIEW(i,-5)
 IF x="",i#2 {
 WRITE !!,"End of block: ",block
 CLOSE 63
 QUIT }
 WRITE !,"Offset = ",i
 WRITE !,"Value = ",x
 }
 GOTO Start+2
 CLOSE 63
 QUIT

For a global block, typical output produced by this routine might appear as follows:

456 ObjectScript Reference

ObjectScript Functions

Opening view buffer.
Number of block to read in:3720
Offset = 1
Value = ^client(5)
Offset = 2
Value = John Jones
Offset = 3
Value = ^client(5,1)
Offset = 4
Value = 23 Bay Rd./Boston/MA 02049
 .
 .
 .
Offset = 126
Value = ^client(18,1,1)
Offset = 127
Value = Checking/45673/1248.00
End of block: 3720
Number of block to read in:

Reverse Order Byte Values (Big-Endian only)

On big-endian systems, you can return byte values in reverse order by using a letter “O” suffix as part of the length
parameter. When you specify the letter O in length, $VIEW returns a byte value in reverse order. (The length value must
be enclosed in double quotes.) This is shown in the following example:

 USE IO
 FOR Z=0:0 {
 WRITE *-6
 SET NEXTBN=$VIEW(LINKA,0,"3O")
 QUIT:NEXTBN=0 }

In the example above, the length parameter of $VIEW is “3O” (3 and the letter O). When run on a big-endian system, this
specifies a length of the next three (3) bytes in reverse order (O). Thus, $VIEW starts at a position in memory (the view
buffer—as indicated by a mode of 0) and returns the highest byte, the second highest byte, and the third highest byte.

On little-endian systems, the letter “O” is a no-op. A length value of “3O” is the same as a length value of “3”.

You can use the IsBigEndian() class method to determine which bit ordering is used on your operating system platform:
1=big-endian bit order; 0=little-endian bit order.

 WRITE $SYSTEM.Version.IsBigEndian()

See Also
• VIEW command

• JOB command

ObjectScript Reference 457

$VIEW

$WASCII
Returns the numeric code corresponding to a character, recognizing surrogate pairs.

$WASCII(expression,position)
$WA(expression,position)

Parameters

The character to be converted.expression

Optional — The position of a character within a character string, counting from 1.
The default is 1.

position

Description
$WASCII returns the character code value for a single character specified in expression. $WASCII recognizes a surrogate
pair as a single character. The returned value is a positive integer.

The expression parameter may evaluate to a single character or to a string of characters. If expression evaluates to a string
of characters, you can include the optional position parameter to indicate which character you want to convert. The position
counts a surrogate pair as a single character. You can use the $WISWIDE function to determine if a string contains a sur-
rogate pair.

A surrogate pair is a pair of 16-bit InterSystems IRIS character elements that together encode a single Unicode character.
Surrogate pairs are used to represent certain ideographs which are used in Chinese, Japanese kanji, and Korean hanja. (Most
commonly-used Chinese, kanji, and hanja characters are represented by standard 16-bit Unicode encodings.) Surrogate
pairs provide InterSystems IRIS support for the Japanese JIS X0213:2004 (JIS2004) encoding standard and the Chinese
GB18030 encoding standard.

A surrogate pair consists of high-order 16-bit character element in the hexadecimal range D800 through DBFF, and a low-
order 16-bit character element in the hexadecimal range DC00 through DFFF.

The $WASCII function recognizes a surrogate pair as a single character. The $ASCII function treats a surrogate pair as
two characters. In all other aspects, $WASCII and $ASCII are functionally identical. However, because $ASCII is generally
faster than $WASCII, $ASCII is preferable for all cases where a surrogate pair is not likely to be encountered. For further
details on character to numeric code conversion, refer to the $ASCII function.

Examples
The following example shows $WASCII returning the Unicode value for a surrogate pair:

 SET hipart=$CHAR($ZHEX("D806"))
 SET lopart=$CHAR($ZHEX("DC06"))
 WRITE !,$ASCII(hipart)," = high-order value"
 WRITE !,$ASCII(lopart)," = low-order value"
 SET spair=hipart_lopart /* surrogate pair */
 SET xpair=hipart_hipart /* NOT a surrogate pair */
 WRITE !,$WASCII(spair)," = surrogate pair value"
 WRITE !,$WASCII(xpair)," = Not a surrogate pair"

The following example compares $WASCII and $ASCII return values for a surrogate pair:

 SET hipart=$CHAR($ZHEX("D806"))
 SET lopart=$CHAR($ZHEX("DC06"))
 WRITE !,$ASCII(hipart)," = high-order value"
 WRITE !,$ASCII(lopart)," = low-order value"
 SET spair=hipart_lopart /* surrogate pair */
 WRITE !,$ASCII(spair)," = $ASCII value for surrogate pair"
 WRITE !,$WASCII(spair)," = $WASCII value for surrogate pair"

458 ObjectScript Reference

ObjectScript Functions

The following example shows the effects on position counting of surrogate pairs. It returns both the $WASCII and $ASCII
values for each position. $WASCII counts a surrogate pair as one position; $ASCII counts a surrogate pair as two positions:

 SET hipart=$CHAR($ZHEX("D806"))
 SET lopart=$CHAR($ZHEX("DC06"))
 WRITE !,$ASCII(hipart)," = high-order value"
 WRITE !,$ASCII(lopart)," = low-order value",!
 SET str="AB"_lopart_hipart_lopart_"CD"_hipart_lopart_"EF"
 FOR x=1:1:11 {
 WRITE !,"position ",x," $WASCII ",$WASCII(str,x)," $ASCII ",$ASCII(str,x) }

See Also
• $ASCII function

• $WCHAR function

• $WEXTRACT function

• $WFIND function

• $WISWIDE function

• $WLENGTH function

• $WREVERSE function

ObjectScript Reference 459

$WASCII

$WCHAR
Returns the character corresponding to a numeric code, recognizing surrogate pairs.

$WCHAR(expression,...)
$WC(expression,...)

Parameter

The integer value to be converted.expression

Description
$WCHAR returns the character(s) corresponding to a code value(s) specified in expression. Decimal values of 65535 (hex
FFFF) and smaller are processed identically by $CHAR and $WCHAR. Values from 65536 (hex 10000) through 1114111
(hex 10FFFF) are used to represent Unicode surrogate pairs; these characters can be returned using $WCHAR.

If expression contains a comma-separated list of code values, $WCHAR returns the corresponding characters as a string.
$WCHAR recognizes a surrogate pair as a single character. You can use the $WISWIDE function to determine if a string
contains a surrogate pair.

A surrogate pair is a pair of 16-bit InterSystems IRIS character elements that together encode a single Unicode character.
Surrogate pairs are used to represent certain ideographs which are used in Chinese, Japanese kanji, and Korean hanja. (Most
commonly-used Chinese, kanji, and hanja characters are represented by standard 16-bit Unicode encodings.) Surrogate
pairs provide InterSystems IRIS support for the Japanese JIS X0213:2004 (JIS2004) encoding standard and the Chinese
GB18030 encoding standard.

A surrogate pair consists of high-order 16-bit character element in the hexadecimal range D800 through DBFF, and a low-
order 16-bit character element in the hexadecimal range DC00 through DFFF.

The $WCHAR function treats a surrogate pair as a single character. The $CHAR function treats a surrogate pair as two
characters. In all other aspects, $WCHAR and $CHAR are functionally identical. However, because $CHAR is generally
faster than $WCHAR, $CHAR is preferable for all cases where a surrogate pair is not likely to be encountered.

For further details on numeric code to character conversion, refer to the $CHAR function.

See Also
• $CHAR function

• $WASCII function

• $WEXTRACT function

• $WFIND function

• $WISWIDE function

• $WLENGTH function

• $WREVERSE function

460 ObjectScript Reference

ObjectScript Functions

$WEXTRACT
Extracts a substring from a character string by position, or replaces a substring by position, recognizing surrogate pairs.

$WEXTRACT(string,from,to)
$WE(string,from,to)

SET $WEXTRACT(string,from,to)=value
SET $WE(string,from,to)=value

Parameters

The target string in which substrings are identified. Specify string as an expression that
evaluates to a quoted string or a numeric value. In SET $WEXTRACT syntax, string must
be a variable or a multi-dimensional property.

string

Optional — The starting position within the target string. Characters are counted from 1. A
surrogate pair is counted as a single character. Permitted values are n (a positive integer
specifying the start position as a character count from the beginning of string), * (specifying
the last character in string), and *-n (offset integer count of characters backwards from end
of string). SET $WEXTRACT syntax also supports *+n (offset integer count of characters to
append beyond the end of string). If not specified, the default is 1. Different values are used
for the two-parameter form $WEXTRACT(string,from), and the three-parameter form
$WEXTRACT(string,from,to):

Without to: Specifies a single character. To count from the beginning of string, specify an
expression that evaluates to a positive integer (counting from 1); a zero (0) or negative
number returns the empty string. To count from the end of string specify *, or *-n. If from is
omitted it defaults to 1.

With to: Specifies the start of a range of characters. To count from the beginning of string,
specify an expression that evaluates to a positive integer (counting from 1). A zero (0) or
negative number evaluates as 1. To count from the end of string specify *, or *-n.

from

Optional — Specifies the end position (inclusive) for a range of characters. Must be used
with from. Permitted values are n (a positive integer equal to or larger than from that specifies
the end position as a character count from the beginning of string), * (specifying the last
character in string), and *-n (offset integer count of characters backwards from end of string).
A surrogate pair is counted as a single character.You can specify a to value that is beyond
the end of the string.

SET $WEXTRACT syntax also supports *+n (offset integer count of the end of a range of
characters to append beyond the end of string).

to

Description
$WEXTRACT identifies a substring within string by position, either counting characters from the beginning of string or
counting characters by offset from the end of string. A substring can be a single character or a range of characters.
$WEXTRACT recognizes a surrogate pair as a single character.

$WEXTRACT can be used in two ways:

• To return a substring from string. This uses the $WEXTRACT(string,from,to) syntax.

• To replace a substring within string. The replacement substring may be the same length, longer, or shorter than the
original substring. This uses the SET $WEXTRACT(string,from,to)=value syntax.

ObjectScript Reference 461

$WEXTRACT

$WEXTRACT and $EXTRACT are functionally identical, except for the handling of surrogate pairs.

Surrogate Pairs

The $WEXTRACT from and to parameters count a surrogate pair as a single character. You can use the $WISWIDE
function to determine if a string contains a surrogate pair.

A surrogate pair is a pair of 16-bit InterSystems IRIS character elements that together encode a single Unicode character.
Surrogate pairs are used to represent certain ideographs which are used in Chinese, Japanese kanji, and Korean hanja. (Most
commonly-used Chinese, kanji, and hanja characters are represented by standard 16-bit Unicode encodings.) Surrogate
pairs provide InterSystems IRIS support for the Japanese JIS X0213:2004 (JIS2004) encoding standard and the Chinese
GB18030 encoding standard.

A surrogate pair consists of high-order 16-bit character element in the hexadecimal range D800 through DBFF, and a low-
order 16-bit character element in the hexadecimal range DC00 through DFFF.

The $WEXTRACT function treats a surrogate pair as a single character. The $EXTRACT function treats a surrogate pair
as two characters. If a string contains no surrogate pairs, either $WEXTRACT and $EXTRACT can be used and return
the same value. However, because $EXTRACT is generally faster than $WEXTRACT, $EXTRACT is preferable for
all cases where a surrogate pair is not likely to be encountered. For further details on extracting a substring, refer to the
$EXTRACT function.

Returning a Substring
$WEXTRACT returns a substring by character position from string. The nature of this substring extraction depends on
the parameters used:

• $WEXTRACT(string) extracts the first character in the string.

• $WEXTRACT(string,from) extracts a single character in the position specified by from. The from value can be an
integer count of characters from the beginning of the string, an asterisk specifying the last character of the string, or
an asterisk with a negative integer specifying a character count backwards from the end of the string.

The following example extracts single letters from a string containing a surrogate pair. Note that $LENGTH counts
a surrogate pair as two characters, but $WEXTRACT counts a surrogate pair as a single character:

 SET hipart=$CHAR($ZHEX("D806"))
 SET lopart=$CHAR($ZHEX("DC06"))
 SET spair=hipart_lopart /* surrogate pair */
 WRITE "length of surrogate pair ",$LENGTH(spair),!
 SET mystr="AB"_spair_"DEFG"
 WRITE !,$WEXTRACT(mystr,4) // "D" the 4th character
 WRITE !,$WEXTRACT(mystr,*) // "G" the last character
 WRITE !,$WEXTRACT(mystr,*-5) // "B" the offset 5 character from end
 WRITE !,$WEXTRACT(mystr,*-0) // "G" the last character by 0 offset

• $WEXTRACT(string,from,to) extracts the range of characters starting with the from position and ending with the to
position (inclusive). The following $WEXTRACT functions both return the string “Alabama”, counting surrogate
pairs as single characters:

 SET hipart=$CHAR($ZHEX("D806"))
 SET lopart=$CHAR($ZHEX("DC06"))
 SET spair=hipart_lopart /* surrogate pair */
 SET var2=spair_"XXX"_spair_"Alabama"_spair
 WRITE !,$WEXTRACT(var2,6,12)
 WRITE !,$WEXTRACT(var2,*-7,*-1)

If the from and to positions are the same,$WEXTRACT returns a single character. If the to position is closer to the
beginning of the string than the from position, $WEXTRACT returns the null string.

462 ObjectScript Reference

ObjectScript Functions

Replacing a Substring
You can use $WEXTRACT with the SET command to replace a specified character or range of characters with another
value. You can also use it to append characters to the end of a string. SET $WEXTRACT counts a surrogate pair as a
single character.

When $WEXTRACT is used with SET on the left hand side of the equals sign, string can be a valid variable name. If the
variable does not exist, SET $WEXTRACT defines it. The string parameter can also be a multidimensional property ref-
erence; it cannot be a non-multidimensional object property. Attempting to use SET $WEXTRACT on a non-multidimen-
sional object property results in an <OBJECT DISPATCH> error.

You cannot use SET (a,b,c,...)=value syntax with $WEXTRACT (or $EXTRACT, $PIECE, or $LIST) on the left of
the equals sign, if the function uses relative offset syntax: * representing the end of a string and *-n or *+n representing
relative offset from the end of the string. You must instead use SET a=value,b=value,c=value,... syntax.

For further details on replacing a substring, refer to the $EXTRACT function.

Examples
The following example shows the two-parameter form of $WEXTRACT returning the Unicode value for a surrogate pair:

 SET hipart=$CHAR($ZHEX("D806"))
 SET lopart=$CHAR($ZHEX("DC06"))
 SET spair=hipart_lopart /* surrogate pair */
 SET x="ABC"_spair_"DEFGHIJK"
 WRITE !,"$EXTRACT character "
 ZZDUMP $EXTRACT(x,4)
 WRITE !,"$WEXTRACT character "
 ZZDUMP $WEXTRACT(x,4)

The following example shows the three-parameter form of $WEXTRACT including a surrogate pair in a substring range:

 SET hipart=$CHAR($ZHEX("D806"))
 SET lopart=$CHAR($ZHEX("DC06"))
 SET spair=hipart_lopart /* surrogate pair */
 SET x="ABC"_spair_"DEFGHIJK"
 WRITE !,"$EXTRACT two characters "
 ZZDUMP $EXTRACT(x,3,4)
 WRITE !,"$WEXTRACT two characters "
 ZZDUMP $WEXTRACT(x,3,4)

See Also
• $EXTRACT function

• $WASCII function

• $WCHAR function

• $WFIND function

• $WISWIDE function

• $WLENGTH function

• $WREVERSE function

ObjectScript Reference 463

$WEXTRACT

$WFIND
Finds a substring by value and returns an integer specifying its end position in the string, recognizing surrogate pairs.

$WFIND(string,substring,position)
$WF(string,substring,position)

Parameters

The target string that is to be searched. It can be a variable name, a numeric value, a
string literal, or any valid ObjectScript expression that resolves to a string.

string

The substring that is to be searched for. It can be a variable name, a numeric value,
a string literal, or any valid ObjectScript expression that resolves to a string.

substring

Optional — A position within the target string at which to start the search. It must be
a positive integer.

position

Description
$WFIND returns an integer specifying the end position of a substring within a string. In calculating position, it counts each
surrogate pair as a single character. $WFIND is functionally identical to $FIND, except that $WFIND recognizes surrogate
pairs. It counts a surrogate pair as a single character. You can use the $WISWIDE function to determine if a string contains
a surrogate pair.

A surrogate pair is a pair of 16-bit InterSystems IRIS character elements that together encode a single Unicode character.
Surrogate pairs are used to represent certain ideographs which are used in Chinese, Japanese kanji, and Korean hanja. (Most
commonly-used Chinese, kanji, and hanja characters are represented by standard 16-bit Unicode encodings.) Surrogate
pairs provide InterSystems IRIS support for the Japanese JIS X0213:2004 (JIS2004) encoding standard and the Chinese
GB18030 encoding standard.

A surrogate pair consists of high-order 16-bit character element in the hexadecimal range D800 through DBFF, and a low-
order 16-bit character element in the hexadecimal range DC00 through DFFF.

The $WFIND function counts a surrogate pair as a single character. The $FIND function counts a surrogate pair as two
characters. In all other aspects, $WFIND and $FIND are functionally identical. However, because $FIND is generally
faster than $WFIND, $FIND is preferable for all cases where a surrogate pair is not likely to be encountered.

For further details on finding a substring, refer to the $FIND function.

Examples
The following example shows how $WFIND counts a surrogate pair as a single character in the return value:

 SET spair=$CHAR($ZHEX("D806"),$ZHEX("DC06"))
 SET str="ABC"_spair_"DEF"
 WRITE !,$FIND(str,"DE")," $FIND location in string"
 WRITE !,$WFIND(str,"DE")," $WFIND location in string"

The following example shows how $WFIND counts a surrogate pair as a single character in the position parameter:

 SET spair=$CHAR($ZHEX("D806"),$ZHEX("DC06"))
 SET str="ABC"_spair_"DEF"
 WRITE !,$FIND(str,"DE",6)," $FIND location in string"
 WRITE !,$WFIND(str,"DE",6)," $WFIND location in string"

See Also
• $FIND function

464 ObjectScript Reference

ObjectScript Functions

• $WASCII function

• $WCHAR function

• $WEXTRACT function

• $WISWIDE function

• $WLENGTH function

• $WREVERSE function

ObjectScript Reference 465

$WFIND

$WISWIDE
Returns a flag indicating whether a string contains surrogate pairs.

$WISWIDE(string)

Parameter

A string or expression that evaluates to a string.string

Description
$WISWIDE returns a boolean value indicating whether string contains surrogate pairs. 0=string does not contain any
surrogate pairs. 1=string contains one or more surrogate pairs.

A surrogate pair is a pair of 16-bit InterSystems IRIS character elements that together encode a single Unicode character.
Surrogate pairs are used to represent certain ideographs which are used in Chinese, Japanese kanji, and Korean hanja. (Most
commonly-used Chinese, kanji, and hanja characters are represented by standard 16-bit Unicode encodings.) Surrogate
pairs provide InterSystems IRIS support for the Japanese JIS X0213:2004 (JIS2004) encoding standard and the Chinese
GB18030 encoding standard.

A surrogate pair consists of high-order 16-bit character element in the hexadecimal range D800 through DBFF, and a low-
order 16-bit character element in the hexadecimal range DC00 through DFFF.

Example
The following example shows $WISWIDE returning a boolean for a surrogate pair:

 SET spair=$CHAR($ZHEX("D806"),$ZHEX("DC06")) /* surrogate pair */
 SET xpair=$CHAR($ZHEX("DC06"),$ZHEX("D806")) /* NOT a surrogate pair */
 SET str="AB"_spair_"CD"
 WRITE !,$WISWIDE(str)," = surrogate pair(s) in string?"
 SET xstr="AB"_xpair_"CD"
 WRITE !,$WISWIDE(xstr)," = surrogate pair(s) in string?"

See Also
• $WASCII function

• $WCHAR function

• $WEXTRACT function

• $WFIND function

• $WLENGTH function

• $WREVERSE function

466 ObjectScript Reference

ObjectScript Functions

$WLENGTH
Returns the number of characters in a string, recognizing surrogate pairs.

$WLENGTH(string)
$WL(string)

Parameter

A string or expression that evaluates to a string.string

Description
$WLENGTH returns the number of characters in string. $WLENGTH is functionally identical to $LENGTH, except
that $WLENGTH recognizes surrogate pairs. It counts a surrogate pair as a single character. You can use the $WISWIDE
function to determine if a string contains a surrogate pair.

A surrogate pair is a pair of 16-bit InterSystems IRIS character elements that together encode a single Unicode character.
Surrogate pairs are used to represent certain ideographs which are used in Chinese, Japanese kanji, and Korean hanja. (Most
commonly-used Chinese, kanji, and hanja characters are represented by standard 16-bit Unicode encodings.) Surrogate
pairs provide InterSystems IRIS support for the Japanese JIS X0213:2004 (JIS2004) encoding standard and the Chinese
GB18030 encoding standard.

A surrogate pair consists of high-order 16-bit character element in the hexadecimal range D800 through DBFF, and a low-
order 16-bit character element in the hexadecimal range DC00 through DFFF.

The $WLENGTH function counts a surrogate pair as a single character. The $LENGTH function counts a surrogate pair
as two characters. In all other aspects, $WLENGTH and $LENGTH are functionally identical. However, because
$LENGTH is generally faster than $WLENGTH, $LENGTH is preferable for all cases where a surrogate pair is not
likely to be encountered.

For further details on string length, refer to the $LENGTH function.

Example
The following example shows how $WLENGTH counts a surrogate pair as a single character:

 SET spair=$CHAR($ZHEX("D806"),$ZHEX("DC06"))
 SET str="AB"_spair_"CD"
 WRITE !,$LENGTH(str)," $LENGTH characters in string"
 WRITE !,$WLENGTH(str)," $WLENGTH characters in string"

See Also
• $LENGTH function

• $WASCII function

• $WCHAR function

• $WEXTRACT function

• $WFIND function

• $WISWIDE function

• $WREVERSE function

ObjectScript Reference 467

$WLENGTH

$WREVERSE
Returns the characters in a string in reverse order, recognizing surrogate pairs.

$WREVERSE(string)
$WRE(string)

Parameter

A string or expression that evaluates to a string.string

Description
$WREVERSE returns the characters in string in reverse order. $WREVERSE is functionally identical to $REVERSE,
except that $WREVERSE recognizes surrogate pairs. You can use the $WISWIDE function to determine if a string contains
a surrogate pair.

A surrogate pair is a pair of 16-bit InterSystems IRIS character elements that together encode a single Unicode character.
Surrogate pairs are used to represent certain ideographs which are used in Chinese, Japanese kanji, and Korean hanja. (Most
commonly-used Chinese, kanji, and hanja characters are represented by standard 16-bit Unicode encodings.) Surrogate
pairs provide InterSystems IRIS support for the Japanese JIS X0213:2004 (JIS2004) encoding standard and the Chinese
GB18030 encoding standard.

A surrogate pair consists of high-order 16-bit character element in the hexadecimal range D800 through DBFF, and a low-
order 16-bit character element in the hexadecimal range DC00 through DFFF.

The $WREVERSE function counts a surrogate pair as a single character. The $REVERSE function treats a surrogate pair
as two characters. In all other aspects, $WREVERSE and $REVERSE are functionally identical. However, because
$REVERSE is generally faster than $WREVERSE, $REVERSE is preferable for all cases where a surrogate pair is not
likely to be encountered.

For further details on reversing strings, refer to the $REVERSE function.

Example
The following example shows how $WREVERSE treats a surrogate pair as a single character:

 SET spair=$CHAR($ZHEX("D806"),$ZHEX("DC06"))
 SET str="AB"_spair_"CD"
 WRITE !,"String before reversing:"
 ZZDUMP str
 SET wrev=$WREVERSE(str)
 WRITE !,"$WREVERSE did not reverse surrogate pair:"
 ZZDUMP wrev
 SET rev=$REVERSE(str)
 WRITE !,"$REVERSE reversed surrogate pair:"
 ZZDUMP rev

See Also
• $REVERSE function

• $WASCII function

• $WCHAR function

• $WEXTRACT function

• $WFIND function

• $WISWIDE function

468 ObjectScript Reference

ObjectScript Functions

• $WLENGTH function

ObjectScript Reference 469

$WREVERSE

$XECUTE
Executes a specified command line.

$XECUTE(code,paramlist)

Parameters

An expression that resolves to a valid ObjectScript command line, specified as a
quoted string. A command line can contain one or more ObjectScript commands.
The final command must be an argumented QUIT.

code

Optional — A list of parameters to be passed to code. Multiple parameters are
separated by commas.

paramlist

Description
The $XECUTE function allows you to execute user-written code as a function, supplying passed parameters and returning
a value. The code parameter must evaluate to a quoted string containing one or more ObjectScript commands. The code
execution must conclude with a QUIT command that returns an argument. InterSystems IRIS then returns this QUIT
argument as the $XECUTE return code value.

You can use the paramlist argument to pass parameters to code. If you are passing parameters, there must be a formal
parameter list at the beginning of code. Parameters are specified positionally. There must be at least as many formal
parameters listed in code as there are actual parameters specified in paramlist.

You can use the CheckSyntax() method of the %Library.Routine class to perform syntax checking on code.

Each invocation of $XECUTE places a new context frame on the call stack for your process. The $STACK special variable
contains the current number of context frames on the call stack.

The $XECUTE function performs substantially the same operation as the XECUTE command, with the following differ-
ences: The $XECUTE function does not support postconditionals or the use of multiple command line arguments. The
$XECUTE function requires every execution path to end with an argumented QUIT; the XECUTE command neither
requires a QUIT nor permits an argumented QUIT.

Parameters

code

An expression that evaluates to a valid ObjectScript command line, specified as a quoted string. The code string must not
contain a tab character at the beginning or a <Return> at the end. The string can be no longer than a valid ObjectScript
program line. The code string must contain a QUIT command that returns an argument at the conclusion of each possible
execution path.

If $XECUTE passes parameters to code, the code string must begin with a formal parameter list. A formal parameter list
is enclosed in parentheses; within the parentheses, parameters are separated by commas.

paramlist

A list of parameters to pass to code, specified as a comma-separated list. Each parameter in paramlist must correspond to
a formal parameter within the code string. The number of parameters in paramlist may be less than or equal to the number
of formal parameters listed in code.

You can use a dot prefix to pass a parameter by reference. This is useful for passing a value out from code. An example is
provided below. For further details, refer to Passing by Reference in the “User-defined Code” chapter of Using ObjectScript.

470 ObjectScript Reference

ObjectScript Functions

Examples
In the following example, the $XECUTE function executes the command line specified in cmdline. It passes two parameters,
num1 and num2 to this command line.

 SET cmd="(dvnd,dvsr) IF dvsr=0 {QUIT 99} ELSE {SET ^testnum=dvnd/dvsr QUIT 0}"
 SET rtn=$XECUTE(cmd,num1,num2)
 IF rtn=99
 {WRITE !,"Division by zero. ^testnum not set"}
 ELSE
 {WRITE !,"global ^testnum set to",^testnum}

The following example uses passing by reference (.y) to pass a local variable value from the code to the invoking context.

CubeIt
 SET x=7
 SET rtn=$XECUTE("(in,out) SET out=in*in*in QUIT 0",x,.y)
 IF rtn=0 {WRITE !,x," cubed is ",y}
 ELSE {WRITE !,"Error code=",SQLCODE}

The following example shows how $XECUTE increments the $STACK special variable. This example either writes the
$STACK value from within $XECUTE, or has $XECUTE invoke the XECUTE command, which writes the $STACK
value:

StackIt
 SET stackit=$RANDOM(3)
 IF stackit=0 {GOTO StackIt}
 WRITE "initial stack level ",$STACK,!
 SET cmd="(stackit) IF stackit=1 {WRITE ""stack is "",$STACK,! QUIT 1} "_
 "ELSEIF stackit=2 {WRITE ""stack is "",$STACK XECUTE ""WRITE """" stack is """",$STACK,!""
 QUIT 1} "_
 "ELSE { QUIT 0}"
 SET rtn=$XECUTE(cmd,stackit)
 IF rtn=1 { WRITE "return stack level ",$STACK }
 ELSE {WRITE "unexpected value: rtn=",rtn}

See Also
• DO command

• XECUTE command

• QUIT command

• $STACK special variable

ObjectScript Reference 471

$XECUTE

$ZABS
Absolute value function.

$ZABS(n)

Parameter

Any number.n

Description
$ZABS returns the absolute value of n.

Parameter

n

Any number. Can be specified as a value, a variable, or an expression. The expression is evaluated, and the result converted
to a positive value. Multiple plus and minus signs are permitted. Leading and trailing zeros are deleted.

For evaluation of mixed numeric strings and non-numeric strings, refer to Strings As Numbers in Using ObjectScript.

Example
The following example returns the absolute value of the number you supply:

 READ "Input a number: ",num
 SET abs=$ZABS(num)
 WRITE "The absolute value of ",num," is ",abs

See Also
• Operators in Using ObjectScript

472 ObjectScript Reference

ObjectScript Functions

$ZARCCOS
Inverse (arc) cosine function.

$ZARCCOS(n)

Parameter

A signed decimal number.n

Description
$ZARCCOS returns the trigonometric inverse (arc) cosine of n. The result is given in radians (to 18 decimal places).

Parameter

n

Signed decimal number ranging from 1 to -1 (inclusive). It can be specified as a value, a variable, or an expression. Numbers
outside the range generate an <ILLEGAL VALUE> error. A non-numeric string is evaluated as 0.

The following are arc cosine values returned by $ZARCCOS:

returns 01

returns 1.5707963267948966190

returns pi (3.141592653589793238)-1

Examples
The following example permits you to compare the arc cosine and the arc sine of a number:

 READ "Input a number: ",num
 IF num>1 { WRITE !,"ILLEGAL VALUE: number too big" }
 ELSEIF num<-1 { WRITE !,"ILLEGAL VALUE: number too small" }
 ELSE {
 WRITE !,"the arc cosine is: ",$ZARCCOS(num)
 WRITE !,"the arc sine is: ",$ZARCSIN(num)
 }
 QUIT

The following example compares the results from InterSystems IRIS fractional numbers ($DECIMAL numbers) and
$DOUBLE numbers. In both cases, the arc cosine of 1 is exactly 0:

 WRITE !,"the arc cosine is: ",$ZARCCOS(0.0)
 WRITE !,"the arc cosine is: ",$ZARCCOS($DOUBLE(0.0))
 WRITE !,"the arc cosine is: ",$ZARCCOS(1.0)
 WRITE !,"the arc cosine is: ",$ZARCCOS($DOUBLE(1.0))
 WRITE !,"the arc cosine is: ",$ZARCCOS(-1.0)
 WRITE !,"the arc cosine is: ",$ZARCCOS($DOUBLE(-1.0))

See Also
• $ZCOS function

• $ZPI special variable

ObjectScript Reference 473

$ZARCCOS

$ZARCSIN
Inverse (arc) sine function.

$ZARCSIN(n)

Parameter

A signed decimal number.n

Description
$ZARCSIN returns the trigonometric inverse (arc) sine of n. The result is given in radians.

Parameter

n

Signed decimal number ranging from 1 to -1 (inclusive). It can be specified as a value, a variable, or an expression. Numbers
outside the range generate an <ILLEGAL VALUE> error. A non-numeric string is evaluated as 0.

The following are arc sine values returned by $ZARCSIN:

returns 1.5707963267948966191

returns 00

returns -1.570796326794896619-1

Examples
The following example permits you to compare the arc sine and the arc cosine of a number:

 READ "Input a number: ",num
 IF num>1 { WRITE !,"ILLEGAL VALUE: number too big" }
 ELSEIF num<-1 { WRITE !,"ILLEGAL VALUE: number too small" }
 ELSE {
 WRITE !,"the arc sine is: ",$ZARCSIN(num)
 WRITE !,"the arc cosine is: ",$ZARCCOS(num)
 }
 QUIT

The following example compares the results from InterSystems IRIS fractional numbers ($DECIMAL numbers) and
$DOUBLE numbers. In both cases, the arc sine of 0 is exactly 0:

 WRITE !,"the arc sine is: ",$ZARCSIN(0.0)
 WRITE !,"the arc sine is: ",$ZARCSIN($DOUBLE(0.0))
 WRITE !,"the arc sine is: ",$ZARCSIN(1.0)
 WRITE !,"the arc sine is: ",$ZARCSIN($DOUBLE(1.0))
 WRITE !,"the arc sine is: ",$ZARCSIN(-1.0)
 WRITE !,"the arc sine is: ",$ZARCSIN($DOUBLE(-1.0))

See Also
• $ZSIN function

• $ZPI special variable

474 ObjectScript Reference

ObjectScript Functions

$ZARCTAN
Inverse (arc) tangent function.

$ZARCTAN(n)

Parameter

Any positive or negative number.n

Description
$ZARCTAN returns the trigonometric inverse (arc) tangent of n. Possible results range from 1.57079 (half of pi) through
zero to –1.57079. The result is given in radians.

Parameter

n

Any positive or negative number. It can be specified as a value, a variable, or an expression. You can use the $ZPI special
variable to specify pi. A non-numeric string is evaluated as 0.

The following are arc tangent values returned by $ZARCTAN:

returns 1.1071487177940905022

returns .78539816339744830981

returns 00

returns -.7853981633974483098-1

Examples
The following example permits you to calculate the arc tangent of a number:

 READ "Input a number: ",num
 WRITE !,"the arc tangent is: ",$ZARCTAN(num)
 QUIT

The following example compares the results from InterSystems IRIS fractional numbers ($DECIMAL numbers) and
$DOUBLE numbers. In both cases, the arc tangent of pi/2 is a fractional number (not 1), but the arc tangent of 0 is 0:

 WRITE !,"the arc tangent is: ",$ZARCTAN(0.0)
 WRITE !,"the arc tangent is: ",$ZARCTAN($DOUBLE(0.0))
 WRITE !,"the arc tangent is: ",$ZARCTAN($ZPI)
 WRITE !,"the arc tangent is: ",$ZARCTAN($DOUBLE($ZPI))
 WRITE !,"the arc tangent is: ",$ZARCTAN($ZPI/2)
 WRITE !,"the arc tangent is: ",$ZARCTAN($DOUBLE($ZPI)/2)

See Also
• $ZTAN function

• $ZPI special variable

ObjectScript Reference 475

$ZARCTAN

$ZBOOLEAN
Bitwise logical operation function.

$ZBOOLEAN(arg1,arg2,bit_op)
$ZB(arg1,arg2,bit_op)

Parameters

The first argument. An integer or a string, or a variable or expression that resolve to an integer
or string. All characters must have an ASCII value between 0 and 255. Cannot be a floating
point number.

arg1

The second argument. An integer or a string, or a variable or expression that resolve to an
integer or string. All characters must have an ASCII value between 0 and 255. Cannot be a
floating point number.

arg2

An integer indicating the operation to be performed (see table below.) Permitted values are
0 through 15, inclusive.

bit_op

Description
$ZBOOLEAN performs the bitwise logical operation specified by bit_op on two arguments, arg1 and arg2. $ZBOOLEAN
returns the results of the bitwise combination of arg1 and arg2, as specified by the bit_op value. You can view the results
using the ZZDUMP command.

$ZBOOLEAN performs its operations on either character strings or numbers. For character strings, it performs logical
AND and OR operations on each character in the string. For numbers, it performs a logical AND and OR operation on the
entire number as a unit. To force the evaluation of a numeric string as a number, preface the string with a plus sign (+).

Note: $ZBOOLEAN does not support Unicode characters with a value larger than ASCII 255. To apply $ZBOOLEAN
to a string of 16-bit Unicode characters, you must first use $ZWUNPACK, followed by $ZBOOLEAN, followed
by $ZWPACK.

$ZBOOLEAN and $BITLOGIC use different data formats. The results of one cannot be used as input to the other.

The bitwise operations includes 16 possible Boolean combinations of arg1 and arg2. The following table lists these com-
binations.

Operation PerformedBit Mask in bit_op

00

arg1 & arg2 (logical AND)1

arg1 & ~arg22

arg13

~arg1 & arg24

arg25

arg1 ^ arg2 (logical XOR (exclusive or))6

arg1 ! arg2 (logical OR (inclusive or))7

~(arg1 ! arg2)8

476 ObjectScript Reference

ObjectScript Functions

Operation PerformedBit Mask in bit_op

~(arg1 ^ arg2)9

~arg2 (logical NOT)10

arg1 ! ~arg211

~arg1 (logical NOT)12

~arg1 ! arg213

~(arg1 & arg2)14

-1 (one’s complement of 0)15

Where:

& is logical AND

! is logical OR

~ is logical NOT

^ is exclusive OR

For further details, see Operators in Using ObjectScript.

All $ZBOOLEAN operations parse both arg1 and arg2, including bit_op values 0, 3, 5, 10, 12, and 15.

The $ZBOOLEAN arg1 and arg2 parameters can resolve to one of the following types:

• An integer. A positive or negative whole decimal number of up to 18 digits. No characters other than the numbers 0–9
and, optionally, one or more leading plus and minus signs are permitted. Leading zeros are ignored.

• A string. Enclosed in quotation marks, a string of any length with any contents is permitted. Note that the string “123”
and the integer 123 are not the same. A null string is permitted, but if arg2 is the null string, $ZBOOLEAN always
returns the value of arg1, regardless of the bit_op value.

• A signed string. A string preceded by a plus or minus sign is parsed as an integer, regardless of the string’s contents.
Signed strings are subject to the same length restriction as integers. A signed null string is equivalent to zero.

It is strongly recommended that arg1 and arg2 either both resolve to an integer or both resolve to a string. Generally, arg1
and arg2 should be the same data type; combining an integer and a string in a $ZBOOLEAN operation does not give a
useful result in most cases.

Parameters

arg1

The first argument in the bitwise logical expression. For strings, the length of the returned value is always the same as the
length of this argument.

arg2

The second argument in the bitwise logical expression.

bit_op

The bitwise logical operation to be performed, specified as a numeric code from 0 to 15, inclusive. Because this code is
handled as a bit mask, a value of 16=0, 17=1, 18=2, etc.

The bit_op values 0 and 15 return a constant value, but they also evaluate the arguments. If arg1 is an integer (or signed
string), bit_op 0 returns 0, and bit_op 15 returns –1 (the one’s complement of 0.) If arg1 is a string, bit_op 0 returns a low

ObjectScript Reference 477

$ZBOOLEAN

value (hex 00) for each character in arg1, and bit_op 15 returns a high value (hex FF) for each character in arg1. If arg2
is the null string (""), both operations return the literal value of arg1.

The bit_op values 3, 5, 10 and 12 perform a logical operation on only one of the arguments, but they evaluate both arguments.

• bit_op=3 always returns the value of arg1, regardless of the value of arg2.

• bit_op=5 returns the value of arg2 when the two arguments have the same data type. However if one argument is a
string and the other argument is an integer (or signed string) results are unpredictable. If arg2 is the null string
$ZBOOLEAN always returns the literal value of arg1.

• bit_op=10 returns the one’s complement value of arg2 if both arguments are integers. If arg1 is a string, the operation
returns a high order character for each character in arg1.. If arg2 is a string, and arg1 is an integer, the bitwise operation
is performed on the arg2 string. If arg2 is the null string $ZBOOLEAN always returns the literal value of arg1.

• bit_op=12 returns the one’s complement value of arg1 if it is an integer (or signed string), for any value of arg2 except
the null string. If arg1 is a string, the operation returns the one’s complement (as a hex value) of each character in
arg1. If arg2 is the null string $ZBOOLEAN always returns the literal value of arg1.

Examples
The following three examples all illustrate the same AND operation. These examples AND the ASCII values of lowercase
letters with the ASCII value of the underscore character, resulting in the ASCII values of the corresponding uppercase letters.

 WRITE $ZBOOLEAN("abcd","_",1)

displays ABCD.

The lowercase "a" = [01100001] (ASCII decimal 97)

The underscore character "_" = [01011111] (ASCII decimal 95)

The uppercase "A" = [01000001] (ASCII decimal 65)

The following example performs the same AND operation as the previous example, but uses the ASCII decimal values of
the arguments. The function $ASCII("a") returns the decimal value 97 for the first argument:

 WRITE $ZBOOLEAN($ASCII("a"),95,1)

displays 65.

The following example performs the same AND operation, using a $CHAR value as the second argument:

 WRITE $ZBOOLEAN("a",$CHAR(95),1)

displays A.

The following examples illustrate logical OR:

 WRITE $ZBOOLEAN(1,0,7)

displays 1.

 WRITE $ZBOOLEAN(1,1,7)

displays 1.

 WRITE $ZBOOLEAN(2,1,7)

displays 3.

 WRITE $ZBOOLEAN(2,2,7)

displays 2.

478 ObjectScript Reference

ObjectScript Functions

 WRITE $ZBOOLEAN(3,2,7)

displays 3.

The following logical OR examples demonstrate the difference between string comparisons and number comparisons:

 WRITE $ZBOOLEAN(64,255,7)

compares the two values as numbers and displays 255.

 WRITE $ZBOOLEAN("64","255",7)

compares the two values as strings and displays 65.

 WRITE $ZBOOLEAN(+"64",+"255",7)

the plus signs force the comparison of the two values as numbers, and displays 255.

The following examples illustrate exclusive OR:

 WRITE $ZBOOLEAN(1,0,6)

displays 1.

 WRITE $ZBOOLEAN(1,1,6)

displays 0.

 WRITE $ZBOOLEAN(2,1,6)

displays 3.

 WRITE $ZBOOLEAN(2,2,6)

displays 0.

 WRITE $ZBOOLEAN(3,2,6)

displays 1.

 WRITE $ZBOOLEAN(64,255,6)

displays 191.

The following example shows a 4-byte entity with all bytes set to 1:

 WRITE $ZBOOLEAN(5,1,15)

displays -1.

The following example will set x to 3 bytes with all bits set to 1:

 SET x=$ZBOOLEAN("abc",0,15)
 WRITE !,$LENGTH(x)
 WRITE !,$ASCII(x,1)," ",$ASCII(x,2)," ",$ASCII(x,3)

The first WRITE displays 3; the second WRITE displays 255 255 255.

Notes

Integer Processing

Before $ZBOOLEAN performs the bitwise operation, it interprets each numeric value as either an 8-byte or a 4-byte signed
binary value, depending on size. $ZBOOLEAN always interprets a numeric value as a series of bytes. The boolean operation
uses these bytes as a string argument. The result type is the same as the type of arg1.

ObjectScript Reference 479

$ZBOOLEAN

If either arg1 or arg2 is numeric and cannot be represented as an 8-byte signed integer (larger than 18 decimal digits), a
<FUNCTION> error results. If both arg1 and arg2 are numeric and one of them requires 8 bytes to be represented, then
both values are interpreted as 8-byte binary values.

After the previous transformations are complete, the given Boolean combination is applied bit by bit to arg1 and arg2 to
yield the result. The result returned is always the same length as arg1 (after the above transformations of numeric data). If
the length of arg2 is less than the length of arg1, then arg2 is repeatedly combined with successive substrings of arg1 in
left to right fashion.

$ZBOOLEAN always interprets the numeric value as a series of bytes in little-endian order, with the low-order byte first,
no matter what the native byte order of your machine is.

Internal Structure of $ZBOOLEAN Values

The following table lists the internal rules for $ZBOOLEAN. You do not need to understand these rules to use
$ZBOOLEAN; they are presented here for reference purposes only.

There are four possible states of any two bits being compared from within arg1 and arg2. The Boolean operation generates
a true result (=1) if and only if bit_op has the bit mask shown in the table.

Bit Mask in bit_op BinaryBit Mask in bit_op DecimalBit in arg2Bit in arg1

1000800

0100410

0010201

0001111

EQV and IMP Logical Operators

$ZBOOLEAN indirectly supports EQV and IMP logical operators. These logical operators are defined as follows:

• EQV is a logical equivalence between two expressions. It is represented by $ZBOOLEAN(arg1,arg2,9). This is
logically ~(arg1 ^ arg2) which is logically identical to ((~arg1) & (~arg2)) ! (arg1 & arg2).

• IMP is a logical implication between two expressions. It is represented by $ZBOOLEAN(arg1,arg2,13). This is
logically (~arg1) ! arg2.

See Also
• ZZDUMP command

• Operators in Using ObjectScript

480 ObjectScript Reference

ObjectScript Functions

$ZCONVERT
String conversion function.

$ZCONVERT(string,mode,trantable,handle)
$ZCVT(string,mode,trantable,handle)

Parameters

The string to convert, specified as a quoted string. This string can be specified as a value,
a variable, or an expression.

string

A letter code specifying the conversion mode, either the type of case conversion or
input/output encoding. Specify mode as a quoted string.

mode

Optional — The translation table to use, specified as either an integer or a quoted string,trantable

Optional — An unsubscripted local variable that holds a string value. Used for multiple
invocations of $ZCONVERT. The handle parameter contains the remaining portion of string
that could not be converted at the end of $ZCONVERT, and supplies this remaining portion
to the next invocation of $ZCONVERT.

handle

Description
$ZCONVERT converts a string from one form to another. The nature of the conversion depends on the parameters you
use.

$ZCONVERT Returns a Converted String

$ZCONVERT(string, mode) returns string with the characters converted as specified by mode. The conversions are of
two types:

• Case conversion

• Encoding translation

Case conversion changes the case of each letter character in the string. You can change all letter characters in a string to
their lowercase, uppercase, or titlecase form. Characters that are already in the specified case, and characters with no case
(usually any nonalphabetic character) in the string are passed through unchanged. To output a literal quote character (“)
within a string, input two quote characters (““). For further case conversion options, including non-ASCII and customized
case conversion, refer to the section on “System Classes for National Language Support” in Specialized System Tools and
Utilities.

Encoding translation translates string between the internal encoding style used on your system and another encoding style.
You can perform input translation; that is, translate string from an external encoding style to the encoding style of your
system. You can also perform output translation; that is, translate string from the encoding style of your system to an
external encoding style. For further I/O translation options, including non-ASCII and customized translation, refer to the
section on “System Classes for National Language Support” in Specialized System Tools and Utilities.

The values you can use for mode are as follows:

ObjectScript Reference 481

$ZCONVERT

MeaningMode Code

Uppercase translation: Convert all characters in string to uppercase.U or u

Lowercase translation: Convert all characters in string to lowercase.L or l

Titlecase translation: Convert all characters in string to titlecase. Titlecase is only
meaningful for those alphabets (principally Eastern European) that have three forms
for a letter: uppercase, lowercase, and titlecase. For all other letters, titlecase
translation is the same as uppercase translation.

T or t

Word translation: Convert the first character of each word in string to uppercase. Any
character preceded by a blank space, a quotation mark ("), an apostrophe ('), or an
open parenthesis (() is considered the first character of a word. Word translation
converts all other characters to lowercase. Word translation is locale specific; the
above syntax rules for English may differ for other language locales.

W or w

Sentence translation: Convert the first character of each sentence in string to
uppercase. The first non-blank character of string, and any character preceded by a
period (.), question mark (?), or exclamation mark (!) is considered the first character
of a sentence. (Blank spaces between the preceding punctuation character and the
letter are ignored.) If this character is a letter, it is converted to uppercase. Sentence
translation converts all other letter characters to lowercase. Sentence translation is
locale specific; the above syntax rules for English may differ for other language locales.

S or s

Perform input encoding translation on a specified string. For the two-argument form,
the translation is performed using the current process I/O translation handle. If a
current process I/O translation handle has not been defined, InterSystems IRIS
performs translation based on the default process I/O translation table name.

I or i

Perform output encoding translation on a specified string. For the two-argument form,
the translation is performed using the current process I/O translation handle. If a
current process I/O translation handle has not been defined, InterSystems IRIS
performs translation based on the default process I/O translation table name.

O or o

If mode is a null string or any value other than the valid characters, you receive a <FUNCTION> error.

Letter Case Translation

You can convert letters in strings to all uppercase letters or all lowercase letters. Conversion works on Unicode letters as
well as ASCII letters. The following example converts the Greek alphabet from lowercase to uppercase:

 FOR i=945:1:969 {WRITE $ZCONVERT($CHAR(i),"U")}

However, a small number of letters only have a lowercase letter form. For example, the German eszett ($CHAR(223)) is
only defined as a lowercase letter. Attempting to convert it to an uppercase letter results in the same lowercase letter:

 IF $ZCONVERT($CHAR(223),"U")=$ZCONVERT($CHAR(223),"L") {
 WRITE "uppercase and lowercase letter are the same" }
 ELSE {WRITE "uppercase and lowercase are different" }

For this reason, when converting alphanumeric strings to a single letter case it is always preferable to convert to lowercase.

You can perform similar letter case translations using the $TRANSLATE function, as shown in the following example:

 WRITE $TRANSLATE(text,"ABCDEFGHIJKLMNOPQRSTUVWXYZ","abcdefghijklmnopqrstuvwxyz")

482 ObjectScript Reference

ObjectScript Functions

Word and Sentence Translation

“W” and “S” modes determine whether a non-blank character is the first character of a word or the first character of a
sentence, and if that character is a letter, translate it to uppercase. All other letters are translated to lowercase. Case translation
works on letters in any alphabet, as shown in the following example which converts Greek letters ($CHAR(945) is lowercase
alpha; $CHAR(913) is uppercase alpha):

 SET greek=$CHAR(945,946,947,913,914,915)
 WRITE $ZCONVERT(greek,"W")

However the rules determining what constitutes a word or sentence are locale dependent. For example, the following
example uses the Spanish inverted exclamation point $CHAR(161). The default (English) locale does not recognize this
character as beginning a sentence or word. In this example, all letters in spanish are translated to lowercase:

 SET spanish=$CHAR(161)_"ola MuNdO! "_$CHAR(161)_"olA!"
 SET english="hElLo wOrLd! heLLo!"
 WRITE !,$ZCONVERT(english,"S")
 WRITE !,$ZCONVERT(spanish,"S")

Titlecase Translation

Titlecase (“T”) mode converts every letter in the string to its titlecase form. Titlecase does not selectively uppercase letters
based on their position in a word or string. Titlecase is the case that a letter is represented in when it is the first character
of a word in a title. For standard Latin letters, the titlecase form is the same as the uppercase form.

Some languages (for example, Croatian) represent particular letters by two letter glyphs. For example, “lj” is a single letter
in the Croatian alphabet. This letter has three forms: lowercase “lj”, uppercase “LJ”, and titlecase “Lj”. $ZCONVERT
titlecase translation is used for this type of letter conversion.

Three-Parameter Form: Encoding Translation

$ZCONVERT(string, mode, trantable) performs either an input encoding translation or an output encoding translation on
string. In the three-argument form, the mode values you can use are either "I" or "O". You must define the mode value. For
“I” translations, the string may be a hexadecimal string, such as %4B (the letter “K”); hexadecimal strings are not case-
sensitive.

You can use ZZDUMP to display the hexadecimal encoding for a string of characters. You can use $CHAR to specify a
character (or string of characters) by its decimal (base 10) encoding; you can use $ZHEX to converts a hexadecimal number
to a decimal number, or a decimal number to a hexadecimal number. If the translated value is a non-printing character,
InterSystems IRIS displays it as a null string. If the target device cannot represent a translated character, InterSystems IRIS
substitutes a question mark (?) character for the non-displayable character.

The trantable value can be a numeric character or a string that specifies the translation table or translation handle to use.
The trantable value can be:

• An integer value specifying a process I/O translation object. Available values are 0 through 3 (0 represents the current
process I/O translation object).

• An uppercase string value identifying an I/O translation table. Available translation tables include:

– “RAW” which performs no translation for 8-bit characters or 16-bit Latin-1 characters (Unicode characters in
which the high-order byte has the value 00). RAW translation should not be used for InterSystems IRIS systems
using non-Latin-1 locales, such as rusw.

– “SAME” which translates 8-bit characters to the corresponding Unicode characters.

– “HTML” which adds (output mode) or removes (input mode) HTML escape characters to a string.

– “JS” (or “JSML”) which uses a supplied JavaScript translation table to escape characters in the string for use
within JavaScript. For output translations see the table below. For comparison of JS and JSML, see JS and JSML,

ObjectScript Reference 483

$ZCONVERT

JSON and JSONML Conversions. For input translations, “\0”, “\000”, “\x00”, and “\u0000” are all valid escape
sequences for NULL.

– “JSON” (or “JSONML”) which uses a supplied translation table to convert to JSON format. For output translations
see the table below. For comparison of JSON and JSONML, see JS and JSML, JSON and JSONML Conversions.
For input translations, “\0”, “\000”, “\x00”, and “\u0000” are all valid escape sequences for NULL.

– “URI” which adds (output mode) or removes (input mode) URI parameter escape characters to a string. URI
encodes the characters :/?#[]@!$&'()*+,;= as follows:
%3A%2F%3F%23%5B%5D%40%21%24%26%27%28%29%2A%2B%2C%3B%3D; it does not encode the
tilde (~) character. URI encodes characters higher than $CHAR(255) (Unicode characters) as UTF-8 and then %
encodes the UTF-8 values in hexadecimal notation.

– “URL” which adds (output mode) or removes (input mode) URL parameter escape characters to a string. URL
encodes the characters :?#[]@+,;=~ as follows: %3A%3F%23%5B%5D%40%2B%2C%3B%3D%7E. Characters
higher than $CHAR(255) are represented in Unicode hexadecimal notation: $CHAR(256) = %u0100.

– “UTF8” (UTF-8 encoding) which converts (output mode) 16-bit Unicode characters to a series of 8-bit characters.
An ASCII 16–bit Unicode character translates to a single 8–bit character; for example, hex 0041 (the letter “A”)
translates to the 8-bit character hex 41. A non-ASCII Unicode character is converted to two or three 8–bit characters.
Unicode hex 0080 through 07FF convert to two 8–bit characters; these include the Latin-1 Supplement and Latin
Extended characters and the Greek, Cyrillic, Hebrew, and Arabic alphabets. Unicode hex 0800 through FFFF
convert to three 8–bit characters; these comprise the rest of the Unicode Basic Multilingual Plane. Thus, the ASCII
characters $CHAR(0) through $CHAR(127) are the same in RAW and UTF8 mode; characters $CHAR(128) and
above are converted. Input mode reverse this conversion. Refer to Unicode in Using ObjectScript for further
details.

– “XML” which adds (output mode) or removes (input mode) XML escape characters to a string.

• A string value specifying an I/O translation table defined by an NLS locale. For example, Latin2 or CP1252. For a list
of locale translation tables, refer to the XLTTables property of %SYS.NLS.Locale, as shown in the following example:

 SET nlsoref=##class(%SYS.NLS.Locale).%New()
 WRITE $LISTTOSTRING($PROPERTY(nlsoref,"XLTTables"),"^")

• A string value specifying a user-defined I/O translation table. A named table can be defined in a locale and points to
one or two translation tables. Use a named table to define a specific system-to/from-device encoding.

• An empty string ("") specifying the use of the default process I/O translation table. (For equivalent functionality, see
the $$GetPDefIO^%NLS() function of the %NLS utility.)

The following is a table of Output mode escape characters:

XMLURLJSONJSHTML

%00\u0000\x00null $CHAR(0)

%01 through
%07

\u0001 through
\u0007

\x01 through
\x07

$CHAR(1)
through
$CHAR(7)

%08\b\bbackspace
$CHAR(8)

%09\t\thorizontal tab
$CHAR(9)

%0A\n\nline feed
$CHAR(10)

484 ObjectScript Reference

ObjectScript Functions

XMLURLJSONJSHTML

%0B\u000B\vvertical tab
$CHAR(11)

%0C\f\fform feed
$CHAR(12)

%0D\r\rcarriage return
$CHAR(13)

%0E through
%1F

\u000E through
\u001F

$CHAR(14)
through
$CHAR(31)

%20$CHAR(32)

"%22\”\""" (doubled)

%23#

%25%

&%26&&

'\''‘ (apostrophe)
$CHAR(39)

%2B+

%2C,

\// (slash)
$CHAR(47)

%3A:

%3B;

<%3C<<

%3D=

>%3E>>

%3F?

%40@

%5B[

%5C\\\\\

%5D]

%5E^

%60‘

%7B{

%7C|

%7D}

%7E~

ObjectScript Reference 485

$ZCONVERT

XMLURLJSONJSHTML

%7F through
%9F

$CHAR(127)
through
$CHAR(159)

%A0 $CHAR(160)

%A1 through
%FF

$CHAR(161)
through
$CHAR(255)

URL and URI Conversions

A URL or URI can only contain certain 8-bit ASCII characters. All other characters must be represented by an escape
sequence beginning with %. If you wish to convert a string containing Unicode characters to a URL or URI, you must first
convert your local representation to an 8-bit intermediate representation, using UTF-8 encoding. You then convert the UTF-
8 results to URL encoding. To convert a URL back to its original Unicode string, you perform the reverse operation. This
is shown in the following example:

 SET ustring="US$ to "_$CHAR(8364)_" échange"
 WRITE "initial string is: ",ustring,!
ConvertUnicodeToURL
 SET utfo = $ZCONVERT(ustring,"O","UTF8")
 SET urlo = $ZCONVERT(utfo,"O","URL")
 WRITE "Unicode to URL conversion: ",urlo,!
ConvertURLtoUnicode
 SET urli = $ZCONVERT(urlo,"I","URL")
 SET utfi = $ZCONVERT(urli,"I","UTF8")
 WRITE "URL to Unicode conversion: ",utfi

JS and JSML, JSON and JSONML Conversions

The JS and JSON translations use UTF-8 encoding for Unicode characters. The JSML and JSONML translations render
Unicode characters without encoding. For ASCII characters ($CHAR(0) through $CHAR(127)), JS and JSML encodings
are identical. For ASCII characters ($CHAR(0) through $CHAR(127)), JSON and JSONML encodings are identical.

The following example compares the translation of JS and JSML characters:

 FOR i=1:1:256 {SET x=$ZCVT($C(i),"O","JS") SET y=$ZCVT($C(i),"O","JSML")
 IF x=y {WRITE "."}
 ELSE {WRITE !!,$ZHEX(i),!,"JS: " ZZDUMP x WRITE !,"JSML: " ZZDUMP y }
 }

Four-Parameter Form: Input/Output String

The handle parameter is a local variable that $ZCONVERT reads at the beginning of execution and writes when it completes
execution. It is used to hold information between consecutive invocations of the $ZCONVERT function. It can be used
for two purposes: concatenating a string to the beginning of string, and converting extremely long strings.

To concatenate a string to the beginning of string, set handle before invoking $ZCONVERT:

 SET handle="the "
 WRITE $ZCVT("quick brown fox","O","URL",handle),!
 /* the%20quick%20brown%20fox */
 WRITE $ZCVT("quick brown fox","O","URL",handle),!
 /* quick%20brown%20fox */

Note that $ZCONVERT resets handle when it completes execution. In the previous example, it resets handle to the empty
string.

This handle parameter may be used for input conversions. Specifying a handle is useful when dealing with multibyte
character sequences when working with partial sets of characters, such as a stream read. In these cases, $ZCONVERT
uses the handle parameter to hold a partial character sequence that may be the leading bytes of a multibyte sequence. If

486 ObjectScript Reference

ObjectScript Functions

there are input characters left in the buffer at the end of a $ZCONVERT which do not make a complete translation unit,
these leftover characters are returned in the handle. At the beginning of next $ZCONVERT, if the handle contains data,
these leftover characters are prepended to the normal input data. This is particularly valuable for use in UTF8 conversions,
as shown in the following example:

 SET handle=""
 WHILE 'stream.AtEnd() {
 WRITE $ZCONVERT(stream.Read(20000),"I","UTF8",handle)
 }

To convert an extremely long string, it may be necessary to perform more than one string conversions by invoking
$ZCONVERT multiple times. $ZCONVERT provides the optional handle parameter to hold the remaining unconverted
portion of string. If you specify a handle parameter, it is updated by each invocation of $ZCONVERT. When the string
conversion completes, $ZCONVERT sets handle to the empty string.

 SET handle=""
 SET out = $ZCVT(hugestring,"O","HTML",handle)
 IF handle '= "" {
 SET out2 = $ZCVT(handle,"O","HTML",handle)
 WRITE "Converted string is: ",out,out2 }
 ELSE {
 WRITE "Converted string is: ",out }

Examples
The following example returns "HELLO":

 WRITE $ZCONVERT("Hello","U")

The following example returns "hello":

 WRITE $ZCVT("Hello","L")

The following example returns "HELLO":

 WRITE $ZCVT("Hello","T")

The following example uses the concatenate operator (_) to append and case-convert an accented character:

 WRITE "TOUCH"_$CHAR(201),!, $ZCVT("TOUCH"_$CHAR(201),"L")

returns:

TOUCHÉ

touché

The following example converts the angle brackets in the string to HTML escape characters for output, returning
“<TAG>”

 WRITE $ZCVT("<TAG>","O","HTML")

Note that how these angle brackets display depends on the output device; try running this program here and then running
it from the Terminal prompt.

The following example shows how $ZCONVERT substitutes a ? character for a translated character it cannot display.
Both the UTF8 and the current process I/O translation object (trantable 0) conversions in this example display $CHAR(63),
which is the actual ? character. UTF8 cannot display translated characters above $CHAR(127). Translation table 0 cannot
display translated characters above $CHAR(255):

ObjectScript Reference 487

$ZCONVERT

 FOR i=1:1:300 {IF $ZCONVERT($CHAR(i),"I","UTF8") '= "?"
 { CONTINUE }
 ELSE {WRITE "UTF8 ",i,"=",$ZCONVERT($CHAR(i),"I","UTF8")}
 IF $ZCONVERT($CHAR(i),"I",0)="?"
 {WRITE " trantable 0 ",i,"=",$ZCONVERT($CHAR(i),"I",0),!}
 ELSE {WRITE !}
 }

See Also
• $ASCII function

• $CHAR function

• $ZSTRIP function

• Pattern Matching operators in Using ObjectScript

• More information on locales in the section on “System Classes for National Language Support” in Specialized System
Tools and Utilities.

488 ObjectScript Reference

ObjectScript Functions

$ZCOS
Cosine function.

$ZCOS(n)

Parameter

An angle in radians ranging from Pi to 2 Pi (inclusive). Other supplied numeric values are converted to
a value within this range.

n

Description
$ZCOS returns the trigonometric cosine of n. The result is a signed decimal number ranging from -1 to +1. $ZCOS(0)
returns 1. $ZCOS($ZPI) returns -1.

Parameter

n

An angle in radians ranging from Pi to 2 Pi (inclusive). It can be specified as a value, a variable, or an expression. You can
specify the value Pi by using the $ZPI special variable. You can specify positive or negative values smaller than Pi or
larger than 2 Pi; InterSystems IRIS resolve these values to the corresponding multiple of Pi. For example, 3 Pi is equivalent
to Pi, negative Pi is equivalent to Pi, and zero is equivalent to 2 Pi.

A non-numeric string is evaluated as 0.

Examples
The following example permits you to compute the cosine of a number:

 READ "Input a number: ",num
 IF $ZABS(num)>(2*$ZPI) { WRITE !,"number is a larger than 2 pi" }
 ELSE {
 WRITE !,"the cosine is: ",$ZCOS(num)
 }
 QUIT

The following example compares the results from InterSystems IRIS fractional numbers ($DECIMAL numbers) and
$DOUBLE numbers. In both cases, the cosine of 0 is exactly 1, the cosine of pi is exactly -1:

 WRITE !,"the cosine is: ",$ZCOS(0.0)
 WRITE !,"the cosine is: ",$ZCOS($DOUBLE(0.0))
 WRITE !,"the cosine is: ",$ZCOS(1.0)
 WRITE !,"the cosine is: ",$ZCOS($DOUBLE(1.0))
 WRITE !,"the cosine is: ",$ZCOS($ZPI)
 WRITE !,"the cosine is: ",$ZCOS($DOUBLE($ZPI))

See Also
• $ZSIN function

• $ZARCCOS function

• $ZPI special variable

ObjectScript Reference 489

$ZCOS

$ZCOT
Cotangent function.

$ZCOT(n)

Parameter

An angle in radians.n

Description
$ZCOT returns the trigonometric cotangent of n. The result is a signed decimal number.

Parameter

n

An angle in radians, specified as a nonzero value. It can be specified as a value, a variable, or an expression. A value of 0
generates an <ILLEGAL VALUE> error. A non-numeric string is evaluated as 0.

Examples
The following example permits you to compute the cotangent of a number:

 READ "Input a number: ",num
 IF num=0 { WRITE !,"zero is an illegal value" }
 ELSE {
 WRITE !,"the cotangent is: ",$ZCOT(num)
 }
 QUIT

The following example compares the results from InterSystems IRIS fractional numbers ($DECIMAL numbers) and
$DOUBLE numbers:

 WRITE !,"the cotangent is: ",$ZCOT(1.0)
 WRITE !,"the cotangent is: ",$ZCOT($DOUBLE(1.0))
 WRITE !,"the cotangent is: ",$ZCOT(-1.0)
 WRITE !,"the cotangent is: ",$ZCOT($DOUBLE(-1.0))
 WRITE !,"the cotangent is: ",$ZCOT($ZPI/2)
 WRITE !,"the cotangent is: ",$ZCOT($DOUBLE($ZPI)/2)

Note that the cotangent of pi/2 is a fractional number, not 0.

See Also
• $ZTAN function

• $ZPI special variable

490 ObjectScript Reference

ObjectScript Functions

$ZCRC
Checksum function.

$ZCRC(string,mode,expression)

Parameters

A string on which a checksum operation is performed.string

An integer code specifying the checksum mode to use.mode

Optional — The initial "seed" value, specified as an integer. If omitted, defaults to
zero (0).

expression

Description
$ZCRC performs a cyclic redundancy check on string and returns an integer checksum value. The value returned by
$ZCRC depends on the parameters you use.

• $ZCRC(string,mode) computes and returns a checksum on string. The value of mode determines the type of checksum
$ZCRC computes.

• $ZCRC(string,mode,expression) computes and returns a checksum on string using the mode specified by mode.
expression supplies an initial "seed" value when checking multiple strings. It allows you to run $ZCRC calculations
sequentially on multiple strings and obtain the same checksum values as if you had concatenated those strings and
then run $ZCRC on the resulting string.

Parameters

string

A byte string. Can be specified as a value, a variable, or an expression. Only use a byte string or you will receive a
<FUNCTION> error.

mode

The checksum algorithm to use. All checksum modes can be used with 8-bit (ASCII) or 16-bit Unicode (wide) characters.
Legal values for mode are:

ComputesMode

An 8-bit byte sum. Simply sums the ASCII values of the characters in the string. Thus
$ZCRC(2,0)=50, $ZCRC(22,0)=100, $ZCRC(23,0)=101, and $ZCRC(32,0)=101.

0

An 8-bit XOR of the bytes1

A 16-bit DataTree CRC-CCITT2

A 16-bit DataTree CRC-163

A 16-bit CRC for XMODEM protocols4

A correct 16-bit CRC-CCITT5

A correct 16-bit CRC-166

A correct 32-bit CRC-32. This corresponds to the cksum utility algorithm 3 on OS X, and the
CRC32 class in the Java utilities package.

7

ObjectScript Reference 491

$ZCRC

expression

An argument that is an initial "seed" value. $ZCRC adds expression to the checksum generated for string. This allows you
to run $ZCRC calculations on multiple strings sequentially and obtain the save checksum value as if you had concatenated
those strings and run $ZCRC on the resulting string.

Examples
The following example uses mode=0 on strings containing the letters A, B, and C and in each case returns the checksum
198:

 WRITE $ZCRC("ABC",0),!
 WRITE $ZCRC("CAB",0),!
 WRITE $ZCRC("BCA",0),!

