
InterSystems SQL Reference

Version 2019.4
2020-01-28

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

InterSystems SQL Reference
InterSystems IRIS Data Platform Version 2019.4 2020-01-28
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

Symbols and Syntax Conventions .. 3
Symbols Used in InterSystems SQL .. 4
Syntax Conventions Used in this Manual .. 9

SQL Commands ... 11
ALTER TABLE .. 12
ALTER USER .. 19
ALTER VIEW .. 21
CALL ... 23
CASE .. 27
%CHECKPRIV .. 30
CLOSE ... 33
COMMIT ... 35
CREATE DATABASE .. 37
CREATE FUNCTION .. 39
CREATE INDEX ... 44
CREATE METHOD ... 51
CREATE PROCEDURE .. 57
CREATE QUERY .. 65
CREATE ROLE .. 71
CREATE TABLE ... 73
CREATE TRIGGER ... 98
CREATE USER .. 108
CREATE VIEW .. 110
DECLARE ... 117
DELETE ... 120
DISTINCT .. 128
DROP DATABASE .. 133
DROP FUNCTION .. 135
DROP INDEX .. 137
DROP METHOD ... 140
DROP PROCEDURE ... 142
DROP QUERY ... 144
DROP ROLE .. 146
DROP TABLE .. 148
DROP TRIGGER ... 152
DROP USER .. 154
DROP VIEW .. 155
EXPLAIN ... 157
FETCH ... 160
FROM ... 163
GRANT .. 173
GROUP BY .. 181
HAVING ... 185
INSERT .. 193
INSERT OR UPDATE ... 211

InterSystems SQL Reference iii

INTO .. 215
%INTRANSACTION .. 219
JOIN ... 220
LOCK ... 227
OPEN ... 231
ORDER BY .. 232
REVOKE .. 238
ROLLBACK ... 243
SAVEPOINT .. 246
SELECT ... 248
SET OPTION ... 267
SET TRANSACTION .. 271
START TRANSACTION ... 275
TOP .. 280
TRUNCATE TABLE .. 284
TUNE TABLE .. 288
UNION ... 290
UNLOCK ... 295
UPDATE ... 297
USE DATABASE ... 310
VALUES ... 311
WHERE .. 314
WHERE CURRENT OF .. 323

SQL Predicate Conditions .. 325
Overview of Predicates ... 326
ALL .. 332
ANY ... 334
BETWEEN ... 335
EXISTS .. 338
%FIND ... 339
FOR SOME .. 341
FOR SOME %ELEMENT ... 343
IN .. 346
%INLIST .. 349
%INSET ... 353
IS JSON .. 355
IS NULL ... 357
LIKE ... 358
%MATCHES .. 362
%PATTERN ... 365
SOME ... 368
%STARTSWITH .. 369

SQL Aggregate Functions ... 375
Overview of Aggregate Functions .. 376
AVG .. 380
COUNT .. 383
%DLIST ... 388
JSON_ARRAYAGG ... 391
LIST ... 395
MAX ... 398

iv InterSystems SQL Reference

MIN .. 400
STDDEV, STDDEV_SAMP, STDDEV_POP ... 402
SUM ... 404
VARIANCE, VAR_SAMP, VAR_POP ... 406
XMLAGG ... 408

SQL Functions ... 411
ABS .. 412
ACOS ... 413
ASCII ... 414
ASIN ... 415
ATAN .. 416
ATAN2 .. 417
CAST .. 418
CEILING .. 424
CHAR ... 425
CHARACTER_LENGTH .. 426
CHARINDEX .. 428
CHAR_LENGTH ... 430
COALESCE ... 432
CONCAT .. 435
CONVERT ... 436
COS .. 442
COT .. 443
CURDATE .. 444
CURRENT_DATE ... 445
CURRENT_TIME ... 446
CURRENT_TIMESTAMP .. 448
CURTIME .. 451
DATABASE .. 453
DATALENGTH .. 454
DATE .. 455
DATEADD ... 457
DATEDIFF ... 461
DATENAME .. 466
DATEPART .. 470
DAY .. 474
DAYNAME .. 475
DAYOFMONTH .. 477
DAYOFWEEK ... 479
DAYOFYEAR .. 482
DECODE .. 484
DEGREES .. 486
%EXACT ... 487
EXP .. 489
%EXTERNAL .. 491
$EXTRACT .. 493
$FIND ... 496
FLOOR ... 498
GETDATE .. 499
GETUTCDATE .. 502

InterSystems SQL Reference v

GREATEST .. 505
HOUR ... 507
IFNULL .. 509
INSTR .. 513
%INTERNAL ... 515
ISNULL .. 517
ISNUMERIC .. 520
JSON_ARRAY ... 522
JSON_OBJECT .. 525
$JUSTIFY .. 528
LAST_DAY .. 531
LAST_IDENTITY ... 532
LCASE ... 534
LEAST ... 535
LEFT .. 537
LEN .. 538
LENGTH .. 539
$LENGTH .. 541
$LIST ... 544
$LISTBUILD ... 549
$LISTDATA ... 552
$LISTFIND .. 554
$LISTFROMSTRING .. 556
$LISTGET .. 558
$LISTLENGTH ... 561
$LISTSAME .. 564
$LISTTOSTRING .. 566
LOG .. 568
LOG10 .. 569
LOWER .. 570
LPAD .. 571
LTRIM .. 573
%MINUS .. 574
MINUTE .. 576
MOD ... 578
MONTH ... 580
MONTHNAME .. 582
NOW .. 584
NULLIF .. 586
NVL .. 588
%OBJECT .. 591
%ODBCIN ... 592
%ODBCOUT ... 593
%OID ... 594
PI .. 595
$PIECE ... 596
%PLUS ... 600
POSITION .. 601
POWER .. 603
QUARTER ... 605
RADIANS .. 607

vi InterSystems SQL Reference

REPEAT ... 608
REPLACE .. 609
REPLICATE ... 611
REVERSE .. 612
RIGHT .. 614
ROUND .. 615
RPAD .. 618
RTRIM ... 620
SEARCH_INDEX .. 621
SECOND .. 622
SIGN ... 624
SIN ... 626
SPACE .. 627
%SQLSTRING ... 628
%SQLUPPER ... 630
SQRT .. 633
SQUARE .. 634
STR ... 635
STRING ... 636
STUFF .. 638
SUBSTR ... 640
SUBSTRING .. 642
SYSDATE ... 644
TAN .. 645
TIMESTAMPADD ... 646
TIMESTAMPDIFF .. 649
TO_CHAR .. 651
TO_DATE ... 660
TO_NUMBER .. 666
TO_POSIXTIME ... 668
TO_TIMESTAMP .. 673
$TRANSLATE ... 678
TRIM .. 680
TRUNCATE ... 682
%TRUNCATE .. 685
$TSQL_NEWID ... 687
UCASE ... 688
UNIX_TIMESTAMP ... 689
UPPER ... 692
USER .. 693
WEEK .. 694
XMLCONCAT ... 696
XMLELEMENT .. 697
XMLFOREST .. 701
YEAR ... 704

SQL Unary Operators ... 707
- (Negative) ... 708
+ (Positive) ... 709

SQL Reference Material ... 711
Data Types .. 712

InterSystems SQL Reference vii

Date and Time Constructs .. 729
Default user name and password .. 732
Field constraint ... 733
Reserved words .. 734
Special Variables .. 736
String Manipulation .. 738

viii InterSystems SQL Reference

List of Tables

Table B–1: SQL Equality Comparison Predicates .. 188
Table B–2: SQL Equality Comparison Predicates .. 318
Table B–3: SQL Substring Predicates ... 319
Table C–1: LIKE Wildcard Characters .. 358

InterSystems SQL Reference ix

About This Book

This book provides reference material for various elements of InterSystems SQL on InterSystems IRIS® data platform:
DDL and DML commands, functions, and predicate conditions, and a list of the symbols, data types, and reserved words.

This book contains the following sections:

• Symbols

• SQL Commands

• SQL Predicate Conditions

• SQL Aggregate Functions

• SQL Functions

• SQL Unary Operators

• SQL Reference Material

There is also a detailed Table of Contents.

Other related topics in the documentation set are:

• Using InterSystems SQL provides in-depth material on SQL components and features, executing SQL queries, error
and transaction processing.

• SQL Optimization Guide describes how to optimize a table definition by defining and building indices, how to use
Tune Table to optimize table metadata based on typical data, and how to optimize query execution using cached queries,
ShowPlan, frozen plans, and other optimization techniques.

• Using Java with the InterSystems JDBC Driver describes how to access InterSystems IRIS® tables from external
applications via JDBC.

• Using the InterSystems ODBC Driver describes how to access InterSystems IRIS® tables from external applications
via ODBC.

• Configuration Parameter File Reference describes the SQL and Object Settings.

• InterSystems Error Reference lists the SQLCODE error messages.

InterSystems SQL Reference 1

Symbols and Syntax Conventions

InterSystems SQL Reference 3

Symbols Used in InterSystems SQL
A table of characters used in InterSystems SQL as operators, etc.

Table of Symbols
The following are the literal symbols used in InterSystems SQL on InterSystems IRIS® data platform. (This list does not
include symbols indicating format conventions, which are not part of the language.) There is a separate table for symbols
used in ObjectScript.

The name of each symbol is followed by its ASCII decimal code value.

Name and UsageSymbol

White space (Tab (9) or Space (32)): One or more whitespace characters between keywords,
identifiers, and variables.

[space] or
[tab]

Exclamation mark (33): OR logical operator in between predicates in condition expressions.
Used in the WHERE clause, the HAVING clause, and elsewhere.

In SQL Shell, the ! command is used to issue an ObjectScript command line.

!

Exclamation mark/Equal sign: Is not equal to comparison condition.!=

Quotes (34): Encloses a delimited identifier name.

In Dynamic SQL used to enclose literal values for class method arguments, such as SQL
code as a string argument for the %Prepare() method, or input parameters as string argu-
ments for the %Execute() method.

In %PATTERN used to enclose a literal value within a pattern string. For example,
'3L1"L".L' (meaning 3 lowercase letters, followed by the capital letter “L”, followed by any
number of lowercase letters).

In XMLELEMENT used to enclose a tag name string literal.

"

Two quotes: By themselves, an invalid delimited identifier. Within a delimited identifier, an
escape sequence for a literal quote character. For example, "a""good""id".

""

Pound sign (35): Valid identifier name character (not first character).

With spaces before and after, modulo arithmetic operator.

For Embedded SQL, ObjectScript macro preprocessor directive prefix. For example,
#Include.

In SQL Shell the # command is used to recall statements from the SQL Shell history buffer.

#

Dollar sign (36): Valid identifier name character (not first character).

First character of some InterSystems IRIS extension SQL functions.

$

Double dollar sign: used to call a ObjectScript user-defined function (also known as an
extrinsic function).

$$

4 InterSystems SQL Reference

Symbols and Syntax Conventions

Name and UsageSymbol

Percent sign (37): Valid first character for identifier names (first character only).

First character of some InterSystems SQL extensions to the SQL standard, including string
collation functions (%SQLUPPER), aggregate functions (%DLIST), and predicate conditions
(%STARTSWITH).

First character of %ID, %TABLENAME, and %CLASSNAME keywords in SELECT.

First character of some privilege keywords (%CREATE_TABLE, %ALTER) and some role
names (%All).

First character of some Embedded SQL system variables (%ROWCOUNT, %msg).

Data type max length indicator: CHAR(%24)

LIKE condition predicate multi-character wildcard.

%

Double percent sign: Prefix for the pseudo-field reference variable keywords: %%CLASS-
NAME, %%CLASSNAMEQ, %%ID, and %%TABLENAME, used in ObjectScript computed
field code and trigger code.

%%

Ampersand (38): AND logical operator in WHERE clause and other condition expressions.

$BITLOGIC bitstring And operator.

Embedded SQL invocation prefix: &sql(SQL commands).

&

Single quote character (39): Encloses a string literal.'

Double single quote characters: An empty string literal.

An escape sequence for a literal single quote character within a string value. For example:
'can''t'

''

Parentheses (40,41): Encloses comma-separated lists. Encloses argument(s) of an SQL
function. Encloses the parameter list for a procedure, method, or query. In most cases, the
parentheses must be specified, even if no arguments or parameters are supplied.

In a SELECT DISTINCT BY clause, encloses an item or comma-separated list of items used
to select unique values.

In a SELECT statement, encloses a subquery in the FROM clause. Encloses the name of
a predefined query used in a UNION.

Encloses host variable array subscripts. For example, INTO :var(1),:var(2)

Encloses embedded SQL code: &sql(code)

Used to enforce precedence in arithmetic operations: 3+(3*5)=18. Used to group predicates:
WHERE NOT (Age<20 AND Age>12).

()

Double Parentheses: suppress literal substitution in cached queries. For example, SELECT
TOP ((4)) Name FROM Sample.Person WHERE Name %STARTSWITH (('A')). Optimizes
WHERE clause selection of a non-null outlier value.

(())

InterSystems SQL Reference 5

Symbols Used in InterSystems SQL

Name and UsageSymbol

Asterisk (42): A wildcard, indicating “all” in the following cases: In SELECT retrieve all
columns: SELECT * FROM table. In COUNT, count all rows (including nulls and duplicates).
In GRANT and REVOKE, all basic privileges, all tables, or all currently defined users.

In %MATCHES pattern string a multi-character wildcard.

Multiplication arithmetic operator.

*

Asterisk slash: Multi-line comment ending indicator. Comment begins with /*.*/

Plus sign (43): Addition arithmetic operator. Unary positive sign operator.+

Comma (44): List separator, for example, multiple field names.

In data size definition: NUMERIC (precision,scale).

,

Hyphen (minus sign) (45): Subtraction arithmetic operator. Unary negative sign operator.

SQLCODE error code prefix: –304.

Date delimiter.

In %MATCHES pattern string a range indicator specified within square brackets. For
example, [a-m].

–

Double hyphen: Single-line comment indicator.––

Hyphen, greater than (arrow): implicit join arrow syntax.–>

Period (46): Used to separate parts of multipart names, such as qualified table names:
schema.tablename, or column names: tablealias.fieldname

Decimal point for numeric literals in American numeric format.

Date delimiter for Russian, Ukrainian, and Czech locales: DD.MM.YYYY

Prefixed to a variable or array name, specifies passing by reference: .name

%PATTERN pattern string multi-character wildcard.

.

Slash (47): Division arithmetic operator.

Date delimiter.

/

Slash asterisk: Multi-line comment begins indicator. Comment ends with */./*

Colon (58): Host variable indicator prefix: :var

A time delimiter for hours, minutes, and seconds. In CAST and CONVERT functions, an
optional thousandth-of-a-second delimiter.

In trigger code a prefix indicating an ObjectScript label line.

In CREATE PROCEDURE ObjectScript code body, a macro preprocessor directive prefix.
For example, :#Include.

:

Double colon: In trigger code this doubled prefix indicates that the identifier (::name) beginning
that line is a host variable, not a label line.

::

6 InterSystems SQL Reference

Symbols and Syntax Conventions

Name and UsageSymbol

Semicolon (59): SQL end of statement delimiter in procedures, methods, queries, and trigger
code. Accepted as an optional end of statement delimiter by DDLImport() or wherever
specifying SQL code using a TSQL dialect. Otherwise, InterSystems SQL does not use or
allow a semicolon at the end of an SQL statement.

;

Less than (60): Less than comparison condition.<

Less than or equal to: Less than or equal to comparison condition.<=

Less than/Greater than: Is not equal to comparison condition.<>

Equal sign (61): Equal to comparison condition.

In WHERE clause, an Inner Join.

=

Greater than (62): Greater than comparison condition.>

Greater than or equal to: Greater than or equal to comparison condition.>=

Question mark (63): In Dynamic SQL, an input parameter variable supplied by the Execute
method.

In %MATCHES pattern string a single-character wildcard.

In SQL Shell the ? command displays help text for SQL Shell commands.

?

At sign (64): Valid identifier name character (not first character).@

The letter “E” (69, 101): Exponent indicator.

%PATTERN code specifying any printable character.

E, e

Open square bracket (91): Contains predicate. Used in the WHERE clause, the HAVING
clause, and elsewhere.

[

Open and close square brackets: In %MATCHES pattern string, encloses a list or range of
match characters. For example, [abc] or [a-m].

[]

Backslash (92): Integer division arithmetic operator.

In %MATCHES pattern string an escape character.

\

Close square bracket (93): Follows predicate. Used in the WHERE clause, the HAVING
clause, and elsewhere.

]

Caret (94): In %MATCHES pattern string a NOT character. For example, [^abc].^

Underscore (95): Valid first (or subsequent) character for identifier names.Valid first character
for certain user names (but not passwords).

Used in column names to represent embedded serial class data: SELECT Home_State,
where Home is a field that references a serial class and State is a property defined in that
serial class.

LIKE condition predicate single-character wildcard.

_

Curly braces (123,125): Enclose ODBC scalar functions: {fn name(...)}. Enclose time
and date construct functions: {d 'string'}, {t 'string'}, {ts 'string'}.

Enclose ObjectScript code in procedures, methods, queries, and trigger code.

{ }

InterSystems SQL Reference 7

Symbols Used in InterSystems SQL

Name and UsageSymbol

Double vertical bar (124): Concatenation operator.

Compound ID indicator. Used by InterSystems IRIS as a delimiter between multiple properties
in a generated compound object ID (a concatenated ID). This can be either an IDKey index
defined on multiple properties (prop1||prop2), or an ID for a parent/child relationship
(parent||child). Cannot be used in IDKEY field data.

||

8 InterSystems SQL Reference

Symbols and Syntax Conventions

Syntax Conventions Used in this Manual
Specifies conventions used in the InterSystems SQL Reference.

Description
The following are the format conventions used in this manual. These format characters explain usage; they are not specified
when coding an SQL program. For a table of the symbols that are used in SQL coding, refer to the SQL Symbols table.

MeaningSymbol

An argument enclosed in square brackets is optional. Specify none or one.[nnnn]

An argument enclosed in curly braces is optional, and may be repeated multiple times.
Specify none, one, or more than one.

Curly braces are also used as literal characters, for example in ODBC scalar functions
with the form: {fn FUNCTION(arg)}

{ nnnn }

A vertical bar means OR. Specify either one or the other.mmmm | nnnn

An ellipsis indicates an unspecified portion of a complete SQL statement. It can also
be used to specify repetition: var1,var2,...

. . .

Is equivalent to.::=

If an argument appears as an "item-list", then the argument can consist of one or more of the particular items delimited by
a particular character. A cross-reference from an item-list points to the page for item itself.

If an argument appears as an "item-commalist", then the argument can consist of one or more of the particular items
delimited by a comma. A cross-reference from an item-commalist points to the page for item itself.

When an item is listed in bracketed parentheses, such as [(] identifier [)] then the pair of parentheses (as a unit)
is optional.

InterSystems SQL Reference 9

Syntax Conventions Used in this Manual

SQL Commands

InterSystems SQL Reference 11

ALTER TABLE
Modifies a table.

ALTER TABLE table alter-action

where alter-action is one of the following:
 ADD [(] add-action {,add-action} [)] |
 DROP [COLUMN] drop-column-action {,drop-column-action} |
 DROP drop-action |
 DELETE drop-action |
 ALTER [COLUMN] identifier alter-column-action |
 MODIFY modification-spec

add-action ::=
 [CONSTRAINT table]
 [(] FOREIGN KEY (identifier-commalist)
 REFERENCES table (identifier-commalist)
 [referential-action] [)]
 |
 [(] UNIQUE (identifier-commalist) [)]
 |
 [(] PRIMARY KEY (identifier-commalist) [)]
 |
 DEFAULT [(] default-spec [)] FOR identifier
 |
 [COLUMN] [(] identifier datatype [sqlcollation]
 [%DESCRIPTION literal]
 [DEFAULT [(] default-spec [)]]
 [ON UPDATE update-spec]
 [UNIQUE] [NOT NULL]
 [REFERENCES table (identifier-commalist)]
 [)]

drop-column-action ::=
 [COLUMN] identifier [RESTRICT | CASCADE] [%DELDATA | %NODELDATA]

drop-action ::=
 FOREIGN KEY identifier |
 PRIMARY KEY |
 CONSTRAINT identifier |

alter-column-action ::=
datatype |

 [SET] DEFAULT [(]default-spec[)] | DROP DEFAULT |
 NULL | NOT NULL |
 COLLATE sqlcollation

modification-spec ::=
identifier [datatype]

 [DEFAULT [(]default-spec[)]]
 [CONSTRAINT identifier] [NULL] [NOT NULL]

sqlcollation ::=
 { %EXACT | %MINUS | %MVR | %PLUS | %SPACE |
 %SQLSTRING [(maxlen)] | %SQLUPPER [(maxlen)] |
 %TRUNCATE[(maxlen)] }

Arguments

12 InterSystems SQL Reference

SQL Commands

The name of the table to be altered. The table name can be qualified (schema.table),
or unqualified (table). An unqualified table name takes the system-wide default schema
name. Schema search path values are not used.

table

The name of the column to be modified. For further details on valid identifiers, see the
“Identifiers” chapter of Using InterSystems SQL.

identifier

The name of a column or a comma-separated list of columns. An identifier-commalist
must be enclosed in parentheses, even when only a single column is specified. For
further details on valid identifiers, see the “Identifiers” chapter of Using InterSystems
SQL.

identifier-commalist

A valid InterSystems SQL data type. For a list of valid data types, see the SQL reference
material at the end of this manual.

datatype

A default data value automatically supplied for this field, if not overridden by a
user-supplied data value. Allowed values are: a literal value; one of the following keyword
options (NULL, USER, CURRENT_USER, SESSION_USER, SYSTEM_USER,
CURRENT_DATE, CURRENT_TIME, and CURRENT_TIMESTAMP); or an
OBJECTSCRIPT expression. Do not use the SQL zero-length string as a default value.
For further details, see CREATE TABLE.

default-spec

Optional — Specify one of the following SQL collation types: %EXACT, %MINUS,
%PLUS, %SPACE, %SQLSTRING, %SQLUPPER, %TRUNCATE, or %MVR. The
default is the namespace default collation (%SQLUPPER, unless changed).
%SQLSTRING, %SQLUPPER, and %TRUNCATE may be specified with an optional
maximum length truncation argument, an integer enclosed in parentheses.The percent
sign (%) prefix to these collation parameter keywords is optional.The COLLATE keyword
is optional. For further details refer to Table Field/Property Definition Collation in the
“Collation ” chapter of Using InterSystems SQL.

COLLATE
sqlcollation

Description
An ALTER TABLE statement modifies a table definition; it can add elements, remove elements, or modify existing elements.
You can only perform one type of operation in each ALTER TABLE statement.

• An ADD can add multiple columns and/or constraints to a table. You specify the ADD keyword once, followed by a
comma-separated list. For instance, you can use a comma-separated list to add multiple new columns to a table, add
a list of constraints to existing columns, or both add new columns and add constraints to existing columns.

• A DROP [COLUMN] can delete multiple columns from a table. You specify the DROP keyword once, followed by
a comma-separated list of columns each with their optional cascade and/or data-delete option.

• An ALTER COLUMN can only operate on a single column.

• A DROP, DELETE, or MODIFY can only operate on a single key or constraint.

The ALTER TABLE DROP statement and the ALTER TABLE DELETE statement are synonyms.

To determine if a specified table exists in the current namespace, use the $SYSTEM.SQL.TableExists() method.

Privileges and Locking

The ALTER TABLE command is a privileged operation. Prior to using ALTER TABLE it is necessary for your process
to have either %ALTER_TABLE administrative privilege or an %ALTER object privilege for the specified table. Failing
to do so results in an SQLCODE -99 error (Privilege Violation). You can determine if the current user has %ALTER
privilege by invoking the %CHECKPRIV command. You can determine if a specified user has %ALTER privilege by
invoking the $SYSTEM.SQL.CheckPriv() method. You can use the GRANT command to assign %ALTER_TABLE or

InterSystems SQL Reference 13

ALTER TABLE

%ALTER privileges, if you hold appropriate granting privileges. In embedded SQL, you can use the
$SYSTEM.Security.Login() method to log in as a user with appropriate privileges:

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql()

You must have the %Service_Login:Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, refer to %SYSTEM.Security in the InterSystems Class Reference.

• ALTER TABLE cannot be used on a table projected from a persistent class, unless the table class definition includes
[DdlAllowed]. Otherwise, the operation fails with an SQLCODE -300 error with the %msg DDL not enabled for
class 'Schema.tablename'.

• ALTER TABLE cannot be used on a table projected from a deployed persistent class. This operation fails with an
SQLCODE -400 error with the %msg Unable to execute DDL that modifies a deployed class:
'classname'.

The ALTER TABLE statement acquires a table-level lock on table. This prevents other processes from modifying the
table’s data. This lock is automatically released at the conclusion of the ALTER TABLE operation. When ALTER TABLE
locks the corresponding class definition, it uses the SQL Lock Timeout setting for the current process.

ADD COLUMN Restrictions

ALTER TABLE can add a single column, or can add a comma-separated list of columns.

If you attempt to add a field to a table through an ALTER TABLE tablename ADD COLUMN statement:

• If a column of that name already exists, the statement fails with an SQLCODE -306 error.

• If the statement specifies a NOT NULL constraint on the column and there is no default value for the column, then
the statement fails if data already exists in the table. This is because, after the completion of the DDL statement, the
NOT NULL constraint is not satisfied for all the pre-existing rows. This generates the error code SQLCODE -304
(Attempt to add a NOT NULL field with no default value to a table which contains data).

• If the statement specifies a NOT NULL constraint on the column and there is a default value for the column, the
statement updates any existing rows in the table and assigns the default value for the column to the field.

• If the statement DOES NOT specify a NOT NULL constraint on the column and there is a default value for the column,
then there are no updates of the column in any existing rows. The column value is NULL for those rows.

To change this default NOT NULL constraint behaviors, refer to the COMPILEMODE=NOCHECK option of the SET
OPTION command.

If you specify an ordinary data field named “ ID” and the RowID field is already named “ ID” (the default), the ADD
COLUMN operation succeeds. ALTER TABLE adds the ID data column, and renames the RowId column as “ ID1” to
avoid duplicate names.

Adding an Integer Counter

If you attempt to add an integer counter field to a table through an ALTER TABLE tablename ADD COLUMN statement:

• You can add an IDENTITY field to a table if the table does not have an IDENTITY field. If the table already has an
IDENTITY field, the ALTER TABLE operation fails with an SQLCODE -400 error with a %msg such as the following:
ERROR #5281: Class has multiple identity properties: 'Sample.MyTest::MyIdent2'. When
you use ADD COLUMN to define this field, InterSystems IRIS populates existing data rows for this field using the
corresponding RowID integer values.

If CREATE TABLE defined a bitmap extent index and later you add an IDENTITY field to the table, and the
IDENTITY field is not of type %BigInt, %Integer, %SmallInt, or %TinyInt with a MINVAL of 1 or higher, and there
is no data in the table, the system automatically drops the bitmap extent index.

14 InterSystems SQL Reference

SQL Commands

• You can add one or more SERIAL (%Library.Counter) fields to a table. When you use ADD COLUMN to define this
field, existing data rows are NULL for this field. You can use UPDATE to supply values to existing data rows that
are NULL for this field; you cannot use UPDATE to change non-NULL values.

• You can add a ROWVERSION field to a table if the table does not have a ROWVERSION field. If the table already
has a ROWVERSION field, the ALTER TABLE operation fails with an SQLCODE -400 error with a %msg such as
the following: ERROR #5320: Class 'Sample.MyTest' has more than one property of type
%Library.RowVersion. Only one is allowed. Properties: MyVer,MyVer2. When you use ADD
COLUMN to define this field, existing data rows are NULL for this field; you cannot update ROWVERSION values
that are NULL.

ALTER COLUMN Restriction

You cannot change the data type of a column that contains data if this change would result in stream data being typed as
non-stream data or non-stream data being typed as stream data. Attempting to do so results in an SQLCODE -374 error. If
there is no existing data, this type of datatype change is permitted.

If you change the collation type for a column that contains data, you must rebuild all indices for that column.

DROP COLUMN Restrictions

DROP COLUMN can delete multiple column definitions, specified as a comma-separated list. Each listed column name
must be followed by its RESTRICT or CASCADE (if unspecified, the default is RESTRICT) and %DELDATA or
%NODELDATE (if unspecified, the default is %NODELDATA) options.

By default, deleting a column definition does not delete any data that has been stored in that column from the data map.
To delete both the column definition and the data, specify the %DELDATA option.

Deleting a column definition does not delete the corresponding column-level privileges. For example, the privilege granted
to a user to insert, update, or delete data on that column. This has the following consequences:

• If a column is deleted, and then another column with the same name is added, users and roles will have the same
privileges on the new column that they had on the old column.

• Once a column is deleted, it is not possible to revoke object privileges for that column.

For these reasons, it is generally recommended that you use the REVOKE command to revoke column-level privileges
from a column before deleting the column definition.

RESTRICT keyword (or no keyword): You cannot drop a column if that column appears in an index, or is defined in a
foreign key constraint or other unique constraint. Attempting a DROP COLUMN for that column fails with an SQLCODE
-322 error. RESTRICT is the default. See DROP INDEX.

CASCADE keyword: If the column appears in an index, the index will be deleted. There may be multiple indices. If the
column appears in a foreign key, the foreign key will be deleted. There may be multiple foreign keys.

You cannot drop a column if that column is used in COMPUTECODE or in a COMPUTEONCHANGE clause. Attempting
to do so results in an SQLCODE -400 error.

ADD PRIMARY KEY Restrictions

You cannot add a primary key constraint to an existing field if that field contains non-unique data or permits NULL values.

If you add a primary key constraint to an existing field, the field may also be automatically defined as an IDKey index.
This depends on whether data is present and upon a configuration setting established in one of the following ways:

• The SQL SET OPTION PKEY_IS_IDKEY statement.

• The $SYSTEM.SQL.SetDDLPKeyNotIDKey() method call. To determine the current setting, call
$SYSTEM.SQL.CurrentSettings().

InterSystems SQL Reference 15

ALTER TABLE

• Go to the Management Portal, select System Administration, Configuration, SQL and Object Settings, SQL. View the
current setting of Define primary key as ID key for tables created via DDL.

– If the check box is not selected (the default), the Primary Key does not becomes the IDKey index in the class
definition. Access to records using a primary key that is not the IDKEY is significantly less efficient; however,
this type of primary key value can be modified.

– If the check box is selected, when a Primary Key constraint is specified through DDL, and the field does not
contain data, the primary key index is also defined as the IDKey index. If the field does contain data, the IDKey
index is not defined. If the primary key is defined as the IDKey index, data access is more efficient, but a primary
key value, once set, can never be modified.

If CREATE TABLE defined a bitmap extent index and later you use ALTER TABLE to add a primary key that is also
the IDKey, the system automatically drops the bitmap extent index.

ADD PRIMARY KEY When Already Exists

What happens when you try to add a primary key to a table that already has a defined primary key is configuration-dependent.
By default, InterSystems IRIS rejects an attempt to define a primary key when one already exists and issues an SQLCODE
-307 error. You can set this behavior system-wide using the $SYSTEM.SQL.SetDDLNo307() method call. To determine
the current setting, call $SYSTEM.SQL.CurrentSettings(), which displays a Suppress SQLCODE=-307 Errors
setting.

The default is “No” (0). This is the recommended setting for this option.

If this option is set to “Yes” (1), an ALTER TABLE ADD PRIMARY KEY causes InterSystems IRIS to remove the
primary key index from the class definition, and then recreates this index using the specified primary key field(s).

However, even if this option is set to allow the creation of a primary key when one already exists, you cannot recreate a
primary key index if it is also the IDKEY index and the table contains data. Attempting to do so generates an SQLCODE
-307 error.

ADD FOREIGN KEY Restrictions

By default, you cannot have two foreign keys with the same name. Attempting to do so generates an SQLCODE -311 error.
This option is configurable system-wide using the $SYSTEM.SQL.SetDDLNo311() method call. To determine the current
setting, call $SYSTEM.SQL.CurrentSettings(), which displays a Suppress SQLCODE=-311 Errors setting.

The default is “No” (0). This is the recommended setting for this option. When “Yes” (1), you can add a foreign key
through DDL even if one with the same name already exists. When “No” (0), this action generates an SQLCODE -311
error.

Your table definition should not have two foreign keys with different names that reference the same identifier-commalist
field(s) and perform contradictory referential actions. In accordance with the ANSI standard, InterSystems SQL does not
issue an error if you define two foreign keys that perform contradictory referential actions on the same field (for example,
ON DELETE CASCADE and ON DELETE SET NULL). Instead, InterSystems SQL issues an error when a DELETE or
UPDATE operation encounters these contradictory foreign key definitions.

An ADD FOREIGN KEY that specifies a non-existent foreign key field generates an SQLCODE -31 error.

An ADD FOREIGN KEY that references a non-existent parent key table generates an SQLCODE -310 error. An ADD
FOREIGN KEY that references a non-existent field in an existing parent key table generates an SQLCODE -316 error. If
you do not specify a parent key field, it defaults to the ID field.

Before issuing an ADD FOREIGN KEY, the user must have REFERENCES privilege on the table being referenced or on
the columns of the table being referenced. REFERENCES privilege is required if the ALTER TABLE is executed via
Dynamic SQL or xDBC.

16 InterSystems SQL Reference

SQL Commands

An ADD FOREIGN KEY that references a field (or combination of fields) that can take non-unique values generates an
SQLCODE -314 error, with additional details available through %msg.

NO ACTION is the only referential action supported for sharded tables.

An ADD FOREIGN KEY is constrained when data already exists in the table. To change this default constraint behavior,
refer to the COMPILEMODE=NOCHECK option of the SET OPTION command.

When you define an ADD FOREIGN KEY constraint for a single field and the foreign key references the idkey of the
referenced table, InterSystems IRIS converts the property in the foreign key into a reference property. This conversion is
subject to the following restrictions:

• The table must contain no data.

• The property on the foreign key cannot be of a persistent class (that is, it cannot already be a reference property).

• The data types and data type parameters of the foreign key field and the referenced idkey field must be the same.

• The foreign key field cannot be an IDENTITY field.

For further information on foreign keys, refer to the CREATE TABLE command, and to the “Using Foreign Keys”
chapter in Using InterSystems SQL.

DROP CONSTRAINT Restrictions

By default, you cannot drop a unique or primary key constraint if it is referenced by a foreign key constraint. Attempting
to do so results in an SQLCODE -317 error. To change this default foreign key constraint behavior, refer to the COMPILE-
MODE=NOCHECK option of the SET OPTION command.

The effects of dropping a primary key constraint depend on the setting of the Are Primary Keys also ID Keys setting (as
described above):

• If the PrimaryKey index is not also the IDKey index, dropping the primary key constraint drops the index definition.

• If the PrimaryKey index is also the IDKey index, and there is no data in the table, dropping the primary key constraint
drops the entire index definition.

• If the PrimaryKey index is also the IDKey index, and there is data in the table, dropping the primary key constraint
just drops the PRIMARYKEY qualifier from the IDKey index definition.

DROP CONSTRAINT When Non-Existent

What happens when you try to drop a field constraint on a field that does not have that constraint depends on a configuration
setting. You can configure this behaviior system-wide using the $SYSTEM.SQL.SetDDLNo315() method call. To determine
the current setting, call $SYSTEM.SQL.CurrentSettings(), which displays a Suppress SQLCODE=-315 Errors
setting.

The default is “No” (0). By default, InterSystems IRIS rejects an attempt to drop a constraint that does not exist and issues
an SQLCODE -315 error. However, if this option is set to “Yes” (1), an ALTER TABLE DROP CONSTRAINT causes
InterSystems IRIS to perform no operation and not issue an error message.

Examples
The following examples uses Embedded SQL programs to create a table, populate two rows, and then alter the table defi-
nition.

To demonstrate this, please run the first two Embedded SQL programs in the order shown. (It is necessary to use two
embedded SQL programs here because embedded SQL cannot compile an INSERT statement unless the referenced table
already exists.)

InterSystems SQL Reference 17

ALTER TABLE

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql(DROP TABLE SQLUser.MyStudents)
 IF SQLCODE=0 { WRITE !,"Deleted table" }
 ELSE { WRITE "DROP TABLE error SQLCODE=",SQLCODE }
 &sql(CREATE TABLE SQLUser.MyStudents (
 FirstName VARCHAR(35) NOT NULL,
 LastName VARCHAR(35) NOT NULL)
)
 IF SQLCODE=0 { WRITE !,"Created table" }
 ELSE { WRITE "CREATE TABLE error SQLCODE=",SQLCODE }

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 NEW SQLCODE,%msg
 &sql(INSERT INTO SQLUser.MyStudents (FirstName, LastName)
 VALUES ('David','Vanderbilt'))
 IF SQLCODE=0 { WRITE !,"Inserted data in table"}
 ELSE { WRITE !,"SQLCODE=",SQLCODE,": ",%msg }
 &sql(INSERT INTO SQLUser.MyStudents (FirstName, LastName)
 VALUES ('Mary','Smith'))
 IF SQLCODE=0 { WRITE !,"Inserted data in table"}
 ELSE { WRITE !,"SQLCODE=",SQLCODE,": ",%msg }

The following example uses ALTER TABLE to add the ColorPreference column. Because the column definition specifies
a default, the system populates ColorPreference with the value 'Blue' for the two existing rows of the table:

 NEW SQLCODE,%msg
 &sql(ALTER TABLE SQLUser.MyStudents
 ADD COLUMN ColorPreference VARCHAR(16) NOT NULL DEFAULT 'Blue')
 IF SQLCODE=0 {
 WRITE !,"Added a column",! }
 ELSEIF SQLCODE=-306 {
 WRITE !,"SQLCODE=",SQLCODE,": ",%msg }
 ELSE { WRITE "SQLCODE error=",SQLCODE }

The following example uses ALTER TABLE to add two computed columns: FLName and LFName. For existing rows
these columns have no value. For any subsequently inserted row a value is computed for each of these columns:

 NEW SQLCODE,%msg
 &sql(ALTER TABLE SQLUser.MyStudents
 ADD COLUMN FLName VARCHAR(71) COMPUTECODE { SET {FLName}={FirstName}_" "_{LastName}}
 COMPUTEONCHANGE (FirstName,LastName),
 COLUMN LFName VARCHAR(71) COMPUTECODE { SET {LFName}={LastName}_ "," _{FirstName}}
 COMPUTEONCHANGE (FirstName,LastName))
 IF SQLCODE=0 {
 WRITE !,"Added two computed columns",! }
 ELSE { WRITE "SQLCODE error=",SQLCODE }

See Also
• CREATE TABLE, DROP TABLE

• JOIN

• SELECT

• INSERT, UPDATE, INSERT OR UPDATE, DELETE

• “Defining Tables” chapter in Using InterSystems SQL

• SQL and Object Settings described in Configuration Parameter File Reference.

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

18 InterSystems SQL Reference

SQL Commands

ALTER USER
Changes a user’s password.

ALTER USER user-name IDENTIFY BY password

ALTER USER user-name IDENTIFIED BY password

Arguments

The name of an existing user whose password is to be changed. User names are not
case-sensitive.

user-name

The new password for the user. A password must be at least 3 characters and cannot
exceed 32 characters. Passwords are case-sensitive. Passwords can contain Unicode
characters.

password

Description
The ALTER USER command allows you to change a user's password. You can always change your own password. To
change another user's password, you must have the %Admin_Secure:USE system permission.

The IDENTIFY BY and IDENTIFIED BY keywords are synonyms.

The user-name must be an existing user. Specifying a non-existent user generates an SQLCODE -400 error with a %msg
such as the following: ERROR #838: User badname does not exist.

A user-name specified as a delimited identifier can be an SQL reserved word and can contain a comma (,), period (.), caret
(^), and the two-character arrow sequence (->). It may begin with any valid character except the asterisk (*).

A password can be a string literal, a numeric, or an identifier. A string literal must be enclosed in quotes, and can contain
any combination of characters, including blank spaces. A numeric or an identifier does not have to be enclosed in quotes.
A numeric must consist of only the characters 0 through 9. An identifier must start with a letter (uppercase or lowercase)
or a % (percent symbol); this can be followed by any combination of letters, numbers, or any of the following symbols: _
(underscore), & (ampersand), $ (dollar sign), or @ (at sign).

ALTER USER does not issue an error code if the new password is identical to the existing password. It sets SQLCODE
= 0 (Successful Completion).

You can also change a user password using the $SYSTEM.Security.ChangePassword() method:

$SYSTEM.Security.ChangePassword(args)

Privileges

The ALTER USER command is a privileged operation. Prior to using ALTER USER in embedded SQL, it is necessary
to be logged in as a user with appropriate privileges. Failing to do so results in an SQLCODE -99 error (Privilege Violation).
Use the $SYSTEM.Security.Login() method to assign a user with appropriate privileges:

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql()

You must have the %Service_Login:Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, refer to %SYSTEM.Security in the InterSystems Class Reference.

Examples
The following embedded SQL example changes the password of user Bill from “ temp_pw” to “pw4AUser” :

InterSystems SQL Reference 19

ALTER USER

Main
 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql(CREATE USER Bill IDENTIFY BY temp_pw)
 IF SQLCODE=0 { WRITE !,"Created user" }
 ELSE { WRITE "CREATE USER error SQLCODE=",SQLCODE,! }
 &sql(ALTER USER BILL IDENTIFY BY pw4AUser)
 IF SQLCODE=0 { WRITE !,"Altered user password" }
 ELSE { WRITE "ALTER USER error SQLCODE=",SQLCODE,! }
Cleanup
 SET toggle=$RANDOM(2)
 IF toggle=0 {
 &sql(DROP USER Bill)
 IF SQLCODE=0 { WRITE !,"Dropped user" }
 ELSE { WRITE "DROP USER error SQLCODE=",SQLCODE }
 }
 ELSE {
 WRITE !,"No drop this time"
 QUIT
 }

See Also
• SQL statements: CREATE USER, DROP USER, GRANT, REVOKE

• “Users, Roles, and Privileges” chapter of Using InterSystems SQL

• ObjectScript: $ROLES and $USERNAME special variables

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

20 InterSystems SQL Reference

SQL Commands

ALTER VIEW
Modifies a view.

ALTER VIEW view-name [(column-commalist)] AS query [WITH READ ONLY]

ALTER VIEW view-name [(column-commalist)] AS query [WITH [level] CHECK OPTION]

Arguments

The view being modified, which has the same naming rules as a table
name. A view name can be qualified (schema.viewname), or unqualified
(viewname). An unqualified view name takes the system-wide default
schema name.

view-name

Optional — The column names that compose the view. If not specified
here, the column names can be specified in the query, as shown below.

column-commalist

The result set (from a query) that serves as a the basis for the view.query

Optional — Specifies that no insert, update, or delete operations can be
performed through this view upon the table on which the view is based.
The default is to permit these operations through a view, subject to the
constraints described below.

WITH READ ONLY

Optional — Specifies how insert, update, or delete operations are performed
through this view upon the table on which the view is based. The level can
be the keywords LOCAL or CASCADED. If no level is specified, the WITH
CHECK OPTION default is CASCADED. For further details, refer to
CREATE VIEW.

WITH level CHECK OPTION

Description
The ALTER VIEW command allows you to modify a view. A view is based on the result set from a query consisting of
a SELECT statement or a UNION of two or more SELECT statements. See CREATE VIEW for further information on
using a UNION.

To determine if a specified view exists in the current namespace, use the $SYSTEM.SQL.ViewExists() method.

The optional column-commalist specifies the names of the columns included in the view. They must correspond in number
and sequence with the table columns specified in the SELECT statement. You can also specify these view column names
as column name aliases in the SELECT statement. If you specify neither, the table column names are used as the view
column names.

These two ways to specify view column names are shown in the following examples:

ALTER VIEW MyView (MyViewCol1,MyViewCol2,MyViewCol3) AS
 SELECT TableCol1, TableCol2, TableCol3 FROM MyTable

is the same as:

ALTER VIEW MyView AS SELECT TableCol1 AS ViewCol1,
 TableCol2 AS ViewCol2,
 TableCol3 AS ViewCol3
 FROM MyTable

The column specification replaces any prior columns specified for the view.

InterSystems SQL Reference 21

ALTER VIEW

A view query cannot contain host variables or include the INTO keyword. If you attempt to reference a host variable in
query, the system generates an SQLCODE -148 error.

Privileges

The ALTER VIEW command is a privileged operation. Prior to using ALTER VIEW it is necessary for your process to
have either %ALTER_VIEW administrative privilege or an %ALTER object privilege for the specified view. Failing to
do so results in an SQLCODE -99 error (Privilege Violation). You can determine if the current user has %ALTER privilege
by invoking the %CHECKPRIV command. You can determine if a specified user has %ALTER privilege by invoking the
$SYSTEM.SQL.CheckPriv() method. You can use the GRANT command to assign %ALTER_VIEW or %ALTER
privileges, if you hold appropriate granting privileges.

In embedded SQL, you can use the $SYSTEM.Security.Login() method to log in as a user with appropriate privileges:

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql()

You must have the %Service_Login:Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, refer to %SYSTEM.Security in the InterSystems Class Reference.

ALTER VIEW cannot be used on a view based on a table projected from a deployed persistent class. This operation fails
with an SQLCODE -400 error with the %msg Unable to execute DDL that modifies a deployed class:
'classname'.

Examples
The following examples create a view then alter that view. Programs are provided to query the view and to delete the view.
Note that altering the view replaces the column list with a new column list; it does not preserve the prior column list.

 IF $SYSTEM.SQL.ViewExists("MassFolks")
 {WRITE "View already exists, please run DROP VIEW" QUIT}
 &sql(CREATE VIEW MassFolks (vFullName) AS
 SELECT Name FROM Sample.Person WHERE Home_State='MA')
 IF SQLCODE=0 { WRITE !,"Created a view",! }
 ELSE { WRITE "CREATE VIEW error SQLCODE=",SQLCODE }

SELECT * FROM MassFolks

 IF 0=$SYSTEM.SQL.ViewExists("MassFolks")
 {WRITE "View doesn't exist" QUIT}
 &sql(ALTER VIEW MassFolks (vMassAbbrev,vCity) AS
 SELECT Home_State,Home_City FROM Sample.Person WHERE Home_State='MA')
 IF SQLCODE=0 { WRITE !,"Altered view",! }
 ELSE { WRITE "ALTER VIEW error SQLCODE=",SQLCODE }

 DROP VIEW MassFolks

The following embedded SQL example alters a view using a query WITH CHECK OPTION:

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql(ALTER VIEW Sample.MyTestView AS
 SELECT FIRSTWORD FROM Sample.MyTest WITH CHECK OPTION)
 IF SQLCODE=0 { WRITE !,"Altered view" }
 ELSE { WRITE "ALTER VIEW error SQLCODE=",SQLCODE }

See Also
• CREATE VIEW DROP VIEW GRANT

• “Defining Views” chapter in Using InterSystems SQL

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

22 InterSystems SQL Reference

SQL Commands

CALL
Invokes a stored procedure.

CALL procname(arg1,arg2,...) [USING contextvar]

retval=CALL procname(arg1,arg2,...) [USING contextvar]

Arguments

The name of a stored procedure. May be a fully qualified name
(including schema), or an unqualified name for which InterSystems
IRIS supplies the schema name, as described below.

procname

Optional — The actual argument list. One or more values to pass to
a stored procedure, specified in order as a comma-separated list.The
parentheses are required, even when no arguments are specified.

arg

Optional — contextvar specifies a descriptor area variable that receives
the procedure context object generated by the procedure call. If
omitted, the default is %sqlcontext.

USING contextvar

Optional — A variable specified to receive the procedure return value.
Can contain a single value, not a result set. Can be specified as a local
variable, a host variable, or a question mark (?) argument.

retval

Description
A CALL statement invokes a query exposed as an SQL stored procedure. The procname must be an existing stored procedure
in the current namespace. If InterSystems IRIS cannot locate procname, it generates an SQLCODE -428 error. The procname
must be a Stored Procedure with SqlProc=True. Refer to SqlProc in Class Definition Reference.

The procname is not case-sensitive. You must append the argument parentheses to the procname, even if you are not
specifying any arguments. Failing to do so results in an SQLCODE -1 error.

The procname can be either qualified (schema.procname) or unqualified (procname). InterSystems IRIS locates the
match for an unqualified procname in a schema, using either the system-wide default schema name, or (if provided) a
schema name from the schema search path. If InterSystems IRIS cannot locate the specified procedure using either the
schema search path or the system-wide schema default, it generates an SQLCODE -428 error.

The CALL arg arguments are optional; the parentheses are required. This comma-separated list is known as the actual
argument list, which must match in number and in sequence the formal argument list in the procedure definition. You may
specify fewer actual argument values than the formal arguments defined in the stored procedure. If you specify more actual
argument values than the formal arguments defined in the stored procedure, the system generates an SQLCODE -370 error.
This error message specifies the name of the stored procedure, the number of arguments specified, and the number of
arguments defined in the stored procedure.

You can omit trailing arguments; any missing trailing arguments are undefined and take default values. You can specify
an undefined argument within the argument list by specifying a placeholder comma. For example, (arg1,,arg3) passes three
arguments, the second of which is undefined. Commonly, undefined arguments take a default value that was specified when
defining the stored procedure. If no default is defined, an undefined argument takes NULL. For further details refer to
NULL and the Empty String in Using InterSystems SQL.

If you specify an argument value that does not match the data type defined in the stored procedure that argument takes
NULL, even if a default value is defined. For example, a stored procedure defines an argument as IN numarg INT

InterSystems SQL Reference 23

CALL

DEFAULT 99. If CALL specifies a numeric argument, that arg value is used. If CALL omits the argument, the defined
default is used. However, if CALL specifies a non-numeric argument, NULL is used, not the defined default.

For further details on stored procedures, refer to the CREATE PROCEDURE command.

From Embedded SQL
ObjectScript embedded SQL can either issue a CALL statement, or use the DO command to invoke the underlying routine
or method.

Using Embedded SQL, you can supply argument values to CALL as literals or by using any combination of :name host
variables or question mark (?) input parameters, as follows:

 SET a=7,b="A",c=99
 &sql(CALL MyProc(:a,:b,:c))

 &sql(CALL MyProc(?,:b,?))

The initial invocation of a CALL statement in Embedded SQL creates an %sqlcontext variable, by default. Subsequent
iterations use this existing %sqlcontext variable. This means that multiple iterations accumulate results in %sqlcontext that
could potentially result in a <STORE> error. If a CALL statement is to be iterated repeatedly, you can explicitly specify
the %sqlcontext variable in the USING clause. When a procedure context is specified in the USING clause InterSystems
IRIS issues a NEW on that procedure context each time it is invoked.

A host variable used for an output arg can be a single value, an array reference, an oref.property reference, or a multidimen-
sional oref.property reference.

You can return a value from a CALL statement by using either a host variable or a question mark (?):

 &sql(:rtnval=CALL MyProc())

 &sql(?=CALL MyProc())

The CALL return value must be a single value. You cannot return a result set from a CALL statement in Embedded SQL.
Attempting to use retval=CALL syntax for a procedure that does not return a value generates an SQLCODE -371 error.

For further details, refer to the Embedded SQL chapter of Using InterSystems SQL.

From Dynamic SQL
The following Dynamic SQL example calls the Stored Procedure Sample.PersonSets, which performs two queries on
the Sample.Person table. The Stored Procedure arguments specify the WHERE clause values for these two queries. The
first argument specifies to return all records in the first query where Name starts with arg1 (in this case, the letter “M”).
The second argument specifies to return all records in the second query where Home_State = arg2 (in this case, “MA”):

 SET mycall = "CALL Sample.PersonSets(?,'MA')"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(mycall)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute("M")
 IF rset.%SQLCODE '= 0 {WRITE "SQL error=",rset.%SQLCODE QUIT}
 DO rset.%Display()

The following Dynamic SQL example also calls the Stored Procedure Sample.PersonSets, returning the result sets
for each query separately. The %Next() method iterates through the first query result set. The %MoreResults() method
accesses the result set for the second query. If there were more than two queries, %MoreResults() would access each result
set in turn.

24 InterSystems SQL Reference

SQL Commands

 SET mycall = "CALL Sample.PersonSets(?,'MA')"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(mycall)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute("M")
 IF rset.%SQLCODE '= 0 {WRITE "SQL error=",rset.%SQLCODE QUIT}
FirstResultSet
 WHILE rset.%Next() {
 WRITE "Name: ",rset.%Get("Name")
 IF rset.%Get("Spouse") {
 WRITE " Spouse: ",rset.%Get("Spouse"),!}
 ELSE {WRITE " unmarried",! }
 }
 WRITE !,"1st row count=",rset.%ROWCOUNT,!!
SecondResultSet
 WHILE rset.%MoreResults() {
 DO rset.%CurrentResult.%Display()
 }

Note that it is important to check the %SQLCODE value set by the CALL execution before invoking %Next(). Invoking
the %Next() method sets %SQLCODE, overwriting the prior CALL %SQLCODE value. If %Next() receives no result
set data, it sets %SQLCODE=100. It does not distinguish between an empty result set (no rows selected) and a nonexistent
result set due to an error in CALL processing.

For further details on %SQL.Statement and on how to display a list of formal parameters and other metadata for a stored
procedure, refer to the “Using Dynamic SQL” chapter of Using InterSystems SQL. The Returning the Full Result Set
section of the “Using Dynamic SQL” chapter provides further information and examples of the %Display() method. The
Returning Specific Values from the Result Set section of the “Using Dynamic SQL” chapter provides further information
and examples of the %Next() and %Get() methods.

From ObjectScript
Rather than calling stored procedures directly from embedded SQL, you can invoke stored procedures through ObjectScript
calls to the class methods that contain them. In this case, you have to manage the parameters, and with query-based stored
procedures, the separate methods have to be called and the fetch loop managed.

For example, to call a method exposed as a stored procedure called UpdateAllAvgScores that has no arguments, the code
is:

 NEW phnd
 SET phnd=##class(%SQLProcContext).%New()
 DO ##class(students).UpdateAllAvgScores(phnd)
 IF phnd.%SQLCODE {QUIT phnd.%SQLCODE}
 USE 0
 WRITE !,phnd.%ROWCOUNT," Rows Affected"

When specifying a procedure’s arguments in the call statement, you must not specify the %Library.SQLProcContext
parameter if the procedure has an explicitly defined %Library.SQLProcContext parameter. The handling of this parameter
is done automatically.

In the following example, the stored procedure takes two arguments. It has an explicitly defined procedure context.

 NEW phnd
 SET phnd=##class(%SQLProcContext).%New()
 SET rtn=##class(Sample.ResultSets).PersonSets("D","NY")
 IF phnd.%SQLCODE {QUIT phnd.%SQLCODE}
 DO %sqlcontext.%Display()
 WRITE !,"All Done"

To call a stored procedure that has been implemented as a query, you must call all three methods:

 NEW qhnd
 DO ##class(students).GetAvgScoreExecute(.qhnd,x1)
 NEW avgrow,AtEnd
 SET avgrow=$lb("")
 SET AtEnd=0
 DO ##class(students).GetAvgScoreFetch(.qhnd,.avgrow,.AtEnd)
 SET x5=$lg(avgrow,1)
 DO ##class(students).GetAvgScoreClose(qhnd)

InterSystems SQL Reference 25

CALL

If a query-based stored procedure is to be nested within a number of other stored procedures, it is useful to write a wrapper
method to hide all of this.

From ODBC or JDBC
InterSystems IRIS fully supports CALL syntax as defined by the ODBC 2.x and JDBC 1.0 standards. In JDBC, you can
invoked CALL through the methods of the CallableStatement class. In ODBC, there are APIs. The CALL syntax and
semantics are exactly the same for JDBC and ODBC. Further, they are processed in the same way: both drivers parse the
statement text and, if the statement is CALL, they directly invoke the special methods on the server side, bypassing the
SQL engine.

If class PERSON has a stored procedure called SP1, then you can call this from an ODBC or JDBC client (such as Microsoft
Query) as follows:

retcode = SQLExecDirect(hstmt, "{?=call PERSON_SP1(?,?)}", SQL_NTS);

InterSystems IRIS conforms to the ODBC standard in its structure for calling stored procedures. See the relevant documen-
tation for more information on that standard.

With ODBC only, InterSystems IRIS allows relaxed syntax for calls, so there do not need to be curly braces around CALL
or parentheses around parameters. (Since this is good programming form, the above example uses them.)

Again, with ODBC only, InterSystems IRIS allows modified syntax for using default parameters, so that CALL SP is dif-
ferent from CALL SP(). The second form implies passing of a default parameter — as does CALL SP (,,) or SP(,?,)
or other such syntax. In that sense, the parenthesized form of CALL is different from non-parenthesized.

See Also
• SQL statements: CREATE PROCEDURE CREATE QUERY CREATE METHOD

• ObjectScript: DO command

• “Defining and Using Stored Procedures” chapter in Using InterSystems SQL.

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

26 InterSystems SQL Reference

SQL Commands

CASE
Chooses one of a specified set of values depending on some condition.

CASE
 WHEN search_condition THEN value_expression
 [WHEN search_condition THEN value_expression ...]
 [ELSE value_expression]
END

CASE value_expression
 WHEN value_expression THEN value_expression
 [WHEN value_expression THEN value_expression ...]
 [ELSE value_expression]
END

Arguments

An SQL boolean expression.search_condition

An SQL expression (such as a literal value or field name.)value_expression

Description
The CASE expression allows you to make comparison tests on series of values, returning when it encounters the first match.

The CASE expression comes in two forms: Simple and Searched.

The Simple CASE expression tests a series of value expressions (specified by a WHEN clause) to see if they are equal to
a given value expression:

SELECT
CASE Field1
 WHEN 1 THEN 'ONE'
 WHEN 2 THEN 'TWO'
 ELSE NULL
END
FROM MyTable

The value associated with the first matching expression is returned as the value of the CASE expression.

Numeric value_expression values may have different data types. The data type returned is the type most compatible with
all of the possible result values, the data type with the highest data type precedence. For numeric value_expression values
CASE returns the largest length, precision, and scale from all of the possible result values. A result value of NULL has the
lowest data type precedence; however, if all result values are NULL, the data type returned is VARCHAR.

The Searched CASE expression tests a series of search conditions (specified by a WHEN clause), finds the first WHEN
condition that evaluates to true, and returns the value associated with it:

SELECT
CASE
 WHEN Field1 = 1 THEN 'ONE'
 WHEN Field1 = 2 THEN 'TWO'
 ELSE NULL
END
FROM MyTable

With either form of CASE expression, you can use an ELSE clause to specify what value to return if none of the WHEN
clause conditions are true. If you omit the ELSE clause and none of the WHEN clause conditions are true, CASE returns
NULL.

A CASE comparison tests for NULL must use the IS NULL or IS NOT NULL keyword phrase. NULL is not a data value
(it represents the absence of a value). For this reason, any equality or arithmetic test for NULL always return false. A CASE

InterSystems SQL Reference 27

CASE

expression that compares NULL and any data value always returns false. For example, NULL < 1 and NULL > 1 both
return false. A CASE expression that equates NULL with NULL also returns false.

The end of a CASE expression is marked by an END token.

Examples
The following query is an example of a Simple CASE expression, where specified field values are replaced by supplied
values. Note the use of the RetireAge column alias after the END keyword; the optional AS keyword is omitted in this
example:

SELECT Name,
CASE Age
 WHEN 65 THEN 'Retire this year'
 WHEN 64 THEN 'Retire next year'
 ELSE 'Past retirement age '|| Age
END RetireAge
FROM Sample.Person
WHERE Age > 63
ORDER BY Age

The following query is another example of a Simple CASE expression. This query labels rows with certain Home_State
values as either “Northern NE” or “Southern NE”, and sets all other Home_State values in this column to NULL. It uses
the As clause to label this column as “NewEnglanders”, and also displays Names and the original Home_State values. The
resulting rows are ordered first by the NewEnglanders column (in descending order), and within this alphabetically by
Home_State, and then by Name.

SELECT Name,
CASE Home_State
 WHEN 'VT' THEN 'Northern NE'
 WHEN 'NH' THEN 'Northern NE'
 WHEN 'ME' THEN 'Northern NE'
 WHEN 'MA' THEN 'Southern NE'
 WHEN 'CT' THEN 'Southern NE'
 WHEN 'RI' THEN 'Southern NE'
 ELSE NULL
END AS NewEnglanders, Home_State
FROM Sample.Person
ORDER BY NewEnglanders DESC,Home_State,Name

The following query is an example of a Searched CASE expression. It uses logical operators (greater than (>), logical AND
(&), logical OR (!)) to specify a boolean statement for each WHEN clause. The first WHEN clause that tests True sets the
value expression that follows the THEN keyword. In this example, the Age and Home_State field values are used to
identify three types of Yankees: Old Yankees, Yankees (residents of the six New England states), and likely fans of the
New York Yankees baseball team:

SELECT Name,
CASE
WHEN Age > 55 & Home_State = 'VT'
 ! Home_State='ME' ! Home_State='NH'
 ! Home_State='MA' ! Home_State='CT'
 ! Home_State='RI'
THEN 'Old Yankee'
WHEN Home_State = 'VT'
 ! Home_State='ME' ! Home_State='NH'
 ! Home_State='MA' ! Home_State='CT'
 ! Home_State='RI'
THEN 'Yankee'
WHEN Home_State='NY' THEN 'Yankees Fan'
 ELSE Home_State
END AS Yankees
FROM Sample.Person

The following example shows that any comparison with NULL always returns false:

28 InterSystems SQL Reference

SQL Commands

SELECT TOP 5 Name,
CASE NULL
 WHEN NULL THEN 'Null = Null'
 WHEN 0 THEN 'Null = 0'
 WHEN '' THEN 'Null = empty string'
 WHEN CHAR(0) THEN 'Null = CHAR(0)'
 ELSE 'Null Arithmetic Invalid'
END
FROM Sample.Person

The following example shows how to use CASE with a field that has NULLs:

SELECT TOP 20 Name,
CASE
 WHEN FavoriteColors IS NULL THEN 'No Colors'
 ELSE $LISTTOSTRING(FavoriteColors,':')
END
FROM Sample.Person

CASE is not limited to use in queries, as shown in the following example:

 SET myin=3
 SET myin(1) = "INSERT INTO SQLUser.MyStudents (Name,PxTs) VALUES "
 SET myin(2) = "(CASE ? WHEN 'a' THEN 'Alice' WHEN 'b' THEN 'Barney' ELSE 'Unknown' END,"
 SET myin(3) = "CURRENT_TIMESTAMP)"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.myin)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute("a")
 DO rset.%Display()

See Also
• SQL functions: DECODE, GREATEST, LEAST, NULLIF, COALESCE

• ObjectScript function: $CASE

InterSystems SQL Reference 29

CASE

%CHECKPRIV
Checks whether the user holds a specified privilege.

%CHECKPRIV [GRANT OPTION FOR | ADMIN OPTION FOR] syspriv [,syspriv]

%CHECKPRIV [GRANT OPTION FOR] objpriv ON object

%CHECKPRIV column-privilege (column-list) ON table

Arguments

Optional — This keyword phrase specifies checking whether the current
user holds the WITH GRANT OPTION privilege on the specified
privilege(s). A %CHECKPRIV with this option does not check whether
the user holds the specified privilege(s) itself.

GRANT OPTION FOR

Optional — This keyword phrase specifies checking whether the current
user can grant the specified system privilege(s) to other users or roles.
A %CHECKPRIV with this option does not check whether the user holds
the specified privilege(s) itself.

ADMIN OPTION FOR

A system privilege, or a comma-separated list of system privileges. The
available syspriv options include sixteen object definition privileges and
four data modification privileges.

The object definition privileges are: %CREATE_FUNCTION,
%DROP_FUNCTION, %CREATE_METHOD, %DROP_METHOD,
%CREATE_PROCEDURE, %DROP_PROCEDURE, %CRE-
ATE_QUERY, %DROP_QUERY, %CREATE_TABLE, %ALTER_TABLE,
%DROP_TABLE, %CREATE_VIEW, %ALTER_VIEW, %DROP_VIEW,
%CREATE_TRIGGER, %DROP_TRIGGER. Alternatively, you can
specify %DB_OBJECT_DEFINITION, which tests all 16 object definition
privileges.

The data modification privileges are the %NOCHECK, %NOINDEX,
%NOLOCK, %NOTRIGGER privileges for INSERT, UPDATE, and
DELETE operations.

syspriv

An object privilege associated with a specified object. The available
options are: %ALTER, DELETE, SELECT, INSERT, UPDATE,
EXECUTE, and REFERENCES.

objpriv

The name of the object for which the objpriv is being checked.object

A column-level privilege associated with one or more listed columns.
Available options are SELECT, INSERT, UPDATE, and REFERENCES.

column-privilege

A list of one or more column names for which privilege assignment is
being checked, separated by commas and enclosed in parentheses. A
space may be included or omitted between the column-privilege name
and the opening parenthesis.

column-list

The name of the table or view that contains the column-list columns. A
table name or view name can be qualified (schema.tablename), or
unqualified (tablename). An unqualified name takes the default schema
name; a schema search path is ignored.

table

30 InterSystems SQL Reference

SQL Commands

Description
%CHECKPRIV can be used in two ways:

• To determine if the current user holds a specified system privilege, or holds all of the system privileges specified in a
comma-separated list.

• To determine if the current user holds a user privilege of a specified type on a specified object. These objects can
include table-level privileges on tables or views, column-level privileges on specified columns, and privileges on stored
procedures.

If the user holds the specified privilege, %CHECKPRIV sets SQLCODE=0. If the user does not hold the specified privilege,
%CHECKPRIV sets SQLCODE=100.

%CHECKPRIV enables you to check whether a privilege is held. It does not enforce privileges:

• Embedded SQL does not enforce privileges. %CHECKPRIV is primarily used for Embedded SQL. See Embedded
SQL and Privileges.

• Dynamic SQL enforces privileges at runtime. For example, if you do not have the %CREATE_TABLE system privilege,
%CHECKPRIV %CREATE_TABLE sets SQLCODE=100, showing that you don’t have this privilege. Dynamic
SQL enforces this privilege; a CREATE TABLE operation fails with an SQLCODE -99 error.

At runtime, Dynamic SQL and ODBC/JDBC enforce privileges and generate appropriate errors. The Management
Portal Execute Query SQL interface and the SQL Shell both execute as Dynamic SQL.

Because %CHECKPRIV requires access to the SQLCODE 100 value (an SQLCODE status value, not an SQLCODE
error value) to determine its result, %CHECKPRIV cannot be directly used by JDBC and other clients that can only dis-
tinguish error or no error status.

Because %CHECKPRIV prepares and executes quickly, and is generally run only once, InterSystems IRIS does not create
a cached query for %CHECKPRIV.

The CheckPriv() Method

The $SYSTEM.SQL.CheckPriv() method provides greater functionality for checking user privileges on a table, view, or
stored procedure:

• CheckPriv() checks privileges for a specified user. %CHECKPRIV only checks privileges for the current user.

• CheckPriv() allows you to check multiple privileges. Each invocation of %CHECKPRIV can only check one objpriv
privilege.

• CheckPriv() allows you to check privileges on a table, view, or procedure defined in another namespace.
%CHECKPRIV only checks privileges for objects in the current namespace.

Embedded SQL and Privileges

Privileges are not automatically checked or enforced for Embedded SQL. Therefore, an Embedded SQL program should
(in most cases) call %CHECKPRIV before attempting a privileged operation, such as an update:

 SET name="Fred",age=25
 SET SQLCODE=""
 &sql(%CHECKPRIV UPDATE ON Sample.Person)
 IF SQLCODE=100 {
 WRITE !,"No UPDATE privilege"
 QUIT }
 ELSEIF SQLCODE < 0 {
 WRITE !,"Unexpected SQL error: ",SQLCODE," ",%msg
 QUIT }
 ELSE {
 WRITE !,"Proceeding with UPDATE" }
 &sql(UPDATE Sample.Person SET Name=:name,Age=:age WHERE Address='123 Bedrock')
 IF SQLCODE=0 { WRITE !,"UPDATE successful" }
 ELSE { WRITE "UPDATE error SQLCODE=",SQLCODE }

InterSystems SQL Reference 31

%CHECKPRIV

Examples
The following Embedded SQL example checks whether the current user holds a specific object privilege for a specific
table:

 &sql(%CHECKPRIV UPDATE ON Sample.Person)
 IF SQLCODE=0 {WRITE "Have update privilege"}
 ELSEIF SQLCODE=100 {WRITE "Do not have update privilege" QUIT}
 ELSE {WRITE "Unexpected %CHECKPRIV error: ",SQLCODE," ",%msg QUIT}

The following Embedded SQL example checks whether the current user holds system privileges on the three table operations.
If it has privileges, it creates a table:

 &sql(%CHECKPRIV %CREATE_TABLE,%ALTER_TABLE,%DROP_TABLE)
 IF SQLCODE=0 {WRITE "Have table privileges",!}
 ELSEIF SQLCODE=100 {WRITE "Do not have one or more table privileges" QUIT}
 ELSE {WRITE "Unexpected %CHECKPRIV error: ",SQLCODE," ",%msg QUIT}
 &sql(CREATE TABLE Sample.MyTable (Name VARCHAR(40),Age INTEGER))
 WRITE "Created table"

The following Embedded SQL example checks whether the current user holds all 16 object definition privileges. The
SQLCODE value is set to either 0 (holds all 16 privileges) or 100 (does not hold one or more of the 16 privileges):

 &sql(%CHECKPRIV %DB_OBJECT_DEFINITION)
 IF SQLCODE=0 {WRITE "Have all system privileges"}
 ELSEIF SQLCODE=100 {WRITE "Do not have one or more system privileges"}
 ELSE {WRITE "Unexpected SQLCODE error: ",SQLCODE," ",%msg}

The following Embedded SQL example checks whether the current user can grant the %CREATE_TABLE privilege to
other users or roles:

 &sql(%CHECKPRIV ADMIN OPTION FOR %CREATE_TABLE)
 IF SQLCODE=0 {WRITE "Have admin option on privilege"}
 ELSEIF SQLCODE=100 {WRITE "Do not have admin option on privilege"}
 ELSE {WRITE "Unexpected SQLCODE error: ",SQLCODE," ",%msg}

The following Embedded SQL example checks whether the current user holds the specified column-level privileges. Fol-
lowing the name of the privilege, specify the name of a column (or a comma-separated list of columns) in parentheses:

 &sql(%CHECKPRIV UPDATE(Name,Age) ON Sample.Person)
 IF SQLCODE=0 {WRITE "Have privilege on all specified columns"}
 ELSEIF SQLCODE=100 {WRITE "Do not have privilege on one or more specified columns"}
 ELSE {WRITE "Unexpected SQLCODE error: ",SQLCODE," ",%msg}

See Also
• SQL statements: GRANT, REVOKE

• “Users, Roles, and Privileges” chapter of Using InterSystems SQL

• ObjectScript: $ROLES and $USERNAME special variables

32 InterSystems SQL Reference

SQL Commands

CLOSE
Closes a cursor.

CLOSE cursor-name

Arguments

The name of the cursor to be closed.The cursor name was specified in the DECLARE
statement. Cursor names are case-sensitive.

cursor-name

Description
A CLOSE statement shuts down an open cursor. It releases the current result set and frees any cursor locks held on the
rows on which the cursor is positioned. However, CLOSE does not delete the cursor; it leaves the data structures accessible
for reopening, but fetches and positioned updates are not allowed until the cursor is reopened. This behavior is demonstrated
by the following command sequences:

• DECLARE c1, OPEN c1, FETCH c1, CLOSE c1 is the standard sequence.

• DECLARE c1, OPEN c1, CLOSE c1, OPEN c1 reopens the declared cursor c1.

• DECLARE c1, OPEN c1, CLOSE c1, DECLARE c1, OPEN c1 reopens the cursor specified in the first DECLARE,
the second DECLARE is ignored.

• DECLARE c1, OPEN c1, FETCH c1, CLOSE c1, OPEN c1, FETCH c1 cause both fetch operations to retrieve the
same record.

CLOSE must be issued on an open cursor. Issuing a CLOSE on a cursor that has only been declared (but not opened), or
on a cursor that has already been closed results in an SQLCODE -102 error. Issuing a CLOSE on a non-existent cursor —
for example, a cursor that differs from the defined cursor in letter case — results in a <SYNTAX> error.

The cursor-name is not namespace-specific. Changing the current namespace has no effect on use of a declared cursor.
The only namespace consideration is that FETCH must occur in the namespace that contains the table(s) being queried.

Note that, as an SQL statement, CLOSE is only supported from Embedded SQL. Equivalent operations are supported
through ODBC using the ODBC API.

CLOSE does not support the #SQLCompile Mode=Deferred preprocessor directive. Attempting to use Deferred mode
with a DECLARE, OPEN, FETCH, or CLOSE cursor statement generates a #5663 compilation error.

Example
The following Embedded SQL example shows a cursor (named EmpCursor) being opened and closed:

 SET name="LastName,FirstName",state="##"
 &sql(DECLARE EmpCursor CURSOR FOR
 SELECT Name, Home_State
 INTO :name,:state FROM Sample.Employee
 WHERE Home_State %STARTSWITH 'A')
 WRITE !,"BEFORE: Name=",name," State=",state
 &sql(OPEN EmpCursor)
 QUIT:(SQLCODE'=0)
 NEW %ROWCOUNT,%ROWID
 FOR { &sql(FETCH EmpCursor)
 QUIT:SQLCODE
 WRITE !,"DURING: Name=",name," State=",state }
 WRITE !,"After FETCH error code: ",SQLCODE
 WRITE !,"After FETCH row count: ",%ROWCOUNT
 &sql(CLOSE EmpCursor)
 WRITE !,"After CLOSE error code: ",SQLCODE
 WRITE !,"After CLOSE row count: ",%ROWCOUNT
 WRITE !,"AFTER: Name=",name," State=",state

InterSystems SQL Reference 33

CLOSE

Note that after closing the cursor, the host variables remain set to the last fetched data values, and %ROWCOUNT remains
set to the number of rows retrieved. However, the SQLCODE value at the end of the fetch (SQLCODE=100) is overwritten
by the SQLCODE value for the CLOSE (SQLCODE=0).

The following Embedded SQL example shows that a cursor persists across namespaces. This cursor is declared in SAMPLES,
opened in DOCBOOK, fetched in SAMPLES, and closed in USER. Note that the FETCH must be executed in the
namespace that contains Sample.Employee:

 &sql(USE DATABASE "USER")
 WRITE $ZNSPACE,!
 &sql(DECLARE NSCursor CURSOR FOR SELECT Name INTO :name FROM Sample.Employee)
 &sql(USE DATABASE DOCBOOK)
 WRITE $ZNSPACE,!
 &sql(OPEN NSCursor)
 QUIT:(SQLCODE'=0)
 &sql(USE DATABASE SAMPLES)
 WRITE $ZNSPACE,!
 NEW %ROWCOUNT,%ROWID
 FOR { &sql(FETCH NSCursor)
 QUIT:SQLCODE
 WRITE "Name=",name,! }
 &sql(USE DATABASE "USER")
 WRITE $ZNSPACE,!
 &sql(CLOSE NSCursor)
 WRITE "Close SQLCODE: ",SQLCODE,!

See Also
• DECLARE, FETCH, OPEN

• SQL Cursors in the “Using Embedded SQL” chapter of Using InterSystems SQL

34 InterSystems SQL Reference

SQL Commands

COMMIT
Commits work performed during a transaction.

COMMIT [WORK]

Description
A COMMIT statement commits all work completed during the current transaction, resets the transaction level counter,
and releases all locks established. This completes the transaction. Work committed cannot be rolled back.

COMMIT and COMMIT WORK are equivalent statements; both versions are supported for compatibility.

A transaction is defined as the operations since and including the START TRANSACTION statement. A COMMIT
restores the transaction level counter ($TLEVEL) to its state immediately prior to the START TRANSACTION statement
that initialized the transaction. (Because InterSystems SQL does not support nested transactions, issuing additional START
TRANSACTION statements within a transaction has no effect on the transaction initialization point.)

A single COMMIT causes all savepoints within the transaction to be committed.

A START TRANSACTION statement is used to explicitly begin a new transaction. However, use of START
TRANSACTION is optional. If transaction processing is activated, the first database operation following a COMMIT
implicitly begins a new transaction. A COMMIT statement is not meaningful if either transaction processing is not in
effect, or transaction processing is in effect with automatic commits. If no transaction is in progress, a COMMIT completes
successfully (SQLCODE 0), but performs no operation.

The effects of a COMMIT on queries are determined by the current isolation level. These transaction parameters can be
set using either the SET TRANSACTION or START TRANSACTION command.

An SQLCODE -400 is issued if a transaction operation fails to complete successfully.

ObjectScript and SQL Transactions
ObjectScript and SQL transaction commands are fully compatible and interchangeable, with the following exception:

ObjectScript TSTART and SQL START TRANSACTION both start a transaction if no transaction is current. However,
START TRANSACTION does not support nested transactions. Therefore, if you need (or may need) nested transactions,
it is preferable to start the transaction with TSTART. If you need compatibility with the SQL standard, use START
TRANSACTION.

ObjectScript transaction processing provides limited support for nested transactions. SQL transaction processing supplies
support for savepoints within transactions.

If a transaction involves SQL update statements, then the transaction should be started by the SQL START TRANSACTION
statement and committed with the SQL COMMIT statement. Methods that use TSTART/TCOMMIT nesting can be
included in the transaction, as long as they don't initiate the transaction. Methods and stored procedures should not normally
use SQL transaction control statements, unless, by design, they are the main controller of the transaction. Stored procedures
should not normally use SQL transaction control statements, because these stored procedures are normally called from
ODBC/JDBC, which has its own model of transaction control.

Examples
The following Embedded SQL example demonstrates how a COMMIT restores the transaction level counter ($TLEVEL)
to the level immediately prior to the START TRANSACTION, regardless of how many SAVEPOINTS have been
established within the transaction. Note that the second START TRANSACTION in this program is a no-op which has
no effect on $TLEVEL:

InterSystems SQL Reference 35

COMMIT

 &sql(SET TRANSACTION %COMMITMODE EXPLICIT)
 WRITE !,"Set transaction mode, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(START TRANSACTION)
 WRITE !,"Start transaction, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(SAVEPOINT a)
 WRITE !,"Set Savepoint a, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(SAVEPOINT b)
 WRITE !,"Set Savepoint b, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(START TRANSACTION) /* Performs no operation */
 WRITE !,"Start transaction, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(SAVEPOINT c)
 WRITE !,"Set Savepoint c, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(COMMIT)
 WRITE !,"Commit transaction, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL

The following Embedded SQL example demonstrates that the first COMMIT statement commits the entire transaction
and that extra COMMIT statements have no effect and do not result in an error:

 &sql(SET TRANSACTION %COMMITMODE EXPLICIT)
 WRITE !,"Set transaction mode, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(START TRANSACTION)
 WRITE !,"Start transaction, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(SAVEPOINT a)
 WRITE !,"Set Savepoint a, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(COMMIT)
 WRITE !,"Commit transaction, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(COMMIT) /* Performs no operation */
 WRITE !,"Commit again, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(COMMIT) /* Performs no operation */
 WRITE !,"Commit again, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL

See Also
• SQL commands: ROLLBACK SAVEPOINT SET TRANSACTION START TRANSACTION $TLEVEL

• Transaction Processing in the “Modifying the Database” chapter of Using InterSystems SQL.

• ObjectScript command: TCOMMIT

36 InterSystems SQL Reference

SQL Commands

CREATE DATABASE
Creates a database (namespace).

CREATE DATABASE dbname [ON DIRECTORY pathname]
 [WITH [ENCRYPTED_DB] [GLOBAL_JOURNAL_STATE [=] {YES | NO}]]

Arguments

The name of the database (namespace) to be created.dbname

Optional — The root pathname location for the databases, specified as a quoted string.
The C and D directories are created as subdirectories of this root path. The default is
to create the database in the mgr directory.

pathname

Optional — Specifies whether or not the database is encrypted. The default is not
encrypted.

WITH
ENCRYPTED_DB

Optional — Specifies whether or not the database is journaled.YES specifies that the
database is journaled (which is recommended). NO specifies that the database is not
journaled. The equal sign (=) is optional. The default is journaled.

WITH
GLOBAL_JOURNAL_STATE

Description
The CREATE DATABASE command creates a namespace and two associated databases. This allows you to create a
namespace within SQL.

The specified dbname is the name of the created namespace and the directory that contains the corresponding database
files. Namespace names are not case-sensitive. A dbname follows the naming conventions for an SQL identifier, with the
following additional restrictions:

• An underscore (_) character is not permitted as the first character of dbname (but may be used elsewhere within the
name). The @, #, and $ characters are not permitted in dbname. Attempting to include these invalid characters in
dbname generates an SQLCODE -343 error.

• A hyphen (-) character is not permitted in dbname (hyphen is not a valid SQL identifier character). However, a
namespace name created by other means can include a hyphen character.

• A dbname cannot be longer than 63 characters; specifying a longer dbname generates an SQLCODE -400 fatal error
with the appropriate %msg.

If the specified dbname namespace already exists, InterSystems IRIS issues an SQLCODE -341 error.

You can specify neither, either, or both WITH options: ENCRYPTED_DB and/or GLOBAL_JOURNAL_STATE. If you
specify both, they are separated by a space, as follows: WITH ENCRYPTED_DB GLOBAL_JOURNAL_STATE=NO.

By default, CREATE DATABASE creates two databases in the mgr directory with the dbname name subdirectory con-
taining two subdirectories, C (code) and D (data). Each of these subdirectories contains a IRIS.DAT file, a iris.lck file, and
an empty stream folder. For example, on a Windows system, CREATE DATABASE Barney would create the namespace
BARNEY and the following database files:

c:\InterSystems\IRIS\mgr\Barney\C containing IRIS.DAT, iris.lck, stream folder
c:\InterSystems\IRIS\mgr\Barney\D containing IRIS.DAT, iris.lck, stream folder

The C (code) directory is used for the namespace routines database. The D (data) directory is used for the namespace
globals database. To return the location of the mgr directory, use the %SYSTEM.Util.ManagerDirectory() method.

InterSystems SQL Reference 37

CREATE DATABASE

The optional ON DIRECTORY pathname clause allows you to specify a different location for the database files, rather
than a directory with the same name as the namespace. For example:

CREATE DATABASE Flintstone ON DIRECTORY 'c:\InterSystems\IRIS\mgr\Fred'

If you specify a pathname that already exists, InterSystems IRIS issues an SQLCODE -341 error.

The CREATE DATABASE command is a privileged operation. Prior to using CREATE DATABASE, it is necessary
to be logged in as a user with the %Admin_Manage resource. Failing to do so results in an SQLCODE -99 error (Privilege
Violation).

Use the $SYSTEM.Security.Login() method to assign a user with appropriate privileges:

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql()

You must have the %Service_Login:Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, refer to %SYSTEM.Security in the InterSystems Class Reference.

You can also create a namespace from the Management Portal. Select System Administration, Configuration, System Con-

figuration, Namespaces to list the existing namespaces. At the top of this table of existing namespaces you can click Create

New Namespace.

See Also
• DROP DATABASE command

• USE DATABASE command

38 InterSystems SQL Reference

SQL Commands

CREATE FUNCTION
Creates a function as a method in a class.

CREATE FUNCTION name(parameter_list) [characteristics]
 [LANGUAGE SQL]
 BEGIN
code_body ;
 END

CREATE FUNCTION name(parameter_list) [characteristics]
 LANGUAGE OBJECTSCRIPT
 { code_body }

Arguments

The name of the function to be created as a method in a stored procedure
class.The name must be a valid identifier. A procedure name can be qualified
(schema.procname), or unqualified (procname). An unqualified procedure
name takes the system-wide default schema name.The name must be followed
by parentheses, even if no parameters are specified.

name

Optional — A list of parameters used to pass values to the function. The
parameter list is enclosed in parentheses, and parameters in the list are
separated by commas. The parentheses are mandatory, even when no
parameters are specified.

parameter_list

Optional — One or more keywords specifying the characteristics of the function.
Permitted keywords are FOR, FINAL, PRIVATE, PROCEDURE, RETURNS,
SELECTMODE. Multiple characteristics are separated by whitespace (a space
or line break). Characteristics can be specified in any order.

characteristics

Optional — The programming language used for code_body. Specify
LANGUAGE OBJECTSCRIPT (for ObjectScript) or LANGUAGE SQL. If the
LANGUAGE clause is omitted, SQL is the default.

LANGUAGE
OBJECTSCRIPT

LANGUAGE SQL

The program code for the method.

SQL program code is prefaced with a BEGIN keyword and concludes with an
END keyword. Each complete SQL statement within code_body ends with a
semicolon (;).

ObjectScript program code is enclosed in curly braces. ObjectScript code lines
must be indented.

code_body

Description
The CREATE FUNCTION statement creates a function as a method in a class. This class method is projected as an SQL
Stored Procedure. You can also use the CREATE PROCEDURE statement to create a method which is projected as an
SQL Stored Procedure. CREATE FUNCTION should be used when the method is to return a value, but it can be used to
create a method that does not return a value.

In order to create a function, you must have %CREATE_FUNCTION administrative privilege, as specified by the GRANT
command.

You cannot create a function in a class if the class definition is a deployed class. This operation fails with an SQLCODE
-400 error with the %msg Unable to execute DDL that modifies a deployed class: 'classname'.

InterSystems SQL Reference 39

CREATE FUNCTION

For information on calling SQL functions from within SQL statements, refer to User-defined Functions in the “Querying
the Database” chapter of Using InterSystems SQL. For calling SQL stored procedures in a variety of contexts, refer to the
CALL statement.

Arguments

name

The name of the function (method) to be created. This name may be unqualified (StoreName) and take the system-wide
default schema name, or qualified by specifying the schema name (Patient.StoreName). You can use the
$SYSTEM.SQL.DefaultSchema() method to determine the current system-wide default schema name. The initial system-
wide default schema name is SQLUser corresponds to the class package name User.

Note that the FOR characteristic (described below) overrides the class name specified in name. If a method with this name
already exists, the operation fails with an SQLCODE -361 error.

The name of the generated class is the package name corresponding to the schema name, followed by a dot, followed by
“func”, followed by the specified name. For example, if the unqualified function name RandomLetter takes the initial
default schema SQLUser, the resulting class name would be: User.funcRandomLetter. For further details, see SQL
to Class Name Transformations in the “Defining and Using Stored Procedures” chapter of Using InterSystems SQL.

InterSystems SQL does not allow you to specify a duplicate function name that differs only in letter case. Specifying a
function name that differs only in letter case from an existing function name results in an SQLCODE -400 error.

parameter-list

A list of parameters used to pass values to the function. The parameter list is enclosed in parentheses, and parameter decla-
rations in the list are separated by commas. Each parameter declaration in the list consists of (in order):

• An optional keyword specifying whether the parameter mode is IN (input value), OUT (output value), or INOUT
(modify value). If omitted, the default parameter mode is IN.

• The parameter name. Parameter names are case-sensitive.

• The data type of the parameter.

• Optional: A default value for the parameter. You can specify the DEFAULT keyword followed by a default value; the
DEFAULT keyword is optional. If no default is specified, the assumed default is NULL.

The following example specifies two input parameters, both of which have default values. The optional DEFAULT keyword
is specified for the first parameter, omitted for the second parameter:

CREATE FUNCTION RandomLetter(IN firstlet CHAR DEFAULT 'A',IN lastlet CHAR 'Z')
BEGIN
-- SQL program code
END

characteristics

The available keywords are as follows:

40 InterSystems SQL Reference

SQL Commands

Specifies the name of the class in which to create the method. If the class
does not exist, it will be created.You can also specify a class name by
qualifying the function name. The class name specified in the FOR clause
overrides a class name specified by qualifying the function name.

FOR className

Specifies that subclasses cannot override the method. By default, methods
are not final. The FINAL keyword is inherited by subclasses.

FINAL

Specifies that the method can only be invoked by other methods of its own
class or subclasses. By default, a method is public, and can be invoked
without restriction. This restriction is inherited by subclasses.

PRIVATE

Specifies that the method is projected as an SQL stored procedure. Stored
procedures are inherited by subclasses. Because CREATE FUNCTION
always projects an SQL stored procedure, this keyword is optional. This
keyword can be abbreviated as PROC.

PROCEDURE

Specifies the data type of the value returned by a call to the method. If
RETURNS is omitted, the method cannot return a value. This specification
is inherited by subclasses, and can be modified by subclasses.This datatype
can specify type parameters such as MINVAL, MAXVAL, and SCALE. For
example RETURNS DECIMAL(19,4). Note that when returning a value,
InterSystems IRIS ignores the length of datatype; for example, RETURNS
VARCHAR(32) can receive a string of any length that is returned by a call
to the method.

RETURNS datatype

Only used when LANGUAGE is SQL (the default). When specified,
InterSystems IRIS adds an #SQLCOMPILE SELECT=mode statement to
the corresponding class method, thus generating the SQL statements defined
in the method with the specified SELECTMODE.The possible mode values
are LOGICAL, ODBC, RUNTIME, and DISPLAY. The default is LOGICAL.

SELECTMODE mode

The SELECTMODE clause is used for SELECT query operations and for INSERT and UPDATE operations. It specifies
the compile-time select mode. The value that you specify for SELECTMODE is added at the beginning of the ObjectScript
class method code as: #SQLCompile Select=mode. For further details, see #SQLCompile Select in the “ObjectScript Macros
and the Macro Preprocessor” chapter of Using ObjectScript.

• In a SELECT query, the SELECTMODE specifies the mode in which data is returned. If the mode value is LOGICAL,
then logical (internal storage) values are returned. For example, dates are returned in $HOROLOG format. If the mode
value is ODBC, logical-to-ODBC conversion is applied, and ODBC format values are returned. If the mode value is
DISPLAY, logical-to-display conversion is applied, and display format values are returned. If the mode value is
RUNTIME, the display mode can be set (to LOGICAL, ODBC, or DISPLAY) at execution time.

• In an INSERT or UPDATE operation, the SELECTMODE RUNTIME option supports automatic conversion of input
data values from a display format (DISPLAY or ODBC) to logical storage format. This compiled display-to-logical
data conversion code is applied only if the select mode setting when the SQL code is executed is LOGICAL (which
is the default for all InterSystems SQL execution interfaces).