The checksum is derived as follows:

 WRITE $ASCII("A")+$ASCII("B")+$ASCII("C") /* 65+66+67 = 198 */

The following example shows the values returned by each mode for the string “ABC”:

 FOR i=0:1:7 {
 WRITE !,"mode ",i,"=",$ZCRC("ABC",i)
 }

See Also
• $ZCYC function

492 ObjectScript Reference

ObjectScript Functions

$ZCSC
Cosecant function.

$ZCSC(n)

Parameter

An angle in radians.n

Description
$ZCSC returns the trigonometric cosecant of n. The result is a signed decimal number.

Parameter

n

An angle in radians, specified as a nonzero number. It can be specified as a value, a variable, or an expression. Specifying
0 generates an <ILLEGAL VALUE> error; specifying $DOUBLE(0) generates a <DIVIDE> error. A non-numeric string
is evaluated as 0.

Examples
The following example permits you to compute the cosecant of a number:

 READ "Input a number: ",num
 IF num=0 { WRITE !,"ILLEGAL VALUE: zero not permitted" }
 ELSE {
 WRITE !,"the cosecant is: ",$ZCSC(num)
 }
 QUIT

The following example compares the results from InterSystems IRIS fractional numbers ($DECIMAL numbers) and
$DOUBLE numbers. In both cases, the cosecant of pi/2 is exactly 1:

 WRITE !,"the cosecant is: ",$ZCSC($ZPI)
 WRITE !,"the cosecant is: ",$ZCSC($DOUBLE($ZPI))
 WRITE !,"the cosecant is: ",$ZCSC($ZPI/2)
 WRITE !,"the cosecant is: ",$ZCSC($DOUBLE($ZPI)/2)
 WRITE !,"the cosecant is: ",$ZCSC($DOUBLE($ZPI/2))

See Also
• $ZSEC function

• $ZCOT function

• $ZPI special variable

ObjectScript Reference 493

$ZCSC

$ZCYC
Cyclical-redundancy check for data integrity.

$ZCYC(string)
$ZC(string)

Parameter

A string.string

Description
$ZCYC(string) computes and returns the cyclical-redundancy check value for the string. It allows two intercommunicating
programs to check for data integrity.

The sending program transmits a piece of data along with a matching check value that it calculates using $ZCYC. The
receiving program verifies the transmitted data by using $ZCYC to calculate its check value. If the two check values match,
the received data is the same as the sent data.

$ZCYC calculates the check value by performing an exclusive OR (XOR) on the binary representations of all the characters
in the string.

Note that the $ZCYC value of an 8-bit string is identical to the $ZCRC mode 1 value.

Parameter

string

A string. Can be specified as a value, a variable, or an expression. String values are enclosed in quotation marks.

Example
In this example, the first $ZCYC returns 65; the second returns 3; and the third returns 64.

 SET x= $ZCYC("A")
 ; 1000001 (only one character; no XOR)
 SET y= $ZCYC("AB")
 ; 1000001 XOR 1000010 -> 0000011
 SET z= $ZCYC("ABC")
 ; 1000001 XOR 1000010 -> 0000011 | 1000011 -> 100000
 WRITE !,"x=",x," y=",y," z=",z

See Also
• $ZCRC function

494 ObjectScript Reference

ObjectScript Functions

$ZDASCII
Converts an eight-byte string to a $DOUBLE floating point number.

$ZDASCII(string,position)
$ZDA(string,position)

Parameters

A string or number. It can be a value, a variable, or an expression. It must be a minimum
of eight bytes in length. A number is converted to canonical form by removing a leading
plus sign, and leading and trailing zeros before it is supplied to $ZDASCII; the resulting
canonical number must be a minimum of eight bytes in length.

string

Optional — A starting position in the string, expressed as a positive, non-zero integer.
The default is 1. Position is counted in single bytes, not eight-byte strings. There must
exist at least eight bytes of string from the specified position (inclusive). A numeric
position value is parsed as an integer by truncating decimal digits, removing leading
zeros and plus signs, etc.

position

Description
The value that $ZDASCII returns depends on the parameters you use.

• $ZDASCII(string) returns a $DOUBLE (IEEE floating point) numeric interpretation of an eight-byte string starting
at the first character position of string.

• $ZDASCII(string,position) returns a $DOUBLE (IEEE floating point) numeric interpretation of an eight-byte string
beginning at the starting byte position specified by position.

$ZDASCII can return either a positive or a negative number.

$ZDASCII issues a <FUNCTION> error if string is less than eight bytes in length, if the specified position results in a
remaining string of less than eight bytes, or if position is an invalid value.

Examples
The following example determines the numeric interpretation of the numeric 12345678:

 WRITE $ZDASCII(12345678)

It returns: .000000000000000000000000000000000000068213200517013251261

The following examples also return the same value:

 WRITE !,$ZDASCII("12345678",1)
 WRITE !,$ZDASCII(++001234567899,1)
 WRITE !,$ZDASCII("++001234567899",5)

The following example determines the numeric interpretation of the negative numeric –1234567. Note that the minus sign
is counted as a byte:

 WRITE $ZDASCII(-1234567)

It returns: .0099583343788967399388

The following example determines the numeric interpretation of the character string “abcdefgh”:

 WRITE $ZDASCII("abcdefgh")

ObjectScript Reference 495

$ZDASCII

It returns: 85408832230361244356000

Notes

$ZDASCII and Other $ASCII Functions

$ZDASCII converts a eight byte (64-bit) character string to an IEEE floating point number. $ZQASCII converts a eight
byte (64-bit) character string to an integer. To convert an 8-bit byte string to an integer use $ASCII. To convert a 16-bit
(wide) character string to an integer use $ZWASCII. To convert a 32-bit (long) character string to an integer use $ZLASCII.

See Also
• $ASCII function

• $DOUBLE function

• $ZDCHAR function

• $ZLCHAR function

• $ZWASCII function

• $ZQASCII function

496 ObjectScript Reference

ObjectScript Functions

$ZDATE
Validates a date and converts it from internal format to the specified display format.

$ZDATE(hdate,dformat,monthlist,yearopt,startwin,endwin,mindate,maxdate,erropt,localeopt)
$ZD(hdate,dformat,monthlist,yearopt,startwin,endwin,mindate,maxdate,erropt,localeopt)

Parameters

An integer specifying an internal date format value.This integer represents the number
of days elapsed since December 31, 1840. If $HOROLOG is specified for hdate, only
the date portion of $HOROLOG is used. See hdate below.

hdate

Optional — An integer code specifying the format for the returned date. See dformat
below.

dformat

Optional — A string or the name of a variable that specifies a set of month names.
This string must begin with a delimiter character, and its 12 entries must be separated
by this delimiter character. See monthlist below.

monthlist

Optional — An integer code that specifies whether to represent years as two- or
four-digit values. See yearopt below.

yearopt

Optional — The start of the sliding window during which dates must be represented
with two-digit years. See startwin below.

startwin

Optional — The end of the sliding window during which dates are represented with
two-digit years. See endwin below.

endwin

Optional — The lower limit of the range of valid dates. Specified as a $HOROLOG
integer date count, with 0 representing December 31, 1840. Can be specified as a
positive or negative integer. See mindate below.

mindate

Optional — The upper limit of the range of valid dates. Specified as a $HOROLOG
integer date count. See maxdate below.

maxdate

Optional — An expression to return when hdate is invalid. Specifying a value for this
parameter suppresses error codes associated with invalid or out of range hdate values.
Instead of issuing an error message, $ZDATE returns erropt. See erropt below.

erropt

Optional — A boolean flag that specifies which locale to use for the dformat, monthlist,
yearopt, mindate and maxdate default values, and other date characteristics, such as
the date separator character:

localeopt=0: the current locale property settings determine these parameter defaults.

localeopt=1: the ODBC standard locale determines these parameter defaults.

localeopt not specified: the dformat value determines these parameter defaults. If
dformat=3, ODBC defaults are used. Japanese and Islamic date dformatvalues use
their own defaults. For all other dformat values, current locale property settings are
used as defaults. See localeopt below.

localeopt

Omitted parameters between specified parameter values are indicated by placeholder commas. Trailing placeholder commas
are not required, but are permitted. Blank spaces are permitted between the commas that indicate an omitted parameter.

ObjectScript Reference 497

$ZDATE

Description
The $ZDATE function converts a specified date in internal storage format ($HOROLOG format) to one of several alternate
date display formats. The value returned by $ZDATE depends on the parameters you use.

Simple $ZDATE format

$ZDATE(hdate), the most basic form of $ZDATE, returns the date in a display format that corresponds to the specified
hdate. hdate is an integer count of the number of days elapsed since December 31, 1840. It can range from 0 to 2980013
(12/31/1840 to 12/31/9999).

By default, $ZDATE(hdate) represents years between 1900 and 1999 with two digits. It represents years that fall before
1900 or after 1999 with four digits. For example:

 WRITE $ZDATE(21400),! ; returns 08/04/1899
 WRITE $ZDATE(50000),! ; returns 11/23/77
 WRITE $ZDATE(60000),! ; returns 04/10/2005
 WRITE $ZDATE(0),! ; returns 12/31/1840

When you supply a $HOROLOG date to $ZDATE, only the date portion is used. In $HOROLOG format, date and time
are presented as two integers separated by a comma. Upon encountering the comma (a non-numeric character) $ZDATE
ignores the rest of the string. In the following example, $ZDATE returns 04/10/2005 and the current date using $HOROLOG
format values:

 WRITE !,$ZDATE("60000,12345")
 WRITE !,$ZDATE($HOROLOG)

Customizable Date Default

Upon InterSystems IRIS startup, the default date format is initialized to dformat=1, which is the American date format with
a slash date separator (MM/DD/[YY]YY). To set this and other default formats to the values for your current locale, set
the following global variable: SET ^SYS("NLS","Config","LocaleFormat")=1. This sets all format defaults for
all processes to your current locale values. These defaults persist until this global is changed.

Note: This section describes the user locale definitions applied when localeopt is undefined or set to 0. When localeopt=1,
$ZDATE uses a predefined ODBC locale.

You can use NLS (National Language Support) to override format defaults for the current process. You can either change
the all format defaults to the values for a specified locale, or change individual format values.

• To set all of the format defaults (including the date format default) to the properties of a specified locale, invoke the
following method call: SET fmt=##class(%SYS.NLS.Format).%New("lname"), where lname is the NLS
name of the desired locale. (For example, deuw=German, espw=Spanish, fraw=French, ptbw=Brazilian Portuguese,
rusw=Russian, jpnw=Japanese. A complete list of locales is found in the Management Portal: System Administration,
Configuration, National Language Settings, Locale Definitions. To set these defaults to the properties of the current
locale, specify a lname of "current", or the empty string ("").

• To set the default date format to a specified dformat format, invoke the SetFormatItem() method: SET
rtn=##class(%SYS.NLS.Format).SetFormatItem("DateFormat",n), where n is the number of the
dformat value you wish to make the default.

The following example demonstrates setting all format defaults to the Russian locale, returning a date from $ZDATE in
the default format (Russian), then resetting the format defaults to the current locale defaults. Note that the Russian locale
uses a period, rather than a slash as the date part separator:

 WRITE !,$ZDATE($HOROLOG)
 SET fmt=##class(%SYS.NLS.Format).%New("rusw")
 WRITE !,$ZDATE($HOROLOG)
 SET fmt=##class(%SYS.NLS.Format).%New("current")
 WRITE !,$ZDATE($HOROLOG)

498 ObjectScript Reference

ObjectScript Functions

The following example demonstrates setting individual format defaults. The first $ZDATE returns a date in the default
format. The first SetFormatItem() method changes the default to dformat=4, or the European date format (DD/MM/[YY]YY),
as is shown by the second $ZDATE. The second SetFormatItem() method changes the default for the date separator
character (which affects the dformat -1, 1, 4, and 15). In this example, the date separator character is set to a dot (“.”), as
is shown by the third $ZDATE. Finally, this program restores the original date format values:

InitialVals
 SET fmt=##class(%SYS.NLS.Format).GetFormatItem("DateFormat")
 SET sep=##class(%SYS.NLS.Format).GetFormatItem("DateSeparator")
 WRITE !,$ZDATE($HOROLOG)
ChangeVals
 SET x=##class(%SYS.NLS.Format).SetFormatItem("DateFormat",4)
 WRITE !,$ZDATE($HOROLOG)
 SET y=##class(%SYS.NLS.Format).SetFormatItem("DateSeparator",".")
 WRITE !,$ZDATE($HOROLOG)
RestoreVals
 SET x=##class(%SYS.NLS.Format).SetFormatItem("DateFormat",fmt)
 SET y=##class(%SYS.NLS.Format).SetFormatItem("DateSeparator",sep)
 WRITE !,$ZDATE($HOROLOG)

For further details on default date formats for supported locales, refer to Dates in Using ObjectScript.

Parameters

hdate

The internal date format value representing the number of days elapsed since December 31, 1840. By default, it must be
an integer in the range 0 through 2980013. You can specify hdate as a numeric, a string literal, or an expression. InterSystems
IRIS converts hdate to canonical form. It truncates a numeric string (such as a $HOROLOG value) at its first non-numeric
character. It evaluates a non-numeric string as the integer 0. A floating-point number that does not resolve to an integer
generates an <ILLEGAL VALUE> error.

By default, the earliest valid hdate is 0 (December 31, 1840). Dates are limited to positive integers by default because the
DateMinimum property defaults to 0. You can specify earlier dates as negative integers, provided the DateMinimum property
of the current locale is set to a greater or equal negative integer. The lowest valid DateMinimum value is -672045, which
corresponds to January 1, 0001. InterSystems IRIS uses the proleptic Gregorian calendar, which projects the Gregorian
calendar back to “Year 1”, in conformance with the ISO 8601 standard. This is, in part, because the Gregorian calendar
was adopted at different times in different countries. For example, much of continental Europe adopted it in 1582; Great
Britain and the United States adopted it in 1752. Thus InterSystems IRIS dates prior to your local adoption of the Gregorian
calendar may not correspond to historical dates that were recorded based on the local calendar then in effect. For further
details on dates prior to 1840, refer to the mindate parameter.

Invalid and out-of-range hdate values and resulting errors are described in the erropt parameter.

dformat

Format for the returned date. Valid values are:

MeaningValue

MM/DD/[YY]YY (07/01/97 or 03/27/2002) — American numeric format.The dateseparator character
(/ or .) is taken from the current locale setting.

1

DD Mmm [YY]YY (01 Jul 97 or 27 Mar 2002)2

YYYY-MM-DD (1997-07-01 or 2002-03-27) — ODBC format. By default this format is independent
of your current locale settings (localeopt=1), thus specifying dates in an ODBC standard
interchange format. To use your current date locale settings with this format, set localeopt=0.

3

DD/MM/[YY]YY (01/07/97 or 27/03/2002) — European numeric format.The dateseparator character
(/ or .) is taken from the current locale setting.

4

Mmm [D]D, YYYY (Jul 1, 1997 or Mar 27, 2002)5

ObjectScript Reference 499

$ZDATE

MeaningValue

Mmm [D]D YYYY (Jul 1 1997 or Mar 27 2002)6

Mmm DD [YY]YY (Jul 01 97 or Mar 27 2002)7

YYYYMMDD (19970701 or 20020327) — Numeric format8

Mmmmm [D]D, YYYY (July 1, 1997 or March 27, 2002)9

W (2) — Day number for the week, numbered from 0 (Sunday) through 6 (Saturday). Compare
with the $SYSTEM.SQL.DAYOFWEEK() method.

10

Www (Tue) — Abbreviated day name11

Wwwwww (Tuesday) — Full day name12

[D]D/[M]M/YYYY (1/7/2549 or 27/11/2549) — Thai date format. Day and month are identical to
European usage, except no leading zeros. The year is the Buddhist Era (BE) year, calculated by
adding 543 years to the Gregorian year.

13

nnn (354) — Day number for the year14

DD/MM/[YY]YY (01/07/97 or 27/03/2002) — European format (same as dformat=4). The
dateseparator character (/ or .) is taken from the current locale setting.

15

YYYYc[M]Mc[D]Dc — Japanese date format.Year, month, and day numbers are the same as
other date formats; leading zeros are omitted. The Japanese characters for “year”, “month”, and
“day” (shown here as c) are inserted after the year, month, and day numbers. These characters
are Year=$CHAR(24180), Month=$CHAR(26376), and Day=$CHAR(26085).

16

YYYYc [M]Mc [D]Dc — Japanese date format. Same as dformat 16, except that a blank space
is inserted after the “year” and “month” Japanese characters.

17

[D]D Mmmmm YYYY — Tabular Hijri (Islamic) date format with full month name. Day leading
zeros are omitted; year leading zeros are included. InterSystems IRIS date -445031 (07/19/0622
C.E.) = 1 Muharram 0001.

18

[D]D [M]M YYYY — Tabular Hijri (Islamic) date format with month number. Day and month leading
zeros are omitted; year leading zeros are included. InterSystems IRIS date -445031 (07/19/0622
C.E.) = 1 1 0001.

19

[D]D Mmmmm YYYY — Observed Hijri (Islamic) date format with full month name. Defaults to
Tabular Hijri (dformat 18). To override tabular calculation, use the class %Calendar.Hijri to add
observations of new moon crescents.

20

[D]D [M]M YYYY — Observed Hijri (Islamic) date format with month number. Defaults to Tabular
Hijri (dformat 19).To override tabular calculation, use the class %Calendar.Hijri to add observations
of new moon crescents.

21

Get effective dformat value either from the user’s locale (if localeopt=0 or undefined), or from the
ODBC locale (which defaults dformat=3). If dformat is taken from the user’s locale, it is the value
of fmt.DateFormat, where fmt is an instance of ##class(%SYS.NLS.Format) associated with the
current process. This is the default behavior if you do not specify dformat. See “Customizable
Date Default ” for further details.

-1

where:

500 ObjectScript Reference

ObjectScript Functions

MeaningSyntax

YYYY is a four-digit year. [YY]YY is a two-digit year if hdate falls within the active window
for two-digit years; otherwise it is a four-digit year.

YYYY

Two-digit month: 01 through 12. [M]M indicates that the leading zero is omitted for months
1 through 9.

MM

Two-digit day: 01 through 31. [D]D indicates that the leading zero is omitted for days 1
through 9.

DD

Month abbreviation extracted from the MonthAbbr property of the current locale. An alternate
month abbreviation (or name of any length) can be extracted from an optional list specified
as the monthlist parameter to $ZDATE. The default MonthAbbr values are:
“Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec”

Mmm

Full name of the month as specified by the MonthName property of the current locale. The
default values are:
“January February March ... November December”

Mmmmm

Number 0-6 indicating the day of the week:
Sunday=0, Monday=1, Tuesday=2, etc.

W

Weekday name abbreviation as specified by the WeekdayAbbr property of the current locale.
The default values are:
“Sun Mon Tue Wed Thu Fri Sat”

Www

Weekday full name as specified by the WeekdayName property of the current locale. The
default values are:
“Sunday Monday Tuesday ... Friday Saturday”

Wwwwww

Day number for the specified year, always three digits, with leading zeros if necessary.
Values are 001 through 365 (or 366 on leap years).

nnn

dformat Default

If you omit dformat or set it to -1, the dformat default depends on the localeopt parameter and the NLS DateFormat property:

• If localeopt=1 the dformat default is ODBC format. The monthlist, yearopt, mindate and maxdate parameter defaults
are also set to ODBC format. This is the same as setting dformat=3.

• If localeopt=0 or is unspecified, the dformat default is taken from the NLS DateFormat property. If DateFormat=3, the
dformat default is ODBC format. However, DateFormat=3 does not affect the monthlist, yearopt, mindate and maxdate
parameter defaults, which are as specified in the current NLS locale definition.

To determine the default date format for your locale, invoke the GetFormatItem() NLS class method:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("DateFormat")

European date format (dformat=4, DD/MM/YYYY order) is the default for many (but not all) European languages,
including British English, French, German, Italian, Spanish, and Portuguese (which use a “/” DateSeparator character), as
well as Czech (csyw), Russian (rusw), Slovak (skyw), Slovenian (svnw), and Ukrainian (ukrw) (which use a “.” DateSeparator

character). For further details on default date formats for supported locales, refer to Dates in Using ObjectScript.

dformat Settings

If dformat is 3 (ODBC date format), ODBC format defaults are also used for the monthlist, yearopt, mindate and maxdate
parameter defaults. Current locale defaults are ignored.

ObjectScript Reference 501

$ZDATE

If dformat is -1, 1, 4, 13, or 15 (numeric date formats), $ZDATE uses the value of the DateSeparator property of the current
locale as the delimiter between months, days, and the year. When dformat is 3 the ODBC date separator (“-”) is used. For
all other dformat values, a space is used as the date separator. The default value of DateSeparator in English is “/” and all
documentation uses this delimiter.

If dformat is 11 or 12 (day names) and localeopt=0 or is unspecified the day name values come from the current locale
properties. If localeopt=1, day names come from the ODBC locale. To determine the default weekday names and weekday
abbreviations for your locale, invoke the following NLS class methods:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("WeekdayName"),!
 WRITE ##class(%SYS.NLS.Format).GetFormatItem("WeekdayAbbr"),!

If dformat is 16 or 17 (Japanese date formats), the returned date format is independent of the locale setting. Japanese-format
dates can be returned from any InterSystems IRIS instance.

If dformat is 18, 19, 20, or 21 (Islamic date formats) and localeopt is unspecified, parameters default to Islamic defaults,
rather than current locale defaults. The monthlist parameter defaults to Arabic month names transliterated with Latin char-
acters. The tformat, yearopt, mindate and maxdate parameters default to ODBC defaults. The date separator defaults to the
Islamic default (a space), not the ODBC default or the current locale DateSeparator property value. If localeopt=0 current
locale property defaults are used for these parameters. If localeopt=1 ODBC defaults are used for these parameters.

monthlist

An expression that resolves to a string of month names or month name abbreviations, separated by a delimiter character.
The names in monthlist replace the default month abbreviation values from the MonthAbbr property or the month name
values from the MonthName property of the current locale.

monthlist is valid only if dformat is 2, 5, 6, 7, 9, 18, or 20. If dformat is any other value $ZDATE ignores monthlist.

The monthlist string has the following format:

• The first character of the string is a delimiter character (usually a space). The same delimiter must appear before the
first month name and between each month name in monthlist. You can specify any single-character delimiter; this
delimiter appears between the month, day, and year portions of the returned date value, which is why a space is usually
the preferred character.

• The month names string should contain twelve delimited values, corresponding to January through December. It is
possible to specify more or less than twelve month names, but if there is no month name corresponding to the month
in hdate an <ILLEGAL VALUE> error is generated.

If you omit monthlist or specify a monthlist value of -1, $ZDATE uses the list of month names defined in the MonthAbbr

or MonthName property of the current locale, unless one of the following is true: If localeopt=1, the monthlist default is
the ODBC month list (in English). If localeopt is unspecified and dformat is 18 or 20 (Islamic date formats) the monthlist
default is the Islamic month list (Arabic names expressed using Latin letters), ignoring the MonthAbbr or MonthName

property value.

To determine the default month names and month abbreviations for your locale, invoke the GetFormatItem() NLS class
method:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("MonthName"),!
 WRITE ##class(%SYS.NLS.Format).GetFormatItem("MonthAbbr"),!

The following example lists the month names the default locale, changes the locale for this process to the Russian locale,
then lists the Russian month names and displays the current date with a Russian month name. It then reverts the locale
defaults to current locale and again displays the current date, this time with the default month name.

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("MonthName"),!
 SET fmt=##class(%SYS.NLS.Format).%New("rusw")
 WRITE fmt.MonthName,!
 WRITE $ZDATE($HOROLOG,9),!
 SET fmt=##class(%SYS.NLS.Format).%New()
 WRITE $ZDATE($HOROLOG,9)

502 ObjectScript Reference

ObjectScript Functions

yearopt

With dformat values 1, 2, 4, 7, or 15, an integer code that specifies the temporal window in which to display the year as a
two-digit value. For all other dformat values, the yearopt is ignored. Valid yearopt values are:

MeaningValue

Get effective yearopt value from YearOption property of current locale which defaults to a value
of 0. This is the default behavior if you do not specify yearopt.

-1

Represent 20th century dates (1900 through 1999) with two-digit years and all other dates with
four-digit years, unless a process-specific sliding window (established via the %DATE utility) is
in effect. If such a window is in effect, represent only those dates falling within the sliding window
by two-digit years, and all other dates with four-digit years.

0

Represent 20th century dates with two-digit years and all other dates with four-digit years.1

Represent all dates with two-digit years.2

Represent with two-digit years those dates falling within the sliding temporal window defined by
startwin and (optionally) endwin. Represent all other dates with four-digit years. When yearopt
=3, startwin and endwin are absolute dates in $HOROLOG format.

3

Represent all dates with four-digit years. ODBC year option.4

Represent with two-digit years all dates falling within the sliding temporal window defined by
startwin and (optionally) endwin. Represent all other dates with four-digit years.When yearopt=5,
startwin and endwin are relative years.

5

Represent all dates in the current century with two-digit years and all other dates with four-digit
years.

6

To determine the default year option for your locale, invoke the GetFormatItem() NLS class method:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("YearOption")

If you omit yearopt or specify a yearopt value of -1, $ZDATE uses the YearOption property of the current locale, unless
one of the following is true: If localeopt=1, the yearopt default is the ODBC year option. If localeopt=0 or is unspecified
and dformat is 18, 19, 20, or 21 (Islamic date formats) the yearopt default is the ODBC year option (4-digit years); the
YearOption property value is ignored for Islamic dates.

startwin

A numeric value that specifies the start of the sliding window during which dates must be represented with two-digit years.
See parameter section. You must supply startwin when yearopt is 3 or 5. startwin is not valid with any other yearopt values.

When yearopt = 3, startwin is an absolute date in $HOROLOG date format that indicates the start date of the sliding
window.

When yearopt = 5, startwin is a numeric value that indicates the start year of the sliding window expressed as the number
of years before the current year. The sliding window always begins on January 1st of the year specified in startwin.

endwin

A numeric value that specifies the end of the sliding window during which dates are represented with two-digit years. You
may optionally supply endwin when yearopt is 3 or 5. endwin is not valid with any other yearopt values.

When yearopt = 3, endwin is an absolute date in $HOROLOG date format that indicates the end date of the sliding window.

ObjectScript Reference 503

$ZDATE

When yearopt = 5, endwin is a numeric value that indicates the end year of the sliding window expressed as the number
of years past the current year. The sliding window always ends on December 31st of the year specified in endwin. If endwin
is not specified, it defaults to December 31st of the year 100 years after startwin.

If endwin is omitted (or specified as -1) the effective sliding window will be 100 years long. The endwin value of -1 is a
special case that always returns a date value, even when higher and lower endwin values return erropt. For this reason, it
is preferable to omit endwin when specifying a 100-year window, and to avoid the use of negative endwin values.

If you supply both startwin and endwin, the sliding window they specify must not have a duration of more than 100 years.

mindate

An expression that specifies the lower limit of the range of valid dates (inclusive). Can be specified as a $HOROLOG
integer date count (for example, 1/1/2013 is represented as 62823) or a $HOROLOG string value. You can include or
omit the time portion of a $HOROLOG date string (for example “62823,43200”), but only the date portion of mindate is
parsed. Specifying an hdate value earlier than mindate generates a <VALUE OUT OF RANGE> error.

The following are supported mindate values:

• Positive integer: Most commonly mindate is specified as a positive integer to establish the earliest allowed date as
some date after December 31, 1840. For example, a mindate of 21550 would establish the earliest allowed date as
January 1, 1900. The highest valid value is 2980013 (December 31, 9999).

• 0: specifies the minimum date as December 31, 1840. This is the DateMinimum property default.

• Negative integer -2 or larger: specifies a minimum date counting backwards from December 31, 1840. For example,
a mindate of -14974 would establish the earliest allowed date as January 1, 1800. Negative mindate values are only
meaningful if the DateMinimum property of the current locale has been set to an equal or greater negative number. The
lowest valid value is -672045.

• If omitted (or specified as -1), mindate defaults to the DateMinimum property value for the current locale, unless one
of the following is true: If localeopt=1, the mindate default is 0. If localeopt is unspecified and dformat=3, the mindate
default is 0. If localeopt is unspecified and dformat is 18, 19, 20, or 21 (Islamic date formats) the mindate default is
0.

You can get and set the DateMinimum property as follows:

 SET min=##class(%SYS.NLS.Format).GetFormatItem("DateMinimum")
 WRITE "initial DateMinimum value is ",min,!
Permit18thCenturyDates
 SET x=##class(%SYS.NLS.Format).SetFormatItem("DateMinimum",-51498)
 SET newmin=##class(%SYS.NLS.Format).GetFormatItem("DateMinimum")
 WRITE "set DateMinimum value is ",newmin,!!
RestrictTo19thCenturyDates
 WRITE $ZDATE(-13000,1,,,,,-14974),!!
ResetDateMinimumToDefault
 SET oldmin=##class(%SYS.NLS.Format).SetFormatItem("DateMinimum",min)
 WRITE "reset DateMinimum value from ",oldmin," to ",min

You may specify mindate with or without maxdate. Specifying a mindate larger than maxdate generates an <ILLEGAL
VALUE> error.

ODBC Date Format (dformat 3)

The application of the DateMinimum property is governed by the localeopt setting. When localeopt=1 (which is the default
for dformat=3) the date minimum is 0, regardless of the current locale setting. Therefore, in ODBC format (dformat=3) the
following can be used to specify a date prior to December 31, 1840:

• Specify a mindate earlier than the specified date:

 WRITE $ZDATE(-30,3,,,,,-365)

• Specify a DateMinimum property value earlier than the specified date and set localeopt=0:

504 ObjectScript Reference

ObjectScript Functions

 DO ##class(%SYS.NLS.Format).SetFormatItem("DateMinimum",-365)
 WRITE $ZDATE(-30,3,,,,,,,,0)

maxdate

An expression that specifies the upper limit of the range of valid dates (inclusive). Can be specified as a $HOROLOG
integer date count (for example, 1/1/2100 is represented as 94599) or a $HOROLOG string value. You can include or
omit the time portion of the $HOROLOG date (for example “94599,43200”), but only the date portion of maxdate is
parsed.

If maxdate is omitted or if specified as -1, the maximum date limit is obtained from the DateMaximum property of the current
locale, which defaults to the maximum permissible value for the date portion of $HOROLOG: 2980013 (corresponding
to December 31, 9999 CE). However, the application of the DateMaximum property is governed by the localeopt setting.
When localeopt=1 (which is the default for dformat=3) the date maximum default is the ODBC value (2980013), regardless
of the current locale setting. Islamic date formats also take the ODBC default. The maximum date for Thai date format
(dformat=13) is $HOROLOG 2781687 which corresponds to 31/12/9999 BE.

Specifying a hdate larger than maxdate generates a <VALUE OUT OF RANGE> error.

Specifying a maxdate larger than 2980013 generates an <ILLEGAL VALUE> error.

You may specify maxdate with or without mindate. Specifying a maxdate smaller than mindate generates an <ILLEGAL
VALUE> error.

erropt

Specifying a value for this parameter suppresses errors associated with invalid or out of range hdate values. Instead of
generating <ILLEGAL VALUE> or <VALUE OUT OF RANGE> errors, the $ZDATE function returns the erropt value.

• Validation: InterSystems IRIS performs canonical numeric conversion on hdate. Parsing of an hdate string halts at the
first non-numeric character. Therefore, an hdate string such as 64687AD is the same as 64687. A non-numeric date
(including the null string) evaluates to 0. Thus an empty string hdate returns the $HOROLOG initial date: December
31, 1840. However, if hdate does not evaluate to an integer (contains a non-zero fractional number) it generates an
<ILLEGAL VALUE> error.

• Range: hdate must evaluate to an integer within the mindate/maxdate range. By default, date values greater than
2980013 or less than 0 generate a <VALUE OUT OF RANGE> error. By setting mindate to a negative number, you
can extend the range of valid dates before December 31, 1840. However, for dformat 18, 19, 20, or 21 (Hijri Islamic
calendar) dates, any date prior to -445031 generates an <ILLEGAL VALUE> error, even if mindate is set to an earlier
date.

The erropt parameter only suppresses errors generated due to invalid or out of range values of hdate. Errors generated due
to invalid or out of range values of other parameters will always generate errors whether or not erropt has been supplied.
For example, an <ILLEGAL VALUE> error is always generated when $ZDATE specifies a sliding window where endwin
is earlier than startwin. Similarly, an <ILLEGAL VALUE> error is generated when maxdate is less than mindate.

Invalid Date Handling with ZDateNull

The behavior of $ZDATE when given an invalid value for hdate can be set using ZDateNull. To set this behavior for the
current process, use the ZDateNull() method of the %SYSTEM.Process class. The system-wide default behavior can be
established by setting the ZDateNull property of the Config.Miscellaneous class. $ZDATE can either issue an error, or return
a null value.

The system-wide default behavior is configurable. Go to the Management Portal, select System Administration, Configuration,
Additional Settings, Compatibility. View and edit the current setting of ZDateNull. The default is “ false” , meaning that
$ZDATE returns an error.

ObjectScript Reference 505

$ZDATE

localeopt

This Boolean parameter specifies either the user’s current locale definition or the ODBC locale definition as the source for
defaults for the locale-specified parameters dformat, monthlist, yearopt, mindate and maxdate:

• If localeopt=0, all of these parameters take the current locale definition defaults.

• If localeopt=1, all of these parameters take the ODBC defaults.

• If localeopt is not specified, the dformat parameter determine the default for these parameters. If dformat=3, the ODBC
defaults are used. If dformat is 18, 19, 20, or 21 the Islamic date format defaults are used, regardless of the current
locale definition. For all other dformat values, the current locale definition defaults are used. Refer to the dformat
description for further details.

The ODBC locale cannot be changed; it is used to format date strings that are portable between InterSystems IRIS processes
that have made different National Language Support (NLS) choices. If localeopt=1, the ODBC locale date definitions are
as follows:

• Date format defaults to 3. Therefore, if dformat is undefined or -1, date format 3 is used.

• Date separator defaults to "/". However, date format defaults to 3, which always uses "-" as the date separator.

• Year option defaults to 4 digits.

• Date minimum and maximum: 0 and 2980013 ($HOROLOG date count).

• English month names, month abbreviations, weekday names, and weekday abbreviations are used.

Examples

Date Format Examples

The following example illustrates how $ZDATE returns the various dformat formats for the current date. The yearopt takes
the default values. The date separator, and the names and abbreviations of months and days of the week are, of course,
locale-dependent. This example uses the current user locale definition:

 WRITE $ZDATE($HOROLOG), " default date format",!
 WRITE $ZDATE($HOROLOG,1)," 1=American numeric format",!
 WRITE $ZDATE($HOROLOG,2)," 2=Month abbreviation format",!
 WRITE $ZDATE($HOROLOG,3)," 3=ODBC numeric format",!
 WRITE $ZDATE($HOROLOG,4)," 4=European numeric format",!
 WRITE $ZDATE($HOROLOG,5)," 5=Month abbreviation format",!
 WRITE $ZDATE($HOROLOG,6)," 6=Month abbreviation format",!
 WRITE $ZDATE($HOROLOG,7)," 7=Month abbreviation format",!
 WRITE $ZDATE($HOROLOG,8)," 8=Numeric format no spaces",!
 WRITE $ZDATE($HOROLOG,9)," 9=Month name format",!
 WRITE $ZDATE($HOROLOG,10)," 10=Day-of-week format",!
 WRITE $ZDATE($HOROLOG,11)," 11=Day abbreviation format",!
 WRITE $ZDATE($HOROLOG,12)," 12=Day name format",!
 WRITE $ZDATE($HOROLOG,13)," 13=Thai numeric format",!
 WRITE $ZDATE($HOROLOG,14)," 14=Day-of-year format",!
 WRITE $ZDATE($HOROLOG,15)," 15=European numeric format",!
 WRITE $ZDATE($HOROLOG,16)," 16=Japanese date format",!
 WRITE $ZDATE($HOROLOG,17)," 17=Japanese date format with spaces"

The following example compares dates with the locale defaulting to the current user locale with dates when localeopt=1
activates the ODBC locale definition. To make this example more interesting, the current user locale is set to French:

 SET fmt=##class(%SYS.NLS.Format).%New("fraw")
 WRITE "default: local=",$ZDATE($HOROLOG)," ODBC=",$ZDATE($HOROLOG,,,,,,,,,1),!
 WRITE "-1: local=",$ZDATE($HOROLOG,-1)," ODBC=",$ZDATE($HOROLOG,-1,,,,,,,,1),!!
 FOR x=1:1:17 {
 WRITE x,": local=",$ZDATE($HOROLOG,x)," ODBC=",$ZDATE($HOROLOG,x,,,,,,,,1),! }

506 ObjectScript Reference

ObjectScript Functions

Two-digit Year Sliding Window Example

To illustrate how to use an explicit sliding window, suppose you enter the following function call in 1997. The hdate of
59461 represents October 19, 2003; the dformat of 1 allows it to return two-digit or four-digit years, and the yearopt of 5
specifies a sliding window for four-digit years. Because of the yearopt setting, the startwin and endwin are calculated relative
to the current year (in this case 1997) by addition and subtraction.

 WRITE $ZDATE(59461,1,,5,90,10)

The sliding window for displaying the year as two digits extends from 1/1/1907 to 12/31/2006. Thus InterSystems IRIS
displays the date as 10/19/03.

Date Range Example

The following example uses mindate and maxdate to test for plausible birth dates. The maxdate assumes that a birth date
cannot be in the future; the mindate assumes that no person listed will be more that 124 years old. The dates are specified
in $HOROLOG format:

PlausibleBirthdate
 SET bdateh(1)=62142
 SET bdateh(2)=16800
 SET bdateh(3)=70000
 DO $SYSTEM.Process.ZDateNull(1)
 SET maxdate=$PIECE($HOROLOG,",",1)+1
 SET mindate=maxdate-(365.25*124)
 FOR x=1:1:3 {
 SET bdate=$ZDATE(bdateh(x),,,,,,mindate,maxdate)
 IF bdate="" {WRITE "Birth date ",bdateh(x)," is out of range",!}
 ELSE {WRITE "Birth date ",bdateh(x)," is ",bdate,!}
 }

Two of the above $ZDATE input values fall outside of the date range for a birth date test: 16800 (12/30/1886) is more
than 124 years ago and 70000 (08/26/2032) is in the future. By default, these invocations of $ZDATE would generate a
<VALUE OUT OF RANGE> error, but because ZDateNull(1) is set, they return the empty string ("").

Notes

Invalid Values with $ZDATE

You receive a <FUNCTION> error in the following conditions:

• If you specify an invalid dformat code (an integer value less than -1 or greater than 17, or a non-integer value).

• If you do not specify a startwin value when yearopt is 3 or 5.

You receive an <ILLEGAL VALUE> error under the following conditions:

• If you specify an invalid value for hdate and do not either supply an erropt value or set ZDateNull (as described below).

• If the given month number is greater than the number of month values in monthlist.

• If maxdate is less than mindate.

• If endwin is less than startwin.

• If startwin and endwin specify a sliding temporal window whose duration is greater than 100 years.

You receive a <VALUE OUT OF RANGE> error under the following conditions:

• If you specify an hdate value that is out of the range of valid dates. For InterSystems IRIS this is 0 through 298013.
You can use the ZDateNull() method of the %SYSTEM.Process class to set the date range and invalid date behavior
for the current process.

• If you specify an otherwise valid date which is outside the range defined by the values assumed for maxdate and
mindate, and do not supply an erropt value.

ObjectScript Reference 507

$ZDATE

Using $ZDATE Instead of Utilities

Keep the following points in mind when you need to choose between the $ZDATE function and a date utility:

• You can use the $ZDATE function in place of most existing entry points of the %DO or %D utilities.

• You can invoke $ZDATE($HOROLOG,7) directly instead of calling INT ^%D. This provides the current date in
“Mmm DD [YY]YY” format.

• $ZDATEH and $ZDATE are much faster than calling entry points of %DATE, %DI or %DO.

See Also
• JOB command

• $ZDATEH function

• $ZDATETIME function

• $ZDATETIMEH function

• $ZTIME function

• $HOROLOG special variable

• $ZTIMESTAMP special variable

• %DATE utility, which is documented in the legacy documentation available at http://docs.intersystems.com/priordo-
cexcerpts

• More information on locales in the section on “System Classes for National Language Support” in Specialized System
Tools and Utilities.

508 ObjectScript Reference

ObjectScript Functions

http://docs.intersystems.com/priordocexcerpts
http://docs.intersystems.com/priordocexcerpts

$ZDATEH
Validates a date and converts it from display format to InterSystems IRIS internal format.

$ZDATEH(date,dformat,monthlist,yearopt,startwin,endwin,mindate,maxdate,erropt,localeopt)
$ZDH(date,dformat,monthlist,yearopt,startwin,endwin,mindate,maxdate,erropt,localeopt)

Parameters

An expression that evaluates to a date string in display format. $ZDATEH converts
this date string to $HOROLOG format. This can be either an explicit date (specified
in various formats) or the string “T” or “t”, representing the current date. The “T” or “t”
string can optionally include a signed integer offset. For example “T-7” meaning seven
days before the current date. See date below.

date

Optional — An integer code that specifies a date format option for date. If date is “T”,
dformat must be 5, 6, 7, 8, 9, or 15. See dformat below.

dformat

Optional — A string or the name of a variable that specifies a set of month names.
This string must begin with a delimiter character, and its 12 entries must be separated
by this delimiter character. See monthlist below.

monthlist

Optional — An integer code that specifies whether to represent years as two- or
four-digit values. See yearopt below.

yearopt

Optional — The start of the sliding window during which dates must be represented
with two-digit years. See startwin below.

startwin

Optional — The end of the sliding window during which dates are represented with
two-digit years. See endwin below.

endwin

Optional — The lower limit of the range of valid date dates. Specified as a $HOROLOG
integer date count, with 0 representing December 31, 1840. Can be specified as a
positive or negative integer. See mindate below.

mindate

Optional — The upper limit of the range of valid dates. Specified as a $HOROLOG
integer date count. See maxdate below.

maxdate

Optional — An expression to return when date is invalid. Specifying a value for this
parameter suppresses error codes associated with invalid or out of range date values.
Instead of issuing an error message, $ZDATEH returns erropt. See erropt below.

erropt

Optional — A boolean flag that specifies which locale to use for the dformat, monthlist,
yearopt, mindate and maxdate default values, and other date characteristics, such as
the date separator character:

localeopt=0: the current locale property settings determine these parameter defaults.

localeopt=1: the ODBC standard locale determines these parameter defaults.

localeopt not specified: the dformat value determines these parameter defaults. If
dformat=3, ODBC defaults are used. Japanese and Islamic date dformatvalues use
their own defaults. For all other dformat values, current locale property settings are
used as defaults. See localeopt below.

localeopt

Omitted parameters between specified parameter values are indicated by placeholder commas. Trailing placeholder commas
are not required, but are permitted. Blank spaces are permitted between the commas that indicate an omitted parameter.

ObjectScript Reference 509

$ZDATEH

Description
The $ZDATEH function validates a specified date and converts it from any of the formats supported by the $ZDATE
function to $HOROLOG format. The exact action $ZDATEH performs depends on the parameters you use.

Simple $ZDATEH Format

$ZDATEH(date) converts a date in the form MM/DD/[YY]YY to the first integer in the $HOROLOG format. (The
$HOROLOG format consists of two integers: the first integer is a date, the second integer is a time.) Two or four digits
may be specified for years in the range 1900 to 1999. Four digits must be specified for years before 1900 or after 1999.

Customizable $ZDATEH Format

$ZDATEH(date,dformat,monthlist,yearopt,startwin,endwin,mindate,maxdate,erropt) converts a date in the specified
dformat to $HOROLOG format. The dformat, monthlist, yearopt, startwin, endwin, mindate, maxdate and erropt values
are identical to the values used by $ZDATE. However, when you use a dformat of 5, 6, 7, 8, or 9, $ZDATEH recognizes
and converts a date in any of the external date formats defined for dformat codes 1, 2, 3, 5, 6, 7, 8, and 9. (But not dformat
code 4.) It also recognizes a special relative date format that consists of a string beginning with the letter T or t (indicating
“today”,) optionally followed by a plus (+) or a minus (-) sign, and an integer number of days after or before the current
date.

Parameters

date

The date you want converted to $HOROLOG format, specified as a quoted string. This can be an explicit date, or the
implicit current date, represented by the string “T” or “t”.

An explicit date must be specified in one of the formats supported by dformat. The permitted format(s) depends on the
dformat parameter. If dformat is not specified or is 1, 2, 3, or 4, only one date format is permitted. If dformat is 5, 6, 7, 8,
9 or 15, multiple date formats are permitted.

If dformat is 5, 6, 7, 8, or 9, $ZDATEH accepts all unambiguous American date formats. If dformat is 15, $ZDATEH
accepts all unambiguous European date formats. A list of valid date formats is provided below. Note that dformat=4 is not
a valid American date format because $ZDATEH cannot differentiate between 02/03/02 (meaning February 3, 2002) and
the European 02/03/02 (meaning March 2, 2002). If you specify a date in a non-permitted format, or a nonexistent date
(such as February 31, 2002), $ZDATEH generates an <ILLEGAL VALUE> error code. ($ZDATEH does check for leap
year dates, permitting Feb. 29, 2004 but not Feb. 29, 2003.)

In the Russian, Ukrainian, and Czech locales, a date must be specified with periods, rather than slashes, as date part sepa-
rators: DD.MM.YYYY.

An implicit date is specified as a string consisting of the letter “T” or “t”, indicating the current date (today). This string
can optionally include a plus or minus sign and an integer, which specify the number of days offset from the current date.
For example, “t+9” (nine days after the current date) or “t-12” (twelve days before the current date). Implicit dates are only
permitted if dformat is 5, 6, 7, 8, 9, or 15. The only permitted implicit date forms are “T” (or “t”), and “T” (or “t”) followed
by a sign and integer. InterSystems IRIS generates an <ILLEGAL VALUE> error if you specify a noninteger number, an
arithmetic expression, an integer without a sign, or a sign without an integer. “T+0” and “T-0” are permitted, and return
the current date. InterSystems IRIS generates a <VALUE OUT OF RANGE> error if you specify an offset that would
result in a $HOROLOG date beyond the range of valid dates.

By default, the earliest valid date is December 31, 1840 (0 in internal $HOROLOG representation). Dates are limited to
positive integers by default because the DateMinimum property defaults to 0. You can specify earlier dates as negative
integers, provided the DateMinimum property of the current locale is set to a greater or equal negative integer. The lowest
valid DateMinimum value is -672045, which corresponds to January 1, 0001. InterSystems IRIS uses the proleptic Gregorian
calendar, which projects the Gregorian calendar back to “Year 1”, in conformance with the ISO 8601 standard. This is, in
part, because the Gregorian calendar was adopted at different times in different countries. For example, much of continental

510 ObjectScript Reference

ObjectScript Functions

Europe adopted it in 1582; Great Britain and the United States adopted it in 1752. Thus InterSystems IRIS dates prior to
your local adoption of the Gregorian calendar may not correspond to historical dates that were recorded based on the local
calendar then in effect. For further details on dates prior to 1840, refer to the mindate parameter.

dformat

Format for the date. Valid values are:

MeaningValue

Get effective dformat value from the DateFormat property of the current locale. This is the default
behavior if you do not specify dformat.

-1

MM/DD/[YY]YY (07/01/97 or 03/27/2002) — American numeric format.You must specify the
correct dateseparator character (/ or .) for the current locale.

1

DD Mmm [YY]YY (01 Jul 97)2

[YY]YY-MM-DD (1997-07-01) - ODBC format3

DD/MM/[YY]YY (01/07/97 or 27/03/2002) — European numeric format.You must specify the
correct dateseparator character (/ or .) for the current locale.

4

Mmm D, YYYY (Jul 1, 1997) or any unambiguous American date format.5

Mmm D YYYY (Jul 1 1997) or any unambiguous American date format.6

Mmm DD [YY]YY (Jul 01 1997) or any unambiguous American date format.7

[YY]YYMMDD (19970701) - Numeric format, or any unambiguous American date format.8

Mmmmm D, YYYY (July 1, 1997), or any unambiguous American date format.9

[D]D/[M]M/YYYY (1/7/2549 or 27/11/2549) — Thai date format. Day and month are identical to
European usage, except no leading zeros. The year is the Buddhist Era (BE) year, calculated by
adding 543 years to the Gregorian year.

13

DD/MM/[YY]YY or YYYY-MM-DD or any unambiguous European date format with any
dateseparator character, or YYYYMMDD with no date separators. The dateseparator character
may be any non-alphanumeric character, including blank spaces, regardless of the dateseparator
character specified in the current locale. Also accepts monthlist names and “T”.

15

YYYYc[M]Mc[D]Dc — Japanese date format.Year, month, and day numbers are the same as
other date formats; leading zeros are omitted. The Japanese characters for “year”, “month”, and
“day” (shown here as c) are inserted after the year, month, and day numbers. These characters
are Year=$CHAR(24180), Month=$CHAR(26376), and Day=$CHAR(26085).

16

YYYYc [M]Mc [D]Dc — Japanese date format. Same as dformat 16, except that a blank space
is inserted after the “year” and “month” Japanese characters.

17

[D]D Mmmmm YYYY — Tabular Hijri (Islamic) date format with full month name. Day leading
zeros are omitted; year leading zeros are included. InterSystems IRIS date -445031 (07/19/0622
C.E.) = 1 Muharram 0001.

18

[D]D [M]M YYYY — Tabular Hijri (Islamic) date format with month number. Day and month leading
zeros are omitted; year leading zeros are included. InterSystems IRIS date -445031 (07/19/0622
C.E.) = 1 1 0001.

19

[D]D Mmmmm YYYY — Observed Hijri (Islamic) date format with full month name. Defaults to
Tabular Hijri (dformat 18). To override tabular calculation, use the class %Calendar.Hijri to add
observations of new moon crescents.

20

ObjectScript Reference 511

$ZDATEH

MeaningValue

[D]D [M]M YYYY — Observed Hijri (Islamic) date format with month number. Defaults to Tabular
Hijri (dformat 19).To override tabular calculation, use the class %Calendar.Hijri to add observations
of new moon crescents.

21

Where:

MeaningSyntax

YYYY is a four-digit year. [YY]YY is a two-digit year if the date falls within the active window
for two-digit years; otherwise it is a four-digit years.You must supply the year value when
using date formats (dformat) 1 through 4; these date formats do not supply a missing year
value. Date formats 5 through 9 assume the current year if the date you specify does not
include a year.

YYYY

Two-digit month.MM

One-digit day if the day number <10. Otherwise, two digits.D

Two-digit day.DD

Month abbreviation extracted from the MonthAbbr property of the current locale. The default
values in English are: “Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec”. Or an alternate
month abbreviation (or name of any length) extracted from an optional list specified as the
monthlist parameter to $ZDATEH.

Mmm

Full name of the month as specified by the MonthName property of the current locale. The
default values in English are: “January February March ... November December”.

Mmmmm

dformat Default

If you omit dformat or set it to -1, the dformat default depends on the localeopt parameter and the NLS DateFormat property:

• If localeopt=1 the dformat default is ODBC format. The monthlist, yearopt, mindate and maxdate parameter defaults
are also set to ODBC format. This is the same as setting dformat=3.

• If localeopt=0 or is unspecified, the dformat default is taken from the NLS DateFormat property. If DateFormat=3, the
dformat default is ODBC format. However, DateFormat=3 does not affect the monthlist, yearopt, mindate and maxdate
parameter defaults, which are as specified in the current NLS locale definition.

To determine the default date properties for your locale, invoke the GetFormatItem() NLS class method:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("DateFormat"),!
 WRITE ##class(%SYS.NLS.Format).GetFormatItem("DateSeparator")

$ZDATEH will use the value of the DateSeparator property of the current locale (either / or .) as the delimiter between
months, days, and the year when dformat=1 or 4.

European date format (dformat=4, DD/MM/YYYY order) is the default for many (but not all) European languages,
including British English, French, German, Italian, Spanish, and Portuguese (which use a “/” DateSeparator character), as
well as Czech (csyw), Russian (rusw), Slovak (skyw), Slovenian (svnw), and Ukrainian (ukrw) (which use a “.” DateSeparator

character). For further details on default date formats for supported locales, refer to Dates in Using ObjectScript.

dformat Settings

If dformat is 3 (ODBC format date), ODBC format defaults are also used for the monthlist, yearopt, mindate and maxdate
parameter defaults. The date separator will always be a “-”. Current locale defaults are ignored.

If dformat is 16 or 17 (Japanese date formats), the date format is independent of the locale setting. You can use Japanese-
format dates on any InterSystems IRIS instance.

512 ObjectScript Reference

ObjectScript Functions

If dformat is 18, 19, 20, or 21 (Islamic date formats) and localeopt is unspecified, parameters default to Islamic defaults,
rather than current locale defaults. The monthlist parameter defaults to Arabic month names transliterated with Latin char-
acters. The yearopt, mindate and maxdate parameters default to ODBC defaults. The date separator defaults to the Islamic
default (a space), not the ODBC default or the current locale DateSeparator property value. If localeopt=0 current locale
property defaults are used for these parameters. If localeopt=1 ODBC defaults are used for these parameters.

monthlist

An expression that resolves to a string of month names or month name abbreviations, separated by a delimiter character.
The names in monthlist replace the default month abbreviation values from the MonthAbbr property or the month name
values from the MonthName property of the current locale.

monthlist is valid only if dformat is 2, 5, 6, 7, 8, 9, 15, 18, or 20. If dformat is any other value $ZDATEH ignores monthlist.

The monthlist string has the following format:

• The first character of the string is a delimiter character (usually a space). The same delimiter must appear before the
first month name and between each month name in monthlist. You can specify any single-character delimiter; this
delimiter must be specified between the month, day, and year portions of the specified date value, which is why a space
is usually the preferred character.

• The month names string should contain twelve delimited values, corresponding to January through December. It is
possible to specify more or less than twelve month names, but if there is no month name corresponding to the month
in date an <ILLEGAL VALUE> error is generated.

If you omit monthlist or specify a monthlist value of -1, $ZDATEH uses the list of month names defined in the MonthAbbr

or MonthName property of the current locale, unless one of the following is true: If localeopt=1, the monthlist default is
the ODBC month list (in English). If localeopt is unspecified and dformat is 18 or 20 (Islamic date formats) the monthlist
default is the Islamic month list (Arabic names expressed using Latin letters), ignoring the MonthAbbr or MonthName

property value.

To determine the default month names and month abbreviations for your locale, invoke the GetFormatItem() NLS class
method:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("MonthName"),!
 WRITE ##class(%SYS.NLS.Format).GetFormatItem("MonthAbbr"),!

yearopt

A numeric code that specifies whether to represent years as either two-digit values or four-digit values. Valid values are:

MeaningValue

Get effective yearopt value from YearOption property of current locale which defaults to a value
of 0. This is the default behavior if you do not specify yearopt .

-1

Represent 20th century dates (1900 through 1999) with two-digit years, unless a process-specific
sliding window (established via the %DATE utility) is in effect. If such a window is in effect,
represent only those dates falling within the sliding window by two-digit years. Represent all
dates falling outside the 20th century or outside the process-specific sliding window by four-digit
years.

0

Represent 20th century dates with two-digit years and all other dates with four-digit years,
regardless of any sliding temporal window in effect.

1

Represent all dates with two-digit years, regardless of any sliding temporal window in effect. All
dates are assumed to be in the 20th century. Because this option deletes two digits from four-digit
years, its use results in a nonreversible loss of century information. (This loss may be trivial if
all dates are in the same century).

2

ObjectScript Reference 513

$ZDATEH

MeaningValue

Represent with two-digit years those dates falling within the sliding temporal window defined by
startwin and (optionally) endwin. Represent all other dates with four-digit years.When yearopt=3,
startwin and endwin are absolute dates in $HOROLOG format.

3

Represent all dates with four-digit years. Dates input with two- digit years are rejected as invalid.4

Represent with two-digit years all dates falling within the sliding temporal window defined by
startwin and (optionally) endwin. Represent all other dates with four-digit years.When yearopt=5,
startwin and endwin are relative years.

5

Represent all dates in the current century with two-digit years and all other dates with four-digit
years.

6

If you omit yearopt or specify a yearopt value of -1, $ZDATEH uses the YearOption property of the current locale, unless
one of the following is true: If localeopt=1, the yearopt default is the ODBC year option. If localeopt=0 or is unspecified
and dformat is 18, 19, 20, or 21 (Islamic date formats) the yearopt default is the ODBC year option (4-digit years); the
YearOption property value is ignored for Islamic dates.

startwin

A numeric value that specifies the start of the sliding window during which dates must be represented with two-digit years.
You must supply startwin when you use a yearopt of 3 or 5.startwin is not valid with any other yearopt values.

When yearopt=3, startwin is an absolute date in $HOROLOG date format that indicates the start date of the sliding window.

When yearopt= 5, startwin is a numeric value that indicates the start year of the sliding window expressed in the number
of years before the current year. The sliding window always begins on the first day of the year (January 1) specified in
startwin.

endwin

A numeric value that specifies the end of the sliding window during which dates are represented with two-digit years. You
may optionally supply endwin when yearopt is 3 or 5. endwin is not valid with any other yearopt values.

When yearopt=3, endwin is an absolute date in $HOROLOG date format that indicates the end date of the sliding window.

When yearopt=5, endwin is a numeric value that indicates the end year of the sliding window expressed as the number of
years past the current year. The sliding window always ends on the last day of the year (December 31) of the year specified
in endwin or of the implied end year (if you omit endwin).

If endwin is omitted (or specified as -1) the effective sliding window will be 100 years long. The endwin value of -1 is a
special case that always returns a date value, even when higher and lower endwin values return erropt. For this reason, it
is preferable to omit endwin when specifying a 100-year window, and to avoid the use of negative endwin values.

If you supply both startwin and endwin, the sliding window they specify must not have a duration of more than 100 years.

mindate

An expression that specifies the lower limit of the range of valid dates (inclusive). Can be specified as a $HOROLOG
integer date count (for example, 1/1/2013 is represented as 62823) or a $HOROLOG string value. You can include or
omit the time portion of the $HOROLOG date (for example “62823,43200”), but only the date portion of mindate is parsed.
Specifying a date value earlier than mindate generates a <VALUE OUT OF RANGE> error.

The following are supported mindate values:

• Positive integer: Most commonly mindate is specified as a positive integer to establish the earliest allowed date as
some date after December 31, 1840. For example, a mindate of 21550 would establish the earliest allowed date as
January 1, 1900. The highest valid value is 2980013 (December 31, 9999).

514 ObjectScript Reference

ObjectScript Functions

• 0: specifies the minimum date as December 31, 1840. This is the DateMinimum property default.

• Negative integer -2 or larger: specifies a minimum date counting backwards from December 31, 1840. For example,
a mindate of -14974 would establish the earliest allowed date as January 1, 1800. Negative mindate values are only
meaningful if the DateMinimum property of the current locale has been set to an equal or greater negative number. The
lowest valid value is -672045.

• If omitted (or specified as -1), mindate defaults to the DateMinimum property value for the current locale, unless one
of the following is true: If localeopt=1, the mindate default is 0. If localeopt is unspecified and dformat=3, the mindate
default is 0. If localeopt is unspecified and dformat is 18, 19, 20, or 21 (Islamic date formats) the mindate default is
0.

You can get and set the DateMinimum property as follows:

 SET min=##class(%SYS.NLS.Format).GetFormatItem("DateMinimum")
 WRITE "initial DateMinimum value is ",min,!
Permit18thCenturyDates
 SET x=##class(%SYS.NLS.Format).SetFormatItem("DateMinimum",-51498)
 SET newmin=##class(%SYS.NLS.Format).GetFormatItem("DateMinimum")
 WRITE "set DateMinimum value is ",newmin,!!
RestrictTo19thCenturyDates
 WRITE $ZDATEH("05/29/1805",1,,,,,-14974),!!
ResetDateMinimumToDefault
 SET oldmin=##class(%SYS.NLS.Format).SetFormatItem("DateMinimum",min)
 WRITE "reset DateMinimum value from ",oldmin," to ",min

You may specify mindate with or without maxdate. Specifying a mindate larger than maxdate generates an <ILLEGAL
VALUE> error.

maxdate

An expression that specifies the upper limit of the range of valid dates (inclusive). Can be specified as a $HOROLOG
integer date count (for example, 1/1/2100 is represented as 94599) or a $HOROLOG string value. You can include or
omit the time portion of the $HOROLOG date (for example “94599,43200”), but only the date portion of maxdate is
parsed.

If maxdate is omitted or if specified as -1, the maximum date limit is obtained from the DateMaximum property of the current
locale, which defaults to the maximum permissible value for the date portion of $HOROLOG: 2980013 (corresponding
to December 31, 9999 CE). However, the application of the DateMaximum property is governed by the localeopt setting.
When localeopt=1 (which is the default for dformat=3) the date maximum default is the ODBC value (2980013), regardless
of the current locale setting. Islamic date formats also take the ODBC default. The maximum date for Thai date format
(dformat=13) is 31/12/9999 BE, which corresponds to $HOROLOG 2781687.

Specifying a date larger than maxdate generates a <VALUE OUT OF RANGE> error.

Specifying a maxdate larger than 2980013 generates an <ILLEGAL VALUE> error.

You may specify maxdate with or without mindate. Specifying a maxdate smaller than mindate generates an <ILLEGAL
VALUE> error.

erropt

Specifying a value for this parameter suppresses errors associated with invalid or out of range date values. Instead of gen-
erating <ILLEGAL VALUE> or <VALUE OUT OF RANGE> errors, the $ZDATEH function returns the erropt value.

InterSystems IRIS performs standard numeric evaluation on date, which must evaluate to an integer within the
mindate/maxdate range. Thus, 7, "7", +7, 0007, 7.0, "7 dwarves", and --7 all evaluate to the same date value: 01/07/1841.
By default, values greater than 2980013 or less than 0 generate a <VALUE OUT OF RANGE> error. Fractional values
generate an <ILLEGAL VALUE> error. Non-numeric strings (including the null string) evaluate to 0, and thus return the
$HOROLOG initial date: 12/31/1840.

The erropt parameter only suppresses errors generated due to invalid or out of range values of date. Errors generated due
to invalid or out of range values of other parameters will always generate errors whether or not erropt has been supplied.

ObjectScript Reference 515

$ZDATEH

For example, an <ILLEGAL VALUE> error is always generated when $ZDATEH specifies a sliding window where
endwin is earlier than startwin. Similarly, an <ILLEGAL VALUE> error is generated when maxdate is less than mindate.

localeopt

This Boolean parameter specifies either the user’s current locale definition or the ODBC locale definition as the source for
defaults for the locale-specified parameters dformat, monthlist, yearopt, mindate and maxdate:

• If localeopt=0, all of these parameters take the current locale definition defaults.

• If localeopt=1, all of these parameters take the ODBC defaults.

• If localeopt is not specified, the dformat parameter determine the default for these parameters. If dformat=3, the ODBC
defaults are used. If dformat is 18, 19, 20, or 21 the Islamic date format defaults are used, regardless of the current
locale definition. For all other dformat values, the current locale definition defaults are used. Refer to the dformat
description for further details.

The ODBC locale cannot be changed; it is used to format date strings that are portable between InterSystems IRIS processes
that have made different National Language Support (NLS) choices. If localeopt=1, the ODBC locale date definitions are
as follows:

• Date format defaults to 3. Therefore, if dformat is undefined or -1, date format 3 is used.

• Date separator defaults to "/". However, date format defaults to 3, which always uses "-" as the date separator.

• Year option defaults to 4 digits.

• Date minimum and maximum: 0 and 2980013 ($HOROLOG date count).

• English month names, month abbreviations, weekday names, and weekday abbreviations are used.

Examples
The following example returns the $HOROLOG date for June 12, 1983:

 WRITE $ZDATEH("06/12/83")

returns 52027.

The following example returns the $HOROLOG date for June 12, 1902 (which may not have been your intent):

 WRITE $ZDATEH("06/12/02")

returns 22442.

Note: Two-digit years, by default, are considered 20th Century dates; for 21st Century dates, specify a four-digit year,
or change the two-digit sliding window by specifying the yearopt, startwin and endwin parameters. This sliding
window can also be set for your locale.

The following example shows how the dformat parameter is used to permit multiple date entry formats:

 WRITE !,$ZDATEH("November 2, 1954",5)
 WRITE !,$ZDATEH("Nov 2, 1954",5)
 WRITE !,$ZDATEH("Nov. 2 1954",5)
 WRITE !,$ZDATEH("11/2/1954",5)
 WRITE !,$ZDATEH("11.02.54",5)
 WRITE !,$ZDATEH("11 02 1954",5)

all return 41578.

In the following examples, suppose the current date is January 16, 2007:

 WRITE $HOROLOG

516 ObjectScript Reference

ObjectScript Functions

returns 60646,37854, the first integer of which is the current date (the second integer is the current time, in elapsed seconds).

The next example uses the “T” date to return today’s date (here, January 16, 2007):

 WRITE $ZDATEH("T",5)

returns 60646.

The next examples returns the current date with an offset of plus 2 days and minus 2 days:

 WRITE !,$ZDATEH("T+2",5)
 WRITE !,$ZDATEH("T-2",5)

returns 60648 and 60644.

The final example illustrates that when no year is specified, $ZDATEH assumes the current year (in this case, 2007):

 WRITE $ZDATEH("25 Nov",5)

returns 60959.

Notes

Invalid Values with $ZDATEH

You receive a <FUNCTION> error in the following conditions:

• If you specify an invalid dformat code (an integer other than -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 15, a zero, or a noninteger
value)

• If you specify an invalid yearopt code (an integer less than -1 or greater than 6, a value of zero, or a noninteger value)

• If you do not specify a startwin value when yearopt is 3 or 5

You receive a <ILLEGAL VALUE> error under the following conditions:

• If you specify an invalid value for any date unit (day, month, or year). If specified, the erropt value is returned rather
than issuing an <ILLEGAL VALUE>.

• If you specify excess leading zeros for any date unit (day, month, or year) in an ODBC date. For example, you can
represent the February 3, 2007 as “2007–2–3” or “2007–02–03”, but will receive an <ILLEGAL VALUE> for
“2007–002–03”. If specified, the erropt value is returned rather than issuing an <ILLEGAL VALUE>.

• If the given month number is greater than the number of month values in monthlist.

• If maxdate is less than mindate.

• If endwin is less than startwin.

• If startwin and endwin specify a sliding temporal window whose duration is greater than 100 years.

You receive a <VALUE OUT OF RANGE> error under the following conditions:

• If you specify a date (or an offset to “T”) which is earlier than Dec. 31, 1840 or later than Dec. 31, 9999, and do not
supply an erropt value

• If you specify an otherwise valid date (or an offset to “T”) which is outside the range of mindate and maxdate and do
not supply an erropt value.

ObjectScript Reference 517

$ZDATEH

Acceptable Date Formats with dformat 5 through 9 and 15

The $ZDATEH dformat date formats 5 through 9 accept any American format date value that is unambiguous. $ZDATEH
dformat date format 15 accepts any European format date value that is unambiguous. These date formats assume the current
year if the date you specify does not include a year.

The following formats are supported:

European Formats: dformat 15American Formats: dformat 5, 6, 7, 8, or 9

DD/MM

DD-MM

DD MM

DD/MM/YY

DD-MM-YY

DD MM YY

DD/MM/YYYY

DD-MM-YYYY

DD MM YYYY

YYYYMMDD

YYMMDD

YYYY-MM-DD

YYYY MM DD

Mmm D

Mmm D, YY

Mmm D, YYYY

Mmm D YY

Mmm D YYYY

Mmm DD

Mmm DD YY

Mmm DD YYYY

DD Mmm

DD Mmm YY

DD Mmm YYYY

DD-Mmm

DD-Mmm-YY

DD-Mmm-YYYY

YYYY Mmm DD

MM/DD

MM-DD

MM DD

MM/DD/YY

MM-DD-YY

MM DD YY

MM/DD/YYYY

MM-DD-YYYY

MM DD YYYY

YYYYMMDD

YYMMDD

YYYY-MM-DD

YYYY MM DD

Mmm D

Mmm D, YY

Mmm D, YYYY

Mmm D YY

Mmm D YYYY

Mmm DD

Mmm DD YY

Mmm DD YYYY

DD Mmm

DD Mmm YY

DD Mmm YYYY

DD-Mmm

DD-Mmm-YY

DD-Mmm-YYYY

YYYY Mmm DD

MMDD is not an implemented format.

518 ObjectScript Reference

ObjectScript Functions

Using $ZDATEH Instead of Utilities

Keep the following points in mind when you need to choose between the $ZDATEH function and a date utility:

• You can use the $ZDATEH function in place of the existing entry points of the %DATE and %DI utility.

• $ZDATEH and $ZDATE are much faster than calling entry points of %DATE, %DI or %DO.

See Also
• JOB command

• $ZDATE function

• $ZDATETIME function

• $ZDATETIMEH function

• $ZTIME function

• $HOROLOG special variable

• $ZTIMESTAMP special variable

• %DATE utility, which is documented in the legacy documentation available at http://docs.intersystems.com/priordo-
cexcerpts

• More information on locales in the section on “System Classes for National Language Support” in Specialized System
Tools and Utilities.

ObjectScript Reference 519

$ZDATEH

http://docs.intersystems.com/priordocexcerpts
http://docs.intersystems.com/priordocexcerpts

$ZDATETIME
Validates a date and time and converts it from internal format to the specified display format.

$ZDATETIME(hdatetime,dformat,tformat,precision,monthlist,yearopt,startwin,endwin,mindate,maxdate,erropt,localeopt)
$ZDT(hdatetime,dformat,tformat,precision,monthlist,yearopt,startwin,endwin,mindate,maxdate,erropt,localeopt)

Parameters

The date and time value, specified in internal date and time format. See hdatetime
below.

hdatetime

Optional — An integer code specifying the format for the returned date value. See
dformat below.

dformat

Optional — An integer code specifying the format for the returned time value. See
tformat below.

tformat

Optional — An integer specifying the number of decimal places of precision (fractional
seconds) for the returned time value. See precision below.

precision

Optional — A string or the name of a variable that specifies a set of month names.
This string must begin with a delimiter character, and its 12 entries must be separated
by this delimiter character. See monthlist below.

monthlist

Optional — An integer code that specifies whether to represent years as two- or
four-digit values. See yearopt below.

yearopt

Optional — The start of the sliding window during which dates are represented with
two-digit years. See startwin below.

startwin

Optional — The end of the sliding window during which dates are represented with
two-digit years. See endwin below.

endwin

Optional — The lower limit of the range of valid dates. Specified as a $HOROLOG
integer date count, with 0 representing December 31, 1840. Can be specified as a
positive or negative integer. See mindate below.

mindate

Optional — The upper limit of the range of valid dates, specified as an integer
$HOROLOG date count. See maxdate below.

maxdate

Optional — An expression to return when hdatetime is invalid. Specifying a value for
this parameter suppresses error codes associated with invalid or out of range hdatetime
values. Instead of issuing an error message, $ZDATETIME returns erropt. See erropt
below.

erropt

Optional — A boolean flag that specifies which locale to use for the dformat, tformat,
monthlist, yearopt, mindate and maxdate default values, and other date and time
characteristics:

localeopt=0: the current locale property settings determine these parameter defaults.

localeopt=1: the ODBC standard locale determines these parameter defaults.

localeopt not specified: the dformat value determines these parameter defaults. If
dformat=3, ODBC defaults are used; otherwise current locale property settings are
used. See localeopt below.

localeopt

520 ObjectScript Reference

ObjectScript Functions

Omitted parameters between specified parameter values are indicated by placeholder commas. Trailing placeholder commas
are not required, but are permitted. Blank spaces are permitted between the commas that indicate an omitted parameter.

Description
$ZDATETIME validates a specified date and time and converts them from $HOROLOG or $ZTIMESTAMP internal
format to one of several alternative date and time display formats. The exact value returned depends on the parameters you
specify.

• $ZDATETIME(hdatetime) returns the date and time in the default display format for the current locale.

• $ZDATETIME(hdatetime,dformat,tformat,precision,monthlist,yearopt,startwin,endwin,mindate,maxdate) returns the
date and time in the display format specified by dformat and tformat, further defined by the other parameters you
specify. The range of valid dates may be restricted by the mindate and maxdate parameters.

Parameters

hdatetime

The date and time, specified as an internal format value. InterSystems IRIS internal format represents dates as a count of
days from an arbitrary starting point (Dec. 31, 1840), and represents times as a count of seconds in the current day. The
hdatetime value must be a string in one of the following formats:

• $HOROLOG: two unsigned integers separated by comma. The first is an integer specifying the date (in days), the
second is an integer specifying the time (in seconds).

• $ZTIMESTAMP: two unsigned numbers separated by comma: the first is an integer specifying the date (in days), the
second is a number specifying the time (in seconds and fractions of a second). The time value can have up to nine
digits of precision (fractional seconds) to the right of the decimal point.

You can specify hdatetime as a string value, a variable, or an expression.

If hdatetime specifies only the date portion value and no comma, only the date is returned. If hdatetime specifies the date
portion value followed by a comma, but no time value, the system supplies a time value of 00:00:00.

By default, the earliest valid hdatetime date is 0 (December 31, 1840). Dates are limited to positive integers by default
because the DateMinimum property defaults to 0. You can specify earlier dates as negative integers, provided the DateMinimum

property of the current locale is set to a greater or equal negative integer. The lowest valid DateMinimum value is -672045,
which corresponds to January 1, 0001. InterSystems IRIS uses the proleptic Gregorian calendar, which projects the Gregorian
calendar back to “Year 1”, in conformance with the ISO 8601 standard. This is, in part, because the Gregorian calendar
was adopted at different times in different countries. For example, much of continental Europe adopted it in 1582; Great
Britain and the United States adopted it in 1752. Thus InterSystems IRIS dates prior to your local adoption of the Gregorian
calendar may not correspond to historical dates that were recorded based on the local calendar then in effect. For further
details on dates prior to 1840, refer to the mindate parameter.

Invalid and out-of-range hdatetime values and resulting errors are described in the erropt parameter.

dformat

Format for the returned date. Valid values are:

MeaningValue

MM/DD/[YY]YY (07/01/97 or 02/22/2018) — American numeric format. The dateseparator
character (/ or .) is taken from the current locale setting.

1

DD Mmm [YY]YY (01 Jul 97)2

ObjectScript Reference 521

$ZDATETIME

MeaningValue

YYYY-MM-DD (2018-02-22) — ODBC format. By default this format is independent of your
current locale settings, thus specifying dates and times in an ODBC standard interchange format.
(The ODBC time format default is described in the tformat section, below.) To use your current
date and time locale settings with this format, set localeopt to 0.

3

DD/MM/[YY]YY (01/07/97 or 22/02/2018) — European numeric format. The dateseparator
character (/ or .) is taken from the current locale setting.

4

Mmm [D]D, YYYY (Jul 1, 1997)5

Mmm [D]D YYYY (Jul 1 1997)6

Mmm DD [YY]YY (Jul 01 1997)7

YYYYMMDD (19970701) — Numeric format8

Mmmmm [D]D, YYYY (July 1, 1997)9

W (2) — Day number for the week, numbered from 0 (Sunday) through 6 (Saturday). Compare
with the $SYSTEM.SQL.DAYOFWEEK() method.

10

Www (Tue) — Abbreviated day name11

Wwwwww (Tuesday) — Full day name12

[D]D/[M]M/YYYY (1/7/2549 or 27/11/2549) — Thai date format. Day and month are identical to
European usage, except no leading zeros. The year is the Buddhist Era (BE) year, calculated
by adding 543 years to the Gregorian year.

13

nnn (354) — Day number for the year14

DD/MM/[YY]YY (01/07/97 or 22/02/2018) — European format (same as dformat=4). The
dateseparator character (/ or .) is taken from the current locale setting.

15

YYYYc[M]Mc[D]Dc — Japanese date format.Year, month, and day numbers are the same as
other date formats; leading zeros are omitted. The Japanese characters for “year”, “month”, and
“day” (shown here as c) are inserted after the year, month, and day numbers. These characters
are Year=$CHAR(24180), Month=$CHAR(26376), and Day=$CHAR(26085).

16

YYYYc [M]Mc [D]Dc — Japanese date format. Same as dformat 16, except that a blank space
is inserted after the “year” and “month” Japanese characters.

17

[D]D Mmmmm YYYY — Tabular Hijri (Islamic) date format with full month name. Day leading
zeros are omitted; year leading zeros are included. InterSystems IRIS date -445031 (07/19/0622
C.E.) = 1 Muharram 0001 AH.

18

[D]D [M]M YYYY — Tabular Hijri (Islamic) date format with month number. Day and month leading
zeros are omitted; year leading zeros are included. InterSystems IRIS date -445031 (07/19/0622
C.E.) = 1 1 0001 AH.

19

[D]D Mmmmm YYYY — Observed Hijri (Islamic) date format with full month name. Defaults to
Tabular Hijri (dformat 18). To override tabular calculation, use the class %Calendar.Hijri to add
observations of new moon crescents.

20

[D]D [M]M YYYY — Observed Hijri (Islamic) date format with month number. Defaults to Tabular
Hijri (dformat 19).To override tabular calculation, use the class %Calendar.Hijri to add observations
of new moon crescents.

21

522 ObjectScript Reference

ObjectScript Functions

MeaningValue

Get effective dformat value from the user’s locale, fmt.DateFormat, where fmt is an instance of
##class(%SYS.NLS.Format) associated with the current process. This is the default behavior if
you do not specify dformat. See “Customizable Date and Time Defaults ” for further details.

-1

$ZDATETIME returns an integer specifying the count of seconds from a platform-specific origin
date/time. This is the value returned by the time() library function, as defined in the ISO C Pro-
gramming Language Standard. For example, on POSIX-compliant systems this value is the
count of seconds from January 1, 1970 00:00:00 UTC. Fractional seconds in the input value are
permitted, but ignored.

(Currently, this date conversion potentially has the “local time variant boundary day” time conver-
sion anomaly described for tformat values 5, 6, 7, and 8.)

To convert this integer count of seconds to a PosixTime value, you can use the
UnixTimeToLogical() method, as shown below.

The following platform-specific formats are supported: 32-bit Linux: signed 32-bit integer; 64-bit
Linux: signed 64-bit integer; Windows: unsigned 64-bit integer.

The tformat, precision, monthlist, yearopt, startwin, and endwin parameters are ignored.

-2

$ZDATETIME takes a datetime value specified in $HOROLOG internal format, converts that
value from local time to UTC Universal time, and returns the resulting value in the same internal
format. The tformat, monthlist, yearopt, startwin, and endwin parameters are ignored.
$ZDATETIMEH performs the inverse operation. (Currently, this date conversion has the time
conversion anomalies described for tformat values 5, 6, 7, and 8. These potentially affect dates
prior to 1970, dates after 2038, and local time variant boundary days, such as the beginning date
or end date for Daylight Saving Time.)

-3

Where:

MeaningSyntax

YYYY is a four-digit year. [YY]YY is a two-digit year if hdatetime falls within the active window
for two-digit years; otherwise it is a four-digit year.

YYYY

Two-digit month: 01 through 12. [M]M indicates that the leading zero is omitted for months 1
through 9.

MM

Two-digit day: 01 through 31. [D]D indicates that the leading zero is omitted for days 1 through
9.

DD

Month abbreviation extracted from the MonthAbbr property of the current locale. An alternate
month abbreviation (or name of any length) can be extracted from an optional list specified
as the monthlist parameter to $ZDATETIME. The MonthAbbr default values are: “Jan Feb Mar
Apr May Jun Jul Aug Sep Oct Nov Dec”

Mmm

Full name of the month as specified by the MonthName property of the current locale. The
default values are: “January February March ... November December”

Mmmmm

Number 0-6 indicating the day of the week: Sunday=0, Monday=1, Tuesday=2, etc.W

Weekday name abbreviation as specified by the WeekdayAbbr property of the current locale.
The default values are: “Sun Mon Tue Wed Thu Fri Sat”

Www

Weekday full name as specified by the WeekdayName property of the current locale.The default
values are: “Sunday Monday Tuesday Wednesday Thursday Friday Saturday”

Wwwwww

ObjectScript Reference 523

$ZDATETIME

MeaningSyntax

Day number for the specified year, always three digits, with leading zeros if necessary.Values
are 001 through 365 (or 366 on leap years).

nnn

dformat Default

If you omit dformat or set it to -1, the dformat default depends on the localeopt parameter and the NLS DateFormat property:

• If localeopt=1 the dformat default is ODBC format. The tformat, monthlist, yearopt, mindate and maxdate parameters
are also set to ODBC format. This is the same as setting dformat=3.

• If localeopt=0 or is unspecified, the dformat default is taken from NLS DateFormat property. If DateFormat=3, the
dformat default is ODBC format. However, DateFormat=3 does not affect the tformat, monthlist, yearopt, mindate
and maxdate parameter defaults, which are as specified in the current NLS locale definition.

To determine the default date format for your locale, invoke the GetFormatItem() NLS class method:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("DateFormat")

European date format (dformat=4, DD/MM/YYYY order) is the default for many (but not all) European languages,
including British English, French, German, Italian, Spanish, and Portuguese (which use a “/” DateSeparator character), as
well as Czech (csyw), Russian (rusw), Slovak (skyw), Slovenian (svnw), and Ukrainian (ukrw) (which use a “.” DateSeparator

character). For further details on default date formats for supported locales, refer to Dates in Using ObjectScript.

dformat Settings

If dformat is 3 (ODBC date format), ODBC format defaults are also used for the monthlist, yearopt, mindate and maxdate
parameter defaults. Current locale defaults are ignored.

If dformat is -1, 1, 4, 13, or 15 (numeric date formats), $ZDATETIME uses the value of the DateSeparator property of
the current locale as the delimiter between months, days, and the year. When dformat is 3 the ODBC date separator (“-”)
is used. For all other dformat values, a space is used as the date separator. The default value of DateSeparator in English
is “/” and all documentation uses this delimiter.

If dformat is 11 or 12 (day names) and localeopt=0 or is unspecified the day name values come from the current locale
properties. If localeopt=1, day names come from the ODBC locale. To determine the default weekday names and weekday
abbreviations for your locale, invoke the following NLS class methods:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("WeekdayName"),!
 WRITE ##class(%SYS.NLS.Format).GetFormatItem("WeekdayAbbr"),!

If dformat is -2 (Unix® time: UTC elapsed seconds since 1970-01-01 00:00:00), you can convert this value to an encoded
PosixTime value using the UnixTimeToLogical() method. The following example uses dformat -2 to convert local time
to elapsed seconds in UTC (Greenwich) time. It then converts this count of seconds to an encoded %PosixTime value using
UnixTimeToLogical(). It converts this PosixTime value back to a ODBC-format datetime in UTC time using
LogicalToOdbc(). It also converts PosixTime back to elapsed seconds using LogicalToUnixTime(), then uses $ZDATE-
TIMEH with dformat -2 to convert this UTC elapsed seconds count to local datetime:

 WRITE "local datetime: ",$ZDATETIME($HOROLOG,3),!
 SET secs=$ZDATETIME($HOROLOG,-2)
 WRITE "UTC seconds since 1970: ",secs,!
 SET posix=##class(%PosixTime).UnixTimeToLogical(secs)
 WRITE "PosixTime encoded value: ",posix,!
 SET datetime=##class(%PosixTime).LogicalToOdbc(posix)
 WRITE "UTC datetime: ",datetime,!
 SET secs2=##class(%PosixTime).LogicalToUnixTime(posix)
 WRITE "UTC seconds since 1970: ",secs2,!
 SET htime=$ZDATETIMEH(secs2,-2)
 WRITE "local datetime: ",$ZDATETIME(htime,3)

Note that Unix® time is a count of whole seconds, whereas Posix time counts fractional seconds with six decimal digits
of precision.

524 ObjectScript Reference

ObjectScript Functions

If dformat is 16 or 17 (Japanese date formats), the returned date format is independent of the locale setting. Japanese-format
dates can be returned from any InterSystems IRIS instance.

If dformat is 18, 19, 20, or 21 (Islamic date formats) and localeopt is unspecified, parameters default to Islamic defaults,
rather than current locale defaults. The monthlist parameter defaults to Arabic month names transliterated with Latin char-
acters. The tformat, yearopt, mindate and maxdate parameters default to ODBC defaults. The date separator defaults to the
Islamic default (a space), not the ODBC default or the current locale DateSeparator property value. If localeopt=0 current
locale property defaults are used for these parameters. If localeopt=1 ODBC defaults are used for these parameters.

tformat

A numeric value that specifies the format in which you want to express the time value. Supported values are:

MeaningValue

Get the effective tformat value from the TimeFormat property of the current locale, which defaults
to a value of 1. This is the default behavior if you do not specify tformat for all dformat values
except 3.

-1

Express time in the form "hh:mm:ss" (24-hour clock).1

Express time in the form “hh:mm” (24-hour clock)2

Express time in the form “hh:mm:ss[AM/PM]” (12-hour clock)3

Express time in the form “hh:mm[AM/PM]” (12-hour clock)4

Express time in the form "hh:mm:ss+/-hh:mm" (24-hour clock). The time is expressed as local
time. The plus (+) or minus (–) suffix shows the system-defined offset of local time from
Coordinated Universal Time (UTC). A minus sign (-hh:mm) indicates that the local time is earlier
(westward) of the Greenwich meridian by the returned offset number of hours and minutes. A
plus sign (+hh:mm) indicates that the local time is later (eastward) of the Greenwich meridian
by the returned offset number of hours and minutes. Further details are described below.

5

Express time in the form “hh:mm+/-hh:mm” (24-hour clock).The time is expressed as local time.
The plus (+) or minus (–) suffix shows the system-defined offset of local time from Coordinated
Universal Time (UTC). A minus sign (-hh:mm) indicates that the local time is earlier (westward)
of the Greenwich meridian by the returned offset number of hours and minutes. A plus sign
(+hh:mm) indicates that the local time is later (eastward) of the Greenwich meridian by the
returned offset number of hours and minutes. Further details are described below.

6

Express time in the form "hh:mm:ssZ" (24-hour clock). The “Z” suffix indicates that the time is
expressed as Coordinated Universal Time (UTC), rather than as local time.

7

Express time in the form “hh:mmZ” (24-hour clock). The “Z” suffix indicates that the time is
expressed as Coordinated Universal Time (UTC), rather than as local time.

8

If you omit tformat or set it to -1, the tformat default depends on the localeopt parameter and the NLS TimeFormat property:

For all dformat values except 3, 18, 19, 20, and 21 all time formats default to the current locale definition TimeSeparator

and DecimalSeparator property values. For dformat=3 (ODBC date format) and dformat=18, 19, 20, or 21 (Islamic date
formats) the time separator is a colon (:) and the DecimalSeparator is a period (.) regardless of the current locale property
values. These defaults can be overridden by setting localeopt.

To determine the default time properties for your locale, invoke the GetFormatItem() NLS class method:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("TimeFormat"),!
 WRITE ##class(%SYS.NLS.Format).GetFormatItem("TimeSeparator"),!
 WRITE ##class(%SYS.NLS.Format).GetFormatItem("DecimalSeparator")

ObjectScript Reference 525

$ZDATETIME

For tformat values 1 through 4 (which return local time), the date is separated from the time by a space. For tformat values
5 through 8 the date is separated from the time by the letter “T”.

12–hour Clock (tformat 3 and 4)

In 12-hour clock formats, morning and evening are represented by time suffixes, here shown as AM and PM. To determine
the default time suffixes for your locale, invoke the GetFormatItem() NLS class method, as follows:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("AM"),!
 WRITE ##class(%SYS.NLS.Format).GetFormatItem("PM"),!

For all dformat values except 3, 18, 19, 20, and 21 the AM and PM properties default to the current locale definition. For
dformat=3 (ODBC date format) and dformat=18, 19, 20, or 21 (Islamic date formats) the time suffixes are always “AM”
and “PM”, regardless of the current locale property values. The AM and PM property defaults are “AM” and “PM” for all
locales except the Japanese locale jpww.

By default, Midnight and Noon are represented as “MIDNIGHT” and “NOON” for all locales except Japanese locales
(jpnw, jpuw, jpww, zdsw, zdtw, zduw), Portuguese (ptbw), Russian (rusw), and Ukrainian (ukrw).

However, when dformat=3, $ZDATETIME always uses the ODBC standard values, regardless of the default settings for
your locale.

Local Time (tformat 5, 6, 7, and 8)

When tformat is set to 5 or 6, the hdatetime input value is assumed to be local date and time, and is displayed as local date
and time. If hdatetime is the current local date and time ($HOROLOG), changing $ZTIMEZONE will change this current
date and time for the current process.

The offset suffix specifies the local time variant setting as a positive or negative offset in hours and minutes from the
Greenwich meridian. Note that this local time variant is not necessarily the time zone offset. For example, the Eastern
United States time zone is 5 hours west of Greenwich (-5:00), but the local time variant (Daylight Saving Time) offsets
the time zone time by one hour to -04:00. Setting $ZTIMEZONE changes the current process date and time returned
by $ZDATETIME($HOROLOG,1,5), but does not change the system local time variation setting.

Note: tformat 5 or 6 return the local time variation offset from UTC time. This is neither the local time zone offset, nor
is it a comparison of your local time with local time at Greenwich England. The term Greenwich Mean Time
(GMT) may be confusing; local time at Greenwich England is the same as UTC during the winter; during the
summer it differs from UTC by one hour. This is because a local time variant, known as British Summer Time,
is applied.

The following example shows how the tformat 5 value is affected by the operating system’s local time variation setting
and by changing the time zone for the current process. (Note that this example checks whether a local time variation
boundary occurs during program execution):

LocalDatetimeOffset
 SET dst=$SYSTEM.Util.IsDST()
 SET local=$ZDATETIME($HOROLOG,1,5)
 WRITE local," is the local date/time and offset",!!
 SET off=$PIECE(local,"+",2)
 IF off="" {SET off=$PIECE(local,"-",2)
 WRITE "-",off," is local offset",!}
 ELSE {WRITE "+",off," is local offset",!}
 SET tz=$ZTIMEZONE
 WRITE tz/60," is the local timezone offset, in hours",!!
 IF dst=1 {WRITE " DST in effect, ",off," offset is not ",tz/60," time zone offset",!}
 ELSEIF dst=0 {WRITE " DST not in effect, offset ",off,"=timezone ",tz/60,!}
 ELSE {WRITE " DST setting cannot be determined",!}
ChangeTimezoneForCurrentProcess
 SET $ZTIMEZONE=tz+180
 WRITE !,"changed the process time zone westward 3 hours",!
 WRITE $ZDATETIME($HOROLOG,1,5)," is new local date/time and offset",!
 WRITE "note that time has changed, but offset has not changed"
 SET $ZTIMEZONE=tz
ConfirmNoDSTBoundary
 SET dst2=$SYSTEM.Util.IsDST()
 GOTO:dst'=dst2 LocalDatetimeOffset

526 ObjectScript Reference

ObjectScript Functions

When tformat is set to 7 or 8, the hdatetime input value is assumed to be local date and time. The time is changed to corre-
spond to UTC time (calculated using the local timezone setting). The date returned may also be changed (if necessary) to
correspond to this UTC time value. Thus the returned date may differ from the local date.

Note: Conversions involving dformat values -2 and -3 and tformat values 7 and 8 and the UTC offsets generated by
tformat values 5 and 6 have the following platform-dependent anomalies:

• Conversions from local time to UTC time depend on local time variant boundary behavior, which may differ
on different operating system platforms:

When the local clock shifts forwards (“Spring ahead” at the start of Daylight Saving Time) the local time
loses an hour. This “lost” hour is an illegal local time value. InterSystems IRIS $HOROLOG should never
return an illegal local time value. However, if a user manually enters this illegal local time value (for example,
by setting $HOROLOG), $ZDATETIME conversion results are undefined and highly platform-dependent.

When the local clock shifts backwards (“Fall back” at the end of Daylight Saving Time) the local time hour
is repeated. Within this two-hour period, an InterSystems IRIS time conversion operation cannot determine
whether it is being applied to the first occurrence of that local time hour, or the second occurrence of the
same hour. $ZDATETIME uses whichever assumption is used by the platform-specific runtime library.
Therefore, within this temporal window, different operating system platforms may give different time con-
version results.

• Conversions between local time and UTC time must use the local time variant rules in force for the specified
year and location. Because these rules are established by local laws, may have changed in the past, and are
subject to change in the future, $ZDATETIME conversions depend upon the completeness and accuracy of
the rules as encoded by the operating system platform. Predictions for future years must necessarily use the
current rules, and these rules may change.

• Conversions between local time and UTC time depend on the date range supported by the operating system
platform:

If a date is earlier than the earliest date supported by the platform, InterSystems IRIS uses the standard time
offset for 1902–01–01 (if this date is supported by the platform). If the date 1902–01–01 is not supported by
the platform, InterSystems IRIS uses the standard time offset for 1970–01–01. Any local time variant offset
(such as Daylight Saving Time) is ignored.

If a date is later than the latest date supported by the platform, InterSystems IRIS calculates a corresponding
date within the range 2010–01–01 to 2037–12–31 and uses the standard time offset for that corresponding
date. This algorithm should provide accurate time offsets for dates up to 2100–02–28, provided there are no
future changes to the laws governing date/time observances.

Note: $ZDATETIME has no way to determine if an hdatetime input value is in UTC time or local time. Therefore, do
not use tformat values 5, 6, 7, or 8 with an hdatetime that is already in UTC, such as a $ZTIMESTAMP value.
If you use the output from a tformat 7 or 8 conversion in an operation that converts the time back to local time
be aware that the date may have been changed in the local-to-UTC conversion.

precision

An integer value that specifies the number of decimal places of fractional seconds precision used to express the time. That
is, if you enter a value of 3 as precision, $ZDATETIME displays the seconds carried out to three decimal places. If you
enter a value of 9 as precision, $ZDATETIME displays the seconds carried out to nine decimal places. This argument
specifies the number of fractional digits to return; the actual number of meaningful digits of precision is determined by the
hdatetime source. For example, $HOROLOG does not return fractional seconds; $ZTIMESTAMP and $NOW() return
fractional seconds.

Supported values are as follows:

ObjectScript Reference 527

$ZDATETIME

-1: Get the precision value from the TimePrecision property of the current locale, which defaults to a value of 0. This is the
default behavior if you do not specify precision.

A value of n that is greater than or equal to zero (0) results in the expression of time to n decimal places.

Precision is only applicable if the hdatetime format can include a fractional time value ($ZTIMESTAMP format), and if
the tformat option selected includes seconds. Trailing zeros are not suppressed. If the precision specified exceeds the pre-
cision available on your system, the excess digits of precision are returned as trailing zeros. You can use the Normalize()
method to suppress excess trailing zeros, as shown in the following example, which specifies a precision of 9:

 WRITE $ZDATETIME($ZTIMESTAMP,3,,9),!
 WRITE ##class(%TimeStamp).Normalize($ZDATETIME($ZTIMESTAMP,3,,9))

To determine the default time precision for your locale, invoke the GetFormatItem() NLS class method:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("TimePrecision")

You can set the locale’s TimePrecision to the desired number of digits, to a maximum of 15.

monthlist

An expression that resolves to a string of month names or month name abbreviations, separated by a delimiter character.
The names in monthlist replace the default month abbreviation values from the MonthAbbr property or the month name
values from the MonthName property of the current locale.

monthlist is valid only if dformat is 2, 5, 6, 7, 9, 18, or 20. If dformat is any other value $ZDATETIME ignores monthlist.

The monthlist string has the following format:

• The first character of the string is a delimiter character (usually a space). The same delimiter must appear before the
first month name and between each month name in monthlist. You can specify any single-character delimiter; this
delimiter appears between the month, day, and year portions of the returned date value, which is why a space is usually
the preferred character.

• The month names string should contain twelve delimited values, corresponding to January through December. It is
possible to specify more or less than twelve month names, but if there is no month name corresponding to the month
in hdatetime an <ILLEGAL VALUE> error is generated.

If you omit monthlist or specify a monthlist value of -1, $ZDATETIME uses the list of month names defined in the
MonthAbbr or MonthName property of the current locale, unless one of the following is true: If localeopt=1, the monthlist
default is the ODBC month list (in English). If localeopt is unspecified and dformat is 18 or 20 (Islamic date formats) the
monthlist default is the Islamic month list (Arabic names expressed using Latin letters), ignoring the MonthAbbr or MonthName

property value.

To determine the default month names and month abbreviations for your locale, invoke the GetFormatItem() NLS class
method:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("MonthName"),!
 WRITE ##class(%SYS.NLS.Format).GetFormatItem("MonthAbbr"),!

yearopt

With dformat values 0, 1, 2, 4, 7, or 15, a numeric code that specifies the temporal window in which to display the year as
a two-digit value. yearopt can be:

MeaningValue

Get effective yearopt value from YearOption property of current locale which defaults to a value
of 0. This is the default behavior if you do not specify yearopt.

-1

528 ObjectScript Reference

ObjectScript Functions

MeaningValue

Represent 20th century dates (1900 through 1999) with two-digit years, unless a process-specific
sliding window (established via the %DATE utility) is in effect. If such a window is in effect,
represent only those dates falling within the sliding window by two-digit years. Represent all dates
falling outside the 20th century or outside the process-specific sliding window by four-digit years.

0

Represent 20th century dates with two-digit years and all other dates with four-digit years.1

Represent all dates with two-digit years.2

Represent with two-digit years those dates falling within the sliding temporal window defined by
startwin and (optionally) endwin. Represent all other dates with four-digit years.When yearopt=3,
startwin and endwin are absolute dates in $HOROLOG format.

3

Represent all dates with four-digit years.4

Represent with two-digit years all dates falling within the sliding window defined by startwin and
(optionally) endwin. Represent all other dates with four-digit years. When yearopt=5, startwin
and endwin are relative years.

5

Represent all dates in the current century with two-digit years and all other dates with four-digit
years.

6

To determine the default year option for your locale, invoke the GetFormatItem() NLS class method:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("YearOption")

If you omit yearopt or specify a yearopt value of -1, $ZDATETIME uses the YearOption property of the current locale,
unless one of the following is true: If localeopt=1, the yearopt default is the ODBC year option. If localeopt=0 or is
unspecified and dformat is 18, 19, 20, or 21 (Islamic date formats) the yearopt default is the ODBC year option (4-digit
years); the YearOption property value is ignored for Islamic dates.

startwin

A numeric value that specifies the start of the sliding window during which dates must be represented with two-digit years.
You must supply startwin when you use a yearopt of 3 or 5. startwin is not valid with any other yearopt values.

When yearopt=3, startwin is an absolute date in $HOROLOG date format that indicates the start date of the sliding window.

When yearopt=5, startwin is a numeric value that indicates the start year of the sliding window expressed in the number
of years before the current year.

endwin

A numeric value that specifies the end of the sliding window during which dates are represented with two-digit years. You
may optionally supply endwin when yearopt is 3 or 5. endwin is not valid with any other yearopt values.

When yearopt=3, endwin is an absolute date in $HOROLOG date format that indicates the end date of the sliding window.

When yearopt=5, endwin is a numeric value that indicates the end year of the sliding window expressed as the number of
years past the current year.

When yearopt=5, the sliding window always begins on January 1st of the year specified in startwin and ends on December
31st of the year specified in endwin, or of the implied end year (if you omit endwin).

If endwin is omitted (or specified as -1) the effective sliding window will be 100 years long. The endwin value of -1 is a
special case that always returns a date value, even when higher and lower endwin values return erropt. For this reason, it
is preferable to omit endwin when specifying a 100-year window, and to avoid the use of negative endwin values.

If you supply both startwin and endwin , the sliding window they specify must not have a duration of more than 100 years.

ObjectScript Reference 529

$ZDATETIME

mindate

An expression that specifies the lower limit of the range of valid dates (inclusive). Can be specified as a $HOROLOG
integer date count (for example, 2/22/2018 is represented as 64701) or a $HOROLOG string value. You can include or
omit the time portion of the $HOROLOG date (for example “64701,43200”), but only the date portion of mindate is parsed.
Specifying an hdatetime value earlier than mindate generates a <VALUE OUT OF RANGE> error.

The following are supported mindate values:

• Positive integer: Most commonly mindate is specified as a positive integer to establish the earliest allowed date as
some date after December 31, 1840. For example, a mindate of 21550 would establish the earliest allowed date as
January 1, 1900. The highest valid value is 2980013 (December 31, 9999).

• 0: specifies the minimum date as December 31, 1840. This is the DateMinimum property default.

• Negative integer -2 or larger: specifies a minimum date counting backwards from December 31, 1840. For example,
a mindate of -14974 would establish the earliest allowed date as January 1, 1800. Negative mindate values are only
meaningful if the DateMinimum property of the current locale has been set to an equal or greater negative number. The
lowest valid value is -672045; a mindate earlier than -672045 generates an <ILLEGAL VALUE> error.

• If omitted (or specified as -1), mindate defaults to the DateMinimum property value for the current locale, unless one
of the following is true: If localeopt=1, the mindate default is 0. If localeopt is unspecified and dformat=3, the mindate
default is 0. If localeopt is unspecified and dformat is 18, 19, 20, or 21 (Islamic date formats) the mindate default is
0.

You can get and set the DateMinimum property as follows:

 SET min=##class(%SYS.NLS.Format).GetFormatItem("DateMinimum")
 WRITE "initial DateMinimum value is ",min,!
Permit18thCenturyDates
 SET x=##class(%SYS.NLS.Format).SetFormatItem("DateMinimum",-51498)
 SET newmin=##class(%SYS.NLS.Format).GetFormatItem("DateMinimum")
 WRITE "set DateMinimum value is ",newmin,!!
RestrictTo19thCenturyDates
 WRITE $ZDATETIME(-13000,1,,,,,,,-14974),!!
ResetDateMinimumToDefault
 SET oldmin=##class(%SYS.NLS.Format).SetFormatItem("DateMinimum",min)
 WRITE "reset DateMinimum value from ",oldmin," to ",min

You may specify mindate with or without maxdate. Specifying a mindate larger than maxdate generates an <ILLEGAL
VALUE> error.

ODBC Date Format (dformat 3)

The application of the DateMinimum property is governed by the localeopt setting. When localeopt=1 (which is the default
for dformat=3) the date minimum is 0, regardless of the current locale setting. Therefore, in ODBC format (dformat=3) the
following can be used to specify a date prior to December 31, 1840:

• Specify a mindate earlier than the specified date:

 WRITE $ZDATETIME(-30,3,,,,,,,-365)

• Specify a DateMinimum property value earlier than the specified date and set localeopt=0:

 DO ##class(%SYS.NLS.Format).SetFormatItem("DateMinimum",-365)
 WRITE $ZDATETIME(-30,3,,,,,,,,,,0)

maxdate

An expression that specifies the upper limit of the range of valid dates (inclusive). Can be specified as a $HOROLOG
integer date count (for example, 1/1/2100 is represented as 94599) or a $HOROLOG string value. You can include or
omit the time portion of the $HOROLOG date (for example “94599,43200”), but only the date portion of maxdate is
parsed.

530 ObjectScript Reference

ObjectScript Functions

If maxdate is omitted or if specified as -1, the maximum date limit is obtained from the DateMaximum property of the current
locale, which defaults to the maximum permissible value for the date portion of $HOROLOG: 2980013 (corresponding
to December 31, 9999 CE). However, the application of the DateMaximum property is governed by the localeopt setting.
When localeopt=1 (which is the default for dformat=3) the date maximum default is the ODBC value (2980013), regardless
of the current locale setting. Islamic date formats also take the ODBC default. The maximum date for Thai date format
(dformat=13) is $HOROLOG 2781687 which corresponds to 31/12/9999 BE.

Specifying a hdatetime date larger than maxdate generates a <VALUE OUT OF RANGE> error.

Specifying a maxdate larger than 2980013 generates an <ILLEGAL VALUE> error.

You may specify maxdate with or without mindate. Specifying a maxdate smaller than mindate generates an <ILLEGAL
VALUE> error.

erropt

Specifying a value for this parameter suppresses errors associated with invalid or out of range hdatetime values. Instead of
generating <ILLEGAL VALUE> or <VALUE OUT OF RANGE> errors, the $ZDATETIME function returns the erropt
value.

• Validation: InterSystems IRIS performs canonical numeric conversion on hdatetime. The date and time portions of
hdatetime are parsed separately. It parses the first comma encountered as the date/time separator. Additional commas
are treated as non-numeric characters.

Parsing of each portion of an hdatetime string halts at the first non-numeric character. Therefore, an hdatetime such
as 64687AD,1234SECS is the same as 64687,1234. A non-numeric date or time portion (including the null string)
evaluates to 0. Thus an empty string hdatetime returns the $HOROLOG initial date: December 31, 1840.

However, if the date portion value does not evaluate to an integer (contains a non-zero fractional number) it generates
an <ILLEGAL VALUE> error.

• Range: The date portion of hdatetime must evaluate to an integer within the mindate/maxdate range. By default, date
values greater than 2980013 or less than 0 generate a <VALUE OUT OF RANGE> error. By setting mindate to a
negative number, you can extend the range of valid dates before December 31, 1840. However, for dformat 18, 19,
20, or 21 (Hijri Islamic calendar) dates, any date prior to -445031 generates an <ILLEGAL VALUE> error, even if
mindate is set to an earlier date.

A time portion of hdatetime with a value greater than 86399 generates an <ILLEGAL VALUE> error. A negative
hdatetime time value generates an <ILLEGAL VALUE> error.

The erropt parameter only suppresses errors generated due to invalid or out of range values of hdatetime. Errors generated
due to invalid or out of range values of other parameters will always generate errors whether or not erropt has been supplied.
For example, an <ILLEGAL VALUE> error is always generated when $ZDATETIME specifies a sliding window where
endwin is earlier than startwin. Similarly, an <ILLEGAL VALUE> error is generated when maxdate is less than mindate.

localeopt

This Boolean parameter specifies either the user’s current locale definition or the ODBC locale definition as the source for
defaults for the locale-specified parameters dformat, tformat, monthlist, yearopt, mindate and maxdate:

• If localeopt=0, all of these parameters take the current locale definition defaults.

• If localeopt=1, all of these parameters take the ODBC defaults.

• If localeopt is not specified, the dformat parameter determine the default for these parameters. If dformat=3, the ODBC
defaults are used. If dformat is 18, 19, 20, or 21 the Islamic date and time format defaults are used, regardless of the
current locale definition. For all other dformat values, the current locale definition defaults are used. Refer to the
dformat description for further details.

ObjectScript Reference 531

$ZDATETIME

The ODBC standard locale cannot be changed; it is used to format date and time strings that are portable between InterSystems
IRIS processes that have made different National Language Support (NLS) choices. The ODBC locale date and time defi-
nitions are as follows:

• Date format defaults to 3. Therefore, if dformat is undefined or -1, date format 3 is used.

• Date separator defaults to "/". However, date format defaults to 3, which always uses "-" as the date separator.

• Year option defaults to 4 digits.

• Date minimum and maximum are 0 and 2980013 ($HOROLOG date count).

• English month names, month abbreviations, weekday names, weekday abbreviations, and the words "Noon" and
"Midnight" are used.

• Time format defaults to 1. Time separator is ":". Time precision is 0 (no fractional seconds). AM and PM indicators
are "AM" and "PM".

Examples
The following example displays the current local date and time. It takes the default date and time format for the locale:

 WRITE $ZDATETIME($HOROLOG)

The following example displays the current date and time. $ZTIMESTAMP contains the current date and time value as
Coordinated Universal Time (UTC) date and time. The dformat parameter specifies ODBC date format, the tformat
parameter specifies a 24-hour clock, and the precision parameter specifies 6 digits of fractional second precision:

 WRITE $ZDATETIME($ZTIMESTAMP,3,1,6)

This returns the current time stamp date and time, formatted like: 2018-11-25 18:45:16.960000.

The following example shows how a local time can be converted to UTC time, and how the date may also change as a
result of this conversion. In most time zones, the time conversion in one of the following $ZDATETIME operations also
changes the date:

 SET local = $ZDATETIME("60219,82824",3,1)
 SET utcwest = $ZDATETIME("60219,82824",3,7)
 SET utceast = $ZDATETIME("60219,00024",3,7)
 WRITE !,local,!,utcwest,!,utceast

Notes

Invalid Values with $ZDATETIME

You receive a <FUNCTION> error in the following conditions:

• If you specify an invalid dformat code (an integer value less than -3 or greater than 17, a zero, or a noninteger value)

• If you specify a invalid value for tformat (an integer value less than -1 or greater than 10, a zero, or a noninteger value)

• If you do not specify a startwin value when yearopt is 3 or 5

You receive a <ILLEGAL VALUE> error under the following conditions:

• If you specify an invalid value for a date or time and do not supply an erropt value

• If the given month number is greater than the number of month values in monthlist

• If maxdate is less than mindate

• If endwin is less than startwin

• If startwin and endwin specify a sliding temporal window whose duration is greater than 100 years

532 ObjectScript Reference

ObjectScript Functions

You receive a <VALUE OUT OF RANGE> error under the following conditions:

• If you specify an otherwise valid date which is outside the range defined by the values assumed for maxdate and
mindate and do not supply an erropt value

Customizable Date and Time Defaults

Upon InterSystems IRIS startup, the default date and time formats are initialized to the American date and time formats
(for example, MM/DD/[YY]YY). To set this and other default formats to the values for your current locale, set the following
global variable: SET ^SYS("NLS","Config","LocaleFormat")=1. This sets all format defaults for all processes
to your current locale values. These defaults persist until this global is changed.

Note: This section describes the user locale definitions applied when localeopt is undefined or set to 0. When localeopt=1,
$ZDATETIME uses a predefined ODBC locale.

In the following example, the first $ZDATETIME returns a date and time in the default format for the locale. The input
parameters are the $ZTIMESTAMP special variable, with the dformat and tformat taking defaults, and precision set to 2
decimal digits. In most locales, the first $ZDATETIME will return dformat=1 or the American date and time format with
a slash date separator and a dot decimal separator for fractional seconds.

In the ChangeVals section, the first SetFormatItem() method changes the locale date format default to dformat=4, or the
European date format (DD/MM/[YY]YY), as is shown by the second $ZDATETIME. The second SetFormatItem()
method changes the locale default for the date separator character (which affects the dformat –1, 1, 4, and 15). In this
example, the date separator character is set to a dot (“.”), as shown by the third $ZDATETIME. The third SetFormatItem()
method changes the decimal separator character for this locale to the European standard (“,”), as shown by the final
$ZDATETIME. This program then restores the initial date format values:

InitalizeLocaleFormat
 SET ^SYS("NLS","Config","LocaleFormat")=1
InitialVals
 SET fmt=##class(%SYS.NLS.Format).GetFormatItem("DateFormat")
 SET sep=##class(%SYS.NLS.Format).GetFormatItem("DateSeparator")
 SET dml=##class(%SYS.NLS.Format).GetFormatItem("DecimalSeparator")
 WRITE !,$ZDATETIME($ZTIMESTAMP,,,2)
ChangeVals
 SET x=##class(%SYS.NLS.Format).SetFormatItem("DateFormat",4)
 WRITE !,$ZDATETIME($ZTIMESTAMP,,,2)
 SET y=##class(%SYS.NLS.Format).SetFormatItem("DateSeparator",".")
 WRITE !,$ZDATETIME($ZTIMESTAMP,,,2)
 SET z=##class(%SYS.NLS.Format).SetFormatItem("DecimalSeparator",",")
 WRITE !,$ZDATETIME($ZTIMESTAMP,,,2)
RestoreVals
 SET x=##class(%SYS.NLS.Format).SetFormatItem("DateFormat",fmt)
 SET y=##class(%SYS.NLS.Format).SetFormatItem("DateSeparator",sep)
 SET z=##class(%SYS.NLS.Format).SetFormatItem("DecimalSeparator",dml)
 WRITE !,$ZDATETIME($ZTIMESTAMP,,,2)

$ZDATETIME Compared to $ZDATE

$ZDATETIME is similar to $ZDATE except it converts a combined date and time value. $ZDATE only converts a date
value. For example:

 WRITE $ZDATE($HOROLOG)

returns the current date, formatted like: 02/22/2018.

 WRITE $ZDATETIME($HOROLOG)

returns the current date and time, formatted like: 02/22/2018 13:53:57.

$ZDATE does not support tformat values 5 through 8.

ObjectScript Reference 533

$ZDATETIME

See Also
• JOB command

• $ZDATE function

• $ZDATEH function

• $ZDATETIMEH function

• $ZTIME function

• $HOROLOG special variable

• $ZTIMESTAMP special variable

• %DATE utility, which is documented in the legacy documentation available at http://docs.intersystems.com/priordo-
cexcerpts

• More information on locales in the section on “System Classes for National Language Support” in Specialized System
Tools and Utilities.

534 ObjectScript Reference

ObjectScript Functions

http://docs.intersystems.com/priordocexcerpts
http://docs.intersystems.com/priordocexcerpts

$ZDATETIMEH
Validates a date and time and converts from display format to InterSystems IRIS internal format.

$ZDATETIMEH(datetime,dformat,tformat,monthlist,yearopt,startwin,endwin,mindate,maxdate,erropt,localeopt)
$ZDTH(datetime,dformat,tformat,monthlist,yearopt,startwin,endwin,mindate,maxdate,erropt,localeopt)

Parameters

The date and time input value. A date/time string specified in display format.
$ZDATETIMEH converts this date/time string to $HOROLOG format. The datetime
value can be either an explicit date and time (specified in various formats), an explicit
date (specified in various formats) with the time value defaulting to 0, or the string “T”
or “t”, representing the current date, with the time value either specified or defaulting
to 0. The “T” or “t” string can optionally include a signed integer offset. See datetime
below.

datetime

Optional — An integer code specifying the date format for the date portion of datetime.
If datetime is “T”, dformat must be 5, 6, 7, 8, 9, or 15. See dformat below.

dformat

Optional — An integer code specifying the time format for the time portion of datetime.
See tformat below.

tformat

Optional — A string or the name of a variable that specifies a set of month names.
This string must begin with a delimiter character, and its 12 entries must be separated
by this delimiter character. See monthlist below.

monthlist

Optional — An integer code that specifies whether to represent years as two- or
four-digit values. See yearopt below.

yearopt

Optional — The start of the sliding window during which dates must be represented
with two-digit years. See startwin below.

startwin

Optional — The end of the sliding window during which dates are represented with
two-digit years. See endwin below.

endwin

Optional — The lower limit of the range of valid dates. Specified as a $HOROLOG
integer date count, with 0 representing December 31, 1840. Can be specified as a
positive or negative integer. See mindate below.

mindate

Optional — The upper limit of the range of valid dates. Specified as a $HOROLOG
integer date count. See maxdate below.

maxdate

Optional — An expression to return when datetime is invalid. Specifying a value for
this parameter suppresses error codes associated with invalid or out of range datetime
values. Instead of issuing an error message, $ZDATETIMEH returns erropt. See erropt
below.

erropt

ObjectScript Reference 535

$ZDATETIMEH

Optional — A boolean flag that specifies which locale to use for the dformat, tformat,
monthlist, yearopt, mindate and maxdate default values, and other date and time
characteristics, such as the DateSeparator character:

localeopt=0: the current locale property settings determine these parameter defaults.

localeopt=1: the ODBC standard locale determines these parameter defaults.

localeopt not specified: the dformat value determines these parameter defaults. If
dformat=3, ODBC defaults are used. Japanese and Islamic date dformatvalues use
their own defaults. For all other dformat values, current locale property settings are
used as defaults. See localeopt below.

Optional — A boolean flag that specifies which locale to use. When 0, the current
locale determines the date separator, time separator, and the other characters, strings,
and options used to format dates and times. When 1, the ODBC locale determines
these characters, strings, and options. The default is 0, unless dformat=3, in which
case the default is 1. See below.

localeopt

Omitted parameters between specified parameter values are indicated by placeholder commas. Trailing placeholder commas
are not required, but are permitted. Blank spaces are permitted between the commas that indicate an omitted parameter.

Description
$ZDATETIMEH validates a specified date and time value and converts it from display format to internal format. The
corresponding $ZDATETIME function converts a date and time from internal format to display format. Internal format
is the format used by the $HOROLOG or $ZTIMESTAMP. It represents a date and time value as a string of two numeric
values separated by a comma.

The exact value returned depends on the parameters you use.

$ZDATETIMEH(datetime) converts a date and time value in the format "MM/DD/[YY]YY hh:mm:ss[.ffff]” to $HOROLOG
format.

MeaningSyntax

A two-digit month.MM

A two-digit day.DD

Two or four digits for years from 1900 to 1999. Four digits for years before 1900 or after 1999.[YY]YY

The hour in a 24-hour clock format.hh

Minutes.mm

Seconds.ss

Fractional seconds (zero to nine digits).ffff

$ZDATETIMEH(datetime,dformat,tformat,monthlist,yearopt,startwin,endwin,mindate,maxdate,erropt) converts a date
and time value that was originally specified (through $ZDATETIME) in date and time to $HOROLOG or $ZTIMESTAMP
format. The dformat, tformat, yearopt, startwin and endwin values are identical to the values used by $ZDATETIME.

When you use a dformat of 5, 6, 7, 8, or 9 $ZDATETIMEH recognizes and converts a date in any of the external American
date formats corresponding to dformat codes 1, 2, 3, 5, 6, 7, 8, 9. For a complete list of valid American date formats, refer
to $ZDATEH. When you use a dformat of 15 $ZDATETIMEH recognizes and converts a date in any unambiguous
European date format. For a complete list of valid European date formats, refer to $ZDATEH.

The dformat values of 5, 6, 7, 8, 9, or 15 also accept the current date specified by the letter “T” or “ t” , optionally followed
by a plus (+) or a minus (-), and the number of days after or before the current date.

536 ObjectScript Reference

ObjectScript Functions

$ZDATETIMEH recognizes and converts a time in any of eight time formats, regardless of which time format you specify
in the function call. In addition, $ZDATETIMEH recognizes the suffixes “AM, PM, NOON, and MIDNIGHT.” You can
express these suffixes in uppercase, lowercase, or mixed case. You can also abbreviate these suffixes to any number of
letters.

The recognized forms include:

• The default date format, MM/DD/[YY]YY

• The format DDMmm[YY]YY

• The ODBC format [YY]YY-MM-DD

• The format DD/MM/[YY]YY

• The format Mmm D, YYYY

• The format Mmm D YYYY

• The format Mmm DD YY

• The format YYYYMMDD (numeric format)

Parameter Values

datetime

The date and time string that you want to convert to $HOROLOG format. You can specify any of the following:

• An expression that evaluates to a single string with the date first, followed by a single blank space, followed by the
time.

• An expression that evaluates to a string specifying the date only. The time value defaults to midnight (0), unless tformat
is 7 or 8, in which case the time defaults to the local time zone offset from midnight (0).

• The letter code “T” or “ t” , which specifies the current date. This letter can optionally be followed by a plus (+) or a
minus (-) sign and an integer specifying an offset, in days, from the current date. You can either follow this date
expression by a single blank space and a time expression, or allow the time to default to midnight (0). (If tformat is 7
or 8, the time defaults to the local time zone offset from midnight (0).) If you use this current date option, you must
specify a dformat of 5, 6, 7, 8, 9, or 15.

Valid date and time values depend on the DateFormat and TimeFormat properties of the current locale and the values
specified for the dformat and tformat parameters. For details on specifying dates, refer to $ZDATEH.

By default, the earliest valid datetime date is December 31, 1840 (0 in internal $HOROLOG representation). Dates are
limited to positive integers by default because the DateMinimum property defaults to 0. You can specify earlier dates as
negative integers, provided the DateMinimum property of the current locale is set to a greater or equal negative integer. The
lowest valid DateMinimum value is -672045, which corresponds to January 1, 0001. InterSystems IRIS uses the proleptic
Gregorian calendar, which projects the Gregorian calendar back to “Year 1”, in conformance with the ISO 8601 standard.
This is, in part, because the Gregorian calendar was adopted at different times in different countries. For example, much
of continental Europe adopted it in 1582; Great Britain and the United States adopted it in 1752. Thus InterSystems IRIS
dates prior to your local adoption of the Gregorian calendar may not correspond to historical dates that were recorded based
on the local calendar then in effect. For further details on dates prior to 1840, refer to the mindate parameter.

dformat

Format for the date. Valid values are:

ObjectScript Reference 537

$ZDATETIMEH

MeaningValue

MM/DD/[YY]YY (07/01/97 or 03/27/2002) — American numeric format.You must specify the
correct DateSeparator character (/ or .) for the current locale.

1

DD Mmm [YY]YY (01 Jul 97 or 27 Mar 2002)2

[YY]YY-MM-DD (1997-07-01 or 2002-03-27) - ODBC format3

DD/MM/[YY]YY (01/07/97 or 27/03/2002) — European numeric format.You must specify the
correct DateSeparator character (/ or .) for the current locale.

4

Mmm D, YYYY (Jul 1, 1997 or Mar 27, 2002)5

Mmm D YYYY (Jul 1 1997 or Mar 27 2002)6

Mmm DD [YY]YY (Jul 01 1997 or Mar 27 2002)7

YYYYMMDD (19930701 or 20020327) - Numeric format8

Mmmmm D, YYYY (July 1, 1997 or March 27, 2002)9

[D]D/[M]M/YYYY (1/7/2549 or 27/11/2549) — Thai date format. Day and month are identical to
European usage, except no leading zeros. The year is the Buddhist Era (BE) year, calculated
by adding 543 years to the Gregorian year.

13

DD/MM/[YY]YY or YYYY-MM-DD or any unambiguous European date format with any
DateSeparator character, or YYYYMMDD with no date separators.The DateSeparator character
may be any non-alphanumeric character, including blank spaces, regardless of the DateSeparator
character specified in the current locale. Also accepts monthlist names and “T”. For a complete
list of valid European date formats, refer to $ZDATEH.

15

YYYYc[M]Mc[D]Dc — Japanese date format.Year, month, and day numbers are the same as
other date formats; leading zeros are omitted. The Japanese characters for “year”, “month”, and
“day” (shown here as c) are inserted after the year, month, and day numbers. These characters
are Year=$CHAR(24180), Month=$CHAR(26376), and Day=$CHAR(26085).

16

YYYYc [M]Mc [D]Dc — Japanese date format. Same as dformat 16, except that a blank space
is inserted after the “year” and “month” Japanese characters.

17

[D]D Mmmmm YYYY — Tabular Hijri (Islamic) date format with full month name. Day leading
zeros are omitted; year leading zeros are included. InterSystems IRIS date -445031 (07/19/0622
C.E.) = 1 Muharram 0001.

18

[D]D [M]M YYYY — Tabular Hijri (Islamic) date format with month number. Day and month
leading zeros are omitted; year leading zeros are included. InterSystems IRIS date -445031
(07/19/0622 C.E.) = 1 1 0001.

19

[D]D Mmmmm YYYY — Observed Hijri (Islamic) date format with full month name. Defaults to
Tabular Hijri (dformat 18). To override tabular calculation, use the class %Calendar.Hijri to add
observations of new moon crescents.

20

[D]D [M]M YYYY — Observed Hijri (Islamic) date format with month number. Defaults to Tabular
Hijri (dformat 19).To override tabular calculation, use the class %Calendar.Hijri to add observations
of new moon crescents.

21

Get effective dformat value from the DateFormat property of the current locale. This is the default
behavior if you do not specify dformat.

-1

538 ObjectScript Reference

ObjectScript Functions

MeaningValue

$ZDATETIMEH takes an integer count of UTC seconds and returns the corresponding local
$HOROLOG datetime value. This is the inverse of $ZDATETIME dformat –2. Refer to
$ZDATETIME dformat –2 for further details.

The input datetime value is the value returned by the time() library function, as defined in the
ISO C Programming Language Standard. For example, on POSIX-compliant systems this value
is the count of seconds from January 1, 1970 00:00:00 UTC.

The tformat, monthlist, yearopt, startwin, and endwin parameters are ignored.

-2

$ZDATETIMEH takes a datetime value specified in $ZTIMESTAMP internal format, converts
that value from UTC Universal time to local time, and returns the resulting value in the same
internal format. The tformat, monthlist, yearopt, startwin, and endwin parameters are ignored.
$ZDATETIME performs the inverse operation. (Currently, this date conversion has the time
conversion anomalies described for tformat values 7 and 8. These potentially affect dates prior
to 1970, dates after 2038, and local time variant boundary days, such as the beginning date or
end date for Daylight Saving Time.)

-3

Where:

MeaningSyntax

YYYY is a four-digit year. [YY]YY is a two-digit year if datetime falls within the active window
for two-digit dates; otherwise it is a four-digit number.

YYYY

Two-digit month.MM

One-digit day if the day number <10. Otherwise, two digits.D

Two-digit day.DD

Mmm is a month abbreviation extracted from the MonthAbbr property of the current locale.The
default values are:

“Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec”

Or an alternate month abbreviation (or name of any length) extracted from an optional list
specified as the monthlist parameter to $ZDATETIMEH.

Mmm

Full name of the month as specified by the MonthName property of the current locale. The
default values are: “January February March ... November December”

Or an alternate month name extracted from an optional list specified as the monthlist param-
eter to $ZDATETIMEH.

Mmmmm

dformat Default

If you omit dformat or set it to -1, the dformat default depends on the localeopt parameter and the NLS DateFormat property:

• If localeopt=1 the dformat default is ODBC format. The tformat, monthlist, yearopt, mindate and maxdate parameter
defaults are also set to ODBC format. This is the same as setting dformat=3.

• If localeopt=0 or is unspecified, the dformat default is taken from the NLS DateFormat property. If DateFormat=3, the
dformat default is ODBC format. However, DateFormat=3 does not affect the tformat, monthlist, yearopt, mindate
and maxdate parameter defaults, which are as specified in the current NLS locale definition.

To determine the default date properties for your locale, invoke the GetFormatItem() NLS class method:

ObjectScript Reference 539

$ZDATETIMEH

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("DateFormat"),!
 WRITE ##class(%SYS.NLS.Format).GetFormatItem("DateSeparator")

$ZDATETIMEH will use the value of the DateSeparator property of the current locale (either / or .) as the delimiter
between months, days, and the year when dformat=1 or 4.

European date format (dformat=4, DD/MM/YYYY order) is the default for many (but not all) European languages,
including British English, French, German, Italian, Spanish, and Portuguese (which use a “/” DateSeparator character), as
well as Czech (csyw), Russian (rusw), Slovak (skyw), Slovenian (svnw), and Ukrainian (ukrw) (which use a “.” DateSeparator

character). For further details on default date formats for supported locales, refer to Dates in Using ObjectScript.

dformat Settings

If dformat is 3 (ODBC format date), ODBC format defaults are also used for the tformat, monthlist, yearopt, mindate and
maxdate parameter defaults. Current locale defaults are ignored.

If dformat is 16 or 17 (Japanese date formats), the date format is independent of the locale setting. You can use Japanese-
format dates from any InterSystems IRIS instance.

If dformat is 18, 19, 20, or 21 (Islamic date formats) and localeopt is unspecified, parameters default to Islamic defaults,
rather than current locale defaults. The monthlist parameter defaults to Arabic month names transliterated with Latin char-
acters. The tformat, yearopt, mindate and maxdate parameters default to ODBC defaults. The date separator defaults to the
Islamic default (a space), not the ODBC default or the current locale DateSeparator property value. If localeopt=0 current
locale property defaults are used for these parameters. If localeopt=1 ODBC defaults are used for these parameters.

tformat

A numeric value that specifies the format in which the time value is input. Supported values are as follows:

MeaningValue

Get the effective tformat value from the TimeFormat property of the current locale, which defaults
to a value of 1. This is the default behavior if you do not specify tformat for all dformat values
except 3.

-1

Specify time in the form "hh:mm:ss" (24-hour clock). This is the default when dformat=3.1

Specify time in the form “hh:mm” (24-hour clock)2

Specify time in the form “hh:mm:ss[AM/PM] (12-hour clock)3

Specify time in the form “hh:mm[AM/PM] (12-hour clock)4

Specify time in the form "hh:mm:ss+/-hh:mm" (24-hour clock).The time is specified as local time.
The following optional suffix may be supplied, but is ignored: a plus (+) or minus (–) suffix followed
by the offset of local time from Coordinated Universal Time (UTC). A minus sign (-hh:mm) indicates
that the local time is earlier (westward) of the Greenwich meridian by the returned offset number
of hours and minutes. A plus sign (+hh:mm) indicates that the local time is later (eastward) of the
Greenwich meridian by the returned offset number of hours and minutes.

5

Specify time in the form “hh:mm+/-hh:mm” (24-hour clock). The time is specified as local time.
The following optional suffix may be supplied, but is ignored: a plus (+) or minus (–) suffix followed
by the offset of local time from Coordinated Universal Time (UTC). A minus sign (-hh:mm) indicates
that the local time is earlier (westward) of the Greenwich meridian by the returned offset number
of hours and minutes. A plus sign (+hh:mm) indicates that the local time is later (eastward) of the
Greenwich meridian by the returned offset number of hours and minutes.

6

540 ObjectScript Reference

ObjectScript Functions

MeaningValue

Specify time in the form "hh:mm:ssZ" (24-hour clock).The time must be specified as Coordinated
Universal Time (UTC). The optional “Z” suffix may be supplied or omitted, but is ignored. This
suffix merely indicates that the time is assumed to be Coordinated Universal Time (UTC), rather
than local time.

7

Specify time in the form “hh:mmZ” (24-hour clock). The time must be specified as Coordinated
Universal Time (UTC). The optional “Z” suffix may be supplied or omitted, but is ignored. This
suffix merely indicates that the time is assumed to be Coordinated Universal Time (UTC), rather
than local time.

8

If the datetime string contains both a date part and a time part, the time part is separated from the date part by either a single
space or the capital letter "T". If a time part is present:

• Time formats 1 through 6 assume datetime specifies local time using the same time zone as the result.

• Time formats 7 and 8 assume datetime specifies UTC time; these formats convert both the date and time to system
local time.

For time formats 5 through 8 the datetime time value may be followed by a suffix consisting of either the capital letter "Z"
or a UTC offset that starts with a "+" or "-". The presence of a suffix does not affect time zone conversion.

Note: Conversions involving dformat values -2 and -3 and tformat values 7 and 8 and the UTC offsets generated by
tformat values 5 and 6 have the following platform-dependent anomalies:

• Local time variant boundary behavior may differ on different operating system platforms. When a local time
variant change occurs and the local clock shifts backwards (“Fall back” at the end of Daylight Saving Time)
the local time hour is repeated. Within this two-hour period, an InterSystems IRIS time conversion operation
cannot determine whether it is being applied to the first occurrence of that local time hour, or the second
occurrence of the same hour. $ZDATETIME uses whichever assumption is used by the platform-specific
runtime library. Therefore, within this temporal window, different operating system platforms may give dif-
ferent time conversion results.

• InterSystems IRIS performs conversions between local time and UTC time using the standard time offset for
all dates that are supported by the operating system platform.

If a specified date is earlier than the earliest date supported by the platform, InterSystems IRIS uses the
standard time offset for 1902–01–01 (if this date is supported by the platform). If the date 1902–01–01 is not
supported by the platform, InterSystems IRIS uses the standard time offset for 1970–01–01. Any local time
variant offset (such as Daylight Saving Time) is ignored.

If a specified date is later than the latest date supported by the platform, InterSystems IRIS calculates a cor-
responding date within the range 2010–01–01 to 2037–12–31 and uses the standard time offset for that cor-
responding date. This algorithm should provide accurate time offsets for dates up to 2100–02–28, provided
there are no future changes to the laws governing date/time observances.

To determine the default time format for your locale, invoke the GetFormatItem() NLS class method:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("TimeFormat")

12–hour Clock (tformat 3 and 4)

In 12-hour clock formats, morning and evening are specified with time suffixes, here shown as AM and PM. To determine
the default time suffixes for your locale, invoke the GetFormatItem() NLS class method, as follows:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("AM"),!
 WRITE ##class(%SYS.NLS.Format).GetFormatItem("PM"),!

ObjectScript Reference 541

$ZDATETIMEH

For all dformat values except 3, 18, 19, 20, and 21 the AM and PM properties default to the current locale definition. For
dformat=3 (ODBC date format) and dformat=18, 19, 20, or 21 (Islamic date formats) the time suffixes are always “AM”
and “PM”, regardless of the current locale property values. The AM and PM property defaults are “AM” and “PM” for all
locales except the Japanese locale jpww.

By default, Midnight and Noon are represented as “MIDNIGHT” and “NOON” for all locales except Japanese locales
(jpnw, jpuw, jpww, zdsw, zdtw, zduw), Portuguese (ptbw), Russian (rusw), and Ukrainian (ukrw). However, when dformat=3,
$ZDATETIMEH always uses the ODBC standard values, regardless of the default settings for your locale.

monthlist

An expression that resolves to a string of month names or month name abbreviations, separated by a delimiter character.
The names in monthlist replace the default month abbreviation values from the MonthAbbr property or the month name
values from the MonthName property of the current locale.

monthlist is valid only if dformat is 2, 5, 6, 7, 9, 15, 18, or 20. If dformat is any other value $ZDATETIMEH ignores
monthlist.

The monthlist string has the following format:

• The first character of the string is a delimiter character (usually a space). The same delimiter must appear before the
first month name and between each month name in monthlist. You can specify any single-character delimiter; this
delimiter must be specified between the month, day, and year portions of the specified datetime value, which is why
a space is usually the preferred character.

• The month names string should contain twelve delimited values, corresponding to January through December. It is
possible to specify more or less than twelve month names, but if there is no month name corresponding to the month
in datetime an <ILLEGAL VALUE> error is generated.

If you omit monthlist or specify a monthlist value of -1, $ZDATETIMEH uses the list of month names defined in the
MonthAbbr or MonthName property of the current locale, unless one of the following is true: If localeopt=1, the monthlist
default is the ODBC month list (in English). If localeopt is unspecified and dformat is 18 or 20 (Islamic date formats) the
monthlist default is the Islamic month list (Arabic names expressed using Latin letters), ignoring the MonthAbbr or MonthName

property value.

To determine the default month names and month abbreviations for your locale, invoke the GetFormatItem() NLS class
method:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("MonthName"),!
 WRITE ##class(%SYS.NLS.Format).GetFormatItem("MonthAbbr"),!

yearopt

With dformat values 0, 1, 2, 4, or 7, a numeric code that specifies the time window in which to display the year as a two-
digit value. yearopt can be:

542 ObjectScript Reference

ObjectScript Functions

MeaningValue

Get effective yearopt value from YearOption property of current locale which defaults to 0. This
is the default behavior if you do not specify yearopt .

-1

Represent 20th century dates (1900 through 1999) with two-digit years, unless a process-specific
sliding window (established via the %DATE utility) is in effect. If such a window is in effect,
represent only those dates falling within the sliding window by two-digit years. Represent all
dates falling outside the 20th century or outside the process-specific sliding window by four-digit
years.

0

Represent 20th century dates with two-digit years and all other dates with four-digit years.1

Represent all dates with two-digit years.2

Represent with two-digit years those dates falling within the sliding temporal window defined by
startwin and (optionally) endwin. Represent all other dates with four-digit years. When yearopt
=3, startwin and endwin are absolute dates in $HOROLOG format.