When the SQL code is executed, the %SQL.Statement class %SelectMode property specifies the execution-time select
mode, as described in “Using Dynamic SQL” chapter of Using InterSystems SQL. For further details on SelectMode
options, refer to “Data Display Options” in the “ InterSystems IRIS SQL Basics” chapter of Using InterSystems SQL.

LANGUAGE

A keyword clause specifying the language you are using for code_body. Permitted clauses are LANGUAGE OBJECTSCRIPT
(for ObjectScript) or LANGUAGE SQL. If the LANGUAGE clause is omitted, SQL is the default.

InterSystems SQL Reference 41

CREATE FUNCTION

code_body

The program code for the method to be created. You specify this code in either SQL or ObjectScript. The language used
must match the LANGUAGE clause. However, code specified in ObjectScript can contain embedded SQL.

InterSystems IRIS uses the code you supply to generate the actual code of the method. If the code you specify is SQL,
InterSystems IRIS provides additional lines of code when generating the method that embed the SQL in an ObjectScript
“wrapper,” provide a procedure context handler (if necessary), and handle return values. The following is an example of
this InterSystems IRIS-generated wrapper code:

 NEW SQLCODE,%ROWID,%ROWCOUNT,title
 &sql(SELECT col FROM tbl)
 QUIT $GET(title)

If the code you specify is OBJECTSCRIPT, the ObjectScript code must be enclosed in curly braces. All code lines must
be indented from column 1, except for labels and macro preprocessor directives. A label or macro directive must be prefaced
by a colon (:) in column 1.

For ObjectScript code, you must explicitly define the “wrapper” (which NEWs variables, and uses QUIT to exit and
(optionally) to return a value upon completion).

When a stored procedure is called, an object of the class %Library.SQLProcContext is instantiated in the %sqlcontext variable.
This procedure context handler is used to pass the procedure context back and forth between the procedure and its caller
(for example, the ODBC server).

%sqlcontext consists of several properties, including an Error object, the SQLCODE error status, the SQL row count, and
an error message. The following example shows the values used to set several of these:

 SET %sqlcontext.%SQLCODE=SQLCODE
 SET %sqlcontext.%ROWCOUNT=%ROWCOUNT
 SET %sqlcontext.%Message=%msg

The values of SQLCODE and %ROWCOUNT are automatically set by the execution of an SQL statement. The %sqlcontext

object is reset before each execution.

Alternatively, an error context can be established by instantiating a %SYSTEM.Error object and setting it as %sqlcontext.Error.

An SQLCODE -361 error is generated if the specified function already exists.

Executing a User-defined Function
You can execute a function in a SELECT statement, such as the following:

SELECT StudentName,StudentAge,SQLUser.HalfAge() AS HalfTheAge
FROM SQLUser.MyStudents

An SQLCODE -359 error is generated if the function does not exist.

An SQLCODE -149 error is generated if the execution of the function results in a error. The type of error is described in
%msg.

Examples
The following example creates the RandomLetter() function (method) stored as a procedure that generates a random capital
letter. You can then invoke this function in a SELECT statement. A DROP FUNCTION is provided to delete the Ran-
domLetter() function.

42 InterSystems SQL Reference

SQL Commands

CREATE FUNCTION RandomLetter()
RETURNS INTEGER
PROCEDURE
LANGUAGE OBJECTSCRIPT
{
:Top
 SET x=$RANDOM(90)
 IF x<65 {GOTO Top}
 ELSE {QUIT $CHAR(x)}
}

SELECT Name FROM Sample.Person
WHERE Name %STARTSWITH RandomLetter()

DROP FUNCTION RandomLetter

The following example creates a function that invokes ObjectScript code, which in turn contains embedded SQL:

 &sql(CREATE FUNCTION TraineeName(
 SSN VARCHAR(11),
 OUT Name VARCHAR(50))
 PROCEDURE
 RETURNS VARCHAR(30)
 FOR SQLUser.MyStudents
 LANGUAGE OBJECTSCRIPT
 {
 NEW SQLCODE,%ROWCOUNT
 SET Name=""
 &sql(SELECT Name INTO :Name FROM Sample.Employee
 WHERE SSN = :SSN)
 IF $GET(%sqlcontext)'= "" {
 SET %sqlcontext.%SQLCODE=SQLCODE
 SET %sqlcontext.%ROWCOUNT=%ROWCOUNT }
 QUIT Name
 })
 IF SQLCODE=0 { WRITE !,"Created a function" QUIT}
 ELSE { WRITE !,"CREATE FUNCTION error: ",SQLCODE," ",%msg,!
 &sql(DROP FUNCTION TraineeName FROM SQLUser.MyStudents) }
 IF SQLCODE=0 { WRITE !,"Dropped a function" QUIT}
 ELSE { WRITE !,"Drop error: ",SQLCODE }

It uses the %sqlcontext object, and sets its %SQLCODE and %ROWCOUNT properties using the corresponding SQL
variables. Note the curly braces enclosing the ObjectScript code following the function’s LANGUAGE OBJECTSCRIPT
keyword. Within the ObjectScript code there is Embedded SQL code, marked by &sql and enclosed in parentheses.

See Also
• DROP FUNCTION

• “Defining and Using Stored Procedures” chapter in Using InterSystems SQL.

InterSystems SQL Reference 43

CREATE FUNCTION

CREATE INDEX
Creates an index for a table.

CREATE [UNIQUE | BITMAP | BITMAPEXTENT | BITSLICE] INDEX index-name
 ON [TABLE] table-name
 (field-name, ...)
 [WITH DATA (datafield-name, ...)]

Arguments

Optional — A constraint that ensures there will not be two rows in the table with
identical values in all the fields in the index.You cannot specify this keyword for a
bitmap or bitslice index.

The UNIQUE keyword can be followed by (or replaced by) the CLUSTERED or
NONCLUSTERED keywords. These keywords are no-ops; they are provided for
compatibility with other vendors.

UNIQUE

Optional — Indicates that a bitmap index should be created. A bitmap index enables
rapid queries on fields with a small number of distinct values.

BITMAP

Optional — Indicates that a bitmapextent index should be created. At most one
bitmapextent index can be created for a table. No field-name is specified with
BITMAPEXTENT.

BITMAPEXTENT

Optional — Indicates that a bitslice index should be created. A bitslice index enables
very fast evaluation of certain expressions, such as sums and range conditions. This
is a specialized index type, which should only be used to solve very specific problems.

BITSLICE

The index being defined. The name is an identifier. For further details, see the
“Identifiers” chapter of Using InterSystems SQL.

index-name

The name of an existing table for which the index is being defined.You cannot create
an index for a view. A table-name can be qualified (schema.table), or unqualified
(table). An unqualified table name takes the system-wide default schema name.

table-name

One or more field names that serve as the basis for the index. Field names must be
enclosed in parentheses. Multiple field names are separated by commas.

Each field name can be followed by an ASC or DESC keyword. These keywords are
no-ops; they are provided for compatibility with other vendors.

field-name

Optional — One or more field names to be defined as Data properties for the index.
Field names must be enclosed in parentheses. Multiple field names are separated
by commas.You cannot specify a WITH DATA clause when specifying a BITMAP or
BITSLICE index.

WITH DATA
(datafield-name)

See additional compatibility syntax below.

Description
CREATE INDEX creates a sorted index on the specified field (or fields) of the named table. InterSystems IRIS uses indices
to improve performance of query operations. InterSystems IRIS automatically maintains indices during INSERT, UPDATE,
and DELETE operations, and this index maintenance may negatively affect performance of these data modification oper-
ations.

44 InterSystems SQL Reference

SQL Commands

You can create an index using the CREATE INDEX command or by adding an index definition to a class definition, as
described in the Defining and Building Indices chapter of SQL Optimization Guide. You can delete an index by using the
DROP INDEX command.

CREATE INDEX can be used to create any of the following three types of index:

• A regular index (Type=index): Specify either CREATE INDEX (for non-unique values) or CREATE UNIQUE
INDEX (for unique values).

• A bitmap index (Type=bitmap): Specify CREATE BITMAP INDEX.

• A bitslice index (Type=bitslice): Specify CREATE BITSLICE INDEX.

You can also define an index using the %Dictionary.IndexDefinition class.

You can use CREATE INDEX to add an index to a sharded table.

Privileges and Locking

The CREATE INDEX command is a privileged operation. Prior to using CREATE INDEX it is necessary for your process
to have either %ALTER_TABLE administrative privileges or the %ALTER privilege for the specified table. Failing to do
so results in an SQLCODE -99 error (Privilege Violation). You can determine if the current user has %ALTER privilege
by invoking the %CHECKPRIV command. You can determine if a specified user has %ALTER privilege by invoking the
$SYSTEM.SQL.CheckPriv() method. You can use the GRANT command to assign these privileges, if you hold appro-
priate granting privileges.

• CREATE INDEX cannot be used on a table projected from a persistent class, unless the table class definition includes
[DdlAllowed]. Otherwise, the operation fails with an SQLCODE -300 error with the %msg DDL not enabled for
class 'Schema.tablename'.

• CREATE INDEX cannot be used on a table projected from a deployed persistent class. This operation fails with an
SQLCODE -400 error with the %msg Unable to execute DDL that modifies a deployed class:
'classname'.

The CREATE INDEX statement acquires a table-level lock on table-name. This prevents other processes from modifying
the table’s data. This lock is automatically released at the conclusion of the CREATE INDEX operation. CREATE INDEX
maintains a lock on the corresponding class definition until the completion of the create index operation, including the
population of the index data.

Options Supported for Compatibility Only

InterSystems SQL accepts the following CREATE INDEX options for parsing purposes only, to aid in the conversion of
existing SQL code to InterSystems SQL. These options do not provide any actual functionality.

CLUSTERED | NONCLUSTERED owner.catalog. ASC | DESC

The following is an example showing the placement of these no-op keywords:

CREATE UNIQUE CLUSTERED INDEX index-name
 ON TABLE owner.catalog.schema.table
 (field1 ASC, field2 DESC)

Index Name

The name of an index must be unique within a given table. Index names follow identifier conventions, subject to the
restrictions below. By default, index names are simple identifiers; an index name can be a delimited identifier. An index
name should not exceed 128 characters. Index names are not case-sensitive.

InterSystems IRIS uses the name you supply (which it refers to as the “SqlName”) to generate a corresponding index
property name in the class and the global. This index property name contains only alphanumeric characters (letters and

InterSystems SQL Reference 45

CREATE INDEX

numbers) and is a maximum of 96 characters in length. To generate an index property name, InterSystems IRIS first strips
punctuation characters from the SqlName you supply, and then generates a unique identifier of 96 (or less) characters to
create a unique index property name.

• An index name can be the same as a field, table, or view name, but such name duplication is not advised.

• An index property name (after punctuation stripping) must be unique. If you specify a duplicate SQL index name, the
system generates an SQLCODE -324 error. If you specify an SQL index name that differs only in punctuation characters
from an existing SQL index name, InterSystems IRIS substitutes a capital letter (beginning with “A”) for the final
character to create a unique index property name. Therefore it is possible (though not advisable) to create SQL index
names that differ only in their punctuation characters.

• An index property name must begin with a letter. Therefore, either the first character of the index name or the first
character after initial punctuation characters are stripped must be a letter. A valid letter is a character that passes the
$ZNAME test. If the first character of the SQL index name is a punctuation character (% or _) and the second character
is a number, InterSystems IRIS appends a lowercase “n” as the first character of the stripped index property name.

• An index name may be much longer than 31 characters, but index names that differ in their first 31 alphanumeric
characters are much easier to work with.

The Management Portal SQL interface Catalog Details displays the SQL index name (SQL Map Name) and the corresponding
index property name (Index Name) for each index.

What happens when you try to create an index with the same name as an existing index is described below.

Existing Index

By default, InterSystems IRIS rejects an attempt to create an index that has the same name as an existing index for that
table and issues an SQLCODE -324 error. This behavior is configurable system-wide using the
$SYSTEM.SQL.SetDDLNo324() method call. To determine the current setting, call $SYSTEM.SQL.CurrentSettings(),
which displays a Suppress SQLCODE=-324 Errors setting.

The default is “No” (0). By default, InterSystems IRIS rejects an attempt to create an index with the name of an existing
index for that table and issues an SQLCODE -324 error. This is the recommended setting for this option.

If this option is set to “Yes” (1), InterSystems IRIS deletes the existing index from the class definition and then recreates
it by performing the CREATE INDEX. It deletes the named index from the table specified in CREATE INDEX. This
option permits the delete/recreate of a UNIQUE constraint index (which cannot be done using a DROP INDEX command).
To delete/recreate a primary key index, refer to the ALTER TABLE command.

However, even if this option is set to allow the recreating of an existing index, you cannot recreate a Primary Key IDKEY
index if the table contains data. Attempting to do so generates an SQLCODE -324 error.

Table Name

You must specify the name of an existing table.

• If table-name is a nonexistent table, CREATE INDEX fails with an SQLCODE -30 error, and sets %msg to Table
'SQLUSER.MYTABLE' does not exist.

• If table-name is a view, CREATE INDEX fails with an SQLCODE -30 error, and sets %msg to Attempt to
CREATE INDEX 'My_Index' on view SQLUSER.MYVIEW failed. Indices only supported for

tables, not views..

Creating an index modifies the table’s definition; if you do not have permission to change the table definition, CREATE
INDEX fails with an SQLCODE -300 error, and sets %msg to DDL not enabled for class 'schema.tablename'.

46 InterSystems SQL Reference

SQL Commands

Field Names

You must specify at least one field name to index on. Specify a field name or a comma-separated list of field names enclosed
in parentheses. Duplicate field names are permitted and preserved in the index definition. Specifying more than one field
may improve performance of GROUP BY operations, for example, group by state and then by city within each state.
Generally, you should avoid indexing on a field or fields that have large amounts of duplicate data. For example, in a
database of people indexing on a Name field would be appropriate because most names are unique. Indexing on a State
field would (in most cases) not be appropriate because of the large number of duplicate data values. The fields you specify
must either be defined in the table or in the superclass of the table’s persistent class. (all classes must, of course, have been
compiled.) Specifying a nonexistent field generates an SQLCODE -31 error.

In addition to ordinary data fields, you can use CREATE INDEX to create an index:

• On a SERIAL field (a %Counter field).

• On an IDENTITY field.

• On the ELEMENTS or KEYS value for a collection.

You cannot create an index on a stream value field.

You cannot create an index with multiple IDKEY fields if one of the IDKEY fields (properties) is SQL Computed. This
limitation does not apply to a single field IDKEY index. Because multiple IDKEY fields in an index are delimited using
the “||” (double vertical bar) characters, you cannot include this character string in IDKEY field data.

Field in an Embedded Object (%SerialObject)

To index a field in an embedded object, you create an index in the table (%Persistent class) referencing that embedded
object. In CREATE INDEX the field-name specifies the name of the referencing field in the table (%Persistent object)
joined by an underbar to the field name in the embedded object (%SerialObject), as shown in the following example:

CREATE INDEX StateIdx ON TABLE Sample.Person (Home_State)

Here Home is a field in Sample.Person that references the embedded object Sample.Address, which contains the State field.

Only those embedded object records associated with the persistent class referencing property are indexed. You cannot index
a %SerialObject property directly.

For further details on defining embedded objects (also known as serial objects) refer to Embedded Object (%SerialObject);
for further details on indexing a property (field) defined in an embedded object, refer to Indexing an Embedded Object
(%SerialObject) Property.

WITH DATA Clause

Specifying this clause may allow a query to be resolved by only reading the index, which greatly reduces the amount of
disk I/O, improving performance.

You should specify the same field in the field-name and the WITH DATA datafield-name if field-name uses string collation;
this allows retrieval of the uncollated value without having to go to the Master Map. If the value in field-name does not use
string collation there is no advantage to specifying this field in the WITH DATA datafield-name.

You can specify fields in WITH DATA datafield-name that are not indexed. This allows more queries to be satisfied from
the index without going to the Master Map. The tradeoff is how many indices you want to maintain; and that adding data
to an index makes it quite a bit larger, which will slow down operations that don't need the data.

You can specify fields in WITH DATA datafield-name that are defined in the superclass for the table’s persistent class.

The UNIQUE Keyword

Using the UNIQUE keyword, you can specify that each record in the index has a unique value. More specifically, this
ensures that no two records within the index (and hence in the table that contains the index) can have the same collated

InterSystems SQL Reference 47

CREATE INDEX

value. By default, most indices use uppercase string collation (to make searches not case-sensitive). In this case, the values
“Smith” and “SMITH” are considered to be equal and not unique. CREATE INDEX cannot specify non-default index
string collation. You can specify a different string collation for individual indices by defining the index in the class definition.

You can change the namespace default collation to make fields/properties case-sensitive by default. Changing this option
requires recompiling all classes and rebuilding all indices in the namespace. Go to the Management Portal, select the Classes

option, select the namespace for your stored queries and use the Compile option to recompile the corresponding classes.
Then rebuild all indices. They will be case-sensitive.

CAUTION: Do not rebuild indices while the table’s data is being accessed by other users. Doing so may result in
inaccurate query results.

The BITMAP Keyword

Using the BITMAP keyword, you can specify that this index will be a bitmap index. A bitmap index consists of one or
more bit strings in which the bit position represents the row id, and each bit value represents the presence (1) or absence
(0) of a specific value for the field in that row (or the value for the combined field-name fields). InterSystems SQL maintains
these positional bits (as compressed bit strings) when inserting, updating, or deleting data; there is no significant difference
in the performance of INSERT, UPDATE, or DELETE operations between using a bitmap index and a regular index. A
bitmap index is highly efficient for many types of query operations. They have the following characteristics:

• You can only define bitmap indices in tables (classes) that either use system-assigned RowID with positive integer
values, or use a primary key IDKEY to define custom ID values when the IDKEY is based on a single property with
type %Integer and MINVAL > 0, or type %Numeric with SCALE = 0 and MINVAL > 0. You can use the
$SYSTEM.SQL.SetBitmapFriendlyCheck() method to set a systemwide configuration parameter to check at compile
time for this restriction. You can use $SYSTEM.SQL.GetBitmapFriendlyCheck() to determine the current configu-
ration of this option.

You can only define a bitmap index for tables that use default (%Storage.Persistent) structure. Tables with compound
keys, such as a child table, cannot use a bitmap index. If you use DDL (as opposed to using class definitions) to create
a table, it meets this requirement and you can make use of bitmap indices.

• A bitmap index should only be used when the number of possible distinct field values is limited and relatively small.
For example, a bitmap index is a good choice for a field for gender, or nationality, or timezone. A bitmap should not
be used on a field with the UNIQUE constraint. A bitmap should not be used if a field can have more than 10,000
distinct values, or if multiple indexed fields can have more than 10,000 distinct values.

• Bitmap indices are very efficient when used in combination with logical AND and OR operations in a WHERE clause.
If two or more fields are commonly queried in combination, it may be advantageous to define bitmap indices for those
fields.

For more details, refer to the “Bitmap Indices” section of the Defining and Building Indices chapter of SQL Optimization
Guide.

The BITMAPEXTENT Keyword

A bitmap extent index is a bitmap index for the table itself. InterSystems SQL uses this index to improve performance of
COUNT(*), which returns the number of records (rows) in the table. A table can have, at most, one bitmap extent index.
Attempting to create more than one bitmap extent index results in an SQLCODE -400 error with the %msg ERROR #5445:
Multiple Extent indices defined: DDLBEIndex.

All tables defined using CREATE TABLE automatically define a bitmap extent index. This automatically generated index
is assigned the Index Name DDLBEIndex and the SQL MapName %%DDLBEIndex. A table defined as a class may have
a bitmap extent index defined with an Index Name and SQL MapName of $ClassName.

48 InterSystems SQL Reference

SQL Commands

You can use CREATE BITMAPEXTENT INDEX to add a bitmap extent index to a table, or to rename an automatically-
generated bitmap extent index. The index-name you specify should be the class name corresponding to the table-name of
the table. This becomes the SQL MapName for the index. No field-name or WITH DATA clause can be specified.

The following example creates a bitmap extent index with Index Name DDLBEIndex and the SQL MapName Patient. If
Sample.Patient already had a %%DDLBEIndex bitmap extent index, this example renames that index to SQL MapName
Patient:

 &sql(CREATE BITMAPEXTENT INDEX Patient ON TABLE Sample.Patient)
 WRITE !,"SQL code: ",SQLCODE

For more details, refer to the “Bitmap Extent Index” section of the Defining and Building Indices chapter of SQL Opti-
mization Guide.

The BITSLICE Keyword

Using the BITSLICE keyword, you can specify that this index will be a bitslice index. A bitslice index is used exclusively
for numeric data which is used in calculations. A bitslice index represents each numeric data value as a binary bit string.
Rather than indexing a numeric data value using a boolean flag (as in a bitmap index), a bitslice index creates a bit string
for each numeric value, a separate bit string for each record. This is a highly specialized type of index that should only be
used for fast aggregate calculations. For example, the following would be a candidate for a bitslice index:

SELECT SUM(Salary) FROM Sample.Employee

You can create a bitslice index for a string data field, but the bitslice index will represent these data values as canonical
numbers. In other words, any non-numeric string, such as “abc” will be indexed as 0. This type of bitslice index could be
used to rapidly count records that have a value for a string field and not count those that are NULL.

A bitslice index should not be used in a WHERE clause, because they are not used by the SQL query optimizer.

Populating and maintaining a bitslice index using INSERT, UPDATE, or DELETE operations is significantly slower than
using a bitmap index or a regular index. Using several bitslice indices, and/or using a bitslice index on a field that is frequently
updated may have a significant performance cost.

A bitslice index can only be used for records that have system-assigned row Ids with positive integer values. A bitslice
index can only be used on a single field-name. You cannot specify a WITH DATA clause.

For more details, refer to the “Bitslice Indices” section of the Defining and Building Indices chapter of SQL Optimization
Guide.

Rebuilding an Index

Creating an index using the CREATE INDEX statement automatically builds the index. However, there are cases when
you may wish to explicitly rebuild an index.

CAUTION: You must take additional steps when rebuilding an index if the table’s data is being accessed by other
users. Failing to do so may result in inaccurate query results. For more details, refer to Building Indices
on an Active System.

To rebuild all indices for an inactive table, execute the following:

 SET status = ##class(myschema.mytable).%BuildIndices()

By default, this command purges the indices prior to rebuilding them. You can override this purge default and use the
%PurgeIndices() method to explicitly purge specified indices. If you call %BuildIndices() for a range of ID values,
InterSystems IRIS does not purge indices by default.

You can also purge/rebuild specified indices:

 SET status = ##class(myschema.mytable).%BuildIndices($ListBuild("NameIDX","SpouseIDX"))

InterSystems SQL Reference 49

CREATE INDEX

You may want to purge/rebuild an index if the index is corrupt or to change the case sensitivity of the index, as described
above. To recompress a bitmap index, use the %SYS.Maint.Bitmap methods, rather than purge/rebuild.

You can also use the Management Portal to rebuild all of the indices for a specified class (table).

For more details, refer to Building Indices in the “Defining and Building Indices” chapter of SQL Optimization Guide.

Examples
The following embedded SQL example creates a table named Fred, and then creates an index named "FredIndex" (by
stripping out the punctuation from the supplied name “Fred_Index”) on the Lastword and Firstword fields of the Fred table.

 &sql(CREATE TABLE Fred (
 TESTNUM INT NOT NULL,
 FIRSTWORD CHAR (30) NOT NULL,
 LASTWORD CHAR (30) NOT NULL,
 CONSTRAINT FredPK PRIMARY KEY (TESTNUM))
)
 IF SQLCODE=0 { WRITE !,"Table created" }
 ELSEIF SQLCODE=-201 { WRITE !,"Table already exists" }
 ELSE { WRITE !,"SQL table create error code is: ",SQLCODE
 QUIT }
 &sql(CREATE INDEX Fred_Index
 ON TABLE Fred
 (LASTWORD,FIRSTWORD))
 IF SQLCODE=-324 {
 WRITE !,"Index already exists"
 QUIT }
 ELSEIF SQLCODE=0 { WRITE !,"Index created" }
 ELSE { WRITE !,"SQL index create error code is: ",SQLCODE
 QUIT }

The following example creates an index, named “CityIndex” on the City field of the Staff table:

CREATE INDEX CityIndex ON Staff (City)

The following example creates an index, named “EmpIndex” on the EmpName field of the Staff table. The UNIQUE constraint
is used to avoid having rows with identical values in the fields:

CREATE UNIQUE INDEX EmpIndex ON TABLE Staff (EmpName)

The following example creates a bitmap index, named “SKUIndex” on the SKU field of the Purchases table. The BITMAP
keyword indicates that this is a bitmap index:

CREATE BITMAP INDEX SKUIndex ON TABLE Purchases (SKU)

See Also
• DROP INDEX command

• SEARCH_INDEX function

• “Defining Tables” chapter in Using InterSystems SQL

• “Defining and Building Indices” chapter in SQL Optimization Guide

• “Using Indices” in the “Optimizing Query Performance” chapter in SQL Optimization Guide

• SQL and Object Settings described in Configuration Parameter File Reference.

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

50 InterSystems SQL Reference

SQL Commands

CREATE METHOD
Creates a method in a class.

CREATE [STATIC] METHOD name (parameter_list)
 [characteristics]
 [LANGUAGE SQL]
 BEGIN
code_body ;
 END

CREATE [STATIC] METHOD name (parameter_list)
 [characteristics]
 LANGUAGE OBJECTSCRIPT
 { code_body }

Arguments

The name of the method to be created in a stored procedure class. The name
must be a valid identifier. A procedure name can be qualified
(schema.procname), or unqualified (procname). An unqualified procedure name
takes the system-wide default schema name. The name must be followed by
parentheses, even if no parameters are specified.

name

Optional — A list of parameters to pass to the method. The parameter list is
enclosed in parentheses, and parameters in the list are separated by commas.
The parentheses are mandatory, even when no parameters are specified.

parameter_list

Optional — One or more keywords specifying the characteristics of the method.
Permitted keywords are RETURNS, FOR, FINAL, PRIVATE, PROCEDURE,
SELECTMODE.

You can specify the characteristics keyword phrase RESULT SETS, DYNAMIC
RESULT SETS, or DYNAMIC RESULT SETS n, where n is an integer. These
phrases are synonyms; the DYNAMIC keyword and the n integer are no-ops
provided for compatibility.

Multiple characteristics are separated by whitespace (a space or line break).
Characteristics can be specified in any order.

characteristics

Optional — The programming language used for code_body. Specify
LANGUAGE OBJECTSCRIPT (for ObjectScript) or LANGUAGE SQL. If the
LANGUAGE clause is omitted, SQL is the default.

LANGUAGE
OBJECTSCRIPT

LANGUAGE SQL

The program code for the method.

SQL program code is prefaced with a BEGIN keyword and concludes with an
END keyword. Each complete SQL statement within code_body ends with a
semicolon (;).

ObjectScript program code is enclosed in curly braces. ObjectScript code lines
must be indented.

code_body

Description
The CREATE METHOD statement creates a class method. This class method may or may not be a stored procedure. To
create a method in a class that is exposed as an SQL stored procedure, you must specify the PROCEDURE keyword. By

InterSystems SQL Reference 51

CREATE METHOD

default, CREATE METHOD does not create a method which is also a stored procedure; the CREATE PROCEDURE
statement always creates a method which is also a stored procedure.

The optional STATIC keyword is provided to clarify that the method created is a static (class) method, not an instance
method. This keyword provides no actual functionality.

In order to create a method, you must have %CREATE_METHOD administrative privilege, as specified by the GRANT
command. If you are attempting to create a method for an existing class with a defined owner, you must be logged in as
the owner of the class. Otherwise, the operation fails with an SQLCODE -99 error.

You cannot create a method in a class if the class definition is a deployed class. This operation fails with an SQLCODE -
400 error with the %msg Unable to execute DDL that modifies a deployed class: 'classname'.

The following two examples both show the creation of the same class method. The first example uses CREATE METHOD,
the second defines the class method in the class User.Letters:

CREATE METHOD RandCaseLetter(IN caps CHAR)
 RETURNS INTEGER
 PROCEDURE
LANGUAGE OBJECTSCRIPT
{
:Top
 IF caps="U" {SET x=$RANDOM(91) IF x>64 {QUIT $CHAR(x)}
 ELSE {GOTO Top}}
 ELSEIF caps="L" {SET x=$RANDOM(123) IF x>97 {QUIT $CHAR(x)}
 ELSE {GOTO Top}}
 ELSE {QUIT "case must be 'U' or 'L'"}
}

Class User.Letters Extends %Persistent [DdlAllowed]
{
 ClassMethod RandCaseLetter(caps) As %String [SqlName = RandomLetter, SqlProc]
 {
 Top
 IF caps="U" {SET x=$RANDOM(91) IF x>64 {QUIT $CHAR(x)}
 ELSE {GOTO Top}}
 ELSEIF caps="L" { SET x=$RANDOM(123) IF x>97 {QUIT $CHAR(x)}
 ELSE {GOTO Top}}
 ELSE {QUIT "case must be 'U' or 'L'"}
 }
}

For information on calling methods from within SQL statements, refer to User-defined Functions in the “Querying the
Database” chapter of Using InterSystems SQL. For calling SQL stored procedures in a variety of contexts, refer to the
CALL statement.

Arguments

name

The name of the method to be created. This name may be unqualified (StoreName) and take the system-wide default schema
name, or qualified by specifying the schema name (Patient.StoreName). You can use the $SYSTEM.SQL.DefaultSchema()
method to determine the current system-wide default schema name. The initial system-wide default schema name is
SQLUser which corresponds to the class package name User.

Note that the FOR characteristic (described below) overrides the class name specified in name. If a method with this name
already exists, the operation fails with an SQLCODE -361 error.

The name of the generated class is the package name corresponding to the schema name, followed by a dot, followed by
“meth”, followed by the specified name. For example, if the unqualified method name RandomLetter takes the initial
default schema SQLUser, the resulting class name would be: User.methRandomLetter. For further details, see SQL
to Class Name Transformations in the “Defining and Using Stored Procedures” chapter of Using InterSystems SQL.

InterSystems SQL does not allow you to specify a duplicate method name that differs only in letter case. Specifying a
method name that differs only in letter case from an existing method name results in an SQLCODE -400 error.

52 InterSystems SQL Reference

SQL Commands

parameter-list

A list of parameters used to pass values to the method. The parameter list is enclosed in parentheses, and parameter decla-
rations in the list are separated by commas. The parentheses are mandatory, even when specifying no parameters. Each
parameter declaration in the list consists of (in order):

• An optional keyword specifying whether the parameter mode is IN (input value), OUT (output value), or INOUT
(modify value). If omitted, the default parameter mode is IN.

• The parameter name. Parameter names are case-sensitive.

• The data type of the parameter.

• Optional: A default value for the parameter. You can specify the DEFAULT keyword followed by a default value; the
DEFAULT keyword is optional. If no default is specified, the assumed default is NULL.

The output value from a method is automatically converted from Logical format to Display/ODBC format.

An input value to a method is, by default, not converted from Display/ODBC format to Logical format. However, input
display-to-logical conversion can be configured systemwide using the $SYSTEM.SQL.SetSQLFunctionArgConversion()
method. You can use $SYSTEM.SQL.GetSQLFunctionArgConversion() to determine the current configuration of this
option.

The following example specifies two input parameters, both of which have default values. The optional DEFAULT keyword
is specified for the first parameter, omitted for the second parameter:

CREATE METHOD RandomLetter(IN firstlet CHAR DEFAULT 'A',IN lastlet CHAR 'Z')
BEGIN
-- SQL program code
END

characteristics

The available keywords are as follows:

InterSystems SQL Reference 53

CREATE METHOD

Specifies the name of the class in which to create the method. If the class
does not exist, it will be created.You can also specify a class name by
qualifying the method name.The class name specified in the FOR clause
overrides a class name specified by qualifying the method name.

FOR className

Specifies that subclasses cannot override the method. By default, methods
are not final. The FINAL keyword is inherited by subclasses.

FINAL

Specifies that the method can only be invoked by other methods of its
own class or subclasses. By default, a method is public, and can be
invoked without restriction. This restriction is inherited by subclasses.

PRIVATE

Specifies that the method is an SQL stored procedure. Stored procedures
are inherited by subclasses. (This keyword can be abbreviated as PROC.)

PROCEDURE

Specifies that the method created will contain the ReturnResultsets
keyword. All forms of this characteristics phrase are synonyms.

RESULT SETS

DYNAMIC RESULT SETS [n]

Specifies the data type of the value returned by a call to the method. If
RETURNS is omitted, the method cannot return a value.This specification
is inherited by subclasses, and can be modified by subclasses. This
datatype can specify type parameters such as MINVAL, MAXVAL, and
SCALE. For example RETURNS DECIMAL(19,4). Note that when returning
a value, InterSystems IRIS ignores the length of datatype; for example,
RETURNS VARCHAR(32) can receive a string of any length that is returned
by a call to the method.

RETURNS datatype

Only used when LANGUAGE is SQL (the default). When specified,
InterSystems IRIS adds an #SQLCOMPILE SELECT=mode statement to
the corresponding class method, thus generating the SQL statements
defined in the method with the specified SELECTMODE. The possible
mode values are LOGICAL, ODBC, RUNTIME, and DISPLAY.The default
is LOGICAL.

SELECTMODE mode

If you specify a query keyword (such as CONTAINSID or RESULTS) that is not valid for a method, the system generates
an SQLCODE -47 error. If you specify a duplicate query keyword (such as FINAL FINAL), the system generates an
SQLCODE -44 error.

The SELECTMODE clause is used for SELECT query operations and for INSERT and UPDATE operations. It specifies
the compile-time select mode. The value that you specify for SELECTMODE is added at the beginning of the ObjectScript
class method code as: #SQLCompile Select=mode. For further details, see #SQLCompile Select in the “ObjectScript Macros
and the Macro Preprocessor” chapter of Using ObjectScript.

• In a SELECT query, the SELECTMODE specifies the mode in which data is returned. If the mode value is LOGICAL,
then logical (internal storage) values are returned. For example, dates are returned in $HOROLOG format. If the mode
value is ODBC, logical-to-ODBC conversion is applied, and ODBC format values are returned. If the mode value is
DISPLAY, logical-to-display conversion is applied, and display format values are returned. If the mode value is
RUNTIME, the display mode can be set (to LOGICAL, ODBC, or DISPLAY) at execution time.

• In an INSERT or UPDATE operation, the SELECTMODE RUNTIME option supports automatic conversion of input
data values from a display format (DISPLAY or ODBC) to logical storage format. This compiled display-to-logical
data conversion code is applied only if the select mode setting when the SQL code is executed is LOGICAL (which
is the default for all InterSystems SQL execution interfaces).

54 InterSystems SQL Reference

SQL Commands

When the SQL code is executed, the %SQL.Statement class %SelectMode property specifies the execution-time select
mode, as described in “Using Dynamic SQL” chapter of Using InterSystems SQL. For further details on SelectMode
options, refer to “Data Display Options” in the “ InterSystems IRIS SQL Basics” chapter of Using InterSystems SQL.

LANGUAGE

A keyword clause specifying the language you are using for code_body. Permitted clauses are LANGUAGE OBJECTSCRIPT
(for ObjectScript) or LANGUAGE SQL. If the LANGUAGE clause is omitted, SQL is the default.

code_body

The program code for the method to be created. You specify this code in either SQL or ObjectScript. The language used
must match the LANGUAGE clause. However, code specified in ObjectScript can contain embedded SQL.

InterSystems IRIS uses the code you supply to generate the actual code of the method.

If the code you specify is SQL, InterSystems IRIS provides additional lines of code when generating the method that embed
the SQL in an ObjectScript “wrapper,” provide a procedure context handler (if necessary), and handle return values. The
following is an example of this InterSystems IRIS-generated wrapper code:

 NEW SQLCODE,%ROWID,%ROWCOUNT,title
 &sql(SELECT col FROM tbl)
 QUIT $GET(title)

If the code you specify is OBJECTSCRIPT, the ObjectScript code must be enclosed in curly braces. All code lines must
be indented from column 1, except for labels and macro preprocessor directives. A label or macro directive must be prefaced
by a colon (:) in column 1.

For ObjectScript code, you must explicitly define the “wrapper” (which NEWs variable and uses QUIT exit and (optionally)
to return a value upon completion).

The method can be exposed as a stored procedure by specifying the PROCEDURE keyword. When a stored procedure is
called, an object of the class %Library.SQLProcContext is instantiated in the %sqlcontext variable. This procedure context
handler is used to pass the procedure context back and forth between the procedure and its caller (for example, the ODBC
server).

%sqlcontext consists of several properties, including an Error object, the SQLCODE error status, the SQL row count, and
an error message. The following example shows the values used to set several of these:

 SET %sqlcontext.%SQLCODE=SQLCODE
 SET %sqlcontext.%ROWCOUNT=%ROWCOUNT
 SET %sqlcontext.%Message=%msg

The values of SQLCODE and %ROWCOUNT are automatically set by the execution of an SQL statement. The %sqlcontext

object is reset before each execution.

Alternatively, an error context can be established by instantiating a %SYSTEM.Error object and setting it as %sqlcontext.Error.

Examples
The following example uses CREATE METHOD with SQL code to generate the method UpdateSalary in the class
Sample.Employee:

CREATE METHOD UpdateSalary (IN SSN VARCHAR(11), IN Salary INTEGER)
 FOR Sample.Employee
 BEGIN
 UPDATE Sample.Employee SET Salary = :Salary WHERE SSN = :SSN;
 END

The following example creates the RandomLetter() method stored as a procedure that generates a random capital letter.
You can then invoke this method as a function in a SELECT statement. A DROP METHOD is provided to delete the
RandomLetter() method.

InterSystems SQL Reference 55

CREATE METHOD

CREATE METHOD RandomLetter()
RETURNS INTEGER
PROCEDURE
LANGUAGE OBJECTSCRIPT
{
:Top
 SET x=$RANDOM(91)
 IF x<65 {GOTO Top}
 ELSE {QUIT $CHAR(x)}
}

SELECT Name FROM Sample.Person
WHERE Name %STARTSWITH RandomLetter()

DROP METHOD RandomLetter

The following

The following Embedded SQL example uses CREATE METHOD with ObjectScript code to generate the method
TraineeTitle in the class SQLUser.MyStudents and returns a Title value:

 &sql(CREATE METHOD TraineeTitle(
 IN SSN VARCHAR(11),
 INOUT Title VARCHAR(50))
 RETURNS VARCHAR(30)
 FOR SQLUser.MyStudents
 LANGUAGE OBJECTSCRIPT
 {
 NEW SQLCODE,%ROWCOUNT
 &sql(SELECT Title INTO :Title FROM Sample.Employee
 WHERE SSN = :SSN)
 IF $GET(%sqlcontext)'= "" {
 SET %sqlcontext.%SQLCODE=SQLCODE
 SET %sqlcontext.%ROWCOUNT=%ROWCOUNT }
 QUIT
 })
 IF SQLCODE=0 { WRITE !,"Created a method" QUIT}
 ELSEIF SQLCODE=-361 { WRITE !,"Method already exists SQLCODE: ",SQLCODE
 &sql(DROP METHOD TraineeTitle FROM SQLUser.MyStudents)
 IF SQLCODE=0 { WRITE !,"Dropped a method" QUIT}}
 ELSE { WRITE !,"SQL error: ",SQLCODE }

It uses the %sqlcontext object, and sets its %SQLCODE and %ROWCOUNT properties using the corresponding SQL
variables. Note the curly braces enclosing the ObjectScript code following the method’s LANGUAGE OBJECTSCRIPT
keyword. Within the ObjectScript code there is Embedded SQL code, marked by &sql and enclosed in parentheses.

See Also
• CALL

• CREATE PROCEDURE

• DROP METHOD

• “Defining and Using Stored Procedures” chapter in Using InterSystems SQL.

56 InterSystems SQL Reference

SQL Commands

CREATE PROCEDURE
Creates a method or query which is exposed as an SQL stored procedure.

CREATE PROCEDURE procname(parameter_list)
 [characteristics]
 [LANGUAGE SQL]
 BEGIN
code_body ;
 END

CREATE PROCEDURE procname(parameter_list)
 [characteristics]
 LANGUAGE OBJECTSCRIPT
 { code_body }

CREATE PROC procname(parameter_list)
 [characteristics]
 [LANGUAGE SQL]
 BEGIN
code_body ;
 END

CREATE PROC procname(parameter_list)
 [characteristics]
 LANGUAGE OBJECTSCRIPT
 { code_body }

Arguments

The name of the procedure to be created in a stored procedure class. The
procname must be a valid identifier. A procedure name can be qualified
(schema.procname), or unqualified (procname). An unqualified procedure
name takes the system-wide default schema name. The procname must be
followed by parentheses, even if no parameters are specified.

procname

Optional — A list of zero or more parameters to pass to the procedure. The
parameter list is enclosed in parentheses, and parameters in the list are
separated by commas. The parentheses are mandatory, even when no
parameters are specified. Each parameter consists of (in order): an optional
IN, OUT, or INOUT keyword; the variable name; the data type; and an optional
DEFAULT clause.

parameter_list

Optional — One or more keywords specifying the characteristics of the pro-
cedure. When creating a method, permitted keywords are FINAL, FOR,
PRIVATE, RETURNS, SELECTMODE. When creating a query, permitted
keywords are CONTAINID, FINAL, FOR, RESULTS, SELECTMODE.

You can specify the characteristics keyword phrase RESULT SETS, DYNAMIC
RESULT SETS, or DYNAMIC RESULT SETS n, where n is an integer.These
phrases are synonyms; the DYNAMIC keyword and the n integer are no-ops
provided for compatibility.

Multiple characteristics are separated by whitespace (a space or line break).
Characteristics can be specified in any order.

characteristics

Optional — A keyword clause specifying the programming language used for
code_body. Specify LANGUAGE OBJECTSCRIPT (for ObjectScript) or
LANGUAGE SQL. If the LANGUAGE clause is omitted, SQL is the default.

LANGUAGE
OBJECTSCRIPT

LANGUAGE SQL

InterSystems SQL Reference 57

CREATE PROCEDURE

The program code for the procedure.

SQL program code is prefaced with a BEGIN keyword and concludes with
an END keyword. Each complete SQL statement within code_body ends with
a semicolon (;).

ObjectScript program code is enclosed in curly braces. ObjectScript code
lines must be indented.

code_body

Description
The CREATE PROCEDURE statement creates a method or a query which is automatically exposed as an SQL stored
procedure. A stored procedure can be invoked by all processes in the current namespace. Stored procedures are inherited
by subclasses.

• If LANGUAGE SQL, the code_body must contain a SELECT statement in order to generate a query exposed as a
stored procedure. If the code does not contain a SELECT statement, CREATE PROCEDURE creates a method.

• If LANGUAGE OBJECTSCRIPT, the code_body must call Execute() and Fetch() methods in order to generate a
query exposed as a stored procedure. It may also call Close(), FetchRows(), and GetInfo() methods. If the code does
not call Execute() and Fetch(), CREATE PROCEDURE creates a method.

By default, CREATE PROCEDURE creates a method exposed as a stored procedure.

To create a method not exposed as a stored procedure, use the CREATE METHOD or CREATE FUNCTION statement.
To create a query not exposed as a stored procedure, use the CREATE QUERY statement. These statements can also be
used to create a method or query exposed as a stored procedure by specifying the PROCEDURE characteristic keyword.

In order to create a procedure, you must have %CREATE_PROCEDURE administrative privilege, as specified by the
GRANT command. If you are attempting to create a procedure for an existing class with a defined owner, you must be
logged in as the owner of the class. Otherwise, the operation fails with an SQLCODE -99 error.

You cannot create a procedure in a class if the class definition is a deployed class. This operation fails with an SQLCODE
-400 error with the %msg Unable to execute DDL that modifies a deployed class: 'classname'.

A stored procedure is executed using the CALL statement.

For information on calling methods from within SQL statements, refer to User-defined Functions in the “Querying the
Database” chapter of Using InterSystems SQL.

Arguments

procname

The name of the method or query to be created as a stored procedure. This name may be unqualified (StoreName) and take
the system-wide default schema name, or qualified by specifying the schema name (Patient.StoreName). You can use the
$SYSTEM.SQL.DefaultSchema() method to determine the current system-wide default schema name. The initial system-
wide default schema name is SQLUser which corresponds to the class package name User.

Note that the FOR characteristic (described below) overrides the class name specified in procname. If a procedure with
this name already exists, the operation fails with an SQLCODE -361 error.

The name of the generated class is the package name corresponding to the schema name, followed by a dot, followed by
“proc”, followed by the specified procname. For example, if the unqualified procedure name RandomLetter takes the
initial default schema SQLUser, the resulting class name would be: User.procRandomLetter. For further details, see
SQL to Class Name Transformations in the “Defining and Using Stored Procedures” chapter of Using InterSystems SQL.

InterSystems SQL does not allow you to specify a procname that differs only in letter case. Specifying a procname that
differs only in letter case from an existing procedure name results in an SQLCODE -400 error.

58 InterSystems SQL Reference

SQL Commands

If the specified procname already exists in the current namespace, the system generates an SQLCODE -361 error. To
determine if a specified procname already exists in the current namespace, use the $SYSTEM.SQL.ProcedureExists()
method.

Note: InterSystems SQL procedure names and InterSystems TSQL procedure names share the same set of names.
Therefore, you cannot create an SQL procedure that has the same name as a TSQL procedure in the same
namespace. Attempting to do so results in an SQLCODE -400 error.

The name of a procedure must be followed by parameter parentheses.

parameter_list

A list of parameters used to pass values to the method or query. The parameter list is enclosed in parentheses, and parameter
declarations in the list are separated by commas. The parentheses are mandatory, even if you specify no parameters.

Each parameter declaration in the list consists of (in order):

• An optional keyword specifying whether the parameter mode is IN (input value), OUT (output value), or INOUT
(modify value). If omitted, the default parameter mode is IN.

• The parameter name. Parameter names are case-sensitive.

• The data type of the parameter.

• Optional: A default value for the parameter. You can specify the DEFAULT keyword followed by a default value; the
DEFAULT keyword is optional. If no default is specified, the assumed default is NULL.

The following example creates a stored procedure with two input parameters, both of which have default values. One input
parameter specifies the optional DEFAULT keyword, the other input parameter omits this keyword:

CREATE PROCEDURE AgeQuerySP(IN topnum INT DEFAULT 10,IN minage INT 20)
 BEGIN
 SELECT TOP :topnum Name,Age FROM Sample.Person
 WHERE Age > :minage ;
 END

The following example is functionally identical to the example above. The optional DEFAULT keyword is omitted:

CREATE PROCEDURE AgeQuerySP(IN topnum INT 10,IN minage INT 20)
 BEGIN
 SELECT TOP :topnum Name,Age FROM Sample.Person
 WHERE Age > :minage ;
 END

The following are all valid CALL statements for this procedure: CALL AgeQuerySP(6,65); CALL AgeQuerySP(6);
CALL AgeQuerySP(,65); CALL AgeQuerySP().

The following example creates a method exposed as a stored procedure with three parameters:

CREATE PROCEDURE UpdatePaySP
 (IN Salary INTEGER DEFAULT 0,
 IN Name VARCHAR(50),
 INOUT PayBracket VARCHAR(50) DEFAULT 'NULL')
BEGIN
 UPDATE Sample.Person SET Salary = :Salary
 WHERE Name=:Name ;
END

A stored procedure does not perform automatic format conversion of parameters. For example, an input parameter in ODBC
format or Display format remains in that format. It is the responsibility of the code that calls the procedure, and the procedure
code itself, to handle IN/OUT values in a format appropriate to the application, and to perform any necessary conversions.

Because the method or query is exposed as a stored procedure, it uses a procedure context handler to pass the procedure
context back and forth between the procedure and its caller. When a stored procedure is called, an object of the class

InterSystems SQL Reference 59

CREATE PROCEDURE

%Library.SQLProcContext is instantiated in the %sqlcontext variable. This is used to pass the procedure context back and
forth between the procedure and its caller (for example, the ODBC server).

%sqlcontext consists of several properties, including an Error object, the SQLCODE error status, the SQL row count, and
an error message. The following example shows the values used to set several of these:

 SET %sqlcontext.%SQLCODE=SQLCODE
 SET %sqlcontext.%ROWCOUNT=%ROWCOUNT
 SET %sqlcontext.%Message=%msg

The values of SQLCODE and %ROWCOUNT are automatically set by the execution of an SQL statement. The %sqlcontext

object is reset before each execution.

Alternatively, an error context can be established by instantiating a %SYSTEM.Error object and setting it as %sqlcontext.Error.

characteristics

Different characteristics are used for creating a method than those used to create a query.

If you specify a characteristics that is not valid, the system generates an SQLCODE -47 error. Specifying duplicate
characteristics results in an SQLCODE -44 error.

The available method characteristics keywords are as follows:

MeaningMethod Keyword

Specifies the name of the class in which to create the method. If the class
does not exist, it will be created.You can also specify a class name by
qualifying the method name. The class name specified in the FOR clause
overrides a class name specified by qualifying the method name.

If you specify the class name using the FOR my.class syntax, InterSystems
IRIS defines the class method with Sqlname=procname. Therefore, the
method should be invoked as my.procname() (not my.class_procname()).

FOR className

Specifies that subclasses cannot override the method. By default, methods
are not final. The FINAL keyword is inherited by subclasses.

FINAL

Specifies that the method can only be invoked by other methods of its own
class or subclasses. By default, a method is public, and can be invoked
without restriction. This restriction is inherited by subclasses.

PRIVATE

Specifies that the method created will contain the ReturnResultsets
keyword. All forms of this characteristics phrase are synonyms.

RESULT SETS

DYNAMIC RESULT SETS [n]

Specifies the data type of the value returned by a call to the method. If
RETURNS is omitted, the method cannot return a value.This specification
is inherited by subclasses, and can be modified by subclasses. This
datatype can specify type parameters such as MINVAL, MAXVAL, and
SCALE. For example RETURNS DECIMAL(19,4). Note that when returning
a value, InterSystems IRIS ignores the length of datatype; for example,
RETURNS VARCHAR(32) can receive a string of any length that is returned
by a call to the method.

RETURNS datatype

60 InterSystems SQL Reference

SQL Commands

MeaningMethod Keyword

Only used when LANGUAGE is SQL (the default). When specified,
InterSystems IRIS adds an #SQLCOMPILE SELECT=mode statement to
the corresponding class method, thus generating the SQL statements
defined in the method with the specified SELECTMODE. The possible
mode values are LOGICAL, ODBC, RUNTIME, and DISPLAY. The default
is LOGICAL.

SELECTMODE mode

The available query characteristics keywords are as follows:

DescriptionQuery Keyword

Specifies which field, if any, returns the ID. Set CONTAINID to the
number of the column that returns the ID, or 0 if no column returns the
ID. InterSystems IRIS does not validate that the named field actually
contains the ID, so a user error here results in inconsistent data.

CONTAINID integer

Specifies the name of the class in which to create the method. If the
class does not exist, it will be created.You can also specify a class
name by qualifying the method name. The class name specified in the
FOR clause overrides a class name specified by qualifying the method
name.

FOR className

Specifies that subclasses cannot override the method. By default,
methods are not final. The FINAL keyword is inherited by subclasses.

FINAL

Specifies the data fields in the order that they are returned by the query.
If you specify a RESULTS clause, you must list all fields returned by
the query as a comma-separated list enclosed in parentheses. Specify-
ing fewer or more fields than are returned by the query results in a
SQLCODE -76 cardinality mismatch error.

For each field you specify a column name (which will be used as the
column header) and a data type.

If LANGUAGE SQL, you can omit the RESULTS clause. If you omit the
RESULTS clause, the ROWSPEC is automatically generated during
class compilation.

RESULTS (result_set)

Specifies the mode used to compile the query. The possible values are
LOGICAL, ODBC, RUNTIME, and DISPLAY. The default is RUNTIME.

SELECTMODE mode

The SELECTMODE clause is used for SELECT query operations and for INSERT and UPDATE operations. It specifies
the compile-time select mode. The value that you specify for SELECTMODE is added at the beginning of the ObjectScript
class method code as: #SQLCompile Select=mode. For further details, see #SQLCompile Select in the “ObjectScript Macros
and the Macro Preprocessor” chapter of Using ObjectScript.

• In a SELECT query, the SELECTMODE specifies the mode in which data is returned. If the mode value is LOGICAL,
then logical (internal storage) values are returned. For example, dates are returned in $HOROLOG format. If the mode
value is ODBC, logical-to-ODBC conversion is applied, and ODBC format values are returned. If the mode value is
DISPLAY, logical-to-display conversion is applied, and display format values are returned. If the mode value is
RUNTIME, the display mode can be set (to LOGICAL, ODBC, or DISPLAY) at execution time.

• In an INSERT or UPDATE operation, the SELECTMODE RUNTIME option supports automatic conversion of input
data values from a display format (DISPLAY or ODBC) to logical storage format. This compiled display-to-logical
data conversion code is applied only if the select mode setting when the SQL code is executed is LOGICAL (which
is the default for all InterSystems SQL execution interfaces).

InterSystems SQL Reference 61

CREATE PROCEDURE

When the SQL code is executed, the %SQL.Statement class %SelectMode property specifies the execution-time select
mode, as described in “Using Dynamic SQL” chapter of Using InterSystems SQL. For further details on SelectMode
options, refer to “Data Display Options” in the “ InterSystems IRIS SQL Basics” chapter of Using InterSystems SQL.

The RESULTS clause specifies the results of a query. The SQL data type parameters in the RESULTS clause are translated
into corresponding InterSystems IRIS data type parameters in the query’s ROWSPEC. For example, the RESULTS clause
RESULTS (Code VARCHAR(15)) generates a ROWSPEC specification of ROWSPEC =
“Code:%Library.String(MAXLEN=15)”.

LANGUAGE

A keyword clause specifying the language you are using for code_body. Permitted clauses are LANGUAGE OBJECTSCRIPT
(for ObjectScript) or LANGUAGE SQL. If the LANGUAGE clause is omitted, SQL is the default.

code_body

The program code for the method or query to be created. You specify this code in either SQL or ObjectScript. The language
used must match the LANGUAGE clause. However, code specified in ObjectScript can contain embedded SQL. InterSystems
IRIS uses the code you supply to generate the actual code of the method or query.

• SQL program code is prefaced with a BEGIN keyword, followed by the SQL code itself. At the end of each complete
SQL statement, specify a semicolon (;). A query contains only one SQL statement—a SELECT statement. You can
also create procedures that insert, update, or delete data. SQL program code concludes with an END keyword.

Input parameters are specified in the SQL statement as host variables, with the form :name. (Note that you should not
use question marks (?) to specify input parameters in the SQL code. The procedure will successfully build, but when
it is called these parameters cannot be passed or take default values.)

• ObjectScript program code is enclosed within curly braces: { code }. Lines of code must be indented. If specified,
a label or a #Include preprocessor command must be prefaced by a colon and appear in the first column, as shown
in the following example:

CREATE PROCEDURE SP123()
 LANGUAGE OBJECTSCRIPT
{
:Top
:#Include %occConstant
 WRITE "Hello World"
 IF 0=$RANDOM(2) { GOTO Top }
 ELSE {QUIT $$$OK }
}

The system automatically includes %occInclude. If program code contains InterSystems IRIS Macro Preprocessor
statements (# commands, ## functions, or $$$macro references) the processing and expansion of these statements is
part of the procedure's method definition, and get processed and expanded when the method is compiled. For more
details on preprocessor commands, see ObjectScript Macros and the Macro Preprocessor in Using ObjectScript.

InterSystems IRIS provides additional lines of code when generating the procedure that embed the SQL in an ObjectScript
“wrapper,” provide a procedure context handler, and handle return values. The following is an example of this InterSystems
IRIS-generated wrapper code:

 NEW SQLCODE,%ROWID,%ROWCOUNT,title
 &sql(
 -- code_body
)
 QUIT $GET(title)

If the code you specify is OBJECTSCRIPT, you must explicitly define the “wrapper” (which NEWs variable and uses
QUIT val to return a value upon completion.

Examples
The examples that follow are divided into those that use an SQL code_body, and those that use an ObjectScript code_body.

62 InterSystems SQL Reference

SQL Commands

Examples Using SQL Code

The following example creates a simple query, named PersonStateSP, exposed as a stored procedure. It declares no
parameters and takes default values for characteristics and LANGUAGE:

 WRITE !,"Creating a procedure"
 &sql(CREATE PROCEDURE PersonStateSP() BEGIN
 SELECT Name,Home_State FROM Sample.Person ;
 END)
 IF SQLCODE=0 { WRITE !,"Created a procedure" }
 ELSEIF SQLCODE=-361 { WRITE !,"Procedure already exists" }
 ELSE { WRITE !,"SQL error: ",SQLCODE }

You can go to the Management Portal, select the Classes option, then select the SAMPLES namespace. There you will
find the stored procedure created by the above example: User.procPersonStateSP.cls. From this display you can delete this
procedure before rerunning the above program example. You can, of course, use DROP PROCEDURE to delete a procedure:

 WRITE !,"Deleting a procedure"
 &sql(DROP PROCEDURE SAMPLES.PersonStateSP)
 IF SQLCODE=0 { WRITE !,"Deleted a procedure" }
 ELSEIF SQLCODE=-362 { WRITE !,"Procedure did not exist" }
 ELSE { WRITE !,"SQL error: ",SQLCODE }

The following example creates a procedure to update data. It uses CREATE PROCEDURE to generate the method
UpdateSalary in the class Sample.Employee:

CREATE PROCEDURE UpdateSalary (IN SSN VARCHAR(11), IN Salary INTEGER)
 FOR Sample.Employee
 BEGIN
 UPDATE Sample.Employee SET Salary = :Salary WHERE SSN = :SSN;
 END

Examples Using ObjectScript Code

The following example creates the RandomLetterSP() stored procedure method that generates a random capital letter. You
can then invoke this method as a function in a SELECT statement. A DROP PROCEDURE is provided to delete the
RandomLetterSP() method.

CREATE PROCEDURE RandomLetterSP()
RETURNS INTEGER
LANGUAGE OBJECTSCRIPT
{
:Top
 SET x=$RANDOM(90)
 IF x<65 {GOTO Top}
 ELSE {QUIT $CHAR(x)}
}

SELECT Name FROM Sample.Person
WHERE Name %STARTSWITH RandomLetterSP()

DROP PROCEDURE RandomLetterSP

The following CREATE PROCEDURE example uses ObjectScript calls to the Execute(), Fetch(). and Close() methods.
Such procedures may also contain FetchRows() and GetInfo() method calls:

CREATE PROCEDURE GetTitle()
 FOR Sample.Employee
 RESULTS (ID %Integer)
 CONTAINID 1
 LANGUAGE OBJECTSCRIPT
 Execute(INOUT qHandle %Binary)
 { QUIT 1 }
 Fetch(INOUT qHandle %Binary, INOUT Row %List, INOUT AtEnd %Integer)
 { QUIT 1 }
 Close(INOUT qHandle %Binary)
 { QUIT 1 }

The following CREATE PROCEDURE example uses an ObjectScript call to the %SQL.Statement result set class:

InterSystems SQL Reference 63

CREATE PROCEDURE

CREATE PROCEDURE Sample_Employee.GetTitle(
 INOUT Title VARCHAR(50))
 RETURNS VARCHAR(30)
 FOR Sample.Employee
 LANGUAGE OBJECTSCRIPT
 {
 SET myquery="SELECT TOP 10 Name,Title FROM Sample.Employee"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"
 }

If the ObjectScript code block fetches data into a local variable (for example, Row), you must conclude the code block with
the line SET Row="" to indicate an end-of-data condition.

The following example uses CREATE PROCEDURE with ObjectScript code that invokes Embedded SQL. It generates
the method GetTitle in the class Sample.Employee and passes out the Title value as a parameter:

CREATE PROCEDURE Sample_Employee.GetTitle(
 IN SSN VARCHAR(11),
 INOUT Title VARCHAR(50))
 RETURNS VARCHAR(30)
 FOR Sample.Employee
 LANGUAGE OBJECTSCRIPT
 {
 NEW SQLCODE,%ROWCOUNT
 &sql(SELECT Title INTO :Title FROM Sample.Employee
 WHERE SSN = :SSN)
 IF $GET(%sqlcontext)'= "" {
 SET %sqlcontext.%SQLCODE=SQLCODE
 SET %sqlcontext.%ROWCOUNT=%ROWCOUNT }
 QUIT
 }

It uses the %sqlcontext object, and sets its %SQLCODE and %ROWCOUNT properties using the corresponding SQL
variables. Note the curly braces enclosing the ObjectScript code following the procedure’s LANGUAGE OBJECTSCRIPT
keyword. Within the ObjectScript code there is Embedded SQL code, marked by &sql and enclosed in parentheses.

See Also
• SELECT

• CALL

• DROP PROCEDURE

• CREATE METHOD CREATE FUNCTION

• GRANT

• “Defining and Using Stored Procedures” chapter in Using InterSystems SQL.

• “Querying the Database” chapter in Using InterSystems SQL

64 InterSystems SQL Reference

SQL Commands

CREATE QUERY
Creates a query.

CREATE QUERY queryname(parameter_list) [characteristics]
 [LANGUAGE SQL]
 BEGIN
code_body ;
 END

CREATE QUERY queryname(parameter_list) [characteristics]
 LANGUAGE OBJECTSCRIPT
 { code_body }

Arguments

The name of the query to be created in a stored procedure class. The queryname
must be a valid identifier. A procedure name can be qualified (schema.procname),
or unqualified (procname). An unqualified procedure name takes the system-wide
default schema name. The queryname must be followed by parentheses, even if
no parameters are specified.

queryname

Optional — A list of parameters to pass to the query.The parameter list is enclosed
in parentheses, and parameters in the list are separated by commas. The
parentheses are mandatory, even when no parameters are specified.

parameter_list

Optional — One or more keywords specifying the characteristics of the query.
Permitted keywords are RESULTS, CONTAINID, FOR, FINAL, PROCEDURE,
SELECTMODE. Multiple characteristics are separated by whitespace (a space or
line break). Characteristics can be specified in any order.

characteristics

Optional — A keyword clause specifying the programming language used for
code_body. Specify either LANGUAGE OBJECTSCRIPT or LANGUAGE SQL. If
the LANGUAGE clause is omitted, SQL is the default.

LANGUAGE
OBJECTSCRIPT

LANGUAGE SQL

The program code for the query.

SQL program code is prefaced with a BEGIN keyword and concludes with an END
keyword.The code_body for a query consists of only one complete SQL statement
(a SELECT statement). This SELECT statement ends with a semicolon (;).

ObjectScript program code is enclosed in curly braces. ObjectScript code lines
must be indented.

code_body

Description
The CREATE QUERY statement creates a query in a class. By default, a query named MySelect would be stored as
User.queryMySelect or SQLUser.queryMySelect.

CREATE QUERY creates a query which may or may not be exposed as a stored procedure. To create a query that is
exposed as a stored procedure, you must specify the PROCEDURE keyword as one of its characteristics. You can also
use the CREATE PROCEDURE statement to create a query which is exposed as a stored procedure.

In order to create a query, you must have %CREATE_QUERY administrative privilege, as specified by the GRANT
command. If you are attempting to create a query for an existing class with a defined owner, you must be logged in as the
owner of the class. Otherwise, the operation fails with an SQLCODE -99 error.

InterSystems SQL Reference 65

CREATE QUERY

You cannot create a query in a class if the class definition is a deployed class. This operation fails with an SQLCODE -400
error with the %msg Unable to execute DDL that modifies a deployed class: 'classname'.

Arguments

queryname

The name of the query to be created as a stored procedure. This name may be unqualified (StoreName) and take the system-
wide default schema name, or qualified by specifying the schema name (Patient.StoreName). You can use the
$SYSTEM.SQL.DefaultSchema() method to determine the current system-wide default schema name. The initial system-
wide default schema name is SQLUser which corresponds to the class package name User.

Note that the FOR characteristic (described below) overrides the class name specified in queryname. If a method with this
name already exists, the operation fails with an SQLCODE -361 error.

The name of the generated class is the package name corresponding to the schema name, followed by a dot, followed by
“query”, followed by the specified queryname. For example, if the unqualified query name RandomLetter takes the initial
default schema SQLUser, the resulting class name would be: User.queryRandomLetter. For further details, see SQL
to Class Name Transformations in the “Defining and Using Stored Procedures” chapter of Using InterSystems SQL.

InterSystems SQL does not allow you to specify a queryname that differs only in letter case. Specifying a queryname that
differs only in letter case from an existing query name results in an SQLCODE -400 error.

If the specified queryname already exists in the current namespace, the system generates an SQLCODE -361 error.

parameter-list

A list of parameter declarations for parameters used to pass values to the query. The parameter list is enclosed in parentheses,
and parameter declarations in the list are separated by commas. The parentheses are mandatory, even if you specify no
parameters.

Each parameter declaration in the list consists of (in order):

• An optional keyword specifying whether the parameter mode is IN (input value), OUT (output value), or INOUT
(modify value). If omitted, the default parameter mode is IN.

• The parameter name. Parameter names are case-sensitive.

• The data type of the parameter.

• Optional: A default value for the parameter. You can specify the DEFAULT keyword followed by a default value; the
DEFAULT keyword is optional. If no default is specified, the assumed default is NULL.

The following example creates a query exposed as a stored procedure with two input parameters, both of which have default
values. The topnum input parameter specifies the optional DEFAULT keyword; the minage input parameter omits this
keyword:

CREATE QUERY AgeQuery(IN topnum INT DEFAULT 10,IN minage INT 20)
 PROCEDURE
 BEGIN
 SELECT TOP :topnum Name,Age FROM Sample.Person
 WHERE Age > :minage ;
 END

The following are all valid CALL statements for this query: CALL AgeQuery(6,65); CALL AgeQuery(6); CALL
AgeQuery(,65); CALL AgeQuery().

characteristics

The available characteristics keywords are as follows:

66 InterSystems SQL Reference

SQL Commands

DescriptionCharacteristics Keyword

Specifies which field, if any, returns the ID. Set CONTAINID to the
number of the column that returns the ID, or 0 if no column returns the
ID. InterSystems IRIS does not validate that the named field actually
contains the ID, so a user error here results in inconsistent data.

CONTAINID integer

Specifies the name of the class in which to create the method. If the
class does not exist, it will be created.You can also specify a class
name by qualifying the method name. The class name specified in the
FOR clause overrides a class name specified by qualifying the method
name.

FOR className

Specifies that subclasses cannot override the method. By default,
methods are not final. The FINAL keyword is inherited by subclasses.

FINAL

Specifies that the query is an SQL stored procedure. Stored procedures
are inherited by subclasses. (This keyword can be abbreviated as
PROC.)

PROCEDURE

Specifies the data fields in the order that they are returned by the query.
If you specify a RESULTS clause, you must list all fields returned by
the query as a comma-separated list enclosed in parentheses. Speci-
fying fewer or more fields than are returned by the query results in a
SQLCODE -76 cardinality mismatch error.

For each field you specify a column name (which will be used as the
column header) and a data type.

If LANGUAGE SQL, you can omit the RESULTS clause. If you omit
the RESULTS clause, the ROWSPEC is automatically generated during
class compilation.

RESULTS (result_set)

Specifies the mode used to compile the query.The possible values are
LOGICAL, ODBC, RUNTIME, and DISPLAY. The default is RUNTIME.

SELECTMODE mode

If you specify a method keyword (such as PRIVATE or RETURNS) that is not valid for a query, the system generates an
SQLCODE -47 error. Specifying duplicate characteristics results in an SQLCODE -44 error.

The SELECTMODE clause specifies the mode in which data is returned. If the mode value is LOGICAL, then logical
(internal storage) values are returned. For example, dates are returned in $HOROLOG format. If the mode value is ODBC,
logical-to-ODBC conversion is applied, and ODBC format values are returned. If the mode value is DISPLAY, logical-to-
display conversion is applied, and display format values are returned. If the mode value is RUNTIME, the mode can be set
(to LOGICAL, ODBC, or DISPLAY) at execution time by setting the %SQL.Statement class %SelectMode property, as
described in “Using Dynamic SQL” chapter of Using InterSystems SQL. The RUNTIME mode default is LOGICAL. For
further details on SelectMode options, refer to “Data Display Options” in the “ InterSystems IRIS SQL Basics” chapter
of Using InterSystems SQL. The value that you specify for SELECTMODE is added at the beginning of the ObjectScript
class method code as: #SQLCompile SELECT=mode. For further details, see #SQLCompile Select in the “ObjectScript
Macros and the Macro Preprocessor” chapter of Using ObjectScript.

The RESULTS clause specifies the results of a query. The SQL data type parameters in the RESULTS clause are translated
into corresponding InterSystems IRIS data type parameters in the query’s ROWSPEC. For example, the RESULTS clause
RESULTS (Code VARCHAR(15)) generates a ROWSPEC specification of ROWSPEC =
“Code:%Library.String(MAXLEN=15)”.

InterSystems SQL Reference 67

CREATE QUERY

LANGUAGE

A keyword clause specifying the language you are using for code_body. Permitted clauses are LANGUAGE OBJECTSCRIPT
or LANGUAGE SQL. If the LANGUAGE clause is omitted, SQL is the default.

If the LANGUAGE is SQL a class query of type %Library.SQLQuery is generated. If the LANGUAGE is OBJECTSCRIPT,
a class query of type %Library.Query is generated.

code_body

The program code for the query to be created. You specify this code in either SQL or ObjectScript. The language used
must match the LANGUAGE clause. However, code specified in ObjectScript can contain embedded SQL.

If the code you specify is SQL, it must consist of a single SELECT statement. The program code for a query in SQL is
prefaced with a BEGIN keyword, followed by the program code (a SELECT statement). At the end of the program code,
specify a semicolon (;) then an END keyword.

If the code you specify is OBJECTSCRIPT, it must contain calls to the Execute() and Fetch() class methods of the
%Library.Query class provided by InterSystems IRIS, and may contain Close(), FetchRows(), and GetInfo() method calls.
ObjectScript code is enclosed in curly braces. If Execute() or Fetch() are missing, an SQLCODE -46 error is generated
upon compilation.

If the ObjectScript code block fetches data into a local variable (for example, Row), you must conclude the code block with
the line SET Row="" to indicate an end-of-data condition.

If the query is exposed as a stored procedure (by specifying the PROCEDURE keyword in characteristics), it uses a procedure
context handler to pass the procedure context back and forth between the procedure and its caller.

When a stored procedure is called, an object of the class %Library.SQLProcContext is instantiated in the %sqlcontext variable.
This is used to pass the procedure context back and forth between the procedure and its caller (for example, the ODBC
server).

%sqlcontext consists of several properties, including an Error object, the SQLCODE error status, the SQL row count, and
an error message. The following example shows the values used to set several of these:

 SET %sqlcontext.%SQLCODE=SQLCODE
 SET %sqlcontext.%ROWCOUNT=%ROWCOUNT
 SET %sqlcontext.%Message=%msg

The values of SQLCODE and %ROWCOUNT are automatically set by the execution of an SQL statement. The %sqlcontext

object is reset before each execution.

Alternatively, an error context can be established by instantiating a %SYSTEM.Error object and setting it as %sqlcontext.Error.

InterSystems IRIS uses the code you supply to generate the actual code of the query.

Examples
The following embedded SQL example creates a query named DocTestPersonState. It declares no parameters, sets the
SELECTMODE characteristic, and takes the default (SQL) for LANGUAGE:

 &sql(CREATE QUERY DocTestPersonState() SELECTMODE RUNTIME
 BEGIN
 SELECT Name,Home_State FROM Sample.Person ;
 END)
 IF SQLCODE=0 { WRITE !,"Created a query" }
 ELSEIF SQLCODE=-361 { WRITE !,"Query exists: ",%msg }
 ELSE { WRITE !,"CREATE QUERY error: ",SQLCODE }

You can go to the Management Portal, select the Classes option, then select the SAMPLES namespace. There you will
find the query created by the above example: User.queryDocTestPersonState.cls. From this display you can delete this
query before rerunning the above program example. You can, of course, use DROP QUERY to delete created queries.

68 InterSystems SQL Reference

SQL Commands

The following Embedded SQL example creates a method-based query named DocTestSQLCODEList which fetches a list
of SQLCODEs and their descriptions. It sets a RESULTS result set characteristic, sets LANGUAGE as ObjectScript, and
calls the Execute(), Fetch(), and Close() methods:

 &sql(CREATE QUERY DocTestSQLCODEList()
 RESULTS (SQLCODE SMALLINT,Description VARCHAR(100))
 PROCEDURE
 LANGUAGE OBJECTSCRIPT
 Execute(INOUT QHandle BINARY(255))
 {
 SET QHandle=1,%i(QHandle)=""
 QUIT ##lit($$$OK)
 }
 Fetch(INOUT QHandle BINARY(255), INOUT Row %List, INOUT AtEnd INT)
 {
 SET AtEnd=0,Row=""
 SET %i(QHandle)=$o(^%qCacheSQL("SQLCODE",%i(QHandle)))
 IF %i(QHandle)="" {SET AtEnd=1 QUIT ##lit($$$OK) }
 SET Row=$lb(%i(QHandle),^%qCacheSQL("SQLCODE",%i(QHandle),1,1))
 QUIT ##lit($$$OK)
 }
 Close(INOUT QHandle BINARY(255))
 {
 KILL %i(QHandle)
 QUIT ##lit($$$OK)
 }
)
 IF SQLCODE=0 { WRITE !,"Created a query" }
 ELSEIF SQLCODE=-361 { WRITE !,"Query exists: ",%msg }
 ELSE { WRITE !,"CREATE QUERY error: ",SQLCODE }

You can go to the Management Portal, select the Classes option, then select the SAMPLES namespace. There you will
find the query created by the above example: User.queryDocTestSQLCODEList.cls. From this display you can delete this
query before rerunning the above program example. You can, of course, use DROP QUERY to delete created queries.

The following Dynamic SQL example creates a query named DocTest, then executes this query using the
%PrepareClassQuery() method of the %SQL.Statement class:

 /* Creating the Query */
 SET myquery=4
 SET myquery(1)="CREATE QUERY DocTest() SELECTMODE RUNTIME "
 SET myquery(2)="BEGIN "
 SET myquery(3)="SELECT TOP 5 Name,Home_State FROM Sample.Person ; "
 SET myquery(4)="END"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 IF SQLCODE=0 { WRITE !,"Created a query",! }
 ELSEIF SQLCODE=-361 { WRITE !,"Query exists: ",%msg }
 ELSE { WRITE !,"CREATE QUERY error: ",SQLCODE }
 /* Calling the Query */
 WRITE !,"Calling a class query",!
 SET cqStatus = tStatement.%PrepareClassQuery("User.queryDocTest","DocTest")
 IF cqStatus'=1 {WRITE "%PrepareClassQuery failed:" DO $System.Status.DisplayError(cqStatus)}
 SET rset = tStatement.%Execute()
 WRITE "Query data",!,!
 WHILE rset.%Next() {
 DO rset.%Print() }
 WRITE !,"End of data"
 /* Deleting the Query */
 &sql(DROP QUERY DocTest)
 IF SQLCODE=0 { WRITE !,"Deleted the query" }

For further details, refer to the Dynamic SQL chapter of Using InterSystems SQL.

See Also
• SELECT

• CALL

• DROP QUERY

• CREATE PROCEDURE

InterSystems SQL Reference 69

CREATE QUERY

• “Querying the Database” chapter in Using InterSystems SQL

• “Defining and Using Stored Procedures” chapter in Using InterSystems SQL

70 InterSystems SQL Reference

SQL Commands

CREATE ROLE
Creates a role.

CREATE ROLE role-name

Arguments

The name of the role to be created, which is an identifier. Role names are not
case-sensitive. For further details see the “Identifiers” chapter of Using InterSystems
SQL.

role-name

Description
The CREATE ROLE command creates a role. A role is a named set of privileges that may be assigned to multiple users.
A role may be assigned to multiple users, and a user may be assigned multiple roles. A role is available system-wide, it is
not limited to a specific namespace.

A role-name can be any valid identifier of up to 64 characters. A role-name must follow identifier naming conventions. A
role name can contain Unicode characters. Role names are not case-sensitive. A role-name can be a delimited identifier
enclosed in quotation marks, if the Support Delimited Identifiers configuration option is checked (the default). If a delimited
identifier, role-name can be an SQL reserved word. It can contain a period (.), caret (^), and the two-character arrow
sequence (->). It cannot contain a comma (,) or a colon (:) character. It may begin with any valid character, except the
asterisk (*).

When initially created, a role is just a name; it has no privileges. To add privileges to a role, use the GRANT command.
You can also use the GRANT command to assign one or more roles to a role. This permits you to create a hierarchy of
roles.

If you invoke CREATE ROLE to create a role that already exists, SQL issues an SQLCODE -118 error. You can determine
if a role already exists by invoking the $SYSTEM.SQL.RoleExists() method:

 WRITE $SYSTEM.SQL.RoleExists("%All"),!
 WRITE $SYSTEM.SQL.RoleExists("Madmen")

This method returns 1 if the specified role exists, and 0 if the role does not exist. Role names are not case-sensitive.

To delete a role, use the DROP ROLE command.

Privileges

The CREATE ROLE command is a privileged operation. Before using CREATE ROLE in embedded SQL, it is necessary
to be logged in as a user with %Admin_Secure:USE privilege. Failing to do so results in an SQLCODE -99 error (Privilege
Violation). Use the $SYSTEM.Security.Login() method to assign a user with appropriate privileges:

 DO $SYSTEM.Security.Login(username,password)
 &sql()

You must have the %Service_Login:Use privilege to invoke the $SYSTEM.Security.Login() method. For further
information, refer to %SYSTEM.Security in the InterSystems Class Reference.

Examples
The following examples attempt to create a role named BkUser. The user “FRED” in the first example does not have create
role privileges. The user “_SYSTEM” in the second example does have create role privileges.

InterSystems SQL Reference 71

CREATE ROLE

 DO $SYSTEM.Security.Login("FRED","FredsPassword")
 &sql(CREATE ROLE BkUser)
 IF SQLCODE=-99 {
 WRITE !,"You don't have CREATE ROLE privileges" }
 ELSEIF SQLCODE=-118 {
 WRITE !,"The role already exists" }
 ELSE {
 WRITE !,"Created a role. Error code is: ",SQLCODE }

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
Main
 &sql(CREATE ROLE BkUser)
 IF SQLCODE=-99 {
 WRITE !,"You don't have CREATE ROLE privileges" }
 ELSEIF SQLCODE=-118 {
 WRITE !,"The role already exists" }
 ELSE {
 WRITE !,"Created a role. Error code is: ",SQLCODE }
Cleanup
 SET toggle=$RANDOM(2)
 IF toggle=0 {
 &sql(DROP ROLE BkUser)
 WRITE !,"DROP USER error code: ",SQLCODE
 }
 ELSE {
 WRITE !,"No drop this time"
 QUIT
 }

(The $RANDOM toggle is provided so that you can execute this example program repeatedly.)

See Also
• SQL statements: DROP ROLE CREATE USER DROP USER GRANT REVOKE %CHECKPRIV

• “Users, Roles, and Privileges” chapter of Using InterSystems SQL

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

• ObjectScript: $ROLES and $USERNAME special variables

72 InterSystems SQL Reference

SQL Commands

CREATE TABLE
Creates a table definition.

CREATE [GLOBAL TEMPORARY] TABLE
table (table-element-commalist)

table-element ::=
 [%DESCRIPTION string]
 [%FILE string]
 [{%EXTENTSIZE | %NUMROWS} integer]
 [%PUBLICROWID]
 [%ROUTINE string]
 [{ %CLASSPARAMETER paramname [=] value }]

 { fieldname datatype [AUTO_INCREMENT] | IDENTITY | SERIAL | ROWVERSION
 [%DESCRIPTION string]
 {
 [[COLLATE] sqlcollation]
 [UNIQUE]
 [NULL | NOT NULL]
 [PRIMARY KEY]
 [DEFAULT [(]default-spec[)]]
 [ON UPDATE update-spec]
 [COMPUTECODE { ObjectScript-code }
 [COMPUTEONCHANGE (field-commalist) |
 CALCULATED | TRANSIENT]]
 } , }

 [SHARD [KEY (field-commalist) [COSHARD [WITH] [(]table[)]]]]

 [{ [CONSTRAINT uname]
 UNIQUE (field-commalist) }]

 [[CONSTRAINT pkname]
 PRIMARY KEY (field-commalist)]

 [{ [CONSTRAINT fkname]
 FOREIGN KEY (field-commalist) REFERENCES table
 [(reffield-commalist)] [referential-action] }]

sqlcollation ::=
 { %EXACT | %MINUS | %MVR | %PLUS | %SPACE |
 %SQLSTRING [(maxlen)] | %SQLUPPER [(maxlen)] |
 %TRUNCATE[(maxlen)] }

This synopsis does not include keywords that are parsed for compatibility only, but perform no operation. These supported
no-op keywords are listed in a separate section below.

InterSystems SQL Reference 73

CREATE TABLE

Arguments

Optional — This keyword clause creates the table as a
temporary table.

GLOBAL TEMPORARY

The name of the table to be created, specified as a valid
identifier. A table name can be qualified (schema.table), or
unqualified (table). An unqualified table name takes the
default schema name.

table

A comma-separated list of one or more field definitions or
keyword phrases. This comma-separated list is enclosed
with parentheses.

Each field definition consists of (at minimum) a field name
(specified as a valid identifier) followed by a data type.

A keyword phrase can consist of just a keyword (%PUBLI-
CROWID), a keyword followed by literal, or a keyword
(%CLASSPARAMETER) followed by a name and associated
literal.

table-element

Optional — Specify one of the following SQL collation types:
%EXACT, %MINUS, %PLUS, %SPACE, %SQLSTRING,
%SQLUPPER, %TRUNCATE, or %MVR. The default is the
namespace default collation (%SQLUPPER, unless changed).
%SQLSTRING, %SQLUPPER, and %TRUNCATE may be
specified with an optional maximum length truncation
argument, an integer enclosed in parentheses. The percent
sign (%) prefix to these collation parameter keywords is
optional. The COLLATE keyword is optional. For further
details refer to Table Field/Property Definition Collation in
the “Collation ” chapter of Using InterSystems SQL.

COLLATE sqlcollation

Optional — The name of a constraint, specified as a valid
identifier. If specified as a delimited identifier, a constraint
name can include the ".", "^", ",", and "->" characters. This
optional constraint name is used in ALTER TABLE to identify
a defined constraint.

uname

pkname

fkname

A field name or a comma-separated list of field names in any
order. Used to define a unique, primary key, foreign key, or
shard key constraint. All field names specified for a constraint
must also be defined in the field definition. Must be enclosed
in parentheses.

field-commalist

Optional — A field name or a comma-separated list of existing
field names defined in the referenced table specified in the
foreign key constraint. If specified, must be enclosed in
parentheses. If omitted, a default value is taken, as described
in Defining Foreign Keys.

reffield-commalist

Description
The CREATE TABLE command creates a table definition of the structure specified. InterSystems IRIS automatically
creates a persistent class corresponding to this table definition, with properties corresponding to the field definitions.

74 InterSystems SQL Reference

SQL Commands

CREATE TABLE defines the corresponding class as DdlAllowed. It does not specify an explicit StorageStrategy in the
corresponding class definition; it uses the default storage %Storage.Persistent. By default, CREATE TABLE specifies
the Final class keyword in the corresponding class definition, indicating that it cannot have subclasses. (You can change
this default using the SetDDLFinal() method; to determine the current setting, call the $SYSTEM.SQL.CurrentSettings()
method).

This reference page describes the following CREATE TABLE considerations:

• Security and Privileges

• Creating a Table and then Inserting Data

• Specifying a Table Name

• Defining a Temporary Table

• %DESCRIPTION, %FILE, %EXTENTSIZE, %ROUTINE keywords

• %CLASSPARAMETER keyword

• Table Options Supported for Compatibility

• Defining Fields

• Defining Field Data Constraints

• Defining Computed Fields

• Defining the Unique Fields Constraint

• The RowID Field, %PUBLICROWID, and Bitmap Extent Index

• Defining an IDENTITY Field

• Defining ROWVERSION, AUTO_INCREMENT, and SERIAL Fields

• Defining the Shard Key

• Defining the Primary Key

• Defining Foreign Keys

SQL Security and Privileges
The CREATE TABLE command is a privileged operation. Prior to using CREATE TABLE it is necessary for your
process to have %CREATE_TABLE privileges. Failing to do so results in an SQLCODE -99 error (Privilege Violation).
You can use the GRANT command to assign %CREATE_TABLE privileges to a user or role, if you hold appropriate
granting privileges.

This privileges requirement is configurable, using the $SYSTEM.SQL.SetSQLSecurity() method call. To determine the
current setting, call $SYSTEM.SQL.CurrentSettings(), which displays an SQL Security ON: setting.

The default is “Yes” (1). When “Yes” , a user can only perform actions on a table or view for which that user has been
granted privilege. This is the recommended setting for this option.

If this method is set to “No” (0), SQL Security is disabled for any new process started after changing this setting. This
means privilege-based table/view security is suppressed. You can create a table without specifying a user. In this case,
Dynamic SQL assigns “_SYSTEM” as user, and Embedded SQL assigns "" (the empty string) as user. Any user can perform
actions on a table or view even if that user has no privileges to do so.

Embedded SQL does not use SQL privileges. In Embedded SQL, you can use the $SYSTEM.Security.Login() method
to log in as a user with appropriate privileges. You must have the %Service_Login:Use privilege to invoke the
$SYSTEM.Security.Login() method. For further information, refer to %SYSTEM.Security in the InterSystems Class Ref-
erence.

InterSystems SQL Reference 75

CREATE TABLE

The following embedded SQL example creates the Employee table:

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 NEW SQLCODE,%msg
 &sql(CREATE TABLE Employee (
 EMPNUM INT NOT NULL,
 NAMELAST CHAR(30) NOT NULL,
 NAMEFIRST CHAR(30) NOT NULL,
 STARTDATE TIMESTAMP,
 SALARY MONEY,
 ACCRUEDVACATION INT,
 ACCRUEDSICKLEAVE INT,
 CONSTRAINT EMPLOYEEPK PRIMARY KEY (EMPNUM))
)
 IF SQLCODE=0 {WRITE !,"Table created"}
 ELSE {WRITE !,"SQLCODE=",SQLCODE,": ",%msg }

This table, named Employee, has a number of defined fields. The EMPNUM field (containing the employee's company ID
number) is an integer value that cannot be NULL; additionally, it is declared as a primary key for the table. The employee's
last and first names each have a field, both of which are character strings with a maximum length of 30, that cannot be
NULL. Additionally, there are fields for the employee's start date, accrued vacation time, and accrued sick time (which use
the TIMESTAMP and INT data types).

Use the following program to delete the table created in the previous example:

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 NEW SQLCODE,%msg
 &sql(DROP TABLE Employee)
 IF SQLCODE=0 {WRITE !,"Table deleted"}
 ELSE {WRITE !,"SQLCODE=",SQLCODE,": ",%msg }

CREATE TABLE and INSERT
Embedded SQL is compiled SQL. In Embedded SQL you cannot both create a table and insert data into that table in the
same program. The reason is as follows: Table creation is performed at runtime. However, the INSERT statement needs
to verify the existence of the table at compile time. A SELECT statement needs to verify the existence of its table(s) at
compile time, and thus has the same restriction.

A compiled program can freely combine CREATE TABLE statements with DML statements (such as INSERT and
SELECT) that refer to other already-existing tables.

You can circumvent this restriction by directing the preprocessor to handle an Embedded SQL program as Deferred SQL.
This is done using the #SQLCompile Mode=Deferred macro preprocessor directive, as described in the Preprocessor
Directives Reference section of Using ObjectScript.

This restriction does not apply to Dynamic SQL, which is parsed at runtime.

You can create a table from an existing table definition and insert data from the existing table in a single operation using
the $SYSTEM.SQL.QueryToTable() method.

Table Name
A table name can be qualified or unqualified.

• An unqualified table name has the following syntax: tablename; it omits schema (and the period (.) character). An
unqualified table name takes the system-wide default schema name. The initial system-wide default schema name is
SQLUser, which corresponds to the default class package name User. Schema search path values are ignored.

The system-wide default schema name can be configured.

To determine the current system-wide default schema name, use the $SYSTEM.SQL.DefaultSchema() method.

• A qualified table name has the following syntax: schema.tablename. It can specify either an existing schema name
or a new schema name. Specifying an existing schema name places the table within that schema. Specifying a new
schema name creates that schema (and associated class package) and places the table within that schema.

76 InterSystems SQL Reference

SQL Commands

Table names and schema names follow SQL identifier naming conventions, subject to additional constraints on the use of
non-alphanumeric characters, uniqueness, and maximum length. Names beginning with a % character are reserved for
system use. By default, schema names and table names are simple identifiers, and are not case-sensitive.

InterSystems IRIS uses the table name to generate a corresponding class name. InterSystems IRIS uses the schema name
is used to generate a corresponding class package name. A class name contains only alphanumeric characters (letters and
numbers) and must be unique within the first 96 characters. To generate a class name, InterSystems IRIS first strips out
symbol (non-alphanumeric) characters from the table name, and then generates a unique class name, imposing uniqueness
and maximum length restrictions. To generate a package name, it then either strips out or performs special processing of
symbol (non-alphanumeric) characters in the schema name. InterSystems IRIS then generates a unique package name,
imposing uniqueness and maximum length restrictions. For further details on how package and class names are generated
from schema and table names, refer to Table Names and Schema Names in the “Defining Tables” chapter of Using
InterSystems SQL.

You can use the same name for a schema and a table. You cannot use the same name for a table and a view in the same
schema.

A schema name is not case-sensitive; the corresponding class package name is case-sensitive. If you specify a schema name
that differs only in case from an existing class package name, and the package definition is empty (contains no class defi-
nitions). InterSystems IRIS reconciles the two names by changing the case of the class package name. For further details
on schema names, refer to Table Names and Schema Names in the “Defining Tables” chapter of Using InterSystems SQL.