3

Represent all dates with four-digit years.4

Represent with two-digit years all dates falling within the sliding window defined by startwin and
(optionally) endwin. Represent all other dates with four-digit years. When yearopt=5, startwin
and endwin are relative years.

5

Represent all dates in the current century with two-digit years and all other dates with four-digit
years.

6

If you omit yearopt or specify a yearopt value of -1, $ZDATETIMEH uses the YearOption property of the current locale,
unless one of the following is true: If localeopt=1, the yearopt default is the ODBC year option. If localeopt=0 or is
unspecified and dformat is 18, 19, 20, or 21 (Islamic date formats) the yearopt default is the ODBC year option (4-digit
years); the YearOption property value is ignored for Islamic dates.

startwin

A numeric value that specifies the start of the sliding window during which dates must be represented with two-digit years.
You must supply startwin when you use a yearopt of 3 or 5. startwin is not valid with any other yearopt values.

When yearopt = 3, startwin is an absolute date in $HOROLOG date format that indicates the start date of the sliding
window.

When yearopt = 5, startwin is a numeric value that indicates the start year of the sliding window expressed in the number
of years before the current year. The sliding window always begins on the first day of the year (January 1) specified in
startwin.

endwin

A numeric value that specifies the end of the sliding window during which dates are represented with two-digit years. You
may optionally supply endwin when yearopt is 3 or 5. endwin is not valid with any other yearopt values.

When yearopt =3, endwin is an absolute date in $HOROLOG date format that indicates the end date of the sliding window.

When yearopt =5, endwin is a numeric value that indicates the end year of the sliding window expressed as the number of
years past the current year. The sliding window always ends on December 31st of the year specified in endwin. If endwin
is not specified, it defaults to December 31st of the year 100 years after startwin.

If endwin is omitted (or specified as -1) the effective sliding window will be 100 years long. The endwin value of -1 is a
special case that always returns a date value, even when higher and lower endwin values return erropt. For this reason, it
is preferable to omit endwin when specifying a 100-year window, and to avoid the use of negative endwin values.

ObjectScript Reference 543

$ZDATETIMEH

If you supply both startwin and endwin , the sliding window they specify must not have a duration of more than 100 years.

mindate

An expression that specifies the lower limit of the range of valid dates (inclusive). Can be specified as a $HOROLOG
integer date count (for example, 1/1/2013 is represented as 62823) or a $HOROLOG string value. You can include or
omit the time portion of a $HOROLOG date string (for example “62823,43200”), but only the date portion of mindate is
parsed. Specifying an datetime value earlier than mindate generates a <VALUE OUT OF RANGE> error.

The following are supported mindate values:

• Positive integer: Most commonly mindate is specified as a positive integer to establish the earliest allowed date as
some date after December 31, 1840. For example, a mindate of 21550 would establish the earliest allowed date as
January 1, 1900. The highest valid value is 2980013 (December 31, 9999).

• 0: specifies the minimum date as December 31, 1840. This is the DateMinimum property default.

• Negative integer -2 or larger: specifies a minimum date counting backwards from December 31, 1840. For example,
a mindate of -14974 would establish the earliest allowed date as January 1, 1800. Negative mindate values are only
meaningful if the DateMinimum property of the current locale has been set to an equal or greater negative number. The
lowest valid value is -672045.

• If omitted (or specified as -1), mindate defaults to the DateMinimum property value for the current locale, unless one
of the following is true: If localeopt=1, the mindate default is 0. If localeopt is unspecified and dformat=3, the mindate
default is 0. If localeopt is unspecified and dformat is 18, 19, 20, or 21 (Islamic date formats) the mindate default is
0.

You can get and set the DateMinimum property as follows:

 SET min=##class(%SYS.NLS.Format).GetFormatItem("DateMinimum")
 WRITE "initial DateMinimum value is ",min,!
Permit18thCenturyDates
 SET x=##class(%SYS.NLS.Format).SetFormatItem("DateMinimum",-51498)
 SET newmin=##class(%SYS.NLS.Format).GetFormatItem("DateMinimum")
 WRITE "set DateMinimum value is ",newmin,!!
RestrictTo19thCenturyDates
 WRITE $ZDATETIMEH("05/29/1805 12:00:00",1,,,,,,-14974),!!
ResetDateMinimumToDefault
 SET oldmin=##class(%SYS.NLS.Format).SetFormatItem("DateMinimum",min)
 WRITE "reset DateMinimum value from ",oldmin," to ",min

You may specify mindate with or without maxdate. Specifying a mindate larger than maxdate generates an <ILLEGAL
VALUE> error.

maxdate

An expression that specifies the upper limit of the range of valid dates (inclusive). Can be specified as a $HOROLOG
integer date count (for example, 1/1/2100 is represented as 94599) or a $HOROLOG string value. You can include or
omit the time portion of the $HOROLOG date (for example “94599,43200”), but only the date portion of maxdate is
parsed.

If maxdate is omitted or if specified as -1, the maximum date limit is obtained from the DateMaximum property of the current
locale, which defaults to the maximum permissible value for the date portion of $HOROLOG: 2980013 (corresponding
to December 31, 9999). However, the application of the DateMaximum property is governed by the localeopt setting. When
localeopt=1 (which is the default for dformat=3) the date maximum default is the ODBC value (2980013), regardless of
the current locale setting. Islamic date formats also take the ODBC default. The maximum date for Thai date format
(dformat=13) is 31/12/9999 BE, which corresponds to $HOROLOG 2781687.

Specifying a datetime larger than maxdate generates a <VALUE OUT OF RANGE> error.

Specifying a maxdate larger than 2980013 generates an <ILLEGAL VALUE> error.

544 ObjectScript Reference

ObjectScript Functions

You may specify maxdate with or without mindate. Specifying a maxdate smaller than mindate generates an <ILLEGAL
VALUE> error.

erropt

Specifying a value for this parameter suppresses errors associated with invalid or out of range datetime values. Instead of
generating <ILLEGAL VALUE> or <VALUE OUT OF RANGE> errors, the $ZDATETIMEH function returns the erropt
value.

InterSystems IRIS performs standard numeric evaluation on datetime, which must evaluate to an integer date within the
mindate/maxdate range. Thus, 7, "7", +7, 0007, 7.0, "7 dwarves", and --7 all evaluate to the same date value: 01/07/1841.
By default, values greater than 2980013 or less than 0 generate a <VALUE OUT OF RANGE> error. Fractional values
generate an <ILLEGAL VALUE> error. Non-numeric strings (including the null string) evaluate to 0, and thus return the
$HOROLOG initial date: 12/31/1840.

The erropt parameter only suppresses errors generated due to invalid or out of range values of datetime. Errors generated
due to invalid or out of range values of other parameters will always generate errors whether or not erropt has been supplied.
For example, an <ILLEGAL VALUE> error is always generated when $ZDATETIMEH specifies a sliding window where
endwin is earlier than startwin. Similarly, an <ILLEGAL VALUE> error is generated when maxdate is less than mindate.

localeopt

This Boolean parameter specifies either the user’s current locale definition or the ODBC locale definition as the source for
defaults for the locale-specified parameters dformat, tformat, monthlist, yearopt, mindate and maxdate:

• If localeopt=0, all of these parameters take the current locale definition defaults.

• If localeopt=1, all of these parameters take the ODBC defaults.

• If localeopt is not specified, the dformat parameter determine the default for these parameters. If dformat=3, the ODBC
defaults are used. If dformat is 18, 19, 20, or 21 the Islamic date and time format defaults are used, regardless of the
current locale definition. For all other dformat values, the current locale definition defaults are used. Refer to the
dformat description for further details.

The ODBC standard locale cannot be changed; it is used to format date and time strings that are portable between InterSystems
IRIS processes that have made different National Language Support (NLS) choices. The ODBC locale date and time defi-
nitions are as follows:

• Date format defaults to 3. Therefore, if dformat is undefined or -1, date format 3 is used.

• Date separator defaults to "/". However, date format defaults to 3, which always uses "-" as the date separator.

• Year option defaults to 4 digits.

• Date minimum and maximum are 0 and 2980013 ($HOROLOG date count).

• English month names, month abbreviations, weekday names, weekday abbreviations, and the words "Noon" and
"Midnight" are used.

• Time format defaults to 1. Time separator is ":". Time precision is 0 (no fractional seconds). AM and PM indicators
are "AM" and "PM".

Notes

$ZDATETIMEH and Fractional Seconds

Unlike $ZDATETIME, $ZDATETIMEH does not allow you to specify a precision for the time. Any fractional seconds
in the original $ZDATETIME-formatted time are retained in the value $ZDATETIMEH returns.

Note that $HOROLOG does not return fractional seconds.

ObjectScript Reference 545

$ZDATETIMEH

Invalid Values with $ZDATETIMEH

You receive a <FUNCTION> error in the following conditions:

• If you specify an invalid dformat code (an invalid integer value, or a non-integer value.)

• If you specify an invalid value for tformat (an integer value less than -1 or greater than 8, a zero, or a non-integer
value.)

• If you do not specify a startwin value when yearopt is 3 or 5.

You receive an <ILLEGAL VALUE> error under the following conditions:

• If you specify an invalid value for any date/time unit. If specified, the erropt value is returned rather than issuing an
<ILLEGAL VALUE>.

• If you specify excess leading zeros for any date/time unit in an ODBC date. For example, you can represent the
February 3, 2007 as “2007–2–3” or “2007–02–03”, but will receive an <ILLEGAL VALUE> for “2007–002–03”. If
specified, the erropt value is returned rather than issuing an <ILLEGAL VALUE>.

• If the given month number is greater than the number of month values in monthlist.

• If maxdate is less than mindate.

• If endwin is less than startwin.

• If startwin and endwin specify a sliding temporal window whose duration is greater than 100 years.

You receive a <VALUE OUT OF RANGE> error under the following conditions:

• If you specify a date (or an offset to “T”) which is earlier than Dec. 31, 1840 or later than Dec. 31, 9999, and do not
supply an erropt value.

• If you specify an otherwise valid date (or an offset to “T”) which is outside the range of mindate and maxdate and do
not supply an erropt value.

The Current Date

The following examples shows how you can use the “T” or “t” letter code to specify the current date. Note that dformat
must be 5, 6, 7, 8, 9, or 15.

The current date with the time defaulting to 0:

 WRITE $ZDATETIMEH("T",5)

Three days before the current date, with the time defaulting to 0:

 WRITE $ZDATETIMEH("T-3",5)

Two days after the current date, with a specified time:

 WRITE $ZDATETIMEH("T+2 11:45:00",5)

$ZDATETIMEH Compared to $ZDATEH

$ZDATETIMEH is similar to $ZDATEH except it converts both a date and a time value to the internal $HOROLOG
format (even if no time value is specified.) $ZDATEH only converts a date value to $HOROLOG format. For example:

 WRITE $ZDATEH("Nov 25, 2002",5)

returns 59133.

 WRITE $ZDATETIMEH("Nov 25, 2002 10:08:09.539",5)

546 ObjectScript Reference

ObjectScript Functions

returns 59133,36489.539.

Specifying $ZDATETIMEH with no time value:

 WRITE $ZDATETIMEH("Nov 25, 2002",5)

returns 59133,0.

Specifying $ZDATETIMEH with no time value, and a tformat of 7 or 8:

 WRITE $ZDATETIMEH("Nov 25, 2002",5,7)

returns a value such as: 59133,68400, where the time value is the local time zone offset from midnight. In this case, U.S.
Eastern Standard Time is 5 hours offset from UTC, so the time value here represents 19:00 (5 hours offset from midnight).

See Also
• JOB command

• $ZDATE function

• $ZDATEH function

• $ZDATETIME function

• $ZTIME function

• $ZTIMEH function

• $HOROLOG special variable

• $ZTIMESTAMP special variable

• %DATE utility, which is documented in the legacy documentation available at http://docs.intersystems.com/priordo-
cexcerpts

• More information on locales in the section on “System Classes for National Language Support” in Specialized System
Tools and Utilities.

ObjectScript Reference 547

$ZDATETIMEH

http://docs.intersystems.com/priordocexcerpts
http://docs.intersystems.com/priordocexcerpts

$ZDCHAR
Converts a $DOUBLE floating point number to an eight-byte string.

$ZDCHAR(n)
$ZDC(n)

Parameter

An IEEE-format floating point number. It can be specified as a value, a variable, or an expression.n

Description
$ZDCHAR returns an eight-byte (quad) character string corresponding to n. The bytes of the character string are presented
in little-endian byte order, with the least significant byte first.

The number n can be a positive or negative IEEE floating point number. If n is not numeric, $ZDCHAR returns the empty
string. For further details on IEEE floating point numbers, refer to the $DOUBLE function.

Example
The following examples return an eight-byte string corresponding to the IEEE floating point number:

 WRITE $ZDCHAR($DOUBLE(1.4)),!
 WRITE $ZDCHAR($DOUBLE(1.400000000000001))

These two functions return: "ffffffö?" and "kfffffö?"

Notes

$ZDCHAR and Other $CHAR Functions

$ZDCHAR converts an IEEE floating point number to a eight byte (64-bit) character string. $ZQCHAR converts an
integer to an eight byte (64-bit) character string. To convert an integer to an 8-bit character string use $CHAR. To convert
an integer to a 16-bit (wide) character string use $ZWCHAR. To convert an integer to a 32-bit (long) character string use
$ZLCHAR.

See Also
• $DOUBLE function

• $ZDASCII function

• $CHAR function

• $ZWCHAR function

• $ZLCHAR function

• $ZQCHAR function

548 ObjectScript Reference

ObjectScript Functions

$ZEXP
Exponential function (inverse of natural logarithm).

$ZEXP(n)

Parameter

A number of any type. A number larger than 335.6 results in a <MAXNUMBER> error. A number
smaller than -295.4 returns 0.

n

Description
$ZEXP is the exponential function en, where e is the constant 2.718281828. Therefore, to return the value of e, you can
specify $ZEXP(1). $ZEXP is the inverse of the natural logarithm function $ZLN.

Parameter

n

Any number. It can be specified as a value, a variable, or an expression. A positive value larger than 335.6 or smaller than
-4944763837 results in a <MAXNUMBER> error. A negative value smaller than -295.4 returns 0. A value of zero (0)
returns 1. A non-numeric string is evaluated as 0 and therefore returns 1.

Examples
The following example demonstrates that $ZEXP is the inverse of $ZLN:

 SET x=7
 WRITE $ZEXP(x),!
 WRITE $ZLN(x),!
 WRITE $ZEXP($ZLN(x))

The following example returns $ZEXP for negative and positive integers and for zero. This example returns the constant
e as $ZEXP(1):

 FOR x=-3:1:3 {
 WRITE !,"The exponential of ",x," = ",$ZEXP(x)
 }
 QUIT

returns:

The exponential of -3 = .04978706836786394297
The exponential of -2 = .1353352832366126919
The exponential of -1 = .3678794411714423216
The exponential of 0 = 1
The exponential of 1 = 2.718281828459045236
The exponential of 2 = 7.389056098930650228
The exponential of 3 = 20.08553692318766774

The following example uses IEEE floating point numbers ($DOUBLE numbers). The first $ZEXP returns a numeric value,
the second $ZEXP returns “INF” (or <MAXNUMBER> depending on the IEEEError() method setting):

 SET rtn=##class(%SYSTEM.Process).IEEEError(0)
 WRITE $ZEXP($DOUBLE(1.0E2)),!
 WRITE $ZEXP($DOUBLE(1.0E3))

The following example demonstrates that the empty string or a nonnumeric value is treated as 0:

 WRITE $ZEXP(""),!
 WRITE $ZEXP("INF")

ObjectScript Reference 549

$ZEXP

both return 1.

See Also
• $ZLN function

550 ObjectScript Reference

ObjectScript Functions

$ZF
Invokes non-ObjectScript programs or functions from ObjectScript routines.

$ZF("function_name",args)

Parameters

The name of the function you want to call.function_name

Optional — A set of argument values passed to the function.args

Description
The various forms of the $ZF function allow you to invoke non-ObjectScript programs (such as shell or operating system
commands) or functions from ObjectScript routines. You can define interfaces or links to functions written in other languages
into InterSystems IRIS and call them from ObjectScript routines using $ZF.

$ZF can also be used to:

• Spawn a child process to execute a program or command: $ZF(-100).

• Load a Dynamic Link Library (DLL) then execute functions from that library: $ZF(–3), $ZF(–4), $ZF(–5), and $ZF(–6).

These implementations of $ZF take a negative number as the first parameter. They are described in their own reference
pages.

Parameters

function_name

The name of the function you want to call enclosed in quotation marks, or a negative number.

args

The args parameters are in the form: arg1, arg2, arg3, ...argn. The arguments can consist of such items as descriptions of
how arguments are passed and the entry point to the C function you are calling.

Notes

Calling UNIX® System Services with $ZF

InterSystems IRIS supports error checking functions for use with UNIX® system calls from $ZF. These calls allow you
to check for asynchronous events and to set an alarm handler in $ZF. By using these UNIX® functions you can distinguish
between real errors, <CTRL-C> interrupts, and calls that should be restarted.

The function declarations are included in iris-cdzf.h and are described in the following table:

NotesPurposeDeclaration

Should be called once before using sigrtchk()Clears retry flag.int sigrtclr();

On entry to $ZF, the previous handler is automatically
saved. On exit, it is restored automatically. A user
program should not alter the handling of any other
signal.

Establishes new SIGALRM
handler.

int dzfalarm();

ObjectScript Reference 551

$ZF

NotesPurposeDeclaration

Should be called whenever one of the following sys-
tem calls fails: open(), close(), read(), write(), ioctl(),
pause(), any call that fails when the process receives
a signal. It returns a code indicating the action the
user should take:

-1 = Not a signal. Check for I/O error. See contents
of errno variable.

0 = Other signal. Restart operation from point at which
it was interrupted.

1 = SIGINT/. Exit from $ZF with a SIGTERM "return
0." The System traps these signals appropriately.

Checks for asynchronous
events.

int sigrtchk();

In a typical $ZF function used to control some device, you would code something like this:

 IF ((fd = open(DEV_NAME, DEV_MODE)) < 0) {
 ; Set some flags
 ; Call zferror
 ; return 0;
 }

The open system call can fail if the process receives a signal. Usually this situation is not an error and the operation should
be restarted. Depending on the signal, however, you might take other actions. So, to take account of all the possibilities,
consider using the following C code:

sigrtclr();
 WHILE (TRUE) {
 IF (sigrtchk() == 1) { return 1 or 0; }
 IF ((fd = open(DEV_NAME, DEV_MODE)) < 0) {
 switch (sigrtchk()) {
 case -1:
 /* This is probably a real device error */
 ; Set some flags
 Call zferror
 return 0;
 case 0:
 /* A innocuous signal was received. Restart. */
 ; continue;
 case 1:
 /* Someone is trying to terminate your job. */
 Do cleanup work
 return 1 or 0;
 }
 }
 ELSE { break; }
 /* Code to handle the normal situation: */
 /* open() system call succeeded */

Remember you must not set any signal handler except through dzfalarm().

Translating Strings between Encoding Systems

InterSystems IRIS supports input-output translation via a $ZF argument type, t (or T), which can be specified in the following
formats:

PurposeArgument

Specifies the current process I/O translation object.t

Specifies the default process I/O translation table name.t//

Specifies a particular I/O translation table name.t/name/

552 ObjectScript Reference

ObjectScript Functions

$ZF conveys the translated string to the external procedure via a counted-byte string placed in the following C structure:

typedef struct zarray {
 unsigned short len;
 unsigned char data[1]; /* 1 is a dummy value */
 } *ZARRAYP;

This is also the structure used for the b (or B) argument type.

The following $ZF sample function performs a round trip conversion:

#include iris-cdzf.h
extern int trantest();
ZFBEGIN
ZFENTRY("TRANTEST","t/SJIS/ T/SJIS/",trantest)

ZFEND

int trantest(inbuf,outbuf);

ZARRAYP inbuf; /* Buffer containing string that was converted from
 internal InterSystems IRIS encoding to SJIS encoding before it
 was passed to this function */
ZARRAYP outbuf; /* Buffer containing string in SJIS encoding that will
 be converted back to internal InterSystems IRIS encoding before
 it is passed back into the InterSystems IRIS environment */
{
 int i;
 /* Copy data one byte at a time from the input argument buffer
 to the output argument buffer */

 for (i = 0; i < inbuf->len; i++)
 outbuf->data[i] = inbuf->data[i];

 /* Set number of bytes of data in the output argument buffer */
 outbuf->len = inbuf->len;

 return 0; /* Return success */
}

Note: Conceptually speaking, data flows to and from a $ZF external procedure, as if the external procedure were a
device. The output component of an I/O translation is used for data that is passed to an external procedure because
the data is “leaving” the InterSystems IRIS environment. The input component of an I/O translation is used for
data that is received from an external procedure because the data is “entering” the InterSystems IRIS environment.

If the output component of an I/O translation is undefined and your application attempts to pass anything but the null string
using that I/O translation, InterSystems IRIS returns an error, because it does not know how to translate the data.

If the input component of an I/O translation is undefined and an argument of type string associates that I/O translation with
a $ZF output argument, InterSystems IRIS returns an error, because an output argument with an undefined translation is
purposeless.

Zero-Terminated and Counted Unicode Strings

The $ZF function supports argument types for zero-terminated Unicode strings and counted Unicode strings.

The argument types for zero-terminated Unicode strings and counted Unicode strings have the following codes:

PurposeArgument

Pointer to a zero-terminated Unicode character string.w

Pointer to a counted Unicode character string.s

For both argument types, the C data type of the Unicode character is an unsigned short. A pointer to a zero-terminated
Unicode string is declared as follows:

unsigned short *p;

ObjectScript Reference 553

$ZF

A pointer to a counted Unicode string is declared as a pointer to the following C structure:

typedef struct zwarray {
 unsigned short len;
 unsigned short data[1]; /* 1 is a dummy value */
 } *ZWARRAYP;

For example:

ZWARRAYP *p;

The len field contains the length of the Unicode character array.

The data field contains the characters in the counted Unicode string. The maximum size of a Unicode string is the maximum
$ZF string size, which is an updateable configuration parameter that defaults to 32767.

Each Unicode character is two bytes long. This is important to consider when declaring Unicode strings as output arguments,
because InterSystems IRIS reserves space for the longest string that may be passed back. When using the default string
size, the total memory consumption for a single Unicode string argument is calculated as follows:

32767 maximum characters * 2 bytes per character = 65534 total bytes.

This is close to the default maximum memory area allocated for all $ZF arguments, which is 67584. This maximum $ZF
heap area is also an updateable configuration parameter.

Error Messages

When the $ZF heap area is exhausted, $ZF issues an <OUT OF $ZF HEAP SPACE> error. When the $ZF String Stack
is exhausted, $ZF issues a <STRINGSTACK> error. When $ZF is unable to allocate a buddyblock, it issues a <STORE>
error.

Execution from Child Processes and DLLs

The $ZF function can take a negative number as its first parameter. These negative numbers specify functions that support
spawned child processes and Dynamic-Link Libraries (DLLs). Each of these $ZF functions is described in a separate reference
page.

See Also
• $ZF(-100) function

• $ZF(-1) function (deprecated)

• $ZF(-2) function (deprecated)

• $ZF(-3) function

• $ZF(-4) function

• $ZF(-5) function

• $ZF(-6) function

• Using the Callout Gateway

554 ObjectScript Reference

ObjectScript Functions

BGCL_preface

$ZF(-1)
Executes an operating system command or program as a child process, synchronously. (Deprecated)

$ZF(-1,program)

Parameters

Optional — The operating system command or program to be executed as a child process,
specified as a quoted string. If you omit program, $ZF(-1) launches the operating system
shell.

program

Description

Note: $ZF(-1) is a deprecated function. It is described here for compatibility with existing code only. All new code
development should use $ZF(-100).

$ZF(-1) permits an InterSystems IRIS process to invoke a program or a command of the host operating system. It executes
the program or command specified in program as a spawned child process from the current console. It executes synchronously;
it waits for the process to return. $ZF(-1) returns the child process exit status.

$ZF(-1) returns the following status codes:

• It returns 0 if the child process executed successfully.

• It returns a positive integer based on the exit status error code issued by the operating system shell. This integer exit
status code value is determined by the host operating system. For example, for most Windows command syntax errors,
$ZF(-1) returns 1.

• It returns -1 if the child process could not be forked.

Because $ZF(-1) waits for a response from the spawned child process, you cannot successfully shut down InterSystems
IRIS while the child process is executing.

$ZF(-1) with no specified parameters launches the default operating system shell. For further details, see “Issuing Operating
System Commands” in Using the Callout Gateway.

If a pathname supplied in program contains a space character, pathname handling is platform-dependent. Windows and
UNIX® permit space characters in pathnames, but the entire pathname containing spaces must be enclosed in an additional
set of double quote (") characters. This is in accordance with the Windows cmd /c statement. For further details, specify
cmd /? at the Windows command prompt.

You can use the NormalizeFilenameWithSpaces() method of the %Library.File class to handle spaces in pathnames as
appropriate for the host platform.

$ZF(-1) requires the %System_Callout:U privilege. See “Adding the %System_Callout:USE Privilege” in Using the
Callout Gateway for details.

If $ZF(-1) is unable to spawn a process, it generates a <FUNCTION> error.

At the Terminal in the Terminal, you can perform operations similar to $ZF(-1) by using an exclamation point (!) or a
dollar sign ($) as the first character, followed by the operating system command you wish to execute. The ! or $ command
line prefix executes the operating system command, returns results from the invoked process and displays those results at
the Terminal. $ZF(-1) does not return operating system command results; it executes the operating system command, then
returns the exit status code for the invoked process. For further details, see “ Issuing Operating System Commands” in
Using the Callout Gateway.

ObjectScript Reference 555

$ZF(-1)

BGCL_syscall
BGCL_syscall
BGCL_preface
BGCL_preface
BGCL_preface
BGCL_syscall
BGCL_preface

Auditing

An OS command audit record is added to the audit log for each $ZF(-1) call. This record includes information such as the
following:

Execute O/S command Directory: c:\182u5\mgr\
Command: ls -lt 4002

$ZF(-1), $ZF(-2), and $ZF(-100)

These three functions are in most respects identical. $ZF(-100) is the preferred function for all purposes, replacing both
$ZF(-1) and $ZF(-2).

• $ZF(-1) executes using the OS shell. It is synchronous; it suspends execution of the current process while awaiting
completion of the spawned child process. It receives status information from the spawned process, which it returns as
an exit status code (an integer value) when the spawned process completes. $ZF(-1) does not set $ZCHILD.

• $ZF(-2) executes using the OS shell. It is asynchronous; it does not suspend execution of the current process. It
immediately returns a status value upon spawning the child process. Because it does not await completion of the
spawned child process it cannot receive status information from that process. $ZF(-2) sets $ZCHILD if its fifth
argument is true.

• $ZF(-100) can be synchronous or asynchronous. It can execute using the operating system shell or not using the shell.
It always sets $ZCHILD. Both $ZF(-1) and $ZF(-2) with no specified parameters launch the operating system shell;
$ZF(-100) requires a program parameter (and the /SHELL flag) to launch the operating system shell.

Examples
The following Windows example executes a user-written program, in this case displaying the contents of a .txt file. It uses
NormalizeFilenameWithSpaces() to handle a pathname for $ZF(-1). A pathname containing spaces is handled as appro-
priate for the host platform. A pathname that does not contain spaces is passed through unchanged. $ZF(-1) returns the
Windows shell exit status of 0 if the specified file could be accessed, or 1 if the file access failed:

 SET fname="C:\My Test.txt"
 WRITE fname,!
 SET x=##class(%Library.File).NormalizeFilenameWithSpaces(fname)
 WRITE x,!
 WRITE $ZF(-1,x)

The following Windows example invokes the Windows operating system SOL command. SOL opens a window that displays
the Solitaire game provided with the Windows operating system. Upon closing of the Solitaire interactive window, $ZF(-1)
returns the Windows shell exit status of 0, indicating success:

 SET x=$ZF(-1,"SOL")
 WRITE x

The following Windows example invokes a non-existent Windows operating system command. $ZF(-1) returns the Windows
shell exit status of 1, indicating a syntax error:

 WRITE $ZF(-1,"SOX")

The following Windows example invokes a Windows operating system command, specifying a non-existent network name.
$ZF(-1) returns the Windows shell exit error status of 2:

 WRITE $ZF(-1,"NET USE :k \\bogusname")

See Also
• $ZF(-2) function (deprecated)

• $ZF(-100) function

556 ObjectScript Reference

ObjectScript Functions

• Issuing Operating System Commands in Using the Callout Gateway

ObjectScript Reference 557

$ZF(-1)

BGCL_syscall
BGCL_preface

$ZF(-2)
Executes an operating system command or program as a child process, asynchronously. (Deprecated)

$ZF(-2,program)

Parameter

Optional — The operating system command or program to be executed as a child process,
specified as a quoted string. If you omit program, $ZF(-2) launches the operating system
shell.

program

Description

Note: $ZF(-2) is a deprecated function. It is described here for compatibility with existing code only. All new code
development should use $ZF(-100).

$ZF(-2) permits an InterSystems IRIS process to invoke a program or a command of the host operating system. $ZF(-2)
executes the operating system command specified in program as a spawned child process from the current console. It
executes asynchronously; it returns immediately after spawning the child process and does not wait for the process to ter-
minate. Input and output devices default to the null device.

$ZF(-2) does not return the child process exit status. Instead, if the child process was created successfully,$ZF(-2) returns
0. $ZF(-2) returns -1 if a child process could not be forked.

Because $ZF(-2) does not wait for a response from the spawned child process, you can shut down InterSystems IRIS while
the child process is executing.

$ZF(-2) closes the parent process principal device (specified in $PRINCIPAL) before executing the operating system
command. This is done because the child process executes concurrently with the parent. If $ZF(-2) did not close
$PRINCIPAL, output from the parent and the child would become intermingled. When using $ZF(-2) you should redirect
I/O in the command if you wish to recover output from the child process. For example:

 SET x=$ZF(-2,"ls -l > mydir.txt")

$ZF(-2) with no specified parameters launches the default operating system shell. For further details, see “Issuing Operating
System Commands” in Using the Callout Gateway.

If a pathname supplied in program contains a space character, pathname handling is platform-dependent. Windows and
UNIX® permit space characters in pathnames, but the entire pathname containing spaces must be enclosed in an additional
set of double quote (") characters. This is in accordance with the Windows cmd /c statement. For further details, specify
cmd /? at the Windows command prompt.

You can use the NormalizeFilenameWithSpaces() method of the %Library.File class to handle spaces in pathnames as
appropriate for the host platform.

$ZF(-2) is a privileged operation, which requires the %System_Callout:U privilege. See “Adding the %System_Call-
out:USE Privilege” in Using the Callout Gateway for details.

Auditing

An OS command audit record is added to the audit log for each $ZF(-2) call. This record includes information such as the
following:

Execute O/S command Directory: c:\182u5\mgr\
Command: ls -lt 4002 - Detached

558 ObjectScript Reference

ObjectScript Functions

BGCL_syscall
BGCL_syscall
BGCL_preface
BGCL_preface

The Detached keyword indicates the call is $ZF(-2); a $ZF(-1) call does not have this keyword.

$ZF(-2), $ZF(-1), and $ZF(-100)

These three functions are in most respects identical. $ZF(-100) is the preferred function for all purposes, replacing both
$ZF(-1) and $ZF(-2).

• $ZF(-2) executes using the OS shell. It is asynchronous; it does not suspend execution of the current process. It
immediately returns a status value upon spawning the child process. Because it does not await completion of the
spawned child process it cannot receive status information from that process. $ZF(-2) sets $ZCHILD if its fifth
argument is true.

• $ZF(-1) executes using the OS shell. It is synchronous; it suspends execution of the current process while awaiting
completion of the spawned child process. It receives status information from the spawned process, which it returns as
an exit status code (an integer value) when the spawned process completes. $ZF(-1) does not set $ZCHILD.

• $ZF(-100) can be synchronous or asynchronous. It can execute using the operating system shell or not using the shell.
It always sets $ZCHILD. Both $ZF(-1) and $ZF(-2) with no specified parameters launch the operating system shell;
$ZF(-100) requires a program parameter (and the /SHELL flag) to launch the operating system shell.

See Also
• $ZF(-1) function (deprecated)

• $ZF(-100) function

• $PRINCIPAL special variable

• Issuing Operating System Commands in Using the Callout Gateway

• Adding the %System_Callout:USE Privilege in Using the Callout Gateway

ObjectScript Reference 559

$ZF(-2)

BGCL_syscall
BGCL_preface
BGCL_preface

$ZF(-3)
Loads a Dynamic-Link Library (DLL) and executes a library function.

$ZF(-3,dll_name,func_name,args)

Parameters

The name of the dynamic-link library (DLL) to load, specified as a quoted string.When
a DLL is already loaded, dll_name can be specified as a null string ("").

dll_name

Optional — The name of the function to execute within the DLL, specified as a quoted
string.

func_name

Optional — A comma-separated list of arguments to pass to the function.args

Description
Use $ZF(-3) to load a Dynamic-Link Library (DLL) and execute the specified function from that DLL. $ZF(-3) returns
the function’s return value.

$ZF(-3) can be invoked in any of the following ways:

To just load a DLL:

 SET x=$ZF(-3,"mydll")

To load a DLL and execute a function located in that DLL:

 SET x=$ZF(-3,"mydll","$$myfunc",1)

Loading a DLL using $ZF(-3) makes it the current DLL, and automatically unloads the DLL loaded by a previous invocation
of $ZF(-3).

To execute a function located in a DLL loaded by a previous $ZF(-3), you can speed execution by specifying the current
DLL using the null string, as follows:

 SET x=$ZF(-3,"","$$myfunc2",1)

To explicitly unload the current DLL (loaded by a previous $ZF(-3) call):

 SET x=$ZF(-3,"")

$ZF(-3) can load only one DLL. Loading a DLL unloads the previous DLL. You can also explicitly unload the currently
loaded DLL, which would result in no currently loaded DLL. (However, note that $ZF(-3) loads and unloads do not affect
loads and unloads for use with $ZF(-5) or $ZF(-6), as described below.)

The DLL name specified can be a full pathname, or a partial pathname. If you specify a partial pathname, InterSystems
IRIS canonicalizes it to the current directory. Generally, DLLs are stored in the binary directory ("bin"). To locate the
binary directory, call the BinaryDirectory() method of the %SYSTEM.Util class. For further details, refer to the InterSystems
Class Reference.

Notes

Dynamic-Link Libraries

A DLL is a binary library that contains routines that can be loaded and called at runtime. When a DLL is loaded, InterSystems
IRIS finds a function named GetZFTable() within it. If GetZFTable() is present, it returns a pointer to a table of the
functions located in the DLL. Using this table, $ZF(-3) calls the specified function from the DLL.

560 ObjectScript Reference

ObjectScript Functions

Loading Multiple DLLs

Calls to $ZF(-3) can only load one DLL at a time; loading a DLL unloads the previous DLL. To load multiple DLLs con-
currently, execute DLL functions with $ZF(-5) or $ZF(-6). Loading or unloading a DLL using $ZF(-3) has no effect on
DLLs loaded for use with $ZF(-5) or $ZF(-6).

Loading a DLL Dependent on Another DLL

On Windows, some IRIS system DLLs that are installed in the bin directory are dependent on other DLLs in the bin
directory. Windows search rules do not find the dependencies in the bin directory unless bin is added to the process's PATH.
From $ZF(-3) if a DLL dependency cannot be resolved using the process’s PATH, IRIS issues a <DYNAMIC LIBRARY
LOAD> error.

However, if a dependent DLL is loaded using $ZF(-4), IRIS first searches the directory from which the DLL is being loaded
for dependent DLLs. The IRIS system does this by using a Windows load operation that temporarily adds the originating
directory to the PATH while the DLL is loaded. After being loaded by $ZF(-4), this dependent DLL can be used by $ZF(-3)
without changing the PATH.

See Also
• $ZF(-5) function

• $ZF(-6) function

• Using $ZF(-3) for Simple Library Function Calls in Using the Callout Gateway.

ObjectScript Reference 561

$ZF(-3)

BGCL_preface

$ZF(-4)
Provides utility functions used with $ZF(-5) and $ZF(-6).

$ZF(-4,1,dll_name)

$ZF(-4,n,dll_id,func_name)

$ZF(-4,n,dll_id,decr_flag)

$ZF(-4,n,dll_index,dll_name)

$ZF(-4,n,dll_index,decr_flag)

Parameters

A code for the type of operation to perform: 1=load DLL by name. 2=unload DLL by
id. 3=look up function in DLL by id. 4=unload DLL by index. 5=create an entry in the
system DLL index table. 6=delete an entry in the system DLL index table. 7=create
an entry in the process DLL index table. 8=delete an entry in the process DLL index
table.

n

The name of the dynamic-link library (DLL). Used with n=1, 5, or 7.dll_name

The id value of a loaded dynamic-link library (DLL). Used with n=2, or 3.dll_id

A user-defined index to a dynamic-link library (DLL) in a DLL index table. Must be a
unique, positive, nonzero integer. The numbers 1024 through 2047 are reserved for
system use. Used with n=4, 5, 6, 7, or 8.

dll_index

The name of the function to look up within the DLL. Used only when n=3.func_name

Optional — A flag for decrementing the DLL reference count. Used with n=2 or 4.decr_flag

Description
$ZF(-4) can be used to establish an ID value for a DLL or for a function within a DLL. These ID values are used by $ZF(-5)
to execute a function.

$ZF(-4) can be used to establish an index to a DLL index table. These index values are used by $ZF(-6) to execute a
function.

• You can explicitly load shared libraries using $ZF(-4,1), which loads a library and returns a handle that can be used
to access library functions with $ZF(-5).

• You can explicitly load a single shared library using $ZF(-3), which loads a single active library and invokes its
methods.

• You can implicitly load shared libraries using $ZF(-6), after indexing a library with $ZF(-4,5) or $ZF(-4,7).

562 ObjectScript Reference

ObjectScript Functions

Establishing ID Values

To load a DLL and return its ID, use the following syntax:

dll_id=$ZF(-4,1,dll_name)

To look up a function from a DLL loaded by $ZF(-4,1), and return an ID for that function, use the following syntax:

func_id=$ZF(-4,3,dll_id,func_name)

To execute a function located by $ZF(-4,3), use $ZF(-5).

To unload a specific DLL loaded by $ZF(-4,1), use the following syntax:

$ZF(-4,2,dll_id)

To unload all DLLs loaded by $ZF(-4,1), use the following syntax:

$ZF(-4,2)

Increment and Decrement DLL Loads

When two classes have loaded the same library, the library will be unloaded by the first call to $ZF(-4,2,dll_id) or
$ZF(-4,4,dll_index). This can leave the other class stranded without access to the library. For this reason, InterSystems
IRIS supports a reference count on each DLL. InterSystems IRIS maintains a reference count of the number of times a
library is loaded with $ZF(-4,1,dll_name). Each call to $ZF(-4,1,dll_name) increases the reference count.

$ZF(-4,2) provides an optional decrement flag argument, decr_flag. Each call to $ZF(-4,2,dll_id,1) decrements the reference
count by 1. A call to $ZF(-4,2,dll_id,1) unloads the library if the reference count goes to zero. A call to $ZF(-4,2,dll_id)
(or $ZF(-4,2,dll_id,0)) ignores the reference count and unloads the library immediately.

A call to $ZF(-4,5) or $ZF(-4,7) establishes a library index. Subsequent calls to $ZF(-6) to execute a function implicitly
loads the library and increment the reference count. Each call to $ZF(-4,4,dll_index,1) decrements this reference count by
1.

The reference count interactions between reference counts established by dll_name and dll_index are as follows:

• Libraries loaded with $ZF(-4,1,dll_name) are not unloaded by a call to $ZF(-4,4,dll_index,1) unless the reference
count is zero.

• Libraries loaded with $ZF(-4,1,dll_name) are immediately unloaded by either $ZF(-4,2,dll_id) or $ZF(-4,4,dll_index)
(with no decrement flag argument) with no regard to the reference count.

• Libraries loaded implicitly with $ZF(-6) are not unloaded by $ZF(-4,2,dll_id,1), even if the reference count goes to
zero; they can only be unloaded by $ZF(-4,4,dll_index,1).

• Libraries loaded implicitly with $ZF(-6) are immediately unloaded by either $ZF(-4,2,dll_id) or $ZF(-4,4,dll_index)
(with no decrement flag argument) with no regard to the reference count.

$ZF(-4,2) with no dll_id argument unloads all libraries immediately, without regard to the reference count, or whether they
were loaded with $ZF(-4,1,dll_name) or implicitly with $ZF(-6).

Loading a DLL Dependent on Another DLL

On Windows, some IRIS system DLLs that are installed in the bin directory are dependent on other DLLs in the bin
directory. Windows search rules do not find the dependencies in the bin directory unless bin is added to the process's PATH.
However, if one of these DLLs is invoked using $ZF(-4) or $ZF(-6), IRIS first searches the directory from which the DLL
is being loaded for dependent DLLs; if the dependent DLLs are not found there, the default search PATH is used. The IRIS
system does this by using a Windows load operation that temporarily adds the originating directory to the PATH while the

ObjectScript Reference 563

$ZF(-4)

DLL is loaded. This temporary PATH addition is used when the DLL is loaded by $ZF(-4) or $ZF(-6). This temporary
PATH addition is not used when the DLL is loaded by $ZF(-3).

If a DLL dependency cannot be resolved, IRIS issues a <DYNAMIC LIBRARY LOAD> error.

Establishing Index Values

To index a DLL in the system DLL index table, use the following syntax:

$ZF(-4,5,dll_index,dll_name)

To index a DLL in the process DLL index table, use the following syntax:

$ZF(-4,7,dll_index,dll_name)

To look up and execute a function indexed by $ZF(-4,5) or $ZF(-4,7), use $ZF(-6).

To unload an indexed DLL, use the following syntax:

$ZF(-4,4,dll_index)

To delete an index entry in the system DLL index table, use the following syntax:

$ZF(-4,6,dll_index)

To delete an index entry in the process DLL index table, use the following syntax:

$ZF(-4,8,dll_index)

To delete all index entries in the process DLL index table, use the following syntax:

$ZF(-4,8)

For a detailed description of how to use $ZF(-4) and $ZF(-5), refer to “Using $ZF(-5) to Access Libraries by System ID”
in Using the Callout Gateway.

For a detailed description of how to use $ZF(-4) and $ZF(-6), refer to “Using $ZF(-6) to Access Libraries by User Index”
in Using the Callout Gateway.

See Also
• $ZF(-3) function

• $ZF(-5) function

• $ZF(-6) function

• Using $ZF(-5) to Access Libraries by System ID in Using the Callout Gateway

• Using $ZF(-6) to Access Libraries by User Index in Using the Callout Gateway

564 ObjectScript Reference

ObjectScript Functions

BGCL_preface
BGCL_preface
BGCL_preface
BGCL_preface

$ZF(-5)
Executes a DLL function loaded using $ZF(-4).

$ZF(-5,dll_id,func_id,args)

Parameters

The ID value for the dynamic-link library (DLL), as supplied by $ZF(-4).dll_id

The ID value of the function within the DLL as supplied by $ZF(-4).func_id

Optional — One or more arguments passed to the called function.args

Description
To execute a function located in a DLL loaded using $ZF(-4), use the following syntax:

return=$ZF(-5,dll_id,func_id,args)

See Also
• $ZF(-4) function

• Using $ZF(-5) to Access Libraries by System ID in Using the Callout Gateway

ObjectScript Reference 565

$ZF(-5)

BGCL_preface

$ZF(-6)
Executes a DLL function indexed using $ZF(-4).

$ZF(-6,dll_index,func_ID,args)

Parameters

A user-specified index to a DLL filename in the DLL index tables, from $ZF(-4).dll_index

Optional — The ID value of the function within the DLL as supplied by $ZF(-4). If omitted,
call verifies the validity of DLL_index, loads the image, and returns the image location.

func_ID

Optional — The argument(s) to pass to the function, if any, specified as a
comma-separated list.

args

Description
$ZF(-6) provides a fast Dynamic Link Library (DLL) function interface using a user-defined index for a DLL filename.
You establish this user-defined index in $ZF(-4) by assigning an integer (dll_index) to uniquely associate with a dll_name.
You can place this entry in either a process DLL index table, or a system DLL index table.

Both $ZF(-5) and $ZF(-6) can be used to execute a function from a DLL. which has been located by $ZF(-4).

For a detailed description of how to use $ZF(-6), refer to “Using $ZF(-6) to Access Libraries by User Index” in Using the
Callout Gateway.

Loading a DLL Dependent on Another DLL

On Windows, some IRIS system DLLs that are installed in the bin directory are dependent on other DLLs in the bin
directory. Windows search rules do not find the dependencies in the bin directory unless bin is added to the process's PATH.
However, if one of these DLLs is invoked using $ZF(-4) or $ZF(-6), IRIS first searches the directory from which the DLL
is being loaded for dependent DLLs; if the dependent DLLs are not found there, the default search PATH is used. The IRIS
system does this by using a Windows load operation that temporarily adds the originating directory to the PATH while the
DLL is loaded. This temporary PATH addition is used when the DLL is loaded by $ZF(-4) or $ZF(-6). This temporary
PATH addition is not used when the DLL is loaded by $ZF(-3).

If a DLL dependency cannot be resolved, IRIS issues a <DYNAMIC LIBRARY LOAD> error.

See Also
• $ZF(-3) function

• $ZF(-4) function

• $ZF(-5) function

• Using $ZF(-6) to Access Libraries by User Index in Using the Callout Gateway

566 ObjectScript Reference

ObjectScript Functions

BGCL_preface
BGCL_preface
BGCL_preface

$ZF(-100)
Executes an operating system command or program as a child process.

$ZF(-100,flags,program,args)

Parameters

A quoted string containing one or more keyword flags. Multiple keyword flags are
separated by blank spaces. A keyword flag can take the format /keyword, /keyword=value,
or /keyword+=value. Keywords are not case-sensitive. The flags specify how to execute
program.

flags

An operating system command or a program to be executed as a child process, specified
as a quoted string.You can specify a full path, or just a program name. The operating
system uses its rules, such as a PATH environment variable, to search for the specified
program.

program

Optional — A comma-separated list of program options and arguments.You can specify
a null argument as "".You can use a local array and indirection .args or the args...
syntax to specify a variable number of arguments.

args

Description
$ZF(-100) permits an InterSystems IRIS process to invoke an executable program or a command of the host operating
system. It executes the program or command specified in program as a spawned child process from the current console.
$ZF(-100) allows you to invoke a program or command either synchronously or asynchronously, with or without invoking
the operating system shell. $ZF(-100) provides similar functionality to $ZF(-1) and $ZF(-2). Its use is preferable to $ZF(-1)
or $ZF(-2), which are both deprecated functions.

You can use a local array and indirection to specify a variable number of args, as shown in the following UNIX® example:

 SET args=2
 SET args(1)="-01"
 SET args(2)="myfile.c"
 SET status = $ZF(-100,"/ASYNC", "gcc",.args)

$ZF(-100) sets $ZCHILD to the PID of the started program.

You can execute $ZF(-100) as an argument of the DO command. DO $ZF(-100) differs in two ways from calling $ZF(-100)
as a function:

• DO ignores the returned integer status code.

• You can append an argument postconditional expression to $ZF(-100). For example, DO:x $ZF(-100,"",
"gcc",.args):y $ZF(-100,"/ASYNC", "gcc",.args):z specifies three postconditionals. It does not execute
the DO command when x=0, it does not execute “gcc” synchronously when y=0, and does not execute “gcc” asyn-
chronously when z=0. A postconditional expression prevents execution, but does not prevent argument evaluation.

Keyword Flags

How $ZF(-100) executes depends on the flags string values:

• /ASYNC: Execute program asynchronously; do not wait for it to complete. The default is to execute synchronously.

If /ASYNC is not specified and /STDIN, /STDOUT, or /STDERR is not specified, InterSystems IRIS attempts to use
the operating systems’ current descriptors or standard handles for these files.

• /SHELL: Execute program using a shell. The default is to not use a shell.

ObjectScript Reference 567

$ZF(-100)

• /STDIN=filename: I/O redirection input file.

• /STDOUT=filename: I/O redirection standard data output file. If filename does not exist, the system will create it.
If filename exists, /STDOUT=filename will overwrite existing data; /STDOUT+=filename will append to existing
data.

• /STDERR=filename: I/O redirection standard error output file. If filename does not exist, the system will create it.
If filename exists, /STDERR=filename will overwrite existing error log data; /STDERR+=filename will append
to existing error log data. If you specify the same file for /STDOUT and /STDERR, both types of data will be written
to that file.

• /LOGCMD: log the resulting command line in messages.log. Because sometimes it can be hard to get the arguments for
complex commands right, this keyword flag allows developers to check if the arguments passed to the command are
being correctly formed (especially with regard to quoting). The log facility does not add any quotes or other delimiters.
The messages.log entry is truncated at 1000 characters.

• /NOQUOTE: inhibit automatic quoting of commands, command arguments, or filenames. By default, $ZF(-100) provides
automatic quoting, and escaping of spaces in paths that is appropriate for most user-supplied values. When needed,
you can override this default by specifying /NOQUOTE; the user is then responsible for providing appropriate quotes.
See Quoting User-Specified Values.

To specify $ZF(-100) with no keyword flags, specify the empty string for this parameter:

 SET status = $ZF(-100,"", "ls", "-l")

I/O Redirection

I/O redirection for /STDIN=filename, /STDOUT=filename, and /STDERR=filename follow UNIX® conventions.
On both UNIX and Windows systems:

• /STDIN=filename: The file with that filename is linked to the stdin file handle given to the process that executes
the specified cmd string.

• /STDOUT=filename: If a file with that filename does not already exist, it is created. For an existing file,
/STDOUT=filename truncates the file to zero size; /STDOUT+=filename appends to the existing file data. This
file is linked to the stdout handle given to the process that executes the specified cmd string. This creates a new file
containing the stdout output of the spawned command.

• /STDERR=filename: If a file with that filename does not already exist, it is created. For an existing file,
/STDERR=filename truncates the file to zero size; /STDERR+=filename appends to the existing file data. This
file is linked to the stderr handle given to the process that executes the specified cmd string. This creates a new file
containing the stderr output of the spawned command.

If /STDIN, /STDOUT, or /STDERR is not specified:

• If /ASYNC is specified, the null device is used in place of the unspecified file(s). A handle that references the null
device is given to the process that executes the specified cmd string as the unspecified file’s handle.

• If /ASYNC is not specified, the handle used by the IRIS job executing the $ZF(-100) function is copied and is given
to the process that executes the specified cmd string as the unspecified file’s handle.

Note: On a Windows system you should never omit both the /ASYNC and /STDIN flags.

If /STDIN, /STDOUT, or /STDERR specifies a file that cannot be created or opened, the null device is used in place of the
file.

If /STDOUT=filename and /STDERR=filename (or /STDOUT+=filename and /STDERR+=filename) specify the
same filename, the specified file is only opened or created once. The resulting file handle is duplicated and supplied as
both the stdout and stderr file handles given to the process that executes the specified cmd string. $ZF(-100) generates an

568 ObjectScript Reference

ObjectScript Functions

<ILLEGAL VALUE> error if you specify the same file for /STDOUT and /STDERR, and one is specified +=filename
and the other is specified =filename.

Quoting User-Specified Values

By default,$ZF(-100) provides automatic quoting of a command and the arguments to the command. It automatically
handles blank spaces if your executable is in a directory with spaces in the name or a command argument specifies a file
for output that contains a space. $ZF(-100) supplies delimiting double quote characters as needed. This behavior is shown
in the following example:

 DO $ZF(-100,"/LOGCMD","c:\sdelete64.exe","-nobanner","c:\dir1\nested directory\deleteme\")

This logs the following to messages.log; $ZF(-100) quoted the final argument to escape the space in the file path:

06/14/18-14:25:05:988 (3788) 0 $ZF(-100) cmd=c:\sdelete64.exe -nobanner "c:\dir1\nested directory\deleteme\"
06/14/18-14:25:06:020 (3788) 0 $ZF(-100) ret=0

If the automatic quoting provided does not correctly escape what you want escaped, you can override it using /NOQUOTE.

The /NOQUOTE flag suppresses automatic quoting; you must do your own quoting, as needed. If a specified value contains
a / character or a blank space, the value must be quoted using doubled double quotes. This is shown in the following
example:

 DO $ZF(-100,"/NOQUOTE /LOGCMD","c:\sdelete64.exe","""-nobanner""","""c:\dir2\""")

This logs the following to messages.log:

06/15/18-09:27:38:619 (3788) 0 $ZF(-100) cmd=c:\sdelete64.exe "-nobanner" "c:\dir2\"
06/15/18-09:27:38:650 (3788) 0 $ZF(-100) ret=0

The behavior differs on UNIX® and Windows systems:

• On a Windows system, if /SHELL is not specified, a command line is created and passed. In this case, some arguments
may need to be quoted.

• On any system, when /SHELL is specified, a command line is created and passed. In this case some arguments may
need to be quoted.

Double quotes found within a command or command argument are escaped. On Windows these double quotes are escaped
by doubling them as "" (as shown in the above examples). On UNIX they are escaped as \".

Return Status Codes

$ZF(-100) returns the following status codes:

• 0 if the child process was successfully launched asynchronously (with /ASYNC flag). Status of program execution
unknown.

• -1 if the child process could not be forked.

• An integer if launched synchronously (no /ASYNC flag). This integer exit status code value is determined by the
application called on the host operating system. Commonly it is a positive integer, but some applications may return
a negative integer. For example, for most Windows command syntax errors, $ZF(-100) returns 1.

$ZF(-100) with the /SHELL parameter launches the default operating system shell. For further details, see “ Issuing
Operating System Commands” in Using the Callout Gateway.

If a pathname supplied in program contains a space character, pathname handling is platform-dependent. Windows and
UNIX® permit space characters in pathnames, but the entire pathname containing spaces must be enclosed in an additional
set of double quote (") characters. This is in accordance with the Windows cmd /c statement. For further details, specify
cmd /? at the Windows command prompt.

ObjectScript Reference 569

$ZF(-100)

BGCL_syscall
BGCL_syscall
BGCL_preface

You can use the NormalizeFilenameWithSpaces() method of the %Library.File class to handle spaces in pathnames as
appropriate for the host platform.

$ZF(-100) requires the %System_Callout:U privilege. See “Adding the %System_Callout:USE Privilege” in Using
the Callout Gateway for details.

If $ZF(-100) is unable to spawn a process, it generates a <FUNCTION> error.

Error Handling

$ZF(-100) generates a <NOTOPEN> error if:

• The /STDIN=filename, /STDOUT=filename, or /STDERR=filename could not be opened.

• The specified program could not be started.

The error is logged in SYSLOG. The operating system error number and message are available from the
%SYSTEM.Process.OSError() method.

Auditing

An OS command audit record is added to the audit log for each $ZF(-100) call. This record includes information such as
the following:

Command: /Users/myname/IRIS/jlc/bin/clmanager 4002
Flags: /ASYNC/SHELL

$ZF(-100) , $ZF(-1), and $ZF(-2)

These three functions are in most respects identical. They differ in the following ways:

• $ZF(-100) can be synchronous or asynchronous. It can execute using the operating system shell or not using the shell.
It always sets $ZCHILD. Both $ZF(-1) and $ZF(-2) with no specified parameters launch the operating system shell;
$ZF(-100) requires a program parameter (and the /SHELL flag) to launch the operating system shell.

$ZF(-100) is the preferred function for all purposes, replacing both $ZF(-1) and $ZF(-2).

• $ZF(-1) executes using the OS shell. It is synchronous; it suspends execution of the current process while awaiting
completion of the spawned child process. It receives status information from the spawned process, which it returns as
an exit status code (an integer value) when the spawned process completes. $ZF(-1) does not set $ZCHILD.

• $ZF(-2) executes using the OS shell. It is asynchronous; it does not suspend execution of the current process. It
immediately returns a status value upon spawning the child process. Because it does not await completion of the
spawned child process it cannot receive status information from that process. $ZF(-2) sets $ZCHILD if its fifth
argument is true.

See Also
• $ZF(-1) function

• $ZF(-2) function

• $ZCHILD special variable

• Issuing Operating System Commands in Using the Callout Gateway

570 ObjectScript Reference

ObjectScript Functions

BGCL_preface
BGCL_preface
BGCL_syscall
BGCL_preface

$ZHEX
Converts a hexadecimal string to a decimal number and vice versa.

$ZHEX(num)
$ZH(num)

Parameter

An expression that evaluates to a numeric value be converted, either a quoted string or an integer
(signed or unsigned).

num

Description
$ZHEX converts a hexadecimal string to a decimal integer, or a decimal integer to a hexadecimal string.

If num is a string value, $ZHEX interprets it as the hexadecimal representation of a number, and returns that number in
decimal. Be sure to place the string value within quotation marks.

If num is a numeric value, $ZHEX converts it to a string representation of the number in hexadecimal format. If either the
initial or the final numeric value cannot be represented as an 8-byte signed integer, $ZHEX issues a <FUNCTION> error.

You can perform the same hexadecimal/decimal conversions using the HexToDecimal() and DecimalToHex() methods
of the %SYSTEM.Util class:

 WRITE $SYSTEM.Util.DecimalToHex("27")

 WRITE $SYSTEM.Util.HexToDecimal("27"),!
 WRITE $SYSTEM.Util.HexToDecimal("1B")

$ZHEX can be used with $CHAR to specify a Unicode character using its hexadecimal character code:
$CHAR($ZHEX("hexnum")).

Parameter

num

A string value or a numeric value, a variable that contains a string value or a numeric value, or an expression that evaluates
to a string value or a numeric value.

A string value is read as a hexadecimal number and converted to a positive decimal integer. $ZHEX recognizes both
uppercase and lowercase letters “A” through “F” as hexadecimal digits. It truncates leading zeros. It does not recognize
plus and minus signs or decimal points. It stops evaluation of a string when it encounters a non-hexadecimal character.
Therefore, the strings “F”, “f”, “00000F”, “F.7”, and “FRED” all evaluate to decimal 15. If the first character encountered
in a string is not a hexadecimal character, $ZHEX evaluates the string as zero. Therefore, the strings “0”, “0.9”, “+F”, “-
F”, and “H” all evaluate to zero. The null string ("") is an invalid value and issues a <FUNCTION> error.

An integer value is read as a decimal number and converted to hexadecimal. An integer can be positive or negative. $ZHEX
recognizes leading plus and minus signs. It truncates leading zeros. It evaluates nested arithmetic operations. However, it
does not recognize decimal points. It issues a <FUNCTION> error if it encounters a decimal point character. Therefore,
the integers 217, 0000217, +217, -+-217 all evaluate to hexadecimal D9. -217, -0000217, and -+217 all evaluate to
FFFFFFFFFFFFFF27 (the twos complement). Other values, such as floating point numbers, trailing signs, and nonnumeric
characters result in a <FUNCTION> or <SYNTAX> error.

Examples
 WRITE $ZHEX("F")

ObjectScript Reference 571

$ZHEX

returns 15.

 WRITE $ZHEX(15)

returns F.

 WRITE $ZHEX("1AB8")

returns 6840.

 WRITE $ZHEX(6840)

returns 1AB8.

 WRITE $ZHEX("XXX")

returns 0.

 WRITE $ZHEX(-1)

returns FFFFFFFFFFFFFFFF.

 WRITE $ZHEX((3+(107*2)))

returns D9.

Notes

Forcing a Hexadecimal Interpretation

To force an integer value to be interpreted as hexadecimal, concatenate any non-hexadecimal character to the end of your
num parameter. For example:

 WRITE $ZHEX(16_"H")

returns 22.

See Also
• ZZDUMP command

• $ASCII function

• $CHAR function

572 ObjectScript Reference

ObjectScript Functions

$ZISWIDE
Checks whether a string contains any 16-bit wide characters.

$ZISWIDE(string)

Parameter

A string of one or more characters, enclosed in quotation marks.string

Description
$ZISWIDE is a boolean function used to check whether a string contains any 16-bit wide character values. It returns one
of the following values:

All characters have ASCII values 255 or less (8-bit characters). A null string ("") also returns 0.0

One or more characters have an ASCII value greater than 255 (wide characters).1

$ZISWIDE checks the character values to determine if they are in the ASCII range (0-255), and thus could be represented
by 8 bits, or in the wide character range (256-65535) and thus use all 16 bits of the Unicode character.

Example
In the following example, the first two commands test strings that contain all narrow (8-bit) character values and return 0.
The third command tests a string containing a wide character value (the second character), and therefore, returns 1:

 WRITE $ZISWIDE("abcd"),","
 WRITE $ZISWIDE($CHAR(71,83,77)),","
 WRITE $ZISWIDE($CHAR(71,300,77))

This example returns 0,0,1.

See Also
• $ZPOSITION function

• $ZWASCII function

• $ZWCHAR function

• $ZWIDTH function

ObjectScript Reference 573

$ZISWIDE

$ZLASCII
Converts a four-byte string to a number.

$ZLASCII(string,position)
$ZLA(string,position)

Parameters

A string that can be specified as a value, a variable, or an expression. It must be a
minimum of four bytes in length.

string

Optional — A starting position in the string. The default is 1.position

Description
The value $ZLASCII returns depends on the parameters you use.

• $ZLASCII(string) returns a numeric interpretation of a four-byte string, starting with the first character position of
string.

• $ZLASCII(string,position) returns a numeric interpretation of a four-byte string beginning at the starting position
specified by position.

Upon successful completion, $ZLASCII always returns a positive integer. $ZLASCII returns -1 if string is of an invalid
length, or position is an invalid value.

Notes

$ZLASCII and $ASCII

$ZLASCII is similar to $ASCII except that it operates on four byte (32-bit) words instead of single 8-bit bytes. For two
byte (16-bit) words use $ZWASCII; for eight byte (64-bit) words, use $ZQASCII.

$ZLASCII(string,position) is the functional equivalent of:

$ASCII(string,position+3)*256 + $ASCII(string,position+2)*256 + $ASCII(string,position+1)*256 +
$ASCII(string,position)

$ZLASCII and $ZLCHAR

The $ZLCHAR function is the logical inverse of the $ZLASCII function. For example:

 SET x=$ZLASCII("abcd")
 WRITE !,x
 SET y=$ZLCHAR(x)
 WRITE !,y

Given “abcd” $ZLASCII returns 1684234849. Given 1684234849 $ZLCHAR returns “abcd”.

See Also
• $ASCII function

• $ZLCHAR function

• $ZWASCII function

• $ZQASCII function

574 ObjectScript Reference

ObjectScript Functions

$ZLCHAR
Converts a number to a four-byte string.

$ZLCHAR(n)
$ZLC(n)

Parameter

A positive integer in the range 0 through 4294967295. It can be specified as a value, a variable, or an
expression.

n

Description
$ZLCHAR returns a four-byte (long) character string for n. The bytes of the character string are presented in little-endian
byte order, with the least significant byte first.

If n is out of range or a negative number, $ZLCHAR returns the null string.

Notes

$ZLASCII and $ZLCHAR

The $ZLASCII function is the logical inverse of $ZLCHAR. For example:

 SET x=$ZLASCII("abcd")
 WRITE !,x
 SET y=$ZLCHAR(x)
 WRITE !,y

Given “abcd” $ZLASCII returns 1684234849. Given 1684234849 $ZLCHAR returns “abcd”.

$ZLCHAR and $CHAR

$ZLCHAR is similar to $CHAR, except that it operates on four byte (32-bit) words instead of single 8-bit bytes. For two
byte (16-bit) words use $ZWASCII; for eight byte (64-bit) words, use $ZQASCII.

$ZLCHAR is the functional equivalent of the following form of $CHAR:

 SET n=$ZLASCII("abcd")
 WRITE !,n
 WRITE !,$CHAR(n#256,n\256#256,n\(256**2)#256,n\(256**3))

Given “abcd” $ZLASCII returns 1684234849. Given 1684234849, this $CHAR statement returns “abcd”.

See Also
• $ZLASCII function

• $CHAR function

• $ZWCHAR function

• $ZQCHAR function

ObjectScript Reference 575

$ZLCHAR

$ZLN
Returns the natural logarithm of the specified number.

$ZLN(n)

Parameter

Any positive nonzero number, which can be specified as a value, a variable, or an expression.n

Description
$ZLN returns the natural logarithm (base e) value of n.

Specifying zero or a negative number results in an <ILLEGAL VALUE> error.

The corresponding natural logarithm power function is $ZEXP.

Examples
The following example writes the natural log of the integers 1 through 10:

 FOR x=1:1:10 {
 WRITE !,"The natural log of ",x," = ",$ZLN(x)
 }
 QUIT

returns:

The natural log of 1 = 0
The natural log of 2 = .6931471805599453089
The natural log of 3 = 1.098612288668109691
The natural log of 4 = 1.386294361119890618
The natural log of 5 = 1.609437912434100375
The natural log of 6 = 1.791759469228055002
The natural log of 7 = 1.945910149055313306
The natural log of 8 = 2.079441541679835929
The natural log of 9 = 2.197224577336219384
The natural log of 10 = 2.302585092994045684

The following example shows the relationship between $ZLN and $ZEXP:

 SET x=$ZEXP(1) ; x = 2.718281828459045236
 WRITE $ZLN(x)

returns 1.

 WRITE $ZLN(0)

issues an <ILLEGAL VALUE> error.

See Also
• $ZEXP function

• $ZLOG function

• $ZPI special variable

576 ObjectScript Reference

ObjectScript Functions

$ZLOG
Returns the base 10 logarithm value of the specified positive numeric expression.

$ZLOG(n)

Parameter

Any positive, nonzero number, which can be specified as a value, a variable, or an expression.n

Description
$ZLOG returns the base 10 logarithm value of n.

Specifying zero or a negative number results in an <ILLEGAL VALUE> error.

The corresponding natural log (base e) function is $ZLN.

Examples
The following example writes the base 10 logarithms of the integers 1 through 10:

 FOR x=1:1:10 {
 WRITE !,"The log of ",x," = ",$ZLOG(x)
 }
 QUIT

returns:

The log of 1 = 0
The log of 2 = .301029995663981195
The log of 3 = .477121254719662437
The log of 4 = .60205999132796239
The log of 5 = .698970004336018805
The log of 6 = .778151250383643633
The log of 7 = .845098040014256831
The log of 8 = .903089986991943586
The log of 9 = .954242509439324875
The log of 10 = 1

 WRITE $ZLOG($ZPI)

returns .4971498726941338541.

 WRITE $ZLOG(.5)

returns -.301029995663981195.

 WRITE $ZLOG(0)

issues an <ILLEGAL VALUE> error.

See Also
• $ZEXP function

• $ZLN function

• $ZPI special variable

ObjectScript Reference 577

$ZLOG

$ZNAME
Validates the specified name string as a legal identifier.

$ZNAME(string,type,lang)

Parameters

The name to evaluate, specified as a quoted string.string

Optional — An integer code specifying the type of name validation to perform. Valid values
are 0 through 6. The default is 0.

type

Optional — An integer code specifying the language mode to use when validating string.
Valid values are 0 through 12. The default is to use the current language mode.

lang

Description
$ZNAME returns 1 (true) if the string parameter is a legal identifier. Otherwise, $ZNAME returns 0 (false). The optional
type parameter determines what type of name validation to perform on the string. If this parameter is omitted, the validation
defaults to local variable naming conventions. The optional lang parameter specifies what language mode conventions to
apply to the validation.

Your locale may not permit the use of an identifier that $ZNAME validates as a legal identifier. The valid identifier char-
acters for your locale are defined in the National Language Support (NLS) Identifier locale setting; they are not user-mod-
ifiable. For further details on NLS, refer to the section on “System Classes for National Language Support” in Specialized
System Tools and Utilities.

$ZNAME only performs character validation; it does not perform string length validation for identifiers.

Parameters

string

A quoted string to validate as a legal identifier name. The characters a valid string can contain depend both on the type of
identifier to validate (specified by type), the language mode (lang), and the definition of your locale. The string specifies
only the identifier name; it should not include prefix characters, such as the caret (^) prefix and the optional delimited
namespace name prefix for a global, or suffix characters, such an array subscript or parameter parentheses. By default, the
following are valid identifier characters in InterSystems IRIS:

• Uppercase letters: A through Z ($CHAR(65) through $CHAR(90))

• Lowercase letters: a through z ($CHAR(97) through $CHAR(122))

• Letters with accent marks: ($CHAR(192) through $CHAR(255), exclusive of $CHAR(215) and $CHAR(247))

• Unicode letters: Letters in non-Latin character sets, such as Greek or Cyrillic letters. For example, $CHAR(256) through
$CHAR(687) and $CHAR(913) through $CHAR(1153) exclusive of $CHAR(930) and $CHAR(1014).

• Digits: 0 through 9 ($CHAR(48) through $CHAR(57)) subject to positional restrictions for some identifiers

• The percent sign: % ($CHAR(37)) subject to positional restrictions for some identifiers

$ZNAME also accepts as valid characters $CHAR(170), $CHAR(181), and $CHAR(186).

Note: The Japanese locale does not support accented Latin letter characters in identifiers. Japanese identifiers may
contain (in addition to Japanese characters) the Latin letter characters A-Z and a-z (65–90 and 97–122), and the
Greek capital letter characters (913–929 and 931–937).

578 ObjectScript Reference

ObjectScript Functions

type

An integer code specifying the type of name validation to perform:

Restricted CharactersMeaningValue

First character only: %

Subsequent characters only: digits 0–9

Validate a local variable name.0

First character only: %

Subsequent characters only: digits 0–9
and the period (.) character. A period
cannot be the first or last character in a
routine name.

Validate a routine name.1

First character only: %Validate a label (tag) name.2

First character only: %

Subsequent characters only: digits 0–9
and the period (.) character. A period
cannot be the first or last character in a
global name.

Validate a global or process-private global name.3

First character only: %

Subsequent characters only: digits 0–9
and the period (.) character. A period
cannot be the first or last character in a
routine name. (See below.)

Validate a fully qualified class name.4

First character only: %

Subsequent characters only: digits 0–9

Validate a method name.5

First character only: %

Subsequent characters only: digits 0–9

Validate a property name6

If type = 0 (or not specified), an identifier that passes validation may be used for a local variable name, or for any other
type of ObjectScript name. This is the most restrictive form of validation. The first character of a valid identifier must be
either a percent sign (%) or a valid letter character. The second and subsequent characters of a valid identifier must be either
a valid letter character or a digit.

If type = 2, an identifier that passes validation may be used for a line label. This is the only type of identifier that allows a
digit (0–9) as the first character. Specify only the label name; do not specify a colon prefix (used in triggers) or parameter
parentheses following the label name.

If type = 3, an identifier that passes validation may be used for global and process-private global names. However, global
and process-private global names cannot include wide characters; $ZNAME considers wide-character letters to be valid
identifier characters for all name validation types. Therefore, if type=3, an identifier containing wide character letters passes
$ZNAME validation, but generates a <WIDE CHAR> error when used as a global name or process-private global name.

If type = 4, an identifier that passes validation may be used for a class name. A class name can contain periods, with the
following restrictions: a period may not be immediately followed by a number character or by another period. These

ObjectScript Reference 579

$ZNAME

restrictions on the use of periods do not apply to type=1 and type=3 validation. No valid identifier of any type may have a
period as the first or last character of string.

lang

An integer code specifying the language mode to use for validation. InterSystems IRIS applies the conventions of the
specified language mode to the validation without changing the current language mode. (For a list of available current
language modes, see the LanguageMode() method of the %SYSTEM.Process class.) The default is for $ZNAME to use
the language mode conventions of the current language mode. Because all InterSystems IRIS language modes use the same
naming conventions, lang can be omitted and take the default.

Examples
The following example shows the $ZNAME function validating the expressions as true (1). Note that the last two examples
contain periods, which are permitted in routine names (type=1) and global names (type=3):

 WRITE !,$ZNAME("A")
 WRITE !,$ZNAME("A1")
 WRITE !,$ZNAME("%A1",0)
 WRITE !,$ZNAME("%A1",1)
 WRITE !,$ZNAME("A.1",1)
 WRITE !,$ZNAME("A.1",3)

In the following example, the first $ZNAME fails validation (returns 0) because (by default) it validates for a local variable
name, and the first character of a local variable name cannot be a digit. The second $ZNAME passes validation (returns
1) because type=2 specifies label validation, and first character of a label name can be a digit.

 WRITE "local var: ",$ZNAME("1A"),!
 WRITE "label: ",$ZNAME("1A",2)

The following example fails validation for all type values. InterSystems IRIS names of all types cannot contain a percent
sign unless it is the first character of the name:

 FOR i=0:1:6 {
 WRITE "type ",i," is ",$ZNAME("A%1",i),!
 }

The following example shows the full set of valid 8-bit identifier characters for local variable names. These valid identifier
characters include the letter characters ASCII 192 through ASCII 255, with the exceptions of ASCII 215 and ASCII 247,
which are arithmetic symbols:

 FOR n=1:1:255 {
 IF $ZNAME("A"_$CHAR(n),0) & $ZNAME($CHAR(n),0){
 WRITE !,$ZNAME($CHAR(n))," ASCII code=",n," Char.=",$CHAR(n) }
 ELSEIF $ZNAME($CHAR(n),0){
 WRITE !,$ZNAME($CHAR(n))," ASCII code=",n," 1st Char.=",$CHAR(n) }
 ELSEIF $ZNAME("A"_$CHAR(n),0){
 WRITE !,$ZNAME("A"_$CHAR(n))," ASCII code=",n," Subseq. Char.=",$CHAR(n) }
 ELSE { }
 }
 WRITE !,"All done"

The following example passes validation on InterSystems IRIS. The Greek letters specified are valid Unicode letters and
thus pass $ZNAME validation. However, this name cannot be used for a global or process-private global (type=3), and
may not be usable with some locales (such as the Japanese locale):

 WRITE $C(913)_$C(961)_$C(947)_$C(959),!
 FOR i=0:1:6 {
 WRITE "type ",i," is ",$ZNAME($C(913)_$C(961)_$C(947)_$C(959),i),!
 }

580 ObjectScript Reference

ObjectScript Functions

SQL Identifiers
SQL identifiers may include punctuation characters (underscore (_), at sign (@), pound sign (#), and dollar sign ($)) that
are not valid characters in ObjectScript identifiers. SQL routine names may not include the percent sign (%) at any location
other than the first character. For further details, see Identifiers in the Using InterSystems SQL.

See Also
• ObjectScript Symbols table

• InterSystems SQL Symbols table

ObjectScript Reference 581

$ZNAME

$ZPOSITION
Returns the number of characters in an expression that can fit within a specified field width.

$ZPOSITION(expression,field,pitch)

Parameters

A string expression.expression

An integer expression that specifies field width.field

Optional — A numeric expression that specifies the pitch value to use for full-width
characters. The default is 2. Other permissible values are 1, 1.25, and 1.5.

pitch

Description
$ZPOSITION returns the number of characters in expression that can fit within the field value. The pitch value determines
the width to use for full-width characters. All other characters receive a default width of 1 and are considered to be half-
width. Because half-width characters count as 1, field also expresses the number of half-width characters that fit in field.

$ZPOSITION adds the widths of the characters in the expression one at a time until the cumulative width equals the value
of field or until there are no more characters in expression. The result is thus the number of characters that will fit within
the specified field value including any fractional part of a character that would not completely fit.

Examples
In the following example, assume that the variable string contains two half-width characters followed by a full-width
character.

 WRITE $ZPOSITION(string,3,1.5)

returns 2.6666666666666666667.

In the above example, the first two characters in string fit in the specified field width with one left over. The third character
in string, a full-width character with a width of 1.5 (determined by the pitch argument), would not completely fit, although
two thirds (1/1.5) of the character would fit. The fractional part of the result indicates that fact.

In the following example, string is now a string that contains a full-width character followed by two half-width characters.
The result returned is 2.5:

 WRITE $ZPOSITION(string,3,1.5)

The results are now different. This is because the first two characters, which have a combined width of 2.5, would completely
fit with .5 left over. Even so, only half of the third character (.5/1) would fit.

Finally, if string is a string that contains three half-width characters then all three characters would completely (and exactly)
fit, and the result would be 3:

 WRITE $ZPOSITION(string,3,1.5)

Note: Full-width characters are determined by examining the pattern-match table loaded for your InterSystems IRIS
process. Any character with the full-width attribute is considered to be a full-width character. The special
ZFWCHARZ patcode can be used to check for this attribute (for example, char?1ZFWCHARZ). For more
information about the full-width attribute, see the description of the $X/$Y Tab in the section on “System Classes
for National Language Support” in Specialized System Tools and Utilities.

582 ObjectScript Reference

ObjectScript Functions

See Also
• $ZWIDTH function

• $ZZENKAKU function

ObjectScript Reference 583

$ZPOSITION

$ZPOWER
Returns the value of a number raised to a specified power.

$ZPOWER(num,exponent)

Parameters

The number to be raised to a power.num

The exponent.exponent

Description
$ZPOWER returns the value of the num parameter raised to the nth power.

This function performs the same operation as the Exponentiation operator (**). For details on valid parameter values and
the value returned for specific combinations of parameter values, see Exponentiation Operator in the “Operators and
Expressions” chapter of Using ObjectScript.

Parameters

num

The number to be raised to a power. It can be integer or floating point, negative, positive, or zero. It can be a standard
InterSystems IRIS number or an IEEE double-precision binary floating-point number (a $DOUBLE number). It can be
specified as a value, a variable, or an expression.

If you specify num as a quoted string, the string is parsed as a number, as described in “Strings as Numbers” in the “Data
Types and Values” chapter of Using ObjectScript. The null string ("") and nonnumeric strings evaluate to zero.

exponent

The exponent is a number that can be integer or floating point, negative, positive, or zero. It can be a standard InterSystems
IRIS number or an IEEE double-precision binary floating-point number (a $DOUBLE number). It can be specified as a
numeric or string value, a variable, or an expression.

If you specify exponent as a quoted string, the string is parsed as a number, as described in “Strings as Numbers” in the
“Data Types and Values” chapter of Using ObjectScript. The null string ("") and nonnumeric strings evaluate to zero.

The following combinations of num and exponent result in an error:

• If num is negative, exponent must be an integer. Otherwise an <ILLEGAL VALUE> error is generated.

• If num is 0, exponent must be a positive number or zero. Otherwise an <ILLEGAL VALUE> or <DIVIDE> error is
generated.

• Large exponent values, such as $ZPOWER(9,153) may result in an overflow, generating a <MAXNUMBER> error,
or may result in an underflow, returning 0. Which result occurs depends on whether num is greater than 1 (or -1), and
whether exponent is positive or negative. A <MAXNUMBER> error occurs when an operation exceeds the largest
number that InterSystems IRIS supports. For further details, refer to “Extremely Large Numbers” in the “Data Types
and Values” chapter of Using ObjectScript.

For further details on valid parameter values and the value returned for specific combinations of parameter values, see
Exponentiation Operator in the “Operators and Expressions” chapter of Using ObjectScript.

584 ObjectScript Reference

ObjectScript Functions

Examples
The following example raises 2 to the first ten powers:

 SET x=0
 WHILE x < 10 {
 SET rtn=$ZPOWER(2,x)
 WRITE !,"The ",x," power of 2=",rtn
 SET x=x+1 }

See Also
• $ZSQR function

• $ZEXP function

• $ZLN function

• $ZLOG function

• Operators in Using ObjectScript

ObjectScript Reference 585

$ZPOWER

$ZQASCII
Converts an eight-byte string to a number.

$ZQASCII(string,position)
$ZQA(string,position)

Parameters

A string. It can be a value, a variable, or an expression. It must be a minimum of eight
bytes in length.

string

Optional — A starting position in the string, expressed as a positive integer. The default
is 1. Position is counted in single bytes, not eight-byte strings. The position cannot be
the last byte in the string, or beyond the end of the string. A numeric position value is
parsed as an integer by truncating decimal digits, removing leading zeros and plus signs,
etc.

position

Description
The value that $ZQASCII returns depends on the parameters you use.

• $ZQASCII(string) returns a numeric interpretation of an eight-byte string starting at the first character position of
string.

• $ZQASCII(string,position) returns a numeric interpretation of an eight-byte string beginning at the starting byte
position specified by position.

$ZQASCII can return either a positive or a negative integer.

$ZQASCII issues a <FUNCTION> error if string is of an invalid length, or position is an invalid value.

Example
The following example determines the numeric interpretation of the character string "abcdefgh":

 WRITE $ZQASCII("abcdefgh")

It returns 7523094288207667809.

The following examples also return 7523094288207667809:

 WRITE !,$ZQASCII("abcdefgh",1)
 WRITE !,$ZQASCII("abcdefghxx",1)
 WRITE !,$ZQASCII("xxabcdefghxx",3)

Notes

$ZQASCII and $ASCII

$ZQASCII is similar to $ASCII except that it operates on eight byte (64-bit) words instead of single 8-bit bytes. For 16-
bit words use $ZWASCII; for 32-bit words, use $ZLASCII.

$ZQASCII and $ZQCHAR

The $ZQCHAR function is the logical inverse of $ZQASCII. For example:

 WRITE $ZQASCII("abcdefgh")

586 ObjectScript Reference

ObjectScript Functions

returns: 7523094288207667809.

 WRITE $ZQCHAR(7523094288207667809)

returns “abcdefgh”.

See Also
• $ASCII function

• $ZQCHAR function

ObjectScript Reference 587

$ZQASCII

$ZQCHAR
Converts a number to an eight-byte string.

$ZQCHAR(n)
$ZQC(n)

Parameter

An integer in the range -9223372036854775808 through 9223372036854775807. It can be specified
as a value, a variable, or an expression.

n

Description
$ZQCHAR returns an eight-byte (quad) character string corresponding to the binary representation of n. The bytes of the
character string are presented in little-endian byte order, with the least significant byte first.

$ZQCHAR issues a <FUNCTION> error if n is invalid.

Example
The following example returns the eight-byte string for the integer 7523094288207667809:

 WRITE $ZQCHAR(7523094288207667809)

returns: “abcdefgh”

Notes

$ZQCHAR and $CHAR

$ZQCHAR is similar to $CHAR except that it operates on eight byte (64-bit) words instead of single 8-bit bytes. For 16-
bit words use $ZWCHAR; for 32-bit words, use $ZLCHAR.

$ZQCHAR and $ZQASCII

$ZQASCII is the logical inverse of the $ZQCHAR function. For example:

 WRITE $ZQCHAR(7523094288207667809)

returns: abcdefgh

 WRITE $ZQASCII("abcdefgh")

returns: 7523094288207667809

See Also
• $ZQASCII function

• $CHAR function

• $ZLCHAR function

• $ZWCHAR function

588 ObjectScript Reference

ObjectScript Functions

$ZSEARCH
Returns the full file specification, pathname and filename, of a specified file.

$ZSEARCH(target)
$ZSE(target)

Parameter

A filename, a pathname, or a null string. May contain one or more * or ? wildcard characters.target

Description
$ZSEARCH returns the full file specification (pathname and filename) of a specified target file or directory. The filename
may contain wild cards so that $ZSEARCH can return a series of fully qualified pathnames that satisfy the wild carding.

Note: Some operating systems use the slash (/) character as the directory path delimiter. Other operating systems use
the backslash (\) character. In this Description, the word “slash” means either slash or backslash, as appropriate.

If the target parameter does not specify a pathname, $ZSEARCH searches the current working directory. $ZSEARCH
applies the rules in its matching process in the following order:

1. $ZSEARCH scans the target to see if it is surrounded with percent characters (%). If $ZSEARCH finds such text, it
treats the string as an environment variable. $ZSEARCH performs name translation on the string.

2. $ZSEARCH scans the string that results from the previous step to find the final slash. If $ZSEARCH finds a final
slash, it uses the string up to, but not including, the final slash as the path or directory to be searched. If $ZSEARCH
does not find a final slash, it searches the current working directory, which is determined by the current namespace.

3. If $ZSEARCH found a final slash in the previous step, it uses the portion of the target string following the final slash
as the filename search pattern. If $ZSEARCH did not find a final slash in the previous step, it uses the whole string
that results from Step 1 as the filename search pattern.

The filename search pattern can be any legal filename string or a filename wildcard expression. The first filename that
matches the search pattern is returned as the $ZSEARCH function value. Which is the first matching file is platform-
dependent (as described in the Notes section).

If the next invocation of $ZSEARCH specifies the null string as the target, $ZSEARCH continues with the previous target
and returns the next filename that matches the search pattern. When there are no more files that match the search pattern,
$ZSEARCH returns a null string.

The NormalizeDirectory() method of the %Library.File class can also be used to return the full pathname of a specified
file or directory, as shown in the following example:

 NEW $NAMESPACE
 SET $NAMESPACE="%SYS"
 WRITE ##class(%Library.File).NormalizeDirectory("IRIS.DAT"),!
 NEW $NAMESPACE
 SET $NAMESPACE="USER"
 WRITE ##class(%Library.File).NormalizeDirectory("IRIS.DAT")

However, NormalizeDirectory() cannot use wildcards.

Wildcards

$ZSEARCH allows the use of the following wildcard expressions within the quoted target string.

ObjectScript Reference 589

$ZSEARCH

MatchWildcard

Matches any string of zero or more characters.*

Matches a single character. On Windows systems matches one or zero characters at the
end of a name element.

?

These wildcards follow the host platform’s usage rules. On Windows, $ZSEARCH performs a case-independent search,
then returns the actual case of the located file or directory. For example, “j*” can match “JOURNAL”, “journal”, or
“Journal”; the actual directory name is “Journal”, which is what is returned.

On Windows and UNIX® systems you can also use the following standard pathname symbols: a single dot (.) to specify
the current directory, or a double dot (..) to specify its parent directory. These symbols can be used in combination with
wildcard characters.

Parameters

target

The following are the available types of values for the target parameter:

DescriptionTarget Type

An expression that evaluates to a string specifying the path to the file or group of files
you want to list. A path may be up to 1,024 characters in length.

pathname

A filename. The default location is the current dataset.filename

Returns the next matching file name from the previous $ZSEARCH.null string ("")

Examples
The following Windows examples find all files ending with “.DAT” as a file extension in the USER namespace.

 NEW $NAMESPACE
 SET $NAMESPACE="USER"
 SET file=$ZSEARCH("*.DAT")
 WHILE file'="" {
 WRITE !,file
 SET file=$ZSEARCH("")
 }
 WRITE !,"That is all the matching files"
 QUIT

returns:

c:\InterSystems\IRIS\mgr\user\IRIS.DAT

The following Windows example finds all files beginning with the letter “i” in the USER namespace.

 NEW $NAMESPACE
 SET $NAMESPACE="USER"
 SET file=$ZSEARCH("i*")
 WHILE file'="" {
 WRITE !,file
 SET file=$ZSEARCH("")
 }
 WRITE !,"That is all the matching files"
 QUIT

returns:

c:\InterSystems\IRIS\mgr\user\IRIS.DAT
c:\InterSystems\IRIS\mgr\user\iris.lck

590 ObjectScript Reference

ObjectScript Functions

Notes

Directory Locking

In order to give accurate results, the process keeps the directory open until $ZSEARCH has returned all files in the directory
(that is, until $ZSEARCH returns a null string, or a new $ZSEARCH is started). This may prevent other operations, such
as deleting the directory. When you start a $ZSEARCH you should always repeat the $ZSEARCH("") until it returns a
null string. An alternative, if you do not want to retrieve all files, is to issue $ZSEARCH with a filename that you know
does not exist, such as $ZSEARCH(-1).

Windows Support

For Windows, the target parameter is a standard file specification, which may contain wildcard characters (* and ?).

• The * wildcard can be used to match a dot, but the ? wildcard cannot. Therefore, “MYFILE*” matches MYFILE-
FOLDER, MYFILE.DOC, and MYFILEBACKUP.DOC; “MYFILE?DOC” does not match MYFILE.DOC.

• The ? wildcard does not match zero characters within a name element. Therefore, “MY?FILE.DOC” matches
MY2FILE.DOC, but does not match MYFILE.DOC.

• The ? wildcard matches zero characters at the end of a name element. Extra trailing ? wildcards are ignored. Therefore,
“MYFILE?.DOC” matches both MYFILE2.DOC and MYFILE.DOC.

If you do not specify a directory, the current working directory is used. $ZSEARCH returns the first matching entry in the
directory in alphabetical order. It returns the full file specification or fully qualified pathname. The drive letter is always
returned as an uppercase letter, regardless of how it was specified.

By default, Windows checks only the first three characters of a filename extension suffix. Therefore, $ZSEARCH("*.doc")
would return not only all files with the .doc suffix, but also all files with the .docx suffix. If you wish to limit your search
to only .docx files, you must specify the four character suffix: $ZSEARCH("*.docx"). You cannot use trailing ? wildcards
to limit your search to suffixes longer than three characters.

UNIX® Support

For UNIX®, the target parameter is a standard UNIX® file specification, which may contain wildcard characters (* and
?). If you do not specify a directory, the current working directory is used.

For UNIX®, $ZSEARCH returns the first active entry in the directory. Since UNIX® does not keep the directory entries
in alphabetical order, the returned values are not in alphabetical order. Unlike Windows platforms, the $ZSEARCH function
does not return the full file specification or fully qualified pathnames, unless the current working directory is used.

ObjectScript Reference 591

$ZSEARCH

$ZSEC
Returns the trigonometric secant of the specified angle value.

$ZSEC(n)

Parameter

Angle in radians ranging from 0 to 2 Pi. It can be specified as a value, a variable, or an expression.n

Description
$ZSEC returns the trigonometric secant of n. The result is a signed decimal number. The secant of 0 is 1. The secant of pi
is -1.

Note: InterSystems IRIS uses the host operating system’s routines to calculate trigonometric functions. For this reason,
results obtained from different operating systems may not precisely match.

Parameter

n

An angle in radians ranging from Pi to 2 Pi (inclusive). It can be specified as a value, a variable, or an expression. You can
specify the value Pi by using the $ZPI special variable. You can specify positive or negative values smaller than Pi or
larger than 2 Pi; InterSystems IRIS resolve these values to the corresponding multiple of Pi. For example, 3 Pi is equivalent
to Pi, and negative Pi is equivalent to Pi.

A non-numeric string is evaluated as 0, and therefore $ZSEC returns 1.

Example
The following example permits you to compute the secant of a number:

 READ "Input a number: ",num
 IF $ZABS(num)>(2*$ZPI) { WRITE !,"number is a larger than 2 pi" }
 ELSE {
 WRITE !,"the secant is: ",$ZSEC(num)
 }
 QUIT

See Also
• $ZCSC function

• $ZPI special variable

592 ObjectScript Reference

ObjectScript Functions

$ZSEEK
Establishes a new offset into the current sequential file.

$ZSEEK(offset,mode)

Parameters

The offset into the current file in characters, specified as an integer. Can be zero, a positive
integer, or a negative integer.

offset

Optional — An integer value that determines the relative position of the offset. 0=beginning,
1=current position, 2=end. The default is 0.

mode

Description
$ZSEEK establishes a new offset into the current device. The current device must be a sequential file. If the current device
is not a sequential file, $ZSEEK issues a <FUNCTION> error.

The mode parameter determines the point from which offset is based: beginning, current position, or end.

$ZSEEK returns the current position in the file after performing the offset. $ZSEEK without parameters returns the current
position in the file without performing an offset.

$ZSEEK can only be used when the device is a sequential file. Invoking $ZSEEK from the Terminal, or when there is no
open sequential file results in a <FUNCTION> error. If there is no specifically set current device, $ZSEEK assumes that
the device is the principal device.

The $ZPOS special variable contains the current file position. It is the same as the value returned by $ZSEEK(0,1) or
$ZSEEK() (with no parameters).

Parameters

offset

The offset (in characters) from the point established by mode. This is an offset, not a position. Therefore an offset of 0 from
the beginning of the file is position 1, the start of the file. An offset of 1 is position 2, the second character of the file.

An offset can be a position after the end of the file. $ZSEEK fills with blanks for the specified offset.

An offset can be a negative number if mode is 1 or 2. Specifying a negative number that results in a position before the
beginning of the file results in a <FUNCTION> error.

mode

The valid values are:

Offset is relative to the beginning of the file (absolute).0

Offset is relative to the current position.1

Offset is relative to the end of the file.2

If you do not specify a mode value, $ZSEEK assumes a mode value of 0.

ObjectScript Reference 593

$ZSEEK

Examples
The following Windows example opens a sequential file and writes “AAA”, $ZSEEK(10) establishes an offset 10 characters
from the beginning of the file (filling with 7 blanks), the example writes “BBB” at that position, then $ZSEEK() with no
parameters returns the resulting offset from the beginning of the file (in this case, 13).

 SET $TEST=0
 SET myfile="C:\InterSystems\IRIS\mgr\user\zseektestfile.txt"
 OPEN myfile:("WNS"):10
 IF $TEST=0 {WRITE "OPEN failed" RETURN}
 USE myfile
 WRITE "AAA"
 SET rtn=$ZSEEK(10)
 WRITE "BBB"
 SET rtnend=$ZSEEK()
 CLOSE myfile
 WRITE "set offset:",rtn," end position:",rtnend

The following Windows example writes the letter “A” to a sequential file ten times, with increasing numbers of blank
spaces between them. It uses $ZPOS to determine the current file position:

 SET $TEST=0
 SET myfile="C:\InterSystems\IRIS\mgr\user\zseektestfile2.txt"
 OPEN myfile:("WNS"):10
 IF $TEST=0 {WRITE "OPEN failed" RETURN}
 USE myfile
 FOR i=1:1:10 {WRITE "A" SET rtn=$ZSEEK($ZPOS+i,0)}
 CLOSE myfile

See Also
• OPEN command

• USE command

• CLOSE command

• $ZPOS special variable

• Sequential File I/O in I/O Device Guide

594 ObjectScript Reference

ObjectScript Functions

$ZSIN
Returns the trigonometric sine of the specified angle value.

$ZSIN(n)

Parameter

Angle in radians ranging from Pi to 2 Pi (inclusive). Other supplied numeric values are converted to a
value within this range.

n

Description
$ZSIN returns the trigonometric sine of n. The result is a signed decimal number ranging from 1 to -1 (see note). $ZSIN(0)
returns 0. $ZSIN($ZPI/2) returns 1.

Note: $ZSIN (like all trigonometric functions) calculates its values based on pi rounded to the number of available
decimal digits. Therefore, the value returned by $ZSIN($ZPI) is .000000000000000000462644 and
$ZSIN($ZPI*2) is –.00000000000000000092529. For this reason you should not perform limit tests comparing
these returned values to 0.

Parameter

n

An angle in radians ranging from Pi to 2 Pi (inclusive). It can be specified as a value, a variable, or an expression. You can
specify the value Pi by using the $ZPI special variable. You can specify positive or negative values smaller than Pi or
larger than 2 Pi; InterSystems IRIS resolve these values to the corresponding multiple of Pi. For example, 3 Pi is equivalent
to Pi, and negative Pi is equivalent to Pi.

A non-numeric string is evaluated as 0.

Examples
The following example permits you to compute the sine of a number:

 READ "Input a number: ",num
 IF $ZABS(num)>(2*$ZPI) { WRITE !,"number is a larger than 2 pi" }
 ELSE {
 WRITE !,"the sine is: ",$ZSIN(num)
 }
 QUIT

The following example compares the results from InterSystems IRIS fractional numbers ($DECIMAL numbers) and
$DOUBLE numbers. In both cases, the sine of pi is a fractional number (not 0), but the sine of pi/2 is set to exactly 1:

 WRITE !,"the sine is: ",$ZSIN($ZPI)
 WRITE !,"the sine is: ",$ZSIN($DOUBLE($ZPI))
 WRITE !,"the sine is: ",$ZSIN($ZPI/2)
 WRITE !,"the sine is: ",$ZSIN($DOUBLE($ZPI)/2)

In the following example, all $ZSIN functions return zero (0):

 WRITE !,"the sine is: ",$ZSIN(0.0)
 WRITE !,"the sine is: ",$ZSIN(-0.0)
 WRITE !,"the sine is: ",$ZSIN($DECIMAL(0.0))
 WRITE !,"the sine is: ",$ZSIN($DOUBLE(0.0))
 WRITE !,"the sine is: ",$ZSIN($DECIMAL(-0.0))
 WRITE !,"the sine is: ",$ZSIN($DOUBLE(-0.0))
 WRITE !,"the sine is: ",$ZSIN(-$DECIMAL(0.0))
 WRITE !,"the sine is: ",$ZSIN(-$DOUBLE(0.0))

ObjectScript Reference 595

$ZSIN

This is true on all platforms, including AIX.

See Also
• $ZCOS function

• $ZARCSIN function

• $ZPI special variable

596 ObjectScript Reference

ObjectScript Functions

$ZSQR
Returns the square root of a specified number.

$ZSQR(n)

Parameter

Any positive number, or zero. (The null string and nonnumeric string values are treated as a zero.)
Can be specified as a value, a variable, or an expression.

n

Description
$ZSQR returns the square root of n. It returns the square root of 1 as 1. It returns the square root of 0 and the square root
of a null string ("") as 0. Specifying a negative number invokes an <ILLEGAL VALUE> error. You can use the absolute
value function $ZABS to convert negative numbers to positive numbers.

Examples
The following example returns the square root of a user-supplied number.

 READ "Input number for square root: ",num
 IF num<0 { WRITE "ILLEGAL VALUE: no negative numbers" }
 ELSE { WRITE $ZSQR(num) }
 QUIT

Here are some specific examples:

 WRITE $ZSQR(2)

returns 1.414213562373095049.

 WRITE $ZSQR($ZPI)

returns 1.772453850905516027.

See Also
• $ZABS function

• $ZPOWER function

ObjectScript Reference 597

$ZSQR

$ZSTRIP
Removes types of characters and individual characters from a specified string.

$ZSTRIP(string,action,remchar,keepchar)

Parameters

The string to be stripped.string

What to strip from string. An action consists of an action code followed by a one or more
mask codes. The mask code is optional when specifying remchar. An action is specified
as a quoted string.

action

Optional — A string of specific character values to remove. If action does not contain a
mask code, remchar lists the characters to remove. If action contains a mask code,
remchar lists additional characters to remove that are not covered by the action
parameter’s mask code.

remchar

Optional — A string of specific character values to not remove that are designated for
removal by the action parameter’s mask code. A mask code must be specified to specify
keepchar.

keepchar

Description
The $ZSTRIP function removes types of characters and/or individual character values from the specified string. In the
action parameter you specify an action code indicating the kind of remove operation to perform, and (optionally) a mask
code specifying the types of characters to remove. You can specify individual character values to remove using the remchar
parameter. $ZSTRIP can remove both types of characters (such as all lowercase letters) and listed character values (such
as the letters “AEIOU”) in the same operation. You can use the optional remchar and keepchar parameters to modify the
effects of the action parameter’s mask code by specifying individual character values to remove or to keep.

For further information, refer to the Pattern Matching Operators section of Using ObjectScript. You can also select types
of characters, character sequences, and ranges of characters using the Regular Expression functions $LOCATE and $MATCH.

Parameters

action

A string indicating what characters to strip, specified as an action code, optionally followed by one or more mask codes.

Action Codes

Strip all characters that match the mask code(s).*

Strip leading characters that match the mask code(s).<

Strip trailing characters that match the mask code(s).>

Strip leading and trailing characters that match the mask code(s).<>

Strip repeating characters that match the mask code(s). When encountering a series of repeated
characters, this code strips the duplicate characters leaving a single instance. This code only strips
duplicate adjacent characters. Thus stripping “a” from “aaaaaabc” yields “abc”, but stripping “a” from
“abaca” returns the string “abaca” unchanged. The duplicate character test is case-sensitive.

=

Strip leading, trailing, and repeating characters that match the mask code(s).<=>

598 ObjectScript Reference

ObjectScript Functions

An action code can consist of the * character, or any combination of a single <, >, or = character.

To strip types of characters, the action string should consist of an action code followed by one or more mask codes. To
strip specific character values, omit the mask code, and specify a remchar value. You can specify both a mask code and a
remchar value. If you specify neither a mask code nor a remchar value, $ZSTRIP returns string.

Mask Codes

Strip everything.E

Strip all alphabetic characters.A

Strip punctuation characters, including blank spaces.P

Strip control characters (0-31, 127-159).C

Strip numeric characters. Note that a numeric string is not converted to canonical form before applying
$ZSTRIP.

N

Strip lowercase alphabetic characters.L

Strip uppercase alphabetic characters.U

Strip whitespaces ($C(9), $C(32), $C(160)).W

Mask codes can be specified as uppercase or lowercase characters.

A mask code character can be preceded by a Unary Not (') meaning do not remove characters of this type. You must specify
at least one mask code without a Unary Not before specifying a Unary Not mask code. All mask codes without a Unary
Not must precede the mask codes with a Unary Not.

remchar

Specific characters to remove, specified as a quoted string. These remchar characters can be specified in any order and
duplicates are permitted.

If you do not specify a mask code, $ZSTRIP applies the action parameter to the remchar character(s). If you specify a
mask code, remchar specifies one or more additional characters to remove. For example, if you specified in the action
parameter that you want to remove all numeric characters ("*N"), but you also want to remove the letter “E” (used to rep-
resent scientific notation), you would add the string “E” as the remchar parameter, as shown in the second $ZSTRIP:

 SET str="first:123 second:12E3"
 WRITE $ZSTRIP(str,"*N"),!
 WRITE $ZSTRIP(str,"*N","E")

keepchar

Specific characters not to remove. For example, if you specified that you wanted to remove all white spaces and alphabetic
characters (*WA), but preserve uppercase M, you would add the string “M” as the keepchar parameter.

Examples
The following example strips out all numeric characters. Because a numeric string is not converted to canonical form, the
characters + and E are not stripped out:

 SET str="+123E4"
 WRITE $ZSTRIP(str,"*N")

returns: +E

In the following example, the first $ZSTRIP strips all punctuation characters, the second $ZSTRIP strips all punctuation
characters except whitespace characters.

ObjectScript Reference 599

$ZSTRIP

 SET str="ABC#$%^ DEF& *GHI***"
 WRITE $ZSTRIP(str,"*P"),!
 WRITE $ZSTRIP(str,"*P'W")

The following example strips out all characters, except lowercase letters ('L). However, the example uses the remchar
parameter to strip the lowercase x while preserving all other lowercase characters:

 SET str="xXx-Aa BXXbx Cxc Dd xxEeX^XXx"
 WRITE $ZSTRIP(str,"*E'L","x")

returns: abcde

The following example strips out all characters, except lowercase letters ('L). In this case, the example does not specify a
remchar parameter value (but does specify the delimiting commas), but does specify the keepchar parameter to preserve
uppercase A, B, and C:

 SET str="X-Aa BXXb456X CXc Dd XXEeX^XFFFfXX"
 WRITE $ZSTRIP(str,"*E'L",,"ABC")

returns: AaBbCcdef

The following example does not specify a mask code; it specifies to remove the letters “X” and “x” wherever they occur
in the string. All other characters in the string are returned.

 SET str="+x $1x,x23XX4XX.X56XxxxxxX"
 WRITE $ZSTRIP(str,"*","Xx")

returns: + $1,234.56

The following example does not specify a mask code; it specifies to remove the character “x” as a leading or trailing char-
acter, and to removed repeating “x”s wherever they occurs within the string:

 SET str="xxxxx00xx0111xxx01x0000xxxxx"
 WRITE $ZSTRIP(str,"<=>","x")

returns: 00x0111x01x0000

The following example strips out all numeric, alphabetic, and punctuation characters, except whitespace and lowercase
letters. Note that all mask codes without a Unary Not must precede any mask codes with a Unary Not:

 SET str="Aa66*&% B&$b Cc987 #Dd Ee"
 WRITE $ZSTRIP(str,"*NAP'W'L")

returns: a b c d e

The following example strips out leading, trailing, and repeating characters that match the mask code A (all alphabetic
characters):

 SET str="ABC123DDDEEFFffffGG5555567HI JK"
 WRITE $ZSTRIP(str,"<=>A")

It returns 123DEFfG5555567HI; $ZSTRIP stripped leading characters (ABC) until it encountered a character of a type
not included in the mask (1), and stripped trailing characters from the end of the string until it encountered a non-mask
character (the blank space). Repeated characters of the mask type were reduced to a single occurrence (DDDEE = DE);
note that the repeat test is case-sensitive (FFffff = Ff). Repeated characters that are not of the mask type (55555) are unaf-
fected.

The following example strips out all characters except the hexadecimal digits 0–9 and A-F:

 SET str="123$ GYJF870B-QD @#%+"
 WRITE $ZSTRIP(str,"*E'N",,"ABCDEF")

returns: 123F870BD

600 ObjectScript Reference

ObjectScript Functions

See Also
• $EXTRACT function

• $ZCONVERT function

• $LOCATE and $MATCH functions for Regular Expressions

• Pattern Matching operators in Using ObjectScript

ObjectScript Reference 601

$ZSTRIP

$ZTAN
Returns the trigonometric tangent of the specified angle value.

$ZTAN(n)

Parameter

An angle in radians ranging from Pi to 2 Pi (inclusive). Other supplied numeric values are converted
to a value within this range.

n

Description
$ZTAN returns the trigonometric tangent of n. The result is a signed decimal number.

Note: $ZTAN (like all trigonometric functions) calculates its values based on pi rounded to the number of available
decimal digits. Therefore, the value returned by $ZTAN($ZPI) is –.000000000000000000462644 and
$ZTAN(–$ZPI) is .000000000000000000462644. For this reason you should not perform limit tests comparing
these returned values to 0. $ZTAN(0) is 0.

Parameter

n

An angle in radians ranging from 0 to 2 Pi. It can be specified as a value, a variable, or an expression.

A non-numeric string is evaluated as 0.

Examples
The following example permits you to compute the tangent of a number:

 READ "Input a number: ",num
 WRITE !,"the tangent is: ",$ZTAN(num)
 QUIT

The following example compares the results from InterSystems IRIS fractional numbers ($DECIMAL numbers) and
$DOUBLE numbers. In both cases, the tangent of 0 is exactly 0, but the tangent of pi is a negative fractional number (not
exactly 0):

 WRITE !,"the tangent is: ",$ZTAN(0.0)
 WRITE !,"the tangent is: ",$ZTAN($DOUBLE(0.0))
 WRITE !,"the tangent is: ",$ZTAN($ZPI)
 WRITE !,"the tangent is: ",$ZTAN($DOUBLE($ZPI))
 WRITE !,"the tangent is: ",$ZTAN(1.0)
 WRITE !,"the tangent is: ",$ZTAN($DOUBLE(1.0))

See Also
• $ZARCTAN function

• $ZSIN function

• $ZPI special variable

602 ObjectScript Reference

ObjectScript Functions

$ZTIME
Validates a time and converts it from internal format to the specified display format.

$ZTIME(htime,tformat,precision,erropt,localeopt)
$ZT(htime,tformat,precision,erropt,localeopt)

Parameters

The internal system time that can be specified as a numeric value, the name of a
variable, or as an expression.

htime

Optional — An integer value that specifies the format in which you want to return the
time value.

tformat

Optional — A numeric value that specifies the number of decimal places of precision
in which you want to express the time. If omitted, fractional seconds are truncated.

precision

Optional — The expression returned if the htime parameter is considered invalid.erropt

Optional — A boolean flag that specifies which locale to use.When 0, the current locale
determines the time separator, and the other characters, strings, and options used to
format times. When 1, the ODBC locale determines these characters, strings, and
options.The ODBC locale cannot be changed; it is used to format date and time strings
that are portable between InterSystems IRIS processes that have made different
National Language Support (NLS) choices. The default is 0.

localeopt

Omitted parameters between specified parameter values are indicated by placeholder commas. Trailing placeholder commas
are not required, but are permitted. Blank spaces are permitted between the commas that indicate an omitted parameter.

Description
The $ZTIME function converts an internal system time, htime, specified in the time format from the special variable
$HOROLOG or $ZTIMESTAMP, to a printable format. If no optional parameters are used, the time will be returned in
the format: “hh:mm:ss”; where “hh” is hours in a 24–hour clock, “mm” is minutes, and “ss” is seconds. Otherwise, the
time will be returned in the format specified by the value of the tformat and precision parameters.

Parameters

htime

This value represents the number of elapsed seconds since midnight. It is the second component of a $HOROLOG value,
which can be extracted by using $PIECE($HOROLOG,",",2). htime can be an integer, or a fractional number with the
number of fractional digits of precision specified by precision.

For tformat values –1 through 4, htime valid values must have their integer portion in the range 0 through 86399. (-0 is
treated as 0.) Values outside of this range generate an <ILLEGAL VALUE> error. For tformat values 9 and 10, htime valid
values can also include negative numbers and numbers greater than 86399.

tformat

Supported values are as follows:

ObjectScript Reference 603

$ZTIME

Descriptiontformat

Get the effective format value from the TimeFormat property of the current locale, which defaults
to a value of 1. This is the default behavior if you do not specify tformat and localeopt is
unspecified or 0.

-1

Express time in the form "hh:mm:ss" (24-hour clock).1

Express time in the form “hh:mm” (24-hour clock).2

Express time in the form “hh:mm:ss[AM/PM]” (12-hour clock).3

Express time in the form “hh:mm[AM/PM]” (12-hour clock).4

To determine the default time format for your locale, invoke the GetFormatItem() NLS class method:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("TimeFormat")

In 12-hour clock formats, morning and evening are represented by time suffixes, here shown as AM and PM. To determine
the default time suffixes for your locale, invoke the following NLS class methods:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("AM"),!
 WRITE ##class(%SYS.NLS.Format).GetFormatItem("PM"),!

precision

The function displays fractional seconds carried out to the number of decimal places specified in the precision parameter.
For example, if you enter a value of 3 as precision, $ZTIME displays fractional seconds to three decimal places. If you
enter a value of 9, $ZTIME displays fractional seconds to nine decimal places. Supported values are as follows:

DescriptionValue

Gets the precision value from the TimePrecision property of the current locale, which defaults to
a value of 0. This is the default behavior if you do not specify precision.

-1

A value that is greater than or equal to 0 results in the expression of time to n decimal places.n

If set to 0, or defaults to a value of 0, fractional seconds are truncated.0

To determine the default time precision for your locale, invoke the GetFormatItem() NLS class method:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("TimePrecision")

erropt

This parameter suppresses error messages associated with invalid htime values. Instead of generating <ILLEGAL VALUE>
error messages, the function returns the value indicated by erropt.

localeopt

This parameter selects either the user’s current locale definition (0) or the ODBC locale definition (1) as the source for
time options. The ODBC locale cannot be changed; it is used to format date and time strings that are portable between
InterSystems IRIS processes that have made different National Language Support (NLS) choices.

The ODBC locale time definitions are as follows:

• Time format defaults to 1. Time separator is ":". Time precision is 0 (no fractional seconds).

• AM and PM indicators are "AM" and "PM". The words "Noon" and "Midnight" are used.

604 ObjectScript Reference

ObjectScript Functions

Examples
To return the current local time using the special variable $HOROLOG, you must use the $PIECE function to specify
the second piece of $HOROLOG. The following returns the time in the 24–hour clock format “13:55:11”:

 WRITE $ZTIME($PIECE($HOROLOG,",",2),1)

In the examples that follow, htime is set to $PIECE($HOROLOG,",",2) for the current time. These examples show how
to use the various forms of $ZTIME to return different time formats.

The following example in many cases returns time in the format "13:28:55"; however, this format is dependent on locale:

 SET htime=$PIECE($HOROLOG,",",2)
 WRITE $ZTIME(htime)

The following example returns time in the format "13:28:55":

 SET htime=$PIECE($HOROLOG,",",2)
 WRITE $ZTIME(htime,1)

The following example returns time in the format "13:28:55.999":

 SET htime=$PIECE($HOROLOG,",",2)
 WRITE $ZTIME(htime,1,3)

The following example returns time in the format "13:28:55.999999999":

 SET htime=$PIECE($HOROLOG,",",2)
 WRITE $ZTIME(htime,1,9)

The following example returns time in the format "13:28":

 SET htime=$PIECE($HOROLOG,",",2)
 WRITE $ZTIME(htime,2)

The following example returns time in the format "01:28:24PM":

 SET htime=$PIECE($HOROLOG,",",2)
 WRITE $ZTIME(htime,3)

The following example returns time in the format "01:28PM":

 SET htime=$PIECE($HOROLOG,",",2)
 WRITE $ZTIME(htime,4)

The following example returns time in the format “13:45:56.021”, the current UTC time with three decimal places of pre-
cision:

 SET t=$ZTIME($PIECE($ZTIMESTAMP,",",2),1,3)
 WRITE "Current UTC time is ",t

Notes

Invalid Parameter Values

• You receive a <FUNCTION> error if you specify an invalid tformat value.

• You receive an <ILLEGAL VALUE> error for all tformat except 9 and 10 if you specify a value for htime outside the
allowed range of 0 to 86399 (inclusive) and do not supply an erropt value.

Decimal Delimiter

$ZTIME will use the value of the DecimalSeparator property of the current locale as the delimiter between the whole and
fractional parts of numbers. The default value of DecimalSeparator is “.”; all documentation examples use this delimiter.

ObjectScript Reference 605

$ZTIME

To determine the default decimal separator for your locale, invoke the GetFormatItem() NLS class method:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("DecimalSeparator")

Time Delimiter

By default, InterSystems IRIS uses the value of the TimeSeparator property of the current locale to determine the delimiter
character for the time string. By default, the delimiter is “:”; all documentation examples use this delimiter.

To determine the default time separator for your locale, invoke the following NLS class method:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("TimeSeparator")

Time Suffixes

By default, InterSystems IRIS uses properties in the current locale to determine the names of its time suffixes. For $ZTIME,
these properties (and their corresponding default values) are:

• AM (“AM”)

• PM (“PM”)

This documentation will always use these default values for these properties.

To determine the default time suffixes for your locale, invoke the following NLS class methods:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("AM"),!
 WRITE ##class(%SYS.NLS.Format).GetFormatItem("PM")

See Also
• $ZDATETIME function

• $ZDATETIMEH function

• $ZTIMEH function

• $PIECE function

• $HOROLOG special variable

• $ZTIMESTAMP special variable

• More information on locales in the section on “System Classes for National Language Support” in Specialized System
Tools and Utilities.

606 ObjectScript Reference

ObjectScript Functions

$ZTIMEH
Validates a time and converts it from display format to InterSystems IRIS internal format.

$ZTIMEH(time,tformat,erropt,localeopt)
$ZTH(time,tformat,erropt,localeopt)

Parameters

The time value to be converted.time

Optional — A numeric value that specifies the time format from which you are converting.tformat

Optional — The expression returned if the time parameter is considered invalid.erropt

Optional — A boolean flag that specifies which locale to use. When 0, the current locale
determines the time separator, and the other characters, strings, and options used to format
times. When 1, the ODBC locale determines these characters, strings, and options. The
ODBC locale cannot be changed; it is used to format date and time strings that are portable
between InterSystems IRIS processes that have made different National Language Support
(NLS) choices. The default is 0.

localeopt

Omitted parameters between specified parameter values are indicated by placeholder commas. Trailing placeholder commas
are not required, but are permitted. Blank spaces are permitted between the commas that indicate an omitted parameter.

Description
The $ZTIMEH function converts a time value from a format produced by the $ZTIME function to the format of the special
variables $HOROLOG and $ZTIMESTAMP. If the optional parameter tformat is not specified, the input time must be
in the format “hh:mm:ss.fff...”.Otherwise, the same integer format code used to produce the printable time from the $ZTIME
function must be used for the time to be converted properly.

Parameters

tformat

Supported values are as follows:

DescriptionCode

Get the effective format value from the TimeFormat property of the current locale, which defaults
to a value of 1.This is the default behavior if you do not specify tformat and localeopt is unspecified
or 0.

-1

Input time is in the form "hh:mm:ss" (24-hour clock).1

Input time is in the form “hh:mm” (24-hour clock).2

Input time is in the form “hh:mm:ss[AM/PM]” (12-hour clock).3

Input time is in the form “hh:mm[AM/PM]” (12-hour clock).4

To determine the default time format for your locale, invoke the GetFormatItem() NLS class method:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("TimeFormat")

ObjectScript Reference 607

$ZTIMEH

erropt

This parameter suppresses error messages associated with invalid time values. Instead of generating <ILLEGAL VALUE>
error messages, the function returns the value indicated by erropt.

localeopt

This parameter selects either the user’s current locale definition (0) or the ODBC locale definition (1) as the source for
time options. The ODBC locale cannot be changed; it is used to format date and time strings that are portable between
InterSystems IRIS processes that have made different National Language Support (NLS) choices.

The ODBC locale time definitions are as follows:

• Time format defaults to 1. Time separator is ":". Time precision is 0 (no fractional seconds).

• AM and PM indicators are "AM" and "PM". The words "Noon" and "Midnight" are used.

Examples
When the input time is “14:43:38”, the following examples both return 53018:

 SET time="14:43:38"
 WRITE !,$ZTIMEH(time)
 WRITE !,$ZTIMEH(time,1)

When the input time is “14:43:38.974”, the following example returns 53018.974:

 SET time="14:43:38.974"
 WRITE $ZTIMEH(time,1)

Notes

Fractional Seconds

Unlike the $ZTIME function, $ZTIMEH does not allow you to specify a precision. Any fractional seconds in the original
time format returned by $ZTIME are retained in the value returned by $ZTIMEH.

Invalid Parameter Values

You receive a <FUNCTION> error if you specify an invalid tformat code (an integer less than -1 or greater than 4, a zero,
or a noninteger value).

If you do not supply an erropt value, you receive an <ILLEGAL VALUE> error under the following conditions:

• Specify a time with an hour value outside the allowed range of 0 to 23 (inclusive).

• Specify a time with a minute value outside the allowed range of 0 to 59 (inclusive).

• Specify a time with a second value outside the allowed range of 0 to 59 (inclusive).

• Specify a time value which uses a delimiter other than the value of the TimeSeparator property of the current locale.

Time Delimiter

By default, InterSystems IRIS uses the value of the TimeSeparator property of the current locale to determine the delimiter
character for the time string. By default, the delimiter is “:”; all documentation examples use this delimiter.

To determine the default time separator for your locale, invoke the GetFormatItem() NLS class method:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("TimeSeparator")

608 ObjectScript Reference

ObjectScript Functions

Time Suffixes

By default, InterSystems IRIS uses properties in the current locale to determine the names of its time suffixes. For $ZTIMEH,
these properties (and their corresponding default values) are:

• AM (“AM”)

• PM (“PM”)

• Midnight (“MIDNIGHT”)

• Noon (“NOON”)

This documentation will always use these default values for these properties.

To determine the default time suffixes for your locale, invoke the GetFormatItem() NLS class method, as follows:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("AM"),!
 WRITE ##class(%SYS.NLS.Format).GetFormatItem("PM"),!
 WRITE ##class(%SYS.NLS.Format).GetFormatItem("Midnight"),!
 WRITE ##class(%SYS.NLS.Format).GetFormatItem("Noon")

See Also
• $ZDATETIME function

• $ZDATETIMEH function

• $ZTIME function

• $HOROLOG special variable

• $ZTIMESTAMP special variable

• More information on locales in the section on “System Classes for National Language Support” in Specialized System
Tools and Utilities.

ObjectScript Reference 609

$ZTIMEH

$ZVERSION(1)
Returns the operating system type.

$ZVERSION(1)

Parameter

The only supported parameter value is the number 1.

Description
$ZVERSION(1) returns the current operating system type as an integer code. It returns the following values: 2 for Windows,
3 for UNIX®, and 0 if not known.

You can use the isWINDOWS and isUNIX system-supplied macros to return the same information as a boolean value.

You can use the %SYSTEM.Version.GetOS() to return the same information as a string.

You can use the $ZVERSION special variable to return complete InterSystems IRIS version information, including the
current operating system type.

Example
The following example returns the current operating system type:

#Include %occInclude
 WRITE "OS type as code: ",$ZVERSION(1),!
 WRITE "OS type as Boolean: ",!
 WRITE "Windows? ",$$$isWINDOWS," UNIX? ",$$$isUNIX,!
 WRITE "OS type as string: ",$SYSTEM.Version.GetOS(),!
 WRITE "InterSystems IRIS Version: ",$ZVERSION

See Also
• $ZVERSION special variable.

610 ObjectScript Reference

ObjectScript Functions

$ZWASCII
Converts a two-byte string to a number.

$ZWASCII(string,position)
$ZWA(string,position)

Parameters

A string. It can be a value, a variable, or an expression. It must be a minimum of two
bytes in length.

string

Optional — A starting position in the string, expressed as a positive integer. The default
is 1. Position is counted in single bytes, not two-byte strings. The position cannot be the
last byte in the string, or beyond the end of the string. A numeric position value is parsed
as an integer by truncating decimal digits, removing leading zeros and plus signs, etc.

position

Description
The value that $ZWASCII returns depends on the parameters you use.

• $ZWASCII(string) returns a numeric interpretation of a two-byte string starting at the first character position of string.

• $ZWASCII(string,position) returns a numeric interpretation of a two-byte string beginning at the starting byte position
specified by position.

Upon successful completion, $ZWASCII always returns a positive integer. $ZWASCII returns -1 if string is of an invalid
length, or position is an invalid value.

Example
The following example determines the numeric interpretation of the character string "ab":

 WRITE $ZWASCII("ab")

It returns 25185.

The following examples also return 25185:

 WRITE !,$ZWASCII("ab",1)
 WRITE !,$ZWASCII("abxx",1)
 WRITE !,$ZWASCII("xxabxx",3)

In the following examples, string or position are invalid. The $ZWASCII function returns –1 in each case:

 WRITE !,$ZWASCII("a")
 WRITE !,$ZWASCII("aba",3)
 WRITE !,$ZWASCII("ababab",99)
 WRITE !,$ZWASCII("ababab",0)
 WRITE !,$ZWASCII("ababab",-1)

Notes

$ZWASCII and $ASCII

$ZWASCII is similar to $ASCII except that it operates on two byte (16-bit) words instead of single 8-bit bytes. For four
byte (32-bit) words, use $ZLASCII; For eight byte (64-bit) words, use $ZQASCII.

$ZWASCII(string,position) is the functional equivalent of:

$ASCII(string,position+1)*256+$ASCII(string,position)

ObjectScript Reference 611

$ZWASCII

$ZWASCII and $ZWCHAR

The $ZWCHAR function is the logical inverse of $ZWASCII. For example:

 WRITE $ZWASCII("ab")

returns: 25185.

 WRITE $ZWCHAR(25185)

returns “ab”.

See Also
• $ASCII function

• $ZWCHAR function

612 ObjectScript Reference

ObjectScript Functions

$ZWCHAR
Converts a number to a two-byte string.

$ZWCHAR(n)
$ZWC(n)

Parameter

A positive integer in the range 0 through 65535. It can be specified as a value, a variable, or an
expression.

n

Description
$ZWCHAR returns a two-byte (wide) character string corresponding to the binary representation of n. The bytes of the
character string are presented in little-endian byte order, with the least significant byte first. It is the functional equivalent
of:

 WRITE $CHAR(n#256,n\256)

If n is out of range or a negative number, $ZWCHAR returns the null string.

Example
The following example returns the two-byte string for the integer 25185:

 WRITE $ZWCHAR(25185)

returns: ab

Notes

$ZWCHAR and $CHAR

$ZWCHAR is similar to $CHAR except that it operates on two byte (16-bit) words instead of single 8-bit bytes. For four
byte (32-bit) words, use $ZLCHAR; For eight byte (64-bit) words, use $ZQCHAR.

$ZWCHAR and $ZWASCII

$ZWASCII is the logical inverse of the $ZWCHAR function. For example:

 WRITE $ZWCHAR(25185)

returns: ab

 WRITE $ZWASCII("ab")

returns: 25185

See Also
• $ZWASCII function

• $CHAR function

• $ZLCHAR function

• $ZQCHAR function

ObjectScript Reference 613

$ZWCHAR

$ZWIDTH
Returns the total width of the characters in an expression.

$ZWIDTH(expression,pitch)

Parameters

A string expressionexpression

Optional — The numeric pitch value to use for full-width characters. The default is
2. Other permissible values are 1, 1.25, and 1.5. (These values with any number
of trailing zeros are permissible.) All other pitch values result in a <FUNCTION>
error.

pitch

Description
$ZWIDTH returns the total width of the characters in expression. The pitch value determines the width to use for full-
width characters. All other characters are assigned a width of 1 and are considered to be half-width.

Example
Assume that the variable STR contains two half-width characters followed by a full-width character:

 WRITE $ZWIDTH(STR,1.5)

returns 3.5.

In this example, the two half-width characters total 2. Adding 1.5 (the specified pitch value) for the full-width characters
produces a total of 3.5.

Note
Full-width characters are determined by examining the pattern-match table loaded for your InterSystems IRIS process. Any
character with the full-width attribute is considered to be a full-width character. You can use the special ZFWCHARZ
patcode to check for this attribute (char?1ZFWCHARZ). For more information about the full-width attribute, see the
description of the $X/$Y Tab in the section on “System Classes for National Language Support” in Specialized System
Tools and Utilities.

See Also
• $ZPOSITION function

• $ZZENKAKU function

614 ObjectScript Reference

ObjectScript Functions

$ZWPACK and $ZWBPACK
Packs two 8-bit characters into a single 16-bit character.

$ZWPACK(string)

$ZWBPACK(string)

Parameter

A string consisting of two or more 8-bit characters. string must be an even number of
characters.

string

Description
The $ZWPACK function packs a string of 8-bit characters as a string of 16-bit wide characters in little-endian order. Two
8-bit characters are packed into a single 16-bit character.

$ZWBPACK performs the same task, but the 8-bit characters are stored in 16-bit wide characters in big-endian order.

Packing a string is a way to halve the character count of the string for storage and string manipulation. Unpacking restores
the original 8-bit character string for display. These operations should not be used when Unicode characters are permitted
in the data.

The input string has the following requirements:

• string must consist of an even number of characters. The empty string is permitted, and returns the empty string.
Specifying an odd number of characters results in a <FUNCTION> error.

• string cannot contain any multibyte characters. You can use $ZISWIDE on string to check that it does not contain
multibyte characters. If you use $ZWPACK or $ZWBPACK on a string containing multibyte characters, the system
generates a <WIDE CHAR> error.

You can use the IsBigEndian() class method to determine which bit ordering is used on your operating system platform:
1=big-endian bit order; 0=little-endian bit order.

 WRITE $SYSTEM.Version.IsBigEndian()

Examples
The following example shows $ZWPACK packing four 8-bit characters into two 16-bit wide characters. Note the little-
endian order of the bytes in the wide characters of the packed string: hexadecimal 4241 4443.

 SET str=$CHAR(65,66,67,68)
 WRITE !,$LENGTH(str)," characters: ",str
 WRITE !,"$ZWPACK"
 SET wstr=$ZWPACK(str)
 WRITE !,$LENGTH(wstr)," packed characters: ",wstr
 ZZDUMP wstr
 WRITE !,"$ZWUNPACK"
 SET nstr=$ZWUNPACK(wstr)
 WRITE !,$LENGTH(nstr)," unpacked characters: ",nstr

The following example shows $ZWBPACK packing four 8-bit characters into two 16-bit wide characters. Note the big-
endian order of the bytes in the wide characters of the packed string: hexadecimal 4142 4344.

ObjectScript Reference 615

$ZWPACK and $ZWBPACK

 SET str=$CHAR(65,66,67,68)
 WRITE !,$LENGTH(str)," characters: ",str
 WRITE !,"$ZWBPACK"
 SET wstr=$ZWBPACK(str)
 WRITE !,$LENGTH(wstr)," packed characters: ",wstr
 ZZDUMP wstr
 WRITE !,"$ZWBUNPACK"
 SET nstr=$ZWBUNPACK(wstr)
 WRITE !,$LENGTH(nstr)," unpacked characters: ",nstr

The following example validates string before packing it:

 SET str=$CHAR(65,66,67,68)
 IF $ZISWIDE(str) {
 WRITE !,str," contains wide characters"
 QUIT }
 ELSEIF $LENGTH(str) # 2 {
 WRITE !,str," contains an odd number of characters"
 QUIT }
 ELSE {
 WRITE !,str," passes validation" }
 WRITE !,$LENGTH(str)," characters: ",str
 SET wstr=$ZWPACK(str)
 WRITE !,$LENGTH(wstr)," packed characters: ",wstr
 ZZDUMP wstr

See Also
• $LENGTH function

• $ZISWIDE function

• $ZWUNPACK and $ZWBUNPACK functions

616 ObjectScript Reference

ObjectScript Functions

$ZWUNPACK and $ZWBUNPACK
Unpacks a single 16-bit character to two 8-bit characters.

$ZWUNPACK(string)

$ZWBUNPACK(string)

Parameter

A string consisting of one or more 16-bit characters.string

Description
$ZWUNPACK is a function that takes one or more two-byte wide characters and “unpacks” them, returning the correspond-
ing pairs of single-byte characters in little endian order.

$ZWBUNPACK performs the same task, but the two-byte wide characters are unpacked in big-endian order.

Packing a string is a way to halve the character count of the string for storage and string manipulation. Unpacking restores
the original 8-bit character string for display. These operations should not be used when Unicode characters are permitted
in the data.

The input string should consist entirely of 16-bit wide characters created using $ZWPACK or $ZWBPACK. The empty
string is permitted, and returns the empty string. string should not contain any 16-bit Unicode characters, or any 8-bit
characters.

You can use $ZISWIDE on string to check that it contains multibyte characters. However, you must use $ZISWIDE on
each character to ensure that the string does not contain a mix of 16-bit and 8-bit characters. $ZISWIDE does not distinguish
between Unicode and packed 16-bit characters.

You can use the IsBigEndian() class method to determine which bit ordering is used on your operating system platform:
1=big-endian bit order; 0=little-endian bit order.

 WRITE $SYSTEM.Version.IsBigEndian()

Examples
The following example unpacks a string (“ABCD”) that was packed using $ZWPACK. It unpacks two 16-bit wide char-
acters into four 8-bit characters. Note the little-endian order of the bytes in the wide characters of the packed string: hex-
adecimal 4241 4443.

 SET str=$CHAR(65,66,67,68)
 WRITE !,$LENGTH(str)," characters: ",str
 WRITE !,"$ZWPACK"
 SET wstr=$ZWPACK(str)
 WRITE !,$LENGTH(wstr)," packed characters: ",wstr
 ZZDUMP wstr
 WRITE !,"$ZWUNPACK"
 SET nstr=$ZWUNPACK(wstr)
 WRITE !,$LENGTH(nstr)," unpacked characters: ",nstr

The following example performs the same operation as the previous example, but uses big-endian order. Note the big-
endian order of the bytes in the wide characters of the packed string: hexadecimal 4142 4344.

 SET str=$CHAR(65,66,67,68)
 WRITE !,$LENGTH(str)," characters: ",str
 WRITE !,"$ZWBPACK"
 SET wstr=$ZWBPACK(str)
 WRITE !,$LENGTH(wstr)," packed characters: ",wstr
 ZZDUMP wstr
 WRITE !,"$ZWBUNPACK"
 SET nstr=$ZWBUNPACK(wstr)
 WRITE !,$LENGTH(nstr)," unpacked characters: ",nstr

ObjectScript Reference 617

$ZWUNPACK and $ZWBUNPACK

The following example shows what happens when you “unpack” a string of 8-bit characters. Note that the unpacking
operation assumes each character to be a 16-bit wide character, and thus supplies the missing eight bits as hexadecimal 00.
This use of $ZWUNPACK is not recommended.

 SET str=$CHAR(65,66,67)
 WRITE !,$LENGTH(str)," characters: ",str
 SET nstr=$ZWUNPACK(str)
 WRITE !,$LENGTH(nstr)," unpacked characters:"
 ZZDUMP nstr

The following example shows what happens when you “unpack” a string of 16-bit Unicode characters; in this case, lowercase
Greek letters. This use of $ZWUNPACK is not recommended.

 SET str=$CHAR(945,946,947)
 WRITE !,$LENGTH(str)," characters: ",str
 SET nstr=$ZWUNPACK(str)
 WRITE !,$LENGTH(nstr)," unpacked characters: ",nstr
 ZZDUMP nstr

See Also
• $LENGTH function

• $ZISWIDE function

• $ZWPACK and $ZWBPACK functions

618 ObjectScript Reference

ObjectScript Functions

$ZZENKAKU
Converts Japanese katakana characters from half-width to full-width.

$ZZENKAKU(expression,flag1,flag2)

Parameters

A string containing half-width characters. These characters may be katakana
characters, Roman alphabet letters, or numbers.

expression

Optional — A boolean flag to indicate whether to convert half-with katakana to
full-width hiragana (0) or full-width katakana (1).

flag1

Optional — A boolean flag to indicate whether voiced sound processing is required
(1) or not required (0).

flag2

Description
$ZZENKAKU converts Japanese katakana characters from half-width (hankaku) to full-width (zenkaku) characters. It
also converts strings of Roman alphabet letters ("ABC") and Arabic numbers (123) from half-width to full-width.

$ZZENKAKU can, optionally, convert half-width katakana to full-width hiragana. Katakana characters are commonly
used for foreign terms and foreign loan words; they can be represented as half-width or full-width characters. Hiragana
characters are the more standard way of writing Japanese. Hiragana is always full-width.

If flag1 is 0, $ZZENKAKU converts printable ASCII characters to their full-width counterparts and converts half-width
katakana characters to full-width hiragana characters. The default value for flag1 is 0.

If flag1 is 1, $ZZENKAKU converts printable ASCII characters to their full-width counterparts and converts half-width
katakana characters to full-width katakana characters.

If flag2 is 1 and a half-width katakana character is followed by a voice sound mark or a semi-voice sound mark, then (if
appropriate) $ZZENKAKU combines the half-width katakana character and the sound mark character into a target full-
width hiragana or katakana character. The default value for flag2 is 1.

You can set the physical cursor to use two physical spaces for a character as system-wide behavior by setting the
PhysicalCursor property of the Config.NLS.Locales class.

The $WASCII function (and other $W functions) supports surrogate pairs of characters used to encode some Japanese kanji
characters. For the ZFWCHARZ and ZHWKATAZ Japanese language pattern match codes, refer to ObjectScript Pattern
Matching in Using ObjectScript.

Examples
The following example returns the half-with katakana characters “a”, “me”, “ri”, ka” (America):

 ZZDUMP $CHAR(65383,65426,65432,65398)

The following example converts these half-with katakana characters to the corresponding full-width katakana characters:

 ZZDUMP $ZZENKAKU($CHAR(65383,65426,65432,65398),1)

The following examples both convert these half-with katakana characters to the corresponding full-width hiragana characters.
Note that $ZZENKAKU converts from katakana to hiragana by default:

 ZZDUMP $ZZENKAKU($CHAR(65383,65426,65432,65398),0)

 ZZDUMP $ZZENKAKU($CHAR(65383,65426,65432,65398))

ObjectScript Reference 619

$ZZENKAKU

See Also
• $ZPOSITION function

• $ZWIDTH function

620 ObjectScript Reference

ObjectScript Functions

ObjectScript Special Variables

Special variables are variables that are maintained by the system. They are also referred to as system variables, but are here
referred to as special variables to avoid confusion with structured system variables.