InterSystems IRIS supports 16-bit (wide) characters for table and field names. For most locales, accented letters can be
used for table names and the accent marks are included in the generated class name. The following example performs val-
idation tests on an SQL table name:

TableNameValidation
 SET tname="MyTestTableName"
 SET x=$SYSTEM.SQL.IsValidRegularIdentifier(tname)
 IF x=0 {IF $LENGTH(tname)>200
 {WRITE "Tablename is too long" QUIT}
 ELSEIF $SYSTEM.SQL.IsReservedWord(tname)
 {WRITE "Tablename is reserved word" QUIT}
 ELSE {
 WRITE "Tablename contains invalid characters",!
 SET nls=##class(%SYS.NLS.Locale).%New()
 IF nls.Language ["Japanese" {
 WRITE "Japanese locale cannot use accented letters"
 QUIT }
 QUIT }
 }
 ELSE { WRITE tname," is a valid table name"}

Note: The Japanese locale does not support accented letter characters in identifiers. Japanese identifiers may contain
(in addition to Japanese characters) the Latin letter characters A-Z and a-z (65–90 and 97–122), the underscore
character (95), and the Greek capital letter characters (913–929 and 931–937). The nls.Language test uses [(the
Contains operator) rather than = because there are different Japanese locales for different operating system platforms.

Existing Table

To determine if a table already exists in the current namespace, use $SYSTEM.SQL.TableExists().

What happens when you try to create a table that has the same name as an existing table depends on a configuration setting.
By default, InterSystems IRIS rejects an attempt to create a table with the name of an existing table and issues an SQLCODE
-201 error. This is configurable system-wide using the $SYSTEM.SQL.SetDDLNo201() method call. To determine the
current setting, call $SYSTEM.SQL.CurrentSettings(), which displays a Suppress SQLCODE=-201 Errors setting.

The default is “No” (0). This is the recommended setting for this option. If this option is set to “Yes” (1), InterSystems
IRIS deletes the class definition associated with the table and then recreates it. This is much the same as performing a
DROP TABLE, deleting the existing table and then performing the CREATE TABLE. In this case, it is strongly recom-
mended that the $SYSTEM.SQL.CurrentSettings(), Does DDL DROP TABLE delete the table's data? value
be set to 1 (the default). Refer to DROP TABLE for further details.

InterSystems SQL Reference 77

CREATE TABLE

GLOBAL TEMPORARY Table
Specifying the GLOBAL TEMPORARY keyword defines the table as a global temporary table. The table definition is
global (available to all processes); the table data is temporary (persists for the duration of the process). The corresponding
class definition contains an additional Class parameter SQLTABLETYPE="GLOBAL TEMPORARY". Like standard
InterSystems IRIS tables, the ClassType=persistent, and the class includes the Final keyword, indicating that it cannot have
subclasses.

Regardless of which process creates a temporary table, the owner of the temporary table is automatically set to _PUBLIC.
This means that all users can access a cached temporary table definition. For example, if a stored procedure creates a tem-
porary table, the table definition can be accessed by any user that is permitted to invoke the stored procedure. This applies
only to the temporary table definition; the temporary table data is specific to the invocation, and therefore can only be
accessed by the current user process.

The table definition of a global temporary table is the same as a base table. A global temporary table must have a unique
name; attempting to give it the same name as an existing base table results in an SQLCODE -201 error. The table persists
until it is explicitly deleted (using DROP TABLE). You can alter the table definition using ALTER TABLE.

The table data (including Stream data) and indices in a global temporary table are temporary. They are stored in process-
private globals. This means that this data is only available to the process that created the global temporary table, and this
data is deleted when the process terminates.

The following embedded SQL example creates a global temporary table:

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 NEW SQLCODE,%msg
 &sql(CREATE GLOBAL TEMPORARY TABLE TempEmp (
 EMPNUM INT NOT NULL,
 NAMELAST CHAR(30) NOT NULL,
 NAMEFIRST CHAR(30) NOT NULL,
 CONSTRAINT EMPLOYEEPK PRIMARY KEY (EMPNUM))
)
 IF SQLCODE=0 {WRITE !,"Table created"}
 ELSE {WRITE !,"SQLCODE=",SQLCODE,": ",%msg }

%DESCRIPTION, %FILE, %EXTENTSIZE / %NUMROWS, %ROUTINE
These optional keyword phrases can be specified anywhere in the comma-separated list of table elements.

InterSystems SQL provides a %DESCRIPTION keyword, which you can use to provide a description for documenting a
table or a field. %DESCRIPTION is followed by text string enclosed in single quotes. This text can be of any length, and
can contain any characters, including blank spaces. (A single quote character within a description is represented by two
single quotes. For example: 'Joe''s Table'.) A table can have a %DESCRIPTION. Each field of a table can have its
own %DESCRIPTION, specified after the data type. If you specify more than one table-wide %DESCRIPTION for a table,
InterSystems IRIS issues an SQLCODE -82 error. If you specify more than one %DESCRIPTION for a field, the system
retains only the last %DESCRIPTION specified. In Studio, a description appears prefaced by three slashes on the line
immediately before the corresponding table (Class) or field (Property). For example:

/// Joe's Table

You can display a %DESCRIPTION text using the DESCRIPTION property of INFORMATION.SCHEMA.TABLES or
INFORMATION.SCHEMA.COLUMNS. For example:

SELECT COLUMN_NAME,DESCRIPTION FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME='MyTable'

InterSystems SQL provides a %FILE keyword, which is used to provide a file name for documenting a table. %FILE is
followed by text string enclosed in single quotes. A table definition can have only one %FILE keyword; specifying multiples
generates an SQLCODE -83 error.

InterSystems SQL provides the optional %EXTENTSIZE and %NUMROWS keywords, which are used to store an integer
recording the anticipated number of rows in this table. These two keywords are synonymous; %EXTENTSIZE is the preferred
term. When a table is being created to hold a known number of rows of data, especially if the initial number of rows is not

78 InterSystems SQL Reference

SQL Commands

likely to change subsequently (such as a table of states and provinces), setting %EXTENTSIZE can save space and improve
performance. If not specified, the default initial allocation is 100,000 for a standard table, 50 for a temporary table. A table
definition can have only one %EXTENTSIZE or %NUMROWS keyword; specifying multiples results in an SQLCODE
-84 error. Once the table is populated with data, this %EXTENTSIZE value can be changed to the actual number of rows
by running Tune Table. For further details, see “Optimizing Tables” .

InterSystems SQL provides a %ROUTINE keyword, which allows you to specify the routine name prefix for routines
generated for this base table. %ROUTINE is followed by text string enclosed in single quotes. For example, %ROUTINE
'myname', generates code in routines named myname1, myname2, and so forth. You cannot call a user-defined
(“extrinsic”) function from a %ROUTINE. A table definition can have only one %ROUTINE keyword; specifying multiples
results in an SQLCODE -85 error. In Studio, the routine name prefix appears as the SqlRoutinePrefix value.

%CLASSPARAMETER Keyword
The optional %CLASSPARAMETER keyword enables you to define a class parameter as part of the CREATE TABLE
command. A class parameter is always defined as a constant value. You can specify multiple %CLASSPARAMETER
keyword clauses, defining one class parameter per clause. Like all table keyword clauses, %CLASSPARAMETER can be
specified anywhere in the comma-separated list of table elements; multiple %CLASSPARAMETER clauses are separated
by commas.

The %CLASSPARAMETER keyword is followed by the class parameter name, an optional equal sign, and the literal value
(a string or number) to assign to that class parameter. The following example defines two class parameters; the first
%CLASSPARAMETER clause uses an equal sign, the second omits the equal sign:

CREATE TABLE OurEmployees (
 %CLASSPARAMETER DEFAULTGLOBAL = '^EMPLOYEE',
 %CLASSPARAMETER MANAGEDEXTENT 0,
 EMPNUM INT NOT NULL,
 NAMELAST CHAR(30) NOT NULL,
 NAMEFIRST CHAR(30) NOT NULL,
 CONSTRAINT EMPLOYEEPK PRIMARY KEY (EMPNUM))

Some of the class parameters currently in use are: ALLOWIDENTITYINSERT, DEFAULTGLOBAL, DSINTERVAL,
DSTIME, EXTENTQUERYSPEC, EXTENTSIZE, GUIDENABLED, IDENTIFIEDBY, MANAGEDEXTENT, READONLY,
ROWLEVELSECURITY, SQLPREVENTFULLSCAN, USEEXTENTSET, VERSIONCLIENTNAME, VERSIONPROPERTY.
Refer to the %Library.Persistent class for descriptions of these class parameters.

You can use the USEEXTENTSET and DEFAULTGLOBAL class parameters to define the global naming strategy for table
data storage and index data storage.

IDENTIFIEDBY relationships must be converted to proper Parent/Child relationships to be supported in InterSystems IRIS.

A CREATE TABLE that defines a sharded table cannot define the VERSIONPROPERTY class parameter.

The user can specify additional class parameters as needed. For further details refer to Class Parameters in Defining and
Using Classes.

InterSystems SQL Reference 79

CREATE TABLE

Options Supported for Compatibility Only
InterSystems SQL accepts the following CREATE TABLE options for parsing purposes only, to aid in the conversion of
existing SQL code to InterSystems SQL. These options do not provide any actual functionality.

{ON | IN} dbspace-name

LOCK MODE [ROW | PAGE]

[CLUSTERED | NONCLUSTERED]

WITH FILLFACTOR = literal

MATCH [FULL | PARTIAL]

CHARACTER SET identifier

COLLATE identifier /* But note use of COLLATE keyword, described below */

NOT FOR REPLICATION

Field Definition
Following the table name, a set of parentheses contains the definitions of all of the fields (columns) of the table. Definitions
of fields are separated by commas. By convention, each field definition is usually presented on a separate line and indentation
is used; this is recommended, but not required. After the last field is defined, remember to provide a closing parenthesis
for the field definition.

The parts of a field definition are separated by blank spaces. The field name is listed first, followed by its data characteristics.
The data characteristics of a field are presented in the following sequence: the data type, the (optional) data size, then the
(optional) data constraints. You can then append an optional field %DESCRIPTION to document the field.

Rather than defining a field, a field definition can reference an existing embedded serial object that defines multiple fields
(properties). The field name is followed by the package and class name of the serial object. For example, Office
Sample.Address. Do not specify a data type or data constraints; you can specify a %DESCRIPTION. You cannot create
an embedded serial object using CREATE TABLE.

Note: We recommend that you avoid creating tables with over 400 columns. Redesign your database so that either: these
columns become rows; the columns are divided among several related tables; or the data is stored in fewer columns
as character streams or bit streams.

Field Name

Field names follow identifier conventions, with the same naming restrictions as table names. Field names beginning with
a % character should be avoided (field names beginning with %z or %Z are permitted). A field name should not exceed
128 characters. By default, field names are simple identifiers. They are not case-sensitive. Attempting to create a field name
that differs only in letter case from another field in the same table generates an SQLCODE -306 error. For further details
see the “Identifiers” chapter of Using InterSystems SQL.

InterSystems IRIS uses the field name to generate a corresponding class property name. A property name contains only
alphanumeric characters (letters and numbers) and is a maximum of 96 characters in length. To generate this property name,
InterSystems IRIS first strips punctuation characters from the field name, and then generates a unique identifier of 96 (or
less) characters. InterSystems IRIS substitutes an integer (beginning with 0) for the final character of a field name when
this is needed to create a unique property name.

The following example shows how InterSystems IRIS handles field names that differ only in punctuation. The corresponding
class properties for these fields are named PatNum, PatNu0, and PatNu1:

80 InterSystems SQL Reference

SQL Commands

CREATE TABLE MyPatients (
 _PatNum VARCHAR(16),
 %Pat@Num INTEGER,
 Pat_Num VARCHAR(30),
 CONSTRAINT Patient_PK PRIMARY KEY (_PatNum))

The field name, as specified in CREATE TABLE, is shown in the class property as the SqlFieldName keyword value.

During a dynamic SELECT operation, InterSystems IRIS may generate property name aliases to facilitate common letter
case variants. For example, given the field name Home_Street, InterSystems IRIS might assign the property name aliases
home_street, HOME_STREET, and HomeStreet. InterSystems IRIS does not assign an alias if that name would conflict
with the name of another field name, or with an alias assigned to another field name.

Data Types

InterSystems SQL supports most standard SQL data types. A complete list of supported data types is provided in the Data
Types section of this reference.

CREATE TABLE allows you to specify the same data type in several ways: VARCHAR(24), CHARACTER VARY-
ING(24), %Library.String(MAXLEN=24), and %String(MAXLEN=24) all specify the same data type. Note however, that
the default MAXLEN may differ: VARCHAR() and CHARACTER VARYING() default to MAXLEN=1; %Library.String
and %String default to MAXLEN=50.

InterSystems IRIS maps these standard SQL data types to InterSystems IRIS data types by providing an SQL.System-
DataTypes mapping table and an SQL.UserDataTypes mapping table. SQL.UserDataTypes can be added to by the user to
include additional user-defined data types.

To view and modify the current data type mappings, go to the Management Portal, select System Administration, Configu-

ration, SQL and Object Settings, System-defined DDL Mappings. To create additional data type mappings, go to the Manage-
ment Portal, select System Administration, Configuration, SQL and Object Settings, User-defined DDL Mappings.

If you specify a data type in SQL for which no corresponding InterSystems IRIS data type exists, the SQL data type name
is used as the data type for the corresponding class property. You must create this user-defined InterSystems IRIS data type
before DDL runtime (SQLExecute).

You may also override data type mappings for a single parameter value. For instance, suppose you didn't want VAR-
CHAR(100) to map to the supplied standard mapping %String(MAXLEN=100). You could override this by added a DDL
data type of 'VARCHAR(100)' to the table and then specify its corresponding InterSystems IRIS type. For example:

VARCHAR(100) maps to MyString100(MAXLEN=100)

Note: A CREATE TABLE that defines a sharded table cannot contain stream data type fields, or a field of the
ROWVERSION data type or SERIAL (%Library.Counter) data type.

Data Size

Following a data type, you can present the permissible data size in parentheses. Whitespace between the data type name
and data size parentheses is permitted, but not required.

For a string, data size represents the maximum number of characters. For example:

ProductName VARCHAR (64)

For a numeric that permits fractional numbers, this is represented as a pair of integers (p,s). The first integer (p) is the data
type precision, but it is not identical to numerical precision (the number of digits in the number). This is because the
underlying InterSystems IRIS data type classes do not have a precision, but instead use this number to calculate the
MAXVAL and MINVAL; The second integer (s) is the scale, which specifies the maximum number of decimal digits. For
example:

UnitPrice NUMERIC(6,2) /* maximum value 9999.99 */

InterSystems SQL Reference 81

CREATE TABLE

To determine the maximum and minimum permissible values for a field, use the following ObjectScript functions:

 WRITE $$maxval^%apiSQL(6,2),!
 WRITE $$minval^%apiSQL(6,2)

Note that because p is not a digit count, it can be smaller than the scale s value:

 FOR i=0:1:6 {
 WRITE "Max for (",i,",2)=",$$maxval^%apiSQL(i,2),!}

For further details, refer to the Data Types reference page in this manual.

Field Data Constraints
Data constraints govern what values are permitted for a field, what the default value is for a field, and what type of collation
is used for data values. All of these data constraints are optional. Multiple data constraints can be specified in any order,
separated by a blank space. For further details, see field-constraint.

NULL and NOT NULL

The NOT NULL data constraint keyword specifies that this field does not accept a null value; in other words, every record
must have a specified value for this field. NULL and empty string ('') are different values in InterSystems IRIS. You can
input an empty string into a field that accepts character strings, even if that field is defined with a NOT NULL restriction.
You cannot input an empty string into a numeric field. For further details, refer to the NULL section of the “Language
Elements” chapter of Using InterSystems SQL.

The NULL data constraint keyword explicitly specifies that this field can accept a null value; this is the default definition
for a field.

UNIQUE

The UNIQUE data constraint specifies that this field accepts only unique values. Thus, no two records can contain the same
value for this field. The SQL empty string ('') is considered to be a data value, so with the UNIQUE data constraint applied,
no two records can contain an empty string value for this field. A NULL is not considered to be a data value, so the UNIQUE
data constraint does not apply to multiple NULLs. To restrict use of NULL for a field, use the NOT NULL keyword constraint.

• The UNIQUE data constraint requires that all of the values for the specified field be unique values.

• The UNIQUE fields constraint (which uses the CONSTRAINT keyword) requires that all of the values for a specified
group of fields when concatenated together result in a unique value. None of the individual fields are required to be
limited to unique values.

A table defined as a sharded table has additional restrictions on the use of the UNIQUE data constraint. A unique constraint
on a field or group of fields which does not include the shard key adds significant performance cost to inserts and updates.
It is therefore recommended that this type of unique constraint be avoided when insert and update performance is an
important consideration. See Evaluate Unique Constraints and Querying the Sharded Cluster in the chapter “Horizontally
Scaling InterSystems IRIS for Data Volume with Sharding” in the Scalability Guide.

Refer to the Constraints option of Catalog Details for ways to list the fields of a table that are defined with a unique constraint.

DEFAULT

The DEFAULT data constraint specifies the default data value that InterSystems IRIS automatically provides for this field
during an INSERT operation if the INSERT does not supply a data value for this field. If the INSERT operation supplies
NULL for the field data value, the NULL is taken rather than the default data value. It is therefore common to specify both
the DEFAULT and the NOT NULL data constraints for the same field.

The DEFAULT value can be supplied as a literal value or as a keyword option. A string supplied as a literal default value
must be enclosed in single quotes. A numeric default value does not require single quotes. For example:

82 InterSystems SQL Reference

SQL Commands

CREATE TABLE membertest
(MemberId INT NOT NULL,
Membership_status CHAR(13) DEFAULT 'M',
Membership_term INT DEFAULT 2)

The DEFAULT value is not validated when creating a table. When defined, a DEFAULT value can ignore data type, data
length, and data constraint restrictions. However, when using INSERT to supply data to the table, the DEFAULT value is
constrained; it is not limited by data type and data length restrictions, but is limited by data constraint restrictions. For
example, a field defined Ordernum INT UNIQUE DEFAULT 'No Number' can take the default once, ignoring the
INT data type restriction, but cannot take the default a second time, as this would violate the UNIQUE field data constraint.

If no DEFAULT is specified, the implied default is NULL. If a field has a NOT NULL data constraint, you must specify
a value for that field, either explicitly or by DEFAULT. Do not use the SQL zero-length string (empty string) as a NOT
NULL default value. Refer to NULL section of the “Language Elements” chapter of Using InterSystems SQL for further
details on NULL and the empty string.

DEFAULT Keywords

The DEFAULT data constraint can accept a keyword option to define its value. The following options are supported: NULL,
USER, CURRENT_USER, SESSION_USER, SYSTEM_USER, CURRENT_DATE, CURRENT_TIME, CURRENT_TIMES-
TAMP, SYSDATE, and OBJECTSCRIPT.

The USER, CURRENT_USER, and SESSION_USER default keywords set the field value to the ObjectScript $USERNAME
special variable, as described in the ObjectScript Reference.

The CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, GETDATE, GETUTCDATE, and SYSDATE
SQL functions can also be used as DEFAULT values. They are described in their respective reference pages. You can
specify CURRENT_TIME or timestamp function with or without a precision value when used as a DEFAULT value. If
no precision is specified, it will use the precision of the SQL configuration setting "Default time precision for GETDATE(),
CURRENT_TIME, and CURRENT_TIMESTAMP", which defaults to 0. The DEFAULT function uses the time precision
setting in effect when the CREATE TABLE statement is prepared/compiled, not at the time of execution of the statement.

CURRENT_TIMESTAMP can be specified as the default for a field of data type %Library.PosixTime or %Library.TimeStamp;
the current date and time is stored in the format specified by the field’s data type. CURRENT_TIMESTAMP, GETDATE,
GETUTCDATE, and SYSDATE can be specified as a default for a %Library.TimeStamp field (data type TIMESTAMP or
DATETIME). InterSystems IRIS converts the date value to the appropriate format for the data type.

CREATE TABLE mytest
(TestId INT NOT NULL,
CREATE_DATE DATE DEFAULT CURRENT_TIMESTAMP(2),
WORK_START DATE DEFAULT SYSDATE)

You can use the TO_DATE function as the DEFAULT data constraint for data type DATE. You can use the TO_TIMES-
TAMP function as the DEFAULT data constraint for data type TIMESTAMP.

The OBJECTSCRIPT literal keyword phrase enables you to generate a default value by providing a quoted string containing
ObjectScript code, as shown in the following example:

CREATE TABLE mytest
(TestId INT NOT NULL,
CREATE_DATE DATE DEFAULT OBJECTSCRIPT '+$HOROLOG' NOT NULL,
LOGNUM NUMBER(12,0) DEFAULT OBJECTSCRIPT '$INCREMENT(^LogNumber)')

See the ObjectScript Reference for further information.

ON UPDATE

The ON UPDATE clause makes the field computed with a COMPUTEONCHANGE value of %%UPDATE. This is a
shortcut syntax for defining a field that will always be computed whenever a row is updated in the table. The most common
use of this feature would be to define a column in a table that contains a timestamp value for the last time the row was
updated.

InterSystems SQL Reference 83

CREATE TABLE

Available update-spec options are:

CURRENT_DATE | CURRENT_TIME[(precision)] | CURRENT_TIMESTAMP[(precision)] |
GETDATE([prec]) | GETUTCDATE([prec]) | SYSDATE |
USER | CURRENT_USER | SESSION_USER | SYSTEM_USER |
 NULL | <literal> | -<number>

The following example sets the RowTS field to the current timestamp value when a row is inserted and each time that row
is updated:

CREATE TABLE mytest
(Name VARCHAR(48),
 RowTS TIMESTAMP DEFAULT Current_Timestamp(6) ON UPDATE Current_Timestamp(6))

In this example the DEFAULT keyword sets RowTS to the current timestamp on INSERT if no explicit value is specified
for the RowTS field. If an UPDATE specifies an explicit value for the RowTS field, the ON UPDATE keyword validates,
but ignores, the specified value, and updates RowTS with the current timestamp. If the specified value fails validation, a
SQLCODE -105 error is generated.

The following example sets the HasBeenUpdated field to a boolean value:

CREATE TABLE mytest
(Name VARCHAR(48),
 HasBeenUpdated TINYINT DEFAULT 0 ON UPDATE 1)

The following example sets the WhoLastUpdated field to the current user name:

CREATE TABLE mytest
(Name VARCHAR(48),
 WhoLastUpdated VARCHAR(48) DEFAULT CURRENT_USER ON UPDATE CURRENT_USER)

You cannot specify an ON UPDATE clause if the field also has a COMPUTECODE data constraint. Attempting to do so
results in an SQLCODE -1 error at compile/prepare time.

Collation Parameters

The optional collation parameters specify what type of string collation to use when sorting values for a field. InterSystems
SQL supports ten types of collation. If no collation is specified, the default is %SQLUPPER collation, which is not case-
sensitive.

It is recommended that you specify the optional keyword COLLATE before the collation parameter for programming
clarity, but this keyword is not required. The percent sign (%) prefix to the various collation parameter keywords is optional.

%EXACT collation follows the ANSI (or Unicode) character collation sequence. This provides case-sensitive string collation
and recognizes leading and trailing blanks and tab characters.

The %SQLUPPER collation converts all letters to uppercase for the purpose of collation. For further details on not case-
sensitive collation, refer to the %SQLUPPER function.

The %SPACE and %SQLUPPER collations append a blank space to the data. This forces string collation of NULL and
numeric values.

The %SQLSTRING, %SQLUPPER, and %TRUNCATE collations provide an optional maxlen parameter, which must be
enclosed in parentheses. maxlen is a truncation integer that specifies the maximum number of characters to consider when
performing collation. This parameter is useful when creating indices with fields containing large data values.

The %PLUS and %MINUS collations handle NULL as a zero (0) value.

InterSystems SQL provides functions for most of these collation types. Refer to the %EXACT, %SQLSTRING,
%SQLUPPER, %TRUNCATE functions for further details.

84 InterSystems SQL Reference

SQL Commands

Note: A shard key field can only take %EXACT, %SQLSTRING, or %SQLUPPER collation, with no truncation. See
Querying the Sharded Cluster in the chapter “Horizontally Scaling InterSystems IRIS for Data Volume with
Sharding” in the Scalability Guide.

ObjectScript provides the Collation() method of the %SYSTEM.Util class for data collation conversion.

Note: To change the namespace default collation from %SQLUPPER (which is not case-sensitive) to another collation
type, such as %SQLSTRING (which is case-sensitive), use the following command:

 WRITE $$SetEnvironment^%apiOBJ("collation","%Library.String","SQLSTRING")

After issuing this command, you must purge indexes, recompile all classes, then rebuild indexes. Do not rebuild
indices while the table’s data is being accessed by other users. Doing so may result in inaccurate query results.

%DESCRIPTION

You can provide a description text for a field. This option follows the same conventions as providing a description text for
a table. It is described with the other table elements, above.

Computed Fields
You can define one or more fields for which the value is computed, rather than user-supplied. The event that computes the
field value depends on the following keyword options:

• COMPUTECODE: value is computed and stored upon INSERT, value is not changed upon UPDATE.

• COMPUTECODE with COMPUTEONCHANGE: value is computed and stored upon INSERT, is recomputed and
stored upon UPDATE.

• COMPUTECODE with DEFAULT and COMPUTEONCHANGE: default value is stored upon INSERT, value is
computed and stored upon UPDATE.

• COMPUTECODE with CALCULATED or TRANSIENT: value is not stored, but generated each time the field is
queried.

For further details, refer to Computing a field value on INSERT or UPDATE in Using InterSystems SQL.

COMPUTECODE

The COMPUTECODE data constraint specifies ObjectScript code to compute a default data value for this field. The
ObjectScript code is specified within curly braces. Within the ObjectScript code, SQL field names can be specified with
curly brace delimiters. The ObjectScript code can consist of multiple lines of code. It can contain Embedded SQL.
Whitespace and line returns are permitted before or after the ObjectScript code curly brace delimiters.

COMPUTECODE specifies the SqlComputeCode field name and computation for its value. When you specify a computed
field name, either in COMPUTECODE or in the SqlComputeCode class property, you must specify the SQL field name,
not the corresponding generated table property name. The SqlComputeCode property keyword is described in the Class
Definition Reference.

A default data value supplied by compute code must be in Logical (internal storage) mode. Embedded SQL in compute
code is automatically compiled and run in Logical mode.

The following example defines the Birthday COMPUTECODE field. It use ObjectScript code to compute its default value
from the DOB field value:

CREATE TABLE MyStudents (
 Name VARCHAR(16) NOT NULL,
 DOB DATE,
 Birthday VARCHAR(10) COMPUTECODE {SET {Birthday}=$PIECE($ZDATE({DOB},9),",")},
 Grade INT
)

InterSystems SQL Reference 85

CREATE TABLE

The COMPUTECODE can contain the pseudo-field reference variables {%%CLASSNAME}, {%%CLASSNAMEQ},
{%%OPERATION}, {%%TABLENAME}, and {%%ID}. These pseudo-fields are translated into a specific value at class
compilation time. All of these pseudo-field keywords are not case-sensitive.

The COMPUTECODE value is a default; it is only returned if you did not supply a value to the field. The COMPUTECODE
value is not limited by data type restrictions. The COMPUTECODE value is limited by the UNIQUE data constraint and
other data constraint restrictions. If you specify both a DEFAULT and a COMPUTECODE, the DEFAULT is always taken.

COMPUTECODE can optionally take a COMPUTEONCHANGE, CALCULATED, or TRANSIENT keyword. The fol-
lowing keyword combination behaviors are supported:

If there is an error in the ObjectScript COMPUTECODE code, SQL does not detect this error until the code is executed
for the first time. Therefore, if the value is first computed upon insert, the INSERT operation fails with an SQLCODE -415
error; if the value is first computed upon update, the UPDATE operation fails with an SQLCODE -415 error; if the value
is first computed when queried, the SELECT operation fails with an SQLCODE -350 error.

A COMPUTECODE stored value can be indexed. The application developer is responsible for making sure that computed
field stored values are validated and normalized (numbers in canonical form), based on their data type, especially if you
define (or intend to define) an index for the computed field.

COMPUTEONCHANGE

By itself, COMPUTECODE causes a field value to be computed and stored in the database during INSERT; this value
remains unchanged by subsequent operations. By default, subsequent UPDATE or trigger code operations do not change
the computed value. Specifying the COMPUTEONCHANGE keyword causes subsequent UPDATE or trigger code oper-
ations to recompute and replace this stored value.

If you use the COMPUTEONCHANGE clause to specify a field or comma-separated list of fields, any change to the value
of one of these fields causes InterSystems SQL to recompute the COMPUTECODE field value.

If a field specified in COMPUTEONCHANGE is not part of the table specification, an SQLCODE -31 is generated.

In the following example, Birthday is computed upon insert based on the DOB (Date of Birth) value. Birthday is recomputed
when DOB is updated:

CREATE TABLE SQLUser.MyStudents (
 Name VARCHAR(16) NOT NULL,
 DOB DATE,
 Birthday VARCHAR(40) COMPUTECODE {
 SET {Birthday}=$PIECE($ZDATE({DOB},9),",")
 " changed: "$ZTIMESTAMP }
 COMPUTEONCHANGE (DOB)
)

COMPUTEONCHANGE defines the SqlComputeOnChange keyword with the %%UPDATE value for the class property
corresponding to the field definition. This property value is initially computed as part of the INSERT operation, and
recomputed during an UPDATE operation. For a corresponding Persistent Class definition, refer to Defining a Table by
Creating a Persistent Class in the “Defining Tables” chapter of Using InterSystems SQL.

CALCULATED and TRANSIENT

Specifying the CALCULATED or TRANSIENT keyword specifies that the COMPUTECODE field value is not saved in
the database; it is calculated as part of each query operation that accesses it. This reduces the size of the data storage, but
may slow query performance. Because these keywords cause InterSystems IRIS to not store the COMPUTECODE field
value, these keywords and the COMPUTEONCHANGE keyword are mutually exclusive. The following is an example of
a CALCULATED field:

CREATE TABLE MyStudents (
 Name VARCHAR(16) NOT NULL,
 DOB DATE,
 Days2Birthday INT COMPUTECODE{SET {Days2Birthday}=$ZD({DOB},14)-$ZD($H,14)} CALCULATED
)

86 InterSystems SQL Reference

SQL Commands

CALCULATED defines the Calculated boolean keyword for the class property corresponding to the field definition.
TRANSIENT defines the Transient boolean keyword for the class property corresponding to the field definition. These
property keywords are described in the Class Definition Reference.

CALCULATED and TRANSIENT provide nearly identical behavior, with the following differences. TRANSIENT means
that InterSystems IRIS does not store the property. CALCULATED means that InterSystems IRIS does not allocate any
instance memory for the property. Thus when CALCULATED is specified, TRANSIENT is implicitly set.

TRANSIENT properties cannot be indexed. CALCULATED properties cannot be indexed unless the property is also
SQLComputed.

Unique Fields Constraint
The unique fields constraint imposes a unique value constraint on the combined values of multiple fields. It has the following
syntax:

CONSTRAINT uname UNIQUE (f1,f2)

This constraint specifies that the combination of values of fields f1 and f2 must always be unique, even though either of
these fields by itself may take non-unique values. You can specify one, two, or more than two fields for this constraint.

All of the fields specified in this constraint must be defined in the field definition. If you specify a field in this constraint
that does not also appear in the field definitions, an SQLCODE -86 error is generated. The specified fields should be defined
as NOT NULL. None of the specified fields should be defined as UNIQUE, as this would make specifying this constraint
meaningless.

Fields may be specified in any order. The field order dictates the field order for the corresponding index definition. Duplicate
field names are permitted. Although you may specify a single field name in the UNIQUE fields constraint, this would be
functionally identical to specify the UNIQUE data constraint to that field. A single-field constraint does provide a constraint
name for future use.

You may specify multiple unique fields constraint statements in a table definition. Constraint statements can be specified
anywhere in the field definition; by convention they are commonly placed at the end of the list of defined fields.

Refer to the Constraints option of Catalog Details for ways to list the fields of a table that are defined with a unique constraint.

The Constraint Name

The CONSTRAINT keyword and the unique fields constraint name are optional. The following are functionally equivalent:

CONSTRAINT myuniquefields UNIQUE (name,dateofbirth)
UNIQUE (name,dateofbirth)

The constraint name uniquely identifies the constraint, and is also used to derive the corresponding index name. Specifying
CONSTRAINT name is recommended; this constraint name is required when using the ALTER TABLE command to drop
a constraint from the table definition. The constraint name can be any valid identifier; if specified as a delimited identifier,
a constraint name can include the ".", "^", ",", and "->" characters.

ALTER TABLE cannot drop a column that is listed in CONSTRAINT UNIQUE. Attempting to do so generates an
SQLCODE -322 error.

RowID Record Identifier
In SQL, every record is identified by a unique integer value, known as the RowID. In InterSystems SQL you do not need
to specify a RowID field. When you create a table and specify the desired data fields, a RowID field is automatically created.
This RowID is used internally, but is not mapped to a class property. By default, its existence is only visible when a class
is projected to an SQL table. In this projected SQL table, an additional RowID field appears. By default, this field is named
"ID" and is assigned to column 1. For further details on the RowID, refer to RowID Field in the “Defining Tables” chapter
in Using InterSystems SQL.

InterSystems SQL Reference 87

CREATE TABLE

%PUBLICROWID

By default, the RowID is hidden and PRIVATE. Specifying the %PUBLICROWID keyword makes the RowID not hidden
and public. If you specify the %PUBLICROWID keyword, the class corresponding to the table is defined with “Not Sql-
RowIdPrivate”. This optional keyword can be specified anywhere in the comma-separated list of table elements. ALTER
TABLE cannot be used to specify %PUBLICROWID.

If the RowID is public:

• RowID values are displayed by SELECT *.

• The RowID can be used as a foreign key reference.

• If there is no defined primary key, the RowID is treated as an Implicit PRIMARY KEY constraint with the Constraint
Name RowIDField_As_PKey.

• The table cannot be used to copy data into a duplicate table without specifying the field names to be copied.

For further details, refer to RowID Hidden? in the “Defining Tables” chapter of Using InterSystems SQL.

Bitmap Extent Index

When you create a table using CREATE TABLE, by default InterSystems IRIS automatically defines a bitmap extent
index for the corresponding class. The SQL MapName of the bitmap extent index is %%DDLBEIndex:

Index DDLBEIndex [Extent, SqlName = "%%DDLBEIndex", Type = bitmap];

This bitmap extent index is not created in any of the following circumstances:

• The table is defined as a temporary table.

• The table defines an explicit IDKEY index.

• The table contains a defined IDENTITY field that does not have MINVAL=1.

• The SetDDLDefineBitmapExtent() method is set to override the default system-wide. To determine the current setting,
call the $SYSTEM.SQL.CurrentSettings() method.

If, after creating a bitmap index, you invoke CREATE BITMAPEXTENT INDEX is run against a table where a bitmap
extent index was automatically defined, the bitmap extent index previously defined is renamed to the name specified by
the CREATE BITMAPEXTENT INDEX statement.

For DDL operations that automatically delete an existing bitmap extent index, refer to ALTER TABLE.

For further details refer to “Bitmap Extent Index” in the “Defining and Building Indices” chapter of SQL Optimization
Guide.

IDENTITY Field
InterSystems SQL automatically creates a RowID field for each table, which contains a system-generated integer that serves
as a unique record id. The optional IDENTITY keyword allows you to define a named field with the same properties as a
RowID record id field. An IDENTITY field behaves as a single-field IDKEY index, whose value is a unique system-gen-
erated integer.

Defining an IDENTITY field prevents the defining of the Primary Key as the IDKEY.

Just as with any system-generated ID field, an IDENTITY field has the following characteristics:

• You can only define one field per table as an IDENTITY field. Attempting to define more than one IDENTITY field
for a table generates an SQLCODE -308 error.

• The data type of an IDENTITY field must be an integer data type. If you do not specify a data type, its data type is
automatically defined as BIGINT. You can specify any integer data type, such as INTEGER or SMALLINT; BIGINT

88 InterSystems SQL Reference

SQL Commands

is recommended to match the data type of RowID. Any specified field constraints, such as NOT NULL or UNIQUE
are accepted, but ignored.

• Data values are system-generated. They consist of unique, nonzero, positive integers.

• By default, IDENTITY field data values cannot be user-specified. By default, an INSERT statement does not, and
can not, specify an IDENTITY field value. Attempting to do so generates an SQLCODE -111 error. To determine
whether an IDENTITY field value can be specified, call the GetIdentityInsert() method of the %SYSTEM.SQL class.
To change this setting, call the SetIdentityInsert() method of the %SYSTEM.SQL class. You can also specify
%CLASSPARAMETER ALLOWIDENTITYINSERT=1 in the table definition. Specifying ALLOWIDENTITYIN-
SERT=1 overrides any setting applied using SetIdentityInsert(). For further details, refer to the INSERT statement.

• IDENTITY field data values cannot be modified in an UPDATE statement. Attempting to do so generates an SQLCODE
-107 error.

• The system automatically projects a primary key on the IDENTITY field to ODBC and JDBC. If a CREATE TABLE
or ALTER TABLE statement defines a primary key constraint or a unique constraint on an IDENTITY field, or on a
set of columns including an IDENTITY field, the constraint definition is ignored and no corresponding primary key
or unique index definition is created.

• A SELECT * statement does return a table's IDENTITY field.

Following an INSERT, UPDATE, or DELETE operation, you can use the LAST_IDENTITY function to return the value
of the IDENTITY field for the most-recently modified record. If no IDENTITY field is defined, LAST_IDENTITY returns
the RowID value of the most-recently modified record.

The following two Embedded SQL programs create a table with an IDENTITY field and then insert a record into the table,
generating an IDENTITY field value. Note that in Embedded SQL the CREATE TABLE and INSERT statements must
be in separate programs:

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql(CREATE TABLE Employee (
 EmpNum INT NOT NULL,
 MyID IDENTITY NOT NULL,
 Name CHAR(30) NOT NULL,
 CONSTRAINT EMPLOYEEPK PRIMARY KEY (EmpNum))
)
 IF SQLCODE'=0 {
 WRITE !,"CREATE TABLE error is: ",SQLCODE }
 ELSE {
 WRITE !,"Table created" }

 &sql(INSERT INTO Employee (EmpNum,Name)
 SELECT ID,Name FROM SQLUser.Person WHERE Age >= '25')
 IF SQLCODE'=0 {
 WRITE !,"INSERT error is: ",SQLCODE }
 ELSE {
 WRITE !,"Record inserted into table" }

In this case, the primary key (EmpNum) is taken from the ID field of another table. Thus EmpNum values are unique
integers, but (because of the WHERE clause) may contain gaps in their sequence. The IDENTITY field, MyID, assigns a
user-visible unique sequential integer to each record.

ROWVERSION, SERIAL, and AUTO_INCREMENT Fields
InterSystems SQL provides three types of system-generated integer counter fields. All three data types are subclasses that
extend the %Library.BigInt data type class.

InterSystems SQL Reference 89

CREATE TABLE

Sharded
Table
Support

Counter
Reset
by

Fields of
this type

Duplicate
Values

User-supplied
values

When
User-supplied
value is

Automatically
Incremented
by

Scope of
Counter

Counter
Type

YesTRUNCATE
TABLE

one per
table

AllowedAllowed,
does not
affect
system
counter

NULL or
0

INSERTper-tableAUTO_INCREMENT

NoTRUNCATE
TABLE

multiple
per table

AllowedAllowed,
may
increment
system
counter

NULL or
0

INSERTper-serial
counter
field

SERIAL

Nonot resetone per
table

Not
Allowed

Not
Allowed

INSERT and
UPDATE

namespace-wideROWVERSION

The following CREATE TABLE example defines these fields:

CREATE TABLE MyStudents (
 Name VARCHAR(16) NOT NULL,
 DOB DATE,
 AutoInc BIGINT AUTO_INCREMENT,
 Counter SERIAL,
 RowVer ROWVERSION
)

The ROWVERSION and SERIAL keywords are specified instead of an explicit data type. Thus the following are valid
field definition syntax: MySerial SERIAL or MyRowVer ROWVERSION.

The AUTO_INCREMENT keyword is specified after an explicit data type. Or you can define an AUTO_INCREMENT
field using the %Library.AutoIncrement data type. Thus the following are valid field definition syntax: MyAutoInc
%AutoIncrement, MyAutoInc %AutoIncrement AUTO_INCREMENT, or MyAutoInc INTEGER AUTO_INCREMENT.

For further details on these counter fields, refer to RowVersion, AutoIncrement and Serial Counter Fields in the “Defining
Tables” chapter of Using InterSystems SQL.

Defining the Shard Key
The option to define a table as sharded is provided to improve the performance of queries against that table, especially for
tables containing a large number of records. A sharded table can only be used in a sharded environment; a non-sharded
table can be used in a sharded or non-sharded environment. Not all tables are good candidates for sharding. Optimal perfor-
mance in a sharded environment is generally achieved by using a combination of sharded tables (generally very large tables)
and non-sharded tables. For further details, refer to Evaluating the Benefits of Sharding and Evaluate Existing Tables for
Sharding in the Scalability Guide.

If the current namespace is configured for sharding (the master namespace on the shard master data server), you can specify
a Shard Key for the table. If the current namespace is not configured for sharding, a CREATE TABLE that specifies a
shard key fails with an SQLCODE -400 fatal error, with %msg ERROR #9319: Current namespace %1 has no
shards configured. See Configure the Shard Master Data Server in the Scalability Guide.

There are three options for specifying a shard key:

• SHARD: If you specify just the keyword SHARD, InterSystems IRIS uses the table’s RowID field as the shard key.
This is the most effective approach for almost all sharded tables. If the table has a defined IDENTITY field and no
explicit shard key, it will use the IDENTITY field as the shard key.

90 InterSystems SQL Reference

SQL Commands

• SHARD KEY (fieldname): You can specify a shard key other than the RowID using this syntax. You can specify
a field name or a comma-separated list of field names as the shard key. The data type of a shard key field must be
either a numeric or a string data type.

• SHARD KEY (fieldname) COSHARD WITH (tablename): The optional COSHARD WITH clause enables you
to specify a table to coshard with the defined sharded table. This option is used to enable cosharded joins for large
tables that are commonly JOINed in queries. The COSHARD clause WITH keyword and the parentheses enclosing
the coshard table name are both optional.

The defined sharded table must have an explicitly specified SHARD KEY (field). This shard key field must take integer
values; it is expected to match the system-assigned RowID values of the cosharded table. For example, SHARD KEY
(deptnum) COSHARD WITH department. The table specified in the COSHARD WITH clause must be a sharded
table with a system-assigned shard key.

The COSHARD WITH clause defines the CoshardWith index keyword in the ShardKey index for the sharded table.
This CoshardWith index keyword is equal to the class that projects the table.

You can determine which sharded tables specified in a query are cosharded by viewing the Cosharding comment
option.

You must define a table as a sharded table, either using CREATE TABLE or a persistent class definition. You cannot use
ALTER TABLE to add a shard key to an existing table.

If a table has a defined IDKEY, the field(s) must be defined as the shard key field(s). You can neither specify SHARD KEY
(fieldname) with fieldname not being this field, nor can you specify SHARD with no defined key field. Attempting to
do so results in an SQLCODE -400 error, with a %msg such as the following: ERROR #5597: Sharded table's
shard key (%1) must be the same as the idkey (%2) when the idkey is defined.

If a table has a defined IDENTITY field the field may be defined as the shard key field, or the shard key may be defined
on a field or fields other than the IDENTITY field.

A unique fields constraint on a sharded table can have a significant negative impact on insert/update performance unless
the shard key is a subset of the unique key. See Evaluate Unique Constraints in the chapter “Horizontally Scaling InterSystems
IRIS for Data Volume with Sharding” in the Scalability Guide.

A table that is involved in complex transactions requiring atomicity should never be sharded.

A sharded table is defined in the master namespace on the shard master data server. This master namespace can also include
non-sharded tables. Sharding is transparent to SQL queries; no special query syntax is required. A query does not need to
know whether a table is sharded or non-sharded. The same query can access sharded and non-sharded tables. A query can
include joins between sharded and non-sharded tables.

For further details, refer to Create Target Sharded Tables in the chapter “Horizontally Scaling InterSystems IRIS for Data
Volume with Sharding” in the Scalability Guide.

Sharded Table Definition Restrictions

• A sharded table cannot contain stream data type fields.

• A sharded table cannot contain a ROWVERSION data type or SERIAL (%Library.Counter) data type field.

• A sharded table cannot specify the VERSIONPROPERTY class parameter.

Defining a Primary Key
Defining a primary key is optional. When you define a table, IRIS automatically creates a generated field, the RowID Field
(default name "ID") which functions as a unique row identifier. As each record is added to a table, InterSystems IRIS
assigns a unique non-modifiable positive integer to that record’s RowID field. You can optionally define a primary key
that also functions as a unique row identifier. A primary key allows the user to define a row identifier that is meaningful

InterSystems SQL Reference 91

CREATE TABLE

to the application. For example, a primary key might be an Employee ID field, or a Social Security Number, or a Patient
Record ID field, or a inventory stock number.