Special variable names begin with a dollar sign ($). They can be distinguished from functions because they are not followed
by parentheses and take no parameters. Special variable names are not case-sensitive. Many special variable names can be
abbreviated. In the Synopsis for each special variable, the full name syntax is first presented, and below it is shown the
abbreviated name (if one exists).

Historically, special variables have held scalar values. The system automatically updates these special variables to reflect
various aspects of the operating environment. For example, the $IO special variable contains the ID of the current device.
The $JOB special variable contains the ID of the current job.

Although you can set some special variables, most are read-only. With the exception of this read-only constraint, you can
treat the special variables just as you would any other variable. For example, you can reference a special variable in an
expression and assign its current value to another (user-defined) variable.

Any implementation-specific special variable form is marked with the abbreviation of the platform that supports it (Windows
or UNIX®). Any form that is not marked with a platform abbreviation is supported by all platforms.

Special variables are listed in alphabetical order.

ObjectScript Reference 621

$DEVICE
Contains user-specified device status information.

$DEVICE
$D

Description
$DEVICE can be used to record device status information. You can use the SET command to place a value in $DEVICE.
By convention, this value should describe the outcome of an I/O operation as a 3-piece string, in the form:

standard_error,user_error,explanatory_text

By default, $DEVICE contains the null string.

See Also
• SET command

622 ObjectScript Reference

ObjectScript Special Variables

$ECODE
Contains the current error code string.

$ECODE
$EC

Description
When an error occurs, InterSystems IRIS sets the $ECODE special variable to a comma-surrounded string containing the
error code corresponding to the error. For example, when a reference is made to an undefined global variable, InterSystems
IRIS sets the $ECODE special variable to the following string:

,M7,

$ECODE can contain ISO 11756-1999 standard error codes, with the form M#, where # is an integer. For example, M6
and M7 are “undefined local variable” and “undefined global variable,” respectively. (M7 is issued for both globals and
process-private globals.) For a complete list, see ISO 11756-1999 standard error messages in the InterSystems IRIS Error
Reference.

$ECODE can also contain error codes that are the same as General System error codes (the error codes returned at the
terminal prompt and to the $ZERROR special variable). However, $ECODE prepends a “Z” to these error codes, and
removes the angle brackets. Thus the $ECODE error ZSYNTAX is a <SYNTAX> error, ZILLEGAL VALUE is an
<ILLEGAL VALUE> error, and ZFUNCTION is a <FUNCTION> error. $ECODE does not retain any additional error
info for those error codes that provide it; thus ZPROTECT is a <PROTECT> error; the additional info component is kept
in $ZERROR, but not in $ECODE. For more information about InterSystems IRIS error codes, see $ZERROR; for a
complete list, see General System Error Messages in the InterSystems IRIS Error Reference.

If an error occurs when $ECODE already contains previous error codes, the existing error stack is cleared when the new
error occurs. The new error stack will contain only entries that show the state at the time of the current error. (This is a
change from earlier $ECODE behavior, where the old error stack would persist until explicitly cleared.)

If there are multiple error codes, InterSystems IRIS appends the code for each error, in the order received, at the end of the
current $ECODE value. Each error in the resulting $ECODE string is delimited by commas, as follows:

,ZSTORE,M6,ZILLEGAL VALUE,ZPROTECT,

In the above case, the most recent error is a <PROTECT> error.

You can also explicitly clear or set $ECODE. $ECODE is always cleared when you terminate the current process.

Clearing $ECODE

You can clear $ECODE by setting it to the empty string (""), as follows:

 SET $ECODE=""

Setting $ECODE to the empty string has the following effects:

• It clears all existing $ECODE values. It has no effect on an existing $ZERROR value.

• It clears the error stack for your job. This means that a subsequent call to the $STACK function returns the current
execution stack, rather than the last error stack.

You cannot NEW the $ECODE special variable. Attempting to do so generates a <SYNTAX> error.

ObjectScript Reference 623

$ECODE

Setting $ECODE

You can force an error by setting $ECODE to an value other than the empty string. Setting $ECODE to any non-null value
forces an interpreter error during the execution of an ObjectScript routine. After InterSystems IRIS sets $ECODE to the
non-null value that you specify, InterSystems IRIS takes the following steps:

1. Writes the specified value to $ECODE, overwriting any previous values.

2. Generates an <ECODETRAP> error. (This sets $ZERROR to the value <ECODETRAP>).

3. Passes control to any error handlers you have established. Your error handlers can check for the $ECODE string value
you chose and take steps to handle the condition appropriately.

$ECODE String Overflow

If the length of the accumulated string in $ECODE exceeds 512 characters, the error code that causes the string overflow
clears and replaces the current list of error codes in $ECODE. In this case, the list of errors in $ECODE is the list of errors
since the most recent string overflow, beginning with the error that caused the overflow. See Using ObjectScript for more
information about the maximum string data length.

Notes

Creating Your Own Error Codes

The format for the $ECODE special variable is a comma-surrounded list of one or more error codes. Error codes starting
with the letter U are reserved for the user. All other error codes are reserved for InterSystems IRIS.

User–defined $ECODE values should be distinguishable from the values InterSystems IRIS automatically generates. To
ensure this, always prefix your error text with the letter U. Also remember to delineate your error code with commas. For
example:

 SET $ECODE=",Upassword expired!,"

Check $ZERROR Rather Than $ECODE for InterSystems IRIS Errors

Your error handlers should check $ZERROR rather than $ECODE for the most recent InterSystems IRIS error.

See Also
• ZTRAP command

• $STACK function

• $ESTACK special variable

• $ZEOF special variable

• $ZERROR special variable

• $ZTRAP special variable

• Error Handling in Using ObjectScript

• System Error Messages in InterSystems IRIS Error Reference

624 ObjectScript Reference

ObjectScript Special Variables

$ESTACK
Contains the number of context frames saved on the call stack from a user-defined point.

$ESTACK
$ES

Description
$ESTACK contains the number of context frames saved on the call stack for your job from a user-defined point. You
specify this point by creating a new copy of $ESTACK using the NEW command.

The $ESTACK special variable is similar to the $STACK special variable. Both contain the number of context frames
currently saved on the call stack for your job or process. InterSystems IRIS increments and restores both when changing
context. The major difference is that you can reset the $ESTACK count to zero at any point by using the NEW command.
You cannot reset the $STACK count.

Context Frames and Call Stacks

When an InterSystems IRIS image is started, before any contexts have been saved on the call stack, the values of both
$ESTACK and $STACK are zero. Each time a routine calls another routine with DO, the system saves the context of the
currently executing routine on the call stack, increments $ESTACK and $STACK, and starts execution of the called routine
in the newly created context. The called routine can, in turn, call another routine, and so on. Each time another routine is
called, InterSystems IRIS increments $ESTACK and $STACK and places more saved contexts on the call stack.

Issuing a DO command, an XECUTE command, or a call to a user-defined function establishes a new execution context.
Issuing a GOTO command does not.

As DO commands, XECUTE commands, or user-defined function references create new contexts, InterSystems IRIS
increments the values of $STACK and $ESTACK. As QUIT commands cause contexts to exit, InterSystems IRIS restores
the previous contexts from the call stack and decrements the values of $STACK and $ESTACK.

The $ESTACK and $STACK special variables cannot be modified using the SET command. Attempting to do so results
in a <SYNTAX> error.

Creating a New $ESTACK

You can create a new copy of $ESTACK in any context by using the NEW command. InterSystems IRIS takes the following
actions:

1. Saves the old copy of $ESTACK.

2. Creates a new copy of $ESTACK with a value of zero (0).

In this way, you can establish a particular context as the $ESTACK level 0 context. As you create new contexts with DO,
XECUTE, or user-defined functions, InterSystems IRIS increments this $ESTACK value. However, when you exit the
context in which the new $ESTACK was created ($ESTACK at level 0), InterSystems IRIS restores the value of the pre-
vious copy of $ESTACK.

Examples
The following example shows the effect of a NEW command on $ESTACK. In this example, the MainRoutine displays
the initial values of $STACK and $ESTACK (which are the same value). It then calls Sub1. This call increments $STACK
and $ESTACK. The NEW command creates a $ESTACK with a value of 0. Sub1 calls Sub2, incrementing $STACK
and $ESTACK. Returning to MainRoutine restores the initial values of $STACK and $ESTACK:

ObjectScript Reference 625

$ESTACK

Main
 WRITE !,"Initial: $STACK=",$STACK," $ESTACK=",$ESTACK
 DO Sub1
 WRITE !,"Return: $STACK=",$STACK," $ESTACK=",$ESTACK
 QUIT
Sub1
 WRITE !,"Sub1Call: $STACK=",$STACK," $ESTACK=",$ESTACK
 NEW $ESTACK
 WRITE !,"Sub1NEW: $STACK=",$STACK," $ESTACK=",$ESTACK
 DO Sub2
 QUIT
Sub2
 WRITE !,"Sub2Call: $STACK=",$STACK," $ESTACK=",$ESTACK
 QUIT

The following example demonstrates how the value of $ESTACK is incremented as new contexts are created by issuing
DO and XECUTE commands, and decremented as these contexts are exited. It also shows that a GOTO command does
not create a new context or increment $ESTACK:

Main
 NEW $ESTACK
 WRITE !,"Initial Main: $ESTACK=",$ESTACK // 0
 DO Sub1
 WRITE !,"Return Main: $ESTACK=",$ESTACK // 0
 QUIT
Sub1
 WRITE !,"Sub1 via DO: $ESTACK=",$ESTACK // 1
 XECUTE "WRITE !,""Sub1 XECUTE: $ESTACK="",$ESTACK" // 2
 WRITE !,"Sub1 post-XECUTE: $ESTACK=",$ESTACK // 1
 GOTO Sub2
Sub1Return
 WRITE !,"Sub1 after GOTO: $ESTACK=",$ESTACK // 1
 QUIT
Sub2
 WRITE !,"Sub2 via GOTO: $ESTACK=",$ESTACK // 1
 GOTO Sub1Return

Notes

Context Levels from the Terminal Prompt

A routine invoked from a program starts at a different context level than a routine you invoke with the DO command from
the Terminal prompt. When you enter a DO command at the Terminal prompt, the system creates a new context for the
routine called.

The routine you call can compensate by establishing a $ESTACK level 0 context and then use $ESTACK for all context-
level references.

Consider the following routine:

START
 ; Establish a $ESTACK Level 0 Context
 NEW $ESTACK
 ; Display the $STACK context level
 WRITE !,"$STACK level in routine START is ",$STACK
 ; Display the $ESTACK context level and exit
 WRITE !,"$ESTACK level in routine START is ",$ESTACK
 QUIT

When you run START from a program, you see the following display:

$STACK level in routine START is 0
$ESTACK level in routine START is 0

When you run START by issuing DO ^START at the Terminal prompt, you see the following display:

$STACK level in routine START is 1
$ESTACK level in routine START is 0

626 ObjectScript Reference

ObjectScript Special Variables

$ESTACK and Error Processing

$ESTACK is particularly useful during error processing when error handlers must unwind the call stack to a specific context
level. See Error Handling in Using ObjectScript for more information about error processing.

See Also
• $STACK function

• $STACK special variable

• Error Handling in Using ObjectScript

• Using %STACK to Display the Stack in the “Command-line Routine Debugging” chapter of Using ObjectScript

ObjectScript Reference 627

$ESTACK

$HALT
Contains a halt trap routine call.

$HALT

Description
$HALT contains the name of the current halt trap routine. A halt trap routine is called by your application when a HALT
command is encountered. This halt trap routine may perform clean up or logging processing before issuing a HALT command,
or it may substitute other processing rather than halting program execution.

You set $HALT to a halt trap routine using the SET command. The halt trap routine is specified by a quoted string with
the following format:

SET $HALT=location

Here location can be specified as label (a label in the current routine or procedure), ^routine (the beginning of a specified
external routine), or label^routine (a specified label in a specified external routine).

$HALT supports label+offset in some contexts (but not in procedures). This optional +offset is an integer specifying the
number of lines to offset from label. InterSystems recommends that you avoid the use of a line offset when specifying
location.

You cannot specify an +offset when calling a procedure or a IRISSYS % routine. If you attempt to do so, InterSystems
IRIS issues a <NOLINE> error.

$HALT defines a halt trap routine for the current context. If there is already a halt trap defined for the current context, the
new one replaces it. If you specify a nonexistent routine name, a HALT command ignores that $HALT and unwinds the
stack to locate a valid $HALT at a previous context level.

To remove the halt trap for the current context, set $HALT to a null string. Attempting to remove a halt trap by using the
NEW or KILL commands results in a <SYNTAX> error.

Halt Trap Execution

When you issue a HALT command, InterSystems IRIS checks the current context for $HALT. If no $HALT is defined
for the current context (or it is set to a nonexistent routine name or the null string), InterSystems IRIS unwinds the stack
to the previous context and looks for $HALT there. This process continues until either a defined $HALT is located or the
stack is completely unwound. InterSystems IRIS uses the value of $HALT to transfer execution to the specified halt trap
routine. The halt trap routine executes in the context at which $HALT was defined. No error code is set or error message
issued.

If no valid $HALT is set in the current context or previous contexts, issuing a HALT command completely unwinds the
stack and performs an actual program halt.

Commonly, a halt trap routine performs some cleanup or reporting processing, and then issues a HALT command. Note
that with $HALT defined, the original HALT command invokes the halt trap, but does not perform an actual program halt.
For an actual halt to occur, the halt trap routine must contain a second HALT command.

A HALT command issued by a halt trap routine is not trapped by that halt trap, but it may be trapped by a halt trap established
at a lower context level. Thus a cascading series of halt traps may be invoked by a single HALT command.

Similar processing is performed by the error trap ZTRAP command, and the associated $ZTRAP special variable.

$HALT and ^%ZSTOP

If you have $HALT set and also have code defined for ^%ZSTOP when a HALT is issued, the $HALT is executed first.
$HALT can prevent the termination of the process, if its halt trap routine does not contain a HALT command.

628 ObjectScript Reference

ObjectScript Special Variables

A ^%ZSTOP routine is executed when the process is actually terminating. For further details on ^%ZSTOP, see the
section on “Using the ^%ZSTART and ^%ZSTOP Routines” in Specialized System Tools and Utilities.

Examples
The following example uses $HALT to establish a halt trap:

 SET $HALT="MyTrap^CleanupRoutine"
 WRITE !,"the halt trap is: ",$HALT

Note that it is the programmer’s responsibility to make sure that the specified routine exists.

The following example shows how the halt trap routine executes in the context at which $HALT was defined. In this
example, $HALT is defined at $ESTACK level 0, HALT is issued at $ESTACK level 1, and the halt trap routine executes
at $ESTACK level 0.

Main
 NEW $ESTACK
 SET $HALT="OnHalt"
 WRITE !,"Main $ESTACK= ",$ESTACK," $HALT= ",$HALT // 0
 DO SubA
 WRITE !,"Returned from SubA" // not executed
 QUIT
SubA
 WRITE !,"SubA $ESTACK= ",$ESTACK," $HALT= ",$HALT // 1
 HALT
 WRITE !,"this should never display"
 QUIT
OnHalt
 WRITE !,"OnHalt $ESTACK= ",$ESTACK // 0
 HALT
 QUIT

The following example is identical to the previous example, except that $HALT is defined at $ESTACK level 1. A HALT
command is issued at $ESTACK level 1, and the halt trap routine executes at $ESTACK level 1. The HALT issued by the
halt trap routine unwinds the stack, and, failing to find a $HALT defined at the previous context level, it halts program
execution. Thus, the WRITE command following the DO command is not executed.

Main
 NEW $ESTACK
 WRITE !,"Main $ESTACK= ",$ESTACK," $HALT= ",$HALT // 0
 DO SubA
 WRITE !,"Returned from SubA" // not executed
 QUIT
SubA
 SET $HALT="OnHalt"
 WRITE !,"SubA $ESTACK= ",$ESTACK," $HALT= ",$HALT // 1
 HALT
 WRITE !,"this should never display"
 QUIT
OnHalt
 WRITE !,"OnHalt $ESTACK= ",$ESTACK // 1
 HALT
 QUIT

The following example shows how a cascading series of halt traps can be invoked. Halt trap Halt0 is defined at $ESTACK
level 0, and halt trap Halt1 is defined at $ESTACK level 1. The HALT command is issued at $ESTACK level 2. InterSystems
IRIS unwinds the stack to invoke the halt trap Halt1 at $ESTACK level 1. This halt trap issues a HALT command; Inter-
Systems IRIS unwinds the stack to invoke the halt trap Halt0 at $ESTACK level 0. This halt trap issues a HALT command
that halts program execution.

Main
 NEW $ESTACK
 SET $HALT="Halt0"
 WRITE !,"Main $ESTACK= ",$ESTACK," $HALT= ",$HALT // 0
 DO SubA
 WRITE !,"Returned from SubA" // not executed
 QUIT
SubA
 SET $HALT="Halt1"
 WRITE !,"SubA $ESTACK= ",$ESTACK," $HALT= ",$HALT // 1
 DO SubB

ObjectScript Reference 629

$HALT

 WRITE !,"Returned from SubA" // not executed
 QUIT
SubB
 WRITE !,"SubB $ESTACK= ",$ESTACK," $HALT= ",$HALT // 2
 HALT
 WRITE !,"this should never display"
 QUIT
Halt0
 WRITE !,"Halt0 $ESTACK= ",$ESTACK // 0
 WRITE !,"Bye-bye!"
 HALT
 QUIT
Halt1
 WRITE !,"Halt1 $ESTACK= ",$ESTACK // 1
 HALT
 QUIT

See Also
• HALT command

630 ObjectScript Reference

ObjectScript Special Variables

$HOROLOG
Contains the local date and time for the current process.

$HOROLOG
$H

Description
$HOROLOG contains the date and time for the current process. It can contain the following values:

• The current local date and time.

• The current local date and time, adjusted for a different time zone offset.

• A user-specified non-incrementing date. Time continues to be the current local time.

$HOROLOG contains a character string that consists of two integer values, separated by a comma. These two integers
represent the current local date and time in InterSystems IRIS storage format. These integers are counters, not user-readable
dates and times. $HOROLOG returns the current date and time in the following format:

ddddd,sssss

The first integer, ddddd, is the current date expressed as a count of the number of days since December 31, 1840, where
day 1 is January 1, 1841. Because InterSystems IRIS represents dates using a counter from an arbitrary starting point,
InterSystems IRIS is unaffected by the Year 2000 boundary. The maximum value for this date integer is 2980013, which
corresponds to December 31, 9999.

The second integer, sssss, is the current time, expressed as a count of the number of seconds since midnight of the current
day. The system increments the time field from 0 to 86399 seconds. When it reaches 86399 at midnight, the system resets
the time field to 0 and increments the date field by 1. $HOROLOG truncates fractional seconds; it represents time in whole
seconds only.

You can obtain the same current date and time information by invoking the Horolog() method, as follows:

 WRITE $SYSTEM.SYS.Horolog()

Refer to %SYSTEM.SYS in the InterSystems Class Reference for further details.

Separating Date and Time

To get just the date portion or just the time portion of $HOROLOG, you can use the $PIECE function, specifying the
comma as the delimiter character:

 SET dateint=$PIECE($HOROLOG,",",1)
 SET timeint=$PIECE($HOROLOG,",",2)
 WRITE !,"Date and time: ",$HOROLOG
 WRITE !,"Date only: ",dateint
 WRITE !,"Time only: ",timeint

To get just the date portion of a $HOROLOG value, you can also use the following programming trick:

 SET dateint=+$HOROLOG
 WRITE !,"Date and time: ",$HOROLOG
 WRITE !,"Date only: ",dateint

The plus sign (+) causes InterSystems IRIS to parse the $HOROLOG string as a number. When InterSystems IRIS
encounters a nonnumeric character (the comma), it truncates the rest of the string and returns the numeric portion. This is
the date integer portion of the string.

ObjectScript Reference 631

$HOROLOG

Date and Time Functions Compared

The various ways to return the current date and time are compared, as follows:

• $HOROLOG contains the local, variant-adjusted date and time in InterSystems IRIS storage format. The local time
zone is determined from the current value of the $ZTIMEZONE special variable, and then adjusted for local time
variants, such as Daylight Saving Time. It returns whole seconds only; fractions of a second are truncated.

• $NOW returns the local date and time for the current process. $NOW returns the date and time in InterSystems IRIS
storage format. It includes fractional seconds; the number of fractional digits is the maximum precision supported by
the current operating system.

– $NOW() determines the local time zone from the value of the $ZTIMEZONE special variable. The local time
is not adjusted for local time variants, such as Daylight Saving Time. It therefore may not correspond to local
clock time.

– $NOW(tzmins) returns the time and date that correspond to the specified tzmins time zone parameter. The value
of $ZTIMEZONE is ignored.

• $ZTIMESTAMP contains the UTC (Coordinated Universal Time) date and time, with fractional seconds, in InterSys-
tems IRIS storage format. Fractional seconds are expressed in three digits of precision (on Windows systems), or six
digits of precision (on UNIX® systems).

Date and Time Conversions

You can use the $ZDATE function to convert the date portion of $HOROLOG into external, user-readable form. You
can use the $ZTIME function to convert the time portion of $HOROLOG into external user-readable form. You can use
the $ZDATETIME function to convert both the date and time. When using $HOROLOG, setting the precision for time
values in these functions always returns zeros as fractional seconds.

You can use the $ZDATEH function to convert a user-readable date into the date portion of $HOROLOG. You can use
the $ZTIMEH function to convert a user-readable time into the time portion of $HOROLOG. You can use the
$ZDATETIMEH function to convert both the date and time to a $HOROLOG value.

Setting the Date and Time

$HOROLOG can be set to a user-specified date for the current process using the FixedDate() method of the
%SYSTEM.Process class. $HOROLOG cannot be modified using the SET command. Attempting to do so results in a
<SYNTAX> error.

 DO ##class(%SYSTEM.Process).FixedDate(12345) // set $HOROLOG date
 WRITE !,$ZDATETIME($HOROLOG,1,1,9)," $HOROLOG changed date"
 WRITE !,$ZDATETIME($NOW(),1,1,9)," $NOW() no date change"
 WRITE !,$ZDATETIME($ZDATETIMEH($ZTIMESTAMP,-3),1,1,9)," $ZTS UTC-to-local",
 " no date change"
 DO ##class(%SYSTEM.Process).FixedDate(0) // restore $HOROLOG
 WRITE !,$ZDATETIME($HOROLOG,1,1,9)," $HOROLOG current date"

Note that FixedDate() changes the $HOROLOG value, but not the $NOW or $ZTIMESTAMP value.

Time Zone

By default, $HOROLOG contains the date and time for the local time zone. This time zone default is supplied by the
operating system, which InterSystems IRIS uses to set the $ZTIMEZONE default.

Changing $ZTIMEZONE affects the value of $HOROLOG for the current process. It changes the time portion of
$HOROLOG, and this change of time can also change the date portion of $HOROLOG. $ZTIMEZONE is a fixed offset
of time zones from the Greenwich meridian; it does not adjust for local seasonal time variants, such as Daylight Saving
Time.

632 ObjectScript Reference

ObjectScript Special Variables

Daylight Saving Time

$HOROLOG adjusts for seasonal time variants based on the algorithm supplied by the underlying operating system. After
applying the $ZTIMEZONE value, InterSystems IRIS uses the operating system local time to adjust $HOROLOG (if
needed) for seasonal time variants, such as Daylight Saving Time.

You can determine if Daylight Saving Time is in effect for the current date, or for a specified date and time using the
IsDST() method. The following example returns the Daylight Saving Time (DST) status for the current date and time.
Because this status could change while the program is running, this example checks it twice:

CheckDST
 SET x=$SYSTEM.Util.IsDST()
 SET local=$ZDATETIME($HOROLOG)
 SET x2=$SYSTEM.Util.IsDST()
 GOTO:x'=x2 CheckDST
 IF x=1 {WRITE local," DST in effect"}
 ELSEIF x=0 {WRITE local," DST not in effect"}
 ELSE {WRITE local," DST setting cannot be determined"}

The application of seasonal time variants may differ based on (at least) three considerations:

• Operating system: Within a time zone, $HOROLOG for a given date may differ on different computers. This is because
different operating systems use different algorithms to apply time variants. Because policies governing the beginning
and end dates for Daylight Saving Time (and other time variants) have changed, older operating systems may not
reflect current practice, and/or calculations using older $HOROLOG values may be adjusted using the current
beginning and end dates, rather than the ones in force at that time.

• Government policies have changed over time: There have been numerous changes to seasonal time variants since their
first adoption in 1916 (much of Europe) and 1918 (United States). Daylight Saving Time has been adopted, rejected,
and re-adopted by governmental policies in many places. The seasonal start and end dates for Daylight Saving Time
have also changed numerous times. In the United States, recent changes of national policy have occurred in 1966,
1974–75, 1987, and 2007. Adoption of, or exemption from, national policies have also occurred due to local legislative
actions. For example, the state of Arizona does not observe Daylight Saving Time.

• Geography: Daylight Saving Time is summer time; the local clock shifts forwards (“Spring ahead”) at the start of DST
and shifts backwards (“Fall back”) at the end of DST. Thus the calendar start and end dates for Daylight Saving Time
within the same time zone are commonly reversed in the northern hemisphere and the southern hemisphere. Equatorial
nations and most of Asia and Africa do not observe Daylight Saving Time.

Local Time Variant Thresholds

$HOROLOG calculates the number of seconds from midnight by consulting the system clock. Therefore, if the system
clock is automatically reset when crossing a local time variant threshold, such as the beginning or end of Daylight Saving
Time, the time value of $HOROLOG also shifts abruptly ahead or back by the appropriate number of seconds. For this
reason, comparisons of two $HOROLOG time values may yield unanticipated results if the period between the two values
includes a local time variant threshold.

$NOW does not adjust for local time variants. Its use may be preferable when comparing date and time values if the period
between the two values includes a local time variant threshold.

Dates Before 1840

$HOROLOG cannot be directly used to represent dates outside of the range of years 1840 through 9999. However, you
can represent historic dates far beyond this range using the InterSystems SQL Julian date feature. Julian dates can represent
a date as an unsigned integer, counting from 4711 BC (BCE). Julian dates do not have a time-of-day component.

You can convert an InterSystems IRIS $HOROLOG date to an InterSystems IRIS Julian date using the TO_CHAR SQL
function, or the TOCHAR() method of the %SYSTEM.SQL class. You can convert an InterSystems IRIS Julian date to an
InterSystems IRIS $HOROLOG date using the TO_DATE SQL function, or the TODATE() method of the %SYSTEM.SQL

class.

ObjectScript Reference 633

$HOROLOG

The following example takes the current $HOROLOG date and converts it to a Julian date. The + before $HOROLOG
forces InterSystems IRIS to treat it as a number, and thus truncate at the comma, eliminating the time integer:

 WRITE !,"Horolog date = ",+$H
 SET x=$SYSTEM.SQL.TOCHAR(+$HOROLOG,"J")
 WRITE !,"Julian date = ",x

The following example takes a Julian date and converts it to an InterSystems IRIS $HOROLOG date:

 SET x=$SYSTEM.SQL.TODATE(2455030,"J")
 WRITE !,"$HOROLOG date = ",x," = ", $ZDATE(x,1)

Note that Julian date values smaller than 1721100 cannot be converted; an <ILLEGAL VALUE> error is generated.

For further information on Julian dates, refer to TO_DATE and TO_CHAR in the InterSystems SQL Reference.

Examples
The following example displays the current contents of $HOROLOG.

 WRITE $HOROLOG

This returns a value formatted like this: 64701,49170

The following example uses $ZDATE to convert the date field in $HOROLOG to a date format.

 WRITE $ZDATE($PIECE($HOROLOG,",",1))

returns a value formatted like this: 02/22/2018

The following example converts the time portion of $HOROLOG to a time in the form of hours:minutes:seconds on a 12-
hour (a.m. or p.m.) clock.

CLOCKTIME
 NEW
 SET Time=$PIECE($HOROLOG,",",2)
 SET Sec=Time#60
 SET Totmin=Time\60
 SET Min=Totmin#60
 SET Milhour=Totmin\60
 IF Milhour=12 { SET Hour=12,Meridian=" pm" }
 ELSEIF Milhour>12 { SET Hour=Milhour-12,Meridian=" pm" }
 ELSE { SET Hour=Milhour,Meridian=" am" }
 WRITE !,Hour,":",Min,":",Sec,Meridian
 QUIT

See Also
• $NOW function

• $ZDATE function

• $ZDATEH function

• $ZDATETIME function

• $ZDATETIMEH function

• $ZTIME function

• $ZTIMEH function

• $ZTIMESTAMP special variable

• $ZTIMEZONE special variable

634 ObjectScript Reference

ObjectScript Special Variables

$IO
Contains the ID of the current input/output device.

$IO
$I

Description
$IO contains the device ID of the current device to which all input/output operations are directed. If the input and output
devices are different, $IO contains the ID of the current input device.

InterSystems IRIS sets the value of $IO to the principal input/output device at login. $PRINCIPAL contains the ID of the
principal device. You issue a USE command to change the current device. Only the USE and CLOSE commands, a BREAK
command, or a return to the Terminal can change this value.

You can return the device type of the current device by using the GetType() method of the %Library.Device class.

On UNIX® systems, $IO contains the actual device name.

On Windows systems, $IO contains an InterSystems IRIS-generated unique identifier for the principal device. For terminal
devices (TRM or TNT), this consists of a pseudo-device name enclosed in vertical bars, a colon and another vertical bar,
followed by the device’s process ID (pid) number. For non-terminal devices, the pseudo-device name is enclosed in vertical
bars and followed by a unique numeric identifier.

For a Terminal: |TRM|:|pid

For a Telnet terminal: |TNT|nodename:portnumber|pid

For a file descriptor: |FD|file_descriptor_number

(File descriptors are used with CALLIN/CALLOUT remote access.)

For a TCP device: |TCP|unique_device_identifier

For a named pipe: |NPIPE|unique_device_identifier

For the default printer: |PRN|

For a printer other than the default: |PRN|physical_device_name

If the principal device is a null device (which is the default for a background process), $IO contains the null device name
with ":pid" appended, thus allowing you to use $IO for a unique subscript. The null device name contained in $IO depends
on the operating system.

• For Windows systems, $IO contains //./nul:pid

• For UNIX® systems, $IO contains /dev/null:pid

If the input device is redirected via a pipe or file, $IO contains “00”.

The default device number for a device is configurable. Go to the Management Portal, select System Administration, Con-

figuration, Device Settings, Devices. For the desired device, click “Edit” to display and modify its Physical Device Name:

option. If you do this, $IO will contain the assigned device number, rather than the actual operating system device name.

This special variable cannot be modified using the SET command. Attempting to do so results in a <SYNTAX> error.

See Also
• USE command

• $PRINCIPAL special variable

ObjectScript Reference 635

$IO

• I/O Devices and Commands in I/O Device Guide

• Terminal I/O in I/O Device Guide

636 ObjectScript Reference

ObjectScript Special Variables

$JOB
Contains the ID of the current process.

$JOB
$J

Description
$JOB contains the ID number of the current process. This ID number is the host operating system’s actual Process ID
(PID). This ID number is unique for each process.

The format of the string returned to $JOB is determined for the current process by the setting of the NodeNameInPid()
method of the %SYSTEM.Process class. The system-wide default behavior can be established by setting the NodeNameInPid
property of the Config.Miscellaneous class. By default, $JOB returns only the PID, but you can set these functions to have
$JOB return both the PID and the node name. For example: 11284:MYCOMPUTER.

This special variable cannot be modified using the SET command. Attempting to do so results in a <SYNTAX> error.

To establish the PID as the terminal prompt, use the TerminalPrompt(5) method of the %SYSTEM.Process class.

Other Information About the Current Process
You can obtain the same current process ID number by invoking the ProcessId() method, as follows:

 WRITE $SYSTEM.SYS.ProcessID()

Refer to the %SYSTEM.SYS class in the InterSystems Class Reference for further details.

You can use $JOB to obtain the job number for the current process as follows:

 SET JobObj=##CLASS(%SYS.ProcessQuery).%OpenId($JOB)
 WRITE JobObj.JobNumber

Refer to the %SYS.ProcessQuery class in the InterSystems Class Reference for further details.

You can obtain status information about the current process from the $ZJOB special variable.

You can obtain the PID of the child process or the parent process of the current process from the $ZCHILD and $ZPARENT
special variables.

You can obtain the PIDs of the current jobs in the job table from the ^$JOB structured system variable.

See Also
• JOB command

ObjectScript Reference 637

$JOB

$KEY
Contains the terminator character from the most recent READ.

$KEY
$K

Description
$KEY contains the character or character sequence that terminated the last READ command on the current device. $KEY
and $ZB are very similar in function; see below for a detailed comparison.

• If the last read terminated because of a terminator character (such as the <RETURN> key), $KEY contains the termi-
nator character.

• If the last read terminated because of a timeout or a fixed-length read length limit, $KEY contains the null string. No
terminator character was encountered.

• If the last read was a single-character read (READ *a), and a character was entered, $KEY contains the actual input
character.

$KEY and $ZB are very similar, though not identical. See below for a comparison.

You can use the SET command to specify a value for $KEY. You can use the ZZDUMP command to display the value
of $KEY.

During a terminal session, the end of every command line is recorded in $KEY as a carriage return (hexadecimal 0D). In
addition, the $KEY special variable is initialized to carriage return by the process that initializes the terminal session.
Therefore, to display the value of $KEY set by the READ command or a SET command during a terminal session, you
must copy the $KEY value to a local variable within the same line of code.

Examples
In the following example, a variable-length READ command either receives data from the terminal or times out after 10
seconds. If the user inputs the data before the timeout, $KEY contains the user-input carriage return (hex 0D) that terminated
the data input. If, however, the READ timed out, $KEY contains the null string, indicating that no terminator character
was received.

 READ "Ready or Not: ",x:10
 ZZDUMP $KEY

In the following example, a fixed-length READ command either receives data from the terminal or times out after 10 seconds.
If the user inputs the specified number of characters (in this case, one character), the user does not have to press <RETURN>
to conclude the READ operation. The user can respond to the read prompt by pressing <RETURN> rather than entering
the specified number of characters.

If the read operation timed out, both $KEY and $ZB contain the null string. If the user inputs a one-character middle initial,
$KEY contains the null string, because the fixed-length READ operation concluded without a terminator character. If the
user pressed <RETURN> rather than entering a middle initial, $KEY contains the user-input carriage return.

 READ "Middle initial: ",z#1:10
 IF $ASCII($ZB)=-1 {
 WRITE !,"The read timed out" }
 ELSEIF $ASCII($KEY)=-1 {
 WRITE !,"A character was entered" }
 ELSEIF $ASCII($KEY)=13 {
 WRITE !,"A line return was entered" }
 ELSE {
 WRITE !,"Unexpected result" }

638 ObjectScript Reference

ObjectScript Special Variables

Notes

$KEY and $ZB Compared

Both $KEY and $ZB contain the character that terminates a READ operation. These two special variables are similar, but
not identical. Here are the principal differences:

• $KEY can be set using the SET command. $ZB cannot be SET.

• Following a successful fixed-length READ, $ZB contains the final character input (for example, when the 5-digit
postal code “02138” is input as a fixed-length READ, $ZB contains “8”). Following a successful fixed-length READ,
$KEY contains the null string ("").

• $KEY does not support block-based read and write operations.

$KEY on the Command Line

When issuing commands interactively from the Terminal command line, you press <RETURN> to issue each command
line. The $KEY and $ZB special variables record this command line terminator character. Therefore, when using $KEY
or $ZB to return the termination status of a read operation, you must set a variable as part of the same command line.

For example, if you issue the command:

>READ x:10

from the command line, then check $KEY, it will not contain the results of the read operation; it will contain the <RETURN>
character that executed the command line. To return the results of the read operation, set a local variable with $KEY in the
same command line, as follows:

>READ x:10 SET rkey=$KEY

This preserves the value of $KEY set by the read operation. To display this read operation value, issue either of the following
command line statements:

>WRITE $ASCII(rkey)
 ; returns -1 for null string (time out)
 ; returns ASCII decimal value for terminator character
>ZZDUMP rkey
 ; returns blank line for null string (time out)
 ; returns hexadecimal value for terminator character

See Also
• READ command

• SET command

• ZZDUMP command

• $ZB special variable

ObjectScript Reference 639

$KEY

$NAMESPACE
Contains the namespace for the current stack level.

$NAMESPACE
SET $NAMESPACE=namespace
NEW $NAMESPACE

Parameter

The name of an existing namespace, specified as a literal quoted string or an expression that
resolves to a quoted string. Namespace names are not case-sensitive.

namespace

Description
$NAMESPACE contains the name of the current namespace for the current stack level. You can use $NAMESPACE to:

• Return the name of the current namespace.

• Change the current namespace with SET.

• Establish a new temporary namespace context with NEW and SET.

NEW $NAMESPACE followed by SET $NAMESPACE=namespace is the preferred way to change the current namespace
within a code module.

Return the Current Namespace Name

The $NAMESPACE special variable contains the current namespace name.

You can also obtain the name of the current namespace by invoking the NameSpace() method of %SYSTEM.SYS class,
as follows:

 WRITE $SYSTEM.SYS.NameSpace()

You can obtain the full pathname of the current namespace by using the NormalizeDirectory() method of %Library.File

class, as follows:

 WRITE $NAMESPACE,!
 WRITE ##class(%Library.File).NormalizeDirectory("")

You can test whether a namespace is defined by using the Exists() method of the %SYS.Namespace class, as follows:

 WRITE ##class(%SYS.Namespace).Exists("USER"),! ; an existing namespace
 WRITE ##class(%SYS.Namespace).Exists("LOSER") ; a non-existent namespace

These methods are described in the InterSystems Class Reference.

SET $NAMESPACE

You can set $NAMESPACE to an existing namespace using the SET command.

NEW $NAMESPACE followed by SET $NAMESPACE=namespace is the preferred way to change a namespace within
a code module, rather than using SET $ZNSPACE or the ZNSPACE command.

In SET $NAMESPACE=namespace, specify namespace as a quoted string literal or a variable or expression that evaluates
to a quoted string; namespace is not case-sensitive. However, InterSystems IRIS always displays explicit namespace names
in all uppercase letters, and implied namespace names in all lowercase letters. A namespace name can contain Unicode
letter characters; InterSystems IRIS converts accented lowercase letters to their corresponding accented uppercase letters.

640 ObjectScript Reference

ObjectScript Special Variables

The namespace name can be an explicit namespace name ("USER") or an implied namespace ("^^c:\InterSys-
tems\IRIS\mgr\user\"). For further details on implied namespaces, refer to the ZNSPACE command.

If the specified namespace does not exist, SET $NAMESPACE generates a <NAMESPACE> error. If you do not have
access privileges to a namespace, the system generates a <PROTECT> error, followed by the database path. For example,
the %Developer role does not have access privileges to the %SYS namespace. If you have this role and attempt to access
this namespace, InterSystems IRIS issues the following error (on a Windows system): <PROTECT>
*c:\intersystems\iris\mgr\.

NEW $NAMESPACE

By setting $NAMESPACE you can change the current namespace. This is the preferred way to change a namespace in a
method or other routine. By using NEW $NAMESPACE and SET $NAMESPACE you establish a namespace context
that automatically reverts to the prior namespace when the method concludes or an unexpected error occurs:

 TRY {
 WRITE "before the method: ",$NAMESPACE,!
 DO MyNSMethod("DocBook")
 WRITE "after the method: ",$NAMESPACE
 RETURN
MyNSMethod(ns)
 NEW $NAMESPACE
 IF ##class(%SYS.Namespace).Exists(ns) {
 SET $NAMESPACE=ns }
 ELSE {SET $NAMESPACE="User" }
 WRITE "namespace changed in method: ",$NAMESPACE,!
 SET num=5/$RANDOM(2)
 QUIT
NextMethod()
 WRITE "This should not write",!
 }
 CATCH exp {
 WRITE "namespace after error in method: ",$NAMESPACE,!
 IF 1=exp.%IsA("%Exception.SystemException") {
 WRITE "System exception: ",$ZCVT(exp.Name,"O","HTML"),! }
 }

Quitting a routine or branching to an error trap reverts to this stacked namespace. If you create an object instance in the
changed namespace, InterSystems IRIS closes the object in that namespace before reverting to the stacked namespace. This
is shown in the following Terminal example:

USER>NEW $NAMESPACE
USER 1S1>NEW myoref
USER 2N1>SET $NAMESPACE="MYNSPACE"
MYNSPACE 2N1>SET myoref=##class(%SQL.Statement).%New()
MYNSPACE 2N1>QUIT
 /* IRIS closes myoref in the MYNSPACE namespace
 Then reverts to the USER namespace */
USER>

In more complex stacked namespace situations, it is the programmer’s responsibility to explicitly close objects in the proper
namespace.

Examples
The following example calls a routine that executes in a different namespace than the calling program. It uses NEW
$NAMESPACE to stack the current namespace. It then uses SET $NAMESPACE to change the namespace for the
duration of Test. The QUIT reverts to the stacked namespace:

 WRITE "before: ",$NAMESPACE,!
 DO Test
 WRITE "after: ",$NAMESPACE,!
 QUIT
Test
 NEW $NAMESPACE
 SET $NAMESPACE="USER"
 WRITE "testing: ",$NAMESPACE,!
 ; routine code
 QUIT

ObjectScript Reference 641

$NAMESPACE

There is no need to handle an error to switch back to the old namespace; InterSystems IRIS restores the old namespace
when you leave the current stack level.

The following example differs from the previous example by omitting NEW $NAMESPACE. Note that upon QUIT the
namespace does not revert:

 WRITE "before: ",$NAMESPACE,!
 DO Test
 WRITE "after: ",$NAMESPACE,!
 QUIT
Test
 NEW
 SET $NAMESPACE="USER"
 WRITE "testing: ",$NAMESPACE,!
 ; routine code
 QUIT

Calling a separate routine when temporarily changing the current namespace is the preferred programming practice.

See Also
• NEW command

• SET command

• ZNSPACE command

• $ZNSPACE special variable

• Configuring Namespaces in System Administration Guide

642 ObjectScript Reference

ObjectScript Special Variables

$PRINCIPAL
Contains the ID of the principal I/O device.

$PRINCIPAL
$P

Description
$PRINCIPAL contains the ID of the principal I/O device for the current process. $PRINCIPAL operates like $IO. Refer
to $IO for details of specific device types and system platforms.

If the principal device is closed, $PRINCIPAL does not change. If the principal input and output devices differ,
$PRINCIPAL reflects the ID of the principal input device.

This special variable cannot be modified using the SET command. Attempting to do so results in a <SYNTAX> error.

Examples
This example uses $PRINCIPAL to test for a principal device.

 IF $PIECE($PRINCIPAL,"|",4) {
 WRITE "Principal device is: ",$PRINCIPAL }
 ELSE { WRITE "Undefined" }

This example uses and writes to the principal device.

 USE $PRINCIPAL
 WRITE "output to $PRINCIPAL"

Notes

$PRINCIPAL and USE 0

$PRINCIPAL is functionally equivalent to the widely used, but nonstandard, USE 0. Use $PRINCIPAL instead of USE
0 because it is standard, and because it makes your code more flexible.

See Also
• USE command

• $IO special variable

ObjectScript Reference 643

$PRINCIPAL

$QUIT
Contains a flag indicating what kind of QUIT is required to exit the current context.

$QUIT
$Q

Description
$QUIT contains a value that indicates whether an argumented QUIT command is required to exit from the current context.
If an argumented QUIT is required to exit from the current context, $QUIT contains a one (1). If an argumented QUIT is
not required to exit from the current context, $QUIT contains a zero (0).

In a context created by issuing a DO or XECUTE command, an argumented QUIT is not required to exit. In a context
created by a user-defined function, an argumented QUIT is required to exit.

This special variable cannot be modified using the SET command. Attempting to do so results in a <SYNTAX> error.

Example
The following example demonstrates $QUIT values in a DO context, in an XECUTE context, and in a user-defined
function context.

The sample code is as follows:

QUI
 DO
 . WRITE !,"$QUIT in a DO context = ",$QUIT
 . QUIT
 XECUTE "WRITE !,""$QUIT in an XECUTE context = "",$QUIT"
 SET A=$$A
 QUIT
A()
 WRITE !,"$QUIT in a User-defined function context =",$QUIT
 QUIT 1

A sample session using this code might run as follows:

USER>DO ^QUI
$QUIT in a DO context = 0
$QUIT in an XECUTE context = 0
$QUIT in a User-defined function context = 1

Notes

$QUIT and Error Processing

The $QUIT special variable is particularly useful during error processing when the same error handler can be invoked at
context levels that require an argumented QUIT and at context levels that require an argumentless QUIT.

See the Error Handling in Using ObjectScript for more information about error processing.

See Also
• DO command

• QUIT command

• XECUTE command

644 ObjectScript Reference

ObjectScript Special Variables

$ROLES
Contains the roles assigned to the current process.

$ROLES

Description
$ROLES contains the list of roles assigned to the current process. This list of roles consists of a comma-separated string
that can contain both User Roles and Added Roles.

A role is assigned to a user either by using the SQL GRANT statement, or by using the Management Portal System

Administration, Security, Users option. Select a user name to edit its definition, then select the Roles tab to assign that user
to a role. A role can be defined using the SQL CREATE ROLE statement and deleted using the SQL DROP ROLE
statement. A role must be defined before it can be assigned to a user. A role can be revoked from a user using the SQL
REVOKE statement.

When a process is created using the JOB command, it inherits the same $ROLES and $USERNAME values as its parent
process.

When a process performs I/O redirection, this redirection is performed using the user’s login $ROLES value, not the current
$ROLES value.

Roles Granted to Roles Not Listed

Granting a role to another role is a concept only available through InterSystems SQL. Roles granted to roles are used in
SQL to determine the user's role list for checking SQL privileges. They cannot be accessed by ObjectScript. You cannot
grant a role to another role through InterSystems IRIS System Security. Therefore, the $ROLES special variable list does
not contain any roles that SQL operations have granted to the current roles. For further details, refer to the GRANT command
in the InterSystems SQL Reference.

SET $ROLES

You can use the SET command to change the Added Roles part of the list contained in $ROLES. Setting $ROLES only
alters a process' Added Roles. It cannot alter its User Roles. To set $ROLES to a different list of Added Roles is a restricted
system capability. However, such restrictions do not apply to setting $ROLES to a null string, which deletes the list of
Added Roles.

A role must be defined before it can be added. You can define a role using the SQL CREATE ROLE command. CREATE
ROLE does not give any privileges to a role. To assign privileges to a role use either the SQL GRANT statement, or the
Management Portal System Administration, Security, Roles interface.

You must issue a NEW $ROLES statement before escalating the process roles using SET $ROLES.

NEW $ROLES

NEW $ROLES stacks the current values of both $ROLES and $USERNAME. You can use the NEW command on
$ROLES without security restrictions.

Issue a NEW $ROLES and then SET $ROLES to supply Added Roles. You can then create an object instance that uses
these Added Roles. If you quit this routine, InterSystems IRIS closes the object with the Added Roles before reverting to
the stacked $ROLES value.

Examples
The following example returns the list of roles for the current process.

 WRITE $ROLES

ObjectScript Reference 645

$ROLES

The following example first creates the roles Vendor, Sales, and Contractor. It then displays the comma-separated list of
default roles (which contain both User Roles and Added Roles). The first SET $ROLES replaces the list of Added Roles
with the two roles Sales and Contractor. The second SET $ROLES concatenates the Vendor role to the list of Added Roles.
The final SET $ROLES sets the Added Roles list to the null string, removing all Added Roles. The User Roles remain
unchanged throughout:

CreateRoles
 &sql(CREATE ROLE Vendor)
 &sql(CREATE ROLE Sales)
 &sql(CREATE ROLE Contractor)
 IF SQLCODE=0 {
 WRITE !,"Created new roles"
 DO SetRoles }
 ELSEIF SQLCODE=-118 {
 WRITE !,"Role already exists"
 DO SetRoles }
 ELSE { WRITE !,"CREATE ROLE failed, SQLCODE=",SQLCODE }
SetRoles()
 WRITE !,"Initial: ",$ROLES
 NEW $ROLES
 SET $ROLES="Sales,Contractor"
 WRITE !,"Replaced: ",$ROLES
 NEW $ROLES
 SET $ROLES=$ROLES_",Vendor"
 WRITE !,"Concatenated: ",$ROLES
 SET $ROLES=""
 WRITE !,"Nulled: ",$ROLES

See Also
• ObjectScript: SET command NEW command $USERNAME special variable

• InterSystems SQL: CREATE ROLE DROP ROLE GRANT REVOKE %CHECKPRIV

646 ObjectScript Reference

ObjectScript Special Variables

$STACK
Contains the number of context frames saved on the call stack.

$STACK
$ST

Description
$STACK contains the number of context frames currently saved on the call stack for your process. You can also look at
$STACK as the zero-based context level number of the currently executing context. Therefore, when an InterSystems IRIS
job is started, before any contexts have been saved on the call stack, the value of $STACK is zero (0).

Each time a routine calls another routine with a DO command, the context of the currently executing routine is saved on
the call stack and execution starts in the newly created context of the called routine. The called routine can, in turn, call
another routine and so on. Each additional call causes another saved context to be placed on the call stack.

An XECUTE command and a user-defined function reference also establish a new execution context. A GOTO command
does not.

As new contexts are created by DO commands, XECUTE commands, or user-defined function references, the value of
$STACK is incremented. As contexts are exited with the QUIT command, previous context are restored from the call
stack and the value of $STACK is decremented.

This special variable cannot be modified using the SET command. Attempting to do so results in a <SYNTAX> error.

$ESTACK is identical to $STACK, except that you can establish a $ESTACK level of 0 (zero) at any point by issuing a
NEW $ESTACK command. You cannot NEW the $STACK special variable.

Error Handling

When an error occurs, all context information is immediately saved on your process error stack. This changes the value of
$STACK. The context information is then accessible using the $STACK function until the value of $ECODE is cleared
by an error handler. In other words, while the value of $ECODE is non-null, the $STACK function returns information
about a context saved on the error stack rather than an active context at the same specified context level.

Context Levels from the Terminal Prompt

A routine that is invoked from a program starts at a different context level than a routine invoked from the Terminal prompt
with a DO command. The DO command typed at the Terminal prompt causes a new context to be created. The following
example shows the routine START invoked from a routine or from the Terminal prompt:

Consider the following routine:

START
 ; Display the context level and exit
 WRITE !,"Context level in routine START is ",$STACK
 QUIT

When you run START from a program, you see the following display:

Context level in routine START is 0

When you run START by issuing DO ^START at the Terminal prompt, you see the following display:

Context level in routine START is 1

Examples
The following example demonstrates how the value of $STACK is incremented as new contexts are create and decremented
as contexts are exited.

ObjectScript Reference 647

$STACK

The sample code is as follows:

STA
 WRITE !,"Context level in routine STA = ",$STACK
 DO A
 WRITE !,"Context level after routine A = ",$STACK
 QUIT
A
 WRITE !,"Context level in routine A = ",$STACK
 DO B
 WRITE !, "Context level after routine B = ",$STACK
 QUIT
B
 WRITE !,"Context level in routine B = ",$STACK
 XECUTE "WRITE !,""Context level in XECUTE = "",$STACK"
 WRITE !,"Context level after XECUTE = ",$STACK
 QUIT

A sample session using this code might run as follows:

USER>DO ^STA
Context level in routine STA = 1
Context level in routine A = 2
Context level in routine B = 3
Context level in XECUTE = 4
Context level after XECUTE = 3
Context level after routine B = 2
Context level after routine A = 1

See Also
• $STACK function

• $ESTACK special variable

• Error Handling in Using ObjectScript

• Using %STACK to Display the Stack in the “Command-line Routine Debugging” chapter of Using ObjectScript

648 ObjectScript Reference

ObjectScript Special Variables

$STORAGE
Contains the number of bytes available for local variable storage.

$STORAGE
$S

Description
$STORAGE returns the number of bytes available for local variable storage in the current process partition. The initial
value of $STORAGE is established by the value of $ZSTORAGE, the maximum amount of memory available to the
process. The larger the $ZSTORAGE value (in kilobytes), the larger the $STORAGE value (in bytes). However, this
relationship between $ZSTORAGE and $STORAGE is not a simple 1:1 ratio.

The $STORAGE value is affected by the following operations:

• $STORAGE decreases as local variables are defined in the local variable space, for example, by using the SET com-
mand. The decrease in $STORAGE corresponds to the amount of space required to store the value of the local variable;
the size of the name of the local variable has no effect on $STORAGE, but the number of subscript levels does affect
$STORAGE. The $STORAGE value increases as local variables are removed, for example, by using the KILL
command.

• $STORAGE decreases when you issue a NEW command. NEW establishes a new execution level; space set aside
for local variables (whether or not used) at the previous execution level is not available at the new execution level. The
initial NEW decreases $STORAGE by approximately 15000; each subsequent NEW decreases $STORAGE by
12288. The $STORAGE value increases when you issue a QUIT command to exit an execution level.

• $STORAGE decreases when you define a flow-of-control statement, such as IF or FOR, or a block structure such as
TRY and CATCH. Storage is allocated to compile these structures, not to execute them. Therefore, a FOR statement
consumes the same amount of storage regardless whether it loops or how many times it loops; each IF, ELSEIF, and
ELSE clause consumes a set amount of storage, regardless of how many branches are executed. The space is allocated
from the process that compiled the code. Note that a FOR loop commonly defines a local variable as a counter.

The $STORAGE value is not affected by setting process-private globals, global variables, or special variables. The
$STORAGE value is not affected by changing namespaces.

The $STORAGE special variable cannot be modified using the SET command. Attempting to do so results in a <SYNTAX>
error.

Low Memory and <STORE> Errors

The $STORAGE value may be a positive or negative number. A value of zero does not indicate no available storage, but
indicates that storage is in extremely short supply. If $STORAGE decreases to less than zero, at some point a <STORE>
error occurs. For example, if $STORAGE decreases to -7000, allocating storage for another local variable might fail due
to a <STORE> error, indicating insufficient available storage space to store a local variable value, or to establish a new
execution level.

The first <STORE> error occurs when $STORAGE is some value less than zero; the exact negative $STORAGE value
threshold depends upon context. This <STORE> error indicates that you must get additional storage, either by increasing
$ZSTORAGE, or by freeing some allocated storage through KILL or QUIT operations. When this first <STORE> error
occurs, the system automatically makes 1Mb of additional memory available to the process to enable error processing and
recovery. InterSystems IRIS does not change $ZSTORAGE; it allows $STORAGE to go further into negative number
values.

When this first <STORE> error occurs, InterSystems IRIS internally designates the process as being in a low memory state.
While in this low memory state the process may continue to allocate memory and the value of $STORAGE may continue
to decrease into lower negative numbers. While in this low memory state the process may free some allocated memory,

ObjectScript Reference 649

$STORAGE

causing the value of $STORAGE to rise. Thus, the value of $STORAGE may rise or fall within a range of values without
issuing additional <STORE> errors. Also, after the first <STORE> error you may see a small rise in $STORAGE caused
by InterSystems IRIS freeing some internal memory.

This first <STORE> error provides some memory cushion that allows your process to call diagnostics, perform saves to
disk, exit gracefully, free memory, and continue.

A process remains in a low memory state until either of the following occurs:

• The process makes available sufficient memory. Your process can do this by increasing the $ZSTORAGE allocation,
and/or by freeing allocated storage through KILL or QUIT operations. When the value of $STORAGE exceeds 256K
(or 25% of $ZSTORAGE, whichever is smaller), InterSystems IRIS removes the process from low memory state. At
that point the process can again issue a <STORE> error if the available memory decreases into negative numbers.

• The process consumes the additional memory. When the value of $STORAGE reaches -1048576, a second <STORE>
error occurs. If your process arrives at this point, no more memory is available to the process and further process
operations become unpredictable. It is likely the process will immediately terminate.

You can determine the reason for a <STORE> error by calling the $SYSTEM.Process.MemoryAutoExpandStatus()
method.

Examples
The following example shows how $STORAGE becomes smaller when $ZSTORAGE is set to a smaller value. Note that
the relationship (ratio) between these two values is variable:

 SET $ZS=262144
 FOR i=1:1:10 {
 WRITE "$ZS=",$ZS," $S=",$S," ratio=",$NORMALIZE($S/$ZS,3),!
 IF $ZS>30000 {SET $ZS=$ZS-30000 }
 }

The following example shows how $STORAGE decreases as local variables are assigned, and increases when local variables
are killed:

 WRITE "$STORAGE=",$S," initial value",!
 FOR i=1:1:30 {SET a(i)="abcdefghijklmnopqrstuvwxyz"
 WRITE "$STORAGE=",$S,! }
 KILL a
 WRITE !,"$STORAGE=",$S," after KILL",!

The following example shows how the number of subscript levels of an assigned local variable affect $STORAGE:

 WRITE "No subscripts:",!
 SET before=$S
 SET a="abcdefghijklmnopqrstuvwxyz"
 WRITE " memory allocated ",before-$S,!
 KILL a
 WRITE "One subscript level:",!
 SET before=$S
 SET a(1)="abcdefghijklmnopqrstuvwxyz"
 WRITE " memory allocated ",before-$S,!
 KILL a(1)
 WRITE "Nine subscript levels:",!
 SET before=$S
 SET a(1,2,3,4,5,6,7,8,9)="abcdefghijklmnopqrstuvwxyz"
 WRITE " memory allocated ",before-$S,!
 KILL a(1,2,3,4,5,6,7,8,9)

The following example shows how $STORAGE decreases (becomes unavailable at that level) as NEW establishes a new
execution level:

 WRITE "increasing levels:",!
 FOR i=1:1:10 {WRITE "$STORAGE=",$S,! NEW }

The following example shows how $STORAGE decreases as local variables are assigned until it enters low memory state,
issuing a <STORE> error. The <STORE> error is caught by a CATCH block that invokes the StoreErrorReason() method

650 ObjectScript Reference

ObjectScript Special Variables

to determine what caused the error. Note that entering the CATCH block consumes a significant amount of storage. Once
in the CATCH block, this example allocates one more variable.

 TRY {
 WRITE !,"TRY block",!
 SET init=$ZSTORAGE
 SET $ZSTORAGE=456
 WRITE "Initial $STORAGE=",$STORAGE,!
 FOR i=1:1:1000 {
 SET pre=$STORAGE
 SET var(i)="1234567890abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
 IF $STORAGE<0 {WRITE "var(",i,") negative memory=",$STORAGE,! }
 ELSEIF pre<$STORAGE {WRITE "var(",i,") new allocation $S=",$STORAGE,! }
 ELSE {WRITE "var(",i,") $S=",$STORAGE,! }
 }
 }
 CATCH myexp {
 WRITE !,"CATCH block exception handler",!!
 WRITE "Name: ",$ZCVT(myexp.Name,"O","HTML"),!
 IF myexp.Name="<STORE>" {WRITE "store error reason=",
 $SYSTEM.Process.StoreErrorReason(),! }
 WRITE "$S=",$STORAGE,!
 SET j=i
 SET var(j)="1234567890abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"
 WRITE "var(",j,") added one more variable $S=",$STORAGE,!
 SET $ZSTORAGE=init
 RETURN
 }

See Also
• $ZSTORAGE special variable

• Local variables in the “Variables” chapter of Using ObjectScript

ObjectScript Reference 651

$STORAGE

$SYSTEM
Contains system information about system objects.

$SYSTEM
$SY
$SYSTEM.class.method()

Description
$SYSTEM can be invoked as either a special variable or as a class which invokes methods that return system information.

$SYSTEM Special Variable

$SYSTEM as a special variable contains the local system name and the name of the current instance of InterSystems IRIS,
separated by a colon (:). The name of the machine follows the case conventions of the local operating system and the name
of the instance is in uppercase. For example:

MyComputer:IRIS181

You can also determine your local system name using the LocalHostName() method:

 WRITE $SYSTEM,!
 WRITE $SYSTEM.INetInfo.LocalHostName()

The abbreviation $SY can only be used for $SYSTEM as a special variable.

$SYSTEM Class

$SYSTEM as a class provides access to a variety of system objects. You can invoke a method that returns information, or
a method that performs some operation such as upgrading or loading and returns status information. InterSystems IRIS
supports several classes of system objects, including the following:

• Version: for version numbers of IRIS and its components

• SYS: for the system itself

• OBJ: for Objects

• SQL: for SQL queries

Note that object class names and method names are case-sensitive. Specifying the wrong case for these names results in a
<CLASS DOES NOT EXIST> or <METHOD DOES NOT EXIST> error. If you do not specify parentheses with the
method name, it issues a <SYNTAX> error.

For further information on using dot syntax with $SYSTEM to access these objects, refer to the chapter “Working with
Registered Objects” of Defining and Using Classes. For further information on using %SYSTEM.OBJ, refer to Flags and
Qualifiers. $SYSTEM can access the System API classes in the %SYSTEM class package, described in the InterSystems
Class Reference documentation.

Flags and Qualifiers
These are arguments which can be used to control the import of external sources into InterSystems IRIS, compile existing
applications, and export these to external destinations. In the class documentation for %SYSTEM.OBJ, these are often supplied
as the value of the parameter, qspec. The available settings for each can be displayed by the commands:

 DO $SYSTEM.OBJ.ShowFlags()

and

652 ObjectScript Reference

ObjectScript Special Variables

 DO $SYSTEM.OBJ.ShowQualifiers()

Flags

Of the two, the flags are the earlier. They were modeled on UNIX® command-line parameters and thus are one- or two-
character sequences. The existing flags and their meanings (excluding deprecated flags) are:

Table E–1: Existing Flags

DefaultMeaningFlag

Includes subclasses and classes that reference the current class in SQL
usage.

b

Compiles the class definitions after loading.c

XDisplay. Flag set by default.d

Deletes the extent definition that describes the global storage used by the
extent, and deletes the data.

e

Shows hidden classes.h

XValidates XML export format against schema on Load. Flag set by default.i

Keep source. When this flag is set, source code of generated routines will
be kept.

k

XLocks classes while compiling. Flag set by default.l

Includes classes whose names begin with the “% ” character.p

Recursive. Compiles all the classes that are dependency predecessors.r

System. Processes system messages or application messages.s

Update only. Skip compilation of classes that are already up-to-date.u

Includes classes that are related to the current class; classes that either
reference the current class in SQL usage, or are referenced by the current
class in SQL usage.

y

Optimization specifiers. Deprecated and ignored by the class compiler.o1, o2, o3, o4

Note: Flags may be turned off by preceding them with a dash (-).

Qualifiers

InterSystems IRIS also includes a more extensible set of controls to supplement flags: qualifiers. The flag mechanism
remains fully supported. In addition, a qualifier exists whose meaning is the same as each existing flag, and the two may
be used in the same specifier.

Since there are so many more qualifiers, they are organized into groups according to the function they control as shown in
the following tables. Deprecated qualifiers are not shown.

You can also set these qualifiers for the current namespace (the default) or system-wide using the SetQualifiers() method.

Table E–2: Compiler Qualifiers

DefaultMeaningFlag

1Automatically includes any classes that are not up to date
that are required to compile this class.

/autoinclude

ObjectScript Reference 653

$SYSTEM

DefaultMeaningFlag

1Validates imported XML files against the schema definition./checkschema

0Checks system classes for up-to-dateness./checksysutd

expandedonlySkips classes or expanded classes that are up-to-date./checkuptodate

0Causes classes loaded to be compiled as well./compile

1Causes classes created by CSP or CSR load to be
compiled.

/cspcompileclass

0When CSP page loaded deploys the class generated./cspdeployclass

1Classes generated from CSP and CSR compilation are
marked as hidden.

/csphidden

—When loading classes, if the classowner keyword is not
defined, insert the user name specified in this string into
the class definition as the class owner. If the value of this
string is $USERNAME, insert the current user name into
the class definition as the class owner.

/defaultowner

—Comma separated list of macros to define and, optionally,
their values.

/defines

0Deletes the extent definition that describes the global
storage used by the extent, and deletes the data.

/deleteextent

0Does not include any time or platform information in export
so the files can be run through diff/merge tools.

/diffexport

—Alias qualifier for /displaylog and /displayerror./display

1Displays error information./displayerror

1Displays log information./displaylog

—Alias qualifier for /predecessorclasses, /subclasses and
/relatedclasses.

/expand

0When exporting classes also exports generated classes
where the class generating them is also included.

/exportgenerated

1Exports the selectivity values stored in the storage
definition for this class.

/exportselectivity

—Alias qualifier for /application, /system and /percent./filterin

1Determines when expanding patterns or lists of classes in
a package whether to include generated items (routines,
classes, etc.).

/generated

1Generates the map file./generatemap

20: Do not import selectivity values from the XML file. 1:
Import the selectivity values stored in the storage definition
when importing XML file. 2: Keep the existing class
selectivity values, but if the existing class does not have
selectivity specified for something that is present in the
XML file then use the selectivity value from the XML file.

/importselectivity

654 ObjectScript Reference

ObjectScript Special Variables

DefaultMeaningFlag

1Includes sub-packages./includesubpackages

1Journaling enabled while performing a class compile. If
the process performing the compile has specifically
disabled journaling, /journal defaults to 0, rather than the
system-wide default of 1.

/journal

0Keeps the source code of generated routines./keepsource

1Uses LOCK command while compiling classes./lock

0Includes classes mapped from another database. If you
specifically ask to compile a class from another database
(CompileList() method), the class will be compiled
regardless of the /mapped setting. /mapped only applies
when the code is searching for classes, for example, using
the CompileAll() method.

/mapped

0If importing a global from XML file merges the global with
existing data.

/mergeglobal

1Enables multiple users’ jobs to compile classes./multicompile

0Includes percent classes./percent

0Recursively includes dependency predecessor classes./predecessorclasses

0Recursively includes related classes./relatedclasses

0When a class is compiled, the compiler generates a storage
definition. By default, if the storage definition is updated
the class definition is updated with the updated storage
definition. If a new version of the class is loaded from an
external source, that updated storage definition is
overwritten by whatever is defined in the new version of
the class definition. If the new version of the class does
not include a storage definition then the existing storage
definition is removed. Setting /retainstorage saves the
existing storage definition temporarily and restores it after
the new version of a class is loaded. If the new version of
the class also defines the storage definition, the existing
storage definition is overwritten and not retained. If the
new version of the class does not define the storage
definition, the previous version of the storage definition is
restored.

/retainstorage

0Recursively includes sub-classes./subclasses

0Processes system messages or application messages./system

Table E–3: Export Qualifiers

DefaultMeaningFlag

0Checks system classes for up-to-dateness./checksysutd

expandedonlyChecks if classes are up-to-date when projecting./checkuptodate

ObjectScript Reference 655

$SYSTEM

DefaultMeaningFlag

0Creates directories if they do not exist./createdirs

0When CSP page loaded deploys the class generated./cspdeployclass

0Does not include any time or platform information in export
so the files can be run through diff/merge tools.

/diffexport

—Alias qualifier for /displaylog and /displayerror./display

1Displays error information./displayerror

1Displays log information./displaylog

—Host that is used in JavaDoc generation./documatichost

—Namespace that is used in JavaDoc generation./documaticnamespace

—Port that is used in JavaDoc generation./documaticport

0When exporting classes also exports generated classes
where the class generating them is also included.

/exportgenerated

1Exports the selectivity values stored in the storage definition
for this class.

/exportselectivity

The current
version of
InterSystems
IRIS

Specifies the InterSystems platform and version of the
system that you are exporting to. Specify the platform as
iris or cache. Specify the version as a three-part release
version, for example 2018.1.1. For example,
/exportversion=iris2018.1.1 or
/exportversion=cache2018.1.2. IRIS uses the /exportversion
value when the exporting and importing systems are not
the same InterSystems version. The system handles
changes in the export format across versions by removing
class keywords that were not implemented in the earlier
InterSystems version. Specifying /exportversion does not
guarantee compatibility of code between the exporting and
importing systems.

/exportversion

1Generates the map file./generatemap

—Generation mode./generationtype

1Generates serialVersionUID./genserialuid

20: do not import selectivity values from the XML file; 1:
import the selectivity values stored in the storage definition
when importing XML file; 2: keep any existing selectivity
values but if a property does not have an existing value
then use the selectivity from the XML file.

/importselectivity

1Includes sub-packages./includesubpackages

1Does not create javadoc./javadoc

0Only generates dependency or class if timestamp of last
compilation is greater than timestamp of last generation.

/make

0Includes classes mapped from another database./mapped

656 ObjectScript Reference

ObjectScript Special Variables

DefaultMeaningFlag

0If importing a global from XML file merges the global with
existing data.

/mergeglobal

1Uses native Java collections./newcollections

0Includes percent classes./percent

0POJO generation mode./pojo

0Recursively includes dependency predecessor classes./predecessorclasses

0Uses Java primitives for %Integer, %Boolean, %BigInt,
%Decimal.

/primitivedatatypes

0Projects classes that contain methods whose arguments
are abstract streams or whose return type is an abstract
stream.

/projectabstractstream

0Projects byref methods to pojo implementation./projectbyrefmethodstopojo

1Exports classes recursively./recursive

0Recursively includes related classes./relatedclasses

0Does not export the class storage information./skipstorage

0Recursively includes sub-classes./subclasses

0Processes system messages or application messages./system

0Projects regardless of problems that may prevent code
from compiling or working correctly.

/unconditionallyproject

0Uses deepest base in which method or property is defined
for method or property definition. If P is defined in A,B, and
C and A extends B extends C, then C is a deeper base for
P.

/usedeepestbase

Table E–4: ShowClassAndObject Qualifiers

DefaultMeaningFlag

0Shows detailed information./detail

0Does not include any time or platform information in export
so the files can be run through diff/merge tools.

/diffexport

0Shows hidden classes./hidden

0Processes system messages or application messages./system

Table E–5: UnitTest

DefaultMeaningFlag

—Specifies the directory to be auto-loaded./autoload

0Cleans up globals upon completion of unit test. By default,
globals are not cleaned up. Even when set, Analytics globals
are not cleaned up.

/cleanup

ObjectScript Reference 657

$SYSTEM

DefaultMeaningFlag

0Causes the Asserts to BREAK if they fail./debug

1Determines if loaded classes should be deleted./delete

—Alias qualifier for /displaylog and /displayerror./display

1Displays error information./displayerror

1Displays log information./displaylog

0When enabled, the public variables currently set in the
process are recorded before a test is run, then compared
with those set after the test is completed. Other than a
predetermined set of known context and output variables,
such as SQLCODE, any newly defined variables are
reported, with their values, as a test failure.

/findleakedvariables

1Determines if classes should be loaded; if not, then only
classnames are obtained from the directories.

/load

1Loads UDL files produced by Atelier. When set, loads .cls,
.mac, .int, and .inc files. /loadudl and /loadxml can be used
to limit what types of files are loaded; by default, all files are
loaded. UDL files are always loaded as UTF8 so that
Unicode characters are loaded correctly.

/loadudl

1Loads XML files produced by Studio. When set, loads .xml
files. /loadudl and /loadxml can be used to limit what types
of files are loaded; by default, all files are loaded.

/loadxml

1Determines if tests in subdirectories should run recursively./recursive

1Determines if tests should run./run

These qualifiers are given in the qspec as they appear, for example, “ /compile/displayerror/subclasses” . No spaces are
allowed between qualifiers.

Note: Qualifiers may be negated by preceding the qualifier with “no” as in “ /nodisplaylog” . Alternatively, the value
of the qualifier can be specified explicitly as in “ /displaylog=0” .

Qualifiers For Flags

The following table gives the existing flag and the equivalent qualifier. Some flags map into multiple qualifiers, and also
have different meanings when used for differing purposes.

Table E–6: Flag Qualifier Mapping

DefaultQualifierGroupFlag

0/subclassesCompilerb

0/compileCompilerc

1/displayerrorCompilerd

1/displaylogCompilerd

1/displayerrorUnitTestd

1/displaylogUnitTestd

658 ObjectScript Reference

ObjectScript Special Variables

DefaultQualifierGroupFlag

0/deleteextentCompilere

1/checkschemaCompileri

0/keepsourceCompilerk

1/lockCompilerl

0/percentCompilerp

0/predecessorclassesCompilerr

1/includesubpackagesCompilerr

0/systemCompilers

0/relatedclassesCompilery

0/subclassesExportb

1/displayerrorExportd

1/displaylogExportd

0/exportselectivityExportg

0/percentExportp

1/includesubpackagesExportr

1/recursiveExportr

0/predecessorclassesExportr

0/systemExports

0/relatedclassesExporty

0/hiddenShowClassAndObjecth

0/systemShowClassAndObjects

Order Of Processing

The qspec is processed from left to right. The setting for a given flag or qualifier overrides the current setting whether it
came from the environment defaults, or from an occurrence earlier in the qspec.

When both flags and qualifiers appear, the flags must be placed before (to the left of) the qualifiers. This means that qualifier
settings always override any flag settings.

Examples
The following is an example of using $SYSTEM to invoke a method that displays a list of the classes available in the
current namespace:

 DO $SYSTEM.OBJ.ShowClasses()

This displays results like the following:

ObjectScript Reference 659

$SYSTEM

%SYS>d $system.OBJ.ShowClasses()
%SYS.APIManagement
%SYS.Audit
%SYS.AuditString
%SYS.ClusterInfo
%SYS.DatabaseQuery
...
SYS.WSMon.wsProcess
SYS.WSMon.wsResource
SYS.WSMon.wsSystem

You can list all of the methods for the OBJ class as follows. (By changing the class name, you can use this method to get
a list for any system class):

 DO $SYSTEM.OBJ.Help()

To list information about just one method in a class, specify the method name in the Help argument list, as shown in the
following example:

 DO $SYSTEM.OBJ.Help("Load")

The following are a few more examples of $SYSTEM that invoke methods:

 DO $SYSTEM.OBJ.Upgrade()
 WRITE !,"* * * * * * * * * * * "
 DO $SYSTEM.CSP.DisplayConfig()
 WRITE !,"* * * * * * * * * * * "
 WRITE !,$SYSTEM.Version.GetPlatform()
 WRITE !,"* * * * * * * * * * * "
 WRITE !,$SYSTEM.SYS.TimeStamp()

The following example calls the same methods as the previous example, using the ##class(%SYSTEM) syntax form:

 DO ##class(%SYSTEM.OBJ).Upgrade()
 DO ##class(%SYSTEM.CSP).DisplayConfig()
 WRITE !,##class(%SYSTEM.Version).GetPlatform()
 WRITE !,##class(%SYSTEM.SYS).TimeStamp()

The previous two examples requires that UnknownUser have assigned the %DB_IRISSYS role.

See Also
• $ISOBJECT function

• $ZVERSION special variable

• Working with Registered Objects in Defining and Using Classes

660 ObjectScript Reference

ObjectScript Special Variables

$TEST
Contains the truth value resulting from the last command using the timeout option.

$TEST
$T

Description
$TEST contains the truth value (1 or 0) resulting from the last command with a timeout. $TEST is set by the following
commands, regardless of whether they are entered at the Terminal prompt or encountered in routine code:

• A timed JOB sets $TEST to 1 if the attempt to start the new job succeeds before the timeout expires. If the timeout
expires, $TEST is set to 0.

• A timed LOCK sets $TEST to 1 if the lock attempt succeeds before the timeout expires. If the timeout expires, $TEST
is set to 0.

• A timed OPEN sets $TEST to 1 if the open attempt succeeds before the timeout expires. If the timeout expires, $TEST
is set to 0.

• A timed READ sets $TEST to 1 if the read completes before the timeout expires. If the timeout expires, $TEST is
set to 0.

Issuing these commands without a timeout does not set $TEST.

Setting $TEST

You can use the SET command to set $TEST to a boolean value. A value of 1, or any non-zero numeric value, sets
$TEST=1. A value of 0, or a non-numeric string value, sets $TEST=0.

$TEST can be set by any command or function that can return a logical condition.

Maintaining $TEST

A successful JOB, LOCK, OPEN, or READ command that did not specify a timeout does not change the existing value
of $TEST.

The DO command maintains the value of $TEST when calling a procedure, but not when calling a subroutine. For details,
refer to the DO command.

The ZBREAK command maintains the value of $TEST when calling execute_code. For details, refer to the ZBREAK
command.

Example
The following code performs a timed read and uses $TEST to test for completion of the read.

 READ !,"Type a letter: ",a#1:10
 IF $TEST { DO Success(a) }
 ELSE { DO TimedOut }
Success(val)
 WRITE !,"Received data: ",val
TimedOut()
 WRITE !,"Timed out"

Notes

Operations That Do Not Set $TEST

JOB, LOCK, OPEN, and READ commands without a timeout have no effect on $TEST. Postconditional expressions
also have no effect on $TEST.

ObjectScript Reference 661

$TEST

The block-oriented IF command does not use $TEST in any way.

Unsuccessful Timed Operations

InterSystems IRIS does not produce an error message after an unsuccessful timed operation. Your application must check
$TEST and then produce an appropriate message.

See Also
• JOB command

• LOCK command

• OPEN command

• READ command

662 ObjectScript Reference

ObjectScript Special Variables

$THIS
Contains the current class context.

$THIS

Description
$THIS contains the current class context. The class context for an instance method is the current object reference (OREF).
The class context for a class method is the current classname as a string value. For example, if you issue the command DO
..method() or SET ..property = value from within a class method, the .. context is resolved using the current
value of $THIS. When making a reference within an object instance, the relative dot syntax (..) is preferred.

$THIS is commonly used when you are within an object instance and you call a function that is on another object. In this
circumstance, you can use $THIS to pass the current class context to that function, so that it can return a value to your
current object instance.

When $THIS does not contain a valid object reference, InterSystems IRIS returns a <NO CURRENT OBJECT> error.

$THIS can be used in the contexts such as the following:

SET x = ##class(otherclassname).method($THIS)

DO ##class(superclass)$THIS.method(args)

This special variable cannot be set to a value using the SET command. Attempting to do so results in a <FUNCTION>
error.

For further details, refer to “$this Syntax” in Object-specific ObjectScript Features chapter of Defining and Using Classes.
For information on OREFs, see “OREF Basics” in Defining and Using Classes.

See Also
• $CLASSNAME function

ObjectScript Reference 663

$THIS

$THROWOBJ
Contains the OREF from an unsuccessful THROW.

$THROWOBJ

Description
$THROWOBJ contains the object reference (OREF) thrown by the most recent unsuccessful THROW operation. Inter-
Systems IRIS writes an OREF to $THROWOBJ when it issues a <THROW> error. Commonly, this occurs when
attempting to issue a THROW when not inside a TRY or CATCH block.

A successful THROW operation resets $THROWOBJ to the empty string.

For information on TRY, THROW, and CATCH, see “The TRY-CATCH Mechanism” in the “Error Processing”
chapter of Using ObjectScript.

For information on OREFs, see “OREF Basics” in Defining and Using Classes.

Setting $THROWOBJ

You can also explicitly reset $THROWOBJ as follows:

 SET $THROWOBJ=""

$THROWOBJ cannot be set to any value other than the empty string using the SET command. Attempting to do so results
in a <ILLEGAL VALUE> error.

See Also
• THROW command

• Error Processing in Using ObjectScript

664 ObjectScript Reference

ObjectScript Special Variables

$TLEVEL
Contains the current nesting level for transaction processing.

$TLEVEL
$TL

Description
$TLEVEL contains the current transaction level, the number of nested open transactions. The number of TSTART commands
issued determines the transaction level.

• Each TSTART increments $TLEVEL by 1.

• Each TCOMMIT decrements $TLEVEL by 1.

• Each TROLLBACK 1 decrements $TLEVEL by 1.

• A TROLLBACK resets $TLEVEL to 0.

A $TLEVEL of 0 cannot be decremented. Issuing a TROLLBACK (or TROLLBACK 1) when $TLEVEL=0 performs
no operation. Issuing a TCOMMIT when $TLEVEL=0 results in a <COMMAND> error.

The maximum number of transaction levels is 255. Attempting to exceed 255 transaction levels generates a <TRANSACTION
LEVEL> error.

This special variable cannot be modified using the SET command. Attempting to do so results in a <SYNTAX> error.

SQL and $TLEVEL

$TLEVEL is also set by SQL transaction statements as follows:

• An initial START TRANSACTION sets $TLEVEL to 1. Additional START TRANSACTION statements have no
effect on $TLEVEL.

• Each SAVEPOINT statement increments $TLEVEL by 1.

• A ROLLBACK TO SAVEPOINT pointname statement decrements $TLEVEL. The amount of decrement depends
on the savepoint specified.

• A COMMIT resets $TLEVEL to 0.

• A ROLLBACK resets $TLEVEL to 0.

Despite their shared use of $TLEVEL, ObjectScript transaction processing differs from, and is incompatible with, SQL
transaction processing. An application should not attempt to mix the two types of transaction processing statements within
the same transaction.

Transaction Level and the Terminal Prompt
By default, if $TLEVEL is greater than 0 at the conclusion of a command line or program executed from the Terminal
prompt, the current transaction level is displayed as a Terminal prompt prefix.

• When $TLEVEL=0, the Terminal prompt displays the namespace name (by default). For example, USER>

• When $TLEVEL>0, the Terminal prompt displays the TLn: prefix before the namespace name, n being an integer 1
through 255. For example, TL4:USER>.

This Terminal prompt display is configurable, as described in ZNSPACE.

ObjectScript Reference 665

$TLEVEL

The SQL Shell prompt does not display the current transaction level. Upon exiting the SQL Shell the current $TLEVEL
value is displayed at the Terminal prompt. This can including transaction levels established before entering the SQL Shell
and transaction level changes that occurred while in the SQL Shell.

Examples
The following example shows that each TSTART increments $TLEVEL and each TCOMMIT decrements $TLEVEL:

 WRITE !,"transaction level ",$TLEVEL // 0
 TSTART
 WRITE !,"transaction level ",$TLEVEL // 1
 TSTART
 WRITE !,"transaction level ",$TLEVEL // 2
 TCOMMIT
 WRITE !,"transaction level ",$TLEVEL // 1
 TCOMMIT
 WRITE !,"transaction level ",$TLEVEL // 0

The following example shows that repeated invocations of TSTART increment $TLEVEL, and TROLLBACK 1 decrements
$TLEVEL.

 WRITE !,"transaction level ",$TLEVEL // 0
 TSTART
 WRITE !,"transaction level ",$TLEVEL // 1
 TSTART
 WRITE !,"transaction level ",$TLEVEL // 2
 TROLLBACK 1
 WRITE !,"transaction level ",$TLEVEL // 1

The following example shows that repeated invocations of TSTART increment $TLEVEL, and TROLLBACK resets
$TLEVEL to 0.

 WRITE !,"transaction level ",$TLEVEL // 0
 TSTART
 TSTART
 TSTART
 WRITE !,"transaction level ",$TLEVEL // 3
 TROLLBACK
 WRITE !,"transaction level ",$TLEVEL // 0

The following example shows that if $TLEVEL is 0, TROLLBACK commands have no effect:

 WRITE !,"transaction level ",$TLEVEL // 0
 TROLLBACK
 WRITE !,"transaction level ",$TLEVEL // 0
 TROLLBACK 1
 WRITE !,"transaction level ",$TLEVEL // 0
 TROLLBACK
 WRITE !,"transaction level ",$TLEVEL // 0

See Also
• TCOMMIT command

• TROLLBACK command

• TSTART command

• Using ObjectScript for Transaction Processing in Using ObjectScript

666 ObjectScript Reference

ObjectScript Special Variables

$USERNAME
Contains the username for the current process.

$USERNAME

Description
$USERNAME contains the username for the current process. This can be in one of two forms:

• The name of the current user; for example: Mary. This value is returned if multiple security domains are not allowed.

• The name and system address of the current user; for example: Mary@jupiter. This value is returned if multiple
security domains are allowed.

To allow multiple security domains, go to the Management Portal, select System Administration, Security, System Security,
System-wide Security Parameters. Select the Allow multiple security domains check box. Changes to this setting apply to
new invoked processes; changing it does not affect the value returned by the current process.

You cannot use the SET command or the NEW command to modify this value. However, NEW $ROLES also stacks the
current $USERNAME value.

Commonly, the $USERNAME value is the username specified at connection time. However, if unauthenticated access is
permitted, a user terminal or an ODBC client may connect to InterSystems IRIS without specifying a username. In this
case, $USERNAME contains the string “UnknownUser”.

When a process is created using the JOB command, it inherits the same $USERNAME and $ROLES values as its parent
process.

A username can be created using the SQL CREATE USER statement and deleted using the SQL DROP USER statement.
A user password can be changed using the SQL ALTER USER statement. A user can have roles assigned to it, either by
using the SQL GRANT statement, or by using system utilities to add a role to the user. You can access the list of roles
assigned to the current process with the $ROLES special variable. A role can be revoked from a user using the SQL
REVOKE statement.

$USERNAME is used in InterSystems SQL as the USER, CURRENT_USER, and SESSION_USER default field values.

You can return the username for the current process, or for a specified process, by invoking the
$SYSTEM.Process.UserName() method.

Examples
The following example returns the username for the current process.

 WRITE $USERNAME

The following example returns the domain name for the current process.

 WRITE $PIECE($USERNAME,"@",2)

See Also
• ObjectScript $ROLES special variable

• InterSystems SQL: CREATE TABLE CREATE USER DROP USER ALTER USER GRANT REVOKE %CHECKPRIV

ObjectScript Reference 667

$USERNAME

$X
Contains the current horizontal position of the cursor.

$X

Description
$X contains the current horizontal position of the cursor. As characters are written to a device, InterSystems IRIS updates
$X to reflect the horizontal cursor position.

Each printable character that is output increments $X by 1. A carriage return (ASCII 13) or form feed (ASCII 12) resets
$X to 0 (zero).

$X is a 16-bit unsigned integer. $X wraps to 0 when its value reaches 16384 (the two remaining bits are used for Japanese
pitch encoding).

You can use the SET command to give a value to $X and $Y. For example, you may use special escape sequences that
alter the physical cursor position without updating the $X and $Y values. In this case, use SET to assign the correct values
to $X and $Y after you use the escape sequences.

Notes

NLS Character Mapping

The National Language Support (NLS) utility $X/$Y tab defines the $X and $Y cursor movement characters for the current
locale. For further details, refer to the section on “System Classes for National Language Support” in Specialized System
Tools and Utilities.

$X with Terminal I/O

The following table shows the effects of different characters on $X.

Effect on $XASCII CodeEchoed Character

$X=012<FORM FEED>

$X=013<RETURN>

$X=$X10<LINE FEED>

$X=$X-18<BACKSPACE>

$X=$X+19<TAB>

$X=$X+132-126Any printable ASCII character

See Using ObjectScript.127-255Nonprintable characters (such as
escape sequences)

The S(ecret) protocol of the OPEN and USE commands turns off echoing. It also prevents $X from being changed during
input, so it indicates the true cursor position.

WRITE $CHAR() changes $X. WRITE * does not change $X. For example, WRITE $X,"/",$CHAR(8),$X performs
the backspace (deleting the / character) and resets $X accordingly, returning 01. In contrast, WRITE $X,"/",*8,$X
performs the backspace (deleting the / character) but does not reset $X; it returns 02. (See the WRITE command for further
details.)

668 ObjectScript Reference

ObjectScript Special Variables

Using WRITE *, you can send a control sequence to your terminal and $X will still reflect the true cursor position. Since
some control sequences do move the cursor, you can use the SET command to set $X directly. For example, the following
commands move the cursor to column 20 and line 10 on a Digital VT100 terminal (or equivalent) and set $X and $Y
accordingly:

 SET dy=10,dx=20
 WRITE *27,*91,dy+1,*59,dx+1,*72
 SET $Y=dy,$X=dx

ANSI standard control sequences (such as escape sequences) that the device acts on but does not output can produce a
discrepancy between the $X and $Y values and the true cursor position. To avoid this problem use the WRITE * (integer
expression) syntax and specify the ASCII value of each character in the string. For example, instead of using:

 WRITE !,$CHAR(27)_"[1m"
 WRITE !,$X

use this equivalent form:

 WRITE !,*27,*91,*49,*109
 WRITE !,$X

As a rule, after any escape sequence that explicitly moves the cursor, you should update $X and $Y to reflect the actual
cursor position.

You can set how $X handles escape sequences for the current process using the DX() method of the %SYSTEM.Process

class. The system-wide default behavior can be established by setting the DX property of the Config.Miscellaneous class.

$X with TCP and Interprocess Communication

When you use the WRITE command to send data to either a client or server TCP device, InterSystems IRIS first stores
the data in a buffer. It also updates $X to reflect the number of characters in the buffer. It does not include the ASCII
characters <RETURN> and <LINE FEED> in this count because they are considered to be part of the record.

If you flush the $X buffer with the WRITE ! command, InterSystems IRIS resets $X to 0 and increments the $Y value by
1. If you flush the $X and $Y buffers with the WRITE # command, InterSystems IRIS writes the ASCII character <FORM
FEED> as a separate record and resets both $X and $Y to 0.

See Also
• WRITE command

• $Y special variable

• I/O Devices and Commands in I/O Device Guide

• Terminal I/O in I/O Device Guide

• Local Interprocess Communication in I/O Device Guide

• TCP Communication in I/O Device Guide

ObjectScript Reference 669

$X

$Y
Contains the current vertical position of the cursor.

$Y

Description
$Y contains the current vertical position of the cursor. As characters are written to a device, InterSystems IRIS updates $Y
to reflect the vertical cursor position.

Each line feed (newline) character (ASCII 10) that is output increments $Y by 1. A form feed character (ASCII 12) resets
$Y to 0.

$Y is a 16-bit unsigned integer. $Y wraps to 0 when its value reaches 65536. In other words, if $Y is 65535, the next output
character resets it to 0.

You can use the SET command to give a value to $X and $Y. For example, you may use special escape sequences that
alter the physical cursor position without updating the $X and $Y values. In this case, use SET to assign the correct values
to $X and $Y after you use the escape sequences.

Notes

NLS Character Mapping

The National Language Support (NLS) utility $X/$Y tab defines the $X and $Y cursor movement characters for the current
locale. For further details, refer to the section on “System Classes for National Language Support” in Specialized System
Tools and Utilities.

$Y with Terminal I/O

The following table shows the effects of different characters on $Y.

Effect on $YASCII CodeEchoed Character

$Y=012<FORM FEED>

$Y=$Y13<RETURN>

$Y=$Y+110<LINE FEED>

$Y=$Y8<BACKSPACE>

$Y=$Y9<TAB>

$Y=$Y32-126Any printable ASCII character

The S(ecret) protocol of the OPEN and USE commands turns off echoing. It also prevents $Y from being changed during
input, so it indicates the true cursor position.

A WRITE $CHAR() that changes vertical position also changes $Y. A WRITE * that changes vertical position does not
change $Y. For example, WRITE $Y,$CHAR(10),$Y performs the line feed and increments $Y. In contrast, WRITE
$Y,*10,$Y performs the line feed but does not increment $Y. (See the WRITE command for further details.)

Because WRITE * does not change $Y, you can send a control sequence to your terminal and $Y will still reflect the true
cursor position. Since some control sequences do move the cursor, you can use the SET command to set $Y directly. For
example, the following commands move the cursor to column 20 and line 10 on a VT100-type terminal and set $X and $Y
accordingly:

670 ObjectScript Reference

ObjectScript Special Variables

 SET dy=10,dx=20
 WRITE *27,*91,dy+1,*59,dx+1,*72
 SET $Y=dy,$X=dx

ANSI standard control sequences (such as escape sequences) that the device acts on but does not output can produce a
discrepancy between the $X and $Y values and the true cursor position. To avoid this problem, use the WRITE * statement
and specify the ASCII value of each character in the string. For example, instead of using the following code:

 WRITE $CHAR(27)_"[1m"

use this equivalent form:

 WRITE *27,*91,*49,*109

As a rule, after any escape sequence that explicitly moves the cursor, you should update $X and $Y to reflect the actual
cursor position.

See Also
• $X special variable

• I/O Devices and Commands in I/O Device Guide

• Terminal I/O in I/O Device Guide

• Interprocess Communication in I/O Device Guide

ObjectScript Reference 671

$Y

$ZA
Contains the status of the last READ on the current device.

$ZA

Description
$ZA contains the status of the last READ on the current device.

This special variable cannot be modified using the SET command. Attempting to do so results in a <SYNTAX> error.

$ZA with Terminal I/O

$ZA is implemented as a sequence of bit flags, with each bit indicating a specific piece of information. The following table
shows the possible values, their meanings, and how to test them using the modulo (#) and integer divide (\) operators:

MeaningTestBit

A <CTRL-C> arrived, whether or not breaks were enabled.$ZA#20

The READ timed out.$ZA\2#21

I/O error.$ZA\4#22

InterSystems IRIS detected an invalid escape sequence.$ZA\256#28

The hardware detected a parity or framing error.$ZA\512#29

The process is disconnected from its principal device.$ZA\2048#211

For COM ports: CTS (Clear To Send). A signal sent from the modem to
its computer indicating that transmission can proceed. For TCP devices:
the device is functioning in Server mode.

$ZA\4096#212

For COM ports: DSR (Data Set Ready). A signal sent from the modem
to its computer indicating that it is ready to operate. For TCP devices:
the device is currently in the Connected state talking to a remote host.

$ZA\8192#213

Ring set if TRUE.$ZA\16384#214

Carrier detect set if TRUE.$ZA\32768#215

CE_BREAK COM port error state.$ZA\65536#216

CE_FRAME COM port error state.$ZA\131072#217

CE_IOE COM port error state.$ZA\262144#218

CE_OVERRUN COM port error state.$ZA\524288#219

CE_RXPARITY COM port error state.$ZA\1048576#220

CE_TXFULL COM port error state.$ZA\2097152#221

TXHOLD COM port error state. Set if any of the following fields are true
in the error mask returned by ClearCommError(): fCtsHold, fDsrHold,
fRlsdHold, fXoffHold, fXoffSent.

$ZA\4194304#222

InterSystems IRIS requested DTR (Data Terminal Ready) setting: 0=DTR
off. 1=DTR=on. 2=DTR handshaking. When set (1), indicates readiness
to transmit and receive data.

$ZA\16777216#424 & 25

672 ObjectScript Reference

ObjectScript Special Variables

While many of the conditions that $ZA shows are errors, they do not interrupt the program’s flow by trapping to $ZTRAP.
(A <CTRL-C> with breaks enabled traps to $ZTRAP.) A program concerned with these errors must check $ZA after every
READ.

COM ports use bits 12 through 15, 24 and 25 to report the status of modem control pins. This can be done regardless of
whether InterSystems IRIS modem control checking is on or off for the port. A user can enable or disable $ZA error
reporting for COM ports by setting the OPEN or USE command portstate parameter (byte 8, to be specific). If error
reporting is enabled, the port error state is reported in bits 16 through 22. For further details, see Terminal I/O in I/O Device
Guide.

You can use the DisconnectErr() method of the %SYSTEM.Process class for modem disconnect detection for the current
process. The system-wide default behavior can be established by setting the DisconnectErr property of the
Config.Miscellaneous class.

See Also
• READ command

• $ZB special variable

• $ZTRAP special variable

• I/O Devices and Commands in I/O Device Guide

• Terminal I/O in I/O Device Guide

• Sequential File I/O in I/O Device Guide

ObjectScript Reference 673

$ZA

$ZB
Contains status information for the current I/O device.

$ZB

Description
$ZB contains status information specific to the current I/O device following a READ operation.

• When reading from a terminal, sequential file, or other character-based I/O device, $ZB contains the terminating
character of the read operation. This can be a terminator character (such as <RETURN>), the final character of the
input data if the read operation does not require a terminator character, or the null string if a terminator character is
required but was not received (for example, if the read operation timed out).

• When reading from a block-based I/O device $ZB contains the number of bytes remaining in the I/O buffer. $ZB also
contains the number of bytes in the I/O buffer when writing to a block-based I/O device.

This special variable cannot be modified using the SET command. Attempting to do so results in a <SYNTAX> error.

$ZB and $KEY can both be used to return the READ termination character when reading from a character-based device
or file. For character-based reads, these two special variables are very similar, but not identical. For block-based reads and
writes use $ZB; $KEY does not provide support for block-based read and write operations. See $KEY for further details.

End-of-File Behavior

By default, InterSystems IRIS handles an end-of-file on a sequential file by issuing an <ENDOFFILE> error; it does not
set $ZB. You can configure $ZB end-of-file behavior so that when an end-of-file is encountered, InterSystems IRIS does
not issue an error, but sets $ZB to "" (the null string), and sets $ZEOF to -1.

To configure end-of-file handling, go to the Management Portal, select System Administration, Configuration, Additional

Settings, Compatibility. View and edit the current setting of SetZEOF. When set to “ true” , InterSystems IRIS sets $ZB to
"" (the null string), and sets $ZEOF to -1. The default is “ false” .

You can control end-of-file handling for the current process using the SetZEOF() method of the %SYSTEM.Process class.
The system-wide default behavior can be established by setting the SetZEOF property of the Config.Miscellaneous class.

Reading from a Terminal or File

$ZB contains the terminating character (or character sequence) from a read operation involving a terminal, sequential file,
or other character-based I/O device. $ZB can contain any of the following:

• A termination character, such as a carriage return.

• An escape sequence (up to 16 characters).

• The nth character in a fixed-length READ x#n. (In this case, the $KEY special variable returns the null string.)

• The single character of READ *x.

• A null string ("") after a timed READ expires.

For example, consider the following variable-length read with a five-second timeout:

Zbread
 READ !,"Enter number:",num:5
 WRITE !, num
 WRITE !, $ASCII($ZB)
 QUIT

674 ObjectScript Reference

ObjectScript Special Variables

If the user types 123 at the READ prompt and presses <RETURN>, InterSystems IRIS stores 123 in the num variable and
stores <RETURN> (ASCII decimal code 13, hexadecimal 0D) in $ZB. If the READ times out, $ZB contains the null string;
$ASCII("") returns a value of –1.

$ZB on the Command Line

When issuing commands interactively from the Terminal command line, you press <RETURN> to issue each command
line. The $ZB and $KEY special variables record this command line terminator character. Therefore, when using $ZB or
$KEY to return the termination status of a read operation, you must set a variable as part of the same command line.

For example, if you issue the command:

>READ x:10

from the command line, then check $ZB it will not contain the results of the read operation; it will contain the <RETURN>
character that executed the command line. To return the results of the read operation, set a local variable with $ZB in the
same command line, as follows:

>READ x:10 SET rzb=$ZB

This preserves the value of $ZB set by the read operation. To display this read operation value, issue either of the following
command line statements:

>WRITE $ASCII(rzb)
 ; returns -1 for null string (time out),
 ; returns ASCII decimal value for terminator character
>ZZDUMP rkey
 ; returns blank line for null string (time out)
 ; returns hexadecimal value for terminator character

See Also
• READ command

• WRITE command

• $KEY special variable

• $ZA special variable

• $ZEOF special variable

• I/O Devices and Commands in I/O Device Guide

• Terminal I/O in I/O Device Guide

• Sequential File I/O in I/O Device Guide

• The Spool Device in I/O Device Guide

ObjectScript Reference 675

$ZB

$ZCHILD
Contains the ID of the last child process.

$ZCHILD
$ZC

Description
$ZCHILD contains the ID of the last child process (the PID) that the current process created with the JOB command or
the $ZF(-100) function. If your process has not used JOB or $ZF(-100) to create a child process, $ZCHILD returns 0
(zero).

$ZCHILD being set does not mean that the job was successfully started. It only means that the process was created and
the parameters were passed successfully.

For example, if you use JOB to spawn a routine that does not exist, both $TEST and $ZCHILD report that the JOB
command succeeded, although that new job immediately dies with a <NOROUTINE> error.

This special variable cannot be modified using the SET command. Attempting to do so results in a <SYNTAX> error.

See Also
• JOB command

• $ZF(-100) function

• ^$JOB structured system variable

• $JOB special variable

• $TEST special variable

• $ZPARENT special variable

676 ObjectScript Reference

ObjectScript Special Variables

$ZEOF
Contains flag indicating whether end-of-file has been reached.

$ZEOF

Description
Following each sequential file READ, InterSystems IRIS sets the $ZEOF special variable to indicate whether or not the
end of the file has been reached.

InterSystems IRIS sets $ZEOF to the file status of the last device used. For example, if you read from a sequential file then
write to the principal device, InterSystems IRIS resets $ZEOF from the sequential file end-of-file status to the principal
device status. Therefore, you should check the $ZEOF value (and, if necessary, copy it to a variable) immediately after a
sequential file READ.

InterSystems IRIS sets $ZEOF to the following values:

–1 End-of-file reached

0 Not at end-of-file

To use this feature, you must disable the <ENDOFFILE> error for sequential files.

• To disable this for the current process, call the SetZEOF() method of the %SYSTEM.Process class.

• To disable this system-wide, either set the SetZEOF property of the Config.Miscellaneous class, or go to the Management
Portal and select System Administration, Configuration, Additional Settings, Compatibility. View and edit the current
setting of SetZEOF. This option controls the behavior when InterSystems IRIS encounters an unexpected end-of-file
when reading a sequential file. When set to “ true” , InterSystems IRIS sets the $ZEOF special variable to indicate
that you have reached the end of the file. When set to “ false” , InterSystems IRIS issues an <ENDOFFILE> error. The
default is “ false” .

When the end of a file is reached, rather than issuing an <ENDOFFILE> error, the READ will return a null string, set
$ZB=null and set $ZEOF=–1.

$ZEOF does not identify file delimiter characters or I/O errors. $ZEOF does not check for proper file termination with
file delimiter characters. I/O errors are detected by a READ command error, not by $ZEOF.

You cannot modify this special variable using the SET command. Attempting to do so results in a <SYNTAX> error.

See Also
• $ZB special variable

• Sequential File I/O in I/O Device Guide

ObjectScript Reference 677

$ZEOF

$ZEOS
Contains end-of-stream status when reading a compressed stream.

$ZEOS

Description
$ZEOS contains a boolean value that indicates whether the end of an incoming (compressed) stream has been received
and processed. If $ZEOS=1, an end-of-stream for a compressed data stream has been received. The $ZEOS value is only
meaningful when stream compression/decompression is active (/GZIP=1). You activate stream compression/decompression
by issuing the /GZIP command keyword from an OPEN or USE command.

You must check the $ZEOS value before disabling stream compression/decompression by changing the setting to /GZIP=0.
If you issue a USE command with /GZIP=0 before the end of a compressed incoming stream has been processed, the USE
generates a <TRANSLATE> error. If the end of the compressed incoming stream has not been reached ($ZEOS=0) you
must issue block READ commands until $ZEOS=1.

This special variable cannot be modified using the SET command. Attempting to do so results in a <SYNTAX> error.

Example
The following example begins with /GZIP=1 (compression enabled). It performs a loop which tests for $ZEOS=1, and
issues READ commands until $ZEOS=1. It then can set /GZIP=0 (compression disabled):

 OPEN dev:/GZIP=1
 READ block#length
 FOR {QUIT:$ZEOS
 READ x:10 }
 USE dev:/GZIP=0

See Also
• Sequential File I/O chapter of I/O Device Guide

• TCP Client/Server Communication chapter of I/O Device Guide

• Terminal I/O chapter of I/O Device Guide

678 ObjectScript Reference

ObjectScript Special Variables

$ZERROR
Contains the name and location of the last error.

$ZERROR
$ZE

Description
$ZERROR contains the name of the most recent error, the location of the most recent error (where applicable), and (for
certain error codes) additional information about what caused the error. $ZERROR always contains the most recent error
for the appropriate language mode.

The $ZERROR value is intended for use immediately following an error. Because a $ZERROR value may not be preserved
across routine calls, users that wish to preserve a $ZERROR value for later use should copy it to a variable. It is strongly
recommended that users set $ZERROR to the null string ("") immediately after use.

The string contained in $ZERROR can be in any of the following forms:

<error>
<error>entryref
<error> info
<error>entryref info

The error name.The error name is always returned in all capital letters, enclosed in angle
brackets. It may contain blank spaces.

<error>

A reference to the line of code in which the error occurred.This consists of the label name
and line offset from that label, followed by a ̂ and the program name.This entryref follows
immediately after the closing angle bracket of the error name. When invoking $ZERROR
from Terminal, this entryref information is not meaningful and is therefore not returned.

A reference to the routine most recently loaded into the routine buffer using ZLOAD.

entryref

Additional information specific to certain error types (see table below). This information is
separated from <error> or <error>entryref by a blank space. If there are multiple
components to info, they are separated by a comma.

info

For example, a program (named zerrortest) contains the following routine (named ZerrorMain) which attempts to write the
contents of fred, an undefined local variable:

ZerrorMain
 TRY {
 SET $ZERROR=""
 WRITE "$ZERROR = ",$ZERROR,!
 WRITE fred }
 CATCH {
 WRITE "$ZERROR = ",$ZCVT($ZERROR,"O","HTML")
 }

In the above example, the first $ZERROR contains a null string (""), because no errors have occurred since $ZERROR
was reset to the null string. The attempt to write an undefined variable sets $ZERROR and throws it to the CATCH block.
This $ZERROR contains <UNDEFINED>ZerrorMain+4^zerrortest *fred, specifying the name of the error, the
location, and additional information specific to that type of error. In this case, the additional information is the name of the
undefined local variable fred; the asterisk prefix indicates that it is a local variable. (Note that
$ZCVT($ZERROR,"O","HTML") is used in this example because InterSystems IRIS error names are enclosed in angle
brackets and this example is run from a web browser.)

An entryref can appear as follows:

ObjectScript Reference 679

$ZERROR

ZerrorMain+4^zerrortest -- 4 line offset from label ZerrorMain in program zerrortest
ZerrorMain^zerrortest -- no offset from label ZerrorMain in program zerrortest; error occurred in the
 label line
+3^zerrortest -- 3 line offset from beginning of program zerrortest; no label precedes the error line

The maximum length of the $ZERROR value is 512 characters. A value exceeding that length is truncated to 512 characters.

AsSystemError() Method

The AsSystemError() method of the %Exception.SystemException class returns the same value as $ZERROR. This is
shown in the following example:

 TRY {
 KILL mylocal
 WRITE mylocal
 }
 CATCH myerr {
 WRITE "AsSystemError is: ",myerr.AsSystemError(),!
 WRITE "$ZERROR is: ",$ZERROR
 }

AsSystemError() is preferable to $ZERROR in a TRY/CATCH exception handling block structure, because $ZERROR
could be overwritten by an error occurring during exception handling.

Additional Information For Some Errors

When certain types of errors occurs, $ZERROR returns the error in the following format:

<ERRORCODE>entryref info

The info component contains additional information about what caused the error. The following table gives a list of errors
that include additional info and the format of that information. The error code is separated from the info component by a
space character.

680 ObjectScript Reference

ObjectScript Special Variables

Info ComponentError Code

The name of the undefined variable (including any subscripts used). This may
be a local variable, a process-private global, a global, or a multidimensional
class property. Local variable names are prefixed by an asterisk. Multidimen-
sional property names start with a period to distinguish them from local variable
names.

You can change InterSystems IRIS behavior to not generate an <UNDEFINED>
error when referencing an undefined variable by setting the
%SYSTEM.Process.Undefined() method.

<UNDEFINED>

The subscript reference in error: the line reference (routine and line offset) that
generated the error, the subscripted variable, and which subscript level is in
error. For a Structured System Variable (SSVN), only the line reference (routine
and line offset) is provided.

You can change InterSystems IRIS behavior to not generate a <SUBSCRIPT>
error when referencing a global variable with a null string subscript by setting
the %SYSTEM.Process.NullSubscripts() method. Null string subscripts are
not permitted for local variables.

<SUBSCRIPT>

Prefixed by an asterisk, the referenced routine name.<NOROUTINE>

Prefixed by an asterisk, the referenced class name.<CLASS DOES NOT
EXIST>

Prefixed by an asterisk, the name of the referenced property, followed by a
comma separator and the class name it is supposed to be in.

<PROPERTY DOES NOT
EXIST>

Prefixed by an asterisk, the name of the method invoked, followed by a comma
separator and the class name it is supposed to be in.

<METHOD DOES NOT
EXIST>

The name of the global referenced and the name of the directory containing it,
separated by a comma.

When attempting to access a dismounted database, specifies the database
name.

<PROTECT>

Prefixed by an asterisk, the object name, followed by the value returned by the
DisplayString() method.

<THROW>

When invoking TCOMMIT when not in a transaction, the info component is
*NoTransaction.

When invoking a user-defined function that does not return a value, the info
component is a message that includes the location of the command that should
have returned the value.

<COMMAND>

Prefixed by an asterisk, the full pathname of the invalid directory.<DIRECTORY>

When a <FRAMESTACK> error terminates a process, the <FRAMESTACK>
error with additional information is written as a message to mgr/messages.log.
The informational message shows the process id (pid) of the terminated process
and the line reference (routine and line offset) that generated the error. For
example: (pid) 0 <FRAMESTACK> at +13^|"USER"|mytest

<FRAMESTACK>

ObjectScript Reference 681

$ZERROR

The names of variables local to routines (or methods), as well as the names of undefined routines, classes, properties, and
methods, are prefixed with an asterisk (*). Process-private globals are identified by their ^|| prefix. Global variables are
identified by their ^ (caret) prefix. Class names are presented in their %-prefix form.

The following examples show additional error information specifying the cause of the error. In each case, the specified
item does not exist. Note that the info component of the generated error is separated from the error name by a blank space.
The asterisk (*) indicates a local variable, a class, a property, or a method. The caret (^) indicates a global, and ^|| indicates
a process-private global.

Examples of <UNDEFINED> errors:

UndefTest ;
 ZNSPACE "SAMPLES"
 KILL x,abc(2)
 KILL ^xyz(1,1),^|"USER"|xyz(1,2)
 KILL ^||ppg(1),^||ppg(2)
 TRY {WRITE x } // undefined local variable
 CATCH {WRITE $ZERROR,! }
 TRY {WRITE abc(2)} // undefined subscripted local variable
 CATCH {WRITE $ZERROR,! }
 TRY {WRITE ^xyz(1,1) } // undefined global
 CATCH {WRITE $ZERROR,! }
 TRY {WRITE ^|"USER"|xyz(1,2) } // undefined global in another namespace
 CATCH {WRITE $ZERROR,! }
 TRY {WRITE ^||ppg(1) } // undefined process-private global
 CATCH {WRITE $ZERROR,! }
 TRY {WRITE ^|"^"|ppg(2) } // undefined process-private global
 CATCH {WRITE $ZERROR,! }

<UNDEFINED>UndefTest+5^MyProg *x
<UNDEFINED>UndefTest+7^MyProg *abc(2)
<UNDEFINED>UndefTest+9^MyProg ^xyz(1,1)
<UNDEFINED>UndefTest+11^MyProg ^xyz(1,2)
<UNDEFINED>UndefTest+13^MyProg ^||ppg(1)
<UNDEFINED>UndefTest+15^MyProg ^||ppg(2)

Examples of <SUBSCRIPT> errors:

SubscriptTest ;
 DO $SYSTEM.Process.NullSubscripts(0)
 KILL abc,xyz
 TRY {SET abc(1,2,3,"")=123 }
 CATCH {WRITE $ZERROR,! }
 TRY {SET xyz(1,$JUSTIFY(1,1000))=1}
 CATCH {WRITE $ZERROR,! }

<SUBSCRIPT>SubscriptTest+3^MyProg *abc() Subscript 4 is ""
<SUBSCRIPT>SubscriptTest+5^MyProg *xyz() Subscript 2 > 511 chars

Examples of <NOROUTINE> errors:

NoRoutineTest ;
 KILL ^NotThere
 TRY {DO ^NotThere }
 CATCH {WRITE $ZERROR,! }
 TRY {JOB ^NotThere }
 CATCH {WRITE $ZERROR,! }
 TRY {GOTO ^NotThere }
 CATCH {WRITE $ZERROR,! }

<NOROUTINE>NoRoutineTest+2^MyProg *NotThere
<NOROUTINE>NoRoutineTest+4^MyProg *NotThere
<NOROUTINE>NoRoutineTest+6^MyProg *NotThere

Examples of object errors:

WRITE $SYSTEM.XXQL.MyMethod()
<CLASS DOES NOT EXIST> *%SYSTEM.XXQL

DO $SYSTEM.SQL.MyMethod()
<METHOD DOES NOT EXIST> *MyMethod,%SYSTEM.SQL

SET x=##class(%SQL.Statement).%New()
WRITE x.MyProp
<PROPERTY DOES NOT EXIST> *MyProp,%SQL.Statement

682 ObjectScript Reference

ObjectScript Special Variables

Example of <PROTECT> error (on Windows):

 // user does not have access privileges for %SYS namespace
 SET x=^|"%SYS"|var
 <PROTECT> ^var,c:\intersystems\iris\mgr\

Example of a <COMMAND> error when invoking a user-defined function. In this example, the MyFunc QUIT command
does not return a value. This generates a <COMMAND> error with the entryref specifying the location of the call to
$$MyFunc, and the info message specifying the location of the QUIT command:

Main
 TRY {
 KILL x
 SET x=$$MyFunc(7,10)
 WRITE "returned value is ",x,!
 RETURN
 }
 CATCH { WRITE "$ZERROR = ",$ZCVT($ZERROR,"O","HTML"),!
 }
MyFunc(a,b)
 SET c=a+b
 QUIT

The same <COMMAND> error when invoking the function as a procedure with the PUBLIC keyword:

Main
 TRY {
 KILL x
 SET x=$$MyFunc(7,10)
 WRITE "returned value is ",x,!
 RETURN
 }
 CATCH { WRITE "$ZERROR = ",$ZCVT($ZERROR,"O","HTML"),!
 }
MyFunc(a,b) PUBLIC {
 SET c=a+b
 QUIT }

Example of <DIRECTORY> error (on Windows):

 TRY { SET prev=$SYSTEM.Process.CurrentDirectory("bogusdir")
 WRITE "previous directory: ",prev,!
 RETURN }
 CATCH { WRITE "$ZERROR = ",$ZCVT($ZERROR,"O","HTML"),!
 QUIT }

Notes

ZLOAD and Error Messages

Following a ZLOAD operation, the name of the routine loaded into the routine buffer appears in the entryref portion of
subsequent error messages. This persists for the duration of the process, or until removed using ZREMOVE, or removed
or replaced by another ZLOAD. The following example shows this display of the contents of the routine buffer:

SAMPLES>ZLOAD Sample.Person.1
SAMPLES>WRITE 6/0
<DIVIDE>^Sample.Person.1
SAMPLES>WRITE fred
<UNDEFINED>^Sample.Person.1 *fred
SAMPLES>WRITE ^fred
<UNDEFINED>^Sample.Person.1 ^fred
SAMPLES>ZNAME "USER"
USER>WRITE 7/0
<DIVIDE>^Sample.Person.1
USER>ZREMOVE
USER>WRITE ^fred
<UNDEFINED> ^fred

$ZERROR and the Program Stack

The <error> portion of the $ZERROR string contains the most recent error message. The contents of the entryref portion
of the $ZERROR string reflect the stack level of the most recent error. The following terminal session attempts to call the

ObjectScript Reference 683

$ZERROR

nonsense command GOBBLEDEGOOK, resulting in a <SYNTAX> error. It also runs ZerrorMain (specified above),
resulting in the $ZERROR value <UNDEFINED>. Subsequent $ZERROR values during this terminal session reflect this
program call, as shown in the following:

USER>gobbledegook
USER>WRITE $ZERROR
<SYNTAX>
USER>DO ^zerrortest
USER>WRITE $ZERROR
<UNDEFINED>ZerrorMain+2^zerrortest *FRED
USER 2d0>gobbledegook
USER 2d0>WRITE $ZERROR
<SYNTAX>^zerrortest
USER 2d0>QUIT
USER>WRITE $ZERROR
<SYNTAX>^zerrortest
USER>gobbledegook
USER>WRITE $ZERROR
<SYNTAX>

$ZERROR Actions when $ZTRAP is Set

When an error occurs and $ZTRAP is set, InterSystems IRIS returns the error message in $ZERROR and branches to the
error-trap handler specified for $ZTRAP. (For a list of the possible error texts, refer to System Error Messages in InterSystems
IRIS Error Reference.)

Setting $ZERROR

You can set $ZERROR with the SET command to a value of up to 512 characters only in InterSystems IRIS mode. Values
longer than 512 characters are truncated to 512.

Resetting $ZERROR to the null string ("") is strongly recommended following error processing.

See Also
• CATCH command

• ZTRAP command

• $ECODE special variable

• $ZTRAP special variable

• Error Handling chapter in Using ObjectScript

• System Error Messages in InterSystems IRIS Error Reference

684 ObjectScript Reference

ObjectScript Special Variables

$ZHOROLOG
Contains the number of seconds elapsed since InterSystems IRIS startup.

$ZHOROLOG
$ZH

Description
$ZHOROLOG contains the number of seconds that have elapsed since the most recent InterSystems IRIS startup. This is
a count, which is independent of clock changes and day boundaries. The value is expressed as a floating point number,
indicating seconds and fractions of a second. The number of decimal digits is platform-dependent. $ZHOROLOG truncates
trailing zeros in this fractional portion.

This special variable cannot be modified using the SET command. Attempting to do so results in a <SYNTAX> error.

Note: Because of a limitation in the Windows operating system, putting your Windows system into hibernate or standby
mode may cause $ZHOROLOG to return unpredictable values. This problem does not affect $HOROLOG or
$ZTIMESTAMP values.

Examples
This example outputs the current $ZHOROLOG value.

 WRITE $ZHOROLOG

returns a value such as: 1036526.244932.

The following example shows how you might use $ZHOROLOG to time events and do benchmarks. This example times
an application through 100 executions, then finds the average runtime.

Cycletime
 SET start=$ZHOROLOG
 FOR i=1:1:100 { DO Myapp }
 SET end=$ZHOROLOG
 WRITE !,"Average run was ",(end-start)/100," seconds."
 QUIT
Myapp
 WRITE !,"executing my application"
 ; application code goes here
 QUIT

See Also
• $HOROLOG special variable

• $ZTIMESTAMP special variable

ObjectScript Reference 685

$ZHOROLOG

$ZIO
Contains information about the current terminal I/O device.

$ZIO
$ZI

Description
$ZIO contains information about the current I/O device.

For a terminal device that is a Terminal, $ZIO contains the string TRM:. If the current terminal device is connected remotely,
$ZIO contains information about the remote connection.

For a terminal device connected through TELNET, $ZIO contains the following: host|port:

The remote host IP address, in either IPv4 format:nnn.nnn.nnn.nnn, where nnn is a decimal
number, or in IPv6 format: h:h:h:h:h:h:h:h, where h is a hexadecimal number. Further details on
IPv4 and IPv6 formats can be found in the section “Use of IPv6 Addressing ” in the chapter
“Server Configuration Options ” in the Orientation Guide for Server-Side Programming.

host

The remote IP port number.port

These two values are separated by a vertical bar character. For example, 127.0.0.1|23. For further information, refer
to the %Library.NetworkAddress class, a subclass of the data type class %Library.String.

If the current device is not a terminal:

• If a file, $ZIO contains the full canonical pathname of the file.

• If not a file, $ZIO contains the null string.

The following example returns the current device information:

 SET x=$CASE($ZIO,"TRM:":"a terminal",
 "CON:":"a console",
 "":"neither terminal nor file")
 WRITE "The current device is ",x

This special variable cannot be modified using the SET command. Attempting to do so results in a <SYNTAX> error.

See Also
• $IO special variable

• $PRINCIPAL special variable

• I/O Devices and Commands in I/O Device Guide

• Terminal I/O in I/O Device Guide

686 ObjectScript Reference

ObjectScript Special Variables

$ZJOB
Contains job status information.

$ZJOB
$ZJ

Description
$ZJOB contains a number in which each bit represents one particular aspect of the job’s status. $ZJOB returns an integer
that consists of the total of the set status bits. For example, if $ZJOB = 5, this means that the 1 bit and the 4 bit are set.

To test individual $ZJOB bit settings, you can use the integer divide (\) and modulo (#) operators. For example, $ZJOB\x#2,
where x is the bit number. The following table shows the layout of the bits (by bit positional value), their settings and
meanings:

MeaningSet toBit

Job started from the Terminal prompt.11

Job started from a routine.0

Job started by the JOB command.12

Job started by signing on either at the Terminal prompt or from a routine.0

<INTERRUPT> enabled. A CTRL-C can interrupt a running program. Refer to BREAK
flag for details.

14

<INTERRUPT> disabled except for terminal lines for which <INTERRUPT> has
been explicitly enabled by OPEN or USE commands.

0

<INTERRUPT> received and pending.18

<INTERRUPT> not received. The value 8 is cleared by the OPEN and USE
commands and by an error trap caused by a CTRL-C.

0

Journaling is disabled regardless of other conditions.11024

Journaling is enabled for this job if other conditions indicate journaling.0

This special variable cannot be modified using the SET command. Attempting to do so results in a <SYNTAX> error.

Examples
The following example returns $ZJOB as an integer:

 WRITE $ZJOB

The following example returns each $ZJOB bit value:

 WRITE " bit 1=",$ZJOB\1#2,!
 WRITE " bit 2=",$ZJOB\2#2,!
 WRITE " bit 4=",$ZJOB\4#2,!
 WRITE " bit 8=",$ZJOB\8#2,!
 WRITE "bit 1024=",$ZJOB\1024#2

Bit 1 can also be returned using $ZJOB#2.

See Also
• JOB command

ObjectScript Reference 687

$ZJOB

• $JOB special variable

688 ObjectScript Reference

ObjectScript Special Variables

$ZMODE
Contains current I/O device OPEN parameters.

$ZMODE
$ZM

Description
$ZMODE contains the parameters specified with the OPEN or USE command for the current device. The string returned
contains the parameters used to open the current I/O device in canonical form. These parameter values are separated by
backslash delimiters. Open parameters like "M" on TCP/IP IO are canonicalized to "PSTE". The "Y" and "K" parameter
values are always placed last.

This special variable cannot be modified using the SET command. Attempting to do so results in a <SYNTAX> error.

Examples
The following example uses $ZMODE to return the parameters of the current device:

 WRITE !,"The current OPEN modes are: ",$PIECE($ZMODE,"\")
 WRITE !,"The NLS collation is: ",$PIECE($ZMODE,"\",2)
 WRITE !,"The network encoding is: ",$PIECE($ZMODE,"\",4)

The following example sets parameters for the current device with the USE command. It checks the current parameters
with $ZMODE before and after the USE command. To test whether a specific parameter was set, this example uses the
$PIECE function with the backslash delimiter, and tests for a value using the Contains operator ([). (See Operators in
Using ObjectScript.):

Zmodetest
 WRITE !, $ZMODE
 IF $PIECE($ZMODE,"\")["S" {
 WRITE !, "S is set" }
 ELSE {WRITE !, "S is not set" }
 USE 0:("":"IS":$CHAR(13,10))
 WRITE !, $ZMODE
 IF $PIECE($ZMODE,"\")["S" {
 WRITE !, "S is set" }
 ELSE {WRITE !, "S is not set" }
 QUIT

SAMPLES>DO ^zmodetest

RY\Latin1\K\UTF8\

S is not set

SIRY\Latin1\K\UTF8\

S is set

See Also
• OPEN command

• USE command

• $IO special variable

• I/O Devices and Commands in I/O Device Guide

ObjectScript Reference 689

$ZMODE

$ZNAME
Contains the current routine name.

$ZNAME
$ZN

Description
$ZNAME contains the name of the routine executing on the current process. Commonly, this is the current routine loaded
by ZLOAD. If no routine is currently executing, $ZNAME contains a null string.

When ZLOAD loads a routine, it becomes the currently loaded routine for the current process in all namespaces. Therefore,
you can use $ZNAME to display the name of the currently loaded routine from any namespace, not just the namespace
that it was loaded from.

Routine names are case-sensitive.

Note that a failed attempt to ZLOAD a routine removes the currently loaded routine, setting $ZNAME to the null string.

This special variable cannot be modified using the SET command. Attempting to do so results in a <SYNTAX> error.

The $ZNAME value can be set by the any of the following commands:

• ZLOAD command

• ZSAVE command

• Argumentless ZREMOVE command (sets to a null string)

• DO command

• GOTO command with ^routine

690 ObjectScript Reference

ObjectScript Special Variables

$ZNSPACE
Contains the current namespace name.

$ZNSPACE

Description
$ZNSPACE contains the name of the current namespace. By setting $ZNSPACE, you can change the current namespace.

To obtain the current namespace name:

 SET ns=$ZNSPACE
 WRITE ns

You can also obtain the name of the current namespace by invoking the NameSpace() method of %SYSTEM.SYS class,
as follows:

 SET ns=$SYSTEM.SYS.NameSpace()

You can test whether a namespace is defined by using the Exists() method of the %SYS.Namespace class, as follows:

 WRITE ##class(%SYS.Namespace).Exists("USER"),! ; an existing namespace
 WRITE ##class(%SYS.Namespace).Exists("LOSER") ; a non-existent namespace

These methods are described in the InterSystems Class Reference.

For UNIX® systems, the default namespace is established as a System Configuration option. For Windows systems, it is
set using a command line start-up option.

Namespace names are not case-sensitive. InterSystems IRIS always displays explicit namespace names in all uppercase
letters, and implied namespace names in all lowercase letters.

To obtain the namespace name of a specified process, use a method of the %SYS.ProcessQuery class, as shown in the fol-
lowing example:

 WRITE ##CLASS(%SYS.ProcessQuery).%OpenId($JOB).NameSpaceGet()

Setting the Current Namespace
You can change the current namespace using the ZNSPACE command, SET $NAMESPACE, SET $ZNSPACE, or the
%CD utility.

• From the Terminal command prompt the ZNSPACE command is the preferred way to change namespaces. SET
$ZNSPACE is functionally identical to the ZNSPACE command.

• Within a code routine NEW $NAMESPACE followed by SET $NAMESPACE=namespace is the preferred way to
change the current namespace. By using NEW $NAMESPACE and SET $NAMESPACE you establish a namespace
context that automatically reverts to the prior namespace when the method concludes or an unexpected error occurs.
See $NAMESPACE special variable for details.

You can use SET $ZNSPACE to change the current namespace for the process. Specify the new namespace as a string
literal or a variable or expression that evaluates to a quoted string. You can specify an explicit namespace ("namespace")
or an implied namespace ("^system^dir" or "^^dir").

If you specify the current namespace, SET $ZNSPACE performs no operation and returns no error. If you specify an
undefined namespace, SET $ZNSPACE generates a <NAMESPACE> error.

You cannot NEW the $ZNSPACE special variable.

ObjectScript Reference 691

$ZNSPACE

Example
In the following example, if the current namespace is not USER, a SET $ZNSPACE command changes the current
namespace to USER. Note that because of the IF test, the namespace must be specified in all uppercase letters.

 SET ns="USER"
 IF $ZNSPACE=ns {
 WRITE !,"Namespace already was ",$ZNSPACE }
 ELSEIF 1=##class(%SYS.Namespace).Exists(ns) {
 WRITE !,"Namespace was ",$ZNSPACE
 SET $ZNSPACE=ns
 WRITE !,"Set namespace to ",$ZNSPACE }
 ELSE { WRITE !,ns," is not a defined namespace" }
 QUIT

This example requires that UnknownUser have assigned the %DB_IRISSYS and the %DB_USER roles.

See Also
• SET command

• ZNSPACE command

• $NAMESPACE special variable

• Configuring Namespaces in System Administration Guide

692 ObjectScript Reference

ObjectScript Special Variables

$ZORDER
Contains the value of the next global node.

$ZORDER
$ZO

Description
$ZORDER contains the value of the next global node (in $QUERY sequence, not $ORDER sequence), after the current
global reference. If there is no next global node, accessing $ZORDER results in an <UNDEFINED> error, indicating the
last global successfully accessed by $ZORDER. For further details on <UNDEFINED> errors, refer to $ZERROR.

This special variable cannot be modified using the SET command. Attempting to do so results in a <SYNTAX> error.

Example
The following example uses a WHILE loop to repeatedly call $ZORDER to traverse a series of subscript nodes:

 SET ^||a="groceries"
 SET ^||a(1)="fruit"
 SET ^||a(1,1)="apples"
 SET ^||a(1,2)="oranges"
 SET ^||a(3)="nuts"
 SET ^||a(3,1)="peanuts"
 SET ^||a(2)="vegetables"
 SET ^||a(2,1)="lettuce"
 SET ^||a(2,2)="tomatoes"
 SET ^||a(2,1,1)="iceberg"
 SET ^||a(2,1,2)="romaine"
 SET $ZERROR="unset"
 WRITE !,"last referenced: ",^||a(1,1)
 WHILE $ZERROR="unset" {
 WRITE !,$ZORDER }
 QUIT

The above example starts with the last-referenced global (in this case, process-private globals): ^||a(1,1). $ZORDER does
not contain the value of ^||a(1,1), but works forward from that point. Calls to $ZORDER traverse the subscript tree nodes
in the following order: (1,2), (2), (2,1), (2,1,1), (2,1,2), (2,2), (3), (3,1). Each WRITE $ZORDER displays the data value
in each successive node. It then runs out of nodes and generates the following error: <UNDEFINED> ^||a(3,1). Note
that ^||a(3,1) is not undefined; it is specified because $ZORDER could not find another global after this one.

See Also
• $ORDER function

• $QUERY function

• $ZERROR special variable

ObjectScript Reference 693

$ZORDER

$ZPARENT
Contains the ID of the parent process of the current process.

$ZPARENT
$ZP

Description
$ZPARENT contains the ID of the parent process that created the current process with the JOB command. If the current
process was not created with the JOB command, $ZPARENT contains 0 (zero).

This special variable cannot be modified using the SET command. Attempting to do so results in a <SYNTAX> error.

See Also
• JOB command

• $ZCHILD special variable

• $JOB special variable

694 ObjectScript Reference

ObjectScript Special Variables

$ZPI
Contains the value of pi.

$ZPI

Description
$ZPI contains the value of the numeric constant Pi to eighteen decimal places (3.141592653589793238).

This value is frequently used with trigonometric functions, such as the sine function $ZSIN.

ObjectScript Reference 695

$ZPI

$ZPOS
Contains the current file position during the reading of a sequential file.

$ZPOS

Description
$ZPOS contains the current file position during sequential file reads. If no sequential file read is in progress, $ZPOS contains
0 (zero).

When you open a file for sequential reads, each READ from that device sets $ZPOS to the position within the file at which
the next read will occur. The $ZPOS value is the actual file offset in bytes at the conclusion of a READ, READ *, or
READ #n. The user must take appropriate care when reading multi-byte character sets.

The current file position can be set using the $ZSEEK function. This special variable cannot be modified using the SET
command. Attempting to do so results in a <SYNTAX> error.

See Also
• READ command

• $ZSEEK function

• Sequential File I/O in I/O Device Guide

696 ObjectScript Reference

ObjectScript Special Variables

$ZREFERENCE
Contains the current global reference.

$ZREFERENCE
$ZR

Description
$ZREFERENCE contains the name and subscript(s) of the last global reference. This is known as the naked indicator.

Note: The last global reference is the most recently accessed global node. Usually, this is the most recent explicit reference
to a global. However, certain commands may internally use the $ORDER function to traverse global subscripts
(the ZWRITE command is an example of this), or they may refer internally to some other global. When this
occurs, $ZREFERENCE contains the last accessed global node, which may not be the global node specified to
the command.

The last global reference can be either a global (^myglob) or a process-private global (^||myppg). $ZREFERENCE returns
the process-private global prefix in the form that was initially used for that variable, regardless of which process-private
global prefix is used subsequently for that variable. In the description of $ZREFERENCE that follows, the word “global”
refers to both types of variables.

The last global reference is the global most recently referred to by a command or a function. Because ObjectScript performs
operations in left-to-right order, the last global reference is always the rightmost global. When a command or function takes
multiple arguments, the global specified in the rightmost argument is the last global reference. When an argument contains
multiple global references, the rightmost specified global is the last global reference. This strict left-to-right order holds
true even if parentheses are used to define the order of operations.

InterSystems IRIS updates $ZREFERENCE when an explicit global reference is issued. Invoking an expression (such as
a local variable) that evaluates to a global reference does not update $ZREFERENCE.

$ZREFERENCE contains the most recent global reference, even if this global reference was not successful. When a
command references an undefined global, issuing an <UNDEFINED> error, InterSystems IRIS updates $ZREFERENCE
to that global reference, just as if the global were defined. This behavior is unaffected by setting the
%SYSTEM.Process.Undefined() method.

$ZREFERENCE often contains the most recent global reference, even if the command execution was not successful.
InterSystems IRIS updates $ZREFERENCE as each global is referenced. For example, a command issuing a <DIVIDE>
error (attempting to divide a number by 0) updates $ZREFERENCE to the last global referenced in the command before
the error occurred. However, a <SYNTAX> error does not update $ZREFERENCE.

Long Global Names

If a global name is longer than 31 characters (excluding global prefix character(s), such as ^), $ZREFERENCE returns
the global name shortened to 31 characters. For further information on the handling of long global names, refer to the Global
Variables section of the “Variables” chapter of Using ObjectScript.

Naked Global Reference

If the last global reference was a naked global reference, $ZREFERENCE contains the external, readable, full form of
the current naked global reference. This is demonstrated in the following example:

 SET ^MyData(1)="fruit"
 SET ^MyData(1,1)="apples" ; Full global reference
 SET ^(2)="oranges" ; Naked global reference,
 ; implicitly ^MyData(1,2)
 WRITE !,$ZREFERENCE ; Returns "^MyData(1,2)"

ObjectScript Reference 697

$ZREFERENCE

For further details on naked global references, see Using InterSystems IRIS Multidimensional Storage (Globals) in Using
Globals.

Extended Global Reference

Extended global reference is used to reference a global that is in a namespace other than the current namespace. If a command
references a global variable using an extended global reference, the $ZREFERENCE value contains that extended global
reference. InterSystems IRIS returns an extended global reference in the following circumstances:

• If the last global reference uses an extended reference to refer to a global in another namespace.

• If the last global reference uses an extended reference to refer to a global in the current namespace.

• If the last global reference is a remote reference (a global on a remote system).

In all cases, $ZREFERENCE returns the namespace name in all capital letters, regardless of how it was specified in the
global reference.

For further details on global subscripts and extended global references, see Global Structure in Using Globals.

Operations that Update $ZREFERENCE

The $ZREFERENCE special variable is initialized to the null string (""). Changing the current namespace resets
$ZREFERENCE to the null string.

The following operations set $ZREFERENCE to the most recently referenced global:

• A command or function that uses a global as an argument. If it uses multiple globals, $ZREFERENCE is set to the
rightmost occurrence of a global. (Note, however, the exception of $ORDER.)

• A command that uses a global as a postconditional expression.

• Following a ZWRITE, InterSystems IRIS sets $ZREFERENCE to the last accessed subscript node of the specified
global reference.

• A command or function that references an undefined global, and either generates an <UNDEFINED> error, or, in the
case of $INCREMENT, defines the global.

Setting $ZREFERENCE

You can set this special variable using the SET command, as follows:

• Set to the null string (""). Doing so deletes the naked indicator. If the next global reference is a naked global reference,
InterSystems IRIS issues a <NAKED> error.