You can explicitly define a field (or group of fields) as the primary record identifier by using the PRIMARY KEY clause.
There are three syntactic forms for defining a primary key:

CREATE TABLE MyTable (Field1 INT PRIMARY KEY, Field2 INT)

CREATE TABLE MyTable (Field1 INT, Field2 INT, PRIMARY KEY (Field1))

CREATE TABLE MyTable (Field1 INT, Field2 INT, CONSTRAINT MyTablePK PRIMARY KEY
(Field1))

The first syntax defines a field as the primary key; by designating it as the primary key, this field is by definition unique
and not null. The second and third syntax can be used for a single field primary key but allow for a primary key consisting
of more than one field. For example, PRIMARY KEY (Field1,Field2). If you specify a single field, this field is by
definition unique and not null. If you specify a comma-separated list of fields, each field is defined as not null but may
contain duplicate values, so long as the combination of the field values is a unique value. The third syntax allows you to
explicitly name your primary key; the first two syntax forms generate a primary key name as follows: table name + “PKey”
+ constraint count integer. For further details on generated primary key names, refer to Constraints option of Catalog Details.

A primary key accepts only unique values and does not accept NULL. (The primary key index property is not automatically
defined as Required; however, it effectively is required, since a NULL value cannot be filed or saved for a primary key
field.) The collation type of a primary key is specified in the definition of the field itself.

Refer to the Constraints option of Catalog Details for ways to list the fields of a table that are defined as the primary key.

For further details, refer to Primary Key in the “Defining Tables” chapter in Using InterSystems SQL.

Primary Key As IDKEY

By default, the primary key is not the unique IDKEY index. In many cases this is preferable, because it enables you to
update primary key values, set the collation type for the primary key, etc. There are cases where it is preferable to define
the primary key as the IDKEY index. Be aware that this imposes the IDKEY restrictions on the future use of the primary
key.

If you add a primary key constraint to an existing field, the field may also be automatically defined as an IDKEY index.
This depends on whether data is present and upon a configuration setting established in one of the following ways:

• The SQL SET OPTION PKEY_IS_IDKEY statement.

• The $SYSTEM.SQL.SetDDLPKeyNotIDKey() method call. To determine the current setting, call
$SYSTEM.SQL.CurrentSettings().

• Go to the Management Portal, select System Administration, Configuration, SQL and Object Settings, SQL. View the
current setting of Define primary key as ID key for tables created via DDL.

– If the check box is not selected (the default), the Primary Key does not becomes the IDKEY index in the class
definition. Access to records using a primary key that is not the IDKEY is significantly less efficient; however,
this type of primary key value can be modified.

– If the check box is selected, when a Primary Key constraint is specified through DDL it automatically becomes
the IDKEY index in the class definition. With this option selected, data access is more efficient, but a primary key
value, once set, can never be modified.

However, if an IDENTITY field is defined in the table, the primary key can never be defined as the IDKEY, even when
you have used one of these configuration setting to establish defining the primary key as the IDKEY.

InterSystems IRIS supports properties (fields) that are part of the IDKEY index to be SqlComputed. For example, a parent
reference field. The property must be a triggered computed field. An IDKEY property defined as SqlComputed is only

92 InterSystems SQL Reference

SQL Commands

computed upon the initial save of a new Object or an INSERT operation. UPDATE computation is not supported, because
fields that are part of the IDKEY index cannot be updated.

No Primary Key

In most cases, you should explicitly define a primary key. However, if a primary key is not designated, InterSystems IRIS
attempts to use another field as the primary key for ODBC/JDBC projection, according to the following rules:

1. If there is an IDKEY index on a single field, report the IDKEY field as the SQLPrimaryKey field.

2. Else if the class is defined with SqlRowIdPrivate=0 (the default), report the RowID field as the SQLPrimaryKey field.

3. Else if there is an IDKEY index, report the IDKEY fields as the SQLPrimaryKey fields.

4. Else do not report an SQLPrimaryKey.

Multiple Primary Keys

You can only define one primary key. What happens when you try to specify more than one primary key for a table is
configuration-dependent. By default, InterSystems IRIS rejects an attempt to define a primary key when one already exists,
or to define the same primary key twice, and issues an SQLCODE -307 error. You can set this behavior system-wide using
the $SYSTEM.SQL.SetDDLNo307() method call. To determine the current setting, call $SYSTEM.SQL.CurrentSettings(),
which displays a Suppress SQLCODE=-307 Errors setting.

The default is “No” (0). If this option is set to “No” , InterSystems IRIS issues an SQLCODE -307 error when an attempt
is made to add a primary key constraint to a table through DDL when a primary key constraint already exists for the table.
The error is issued even if the second definition of the primary key is identical to the first definition.

For example, the following CREATE TABLE statement:

CREATE TABLE MyTable (f1 VARCHAR(16),
CONSTRAINT MyTablePK PRIMARY KEY (f1))

creates the primary key (if none exists). A subsequent ALTER TABLE statement:

ALTER TABLE MyTable ADD CONSTRAINT MyTablePK PRIMARY KEY (f1)

generates an SQLCODE -307 error.

If the $SYSTEM.SQL.SetDDLNo307() option is set to “Yes” (1), InterSystems IRIS drops the existing primary key
constraint and establishes the last-specified primary key as the table's primary key.

Defining Foreign Keys
A foreign key is a field that references another table; the value stored in the foreign key field is a value that uniquely iden-
tifies a record in the other table. The simplest form of this reference is shown in the following example, in which the foreign
key explicitly references the primary key field CustID in the Customers table:

CREATE TABLE Orders (
 OrderID INT UNIQUE NOT NULL,
 OrderItem VARCHAR,
 OrderQuantity INT,
 CustomerNum INT,
 CONSTRAINT OrdersPK PRIMARY KEY (OrderID),
 CONSTRAINT CustomersFK FOREIGN KEY (CustomerNum) REFERENCES Customers (CustID)
)

Most commonly, a foreign key references the primary key field of the other table. However, a foreign key can reference a
RowID (ID) or an IDENTITY column. In every case, the foreign key reference must exist in the referenced table and must
be defined as unique; the referenced field cannot contain duplicate values or NULL.

In a foreign key definition, you can specify:

InterSystems SQL Reference 93

CREATE TABLE

• One field name: FOREIGN KEY (CustomerNum) REFERENCES Customers (CustID). The foreign key field
(CustomerNum) and referenced field (CustID) may have different names (or the same name), but must have the same
data type and field constraints.

• A comma-separated list of field names: FOREIGN KEY (CustomerNum,SalespersonNum) REFERENCES
Customers (CustID,SalespID). The foreign key fields and referenced fields must correspond in number of
fields and in order listed.

• An omitted field name: FOREIGN KEY (CustomerNum) REFERENCES Customers.

If you define a foreign key and omit the referenced field name, the foreign key defaults as follows:

1. The primary key field defined for the specified table.

2. If the specified table does not have a defined primary key, the foreign key defaults to the IDENTITY column defined
for the specified table.

3. If the specified table has neither a defined primary key nor a defined IDENTITY column, the foreign key defaults to
the RowID. This occurs only if the specified table defines the RowID as public; the specified table definition can do
this explicitly, either by specifying the %PUBLICROWID keyword, or through the corresponding class definition with
SqlRowIdPrivate=0 (the default). If the specified table does not defines the RowID as public, InterSystems IRIS issues
an SQLCODE -315 error. You must omit the referenced field name when defining a foreign key on the RowID;
attempting to explicitly specify ID as the referenced field name results in an SQLCODE -316 error.

If none of these defaults apply, InterSystems IRIS issues an SQLCODE -315 error.

Refer to the Constraints option of Catalog Details for ways to list the fields of a table that are defined as foreign key fields
and the generated Constraint Name for a foreign key.

In a class definition you can specify a Foreign Key that contains a field based on a parent table IDKEY property, as shown
in the following example:

 ForeignKey Claim(CheckWriterPost.Hmo,Id,Claim) References SQLUser.Claim.Claim(DBMSKeyIndex);

Because the parent field defined in a foreign key of a child has to be part of the parent class's IDKEY index, the only refer-
ential action supported for foreign keys of this type is NO ACTION.

• If a foreign key references a nonexistent table, InterSystems IRIS issues an SQLCODE -310 error, with additional
information provided in %msg.

• If a foreign key references a nonexistent field, InterSystems IRIS issues an SQLCODE -316 error, with additional
information provided in %msg.

• If a foreign key references a nonunique field, InterSystems IRIS issues an SQLCODE -314 error, with additional
information provided in %msg.

If the foreign key field references a single field, the two fields must have the same data type and field data constraints.

In a parent/child relationship there is no defined ordering of the children. Application code must not rely on any particular
ordering.

You can define a foreign key constraint that references a class in a database that is mounted read-only. To define a FOREIGN
KEY, the user must have REFERENCES privilege on the table being referenced or on the columns of the table being ref-
erenced. REFERENCES privilege is required if the CREATE TABLE is executed via Dynamic SQL or xDBC.

Referential Action Clause

If a table contains a foreign key, a change to one table has an effect on another table. To keep the data consistent, when
you define a foreign key, you also define what effect a change to the record from which the foreign key data comes has on
the foreign key value.

94 InterSystems SQL Reference

SQL Commands

A Foreign Key definition may contain two referential action clauses:

ON DELETE ref-action

and

ON UPDATE ref-action

The ON DELETE clause defines the DELETE rule for the referenced table. When an attempt to delete a row from the ref-
erenced table is made, the ON DELETE clause defines what action should be taken for the row(s) in the referencing table.

The ON UPDATE clause defines the UPDATE rule for the referenced table. When an attempt to change (update) the primary
key value of a row from the referenced table is made, the ON UPDATE clause defines what action should be taken for the
row(s) in the referencing table.

InterSystems SQL supports the following Foreign Key referential actions:

• NO ACTION

• SET DEFAULT

• SET NULL

• CASCADE

NO ACTION — When a row is deleted or its key value updated in the referenced table, all referencing tables are checked
to see if any row references the row being deleted or updated. If so, the delete or update fails. (This constraint does not
apply if the foreign key references itself.) NO ACTION is the default. NO ACTION is the only referential action supported
for sharded tables. Any other referential action results in an SQLCODE -400 error with a message such as: ERROR #5600:
Feature not supported for sharded class Sample.MyShardT: Foreign Key ON UPDATE action

of 'setnull'.

SET NULL — When a row is deleted or its key value updated in the referenced table, all referencing tables are checked
to see if any row references the row being deleted or updated. If so, the action causes the foreign key fields which reference
the row being deleted or updated to be set to NULL. The foreign key field must allow NULL values.

SET DEFAULT — When a row is deleted or its key value updated in the referenced table, all referencing tables are checked
to see if any row references the row being deleted or updated. If so, the action causes the foreign key fields which reference
the row being deleted or updated to be set to the field's default value. If the foreign key field does not have a default value,
it will be set to NULL. It is important to note that a row must exist in the referenced table which contains an entry for the
default value.

CASCADE — When a row is deleted in the referenced table, all referencing tables are checked to see if any row references
the row being deleted. If so, the delete causes rows whose foreign key fields which reference the row being deleted to be
deleted as well.

When the key value of a row is updated in the referenced table, all referencing tables are checked to see if any row references
the row being updated. If so, the update causes the foreign key fields which reference the row being updated to cascade the
update to all referencing rows.

Your table definition should not have two foreign keys with different names that reference the same identifier-commalist
field(s) and perform contradictory referential actions. In accordance with the ANSI standard, InterSystems SQL does not
issue an error if you define two foreign keys that perform contradictory referential actions on the same field (for example,
ON DELETE CASCADE and ON DELETE SET NULL). Instead, InterSystems SQL issues an error when a DELETE or
UPDATE operation encounters these contradictory foreign key definitions.

Here is an embedded SQL example that issues a CREATE TABLE statement that uses both referential action clauses.
Note that this example assumes a related table named Physician (with a primary key field of PhysNum) already exists.

InterSystems SQL Reference 95

CREATE TABLE

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql(CREATE TABLE Patient (
 PatNum VARCHAR(16),
 Name VARCHAR(30),
 DOB DATE,
 Primary_Physician VARCHAR(16) DEFAULT 'A10001982321',
 CONSTRAINT Patient_PK PRIMARY KEY (PatNum),
 CONSTRAINT Patient_Physician_FK FOREIGN KEY
 Primary_Physician REFERENCES Physician (PhysNum)
 ON UPDATE CASCADE
 ON DELETE SET NULL)
)
 WRITE !,"SQL code: ",SQLCODE

For further information refer to the “Using Foreign Keys” chapter in Using InterSystems SQL.

Sharded Tables and Foreign Keys

Foreign keys are supported for any combination of sharded and unsharded tables, including: key table sharded, fkey table
unsharded; key table unsharded, fkey table sharded; and both key table and fkey table sharded. The key in the referenced
table may be the shard key, or may be another key. A foreign key may be a single field or multiple fields.

NO ACTION is the only referential action supported for sharded tables.

For further details, see Querying the Sharded Cluster in the chapter “Horizontally Scaling InterSystems IRIS for Data
Volume with Sharding” in the Scalability Guide.

Implicit Foreign Key

It is preferable to explicitly define all foreign keys. However, it is possible to project implicit foreign keys to ODBC/JDBC
and the Management Portal.

If a foreign key is not explicitly defined, the rules for an implicit foreign key are as follows:

1. If there is an explicit foreign key defined, InterSystems IRIS reports this constraint.

2. Else, each reference column in the table is checked to see if the reference is to a table with an index that is a primary
key and IDKEY. If so, InterSystems IRIS reports this reference as a foreign key constraint.

3. Else, if the reference field is the parent reference field and the referenced table reports the RowID field as the implicit
primary key field, InterSystems IRIS reports this parent reference as a foreign key constraint.

If any of these implicit foreign key constraints are covered by an explicit foreign key definition, the implicit foreign key
constraint is not defined.

Examples: Dynamic SQL and Embedded SQL
The following examples demonstrate a CREATE TABLE using Dynamic SQL and Embedded SQL. Note that in Dynamic
SQL you can create a table and insert data into the table in the same program; in Embedded SQL you must use separate
programs to create a table and insert data into that table.

The last program example deletes the table, so that you may run these examples repeatedly.

The following Dynamic SQL example creates the table SQLUser.MyStudents. Note that because COMPUTECODE is
ObjectScript code, not SQL code, the ObjectScript $PIECE function uses double quote delimiters; because the line of code
is itself a quoted string, the $PIECE delimiters must be escaped as literals by doubling them, as shown:

96 InterSystems SQL Reference

SQL Commands

CreateStudentTable
 SET stuDDL=5
 SET stuDDL(1)="CREATE TABLE SQLUser.MyStudents ("
 SET stuDDL(2)="StudentName VARCHAR(32),StudentDOB DATE,"
 SET stuDDL(3)="StudentAge INTEGER COMPUTECODE {SET {StudentAge}="
 SET stuDDL(4)="$PIECE(($PIECE($H,"","",1)-{StudentDOB})/365,""."",1)} CALCULATED,"
 SET stuDDL(5)="Q1Grade CHAR,Q2Grade CHAR,Q3Grade CHAR,FinalGrade VARCHAR(2))"
 SET tStatement = ##class(%SQL.Statement).%New(0,"Sample")
 SET qStatus = tStatement.%Prepare(.stuDDL)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rtn = tStatement.%Execute()
 IF rtn.%SQLCODE=0 {WRITE !,"Table Create successful"}
 ELSEIF rtn.%SQLCODE=-201 {WRITE "Table already exists, SQLCODE=",rtn.%SQLCODE,!}
 ELSE {WRITE !,"table create failed, SQLCODE=",rtn.%SQLCODE,!
 WRITE rtn.%Message,! }

The following Embedded SQL example creates the table SQLUser.MyStudents:

 &sql(CREATE TABLE SQLUser.MyStudents (
 StudentName VARCHAR(32),StudentDOB DATE,
 StudentAge INTEGER COMPUTECODE {SET {StudentAge}=
 $PIECE(($PIECE($H,",",1)-{StudentDOB})/365,".",1)} CALCULATED,
 Q1Grade CHAR,Q2Grade CHAR,Q3Grade CHAR,FinalGrade VARCHAR(2))
)
 IF SQLCODE=0 {WRITE !,"Created table" }
 ELSEIF SQLCODE=-201 {WRITE !,"SQLCODE=",SQLCODE," ",%msg }
 ELSE {WRITE !,"CREATE TABLE failed, SQLCODE=",SQLCODE }

The following example deletes the table created by the prior examples:

 &sql(DROP TABLE SQLUser.MyStudents)
 IF SQLCODE=0 {WRITE !,"Table deleted" }
 ELSE {WRITE !,"SQLCODE=",SQLCODE," ",%msg }

See Also
• ALTER TABLE, DROP TABLE

• SELECT, JOIN

• INSERT, UPDATE, INSERT OR UPDATE

• “Defining Tables” chapter in Using InterSystems SQL

• SQL and Object Settings described in Configuration Parameter File Reference.

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

InterSystems SQL Reference 97

CREATE TABLE

CREATE TRIGGER
Creates a trigger.

CREATE TRIGGER trigname {BEFORE | AFTER} event [,event]
 [ORDER integer]
 ON table
 [REFERENCING {OLD | NEW} [ROW] [AS] alias]

action

Arguments

The name of the trigger to be created, which is an
identifier. A trigger name may be qualified or unqualified;
if qualified, its schema name must match the table’s
schema name. For further details see the “Identifiers”
chapter of Using InterSystems SQL.

trigname

The time (BEFORE or AFTER) the event to execute the
trigger.

The trigger event, or a comma-separated list of trigger
events. Available event list options are INSERT,
DELETE, and UPDATE.

You can specify a single UPDATE OF event. The
UPDATE OF clause is followed by a column name or a
comma-separated list of column names. The UPDATE
OF clause can only be specified when LANGUAGE is
SQL. The UPDATE OF clause cannot be specified in a
comma-separated event list.

BEFORE event

AFTER event

Optional — The order in which triggers should be
executed when there are multiple triggers for a table with
the same time and event. If order is omitted, a trigger is
assigned an order of 0.

ORDER integer

The table the trigger is created for. A table name may
be qualified or unqualified; if qualified, the trigger must
reside in the same schema as the table.

ON table

Optional — A REFERENCING clause can only be used
when LANGUAGE is SQL. A REFERENCING clause
allows you to specify an alias that you can use to
reference a column. REFERENCING OLD ROW allows
you reference the old value of a column during an
UPDATE or DELETE trigger. REFERENCING NEW
ROW allows you to reference the new value of a column
during an INSERT or UPDATE trigger. The ROW AS
keywords are optional. For an UPDATE, you can specify
both OLD and NEW in the same REFERENCING clause,
as follows: REFERENCING OLD oldalias NEW
newalias.

REFERENCING OLD ROW AS alias

REFERENCING NEW ROW AS alias

98 InterSystems SQL Reference

SQL Commands

The program code for the trigger. The action argument
can contain various optional keyword clauses, including
(in order): a FOR EACH ROW clause; a WHEN clause
with a predicate condition governing execution of the
triggered action; and a LANGUAGE clause which
specifies either LANGUAGE SQL or LANGUAGE
OBJECTSCRIPT. If the LANGUAGE clause is omitted,
SQL is the default. Following these clauses, you specify
one or more lines of code specifying the action to perform
when the trigger is executed.

action

Description
The CREATE TRIGGER command defines a trigger, a block of code to be executed when data in a specific table is
modified. A trigger is executed (“fired”) when a specific triggering event occurs, such as a new row being inserted into a
specified table. A triggering event may be an INSERT, DELETE, or UPDATE command. A trigger executes user-specified
trigger code. You can specify that the trigger should execute this code before or after the execution of the triggering event.
A trigger is specific to a specified table.

A trigger is triggered by a specified event: an INSERT, DELETE, or UPDATE operation. You can specify a comma-
separated list of events to execute the trigger when any one of the specified events occurs on the specified table.

Trigger action code cannot modify data in the triggering record. For example, if an update to the data in a table column
fires a trigger, that trigger’s code block cannot insert, update, or delete data in any of the records of that table.

Privileges and Locking

The CREATE TRIGGER command is a privileged operation. Before using CREATE TRIGGER it is necessary for your
process to have %CREATE_TRIGGER privileges. Failing to do so results in an SQLCODE -99 error (Privilege Violation).
You can use the GRANT command to assign %CREATE_TRIGGER privileges, if you hold appropriate granting privileges.

In embedded SQL, you can use the $SYSTEM.Security.Login() method to log in as a user with appropriate privileges:

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql()

You must have the %Service_Login:Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, refer to %SYSTEM.Security in the InterSystems Class Reference.

• CREATE TRIGGER cannot be used on a table projected from a persistent class, unless the table class definition
includes [DdlAllowed]. Otherwise, the operation fails with an SQLCODE -300 error with the %msg DDL not
enabled for class 'Schema.tablename'.

• CREATE TRIGGER cannot be used on a table projected from a deployed persistent class. This operation fails with
an SQLCODE -400 error with the %msg Unable to execute DDL that modifies a deployed class:
'classname'.

The CREATE TRIGGER statement acquires a table-level lock on table. This prevents other processes from modifying
the table’s data. This lock is automatically released at the conclusion of the CREATE TRIGGER operation.

Other Ways of Defining Triggers

You can define an SQL trigger as an object by including the FOREACH = ROW/OBJECT statement. The following is an
example of an Object trigger:

InterSystems SQL Reference 99

CREATE TRIGGER

Trigger SQLJournal [CodeMode = objectgenerator, Event = INSERT/UPDATE, ForEach = ROW/OBJECT, Time =
AFTER]
{ /* ObjectScript trigger code
 that updates a journal file
 after a row is inserted or updated. */
}

Arguments

trigname

A trigger name follows the same identifier requirements as a table name, but not the same uniqueness requirements. A
trigger name must be unique for a table within a schema. Thus, triggers referencing different tables in a schema may have
the same name. A trigger and its associated table must reside in the same schema. You cannot use the same name for a
trigger and a table in the same schema. Violating trigger naming conventions results in an SQLCODE -400 error at CREATE
TRIGGER execution time.

A trigger name may be unqualified or qualified. A qualified trigger name has the form:

schema.trigger

If the trigger name is unqualified, the trigger schema name defaults to the same schema as the specified table schema. If
the table name is unqualified, the table schema name defaults to the same schema as the specified trigger schema. If both
are unqualified, the system-wide default schema name is used; schema search paths are not used. If both are qualified, the
trigger schema name must be the same as the table schema name. A schema name mismatch results in an SQLCODE -366
error; this should only occur when both the trigger name and the table name are qualified and they specify different schema
names.

Trigger names follow identifier conventions, subject to the restrictions below. By default, trigger names are simple identifiers.
A trigger name should not exceed 128 characters. Trigger names are not case-sensitive.

InterSystems IRIS uses trigname to generate a corresponding trigger name in the InterSystems IRIS class. The corresponding
class trigger name contains only alphanumeric characters (letters and numbers) and is a maximum of 96 characters in length.
To generate this identifier name, InterSystems IRIS first strips punctuation characters from the trigger name, and then
generates a unique identifier of 96 (or less) characters, substituting a number for the 96th character when needed to create
a unique name. This name generation imposes the following restrictions on the naming of triggers:

• A trigger name must include at least one letter. Either the first character of the trigger name or the first character after
initial punctuation characters must be a letter.

• InterSystems IRIS supports 16-bit (wide) characters for trigger names. A character is a valid letter if it passes the
$ZNAME test.

• Because names generated for an InterSystems IRIS class do not include punctuation characters, it is not advisable
(though possible) to create trigger names that differ only in their punctuation characters.

• A trigger name may be much longer than 96 characters, but trigger names that differ in their first 96 alphanumeric
characters are much easier to work with.

event

A trigger specified as INSERT is executed when a row is inserted into the specified table. A trigger specified as DELETE
is executed when a row is deleted from the specified table. A trigger specified as UPDATE is executed when a row is
updated in the specified table. You can specify a single event keyword, or a comma-separated list of any two or all three
of these event keywords.

A trigger specified as UPDATE OF is executed only when one or more of the specified columns is updated in a row in the
specified table. Column names are specified as a comma-separated list. Column names can be specified in any order, but
duplicate column names are not permitted; this results in an SQLCODE -58 error at compile time. The UPDATE OF clause
is only valid if the trigger code LANGUAGE is SQL (the default).

100 InterSystems SQL Reference

SQL Commands

The time that the trigger is fired is specified by the BEFORE or AFTER keyword; these keywords specify that the trigger
operation should occur either before or after InterSystems IRIS executes the triggering event. A BEFORE trigger is executed
before performing the specified event, but after verifying the event. For example, InterSystems IRIS only executes a
BEFORE DELETE trigger if the DELETE statement is valid for the specified row(s), and the process has the necessary
privileges to perform the DELETE, including any foreign key referential integrity checks. If the process cannot perform
the specified event, InterSystems IRIS issues an error code for the event; it does not execute the BEFORE trigger.

The following are examples event types:

CREATE TRIGGER TrigBI BEFORE INSERT ON Sample.Person
 INSERT INTO TLog VALUES ('before insert');

CREATE TRIGGER TrigAU AFTER UPDATE ON Sample.Person
 INSERT INTO TLog VALUES ('after update');

CREATE TRIGGER TrigBUOF BEFORE UPDATE OF Home_Street,Home_City,Home_State ON Sample.Person
 INSERT INTO TLog VALUES ('before address update');

CREATE TRIGGER TrigAD AFTER UPDATE,DELETE ON Sample.Person
 INSERT INTO TLog VALUES ('after update or delete');

ORDER

The ORDER clause determines the order in which triggers are executed when there are multiple triggers for the same table
with the same time and event. For example, two AFTER DELETE triggers. The trigger with the lowest ORDER integer is
executed first, then the next higher integer, and so on. If the ORDER clause is not specified, a trigger is created with an
assigned ORDER number of 0 (zero). Thus, triggers with no ORDER clause are always executed before triggers with
ORDER clauses.

You can assign the same order value to multiple triggers. You can also create multiple triggers with an (implicit or explicit)
order of 0. Multiple triggers with the same time, event, and order are executed together in random order.

Triggers are executed in the sequence: time > order > event. Thus if you have a BEFORE INSERT trigger and a BEFORE
INSERT,UPDATE trigger, the trigger with the lowest ORDER value would be executed first. If you have a BEFORE
INSERT trigger and a BEFORE INSERT,UPDATE trigger with the same ORDER value, the INSERT is executed before
the INSERT,UPDATE. This is because — time and order being the same — a single-event trigger is always executed
before a multi-event trigger. If two (or more) triggers have identical time, order, and event values, the order of execution
is random.

The following examples show how ORDER numbers work. All of these CREATE TRIGGER statements create triggers
that are executed by the same event:

CREATE TRIGGER TrigA BEFORE DELETE ON doctable
 INSERT INTO TLog VALUES ('doc deleted');
 -- Assigned ORDER=0

CREATE TRIGGER TrigB BEFORE DELETE ORDER 4 ON doctable
 INSERT INTO TReport VALUES ('doc deleted')
 -- Specified as ORDER=4

CREATE TRIGGER TrigC BEFORE DELETE ORDER 2 ON doctable
 INSERT INTO Ttemps VALUES ('doc deleted')
 -- Specified as ORDER=2

CREATE TRIGGER TrigD BEFORE DELETE ON doctable
 INSERT INTO Tflags VALUES ('doc deleted')
 -- Also assigned ORDER=0

These triggers will execute in the sequence: (TrigA, TrigD), TrigC, TrigB. Note that TrigA and TrigD have the same order
number, and thus execute in random sequence.

InterSystems SQL Reference 101

CREATE TRIGGER

REFERENCING

The REFERENCING clause can specify an alias for the old value of a row, the new value of a row, or both. The old value
is the row value before the triggered action of an UPDATE or DELETE trigger. The new value is the row value after the
triggered action of an UPDATE or INSERT trigger. For an UPDATE trigger, you can specify aliases for both the before
and after row values, as follows:

REFERENCING OLD ROW AS oldalias NEW ROW AS newalias

The keywords ROW and AS are optional. Therefore, the same clause can also be specified as:

REFERENCING OLD oldalias NEW newalias

It is not meaningful to refer to an OLD value before an INSERT or a NEW value after a DELETE. Attempting to do so
results in an SQLCODE -48 error at compile time.

A REFERENCING clause can only be used when the action program code is SQL. Specifying a REFERENCING clause
with the LANGUAGE OBJECTSCRIPT clause results in an SQLCODE -49 error.

The following is an example of using REFERENCING with an INSERT:

CREATE TRIGGER TrigA AFTER INSERT ON doctable
 REFERENCING NEW ROW AS new_row
BEGIN
 INSERT INTO Log_Table VALUES ('INSERT into doctable');
 INSERT INTO New_Log_Table VALUES ('INSERT into doctable',new_row.ID);
END

action

A triggered action consists of the following elements:

• An optional FOR EACH clause. The available values are FOR EACH ROW, FOR EACH ROW_AND_OBJECT, and
FOR EACH STATEMENT. FOR EACH ROW means that this trigger is invoked by an SQL filing operation. FOR
EACH ROW_AND_OBJECT means that this trigger is invoked by either an SQL filing operation or an InterSystems
IRIS Objects filing operation. FOR EACH STATEMENT is provided for compatibility with TSQL triggers.

• An optional WHEN clause, consisting of the WHEN keyword followed by a predicate condition (simple or complex)
enclosed in parentheses. If the predicate condition evaluates to TRUE, the trigger is executed. A WHEN clause can
only be used when LANGUAGE is SQL. The WHEN clause can reference oldalias or newalias values. For further
details on predicate condition expressions and a list of available predicates, refer to the Overview of Predicates page
in this document.

• An optional LANGUAGE clause, either LANGUAGE SQL or LANGUAGE OBJECTSCRIPT. The default is LAN-
GUAGE SQL.

• User-written code that is executed when the trigger is executed.

SQL Trigger Code
If LANGUAGE SQL (the default), the triggered statement is an SQL procedure block, consisting of either one SQL procedure
statement followed by a semicolon, or the keyword BEGIN followed by one or more SQL procedure statements, each followed
by a semicolon, concluding with an END keyword.

A triggered action is atomic, it is either fully applied or not at all, and cannot contain COMMIT or ROLLBACK statements.
The keyword BEGIN ATOMIC is synonymous with the keyword BEGIN.

If LANGUAGE SQL, the CREATE TRIGGER statement can optionally contain a REFERENCING clause, a WHEN
clause, and/or an UPDATE OF clause. An UPDATE OF clause specifies that the trigger should only be executed when an
UPDATE is performed on one or more of the columns specified for this trigger. A CREATE TRIGGER statement with
LANGUAGE OBJECTSCRIPT cannot contain these clauses.

102 InterSystems SQL Reference

SQL Commands

SQL trigger code is executed as embedded SQL. This means that InterSystems IRIS converts SQL trigger code to
ObjectScript; therefore, if you view the class definition corresponding to your SQL trigger code, you will see
Language=objectscript in the trigger definition.

When executing SQL trigger code, the system automatically resets (NEWs) all variable used in the trigger code. After the
execution of each SQL statement, InterSystems IRIS checks SQLCODE. If an error occurs, InterSystems IRIS sets the
%ok variable to 0, aborting and rolling back both the trigger code operation(s) and the associated INSERT, UPDATE, or
DELETE.

ObjectScript Trigger Code
If LANGUAGE OBJECTSCRIPT, the CREATE TRIGGER statement cannot contain a REFERENCING clause, a WHEN
clause, or an UPDATE OF clause. Specifying these SQL-only clauses with LANGUAGE OBJECTSCRIPT results in
compile-time SQLCODE errors -49, -57, or -50, respectively.

If LANGUAGE OBJECTSCRIPT, the triggered statement is a block of one or more ObjectScript statements, enclosed by
curly braces.

Because the code for a trigger is not generated as a procedure, all local variables in a trigger are public variables. This
means all variables in triggers should be explicitly declared with a NEW statement; this protects them from conflicting
with variables in the code that invokes the trigger.

If trigger code contains Macro Preprocessor statements (# commands, ## functions, or $$$macro references), these statements
are compiled before the CREATE TRIGGER DDL code itself.

You can issue an error from trigger code by setting the %ok variable to 0. This creates a runtime error that aborts execution
of the trigger. Trigger code can also set the %msg variable to a string describing the cause of the runtime error.

The system generates trigger code only once, even for a multiple-event trigger.

Field References and Pseudo-field References

Trigger code written in ObjectScript can contain field references, specified as {fieldname}, where fieldname specifies an
existing field in the current table. No blank spaces are permitted within the curly braces.

You can follow the fieldname with *N (new), *O (old), or *C (compare) to specify how to handle an inserted, updated, or
deleted field data value, as follows:

• {fieldname*N}

– For UPDATE, returns the new field value after the specified change is made.

– For INSERT, returns the value inserted.

– For DELETE, returns the value of the field before the delete.

• {fieldname*O}

– For UPDATE, returns the old field value before the specified change is made.

– For INSERT, returns NULL.

– For DELETE, returns the value of the field before the delete.

• {fieldname*C}

– For UPDATE, returns 1 (TRUE) if the new value differs from the old value, otherwise returns 0 (FALSE).

– For INSERT, returns 1 (TRUE) if the inserted value is non-NULL, otherwise returns 0 (FALSE).

– For DELETE, returns 1 (TRUE) if the value being deleted is non-NULL, otherwise returns 0 (FALSE).

InterSystems SQL Reference 103

CREATE TRIGGER

For UPDATE, INSERT, or DELETE, {fieldname} returns the same value as {fieldname*N}.

Line returns are not permitted within a statement that sets a field value. For further details, refer to the SqlComputeCode
property keyword in the Class Definition Reference.

You can use the GetColumns() method to list the field names defined for a table. For further details, refer to Column
Names and Numbers in the “Defining Tables” chapter of Using InterSystems SQL.

Trigger code written in ObjectScript can also contain the pseudo-field reference variables {%%CLASSNAME},
{%%CLASSNAMEQ}, {%%OPERATION}, {%%TABLENAME}, and {%%ID}. The pseudo-fields are translated into
a specific value at class compilation time. All of these pseudo-field keywords are not case-sensitive.

• {%%CLASSNAME} and {%%CLASSNAMEQ} both translate to the name of the class which projected the SQL
table definition. {%%CLASSNAME} returns an unquoted string and {%%CLASSNAMEQ} returns a quoted string.

• {%%OPERATION} translates to a string literal, either INSERT, UPDATE, or DELETE, depending on the operation
that invoked the trigger.

• {%%TABLENAME} translates to the fully qualified name of the table, returned as a quoted string.

• {%%ID} translates to the RowID name. This reference is useful when you do not know the name of the RowID field.

Referencing Stream Property

When a Stream field/property is referenced in a trigger definition, like {StreamField}, {StreamField*O}, or {StreamField*N},
the value of the {StreamField} reference is the stream's OID (object ID) value.

For a BEFORE INSERT or BEFORE UPDATE trigger, if a new value is specified by the INSERT/UPDATE/ObjectSave,
the {StreamField*N} value will be either the OID of the temporary stream object, or the new literal stream value. For a
BEFORE UPDATE trigger, if a new value is not specified for the stream field/property, {StreamField*O} and {Stream-
Field*N} will both be the OID of the current field/property stream object.

Referencing SQLComputed Property

When a transient SqlComputed field/property (either "Calculated" or explicitly "Transient") is referenced in a trigger defi-
nition, Get()/Set() method overrides are not recognized by the trigger. Use SQLCOMPUTED/SQLCOMPUTONCHANGE,
rather than overriding the property's Get() or Set() method.

Using Get()/Set() method overrides can result in the following erroneous result: The {property*O} value is determined
using SQL and does not use the overridden Get()/Set() methods. Because the property is not stored on disk, {property*O}
uses the SqlComputeCode to "recreate" the old value. However, {property*N} uses the overridden Get()/Set() methods to
access the property's value. As a result, there is a possibility for {property*O} and {property*N} to be different (and thus
{property*C}=1) even though the property did not actually change.

Labels

Trigger code may contain line labels (tags). To specify a label in trigger code, prefix the label line with a colon to indicate
that this line should begin in the first column. InterSystems IRIS strips out the colon and treats the remaining line as a label.
However, because trigger code is generated outside the scope of any procedure blocks, every label must be unique
throughout the class definition. Any other code compiled into the class's routine must not have the same label defined,
including in other triggers, in non-procedure block methods, SqlComputeCode, and other code.

Note: This use of a colon prefix for a label takes precedence over the use of a colon prefix for a host variable reference.
To avoid this conflict, it is recommended that embedded SQL trigger code lines never begin with a host variable
reference. If you must begin a trigger code line with a host variable reference, you can designate it as a host
variable (and not a label) by doubling the colon prefix.

104 InterSystems SQL Reference

SQL Commands

Method Calls

You can call class methods from within trigger code, because class methods do not depend on having an open object. You
must use the ##class(classname).Method() syntax to invoke a method. You cannot use the ..Method() syntax,
because this syntax requires a current open object.

You can pass the value of a field of the current row as an argument of the class method, but the class method itself cannot
use field syntax.

Listing Existing Triggers
You can use the INFORMATION.SCHEMA.TRIGGERS class to list the currently defined triggers. This class lists for each
trigger the name of the trigger, the associated schema and table name, and the trigger creation timestamp. For each trigger
it lists the EVENT_MANIPULATION property (INSERT, UPDATE, DELETE, INSERT/UPDATE,
INSERT/UPDATE/DELETE) and ACTION_TIMING property (BEFORE, AFTER). It also lists the ACTION_STATEMENT,
which is the generated SQL trigger code.

Trigger Runtime Errors
A trigger and its invoking event execute as an atomic operation on a single row basis. That is:

• A failed BEFORE trigger is rolled back, the associated INSERT, UPDATE, or DELETE operation is not executed,
and all locks on the row are released.

• A failed AFTER trigger is rolled back, the associated INSERT, UPDATE, or DELETE operation is rolled back, and
all locks on the row are released.

• A failed INSERT, UPDATE, or DELETE operation is rolled back, the associated BEFORE trigger is rolled back,
and all locks on the row are released.

• A failed INSERT, UPDATE, or DELETE operation is rolled back, the associated AFTER trigger is not executed,
and all locks on the row are released.

Note that integrity is maintained for the current row operation only. Your application program must handle data integrity
issues involving operation on multiple rows by using transaction processing statements.

Because a trigger is an atomic operation, you cannot code transaction statements, such as commits and rollbacks, within
trigger code.

If an INSERT, UPDATE, or DELETE operation causes multiple triggers to execute, the failure of one trigger causes all
remaining triggers to remain unexecuted.

When a database operation fails because of a fatal runtime error, InterSystems IRIS issues an SQLCODE -415 error. When
a trigger operation fails, InterSystems IRIS issues one of the SQLCODE error codes -130 through -135 indicating the type
of trigger that failed. You can force a trigger to fail by setting the %ok variable to 0 in the trigger code. You can also set
the %msg variable to a string containing a message to be returned upon trigger failure.

Examples
The following two Embedded SQL programs demonstrate CREATE TRIGGER with an ObjectScript INSERT trigger. The
first example creates a table and an INSERT trigger for that table. The second program issues an INSERT against the table,
executing the trigger which writes a message. It then drops the table so that this program can be run repeatedly:

InterSystems SQL Reference 105

CREATE TRIGGER

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql(CREATE TABLE TestDummy (
 testnum INT NOT NULL,
 firstword CHAR (30) NOT NULL,
 lastword CHAR (30) NOT NULL,
 CONSTRAINT TestDummyPK PRIMARY KEY (testnum))
)
 WRITE !,"SQL table code is: ",SQLCODE
 &sql(CREATE TRIGGER TrigTestDummy AFTER INSERT ON TestDummy
 LANGUAGE OBJECTSCRIPT
 {WRITE "I just fired the trigger" }
)
 WRITE !,"SQL trigger code is: ",SQLCODE

 NEW SQLCODE,%ROWCOUNT,%ROWID
 &sql(INSERT INTO TestDummy (testnum,firstword,lastword) VALUES
 (46639,'hello','goodbye'))
 IF SQLCODE=0 {
 WRITE !,"Insert succeeded"
 WRITE !,"Row count=",%ROWCOUNT
 WRITE !,"Row ID=",%ROWID }
 ELSE {
 WRITE !,"Insert failed, SQLCODE=",SQLCODE }
 &sql(DROP TABLE TestDummy)

The following examples demonstrate CREATE TRIGGER with an SQL INSERT trigger. The first embedded SQL program
creates a table, an INSERT trigger for that table, and a log table for the trigger's use. The second embedded SQL program
issues an INSERT against the table, which invokes the trigger, which logs an entry in the log table. After displaying the
log entry, the program drops both tables so that this program can be run repeatedly:

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql(CREATE TABLE TestDummy (
 testnum INT NOT NULL,
 firstword CHAR (30) NOT NULL,
 lastword CHAR (30) NOT NULL,
 CONSTRAINT TestDummyPK PRIMARY KEY (testnum))
)
 WRITE !,"SQL table code is: ",SQLCODE
 &sql(CREATE TABLE TestDummyLog (
 entry CHAR (60) NOT NULL)
)
 WRITE !,"SQL log table code is: ",SQLCODE
 &sql(CREATE TRIGGER TrigTestDummy AFTER INSERT ON TestDummy
 LANGUAGE SQL
 BEGIN
 INSERT INTO TestDummyLog (entry) VALUES
 (CURRENT_TIMESTAMP||' INSERT to TestDummy');
 END)
 WRITE !,"SQL trigger code is: ",SQLCODE

 NEW SQLCODE,%ROWCOUNT,%ROWID
 &sql(INSERT INTO TestDummy (testnum,firstword,lastword) VALUES
 (46639,'hello','goodbye'))
 IF SQLCODE=0 {
 WRITE !,"Insert succeeded"
 WRITE !,"Row count=",%ROWCOUNT
 WRITE !,"Row ID=",%ROWID }
 ELSE {
 WRITE !,"Insert failed, SQLCODE=",SQLCODE }
 &sql(SELECT entry INTO :logitem FROM TestDummyLog)
 WRITE !,"Log entry: ",logitem
 &sql(DROP TABLE TestDummy)
 &sql(DROP TABLE TestDummyLog)
 WRITE !,"finished!"

The following example includes a WHEN clause that specifies that the action should only be performed when the predicate
condition in parentheses is met:

CREATE TRIGGER Trigger_2 AFTER INSERT ON Table_1
 WHEN (f1 %STARTSWITH 'A')
 BEGIN
 INSERT INTO Log_Table VALUES (new_row.Category);
 END

See Also
• DROP TRIGGER

106 InterSystems SQL Reference

SQL Commands

• GRANT

• “Using Triggers” chapter in Using InterSystems SQL

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

InterSystems SQL Reference 107

CREATE TRIGGER

CREATE USER
Creates a user account.

CREATE USER user-name IDENTIFY BY password

CREATE USER user-name IDENTIFIED BY password

Arguments

The name of the user to be created. The name is an identifier with a maximum of 128
characters. It can contain Unicode letters. user-name is not case-sensitive. For further
details see the “Identifiers” chapter of Using InterSystems SQL.

user-name

The password for this user. A password must be at least 3 characters, and cannot exceed
32 characters. Passwords are case-sensitive. Passwords can contain Unicode characters.

password

Description
The CREATE USER command creates a user account with the specified password.

A user-name can be any valid identifier of up to 160 characters. A user-name must follow identifier naming conventions.
A user-name can contain Unicode characters. User names are not case-sensitive.

A user-name specified as a delimited identifier can be an SQL reserved word and can contain a comma (,), period (.), caret
(^), and the two-character arrow sequence (->). It may begin with any valid character except the asterisk (*).

The IDENTIFY BY and IDENTIFIED BY keywords are synonyms.

A password can be a numeric literal, an identifier, or a quoted string. A numeric literal or an identifier does not have to be
enclosed in quotes. A quoted string is commonly used to include blanks in a password; a quoted password can contain any
combination of characters, with the exception of the quote character itself. A numeric literal must consist of only the char-
acters 0 through 9. An identifier must start with a letter (uppercase or lowercase) or a % (percent symbol); this can be followed
by any combination of letters, numbers, or any of the following symbols: _ (underscore), & (ampersand), $ (dollar sign),
or @ (at sign).

Passwords are case-sensitive. A password must be at least three characters, and less than 33 characters, in length. Specifying
a password that is too long or too short generates an SQLCODE -400 error, with a %msg value of “ERROR #845: Password
does not match length or pattern requirements” .

You cannot use a host variable to specify a user-name or password value.

Creating a user does not create any roles or grant any roles to the user. Instead, the user is given permissions for the database
they are logging into, and USE permission on the %SQL/Service service if the user holds at least one SQL privilege in the
namespace. To assign privileges or roles to a user, use the GRANT command. To create roles, use the CREATE ROLE
command.

If you invoke CREATE USER to create a user that already exists, SQL issues an SQLCODE -118 error, with a %msg
value of “User named 'name' already exists” . You can determine if a user already exists by invoking the
$SYSTEM.SQL.UserExists() method:

 WRITE $SYSTEM.SQL.UserExists("Admin"),!
 WRITE $SYSTEM.SQL.UserExists("BertieWooster")

This method returns 1 if the specified user exists, and 0 if the user does not exist. User names are not case-sensitive.

108 InterSystems SQL Reference

SQL Commands

Privilges

The CREATE USER command is a privileged operation. Prior to using CREATE USER in embedded SQL, it is necessary
to be logged in as a user with appropriate privileges. Failing to do so results in an SQLCODE -99 error (Privilege Violation).

Use the $SYSTEM.Security.Login() method to assign a user with appropriate privileges:

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql(/* SQL code here */)

You must have the %Service_Login:Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, refer to %SYSTEM.Security in the InterSystems Class Reference.

Examples
The following embedded SQL example creates a new user named “BillTest” with a password of “Carl4SHK” . (The
$RANDOM toggle is provided so that you can execute this example program repeatedly.)

Main
 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 SET x=$SYSTEM.SQL.UserExists("BillTest")
 IF x=0 {&sql(CREATE USER BillTest IDENTIFY BY Carl4SHK)
 IF SQLCODE '= 0 {WRITE "CREATE USER error: ",SQLCODE,!
 QUIT}
 }
 WRITE "User BillTest exists",!
Cleanup
 SET toggle=$RANDOM(2)
 IF toggle=0 {
 &sql(DROP USER BillTest)
 IF SQLCODE '= 0 {WRITE "DROP USER error: ",SQLCODE,!}
 }
 ELSE {WRITE !,"No drop this time",!}
 WRITE "User BillTest exists? ",$SYSTEM.SQL.UserExists("BillTest"),!
 QUIT

See Also
• SQL statements: ALTER USER, DROP USER, GRANT, REVOKE, CREATE ROLE

• “Users, Roles, and Privileges” chapter of Using InterSystems SQL

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

• ObjectScript: $ROLES and $USERNAME special variables

InterSystems SQL Reference 109

CREATE USER

CREATE VIEW
Creates a view.

CREATE [OR REPLACE] VIEW view-name [(column-commalist)]
 AS select-statement
 [WITH READ ONLY | WITH [level] CHECK OPTION]

Arguments

The name for the view being created. A valid identifier, subject to
the same additional naming restrictions as a table name. A view
name can be qualified (schema.viewname), or unqualified
(viewname). An unqualified view name takes the system-wide default
schema name. Note that you cannot use the same name for a table
and a view in the same schema.

view-name

Optional — The column names that compose the view, one or more
valid identifiers. If specified, this list is enclosed in parentheses and
items in the list are separated by commas.

column-commalist

A SELECT statement that defines the view.AS select-statement

Optional — Specifies that no insert, update, or delete operations
can be performed through this view upon the table on which the
view is based. The default is to permit these operations through a
view, subject to the constraints described below.

WITH READ ONLY

Optional — Specifies how insert, update, or delete operations are
performed through this view upon the table on which the view is
based. The level can be the keywords LOCAL or CASCADED. If
no level is specified, the WITH CHECK OPTION default is
CASCADED.

WITH level CHECK OPTION

Description
The CREATE VIEW command defines the content of a view. The SELECT statement that defines the view can reference
more than one table and can reference other views.

Privileges

To select from the objects referenced in the SELECT clause of a view being created, it is necessary to have the appropriate
privileges:

• When creating a view using Dynamic SQL or xDBC, you must have SELECT privileges on all the columns selected
from the underlying tables (or views) referenced by the view. If you do not have SELECT privilege for a specified
table (or view) the CREATE VIEW command will not execute.

However, when compiling a class that projects a defined view, these SELECT privileges are not enforced on the
columns selected from the underlying tables (or views) referenced by the view. For example, if you create a view using
a privileged routine (that has these SELECT privileges), you can later compile the view class, because you are the
owner of the view, regardless of whether you have SELECT privileges for the tables referenced by the view.

• To receive SELECT privilege WITH GRANT OPTION for a view, you must have WITH GRANT OPTION for every
table (or view) referenced by the view.

110 InterSystems SQL Reference

SQL Commands

• To receive INSERT, UPDATE, DELETE, or REFERENCES privilege for a view, you must have the same privilege
for every table (or view) referenced by the view. To receive WITH GRANT OPTION for any of these privileges, you
must hold the privilege WITH GRANT OPTION on the underlying tables.

• If the view is specified WITH READ ONLY, the view is not granted INSERT, UPDATE, or DELETE privileges,
regardless of the privileges you hold for the underlying tables. If the view is later redefined as read/write, these privileges
are added when the class projecting the view is recompiled.

You can determine if the current user has these table-level privileges by invoking the %CHECKPRIV command. You can
determine if a specified user has these table-level privileges by invoking the $SYSTEM.SQL.CheckPriv() method. For
privilege assignment, refer to the GRANT command.

The creator (owner) of a view is granted the %ALTER privilege WITH GRANT OPTION when the view is compiled.

The CREATE VIEW command is a privileged operation. Prior to using CREATE VIEW it is necessary for your process
to have %CREATE_VIEW privileges. Failing to do so results in an SQLCODE -99 error (Privilege Violation). You can
use the GRANT command to assign %CREATE_VIEW privileges, if you hold appropriate granting privileges.

In embedded SQL, you can use the $SYSTEM.Security.Login() method to log in as a user with appropriate privileges:

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql()

You must have the %Service_Login:Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, refer to %SYSTEM.Security in the InterSystems Class Reference.

%CREATE_VIEW privileges are assigned using the GRANT command, which requires you to assign this privilege to a
user or role. This requirement is configurable using the $SYSTEM.SQL.SetSQLSecurity() method call. To determine
the current setting, call $SYSTEM.SQL.CurrentSettings(), which displays an SQL Security ON: setting.

The default is “Yes” (1). When “Yes” , a user can only perform actions on a table or view for which that user has been
granted privilege. This is the recommended setting for this option.

If this method is set to “No” (0), SQL Security is disabled for any new process started after changing this setting. This
means privilege-based table/view security is suppressed. You can create a table without specifying a user. In this case,
Dynamic SQL assigns “_SYSTEM” as user, and Embedded SQL assigns "" (the empty string) as user. Any user can perform
actions on a table or view even if that user has no privileges to do so.

View Naming Conventions

A view name has the same naming conventions as a table name, and shares the same name set. Therefore, you cannot use
the same name for a table and a view in the same schema. Attempting to do so results in an SQLCODE -201 error. To
determine if a table already exists in the current namespace, use the $SYSTEM.SQL.TableExists("schema.tname")
method. A class that projects a table definition and a view definition with the same name also generates an SQLCODE -
201 error.

View names follow identifier conventions, subject to the restrictions below. By default, view names are simple identifiers.
A view name should not exceed 128 characters. View names are not case-sensitive. For further details see the “Identifiers”
chapter of Using InterSystems SQL.

InterSystems IRIS uses the view name to generate a corresponding class name. A class name contains only alphanumeric
characters (letters and numbers) and must be unique within the first 96 characters. To generate this class name, InterSystems
IRIS first strips punctuation characters from the view name, and then generates a identifier that is unique within the first
96 characters, substituting an integer (beginning with 0) for the final character when needed to create a unique class name.
InterSystems IRIS generates a unique class name from a valid view name, but this name generation imposes the following
restrictions on the naming of views:

• A view name must include at least one letter. Either the first character of the view name or the first character after
initial punctuation characters must be a letter.

InterSystems SQL Reference 111

CREATE VIEW

• InterSystems IRIS supports 16-bit (wide) characters for view names. A character is a valid letter if it passes the $ZNAME
test.

• If the first character of the view name is a punctuation character, the second character cannot be a number. This results
in an SQLCODE -400 error, with a %msg value of “ERROR #5053: Class name 'schema.name' is invalid” (without
the punctuation character). For example, specifying the view name %7A generates the %msg “ERROR #5053: Class
name 'User.7A' is invalid” .

• Because generated class names do not include punctuation characters, it is not advisable (though possible) to create a
view name that differs from an existing view or table name only in its punctuation characters. In this case, InterSystems
IRIS substitutes an integer (beginning with 0) for the final character of the name to create a unique class name.

• A view name may be much longer than 96 characters, but view names that differ in their first 96 alphanumeric characters
are much easier to work with.

A view name can be qualified or unqualified.

A qualified view name (schema.viewname) can specify an existing schema or a new schema. If it specifies a new schema,
the system creates that schema.

An unqualified view name (viewname) takes the system-wide default schema name.

Existing View

To determine if a specified view already exists in the current namespace, use the $SYSTEM.SQL.ViewExists() method.

What happens when you try to create a view that has the same name as an existing view depends on the optional OR
REPLACE keyword and on the configuration setting.

With OR REPLACE

If you specify CREATE OR REPLACE VIEW, the existing view is replaced by the view definition specified in the
SELECT clause and any specified WITH READ ONLY or WITH CHECK OPTION. This is the same as performing the
corresponding ALTER VIEW statement. Any privileges that had been granted to the original view remain.

This keyword phrase provides no functionality not available through ALTER VIEW. It is provided for compatibility with
Oracle SQL code.

Without OR REPLACE

If you specify CREATE VIEW, InterSystems IRIS, by default, rejects an attempt to create a view with the name of an
existing view and issues an SQLCODE -201 error. This behavior is configurable. Note that changing this behavior affects
both CREATE VIEW and CREATE TABLE. You can configure this behavior system-wide using the
$SYSTEM.SQL.SetDDLNo201() method call. To determine the current setting, call $SYSTEM.SQL.CurrentSettings(),
which displays a Suppress SQLCODE=-201 Errors setting.

The default is “No” (0). This is the recommended setting for this option. If this option is set to “Yes” (1), InterSystems
IRIS deletes the class definition associated with the view and then recreates it. This is much the same as performing a
DROP VIEW and then performing a CREATE VIEW.

Column Names

A view can optionally include a column-commalist list of column names, enclosed in parentheses. These column names,
if specified, are the names used to access and display the data for the columns when using that view. If the list of column
names is omitted, the column names of the SELECT source table are used. If you omit the list of column names, you must
also omit the parentheses.

If you specify the column-commalist, the following apply:

• A column name list must specify the enclosing parentheses, even when specifying a single field. You must separate
multiple column names with commas. Whitespace and comments are permitted within a column-commalist.

112 InterSystems SQL Reference

SQL Commands

• The number of column names must correspond to the number of columns specified in the SELECT statement. Mismatch
between the number of view columns and query columns results in an SQLCODE -142 error at compile time.

• The names of column names must be valid identifiers. They may be different names than the SELECT column names,
the same names as the SELECT column names, or a combination of both. The specified order of the view column
names corresponds to the order of the SELECT column names. Because it is possible to assign a view column the
name of an unrelated SELECT column, you must exercise caution when assigning view column names.

• A column name must be unique. Specifying a duplicate column name results in an SQLCODE -97 error. Column
names are converted to corresponding class property names by stripping out punctuation characters; column names
that differ only in punctuation characters are permitted, but discouraged.

The following example shows a CREATE VIEW with matching lists of view columns and query columns:

CREATE VIEW MyView (ViewCol1, ViewCol2, ViewCol3) AS
 SELECT TableCol1, TableCol2, TableCol3
 FROM MyTable

Alternatively, you can use the AS keyword in the query to specify the view columns as query column / view column pairs,
as shown in the following example:

CREATE VIEW MyView AS
 SELECT TableCol1 AS ViewCol1,
 TableCol2 AS ViewCol2,
 TableCol3 AS ViewCol3
 FROM MyTable

SELECT Columns and View Columns

• Data from multiple SELECT columns can be concatenated into a single view column. For example:

CREATE VIEW MyView (fullname) AS SELECT firstname||' '||lastname FROM MyTable

• Multiple view columns can refer to the same SELECT column. For example:

CREATE VIEW MyView (lname,surname) AS SELECT lastname,lastname FROM MyTable

SELECT Clause Considerations

A view does not have to be a simple subset of the rows and columns of one particular table. A view can be created using
a SELECT clause of any complexity, specifying any combination of tables or views. There are, however, a few restrictions
on the SELECT clause of a view definition:

• Can only include an ORDER BY clause if this clause is paired with a TOP clause. If you wish to include all of the
rows in the view, you can use a TOP ALL clause. You can include a TOP clause without an ORDER BY clause.
However, if you include an ORDER BY clause without a TOP clause, an SQLCODE -143 error is generated. If you
project an SQL view from a view class, the query of which contains an ORDER BY clause, the ORDER BY clause is
ignored in the view projection.

• Cannot contain host variables. If you attempt to reference a host variable in the SELECT clause, the system generates
an SQLCODE -148 error.

• Cannot include the INTO keyword. A view that specifies a SELECT with an INTO clause can be created, but execution
of this view fails with an SQLCODE -25 error.

CREATE VIEW can contain a UNION statement to select columns from the union of two tables. You can specify a
UNION as shown in the following embedded SQL example:

InterSystems SQL Reference 113

CREATE VIEW

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql(CREATE VIEW MyView (vname,vstate) AS
 SELECT t1.name,t1.home_state
 FROM Sample.Person AS t1
 UNION
 SELECT t2.name,t2.office_state
 FROM Sample.Employee AS t2)
 IF SQLCODE=0 { WRITE !,"Created view" }
 ELSE { WRITE "CREATE VIEW error SQLCODE=",SQLCODE }

Note that an unqualified view name, such as in the above example, defaults to the system-wide default schema name (for
example, the initial schema default SQLUser.MyView), even though the tables referenced by the view are in the Sample
schema. Thus it is usually a good practice to always qualify a view name to ensure that it is stored with its associated
table(s).

View ID: %vid

When data is accessed through a view, InterSystems IRIS assigns a sequential integer view ID (%vid) to each row returned
by that view. Like table row ID numbers, these view row ID numbers are system-assigned, unique, non-zero, non-null, and
non-modifiable. This %vid is usually invisible. Unlike a table row ID, it is not displayed when using asterisk syntax; it is
only displayed when explicitly specified in the SELECT. The %vid can be used to further restrict the number of rows
returned by a SELECT accessing a view. For further details on using %vid, refer to the Defining and Using Views chapter
of Using InterSystems SQL.

Updating Through Views
A view can be used to update the tables on which the view is based. You can INSERT new rows through the view, UPDATE
data in rows seen through the view, and DELETE rows seen through the view. INSERT, UPDATE, and DELETE statements
can be issued for a view, if the CREATE VIEW statement specified this ability. To allow updating through a view, specify
WITH CHECK OPTION (the default) when defining the view.

Note: If the view is based on a sharded table, you cannot INSERT, UPDATE, or DELETE through a view WITH
CHECK OPTION. Attempting to do so results in an SQLCODE -35 with the %msg INSERT/UPDATE/DELETE
not allowed for view (sample.myview) based on sharded table with check option

conditions.

To prevent updating through a view, specify WITH READ ONLY. Attempting an INSERT, UPDATE, or DELETE
through a view created WITH READ ONLY generates an SQLCODE -35 error.

In order to update through a view, you must have the appropriate privileges for the table or view to be updated, as specified
by the GRANT command.

Updating through views is subject to the following restrictions:

• The view cannot be a class query projected as a view.

• The view’s class cannot contain the class parameter READONLY=1.

• The view’s SELECT statement cannot contain a DISTINCT, TOP, GROUP BY, or HAVING clause, or be part of a
UNION.

• The view’s SELECT statement cannot contain a subquery.

• The view’s SELECT statement can only list value expressions that are column references.

• The view’s SELECT statement can have only one table reference; it cannot contain FROM clause JOIN syntax or
arrow syntax in the select-list or WHERE clause. The table reference must specify either an updateable table or an
updateable view.

The WITH CHECK OPTION clause causes an insert or update operation to validate the resulting row against the WHERE
clause of the view definition. This ensures that the inserted or modified row is part of the derived view table. There are two
available check options:

114 InterSystems SQL Reference

SQL Commands

• WITH LOCAL CHECK OPTION — only the WHERE clause of the view specified in the INSERT or UPDATE
statement is checked.

• WITH CASCADED CHECK OPTION — the WHERE clause of the view specified in the INSERT or UPDATE
statement and all underlying views are checked. This overrides any WITH LOCAL CHECK OPTION clauses in these
underlying views. WITH CASCADED CHECK OPTION is recommended for all updateable views.

If you specify WITH CHECK OPTION, the check option defaults to CASCADED. The keyword CASCADE is a
synonym for CASCADED.

If an INSERT operation fails WITH CHECK OPTION validation (as defined above), InterSystems IRIS issues an SQLCODE
-136 error.

If an UPDATE operation fails WITH CHECK OPTION validation (as defined above), InterSystems IRIS issues an SQL-
CODE -137 error.

Examples
The following example creates a view named "CityPhoneBook" from the PhoneBook table:

CREATE VIEW CityPhoneBook AS
 SELECT Name FROM PhoneBook WHERE City='Boston'

The following example creates a view named "GuideHistory" from the Guides table. It lists all titles (from the Title column)
and whether or not the person is retired:

CREATE VIEW GuideHistory AS
 SELECT Guides, Title, Retired, Date_Retired
 FROM Guides

The following Embedded SQL example creates the table MyTest, and then creates a view for this table, MyTestView,
which selects one field from MyTest:

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql(DROP TABLE Sample.MyTest)
 &sql(DROP VIEW Sample.MyTestView)
CreateTable
 &sql(CREATE TABLE Sample.MyTest (
 TestNum INT NOT NULL,
 FirstWord CHAR (30) NOT NULL,
 LastWord CHAR (30) NOT NULL,
 CONSTRAINT MyTestPK PRIMARY KEY (TestNum))
)
 IF SQLCODE=0 { WRITE !,"Created table" }
 ELSE { WRITE "CREATE TABLE error SQLCODE=",SQLCODE }
CreateView
 &sql(CREATE VIEW Sample.MyTestView AS
 SELECT FirstWord FROM Sample.MyTest
 WITH CASCADED CHECK OPTION)
 IF SQLCODE=0 { WRITE !,"Created view" }
 ELSE { WRITE "CREATE VIEW error SQLCODE=",SQLCODE }

The following Embedded SQL example creates a view MyTestView, which selects two fields from MyTest. The SELECT
query for this view contains a TOP clause and an ORDER BY clause:

InterSystems SQL Reference 115

CREATE VIEW

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql(DROP TABLE Sample.MyTest)
 &sql(DROP VIEW Sample.MyTestView)
CreateTable
 &sql(CREATE TABLE Sample.MyTest (
 TestNum INT NOT NULL,
 FirstWord CHAR (30) NOT NULL,
 LastWord CHAR (30) NOT NULL,
 CONSTRAINT MyTestPK PRIMARY KEY (TestNum))
)
 IF SQLCODE=0 { WRITE !,"Created table" }
 ELSE { WRITE "CREATE TABLE error SQLCODE=",SQLCODE }
CreateView
 &sql(CREATE VIEW Sample.MyTestView AS
 SELECT TOP ALL FirstWord,LastWord FROM Sample.MyTest
 ORDER BY LastWord)
 IF SQLCODE=0 { WRITE !,"Created view" }
 ELSE { WRITE "CREATE VIEW error SQLCODE=",SQLCODE }

The following example creates a view named "StaffWorksDesign" from three tables (Proj, Staff, and Works). The columns
Name, Cost, and Project provide the data.

CREATE VIEW StaffWorksDesign (Name,Cost,Project)
 AS SELECT EmpName,Hours*2*Grade,PName
 FROM Proj,Staff,Works
 WHERE Staff.EmpNum=Works.EmpNum
 AND Works.PNum=Proj.PNum AND PType='Design'

The following example creates a view named “v_3” by selecting from b.table2 and a.table1 using a UNION:

CREATE VIEW v_3(fvarchar)
 AS SELECT DISTINCT *
 FROM
 (SELECT fVARCHAR2 FROM b.table2
 UNION ALL
 SELECT fVARCHAR1 FROM a.table1)

See Also
• ALTER VIEW

• DROP VIEW

• CREATE TABLE

• GRANT

• SELECT

• “Defining and Using Views” chapter in Using InterSystems SQL

• SQL and Object Settings described in Configuration Parameter File Reference.

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

116 InterSystems SQL Reference

SQL Commands

DECLARE
Declares a cursor.

DECLARE cursor-name CURSOR FOR query

Arguments

The name of the cursor, which must begin with a letter and contain only
letters and numbers. (Cursor names do not follow SQL identifier conventions).
Cursor names are case-sensitive. They are subject to additional naming
restrictions, as described below.

cursor-name

A standard SELECT statement that defines the result set of the cursor. This
SELECT can include the %NOFPLAN keyword to specify that InterSystems
IRIS should ignore the frozen plan (if any) for this query. This SELECT can
include an ORDER BY clause, with or without a TOP clause. This SELECT
can specify a table-valued function in the FROM clause.

query

Description
A DECLARE statement declares a cursor used in cursor-based Embedded SQL. After declaring a cursor, you issue an
OPEN statement to open the cursor and then a series of FETCH statements to retrieve individual records. The cursor defines
the SELECT query that is used to select records for retrieval by these FETCH statements. You issue a CLOSE statement
to close (but not delete) the cursor.

As an SQL statement, DECLARE is only supported from Embedded SQL. For Dynamic SQL, use instead either a simple
SELECT statement (with no INTO clause), or a combination of Dynamic SQL and Embedded SQL. Equivalent operations
are supported through ODBC using the ODBC API.

DECLARE declares a forward-only (non-scrollable) cursor. Fetch operations begin with the first record in the query result
set and proceed sequentially through the result set records. A FETCH can only fetch a record once. The next FETCH
fetches the next sequential record in the result set.

Because DECLARE is a declaration, not an executed statement, it does not set or kill the SQLCODE variable.

DECLARE does not support the #SQLCompile Mode=Deferred preprocessor directive. Attempting to use Deferred mode
with a DECLARE, OPEN, FETCH, or CLOSE cursor statement generates a #5663 compilation error.

Cursor Names

Cursor names are case-sensitive.

A cursor name must be unique within the routine and the corresponding class. A cursor name may be of any length, but
must be unique within the first 29 characters. Cursor names are case-sensitive. If a specified cursor has already been declared,
compilation fails with a SQLCODE -52 error, Cursor name already declared.

Cursor names are not namespace-specific. You can DECLARE a cursor in one namespace, and OPEN, FETCH, or
CLOSE this cursor when in another namespace. Note that SQL tables are namespace-specific, so the FETCH operation
must be invoked in the same namespace as the table from which records are being fetched.

The first character of a cursor name must be a letter. The second and subsequent characters of a cursor name must be either
a letter or a number. Unlike SQL identifiers, punctuation characters are not permitted in cursor names.

You can use a delimiter characters (double quotes) to specify an SQL reserved word as a cursor name. A delimited cursor
name is not an SQL delimited identifier; delimited cursor names are still case-sensitive and cannot contain punctuation
characters. In most cases, an SQL reserved word should not be used as a cursor name.

InterSystems SQL Reference 117

DECLARE

Updating through a Cursor

You can perform record updates and deletes through a declared cursor using an UPDATE or DELETE statement with the
WHERE CURRENT OF clause. In InterSystems SQL a cursor can always be used for UPDATE or DELETE operations
if you have the appropriate privileges on the affected tables and columns; refer to the GRANT statement for assigning
object privileges.

A DECLARE statement can specify a FOR UPDATE or FOR READ ONLY keyword clause following the query. These
clauses are optional and perform no operation. They are provided as a way to document in the code that the process issuing
the query has or does not have the needed update and delete object privileges.

Examples
The following Embedded SQL example uses DECLARE to define a cursor for a query that specifies two output host
variables. The cursor is then opened, fetched repeatedly, and closed:

 SET name="John Doe",state="##"
 &sql(DECLARE EmpCursor CURSOR FOR
 SELECT Name, Home_State
 INTO :name,:state FROM Sample.Person
 WHERE Home_State %STARTSWITH 'A'
 FOR READ ONLY)
 WRITE !,"BEFORE: Name=",name," State=",state
 &sql(OPEN EmpCursor)
 QUIT:(SQLCODE'=0)
 NEW %ROWCOUNT,%ROWID
 FOR { &sql(FETCH EmpCursor)
 QUIT:SQLCODE
 WRITE !,"DURING: Name=",name," State=",state }
 WRITE !,"FETCH status SQLCODE=",SQLCODE
 WRITE !,"Number of rows fetched=",%ROWCOUNT
 &sql(CLOSE EmpCursor)
 WRITE !,"AFTER: Name=",name," State=",state

The following Embedded SQL example uses DECLARE to define a cursor for a query that specifies both output host
variables in the INTO clause and input host variables in the WHERE clause. The cursor is then opened, fetched repeatedly,
and closed:

 NEW SQLCODE,%ROWCOUNT,%ROWID
 SET EmpZipLow="10000"
 SET EmpZipHigh="19999"
 &sql(DECLARE EmpCursor CURSOR FOR
 SELECT Name,Home_Zip
 INTO :name,:zip
 FROM Sample.Employee WHERE Home_Zip BETWEEN :EmpZipLow AND :EmpZipHigh)
 &sql(OPEN EmpCursor)
 QUIT:(SQLCODE'=0)
 FOR { &sql(FETCH EmpCursor)
 QUIT:SQLCODE
 WRITE !,name," ",zip }
 &sql(CLOSE EmpCursor)
 QUIT

The following Embedded SQL example uses a table-valued function as the FROM clause of the query:

 ZNSPACE "Samples"
 &sql(DECLARE EmpCursor CURSOR FOR
 SELECT Name INTO :name FROM Sample.SP_Sample_By_Name('A')
 FOR READ ONLY)
 &sql(OPEN EmpCursor)
 QUIT:(SQLCODE'=0)
 NEW %ROWCOUNT,%ROWID
 FOR { &sql(FETCH EmpCursor)
 QUIT:SQLCODE
 WRITE "Name=",name,! }
 WRITE !,"FETCH status SQLCODE=",SQLCODE
 WRITE !,"Number of rows fetched=",%ROWCOUNT
 &sql(CLOSE EmpCursor)

See Also
• CLOSE, FETCH, OPEN, WHERE CURRENT OF

118 InterSystems SQL Reference

SQL Commands

• SQL Cursors in the “Using Embedded SQL” chapter of Using InterSystems SQL

InterSystems SQL Reference 119

DECLARE

DELETE
Removes rows from a table.

DELETE [%keyword] [FROM] table-ref [[AS] t-alias]
 [FROM [optimize-option] select-table [[AS] t-alias]
 {,select-table2 [[AS] t-alias]}]
 [WHERE condition-expression]

DELETE [%keyword] [FROM] table-ref [[AS] t-alias]
 [WHERE CURRENT OF cursor]

Arguments

Optional — One or more of the following keyword options, separated
by spaces: %NOCHECK, %NOFPLAN, %NOINDEX, %NOLOCK,
%NOTRIGGER, %PROFILE, %PROFILE_ALL.

%keyword

The table from which you are deleting rows. This is not a FROM
clause; it is a FROM keyword followed by a single table reference.
(The FROM keyword is optional; the table-ref is mandatory.)

A table name (or view name) can be qualified (schema.table), or
unqualified (table). An unqualified name is matched to its schema
using either a schema search path (if provided) or the default schema
name.

Rather than a table reference, you can specify a view through which
table rows can be deleted, or specify a subquery enclosed in paren-
theses. Unlike the SELECT statement FROM clause, you cannot
specify optimize-option keywords here.You cannot specify a table-
valued function or JOIN syntax in this argument.

FROM table-ref

Optional — A FROM clause, specified after the table-ref.This FROM
can be used to specify a select-table table or tables used to select
which rows are to be deleted.

Multiple tables can be specified as a comma-separated list or associ-
ated with ANSI join keywords. Any combination of tables or views
can be specified. If you specify a comma between two select-tables
here, InterSystems IRIS performs a CROSS JOIN on the tables and
retrieves data from the results table of the JOIN operation. If you
specify ANSI join keywords between two select-tables here, InterSys-
tems IRIS performs the specified join operation. For further details,
refer to the JOIN page of this manual.

You can optionally specify one or more optimize-option keywords to
optimize query execution. The available options are: %ALLINDEX,
%FIRSTTABLE tablename, %FULL, %INORDER, %IGNOR-
EINDICES, %NOFLATTEN, %NOMERGE, %NOSVSO,
%NOTOPOPT, %NOUNIONOROPT, %PARALLEL, and %START-
TABLE. See FROM clause for more details.

FROM clause

Optional — An alias for a table or view name. An alias must be a
valid identifier. The AS keyword is optional.

AS t-alias

120 InterSystems SQL Reference

SQL Commands

Optional — Specifies one or more boolean predicates used to limit
which rows are to be deleted.You can specify a WHERE clause or
a WHERE CURRENT OF clause, but not both. If a WHERE clause
(or a WHERE CURRENT OF clause) is not supplied, DELETE
removes all the rows from the table. For further details, see WHERE.

WHERE condition-expression

Optional: Embedded SQL only — Specifies that the DELETE
operation deletes the record at the current position of cursor.You
can specify a WHERE CURRENT OF clause or a WHERE clause,
but not both. If a WHERE CURRENT OF clause (or a WHERE clause)
is not supplied, DELETE removes all the rows from the table. For
further details, see WHERE CURRENT OF.

WHERE CURRENT OF cursor

Description
The DELETE command removes rows from a table that meet the specified conditions. You can delete rows from a table
directly, delete through a view, or delete rows selected using a subquery. Deleting through a view is subject to requirements
and restrictions, as described in CREATE VIEW.

The DELETE operation sets the %ROWCOUNT local variable to the number of deleted rows, and the %ROWID local
variable to the RowID value of the last row deleted. If no rows are deleted, %ROWCOUNT=0 and %ROWID is undefined
or remains set to its previous value.

You must specify a table-ref; the FROM keyword before the table-ref is optional. To delete all rows from a table, you can
simply specify:

DELETE FROM tablename

or

DELETE tablename

This deletes all row data from the table, but does not reset the RowID, IDENTITY, stream field OID values, and SERIAL
(%Library.Counter) field counters. The TRUNCATE TABLE command both deletes all row data from a table and resets
these counters. By default, DELETE FROM tablename pulls delete triggers; you can specify DELETE %NOTRIGGER
FROM tablename to not pull delete triggers. TRUNCATE TABLE does not pull delete triggers.

More commonly, a DELETE specifies the deletion of a specific row (or rows) based on a condition-expression. By default,
a DELETE operation goes through all of the rows of a table and deletes all rows that satisfy the condition-expression. If
no rows satisfy the condition-expression, DELETE completes successfully and sets SQLCODE=100 (No more data).

You can specify a WHERE clause or a WHERE CURRENT OF clause (but not both). If the WHERE CURRENT OF
clause is used, the DELETE operation deletes the record at the current position of the cursor. For an example of DELETE
using WHERE CURRENT OF, see “Embedded SQL and Dynamic SQL Examples” below. For details on positioned
operations, see WHERE CURRENT OF.

By default, DELETE is an all-or-nothing event: either all specified rows are deleted completely, or no deletion is performed.
InterSystems IRIS sets the status variable SQLCODE, indicating the success or failure of the DELETE.

To delete a row from a table:

• The table must exist in the current (or specified) namespace. If the specified table cannot be located, InterSystems IRIS
issues an SQLCODE -30 error.

• You must have DELETE privilege for the table. Failing to have this privilege results in an SQLCODE -99 (Privilege
Violation) error. You can determine if the current user has DELETE privilege by invoking the %CHECKPRIV command.
You can determine if a specified user has DELETE privilege by invoking the $SYSTEM.SQL.CheckPriv() method.
For privilege assignment, refer to the GRANT command.

InterSystems SQL Reference 121

DELETE

• The table cannot be locked IN EXCLUSIVE MODE by another process. Attempting to delete a row from a locked
table results in an SQLCODE -110 error, with a %msg such as the following: Unable to acquire lock for
DELETE of table 'Sample.Person' on row with RowID = '10'. Note that an SQLCODE -110 error
occurs only when the DELETE statement locates the first record to be deleted, then cannot lock it within the timeout
period.

• If the DELETE command’s WHERE clause specifies a non-existent field, an SQLCODE -29 is issued. To list all of
the field names defined for a specified table, refer to Column Names and Numbers in the “Defining Tables” chapter
of Using InterSystems SQL. If the field exists but none of the field values fulfill the DELETE command’s WHERE
clause, no rows are affected and SQLCODE 100 (end of data) is issued.

• The table cannot be defined as READONLY. Attempting to compile an DELETE that references a read-only table
results in an SQLCODE -115 error. Note that this error is now issued at compile time, rather than only occurring at
execution time. See the description of READONLY objects in the Other Options for Persistent Classes chapter of
Defining and Using Classes.

• If deleting through a view, the view cannot be defined as WITH READ ONLY. Attempting to do so results in an
SQLCODE -35 error. If the view is based on a sharded table, you cannot DELETE through a view defined WITH
CHECK OPTION. Attempting to do so results in an SQLCODE -35 with the %msg INSERT/UPDATE/DELETE not
allowed for view (sample.myview) based on sharded table with check option conditions.
See the CREATE VIEW command for further details. Similarly, if you are attempting to delete through a subquery,
the subquery must be updateable; for example, the following subquery results in an SQLCODE -35 error: DELETE
FROM (SELECT COUNT(*) FROM Sample.Person) AS x.

• The row to delete must exist. Usually, attempting to delete a nonexistent row results in an SQLCODE 100 (No more
data) because the specified row could not be located. However, in rare cases, DELETE with %NOLOCK locates a
row to be deleted, but then the row is immediately deleted by another process; this situation results in an SQLCODE
-106 error. The %msg for this error lists the table name and the RowID.

• All of the rows specified for deletion must be available for deletion. By default, if one or more rows cannot be deleted
the DELETE operation fails and no rows are deleted. If a row to be deleted has been locked by another concurrent
process, DELETE issues an SQLCODE -110 error. If deleting one of the specified rows would violate foreign key
referential integrity (and %NOCHECK is not specified), the DELETE issues an SQLCODE -124 error. This default
behavior is modifiable, as described below.

• Certain %SYS namespace system–supplied facilities are protected against deletion. For example, DELETE FROM
Security.Users cannot be used to delete _SYSTEM, _PUBLIC or UnknownUser. Attempting to do so results in
an SQLCODE -134 error.

Atomicity

By default, DELETE, UPDATE, INSERT, and TRUNCATE TABLE are atomic operations. A DELETE either completes
successfully or the whole operation is rolled back. If any of the specified rows cannot be deleted, none of the specified
rows are deleted and the database reverts to its state before issuing the DELETE.

You can modify this default for the current process within SQL by invoking SET TRANSACTION %COMMITMODE.
You can modify this default for the current process in ObjectScript by invoking the SetAutoCommit() method. The following
options are available:

• IMPLICIT or 1 (autocommit on) — The default behavior, as described above. Each DELETE constitutes a separate
transaction.

• EXPLICIT or 2 (autocommit off) — If no transaction is in progress, a DELETE automatically initiates a transaction,
but you must explicitly COMMIT or ROLLBACK to end the transaction. In EXPLICIT mode the number of database
operations per transaction is user-defined.

• NONE or 0 (no auto transaction) — No transaction is initiated when you invoke DELETE. A failed DELETE operation
can leave the database in an inconsistent state, with some of the specified rows deleted and some not deleted. To provide

122 InterSystems SQL Reference

SQL Commands

transaction support in this mode you must use START TRANSACTION to initiate the transaction and COMMIT
or ROLLBACK to end the transaction.

A sharded table is always in no auto transaction mode, which means all inserts, updates, and deletes to sharded tables
are performed outside the scope of a transaction.

You can determine the atomicity setting for the current process using the GetAutoCommit() method, as shown in the fol-
lowing ObjectScript example:

 DO $SYSTEM.SQL.SetAutoCommit($RANDOM(3))
 SET x=$SYSTEM.SQL.GetAutoCommit()
 IF x=1 {
 WRITE "Default atomicity behavior",!
 WRITE "automatic commit or rollback" }
 ELSEIF x=0 {
 WRITE "No transaction initiated, no atomicity:",!
 WRITE "failed DELETE can leave database inconsistent",!
 WRITE "rollback is not supported" }
 ELSE { WRITE "Explicit commit or rollback required" }

FROM Syntax

A DELETE command can contain two FROM keywords that specify tables. These two uses of FROM are fundamentally
different:

• FROM before table-ref specifies the table (or view) from which rows are to be deleted. It is a FROM keyword, not a
FROM clause. Only one table may be specified. No join syntax or optimize-option keywords may be specified. The
FROM keyword itself is optional; the table-ref is required.

• FROM after table-ref is an optional FROM clause that can be used to determine which rows should be deleted. It may
specify one or more than one tables. It supports all of the FROM clause syntax available to a SELECT statement,
including join syntax and optimize-option keywords. This FROM clause is commonly (but not always) used with a
WHERE clause.

Thus any of the following are valid syntactical forms:

DELETE FROM table WHERE ...
DELETE table WHERE ...
DELETE FROM table FROM table2 WHERE ...
DELETE table FROM table2 WHERE ...

This syntax supports complex selection criteria in a manner compatible with Transact-SQL.

The following example shows how the two FROM keywords might be used. It deletes those records from the Employees
table where the same EmpId is also found in the Retirees table:

DELETE FROM Employees AS Emp
 FROM Retirees AS Rt
 WHERE Emp.EmpId = Rt.EmpId

If the two FROM keywords make reference to the same table, these references may either be to the same table, or to a join
of two instances of the table. This depends on how table aliases are used:

• If neither table reference has an alias, both reference the same table:

 DELETE FROM table1 FROM table1,table2 /* join of 2 tables */

• If both table references have the same alias, both reference the same table:

 DELETE FROM table1 AS x FROM table1 AS x,table2 /* join of 2 tables */

• If both table references have aliases, and the aliases are different, InterSystems IRIS performs a join of two instances
of the table:

InterSystems SQL Reference 123

DELETE

 DELETE FROM table1 AS x FROM table1 AS y,table2 /* join of 3 tables */

• If the first table reference has an alias, and the second does not, InterSystems IRIS performs a join of two instances of
the table:

 DELETE FROM table1 AS x FROM table1,table2 /* join of 3 tables */

• If the first table reference does not have an alias, and the second has a single reference to the table with an alias, both
reference the same table, and this table has the specified alias:

 DELETE FROM table1 FROM table1 AS x,table2 /* join of 2 tables */

• If the first table reference does not have an alias, and the second has more than one reference to the table, InterSystems
IRIS considers each aliased instance a separate table and performs a join on these tables:

 DELETE FROM table1 FROM table1,table1 AS x,table2 /* join of 3 tables */
 DELETE FROM table1 FROM table1 AS x,table1 AS y,table2 /* join of 4 tables */

%Keyword Options

To use a %keyword argument, you must have the corresponding admin-privilege for the current namespace. Refer to
GRANT for further details.

Specifying %keyword argument(s) restricts processing as follows:

• %NOCHECK — suppress referential integrity checking for foreign keys that reference the rows being deleted.

• %NOFPLAN — the frozen plan (if any) is ignored for this operation; the operation generates a new query plan. The
frozen plan is retained, but not used. For further details, refer to Frozen Plans in SQL Optimization Guide.

• %NOINDEX — suppresses deleting index entries in all indices for the rows being deleted. This should be used with
extreme caution, because it leaves orphaned values in the table indices.

• %NOLOCK — suppress row locking of the row being deleted. This should only be used when a single user/process
is updating the database.

• %NOTRIGGER — suppress the pulling of base table triggers that are otherwise pulled during DELETE processing.

• %PROFILE or %PROFILE_ALL — if one of these keyword directives is specified, SQLStats collecting code is gen-
erated. This is the same code that would be generated with PTools turned ON. The difference is that SQLStats collecting
code is only generated for this specific statement. All other SQL statements within the routine/class being compiled
will generate code as if PTools is turned OFF. This enables the user to profile/inspect specific problem SQL statements
within an application without collecting irrelevant statistics for SQL statements that are not being investigated. For
further details, refer to SQL Runtime Statistics in the InterSystems SQL Optimization Guide.

%PROFILE collects SQLStats for the main query module. %PROFILE_ALL collects SQLStats for the main query
module and all of its subquery modules.

You can specify multiple %keyword arguments in any order. Multiple arguments are separated by spaces.

If you specify a %keyword argument when deleting a parent record, the same %keyword argument will be applied when
deleting the corresponding child records.

Referential Integrity

If you do not specify %NOCHECK, InterSystems IRIS uses the system configuration setting to determine whether to perform
foreign key referential integrity checking. You can set this system default using the $SYSTEM.SQL.SetFilerRefIntegrity()
method call. To determine the current setting, call $SYSTEM.SQL.CurrentSettings(). The default is “Yes” . If you change
this setting, any new process started after changing it will have the new setting.

124 InterSystems SQL Reference

SQL Commands

During a DELETE operation, for every foreign key reference a shared lock is acquired on the corresponding row in the
referenced table. This row is locked until the end of the transaction. This ensures that the referenced row is not changed
before a potential rollback of the DELETE.

If a series of foreign key references are defined as CASCADE, a DELETE operation could potentially result in a circular
reference. InterSystems IRIS prevents DELETE with CASCADE referential action from performing a circular reference
loop recursion. InterSystems IRIS ends the cascade sequence when it returns to the original table.

If a DELETE operation with %NOLOCK is performed on a foreign key field defined with CASCADE, SET NULL, or
SET DEFAULT, the corresponding referential action changing the foreign key table is also performed with %NOLOCK.

Transaction Locking

If you do not specify %NOLOCK, the system automatically performs standard record locking on INSERT, UPDATE,
and DELETE operations. Each affected record (row) is locked for the duration of the current transaction.

The default lock threshold is 1000 locks per table. This means that if you delete more than 1000 records from a table during
a transaction, the lock threshold is reached and InterSystems IRIS automatically escalates the locking level from record
locks to a table lock. This permits large-scale deletes during a transaction without overflowing the lock table.

InterSystems IRIS applies one of the two following lock escalation strategies:

• “E”-type lock escalation: InterSystems IRIS uses this type of lock escalation if the following are true: (1) the class
uses %Storage.Persistent (you can determine this from the Catalog Details in the Management Portal SQL schema
display). (2) the class either does not specify an IDKey index, or specifies a single-property IDKey index. “E”-type
lock escalation is described in the LOCK command in the ObjectScript Reference.

• Traditional SQL lock escalation: The most likely reason why a class would not use “E”-type lock escalation is the
presence of a multi-property IDKey index. In this case, each %Save increments the lock counter. This means if you
do 1001 saves of a single object within a transaction, InterSystems IRIS will attempt to escalate the lock.

For both lock escalation strategies, you can determine the current system-wide lock threshold value using the
$SYSTEM.SQL.GetLockThreshold() method. The default is 1000. This system-wide lock threshold value is configurable:

• Using the $SYSTEM.SQL.SetLockThreshold() method.

• Using the Management Portal: select System Administration, Configuration, SQL and Object Settings, SQL. View and
edit the current setting of Lock escalation threshold. The default is 1000 locks. If you change this setting, any new
process started after changing it will have the new setting.

You must have USE permission on the %Admin Manage Resource to change the lock threshold. InterSystems IRIS
immediately applies any change made to the lock threshold value to all current processes.

On potential consequence of automatic lock escalation is a deadlock situation that might occur when an attempt to escalate
to a table lock conflicts with another process holding a record lock in that table. There are several possible strategies to
avoid this: (1) increase the lock escalation threshold so that lock escalation is unlikely to occur within a transaction. (2)
substantially lower the lock escalation threshold so that lock escalation occurs almost immediately, thus decreasing the
opportunity for other processes to lock a record in the same table. (3) apply a table lock for the duration of the transaction
and do not perform record locks. This can be done at the start of the transaction by specifying LOCK TABLE, then UNLOCK
TABLE (without the IMMEDIATE keyword, so that the table lock persists until the end of the transaction), then perform
deletes with the %NOLOCK option.

Automatic lock escalation is intended to prevent overflow of the lock table. However, if you perform such a large number
of deletes that a <LOCKTABLEFULL> error occurs, DELETE issues an SQLCODE -110 error.

For further details on transaction locking refer to Transaction Processing in the “Modifying the Database” chapter of Using
InterSystems SQL.

InterSystems SQL Reference 125

DELETE

Examples
The following examples both delete all rows from the TempEmployees table. Note that the FROM keyword is optional:

DELETE FROM TempEmployees

DELETE TempEmployees

The following example deletes employee number 234 from the Employees table:

DELETE
 FROM Employees
 WHERE EmpId = 234

The following example deletes all rows from the ActiveEmployees table in which the CurStatus column is set to "Retired":

DELETE FROM ActiveEmployees
 WHERE CurStatus = 'Retired'

The following example deletes rows using a subquery:

DELETE FROM (SELECT Name,Age FROM Sample.Person WHERE Age > 65)

Embedded SQL and Dynamic SQL Examples

In the following set of program examples, the first program creates a table named SQLUser.WordPairs with three columns.
The next program inserts six records. Subsequent programs delete all English records using cursor-based Embedded SQL,
and delete all French records using Dynamic SQL. The final program displays the remaining records, then deletes the table.