• Set to a valid global reference (defined or undefined). This causes subsequent naked references to use the value you
set as if it were the last actual global reference.

$ZREFERENCE cannot be otherwise modified using the SET command. Attempting to do so results in a <SYNTAX>
error.

Examples
The following example returns the last global reference:

 SET ^a(1,1)="Hello" ; Full global reference
 SET ^(2)=" world!" ; Naked global reference
 WRITE $ZREFERENCE

returns:

^a(1,2)

698 ObjectScript Reference

ObjectScript Special Variables

The following example returns global references from several different commands. Note that WRITE and ZWRITE set
different representations of the same global reference.

 SET (^barney,^betty,^wilma,^fred)="flintstone"
 WRITE !,$ZREFERENCE
 KILL ^flies
 WRITE !,$ZREFERENCE
 WRITE !,^fred
 WRITE !,$ZREFERENCE,!
 ZWRITE ^fred
 WRITE !,$ZREFERENCE

returns:

^fred ; last of several globals set in left-to-right order
^flies ; KILL sets global indicator, though no global to kill
flintstone ; WRITE global
^fred ; global from WRITE
^fred="flintstone" ; ZWRITE global
^fred("") ; global from ZWRITE

The following example returns an extended global reference. Note that the namespace name is always returned in uppercase
letters:

 SET ^["samples"]a(1,1)="Hello"
 SET ^(2)=" world!"
 WRITE $ZREFERENCE
 QUIT

returns:

^["SAMPLES"]a(1,2)

The following example returns the last global reference. In this case, it is ^a(1), used as an argument to the $LENGTH
function:

 SET ^a(1)="abcdefghijklmnopqrstuvwxyz"
 SET ^b(1)="1234567890"
 SET x=$LENGTH(^a(1))
 WRITE $ZREFERENCE
 QUIT

The following example returns the value set for $ZREFERENCE as if it were the last global reference. In this case, it is
^a(1,1).

 SET ^a(1,1)="abcdefghijklmnopqrstuvwxyz"
 SET ^b(1,1)="1234567890"
 WRITE !,^(1)
 ; Naked reference uses last global
 SET $ZREFERENCE="^a(1,1)"
 WRITE !,$ZREFERENCE
 WRITE !,^(1)
 ; Naked reference uses $ZREFERENCE
 ; value, rather than last global.

The following example sets an extended global reference. Note the doubled quotation marks:

 KILL ^x
 WRITE !,$ZREFERENCE
 SET $ZREFERENCE="^[""samples""]a(1,2)"
 WRITE !,$ZREFERENCE

See Also
• ZNSPACE command

• $NAMESPACE special variable

• $ZNSPACE special variable

• Configuring Namespaces in System Administration Guide

ObjectScript Reference 699

$ZREFERENCE

• Global Structure in Using Globals

• Naked Global Reference in Using Globals

700 ObjectScript Reference

ObjectScript Special Variables

$ZSTORAGE
Contains the maximum available memory for a process.

$ZSTORAGE
$ZS

Description
$ZSTORAGE contains the maximum amount of memory, in Kbytes, for a job’s process-private memory. This memory
is available for local variables, stacks, and other tables. This memory limit does not include space for the routine object
code. This memory is allocated to the process as needed, for example when allocating an array.

Once this memory is allocated to the process, it is generally not deallocated until the process exits. However, when a large
amount of memory is used (for example greater than 32MB) and then freed, InterSystems IRIS attempts to release deallocated
memory back to the operating system, where possible.

You can also use $ZSTORAGE to set the maximum memory size. For example, the following statement sets the job’s
maximum process-private memory to 524288 Kbytes:

 SET $ZSTORAGE=524288

Changing $ZSTORAGE changes the initial value for the $STORAGE special variable, which contains the current available
memory (in bytes) for the process.

The maximum value for $ZSTORAGE is 2147483647. The $ZSTORAGE default is 262144. The minimum value for
$ZSTORAGE is 128. $ZSTORAGE values larger than the maximum or smaller than the minimum automatically default
to the maximum or minimum value. $ZSTORAGE is set to an integer value; InterSystems IRIS truncates any fractional
portion (if specified).

You can change the $ZSTORAGE default by changing the Maximum per Process Memory (KB) system configuration setting.
In the Management Portal, select System Administration, Configuration, Systtem Configuration, Memory and Startup. You
can increase Maximum per Process Memory (KB) as desired, up to a maximum of 2147483647 Kbytes. Changing Maximum

per Process Memory (KB) changes the $ZSTORAGE value for subsequently initiated processes; it has no effect on the
$ZSTORAGE value for current processes.

Example
The following example sets $ZSTORAGE to its maximum and minimum values. Attempting to set $ZSTORAGE to a
value (16) that is less than the minimum value automatically sets $ZSTORAGE to its minimum value (128):

 SET $ZS=128
 WRITE "minimum storage=",$ZS,!
 SET $ZS=16
 WRITE "less than minimum storage=",$ZS,!
 SET $ZS=2147483647
 WRITE "maximum storage=",$ZS,!

See Also
SET command

KILL command

$STORAGE special variable

ObjectScript Reference 701

$ZSTORAGE

$ZTIMESTAMP
Contains the current date and time in Coordinated Universal Time format.

$ZTIMESTAMP
$ZTS

Description
$ZTIMESTAMP contains the current date and time as a Coordinated Universal Time value. This is a worldwide time and
date standard; this value is very likely to differ from your local time (and date) value.

$ZTIMESTAMP represents date and time as a string with the format:

ddddd,sssss.fff

Where ddddd is an integer specifying the number of days since December 31, 1840; sssss is an integer specifying the
number of seconds since midnight of the current day, and fff is a varying number of digits specifying fractional seconds.
This format is similar to $HOROLOG, except that $HOROLOG does not contain fractional seconds.

Suppose the current date and time (UTC) is as follows:

2018-02-22 15:17:27.984

At that time, $ZTIMESTAMP has the value:

64701,55047.984

$ZTIMESTAMP reports the Coordinated Universal Time (UTC), which is independent of time zone. Consequently,
$ZTIMESTAMP provides a time stamp that is uniform across time zones. This may differ from both the local time value
and the local date value.

The $ZTIMESTAMP time value is a decimal numeric value that counts the time in seconds and fractions thereof. The
number of digits in the fractional seconds may vary from zero to nine, depending on the precision of your computer’s time-
of-day clock. On Windows systems the fractional precision is three decimal digits; on UNIX® systems it is six decimal
digits. $ZTIMESTAMP suppresses trailing zeroes or a trailing decimal point in this fractional portion. Note that within
the first second after midnight, seconds are represented as 0.fff (for example, 0.123); this number is not in ObjectScript
canonical form (for example, .123), which affects the string sorting order of these values. You can prepend a plus sign
(+) to force conversion of a number to canonical form before performing a sort operation.

The various ways to return the current date and time are compared, as follows:

• $ZTIMESTAMP contains the UTC date and time, with fractional seconds, in InterSystems IRIS storage ($HOROLOG)
format. Fractional seconds are expressed in three digits of precision (on Windows systems), or six digits of precision
(on UNIX® systems).

• $NOW returns the local date and time for the current process; local time variants (such as Daylight Saving Time) are
not applied. $NOW with no parameter value determines the local time zone from the value of the $ZTIMEZONE
special variable. $NOW with a parameter value returns the time and date that correspond to the specified time zone
parameter. $NOW(0) returns the UTC date and time. The value of $ZTIMEZONE is ignored. $NOW returns the
date and time in InterSystems IRIS storage ($HOROLOG) format. It includes fractional seconds; the number of
fractional digits is the maximum precision supported by the current operating system. For this reason, $NOW(0) may
return UTC time with greater fractional second precision than $ZTIMESTAMP.

• $HOROLOG contains the local, variant-adjusted date and time in InterSystems IRIS storage format. It does not record
fractional seconds. How $HOROLOG resolves fractional seconds depends on the operating system platform: On
Windows, it rounds up any fractional second to the next whole second. On UNIX®, it truncates the fractional portion.

702 ObjectScript Reference

ObjectScript Special Variables

Note: Exercise caution when comparing local time and UTC time:

• The preferred way to convert UTC time to local time is to use the $ZDATETIMEH(utc,-3) function. This
function adjusts for local time variants.

• You cannot interconvert local time and UTC time by simply adding or subtracting the value of $ZTIMEZONE
* 60. This is because, in many cases, local time is adjusted for local time variants (such as Daylight Saving
Time, which seasonally adjusts local time by one hour). These local time variants are not reflected in
$ZTIMEZONE.

• UTC time is calculated using a count of time zones from the Greenwich meridian. It is not the same as local
Greenwich time. The term Greenwich Mean Time (GMT) may be confusing; local time at Greenwich is the
same as UTC during the winter; during the summer it differs from UTC by one hour. This is because a local
time variant, known as British Summer Time, is applied.

• Both the timezone offset from UTC and local time variants (such as the seasonal shift to Daylight Saving
Time) can affect the date as well as the time. Converting from local time to UTC time (or vice versa) may
change the date as well as the time.

This special variable cannot be modified using the SET command. Attempting to do so results in a <SYNTAX> error.

Coordinated Universal Time Conversions

You can represent local time information as Coordinated Universal Time (UTC) using the $ZDATETIME and
$ZDATETIMEH functions with tformat values 7 or 8, as shown in the following example:

 WRITE !,$ZDATETIME($ZTIMESTAMP,1,1,2)
 WRITE !,$ZDATETIME($HOROLOG,1,7,2)
 WRITE !,$ZDATETIME($HOROLOG,1,8,2)
 WRITE !,$ZDATETIME($NOW(),1,7,2)
 WRITE !,$ZDATETIME($NOW(),1,8,2)

The above $ZDATETIME functions all return the current time as Coordinated Universal Time (rather than local time).
These time value conversions from local time may differ, because $NOW does not adjust for local time variants;
$ZTIMESTAMP and $HOROLOG do adjust for local time variants and may adjust the date accordingly, if necessary.
The $ZTIMESTAMP display value and the tformat 7 or 8 converted display values are not identical. The tformat values
7 and 8 insert the letter “T” before, and the letter “Z” after the time value. Also, because $HOROLOG time does not
contain fractional seconds, the precision of 2 in the above example pads those decimal digits with zeros.

You can obtain the same time stamp information as $ZTIMESTAMP by invoking the TimeStamp() class method, using
either of the following syntax forms:

 WRITE !,$SYSTEM.SYS.TimeStamp()
 WRITE !,##class(%SYSTEM.SYS).TimeStamp()

Refer to the $SYSTEM special variable in this manual and the %SYSTEM.SYS class in the InterSystems Class Reference
for further details.

Examples
The following example converts the value of $ZTIMESTAMP to local time, and compares it with two representations of
local time: $NOW() and $HOROLOG:

ObjectScript Reference 703

$ZTIMESTAMP

 SET stamp=$ZTIMESTAMP,clock=$HOROLOG,miliclock=$NOW()
 WRITE !,"local date and time: ",$ZDATETIME(clock,1,1,2)
 WRITE !,"local date and time: ",$ZDATETIME(miliclock,1,1,2)
 WRITE !,"UTC date and time: ",$ZDATETIME(stamp,1,1,2)
 IF $PIECE(stamp,",",2) = $PIECE(clock,",",2) {
 WRITE !,"Local time is UTC time" }
 ELSEIF $PIECE(stamp,",") '= $PIECE(clock,",") {
 WRITE !,"Time difference affects date" }
 ELSE {
 SET localutc=$ZDATETIMEH(stamp,-3)
 WRITE !,"UTC converted to local: ",$ZDATETIME(localutc,1,1,2)
 }
 QUIT

The following example compares the values returned by $ZTIMESTAMP and $HOROLOG, and shows how the time
portion of $ZTIMESTAMP may be converted. (Note that in this simple example only one adjustment is made for local
time variations, such as Daylight Saving Time. Other types of local variation may cause clocksecs and stampsecs to contain
irreconcilable values.)

 SET stamp=$ZTIMESTAMP,clock=$HOROLOG
 WRITE !,"local date and time: ",$ZDATETIME(clock,1,1,2)
 WRITE !,"UTC date and time: ",$ZDATETIME(stamp,1,1,2)
 IF $PIECE(stamp,",") '= $PIECE(clock,",") {
 WRITE !,"Time difference affects date" }
 SET clocksecs=$EXTRACT(clock,7,11)
 SET stampsecs=$EXTRACT(stamp,7,11)-($ZTIMEZONE*60)
 IF clocksecs=stampsecs {
 WRITE !,"No local time variant"
 WRITE !,"Local time is timezone time" }
 ELSE {
 SET stampsecs=stampsecs+3600
 IF clocksecs=stampsecs {
 WRITE !,"Daylight Saving Time variant:"
 WRITE !,"Local time offset 1 hour from timezone time" }
 ELSE { WRITE !,"Cannot reconcile due to local time variant" }
 }
 QUIT

See Also
• $NOW function

• $ZDATETIME function

• $ZDATETIMEH function

• $HOROLOG special variable

• $ZTIMEZONE special variable

704 ObjectScript Reference

ObjectScript Special Variables

$ZTIMEZONE
Contains the time zone offset from the Greenwich meridian.

$ZTIMEZONE
$ZTZ

Description
$ZTIMEZONE can be used in two ways:

• To return the local time zone offset for your computer.

• To set the local time zone offset for the current process.

$ZTIMEZONE contains the time zone offset from the Greenwich meridian in minutes. (The Greenwich meridian includes
all of Great Britain and Ireland.) This offset is expressed as a signed integer in the range -1440 to 1440. Time zones west
of Greenwich are specified as positive numbers; time zones east of Greenwich are specified as negative numbers. (Time
zones must be expressed in minutes, because not all time zone differences are in whole hours.) By default, $ZTIMEZONE
is initialized to the time zone set for the computer’s operating system.

CAUTION: $ZTIMEZONE adjusts the local time by a fixed offset. It does not adjust for Daylight Saving Time or
other local time variants. InterSystems IRIS takes its local time from the underlying operating system,
which applies the local time variant for the location configured for that computer. Therefore, a local time
adjusted using $ZTIMEZONE takes its local time variation from the configured locale, not the time zone
specified in $ZTIMEZONE.

UTC time is calculated using a count of time zones from the Greenwich meridian ($ZTIMEZONE=0).
It is not the same as local Greenwich time. The term Greenwich Mean Time (GMT) may be confusing;
local time at Greenwich is the same as UTC during the winter; during the summer it differs from UTC by
one hour. This is because a local time variant, known as British Summer Time, is applied.

For functions and programs that use $ZTIMEZONE, elapsed local time is always continuous, but the
time value may need to be seasonally adjusted to correspond to local clock time. For more details on local
seasonal time variants, refer to $HOROLOG.

Setting the Time Zone

You can use $ZTIMEZONE to set the time zone used by the current InterSystems IRIS process. Setting $ZTIMEZONE
does not change the default InterSystems IRIS time zone or your computer’s time zone setting.

Note: Changing the $ZTIMEZONE special variable is a feature designed for some special situations. Changing
$ZTIMEZONE is not a consistent way to change the time zone that InterSystems IRIS uses for local date/time
operations. The $ZTIMEZONE special variable should not be changed except by those programs that are prepared
to handle all the inconsistencies that result.

On some platforms there may be a better way to change time zones than changing the $ZTIMEZONE special
variable. If the platform has a process-specific time zone setting (for example, the TZ environment variable on
POSIX systems) then making an external system call to change the process-specific time zone may work better
than changing $ZTIMEZONE. Changing the process-specific time zone at the operating system level will change
both the local time offset from UTC and apply the corresponding algorithm that determines when local time
variants are applied. This is especially important if the default system time zone is in the Northern Hemisphere,
while the desired process time zone is in the Southern Hemisphere. Changing $ZTIMEZONE changes the local
time to a new time zone offset from UTC, but the algorithm that determines when local time variants are applied
remains unchanged.

ObjectScript Reference 705

$ZTIMEZONE

Use the SET command to set $ZTIMEZONE to a specified signed integer number of minutes. Leading zeros and decimal
portions of numbers are ignored. If you specify a nonnumeric value or no value when setting $ZTIMEZONE, InterSystems
IRIS sets $ZTIMEZONE to 0 (Greenwich meridian).

For example, North American Eastern Standard Time (EST) is five hours west of Greenwich. Therefore, to set the current
InterSystems IRIS process to EST you would specify 300 minutes. To specify a time zone one hour east of Greenwich,
you would specify –60 minutes. To specify Greenwich itself, you would specify 0 minutes.

Setting $ZTIMEZONE:

• affects the argumentless $NOW() local time value. It changes the time portion of $NOW(), and this change of time
can also change the date portion of $NOW() for the current process. $NOW() reflects the $ZTIMEZONE setting
exactly, its value is not adjusted for local time variants.

• affects the $HOROLOG local time value. $HOROLOG takes its time zone value from $ZTIMEZONE, then seasonally
adjusts for local time variants such as Daylight Saving Time. $HOROLOG therefore always conforms to local clock
time, but $HOROLOG elapsed time is not continuous throughout the year.

• affects the %SYSTEM.Util class methods IsDST(), UTCtoLocalWithZTIMEZONE(), and
LocalWithZTIMEZONEtoUTC().

• does not affect $ZTIMESTAMP or $ZHOROLOG values.

• does not affect the date and time format conversions performed by $ZDATE, $ZDATEH, $ZDATETIME,
$ZDATETIMEH, $ZTIME, and $ZTIMEH functions.

• does not affect the $NOW(n) function.

• does not affect the FixedDate() class method of the %SYSTEM.Process class, which sets the date in $HOROLOG to
a fixed value.

The following anomalies occur after changing $ZTIMEZONE:

• $ZDATETIME($HOROLOG,1,7) usually returns an UTC time, but it will not return UTC time if $ZTIMEZONE
has changed.

• $ZDATETIME($HOROLOG,1,5) will not return the correct time zone offset if $ZTIMEZONE has changed.

• $ZDATETIME($HOROLOG,-3) and $ZDATETIMEH($ZTIMESTAMP,-3) conversions between Local time and UTC
time will not be correct if $ZTIMEZONE has changed.

Other Time Zone Methods

You can obtain the same time zone information by invoking the TimeZone() class method, as follows:

 WRITE $SYSTEM.SYS.TimeZone()

Refer to the %SYSTEM.SYS class in the InterSystems Class Reference for further details.

You can return your local time variation as part of a date and time string by using the $ZDATETIME and $ZDATETIMEH
functions with tformat values 5 or 6, as shown in the following example:

 WRITE !,$ZDATETIME($HOROLOG,1,5)

This returns a value such as:

04/06/2011T12:31:16-04:00

The last part of this string (-04:00) indicates the system’s local time variation setting as an offset in hours and minutes
from the Greenwich meridian. Note that this variation is not necessarily the time zone offset. In the above case, the time
zone is 5 hours west of Greenwich (-5:00), but the local time variant (Daylight Saving Time) offsets the time zone time

706 ObjectScript Reference

ObjectScript Special Variables

by one hour to -04:00. Setting $ZTIMEZONE changes the current process date and time returned by
$ZDATETIME($HOROLOG,1,5), but does not change the system local time variation setting.

$ZDATETIMEH Uses Time Zone Setting

You can use $ZDATETIMEH with dformat=-3 to convert a Coordinated Universal Time (UTC) date and time value to a
local time. This function takes as input a UTC value ($ZTIMESTAMP). It uses the local time zone setting to return the
corresponding date and time with local time variants (such as Daylight Saving Time) applied where applicable.

 SET clock=$HOROLOG
 SET stamp=$ZDATETIMEH($ZTIMESTAMP,-3)
 WRITE !,"local/local date and time: ",$ZDATETIME(clock,1,1,2)
 WRITE !,"UTC/local date and time: ",$ZDATETIME(stamp,1,1,2)

Local/UTC Conversion Methods Using $ZTIMEZONE

Two class methods of the %SYSTEM.Util class convert between local date and time and UTC date and time:
UTCtoLocalWithZTIMEZONE() and LocalWithZTIMEZONEtoUTC(). These methods are affected by changes to
$ZTIMEZONE.

 WRITE $SYSTEM.Util.UTCtoLocalWithZTIMEZONE($ZTIMESTAMP),!
 WRITE $HOROLOG,!
 WRITE $SYSTEM.Util.LocalWithZTIMEZONEtoUTC($H),!
 WRITE $ZTIMESTAMP

Examples
The following example returns your current time zone:

 SET zone=$ZTIMEZONE
 IF zone=0 {
 WRITE !,"Your time zone is Greenwich Mean Time" }
 ELSEIF zone>0 {
 WRITE !,"Your time zone is ",zone/60," hours west of Greenwich" }
 ELSE {
 WRITE !,"Your time zone is ",(-zone)/60," hours east of Greenwich" }

The following example shows that setting the time zone can change the date as well as the time:

 SET zonesave=$ZTIMEZONE
 WRITE !,"Date in my current time zone: ",$ZDATE($HOROLOG)
 IF $ZTIMEZONE=0 {
 SET $ZTIMEZONE=720 }
 ELSEIF $ZTIMEZONE>0 {
 SET $ZTIMEZONE=($ZTIMEZONE-720) }
 ELSE {
 SET $ZTIMEZONE=($ZTIMEZONE+720) }
 WRITE !,"Date halfway around the world: ",$ZDATE($HOROLOG)
 WRITE !,"Date at Greenwich Observatory: ",$ZDATE($ZTIMESTAMP)
 SET $ZTIMEZONE=zonesave

The following example determines if your local time is the same as your time zone time:

 SET localnow=$HOROLOG, stamp=$ZTIMESTAMP
 WRITE !,"local date and time: ",$ZDATETIME(localnow,1,1)
 SET clocksecs=$PIECE(localnow,",",2)
 SET stampsecs=$EXTRACT(stamp,7,11)-($ZTIMEZONE*60)
 IF clocksecs=stampsecs {
 WRITE !,"No local time variant:"
 WRITE !,"Local time is timezone time" }
 ELSE {
 IF clocksecs=stampsecs+3600 {
 WRITE !,"Daylight Saving Time variant:"
 WRITE !,"Local time offset 1 hour from timezone time" }
 ELSE { WRITE !,"Local time and time zone time are "
 WRITE !,(clocksecs-stampsecs)/60," minutes different" }
 }
 QUIT

ObjectScript Reference 707

$ZTIMEZONE

See Also
• $HOROLOG special variable

• $ZTIMESTAMP special variable

708 ObjectScript Reference

ObjectScript Special Variables

$ZTRAP
Contains the location of the current error trap handler.

$ZTRAP
$ZT

Description
$ZTRAP contains the location of the current error trap handler. For a description of how to code an error trap handler,
refer to “Handling Errors with $ZTRAP” in the “Error Processing” chapter of Using ObjectScript.

• In a routine, $ZTRAP can reference a label within the routine or within another routine. It contains the label name
and the routine name. For example, if you set $ZTRAP to the label MyHandler within the routine MyRou, the $ZTRAP
special variable contains MyHandler^MyRou.

• In a procedure, $ZTRAP must reference a label within that procedure. It contains the line offset of the label from the
procedure name. For example, if you set $ZTRAP to the private label MyHandler within the procedure MyProc, the
$ZTRAP special variable contains +17^MyProc.

There are three ways to set $ZTRAP:

• SET $ZTRAP="location"

• SET $ZTRAP="*location"

• SET $ZTRAP="^%ETN"

You cannot KILL $ZTRAP; attempting to do so results in a <SYNTAX> error. To eliminate the current $ZTRAP value,
specify $ZTRAP="".

Location

Using the SET command you can specify location as a quoted string.

• In a routine, you can specify location as label (a line label in the current routine), ̂ routine (the beginning of a specified
external routine), or label^routine (a specified label in a specified external routine). Do not specify a location in a
routine that references a procedure or a label within a procedure. This is a invalid location; it results in a runtime error
when InterSystems IRIS attempts to execute $ZTRAP.

• In a procedure, you can specify location as label; a private label within that procedure block. $ZTRAP in a procedure
block cannot be used to go to a location that is outside the body of the procedure; $ZTRAP in a procedure block can
only reference a location within that procedure block. Therefore, in a procedure you cannot set $ZTRAP to ^routine
or label^routine. Attempted to do so results in a <SYNTAX> error.

In a procedure, you set $ZTRAP to a private label name, but the $ZTRAP value is not the private label name; it is
the offset from the procedure label (the top of the procedure) to the line location of the private label. For example,
+17^myproc.

Note: $ZTRAP provides legacy support for label+offset in some contexts (but not in procedures). This optional +offset
is an integer specifying the number of lines to offset from label. The label must be in the same routine. The use
of +offset is deprecated, and may result in a compilation warning error. InterSystems recommends that you avoid
the use of a line offset when specifying location.

You cannot specify an +offset when calling a procedure or a IRISSYS % routine. If you attempt to do so, Inter-
Systems IRIS issues a <NOLINE> error.

The $ZTRAP location must be in the current namespace. $ZTRAP does not support extended routine reference.

ObjectScript Reference 709

$ZTRAP

If you specify a nonexistent line label, a location that does not exist in the current routine, the following occurs:

• Displaying $ZTRAP: In a routine, $ZTRAP contains label^routine. For example, DummyLabel^MyRou. In a procedure,
$ZTRAP contains the maximum possible offset: +34463^MyProc.

• Invoking $ZTRAP: InterSystems IRIS issues a <NOLINE> error message.

Each stack level can have its own $ZTRAP value. When you set $ZTRAP, the system saves the value of $ZTRAP for
the previous stack level. InterSystems IRIS restores this value when the current stack level ends. To enable error trapping
at the current stack level, set $ZTRAP to the error trap handler by specifying its location. For example:

 IF $ZTRAP="" {WRITE !,"$ZTRAP not set" }
 ELSE {WRITE !,"$ZTRAP already set: ",$ZTRAP
 SET oldtrap=$ZTRAP }
 SET $ZTRAP="Etrap1^Handler"
 WRITE !,"$ZTRAP set to: ",$ZTRAP
 // program code
 SET $ZTRAP=oldtrap
 WRITE !,"$ZTRAP restored to: ",$ZTRAP

When an error occurs, this format unwinds the call stack and transfers control to the specified error trap handler.

In SqlComputeCode, do not set $ZTRAP=$ZTRAP. This can result in significant problems with transactional processing
and error reporting.

To disable error trapping, set $ZTRAP to the null string (""). This clears any error trap set at the current DO stack level.

Note: Use of $ZTRAP from the Terminal prompt is limited to the current line of code. The SET $ZTRAP command
and the command generating the error must be in the same line of code. Terminal restores $ZTRAP to the system
default at the beginning of each command line.

*Location

In a routine, you can choose to leave the call stack as it is after the error has occurred. To do so, place an asterisk (*) before
location and within the double quotes. This form is not valid for use within procedures; attempted to do so results in a
<SYNTAX> error. It can only be used in subroutines that are not procedures, as in this example:

Main
 SET $ZTRAP="*OnError"
 WRITE !,"$ZTRAP set to: ",$ZTRAP
 // program code
OnError
 // Error handling code
 QUIT

This format simply causes a GOTO to the line label specified in $ZTRAP; $STACK and $ESTACK are unchanged. The
context frame of the $ZTRAP error handling routine is the same as the context frame where the error occurred. However,
InterSystems IRIS resets $ROLES to the value that was in effect for the execution level at which $ZTRAP was set; this
prevents the $ZTRAP error handler from using elevated privileges that were granted to the routine after establishing the
error handler. Upon completion of the $ZTRAP error handling routine, InterSystems IRIS unwinds the stack to the previous
context level. This form of $ZTRAP is especially useful for analyzing unexpected errors.

Note that the asterisk sets a $ZTRAP option; it is not part of the location. For this reason, this asterisk does not display
when performing a WRITE or ZZDUMP on $ZTRAP.

^%ETN

In a routine, SET $ZTRAP="^%ETN" establishes the system-supplied error routine %ETN as the current error trap
handler. %ETN executes in the context in which the error occurred that invoked it. (%ET is a legacy name for %ETN.
Their functionality is identical, though %ETN is slightly more efficient.) The ^%ETN error handler always behaves as if
it were preceded by an asterisk (*).

710 ObjectScript Reference

ObjectScript Special Variables

Because $ZTRAP in a procedure block cannot be used to go to a location that is outside the body of the procedure, SET
$ZTRAP="^%ETN" cannot be used in a procedure. Attempting to do so results in a <SYNTAX> error.

For more information on %ETN and its entrypoints FORE^%ETN, BACK^%ETN, and LOG^%ETN, see the “Logging
Application Errors” section of the “Error Processing” chapter of Using ObjectScript.

TRY / CATCH and $ZTRAP
You cannot set $ZTRAP within a TRY block. Attempting to do so generates a compilation error. You can set $ZTRAP
prior to the TRY block, or within the CATCH block.

An error that occurs within a TRY block is handled by the CATCH block, regardless of whether a $ZTRAP has previously
been set. An error that occurs within a CATCH block is handled by the current error trap handler.

The first of the following examples shows an error occurring in a TRY block. The second of the following examples shows
an exception being thrown in a TRY block. In both cases, the CATCH block, not the $ZTRAP, is taken:

 SET $ZTRAP="Ztrap"
 TRY { WRITE 1/0 } /* divide-by-zero error */
 CATCH { WRITE "Catch taken" }
 QUIT
Ztrap
 WRITE "$ZTRAP taken"
 SET $ZTRAP=""
 QUIT

 SET $ZTRAP="Ztrap"
 TRY { SET myvar=##class(Sample.MyException).%New("Example Error",999,,errdatazero)
 WRITE !,"Throwing an exception!",!
 THROW myvar
 QUIT }
 CATCH { WRITE "Catch taken" }
 QUIT
Ztrap
 WRITE "$ZTRAP taken"
 SET $ZTRAP=""
 QUIT

However, a TRY block can call code that sets and uses $ZTRAP. In the following example, the divide-by-zero error is
caught by $ZTRAP, rather than the CATCH block:

 TRY { DO Errsub }
 CATCH { WRITE "Catch taken" }
 QUIT
Errsub
 SET $ZTRAP="Ztrap"
 WRITE 1/0 /* divide-by-zero error */
 QUIT
Ztrap
 WRITE "$ZTRAP taken"
 SET $ZTRAP=""
 QUIT

A THROW command from a CATCH block can also invoke a $ZTRAP error handler.

Examples
The following example sets $ZTRAP to the OnError routine in this program. It then calls SubA in which an error occurs
(attempting to divide a number by 0). When the error occurs, InterSystems IRIS calls the OnError routine specified in
$ZTRAP. OnError is invoked at the context level at which $ZTRAP was set. Because OnError is at the same context level
as Main, execution does not return to Main.

ObjectScript Reference 711

$ZTRAP

Main
 NEW $ESTACK
 SET $ZTRAP="OnError"
 WRITE !,"$ZTRAP set to: ",$ZTRAP
 WRITE !,"Main $ESTACK= ",$ESTACK // 0
 WRITE !,"Main $ECODE= ",$ECODE
 DO SubA
 WRITE !,"Returned from SubA" // not executed
 WRITE !,"MainReturn $ECODE= ",$ECODE
 QUIT
SubA
 WRITE !,"SubA $ESTACK= ",$ESTACK // 1
 WRITE !,6/0 // Error: division by zero
 WRITE !,"fine with me"
 QUIT
OnError
 WRITE !,"OnError $ESTACK= ",$ESTACK // 0
 WRITE !,"$ECODE= ",$ECODE
 QUIT

The following example is identical to the previous example, with one exception: The $ZTRAP location is prefaced by an
asterisk (*). When the error occurs in SubA, this asterisk causes InterSystems IRIS to call the OnError routine at the context
level of SubA (where the error occurred), not at the context level of Main (where $ZTRAP was set). Therefore, when
OnError completes, execution returns to Main at the line following the DO command.

Main
 NEW $ESTACK
 SET $ZTRAP="*OnError"
 WRITE !,"$ZTRAP set to: ",$ZTRAP
 WRITE !,"Main $ESTACK= ",$ESTACK // 0
 WRITE !,"Main $ECODE= ",$ECODE
 DO SubA
 WRITE !,"Returned from SubA" // executed
 WRITE !,"MainReturn $ECODE= ",$ECODE
 QUIT
SubA
 WRITE !,"SubA $ESTACK= ",$ESTACK // 1
 WRITE !,6/0 // Error: division by zero
 WRITE !,"fine with me"
 QUIT
OnError
 WRITE !,"OnError $ESTACK= ",$ESTACK // 1
 WRITE !,"$ECODE= ",$ECODE
 QUIT

See Also
• THROW command

• ZINSERT command

• $ECODE special variable

• $ESTACK special variable

• $STACK special variable

• Error Processing in Using ObjectScript

712 ObjectScript Reference

ObjectScript Special Variables

$ZVERSION
Contains a string describing the current version of InterSystems IRIS.

$ZVERSION
$ZV

Description
$ZVERSION contains a string showing the version of the currently running instance of InterSystems IRIS® data platform.

The following example returns the $ZVERSION string:

 WRITE $ZVERSION

This returns a version string such as the following:

IRIS for Windows (x86-64) 2018.1 (Build 487U) Tue Dec 26 2017 22:47:10 EST

This string includes the type of InterSystems IRIS installation (product and platform, including CPU type), the version
number (2018.1), the build number within that version (the “U” in the build number indicates Unicode), and the date and
time that this version of InterSystems IRIS was created. “EST” is Eastern Standard Time (the time zone for the Eastern
United States), “EDT” is Eastern Daylight Saving Time (see Daylight Saving Time for details).

The same information can be returned by invoking the GetVersion() class method, as follows:

 WRITE $SYSTEM.Version.GetVersion()

You can get the component parts of this version string by invoking other %SYSTEM.Version methods, which you can list
by invoking:

 DO $SYSTEM.Version.Help()

Version and build number information can be viewed by going to the InterSystems IRIS launcher and selecting About....

The $ZVERSION special variable cannot be modified using the SET command. Attempting to do so results in a <SYNTAX>
error.

Examples
The following example extracts the create date from the version string to calculate how old the current version of InterSystems
IRIS is, in days. Note that this example is specific to Windows platforms:

 SET createdate=$PIECE($ZVERSION," ",9,11)
 WRITE !,"Creation date: ",createdate
 WRITE !,"Current date: ",$ZDATE($HOROLOG,6)
 SET nowcount=$PIECE($HOROLOG,",")
 SET thencount=$ZDATEH(createdate,6)
 WRITE !,"This version is ",(nowcount-thencount)," days old"

The following example performs the same operation by calling a class method:

 SET createdate=$SYSTEM.Version.GetBuildDate()
 WRITE !,"Creation date: ",$ZDATE(createdate,6)
 WRITE !,"Current date: ",$ZDATE($HOROLOG,6)
 SET nowcount=$PIECE($HOROLOG,",")
 WRITE !,"This version is ",(nowcount-createdate)," days old"

See Also
• $ZVERSION(1) function

• $SYSTEM special variable

ObjectScript Reference 713

$ZVERSION

Structured System Variables

A structured system variable name, or SSVN, is a nonscalar system variable that is organized like a global variable. SSVNs
allow you to write portable programs that can retrieve information about system data. The same ObjectScript code can
retrieve system data information from any InterSystems IRIS® implementation using structured system variables.

Each SSVN has a structure where subscript values are any of the following:

• Entity identifiers

• Literals

• Attribute keywords.

You provide information about entities by providing values for subscripts which are identifiers and for attribute nodes.

SSVNs use the caret and dollar sign (^$) as a standard prefix followed by:

1. An optional (extended syntax) specification of the namespace about which you want information

2. One of a designated list of names.

You then follow the name with one or more expressions in parentheses. These expressions are called subscripts. The syntax
is as follows:

^$[|namespace|] ssvn_name(expression)

Generally, you cannot use SET and KILL commands for structured system variables because they do not necessarily have
data values. The information that structured system variables provide is often the existence of specific subscript values. In
most cases, you can use the $DATA, the $ORDER, and the $QUERY functions to examine subscript values.

InterSystems IRIS® supports the following structured system variables:

• ^$GLOBAL

• ^$JOB

• ^$LOCK

• ^$ROUTINE

The meaning of each of these SSVNs and use of their subscripts is explained in the following sections.

Each description identifies which functions are allowed with the particular structured system variable. Each description
contains one or more examples about how to use structured system variable as arguments to the $DATA, $ORDER, and
$QUERY functions to scan system table information.

ObjectScript Reference 715

^$GLOBAL
Provides information about globals and process-private globals.

^$|nspace|GLOBAL(global_name)
^$|nspace|G(global_name)

^$||GLOBAL(global_name)
^$||G(global_name)

Parameters

Optional — An extended SSVN reference, either an explicit namespace name or
an implied namespace. Must evaluate to a quoted string, which is enclosed in
either square brackets (["nspace"]) or vertical bars (|"nspace"|). Namespace names
are not case-sensitive; they are stored and displayed in uppercase letters.

|nspace|

or
[nspace]

An expression that evaluates to a string containing an unsubscripted global name.
Global names are case-sensitive. When using ^$||GLOBAL() syntax, an
unsubscripted global name that corresponds to the process-private global: ^a for
^||a.

global_name

Description
You can use ^$GLOBAL as an argument to the $DATA, $ORDER, and $QUERY functions to return information about
the existence of global variables in the current namespace (the default), or in a specified namespace. You can also use
^$GLOBAL to return information about existence of process-private global variables.

For more information on global variables, refer to Using InterSystems IRIS Multidimensional Storage in Using Globals.

Process-Private Globals

You can use ^$GLOBAL to get information about the existence of process-private global variables in all namespaces.
You can specify lookup of a process-private global as either ^$||GLOBAL or ^$|"^"|GLOBAL.

For example, to get information about the process-private global ^||a and its descendents, you would specify
$DATA(^$||GLOBAL("^a")). Process-private globals are not namespace-specific, so this lookup returns information
about ^||a regardless of the current namespace when the process-private global was defined.

Note that ^$GLOBAL does not support specifying process-private global syntax in the global_name itself. Attempting to
specify global_name with process-private global syntax results in a <NAME> error.

Parameters

nspace

This optional parameter allows ̂ $GLOBAL to look up a global_name that is defined in another namespace. This is known
as extended SSVN reference. You can specify the namespace name either explicitly, as a quoted string literal, as a variable,
or by specifying an implied namespace. Namespace names are not case-sensitive. You can use either bracket syntax
["USER"] or environment syntax |"USER"|. No spaces are allowed before or after the nspace delimiters.

You can test whether a namespace is defined by using the following method:

 WRITE ##class(%SYS.Namespace).Exists("USER"),! ; an existing namespace
 WRITE ##class(%SYS.Namespace).Exists("LOSER") ; a non-existent namespace

You can use the $NAMESPACE special variable to determine the current namespace. The preferred way to change the
current namespace is NEW $NAMESPACE then SET $NAMESPACE="nspacename".

716 ObjectScript Reference

Structured System Variables

global_name

An expression that evaluates to a string containing an unsubscripted global name. Globals are case-sensitive.

• ^$GLOBAL("^a"): The global_name "^a" looks up this global and its descendents in the current namespace. It
does not look up the process-private global "^||a".

• ^$|"USER"|GLOBAL("^a"): The global_name "^a" looks up this global and its descendents in the “USER”
namespace. It does not look up the process-private global "^||a".

• ^$||GLOBAL("^a"): The global_name "^a" looks up the process-private global "^||a" and its descendents in all
namespaces. It does not look up the global "^a".

Examples
The following examples show how to use ̂ $GLOBAL as an argument to the $DATA, $ORDER, and $QUERY functions.

As an Argument to $DATA

^$GLOBAL as an argument to $DATA returns an integer value that signifies whether the global name you specify exists
as a ^$GLOBAL node. The integer values that $DATA can return are shown in the following table.

MeaningValue

Global name does not exist0

Global name is an existing node with data but has no descendants.1

Global name is an existing node with no data but has descendants.10

Global name is an existing node with data and has descendants.11

The following example tests for the existence of the specified global variable in the current namespace:

 KILL ^GBL
 WRITE $DATA(^$GLOBAL("^GBL")),!
 SET ^GBL="test"
 WRITE $DATA(^$GLOBAL("^GBL")),!
 SET ^GBL(1,1,1)="subscripts test"
 WRITE $DATA(^$GLOBAL("^GBL"))

returns 0, then 1, then 11.

The following example tests for the existence of the specified global variable in the USER namespace:

 SET $NAMESPACE="USER"
 SET ^GBL(1)="test"
 SET $NAMESPACE="%SYS"
 WRITE $DATA(^$|"USER"|GLOBAL("^GBL"))

returns 10.

The following example tests for the existence of the specified process-private global variable in any namespace:

 SET $NAMESPACE="USER"
 SET ^||PPG(1)="test"
 SET $NAMESPACE="%SYS"
 WRITE $DATA(^$||GLOBAL("^PPG"))

returns 10.

As an Argument to $ORDER

$ORDER(^$|nspace|GLOBAL(global_name),direction)

ObjectScript Reference 717

^$GLOBAL

^$GLOBAL as an argument to $ORDER returns the next or previous global name in collating sequence to the global
name you specify. If no such global name node exists in ^$GLOBAL, $ORDER returns a null string.

The direction argument specifies whether to return the next or the previous global name. If you do not provide a direction
argument, InterSystems IRIS returns the next global name in collating sequence to the one you specify. For further details,
refer to the $ORDER function.

The following subroutine searches the current namespace and stores the global names in a local array named GLOBAL.

GLOB
 SET NAME=""
 WRITE !,"The following globals are in ",$NAMESPACE
 FOR I=1:1 {
 SET NAME=$ORDER(^$GLOBAL(NAME))
 WRITE !,NAME
 QUIT:NAME=""
 SET GLOBAL(I)=NAME
 }
 WRITE !,"All done"
 QUIT

As an Argument to $QUERY

^$GLOBAL as an argument to $QUERY returns the next global name in collating sequence to the global name you
specify. If no such global name exists as a node in ^$GLOBAL, $QUERY returns a null string.

In the following example, three globals (^GBL1, ^GBL2 and ^GBL3) are present in the USER namespace.

 NEW $NAMESPACE
 SET $NAMESPACE="USER"
 SET (^GBL1,^GBL2,^GBL3)="TEST"
 NEW $NAMESPACE
 SET $NAMESPACE="%SYS"
 WRITE $QUERY(^$|"USER"|GLOBAL("^GBL1")),!
 WRITE $QUERY(^$|"USER"|GLOBAL("^GBL2"))
 NEW $NAMESPACE
 SET $NAMESPACE="USER"
 KILL ^GBL1,^GBL2,^GBL3

The first WRITE returns ^$|"USER"|GLOBAL("^GBL2")

The second WRITE returns ^$|"USER"|GLOBAL("^GBL3")

As an Argument to MERGE

^$GLOBAL as the source argument of the MERGE command copies the global directory to the destination variable.
MERGE adds each global name as a destination subscript with a null value. This is shown in the following example:

 MERGE gbls=^$GLOBAL("")
 ZWRITE gbls

See Also
• $DATA function

• $ORDER function

• $QUERY function

• ZNSPACE command

• $NAMESPACE special variable

• Configuring Namespaces in System Administration Guide

718 ObjectScript Reference

Structured System Variables

^$JOB
Provides InterSystems IRIS process (job) information.

^$JOB(job_number)
^$J(job_number)

Parameter

The system-specific job number created when you enter the ObjectScript command.
Every active InterSystems IRIS process has a unique job number. Logging in to
the system initiates a job. On UNIX® systems, the job number is the pid of the
child process started when InterSystems IRIS was invoked. job_number must be
specified as an integer; hexadecimal values are not supported.

job_number

Description
You can use the ^$JOB structured system variable as an argument to the $DATA, $ORDER, and $QUERY functions to
get information about the existence of InterSystems IRIS jobs on the local InterSystems IRIS system.

Examples
The following examples show how to use ^$JOB as an argument to the $DATA, $ORDER, and $QUERY functions.

As an Argument to $DATA

$DATA(^$JOB(job_number))

^$JOB as an argument to $DATA returns an integer value that indicates whether the specified job exists as a node in ̂ $JOB.
The integer values that $DATA can return are shown in the following table.

MeaningValue

Job does not exist.0

Job exists.1

The following example tests for the existence of an InterSystems IRIS process.

 SET x=$JOB
 WRITE !,$DATA(^$JOB(x))

The variable x is set to the job number of the current process (for example: 4294219937). The WRITE returns the boolean
1, indicating this process exists.

As an Argument to $ORDER

$ORDER(^$JOB(job_number),direction)

^$JOB as an argument to $ORDER returns the next or previous ̂ $JOB job number in collating sequence to the job number
you specify. If no such job number exists as a ^$JOB node, $ORDER returns a null string.

The direction argument specifies whether to return the next or the previous job number. If you do not provide a direction
argument, InterSystems IRIS returns the next job number in collating sequence to the one you specify. For further details,
refer to the $ORDER function.

The following subroutine searches the InterSystems IRIS job table and stores the job numbers in a local array named JOB.

ObjectScript Reference 719

^$JOB

JOB
 SET pid=""
 FOR i=1:1 {
 SET pid=$ORDER(^$JOB(pid))
 QUIT:pid=""
 SET JOB(i)=pid
 }
 WRITE "Total Jobs in Job Table: ",i
 QUIT

As an Argument to $QUERY

$QUERY(^$JOB(job_number))

^$JOB as an argument to $QUERY returns the next ̂ $JOB job number in collating sequence to the job number you specify.
If no such job number exists as a node in ^$JOB, $QUERY returns a null string.

The following example returns the first two jobs in the InterSystems IRIS job table. Note the use of the indirection operator
(@):

 SET x=$QUERY(^$JOB(""))
 WRITE !,x
 WRITE !,$QUERY(@x)

returns values for these jobs such as the following:

^$JOB("4294117993")

^$JOB("4294434881")

See Also
• JOB command

• $DATA function

• $ORDER function

• $QUERY function

• $JOB special variable

• $ZJOB special variable

• $ZCHILD special variable

• $ZPARENT special variable

720 ObjectScript Reference

Structured System Variables

^$LOCK
Provides lock name information.

^$|nspace|LOCK(lock_name,info_type,pid)
^$|nspace|L(lock_name,info_type,pid)

Parameters

Optional — An extended SSVN reference, either an explicit namespace name or an
implied namespace. Must evaluate to a quoted string, which is enclosed in either
square brackets (["nspace"]) or vertical bars (|"nspace"|). Namespace names are not
case-sensitive; they are stored and displayed in uppercase letters.

|nspace|

or
[nspace]

An expression that evaluates to a string containing a lock variable name, either
subscripted or unsubscripted. If a literal, must be specified as a quoted string.

lock_name

Optional — An expression that resolves to a keyword in all capital letters specified
as a quoted string.The info_type specifies what type of information about lock_name
to return. The available options are "OWNER", "FLAGS", "MODE", and "COUNTS".
Required when ^$LOCK is invoked as a stand-alone function.

info_type

Optional — For use with the "COUNTS” keyword. An integer that specifies the process
ID of the owner of the lock. If specified, at most one list element is returned for
"COUNTS”. If omitted (or specified as 0), a list element is returned for each owner
holding the specified lock. pid has no effect on the other info_type keywords.

pid

Description
The ̂ $LOCK structured system variable returns information about locks in the current namespace or a specified namespace
on the local system. You can use ^$LOCK in two ways:

• With info_type as a stand-alone function that returns information on a specified lock.

• Without info_type as an argument to the $DATA, $ORDER, or $QUERY functions.

Note: ^$LOCK retrieves lock table information from the lock table on the local system. It will not return information
from a lock table on a remote server.

^$LOCK in an ECP Environment

• Local System: When invoking ^$LOCK for locks held by the local system, the behavior of ^$LOCK is the same as
without ECP, with one exception: the "FLAGS" info_type returns an asterisk (*), signifying that the lock is in an ECP
environment. This means that remote InterSystems IRIS instances have the ability to hold the lock once it is released.

• Application Server: When invoking ̂ $LOCK on an application server for a lock held on another server via ECP (either
a data server or another application server), ^$LOCK does not return any information. Note that this is the same
behavior as if the lock did not exist.

• Data Server: When invoking ^$LOCK on a data server for a lock held by an application server, ^$LOCK will have
slightly different behavior than on a local system, as follows:

– "OWNER": If the lock is held by an application server connected to a data server that invokes ^$LOCK,
^$LOCK(lockname, "OWNER") returns “ECPConfigurationName:MachineName:InstanceName” for the
instance holding the lock, but does not identify the specific process holding the lock.

ObjectScript Reference 721

^$LOCK

– "FLAGS": If the lock is held by an application server connected to a data server that invokes ^$LOCK,
^$LOCK(lockname, "FLAGS") for an exclusive lock returns a “Z” flag. This “Z” signifies a type of legacy
lock that is no longer used in InterSystems IRIS except in ECP environments.

– "MODE": If the lock is held by an application server connected to a data server that invokes ^$LOCK,
^$LOCK(lockname, "MODE") for an exclusive lock returns “ZAX” instead of “X”. ZA is a type of legacy lock
that is no longer used in InterSystems IRIS except in ECP environments. For a shared lock, ^$LOCK(lockname,
"MODE") returns “S”, the same as for a local lock.

Parameters

nspace

This optional parameter allows you to specify a global in another namespace by using an extended SSVN reference. You
can specify the namespace name either explicitly, as a quoted string literal or as a variable, or by specifying an implied
namespace. Namespace names are not case-sensitive. You can use either bracket syntax ["USER"] or environment syntax
|"USER"|. No spaces are allowed before or after the nspace delimiters.

You can test whether a namespace is defined by using the following method:

 WRITE ##class(%SYS.Namespace).Exists("USER"),! ; an existing namespace
 WRITE ##class(%SYS.Namespace).Exists("LOSER") ; a non-existent namespace

You can use the $NAMESPACE special variable to determine the current namespace. The preferred way to change the
current namespace is NEW $NAMESPACE then SET $NAMESPACE="nspacename".

lock_name

An expression that evaluates to a string containing a lock variable name, either subscripted or unsubscripted. A lock variable
(commonly a global variable) is defined using the LOCK command.

info_type

An info_type keyword is required when ^$LOCK is invoked as a stand-alone function, it is optional when ^$LOCK is
used as an argument to another function. The info_type must be specified in capital letters as a quoted string.

• "OWNER" returns the process ID (pid) of the owner(s) of the lock. If the lock is a shared lock, it returns the process
IDs of all of the owners of the lock as a comma-separated list. If the specified lock does not exist, ^$LOCK returns
the empty string.

• "FLAGS" returns the state of the lock. It can return the following values: "D" — in delock pending state; "P" — in
lock pending state; "N" — this is a node lock, the descendants are not locked; "Z" — this lock is in ZAX mode; "L"
— lock is lost, the server no longer has this lock; "*" — this is a remote lock. If the specified lock is in a normal lock
state, or does not exist, ^$LOCK returns the empty string.

• "MODE" returns the lock mode of the current node. It returns 'X' for exclusive lock mode, 'S' for shared lock mode,
and 'ZAX' for ZALLOCATE lock mode. If the specified lock does not exist, ^$LOCK returns the empty string.

• "COUNTS" returns the lock counts for the lock, specified as a binary list structure. For an exclusive lock, the list
contains one element; for a shared lock the list contains an element for each owner of the lock. You can use the pid
parameter to return only the list element for a specified owner of the lock. Each element contains the owner's pid, the
exclusive mode increment count, and the shared mode increment count. If both the exclusive and shared mode increment
counts are 0 (or " "), the lock is in 'ZAX' mode. An increment count may be followed by a 'D' to indicate that the lock
has been unlocked in the current transaction, but its release is delayed ('D') until the transaction is committed or rolled
back. If the specified lock does not exist, ^$LOCK returns the empty string.

The info_type keyword must be specified in all capital letters. Specifying an invalid info_type keyword generates a
<SUBSCRIPT> error.

722 ObjectScript Reference

Structured System Variables

pid

A process ID of the owner of a lock. Only meaningful when using the "COUNTS" keyword. Used to limit the "COUNTS"
return value to (at most) one list element. The pid is specified as an integer on all platforms. If the pid matches the process
ID of an owner of lock_name ^$LOCK returns that owner's "COUNTS” list element; if pid does not match the process ID
of an owner of lock_name ^$LOCK returns the empty string. Specifying pid as 0 is the same as omitting pid; ^$LOCK
returns all "COUNTS" list elements. The pid parameter is permitted with the "OWNER", "FLAGS", or "MODE" keyword,
but is ignored.

Examples
The following example shows the values returned by info_type keywords for an exclusive lock:

 LOCK ^B(1,1) ; define lock
 WRITE !,"lock owner: ",^$LOCK("^B(1,1)","OWNER")
 WRITE !,"lock flags: ",^$LOCK("^B(1,1)","FLAGS")
 WRITE !,"lock mode: ",^$LOCK("^B(1,1)","MODE")
 WRITE !,"lock counts: "
 ZZDUMP ^$LOCK("^B(1,1)","COUNTS")
 LOCK -^B(1,1) ; delete lock

The following example shows how the value returned by info_type "COUNTS" changes as you increment and decrement
an exclusive lock:

 LOCK ^B(1,1) ; define exclusive lock
 ZZDUMP ^$LOCK("^B(1,1)","COUNTS")
 LOCK +^B(1,1) ; increment lock
 ZZDUMP ^$LOCK("^B(1,1)","COUNTS")
 LOCK +^B(1,1) ; increment lock again
 ZZDUMP ^$LOCK("^B(1,1)","COUNTS")
 LOCK -^B(1,1) ; decrement lock
 ZZDUMP ^$LOCK("^B(1,1)","COUNTS")
 LOCK -^B(1,1) ; decrement lock again
 ZZDUMP ^$LOCK("^B(1,1)","COUNTS")
 LOCK -^B(1,1) ; delete exclusive lock

The following example shows how the value returned by info_type "COUNTS" changes as you increment and decrement
a shared lock:

 LOCK ^S(1,1)#"S" ; define shared lock
 ZZDUMP ^$LOCK("^S(1,1)","COUNTS")
 LOCK +^S(1,1)#"S" ; increment lock
 ZZDUMP ^$LOCK("^S(1,1)","COUNTS")
 LOCK +^S(1,1)#"S" ; increment lock again
 ZZDUMP ^$LOCK("^S(1,1)","COUNTS")
 LOCK -^S(1,1)#"S" ; decrement lock
 ZZDUMP ^$LOCK("^S(1,1)","COUNTS")
 LOCK -^S(1,1)#"S" ; decrement lock again
 ZZDUMP ^$LOCK("^S(1,1)","COUNTS")
 LOCK -^S(1,1)#"S" ; delete shared lock

The following examples show how to use ^$LOCK as an argument to the $DATA, $ORDER, and $QUERY functions.

As an Argument to $DATA

$DATA(^$|nspace|LOCK(lock_name))

^$LOCK as an argument to $DATA returns an integer value that specifies whether the lock name exists as a node in
^$LOCK. The integer values that $DATA can return are shown in the following table.

MeaningValue

Lock name information does not exist0

Lock name information exists10

ObjectScript Reference 723

^$LOCK

Note that $DATA used in this context can only return 0 or 10, with 10 meaning that the specified lock exists. It cannot
determine if a lock has descendents, and cannot return 1 or 11.

The following example tests for the existence of a lock name in the current namespace. The first WRITE returns 10 (lock
name exists), the second WRITE returns 0 (lock name does not exist):

 LOCK ^B(1,2) ; define lock
 WRITE !,$DATA(^$LOCK("^B(1,2)"))
 LOCK -^B(1,2) ; delete lock
 WRITE !,$DATA(^$LOCK("^B(1,2)"))

As an Argument to $ORDER

$ORDER(^$|nspace|LOCK(lock_name),direction)

^$LOCK as an argument to $ORDER returns the next or previous ^$LOCK lock name node in collating sequence to the
lock name you specify. If no such lock name exists as a ^$LOCK node, $ORDER returns a null string.

Locks are returned in case-sensitive string collation order. Subscripts of a named lock are returned in subscript tree order,
using numeric collation.

The direction argument specifies whether to return the next or the previous lock name. If you do not provide a direction
argument, InterSystems IRIS returns the next lock name in collating sequence to the one you specify. For further details,
refer to the $ORDER function.

The following subroutine searches the locks in the SAMPLES namespace and stores the lock names in a local array named
LOCKET.

LOCKARRAY
 SET lname=""
 FOR I=1:1 {
 SET lname=$ORDER(^$|"SAMPLES"|LOCK(lname))
 QUIT:lname=""
 SET LOCKET(I)=lname
 WRITE !,"the lock name is: ",lname
 }
 WRITE !,"All lock names listed"
 QUIT

As an Argument to $QUERY

$QUERY(^$|nspace|LOCK(lock_name))

^$LOCK as an argument to $QUERY returns the next lock name in collating sequence to the lock name you specify. If
there is no next lock name defined as a node in ^$LOCK, $QUERY returns a null string.

Locks are returned in case-sensitive string collation order. Subscripts of a named lock are returned in subscript tree order,
using numeric collation.

In the following example, five global lock names are created (in random order) in the current namespace.

 LOCK (^B(1),^A,^D,^A(1,2,3),^A(1,2))
 WRITE !,"lock name: ",$QUERY(^$LOCK(""))
 WRITE !,"lock name: ",$QUERY(^$LOCK("^C"))
 WRITE !,"lock name: ",$QUERY(^$LOCK("^A(1,2)"))

$QUERY treats all global lock variable names, subscripted or unsubscripted, as character strings and retrieves them in
string collating order. Therefore, $QUERY(^$LOCK("")) retrieve the first lock name in collating sequence order: either
^$LOCK("^A”) or an InterSystems IRIS-defined lock higher in the collating sequence. $QUERY(^$LOCK("^C")) retrieves
the next lock name in collating sequence after the nonexistent ̂ C: ̂ $LOCK("^D”). $QUERY(^$LOCK("^A(1,2)")) retrieve
^$LOCK("^A(1,2,3)”) which follows it in collation sequence.

See Also
• LOCK command

724 ObjectScript Reference

Structured System Variables

• $DATA function

• $ORDER function

• $QUERY function

• $NAMESPACE special variable

• Configuring Namespaces in System Administration Guide

ObjectScript Reference 725

^$LOCK

^$ROUTINE
Provides routine information.

^$|nspace|ROUTINE(routine_name)
^$|nspace|R(routine_name)

Parameters

Optional — An extended SSVN reference, either an explicit namespace name
or an implied namespace. Must evaluate to a quoted string, which is enclosed
in either square brackets (["nspace"]) or vertical bars (|"nspace"|). Namespace
names are not case-sensitive; they are stored and displayed in uppercase letters.

|nspace|

or
[nspace]

An expression that evaluates to a string containing the name of a routine.routine_name

Description
You can use the ̂ $ROUTINE structured system variable as an argument to the $DATA, $ORDER, and $QUERY functions
to return routine information from the current namespace (the default) or a specified namespace. ^$ROUTINE returns
routine information on the OBJ code version of the routine.

In InterSystems ObjectScript, a rountine exists in three code versions: MAC (user-written code, which may include macro
pre-processor statements); INT (compiled MAC code, which performs macro preprocessing), and OBJ (executable object
code). You can use the ^ROUTINE global to return information on the INT code version. You can use ^$ROUTINE to
return information on the OBJ code version.

Parameters

nspace

This optional parameter allows you to specify a global in another namespace by using an extended SSVN reference. You
can specify the namespace name either explicitly, as a quoted string literal or as a variable, or by specifying an implied
namespace. Namespace names are not case-sensitive. You can use either bracket syntax ["USER"] or environment syntax
|"USER"|. No spaces are allowed before or after the nspace delimiters.

You can test whether a namespace is defined by using the following method:

 WRITE ##class(%SYS.Namespace).Exists("USER"),! ; an existing namespace
 WRITE ##class(%SYS.Namespace).Exists("LOSER") ; a non-existent namespace

You can use the $NAMESPACE special variable to determine the current namespace. The preferred way to change the
current namespace is NEW $NAMESPACE then SET $NAMESPACE="nspacename".

routine_name

An expression that evaluates to a string containing the name of an existing routine. A routine name must be unique within
the first 255 characters; routine names longer than 220 characters should be avoided.

Examples
The following are examples of using ^$ROUTINE as an argument to the $DATA, $ORDER, and $QUERY functions.

As an Argument to $DATA

$DATA(^$|nspace|ROUTINE(routine_name))

726 ObjectScript Reference

Structured System Variables

^$ROUTINE as an argument to $DATA returns an integer value that specifies whether the routine_name OBJ code version
exists as a node in ^$ROUTINE. The integer values that $DATA can return are shown in the following table.

MeaningValue

Routine name does not exist0

Routine name exists1

The following Terminal example tests for the existence of the OBJ code version of the myrou routine. This example assumes
that there is a compiled MAC routine named myrou in the USER namespace:

USER>WRITE ^ROUTINE("myrou",0,"GENERATED") // INT code version exists
1
USER>WRITE $DATA(^$ROUTINE("myrou")) // OBJ code version exists
1
USER>KILL ^rOBJ("myrou") // Kills the OBJ code version

USER>DO ^myrou

DO ^myrou
^
<NOROUTINE> *myrou
USER>WRITE ^ROUTINE("myrou",0,"GENERATED") // INT code version exists
1
USER>WRITE $DATA(^$ROUTINE("myrou")) // OBJ code version does not exist
0
USER>

As an Argument to $ORDER

$ORDER(^$|nspace|ROUTINE(routine_name),direction)

^$ROUTINE as an argument to $ORDER returns the next or previous routine name in collating sequence to the routine
name you specify. If no such routine name exists as a node in ^$ROUTINE, $ORDER returns a null string.

The direction argument specifies whether to return the next or the previous routine name: 1=next, -1=previous. If you do
not provide a direction argument, InterSystems IRIS returns the next routine name in collating sequence to the one you
specify. For further details, refer to the $ORDER function.

The following subroutine searches the USER namespace and stores the routine names in a local array named ROUTINE.

 SET rname=""
 FOR I=1:1 {
 SET rname=$ORDER(^$|"USER"|ROUTINE(rname))
 QUIT:rname=""
 SET ROUTINE(I)=rname
 WRITE !,"Routine name: ",rname
 }
 WRITE !,"All routines stored"
 QUIT

As an Argument to $QUERY

$QUERY(^$|nspace|ROUTINE(routine_name))

^$ROUTINE as an argument to $QUERY returns the next routine name in collating sequence to the routine name you
specify. The specified routine name does not have to exist. If there is no routine name later in the collating sequence,
$QUERY(^$ROUTINE) returns a null string.

In the following example, two $QUERY functions return the next routine after the specified routine name in the USER
namespace.

 SET rname=""
 WRITE !,"1st routine: ",$QUERY(^$|"USER"|ROUTINE(rname))
 SET rname="%m"
 WRITE !,"1st ",rname, " routine: ",$QUERY(^$|"USER"|ROUTINE(rname))
 QUIT

ObjectScript Reference 727

^$ROUTINE

See Also
• $DATA function

• $ORDER function

• $QUERY function

• $NAMESPACE special variable

• Configuring Namespaces in System Administration Guide

728 ObjectScript Reference

Structured System Variables

	Table of Contents
	About This Book
	Symbols and Abbreviations
	Symbols Used in ObjectScript
	Abbreviations Used in ObjectScript

	ObjectScript Commands
	BREAK
	CATCH
	CLOSE
	CONTINUE
	DO
	DO WHILE
	ELSE
	ELSEIF
	FOR
	GOTO
	HALT
	HANG
	IF
	JOB
	KILL
	LOCK
	MERGE
	NEW
	OPEN
	QUIT
	READ
	RETURN
	SET
	TCOMMIT
	THROW
	TROLLBACK
	TRY
	TSTART
	USE
	VIEW
	WHILE
	WRITE
	XECUTE
	ZKILL
	ZNSPACE
	ZTRAP
	ZWRITE
	ZZDUMP
	ZZWRITE

	Routine and Debugging Commands
	PRINT
	ZBREAK
	ZINSERT
	ZLOAD
	ZPRINT
	ZREMOVE
	ZSAVE
	ZZPRINT

	ObjectScript Functions
	$ASCII
	$BIT
	$BITCOUNT
	$BITFIND
	$BITLOGIC
	$CASE
	$CHAR
	$CLASSMETHOD
	$CLASSNAME
	$COMPILE
	$DATA
	$DECIMAL
	$DOUBLE
	$EXTRACT
	$FACTOR
	$FIND
	$FNUMBER
	$GET
	$INCREMENT
	$INUMBER
	$ISOBJECT
	$ISVALIDDOUBLE
	$ISVALIDNUM
	$JUSTIFY
	$LENGTH
	$LIST
	$LISTBUILD
	$LISTDATA
	$LISTFIND
	$LISTFROMSTRING
	$LISTGET
	$LISTLENGTH
	$LISTNEXT
	$LISTSAME
	$LISTTOSTRING
	$LISTUPDATE
	$LISTVALID
	$LOCATE
	$MATCH
	$METHOD
	$NAME
	$NCONVERT
	$NORMALIZE
	$NOW
	$NUMBER
	$ORDER
	$PARAMETER
	$PIECE
	$PREFETCHOFF
	$PREFETCHON
	$PROPERTY
	$QLENGTH
	$QSUBSCRIPT
	$QUERY
	$RANDOM
	$REPLACE
	$REVERSE
	$SCONVERT
	$SELECT
	$SEQUENCE
	$SORTBEGIN
	$SORTEND
	$STACK
	$TEXT
	$TRANSLATE
	$VIEW
	$WASCII
	$WCHAR
	$WEXTRACT
	$WFIND
	$WISWIDE
	$WLENGTH
	$WREVERSE
	$XECUTE
	$ZABS
	$ZARCCOS
	$ZARCSIN
	$ZARCTAN
	$ZBOOLEAN
	$ZCONVERT
	$ZCOS
	$ZCOT
	$ZCRC
	$ZCSC
	$ZCYC
	$ZDASCII
	$ZDATE
	$ZDATEH
	$ZDATETIME
	$ZDATETIMEH
	$ZDCHAR
	$ZEXP
	$ZF
	$ZF(-1)
	$ZF(-2)
	$ZF(-3)
	$ZF(-4)
	$ZF(-5)
	$ZF(-6)
	$ZF(-100)
	$ZHEX
	$ZISWIDE
	$ZLASCII
	$ZLCHAR
	$ZLN
	$ZLOG
	$ZNAME
	$ZPOSITION
	$ZPOWER
	$ZQASCII
	$ZQCHAR
	$ZSEARCH
	$ZSEC
	$ZSEEK
	$ZSIN
	$ZSQR
	$ZSTRIP
	$ZTAN
	$ZTIME
	$ZTIMEH
	$ZVERSION(1)
	$ZWASCII
	$ZWCHAR
	$ZWIDTH
	$ZWPACK and $ZWBPACK
	$ZWUNPACK and $ZWBUNPACK
	$ZZENKAKU

	ObjectScript Special Variables
	$DEVICE
	$ECODE
	$ESTACK
	$HALT
	$HOROLOG
	$IO
	$JOB
	$KEY
	$NAMESPACE
	$PRINCIPAL
	$QUIT
	$ROLES
	$STACK
	$STORAGE
	$SYSTEM
	$TEST
	$THIS
	$THROWOBJ
	$TLEVEL
	$USERNAME
	$X
	$Y
	$ZA
	$ZB
	$ZCHILD
	$ZEOF
	$ZEOS
	$ZERROR
	$ZHOROLOG
	$ZIO
	$ZJOB
	$ZMODE
	$ZNAME
	$ZNSPACE
	$ZORDER
	$ZPARENT
	$ZPI
	$ZPOS
	$ZREFERENCE
	$ZSTORAGE
	$ZTIMESTAMP
	$ZTIMEZONE
	$ZTRAP
	$ZVERSION

	Structured System Variables
	^$GLOBAL
	^$JOB
	^$LOCK
	^$ROUTINE