CreateTable
 &sql(CREATE TABLE SQLUser.WordPairs (
 Lang CHAR(2) NOT NULL,
 Firstword CHAR(30),
 Lastword CHAR(30))
)
 IF SQLCODE=0 {
 WRITE !,"Table created" }
 ELSEIF SQLCODE=-201 {WRITE !,"Table already exists" QUIT}
 ELSE {
 WRITE !,"CREATE TABLE failed. SQLCODE=",SQLCODE }

InsertSixRecords
 #SQLCompile Path=Cinema,Sample
 &sql(INSERT INTO WordPairs (Lang,Firstword,Lastword) VALUES
 ('En','hello','goodbye'))
 IF SQLCODE = 0 { WRITE !,"1st record inserted" }
 ELSE { WRITE !,"Insert failed, SQLCODE=",SQLCODE
 QUIT}
 &sql(INSERT INTO WordPairs (Lang,Firstword,Lastword) VALUES
 ('Fr','bonjour','au revoir'))
 IF SQLCODE = 0 { WRITE !,"2nd record inserted" }
 ELSE { WRITE !,"Insert failed, SQLCODE=",SQLCODE QUIT}
 &sql(INSERT INTO WordPairs (Lang,Firstword,Lastword) VALUES
 ('It','pronto','ciao'))
 IF SQLCODE = 0 { WRITE !,"3rd record inserted" }
 ELSE { WRITE !,"Insert failed, SQLCODE=",SQLCODE QUIT}
 &sql(INSERT INTO WordPairs (Lang,Firstword,Lastword) VALUES
 ('Fr','oui','non'))
 IF SQLCODE = 0 { WRITE !,"4th record inserted" }
 ELSE { WRITE !,"Insert failed, SQLCODE=",SQLCODE QUIT}
 &sql(INSERT INTO WordPairs (Lang,Firstword,Lastword) VALUES
 ('En','howdy','see ya'))
 IF SQLCODE = 0 { WRITE !,"5th record inserted" }
 ELSE { WRITE !,"Insert failed, SQLCODE=",SQLCODE QUIT}
 &sql(INSERT INTO WordPairs (Lang,Firstword,Lastword) VALUES
 ('Es','hola','adios'))
 IF SQLCODE = 0 { WRITE !,"6th record inserted",!!
 SET myquery = "SELECT %ID,* FROM SQLUser.WordPairs"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data" }
 ELSE { WRITE !,"Insert failed, SQLCODE=",SQLCODE }

126 InterSystems SQL Reference

SQL Commands

EmbeddedSQLDeleteEnglish
 #SQLCompile Path=Sample
 NEW %ROWCOUNT,%ROWID
 &sql(DECLARE WPCursor CURSOR FOR
 SELECT Lang FROM WordPairs
 WHERE Lang='En')
 &sql(OPEN WPCursor)
 QUIT:(SQLCODE'=0)
 FOR { &sql(FETCH WPCursor)
 QUIT:SQLCODE
 &sql(DELETE FROM WordPairs
 WHERE CURRENT OF WPCursor)
 IF SQLCODE=0 {
 WRITE !,"Delete succeeded"
 WRITE !,"Row count=",%ROWCOUNT," RowID=",%ROWID }
 ELSE {
 WRITE !,"Delete failed, SQLCODE=",SQLCODE }
 }
 &sql(CLOSE WPCursor)

DynamicSQLDeleteFrench
 SET sqltext = "DELETE FROM WordPairs WHERE Lang=?"
 SET tStatement = ##class(%SQL.Statement).%New(0,"Sample")
 SET qStatus = tStatement.%Prepare(sqltext)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rtn = tStatement.%Execute("Fr")
 IF rtn.%SQLCODE=0 {
 WRITE !,"Delete succeeded"
 WRITE !,"Row count=",rtn.%ROWCOUNT," RowID of last record=",rtn.%ROWID }
 ELSE {
 WRITE !,"Delete failed, SQLCODE=",rtn.%SQLCODE }

DisplayAndDeleteTable
 SET myquery = "SELECT %ID,* FROM SQLUser.WordPairs"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"
 &sql(DROP TABLE SQLUser.WordPairs)
 IF SQLCODE=0 {
 WRITE !!,"Table deleted"
 QUIT }
 ELSE {
 WRITE !,"Table delete failed, SQLCODE=",SQLCODE }

See Also
• FROM

• TRUNCATE TABLE

• INSERT UPDATE

• CREATE VIEW

• WHERE

• WHERE CURRENT OF

• “Modifying the Database” chapter in Using InterSystems SQL

• “Defining Tables” chapter in Using InterSystems SQL

• “Defining Views” chapter of Using InterSystems SQL

• Transaction Processing in the “Modifying the Database” chapter of Using InterSystems SQL

• SQL and Object Settings described in Configuration Parameter File Reference.

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

InterSystems SQL Reference 127

DELETE

DISTINCT
A SELECT clause that specifies to return only distinct values.

SELECT [DISTINCT [BY (item {,item2})]] | [ALL]
select-item {,select-item2}

Arguments

Optional — Returns rows for which the combined select-item
value(s) are unique.

DISTINCT

Optional — Returns select-item values for rows for which the BY
(item) value(s) are unique.

DISTINCT BY (item {,item2})

Optional — Returns all rows in the result set. The default.ALL

Description
The optional DISTINCT clause appears after the SELECT keyword and before the optional TOP clause and the first
select-item.

The DISTINCT clause is applied to the result set of the SELECT statement. It limits the rows returned to one arbitrary
row for each distinct (unique) value. If no DISTINCT clause is specified, the default is to display all the rows that fulfill
the SELECT criteria. The ALL clause is the same as specifying no DEFAULT clause; if you specify ALL, SELECT
returns all the rows in the table that fulfill the SELECT criteria.

The DISTINCT clause has two forms:

• SELECT DISTINCT: Returns one row for each unique combination of select-item values. You can specify one or
more than one select-items. For example, the following query returns a row with Home_State and Age values for each
unique combination of Home_State and Age values:

SELECT DISTINCT Home_State,Age FROM Sample.Person

• SELECT DISTINCT BY (item): Returns one row for each unique combination of item values. You can specify a single
item or a comma-separated list of items. The specified item or item list must be enclosed in parentheses. Spaces may
be specified or omitted between the BY keyword and the parentheses. The select-item list may, but does not have to,
include the specified item(s). For example, the following query returns a row with Name and Age values for each
unique combination of Home_State and Age values:

SELECT DISTINCT BY (Home_State,Age) Name,Age FROM Sample.Person

The item field(s) must be specified by column name. Valid values include the following: a column name (DISTINCT
BY (City)); an %ID (which returns all rows); a scalar function specifying a column name (DISTINCT BY
(ROUND(Age,-1))); a collation function specifying a column name (DISTINCT BY (%EXACT(City))). You
cannot specify a field by column alias; attempting to do so generates an SQLCODE -29 error. You cannot specify a
field by column number; this is interpreted as a literal and returns one row. Specifying a literal as the item value in a
DISTINCT clause returns 1 row; which row is returned is indeterminate. Thus, specifying 7, 'Chicago', '', 0, or NULL
all return 1 row. However, if you specify a literal as an item value in a comma-separated list, the literal is ignored and
DISTINCT selects one arbitrary row for each unique combination of the specified field names.

The DISTINCT clause is applied before the TOP clause. If both are specified, the SELECT returns only rows with unique
values, the number of unique value rows specified in the TOP clause.

If the column specified in the DISTINCT clause has rows that are NULL (contain no value), DISTINCT returns one row
with NULL as a distinct (unique) value, as shown in the following examples:

128 InterSystems SQL Reference

SQL Commands

SELECT DISTINCT FavoriteColors FROM Sample.Person

SELECT DISTINCT BY (FavoriteColors) Name,FavoriteColors FROM Sample.Person
ORDER BY FavoriteColors

A DISTINCT clause is not meaningful in an Embedded SQL simple query, because in this type of Embedded SQL a
SELECT always returns only one row of data. However, an Embedded SQL cursor–based query can return multiple rows
of data; in a cursor-based query a DISTINCT clause returns only unique value rows.

DISTINCT and ORDER BY

The DISTINCT clause is applied before the ORDER BY clause. Therefore, the combination of DISTINCT and ORDER
BY will first select an arbitrary row that satisfies the DISTINCT clause, then order those rows based on the ORDER BY
clause.

DISTINCT and GROUP BY

DISTINCT and GROUP BY both group records by a specified field (or fields) and return one record for each unique value
of that field. One significant difference between them is that DISTINCT calculates aggregate functions before grouping.
GROUP BY calculates aggregate functions after grouping. This difference is shown in the following examples:

SELECT DISTINCT BY (ROUND(Age,-1)) Age,AVG(Age) AS AvgAge FROM Sample.Person
 /* AVG(Age) returns average of all ages in table */

SELECT Age,AVG(Age) AS AvgAge FROM Sample.Person GROUP BY ROUND(Age,-1)
 /* AVG(Age) returns an average age for each age group */

A DISTINCT clause can be specified with one or more aggregate function fields, though this is rarely meaningful because
an aggregate function returns a single value. Thus the following example returns a single row:

SELECT DISTINCT BY (AVG(Age)) Name,Age,AVG(Age) FROM Sample.Person

CAUTION: If a DISTINCT clause with aggregate functions as the only item or select-item is used with a GROUP BY
clause, the DISTINCT clause is ignored. The intended combination of DISTINCT, aggregate function,
and GROUP BY can be achieved using a subquery. For further details and program examples, refer to the
GROUP BY clause reference page.

Letter Case and DISTINCT Optimization

DISTINCT groups together string values based on the collation type defined for the field. By default, string data type fields
are defined with SQLUPPER collation, which is not case-sensitive. The “Collation” chapter of Using InterSystems SQL
provides details on defining the string collation default for the current namespace and specifying a non-default field collation
type when defining a field/property.

If the field/property collation type is SQLUPPER, grouped field values are returned in all uppercase letters. To group values
by original letter case, or to display the returned values for a grouped field in their original letter case, use the %EXACT
collation function. This is shown in the following examples, which assume that the Home_City field is defined with collation
type SQLUPPER and contains the values ‘New York’ and ‘new york’:

SELECT DISTINCT BY (Home_City) Name,Home_City FROM Sample.Person
/* groups together Home_City values by their uppercase letter values
 returns the name of each grouped city in uppercase letters.
 Thus, 'NEW YORK' is returned. */

SELECT DISTINCT BY (Home_City) Name,%EXACT(Home_City) FROM Sample.Person
/* groups together Home_City values by their uppercase letter values
 returns the name of each grouped city in original letter case.
 Thus, 'New York' or 'new york' may be returned, but not both. */

SELECT DISTINCT BY (%EXACT(Home_City)) Name,Home_City FROM Sample.Person
/* groups together Home_City values by their original letter case
 returns the name of each grouped city in original letter case.
 Thus, both 'New York' and 'new york' are returned.
 Optimization is not used. */

InterSystems SQL Reference 129

DISTINCT

You can optimize query performance for queries that contain a DISTINCT clause by using the Management Portal. Select
System Administration, Configuration, SQL and Object Settings, SQL. View and edit the GROUP BY and DISTINCT queries

must produce original values option. (This optimization also works for the GROUP BY clause.) The default is “No” .

This default groups alphabetic values by their uppercase letter collation. This optimization takes advantage of indices for
the selected field(s). It is therefore only meaningful if an index exists for one or more of the selected fields. It collates field
values as they are stored in the index; alphabetic strings are returned in all uppercase letters. You can set this system-wide
option, then override it for specific queries by using the %EXACT collation function to preserve letter case.

For further details, refer to SQL and Object Settings described in Configuration Parameter File Reference.

You can also set this system-wide option to 1 or 0 with the SetFastDistinct() method:

 WRITE $SYSTEM.SQL.SetFastDistinct(1)

Other Uses of DISTINCT

• Stream Field: DISTINCT operates on the OID of a stream field, not its actual data. Because all stream field OIDs are
unique values, DISTINCT has no effect on actual stream field duplicate data values. DISTINCT BY (StreamField)
reduces the number records where the stream field is NULL to one NULL record. For further details, see Storing and
Using Stream Data (BLOBs and CLOBs).

• Asterisk Syntax: The syntax DISTINCT * is legal, but not meaningful, because all rows, by definition, contain some
distinct unique identifier. The syntax DISTINCT BY (*) is not legal.

• Subquery: The use of a DISTINCT clause in a subquery is legal, but not meaningful, because a subquery returns a
single value.

• No Row Data Selected: The DISTINCT clause can be used with a SELECT that does not access any table data. If the
SELECT contains a FROM clause, specifying DISTINCT results in one row contain these non-table values; if you
do not specify DISTINCT (or TOP) the SELECT results in as many rows with identical values as the number of rows
in the FROM clause table. If the SELECT does not contain a FROM clause, DISTINCT is legal but not meaningful.
See FROM clause for more details.

• Aggregate Function: A DISTINCT clause can be used within an aggregate function to select only distinct (unique)
field values for inclusion in the aggregate. Unlike the SELECT DISTINCT clause, DISTINCT within an aggregate
function does not include NULL as a distinct (unique) value. Note that the MAX and MIN aggregate functions parse
DISTINCT clause syntax without error, but this syntax performs no operation.

DISTINCT and %ROWID

Specifying the DISTINCT keyword causes a cursor-based Embedded SQL query to not set the %ROWID variable. %ROWID
is not set even when DISTINCT does not limit the rows returned. This is shown in the following example:

 SET %ROWID=999
 &sql(DECLARE EmpCursor CURSOR FOR
 SELECT DISTINCT Name, Home_State
 INTO :name,:state FROM Sample.Person
 WHERE Home_State %STARTSWITH 'M')
 &sql(OPEN EmpCursor)
 QUIT:(SQLCODE'=0)
 FOR { &sql(FETCH EmpCursor)
 QUIT:SQLCODE
 WRITE !,"RowID: ",%ROWID," row count: ",%ROWCOUNT
 WRITE " Name=",name," State=",state
 }
 &sql(CLOSE EmpCursor)

This change of query behavior only applies to cursor-based Embedded SQL SELECT queries. Dynamic SQL SELECT
queries and non-cursor Embedded SQL SELECT queries never set %ROWID.

130 InterSystems SQL Reference

SQL Commands

DISTINCT and Transaction Processing

Specifying the DISTINCT keyword causes a query to retrieve all current data, including data that has not yet been committed
by the current transaction. The transaction’s READ COMMITTED isolation mode parameter (if set) is ignored; all data is
retrieved in READ UNCOMMITTED mode. For further details, refer to Transaction Processing in the “Modifying the
Database” chapter of Using InterSystems SQL.

Examples
The following query returns one row for each distinct Home_State value:

SELECT DISTINCT Home_State FROM Sample.Person
ORDER BY Home_State

The following query returns one row for each distinct Home_State value, but returns additional fields for that row. Which
row is retrieved is not predictable:

SELECT DISTINCT BY (Home_State) %ID,Name,Home_State,Office_State FROM Sample.Person
ORDER BY Home_State

The following query returns one row for each distinct combination of Home_State and Office_State values. Depending on
the data, it will either return more rows or the same number of rows as the previous example:

SELECT DISTINCT BY (Home_State,Office_State) %ID,Name,Home_State,Office_State FROM Sample.Person
ORDER BY Home_State,Office_State

The following query uses DISTINCT BY to return one row for each distinct Name length:

SELECT DISTINCT BY ($LENGTH(Name)) Name,$LENGTH(Name) AS lname
FROM Sample.Person
ORDER BY lname

The following query uses DISTINCT BY to return one row for each distinct first element of FavoriteColors %List values.
It lists one distinct row with FavoriteColors NULL:

SELECT DISTINCT BY ($LIST(FavoriteColors,1)) Name,FavoriteColors,$LIST(FavoriteColors,1) AS FirstColor
FROM Sample.Person

The following query returns the first 20 distinct Home_State values retrieved from Sample.Person in ascending collation
sequence order. The “top” rows reflect the ORDER BY clause sequencing of all of the rows in Sample.Person.

SELECT DISTINCT TOP 20 Home_State FROM Sample.Person ORDER BY Home_State

The following query uses DISTINCT in both the main query and in a WHERE clause subquery. It returns the first 20 distinct
Home_State values in Sample.Person that are also in Sample.Employee. If the subquery DISTINCT was not provided, it
would retrieve the distinct Home_State values in Sample.Person that match a random selection of Home_State values in
Sample.Employee:

SELECT DISTINCT TOP 20 Home_State FROM Sample.Person
WHERE Home_State IN(SELECT DISTINCT TOP 20 Home_State FROM Sample.Employee)
ORDER BY Home_State

The following query returns the first 20 distinct FavoriteColor values. This reflects the ORDER BY clause sequencing of
all of the rows in Sample.Person. The FavoriteColors field is known to have NULLs, so one distinct row with FavoriteColors
NULL appears at the top of the collation sequence.

SELECT DISTINCT BY (FavoriteColors) TOP 20 FavoriteColors,Name FROM Sample.Person
 ORDER BY FavoriteColors

Also note in the preceding example that because FavoriteColors is a list field, the collation sequence includes the element
length byte. Thus distinct list values beginning with a three-letter element (RED) are listed before list values beginning
with a four-letter element (BLUE).

InterSystems SQL Reference 131

DISTINCT

See Also
• SELECT statement

• GROUP BY clause

• ORDER BY clause

• TOP clause

• Aggregate Functions

• “Querying the Database” chapter in Using InterSystems SQL

• “Collation” chapter in Using InterSystems SQL

132 InterSystems SQL Reference

SQL Commands

DROP DATABASE
Deletes a database (namespace).

DROP DATABASE dbname [RETAIN_FILES]

Arguments

The name of the database (namespace) to be deleted.dbname

Optional — If specified, the physical database files (IRIS.DAT files) will not be deleted.
The default is to delete the .DAT files along with the namespace and the other database
entities.

RETAIN_FILES

Description
The DROP DATABASE command deletes a namespace and its associated database.

The specified dbname is the name of the namespace and the directory that contains the corresponding database files.
Specify dbname as an identifier. Namespace names are not case-sensitive. If the specified dbname namespace does not
exist, InterSystems IRIS issues an SQLCODE -340 error.

The DROP DATABASE command is a privileged operation. Prior to using DROP DATABASE, it is necessary to be
logged in as a user with the %Admin_Manage resource. The user must also have READ permission on the resource for the
routines and global's database definitions. Failing to do so results in an SQLCODE -99 error (Privilege Violation).

Use the $SYSTEM.Security.Login() method to assign a user with appropriate privileges:

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql()

You must have the %Service_Login:Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, refer to %SYSTEM.Security in the InterSystems Class Reference.

DROP DATABASE cannot be used to drop a system namespace, regardless of privileges. Attempting to do so results in
an SQLCODE -342 error.

DROP DATABASE cannot be used to drop the namespace that you are currently using or connected to. Attempting to do
so results in an SQLCODE -344 error.

You can also delete a namespace using the Management Portal. Select System Administration, Configuration, System Con-

figuration, Namespaces to list the existing namespaces. Click the Delete button for the namespace you wish to delete.

RETAIN_FILES

If you specify this option, the physical file structure is retained; the database and its associated namespace is removed.
After performing this operation, a subsequent attempt to use dbname results in the following:

• DROP DATABASE without RETAIN_FILES cannot remove this physical file structure. Instead, it results in an
SQLCODE -340 error (Database not found).

• DROP DATABASE with RETAIN_FILES also results in an SQLCODE -340 error (Database not found).

• CREATE DATABASE cannot create a new database with the same name. Instead, it results in an SQLCODE -341
error (Cannot create database file for database).

• Attempting to use this namespace results in a <NAMESPACE> error.

InterSystems SQL Reference 133

DROP DATABASE

Example
The following example deletes a namespace and its associated database (in this case 'c:\InterSystems\IRIS\mgr\DocTestDB').
It retains the physical database files:

CREATE DATABASE DocTestDB ON DIRECTORY 'c:\InterSystems\IRIS142\mgr\DocTestDB'

DROP DATABASE DocTestDB RETAIN_FILES

See Also
• CREATE DATABASE command

• USE DATABASE command

134 InterSystems SQL Reference

SQL Commands

DROP FUNCTION
Deletes a function.

DROP FUNCTION name [FROM className]

Arguments

The name of the function to be deleted. The name is an identifier. Do not
specify the function’s parameter parentheses. A name can be qualified
(schema.name), or unqualified (name). An unqualified function name takes
the system-wide default schema name, unless the FROM className clause
is specified.

name

Optional — If specified, the FROM className clause deletes the function
from the given class. Note that you must specify the className of a function
(funcBonusCalc), not the SQL name (BonusCalc). If the FROM clause is not
specified, InterSystems IRIS searches all classes of the schema for the
function, and deletes it. However, if no function of this name is found, or more
than one function of this name is found, an error code is returned. If the deletion
of the function results in an empty class, DROP FUNCTION deletes the class
as well.

FROM className

Description
The DROP FUNCTION command deletes a function. When you drop a function, InterSystems IRIS revokes it from all
users and roles to whom it has been granted and removes it from the database.

In order to drop a function, you must have %DROP_FUNCTION administrative privilege, as specified by the GRANT
command. Otherwise, the system generates an SQLCODE -99 error (Privilege Violation).

You cannot drop a function if the class definition that contains that function definition is a deployed class. This operation
fails with an SQLCODE -400 error with the %msg Unable to execute DDL that modifies a deployed
class: 'classname'.

The following combinations of name and FROM className are supported. Note that the FROM clause specifies the class
package name and function name, not the SQL names. In these examples, the system-wide default schema name is SQLUser,
which corresponds to the User class package:

• DROP FUNCTION BonusCalc FROM funcBonusCalc: drops the function SQLUser.BonusCalc().

• DROP FUNCTION BonusCalc FROM User.funcBonusCalc: drops the function SQLUser.BonusCalc().

• DROP FUNCTION Test.BonusCalc FROM funcBonusCalc: drops the function SQLUser.BonusCalc().

• DROP FUNCTION BonusCalc FROM Employees.funcBonusCalc: drops the function Employees.BonusCalc().

• DROP FUNCTION Test.BonusCalc FROM Employees.funcBonusCalc: drops the function Employees.Bonus-
Calc().

If the specified function does not exist, DROP FUNCTION generates an SQLCODE -362 error. If the specified class does
not exist, DROP FUNCTION generates an SQLCODE -360 error. If the specified function could refer to two or more
functions, DROP FUNCTION generates an SQLCODE -361 error; you must specify a className to resolve this ambiguity.

InterSystems SQL Reference 135

DROP FUNCTION

Examples
The following embedded SQL example attempts to delete myfunc from the class User.Employee. (Refer to CREATE
TABLE for an example that creates class User.Employee.)

 &sql(DROP FUNCTION myfunc FROM User.Employee)
 IF SQLCODE=0 {
 WRITE !,"Function deleted" }
 ELSEIF SQLCODE=-360 {
 WRITE !,"Nonexistent class: ",%msg }
 ELSEIF SQLCODE=-362 {
 WRITE !,"Nonexistent function: ",%msg }
 ELSE {WRITE !,"Unexpected Error code: ",SQLCODE}

See Also
• CREATE FUNCTION

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

136 InterSystems SQL Reference

SQL Commands

DROP INDEX
Removes an index.

DROP INDEX index-name [ON [TABLE] [schema-name.]table-name]

DROP INDEX [schema-name.]table-name.index-name

Arguments

The name of the index to be deleted. index-name is the SQL version of the name,
which can include underscores and other punctuation. It is listed in the table’s
Management Portal SQL Catalog Details as the SQL Map Name.

index-name

Optional — The name of the table associated with the index.You can specify the
table-name using either syntax: The first syntax uses the ON clause; the TABLE
keyword is optional. The second syntax uses the qualified name syntax
schema-name.table-name.index-name. A table-name can be qualified
(schema.table), or unqualified (table). An unqualified table name takes the system-wide
default schema name. If you omit the table-name entirely, InterSystems IRIS deletes
the first index found that matches index-name, as described below.

ON table-name
or

ON TABLE
table-name

Description
A DROP INDEX statement deletes an index from a table definition. You can use DROP INDEX to delete a standard
index, bitmap index, or bitslice index. You can use DROP INDEX to delete a unique constraint or a primary key constraint
by deleting the corresponding Unique index. You cannot use DROP INDEX to delete a Bitmap Extent index or a Master
Map (Data/Master) IDKEY index.

You may wish to delete an index for any of the following reasons:

• You intend to perform large numbers of INSERT, UPDATE, or DELETE operations on a table. Rather than accepting
the performance overhead of having each of these operations write to the index, you can use the %NOINDEX option
for the operation. Or, in certain cases, it may be preferable to delete the index, perform the bulk changes to the database,
and then recreate the index and populate it.

• An index exists for a field or combination of fields that are not used for query operations. In this case, the performance
overhead of maintaining the index may not be worthwhile.

• An index exists for a field or combination of fields that now contain large amounts of duplicate data. In this case, the
minimal gain to query performance may not be worthwhile.

You cannot drop an IDKEY index when there is data in the table. Attempting to do so generates an SQLCODE -325 error.

Privileges and Locking

The DROP INDEX command is a privileged operation. Prior to using DROP INDEX it is necessary for your process to
have either %ALTER_TABLE administrative privileges or the %ALTER privilege for the specified table. Failing to do so
results in an SQLCODE –99 error (Privilege Violation). You can determine if the current user has %ALTER privilege by
invoking the %CHECKPRIV command. You can determine if a specified user has %ALTER privilege by invoking the
$SYSTEM.SQL.CheckPriv() method.You can use the GRANT command to assign these privileges, if you hold appropriate
granting privileges.

• DROP INDEX cannot be used on a table projected from a persistent class, unless the table class definition includes
[DdlAllowed]. Otherwise, the operation fails with an SQLCODE -300 error with the %msg DDL not enabled for
class 'Schema.tablename'.

InterSystems SQL Reference 137

DROP INDEX

• DROP INDEX cannot be used on a table projected from a deployed persistent class. This operation fails with an
SQLCODE -400 error with the %msg Unable to execute DDL that modifies a deployed class:
'classname'.

The DROP INDEX statement acquires a table-level lock on table-name. This prevents other processes from modifying
the table’s data. This lock is automatically released at the conclusion of the DROP INDEX operation.

Index Name

When specify an index-name to create an index, the system generates a corresponding class index name by stripping out
any punctuation characters; it retains the index-name you specified in the class as the SqlName value for the index (the
SQL map name). When you specify an index-name to DROP INDEX, you specify the name including the punctuation,
which is listed in the table’s Management Portal SQL Catalog Details as the SQL Map Name. For example, you specify the
generated SQL Map Name for a Unique constraint (MYTABLE_UNIQUE2), not the Index Name (MYTABLEUNIQUE2).
This index-name is not case-sensitive.

Table Name

You can specify the table associated with the index using either DROP INDEX syntax form:

• index-name ON TABLE syntax: specifying the table name is optional. If omitted, InterSystems IRIS searches all of
the classes in the namespace for the corresponding index.

• table-name.index-name syntax: specifying the table name is required.

In either syntax, the table name can be unqualified (table), or qualified (schema.table). If the schema name is omitted, the
system-wide default schema name is used.

If DROP INDEX does not specify a table name, InterSystems IRIS searches through all indices for an index SqlName
matching index-name, or an index name matching index-name for indices where an SqlName is not specified for the index.
If InterSystems IRIS finds no matching indices in any class, an SQLCODE -333 error is generated, indicating no such index
exists. If InterSystems IRIS finds more than one matching index, DROP INDEX cannot determine which index to drop;
it issues an SQLCODE -334 error: “Index name is ambiguous. Index found in multiple tables.” Index names in InterSystems
IRIS are not unique per namespace.

Non-existent Index

If you try to delete a nonexistent index, DROP INDEX issues an SQLCODE -333 error, by default. However, this default
can be overridden system-wide by setting a configuration option using the $SYSTEM.SQL.SetDDLNo333() method call.
To determine the current setting, call $SYSTEM.SQL.CurrentSettings(), which displays a Suppress SQLCODE=-333
Errors setting.

The default is “No” (0). By default, InterSystems IRIS issues an SQLCODE -333 error. This is the recommended setting
for this option. Set this option to “Yes” (1) if you want a DROP INDEX for a nonexistent index to perform no operation
and issue no error message. For further details, refer to SQL and Object Settings described in Configuration Parameter
File Reference.

Table Name

If you specify the optional table-name, it must correspond to an existing table.

• If the specified table-name does not exist, InterSystems IRIS issues an SQLCODE -30 error and sets %msg to Table
'SQLUser.tname' does not exist.

• If the specified table-name exists but does not have an index named index-name, InterSystems IRIS issues an SQLCODE
-333 error and sets %msg to Attempt to DROP INDEX 'MyIndex' on table SQLUSER.TNAME failed
- index not found.

138 InterSystems SQL Reference

SQL Commands

• If the specified table-name is a view, InterSystems IRIS issues an SQLCODE -333 error and sets %msg to Attempt
to DROP INDEX 'EmpSalaryIndex' on view SQLUSER.VNAME failed. Indices only supported

for tables, not views.

Examples
The first example creates a table named Employee, which is used in all of the examples in this section.

The following embedded SQL example creates an index named "EmpSalaryIndex" and later removes it. Note that here
DROP INDEX does not specify the table associated with the index; it assumes that "EmpSalaryIndex" is a unique index
name in this namespace.

 &sql(CREATE TABLE Employee (
 EMPNUM INT NOT NULL,
 NAMELAST CHAR(30) NOT NULL,
 NAMEFIRST CHAR(30) NOT NULL,
 STARTDATE TIMESTAMP,
 SALARY MONEY,
 ACCRUEDVACATION INT,
 ACCRUEDSICKLEAVE INT,
 CONSTRAINT EMPLOYEEPK PRIMARY KEY (EMPNUM))
)
 WRITE !,"SQLCODE=",SQLCODE," Created a table"
 &sql(CREATE INDEX EmpSalaryIndex
 ON TABLE Employee
 (Namelast,Salary))
 WRITE !,"SQLCODE=",SQLCODE," Created an index"
 /* use the index */
 NEW SQLCODE,%msg
 &sql(DROP INDEX EmpSalaryIndex)
 WRITE !,"SQLCODE=",SQLCODE," Deleted an index"
 WRITE !,"message",%msg

The following embedded SQL example specifies the table associated with the index to be dropped using an ON TABLE
clause:

 &sql(CREATE INDEX EmpVacaIndex
 ON TABLE Employee
 (NameLast,AccruedVacation))
 WRITE !,"SQLCODE=",SQLCODE," Created an index"
 /* use the index */
 &sql(DROP INDEX EmpVacaIndex ON TABLE Employee)
 WRITE !,"SQLCODE=",SQLCODE," Deleted an index"

The following embedded SQL example specifies the table associated with the index to be dropped using qualified name
syntax:

 &sql(CREATE INDEX EmpSickIndex
 ON TABLE Employee
 (NameLast,AccruedSickLeave))
 WRITE !,"SQLCODE=",SQLCODE," Created an index"
 /* use the index */
 &sql(DROP INDEX Employee.EmpSickIndex)
 WRITE !,"SQLCODE=",SQLCODE," Deleted an index"

The following command attempts to drop a nonexistent index. It generates an SQLCODE -333 error:

DROP INDEX PeopleIndex ON TABLE Employee

See Also
• CREATE INDEX

• “Defining and Building Indices” chapter in SQL Optimization Guide

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

InterSystems SQL Reference 139

DROP INDEX

DROP METHOD
Deletes a method.

DROP METHOD name [FROM className]

Arguments

The name of the method to be deleted. The name is an identifier. Do not
specify the method’s parameter parentheses. A name can be qualified
(schema.name), or unqualified (name). An unqualified method name takes
the system-wide default schema name, unless the FROM className clause
is specified.

name

Optional — If specified, the FROM className clause deletes the method
from the given class. Note that you must specify the className of a method
(methBonusCalc), not the SQL name (BonusCalc). If this clause is not
specified, InterSystems IRIS searches all classes of the schema for the
method, and deletes it. However, if no method of this name is found, or more
than one method of this name is found, an error code is returned. If the deletion
of the method results in an empty class, DROP METHOD deletes the class
as well.

FROM className

Description
The DROP METHOD command deletes a method. When you delete a method, InterSystems IRIS revokes it from all users
and roles to whom it has been granted and removes it from the database.

In order to delete a method, you must have %DROP_METHOD administrative privilege, as specified by the GRANT
command. If you are attempting to delete a method for a class with a defined owner, you must be logged in as the owner
of the class. Otherwise, the system generates an SQLCODE -99 error (Privilege Violation).

You cannot drop a method if the class definition that contains that method definition is a deployed class. This operation
fails with an SQLCODE -400 error with the %msg Unable to execute DDL that modifies a deployed
class: 'classname'.

The following combinations of name and FROM className are supported. Note that the FROM clause specifies the class
package name and method name, not the SQL names. In these examples, the system-wide default schema name is SQLUser,
which corresponds to the User class package:

• DROP METHOD BonusCalc FROM methBonusCalc: drops the method SQLUser.BonusCalc().

• DROP METHOD BonusCalc FROM User.methBonusCalc: drops the method SQLUser.BonusCalc().

• DROP METHOD Test.BonusCalc FROM methBonusCalc: drops the method SQLUser.BonusCalc().

• DROP METHOD BonusCalc FROM Employees.methBonusCalc: drops the method Employees.BonusCalc().

• DROP METHOD Test.BonusCalc FROM Employees.methBonusCalc: drops the method Employees.BonusCalc().

If the specified method does not exist, DROP METHOD generates an SQLCODE -362 error. If the specified className
does not exist, DROP METHOD generates an SQLCODE -360 error. If the specified method could refer to two or more
methods, DROP METHOD generates an SQLCODE -361 error; you must specify a className to resolve this ambiguity.

If a method has been defined with the PROCEDURE characteristic keyword, you can determine if it exists in the current
namespace by invoking the $SYSTEM.SQL.ProcedureExists() method. A method defined with the PROCEDURE keyword
can be deleted either by DROP METHOD or DROP PROCEDURE.

140 InterSystems SQL Reference

SQL Commands

You can also delete a method by removing the method from the class definition and then recompiling the class, or by
deleting the entire class.

Examples
The following embedded SQL example attempts to delete mymeth from the class User.Employee. (Refer to CREATE
TABLE for an example that creates class User.Employee.)

 &sql(DROP METHOD mymeth FROM User.Employee)
 IF SQLCODE=0 {
 WRITE !,"Method deleted" }
 ELSEIF SQLCODE=-360 {
 WRITE !,"Nonexistent class: ",%msg }
 ELSEIF SQLCODE=-362 {
 WRITE !,"Nonexistent method: ",%msg }
 ELSE {WRITE !,"Unexpected Error code: ",SQLCODE}

See Also
• CREATE METHOD

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

InterSystems SQL Reference 141

DROP METHOD

DROP PROCEDURE
Deletes a procedure.

DROP PROCEDURE procname [FROM className]
DROP PROC procname [FROM className]

Arguments

The name of the procedure to be deleted. The name is an identifier. Do not
specify the procedure’s parameter parentheses. A name can be qualified
(schema.name), or unqualified (name). An unqualified procedure name takes
the system-wide default schema name, unless the FROM className clause
is specified.

procname

Optional — If specified, the FROM className clause deletes the procedure
from the given class. If this clause is not specified, InterSystems IRIS searches
all classes of the schema for the procedure, and deletes it. However, if no
procedure of this name is found, or more than one procedure of this name is
found, an error code is returned. If the deletion of the procedure results in an
empty class, DROP PROCEDURE deletes the class as well.

FROM className

Description
The DROP PROCEDURE command deletes a procedure in the current namespace. When you drop a procedure, InterSystems
IRIS revokes it from all users and roles to whom it has been granted and removes it from the database.

In order to drop a procedure, you must have %DROP_PROCEDURE administrative privilege, as specified by the GRANT
command. If you are attempting to delete a procedure for a class with a defined owner, you must be logged in as the owner
of the class. Otherwise, the system generates an SQLCODE -99 error (Privilege Violation).

You cannot drop a procedure if the class definition that contains that procedure definition is a deployed class. This operation
fails with an SQLCODE -400 error with the %msg Unable to execute DDL that modifies a deployed
class: 'classname'.

The procname is not case-sensitive. You must specify procname without parameter parentheses; specifying parameter
parentheses results in an SQLCODE -25 error.

The following combinations of procname and FROM className are supported. Note that the FROM clause specifies the
class package name and procedure name, not the SQL names. In these examples, the system-wide default schema name is
SQLUser, which corresponds to the User class package:

• DROP PROCEDURE BonusCalc FROM procBonusCalc: drops the procedure SQLUser.BonusCalc().

• DROP PROCEDURE BonusCalc FROM User.procBonusCalc: drops the procedure SQLUser.BonusCalc().

• DROP PROCEDURE Test.BonusCalc FROM procBonusCalc: drops the procedure SQLUser.BonusCalc().

• DROP PROCEDURE BonusCalc FROM Employees.procBonusCalc: drops the procedure Employees.BonusCalc().

• DROP PROCEDURE Test.BonusCalc FROM Employees.procBonusCalc: drops the procedure Employ-
ees.BonusCalc().

If the specified procedure does not exist, DROP PROCEDURE generates an SQLCODE -362 error. If the specified class
does not exist, DROP PROCEDURE generates an SQLCODE -360 error. If the specified procedure could refer to two or
more procedures, DROP PROCEDURE generates an SQLCODE -361 error; you must specify a className to resolve
this ambiguity.

142 InterSystems SQL Reference

SQL Commands

To determine if a specified procname exists in the current namespace, use the $SYSTEM.SQL.ProcedureExists() method.
This method recognizes both procedures and methods defined with the PROCEDURE keyword. A method defined with
the PROCEDURE keyword can be deleted using DROP PROCEDURE.

If you execute a DROP PROCEDURE for a procedure that is an ObjectScript class query procedure, InterSystems IRIS
will also drop the methods related to the procedure, such as myprocExecute(), myprocGetInfo(), myprocFetch(),
myprocFetchRows(), and myprocClose().

You can also delete a procedure by removing the stored procedure from the class definition and then recompiling the class,
or by deleting the entire class.

Examples
The following embedded SQL example attempts to delete myprocSP from the class User.Employee. (Refer to CREATE
TABLE for an example that creates class User.Employee.)

 &sql(DROP PROCEDURE myprocSP FROM User.Employee)
 IF SQLCODE=0 {
 WRITE !,"Procedure deleted" }
 ELSEIF SQLCODE=-360 {
 WRITE !,"Nonexistent class: ",%msg }
 ELSEIF SQLCODE=-362 {
 WRITE !,"Nonexistent procedure: ",%msg }
 ELSE {WRITE !,"Unexpected Error code: ",SQLCODE}

See Also
• CREATE PROCEDURE

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

InterSystems SQL Reference 143

DROP PROCEDURE

DROP QUERY
Deletes a query.

DROP QUERY name [FROM className]

Arguments

The name of the query to be deleted.The name is an identifier. Do not specify
the query’s parameter parentheses. A name can be qualified (schema.name),
or unqualified (name). An unqualified query name takes the system-wide
default schema name, unless the FROM className clause is specified.

name

Optional — If specified, the FROM className clause deletes the query from
the given class. If this clause is not specified, InterSystems IRIS searches all
classes of the schema for the query, and deletes it. However, if no query of
this name is found, or more than one query of this name is found, an error
code is returned. If the deletion of the query results in an empty class, DROP
QUERY deletes the class as well.

FROM className

Description
The DROP QUERY command deletes a query. When you drop a query, InterSystems IRIS revokes it from all users and
roles to whom it has been granted and removes it from the database.

In order to drop a query, you must have %DROP_QUERY administrative privilege, as specified by the GRANT command.
If you are attempting to delete a query for a class with a defined owner, you must be logged in as the owner of the class.
Otherwise, the system generates an SQLCODE -99 error (Privilege Violation).

You cannot drop a query if the class definition that contains that query definition is a deployed class. This operation fails
with an SQLCODE -400 error with the %msg Unable to execute DDL that modifies a deployed class:
'classname'.

The following combinations of name and FROM className are supported. Note that the FROM clause specifies the class
package name and query name, not the SQL names. In these examples, the system-wide default schema name is SQLUser,
which corresponds to the User class package:

• DROP QUERY BonusCalc FROM queryBonusCalc: drops the query SQLUser.BonusCalc().

• DROP QUERY BonusCalc FROM User.queryBonusCalc: drops the query SQLUser.BonusCalc().

• DROP QUERY Test.BonusCalc FROM queryBonusCalc: drops the query SQLUser.BonusCalc().

• DROP QUERY BonusCalc FROM Employees.queryBonusCalc: drops the query Employees.BonusCalc().

• DROP QUERY Test.BonusCalc FROM Employees.queryBonusCalc: drops the query Employees.BonusCalc().

If the specified query does not exist, DROP QUERY generates an SQLCODE -362 error. If the specified class does not
exist, DROP QUERY generates an SQLCODE -360 error. If the specified query could refer to two or more queries, DROP
QUERY generates an SQLCODE -361 error; you must specify a className to resolve this ambiguity.

You can also delete a query by removing the query (projected as a stored procedure) from the class definition and then
recompiling the class, or by deleting the entire class.

Examples
The following embedded SQL example attempts to delete myq from the class User.Employee. (Refer to CREATE TABLE
for an example that creates class User.Employee.)

144 InterSystems SQL Reference

SQL Commands

 &sql(DROP QUERY myq FROM User.Employee)
 IF SQLCODE=0 {
 WRITE !,"Query deleted" }
 ELSEIF SQLCODE=-360 {
 WRITE !,"Nonexistent class: ",%msg }
 ELSEIF SQLCODE=-362 {
 WRITE !,"Nonexistent query: ",%msg }
 ELSE {WRITE !,"Unexpected Error code: ",SQLCODE}

See Also
• CREATE QUERY

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

InterSystems SQL Reference 145

DROP QUERY

DROP ROLE
Deletes a role.

DROP ROLE role-name

Arguments

The name of the role to be deleted. The name is an identifier. Role names are not
case-sensitive. For further details see the “Identifiers” chapter of Using InterSystems
SQL.

role-name

Description
The DROP ROLE statement deletes a role. When you drop a role, InterSystems IRIS revokes it from all users and roles
to whom it has been granted and removes it from the database.

You can determine if a role exists by invoking the $SYSTEM.SQL.RoleExists() method. If you attempt to drop a role that
does not exist (or has already been dropped), DROP ROLE issues an SQLCODE -118 error.

Privileges

The DROP ROLE command is a privileged operation. Prior to using DROP ROLE in embedded SQL, it is necessary to
fulfill at least one of the following requirements:

• You must have %Admin_Secure:USE privilege.

• You are the owner of the role.

• You were granted the role WITH ADMIN OPTION.

Failing to do so results in an SQLCODE –99 error (Privilege Violation).

Use the $SYSTEM.Security.Login() method to assign a user with appropriate privileges:

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql()

You must have the %Service_Login:Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, refer to %SYSTEM.Security in the InterSystems Class Reference.

Examples
The following embedded SQL example creates a role named BkUser and later deletes it:

 DO $SYSTEM.Security.Login("MyName","SecretPassword")
 &sql(CREATE ROLE BkName)
 IF SQLCODE=-99 {
 WRITE !,"You don't have CREATE ROLE privileges" }
 ELSE { WRITE !,"Created a role"}
 /* Use role */
 &sql(DROP ROLE BkName)
 IF SQLCODE=-99 {
 WRITE !,"You don't have DROP ROLE privileges" }
 ELSE { WRITE !,"Dropped the role" }

See Also
• SQL statements: CREATE ROLE CREATE USER DROP USER GRANT REVOKE %CHECKPRIV

• “Users, Roles, and Privileges” chapter of Using InterSystems SQL

146 InterSystems SQL Reference

SQL Commands

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

• ObjectScript: $ROLES and $USERNAME special variables

InterSystems SQL Reference 147

DROP ROLE

DROP TABLE
Deletes a table and (optionally) its data.

DROP TABLE table
 [RESTRICT | CASCADE] [%DELDATA | %NODELDATA]

Arguments

The name of the table to be deleted.The table name can be qualified (schema.table),
or unqualified (table). An unqualified table name takes the default schema name.
Schema search path values are not used.

table

Optional — RESTRICT only allows a table with no dependent views or integrity
constraints to be deleted. CASCADE allow a table with dependent views or integrity
constraints to be deleted; any referencing views or integrity constraints will also be
deleted as part of the table deletion. (See restriction on CASCADE below.)

RESTRICT

CASCADE

Optional — These keywords specify whether to delete data associated with a table
when deleting the table. The default is to delete table data.

%DELDATA

%NODELDATA

Description
The DROP TABLE command deletes a table and its corresponding persistent class definition. If the table is the last item
in its schema, deleting the table also deletes the schema and its corresponding persistent class package.

By default, DROP TABLE deletes both the table definition and the table’s data (if any exists). The %NODELDATA
keyword allows you to specify deletion of the table definition but not the table’s data.

In order to delete a table, the following conditions must be met:

• The table must exist in the current namespace. Attempting to delete a non-existent table generates an SQLCODE -30
error.

• The table definition must be modifiable. If the class that projects the table is defined without [DdlAllowed], attempting
to delete the table generates an SQLCODE -300 error.

• The table must not be locked by another concurrent process. If the table is locked, DROP TABLE waits indefinitely
for the lock to be released. If lock contention is a possibility, it is important that you LOCK the table IN EXCLUSIVE
MODE before issuing a DROP TABLE.

• You must have the necessary privileges to delete the table. Attempting to delete a table without the necessary privileges
generates an SQLCODE -99 error.

• You can delete a table even if the corresponding class is defined as a deployed class.

• You cannot delete a table if the persistent class that projects the table has derived classes (subclasses). Attempting to
delete a superclass that would leave a subclass orphaned generates an SQLCODE -300 error with a message: Class
'MySuperClass' has derived classes and therefore cannot be dropped via DDL.

You can use the $SYSTEM.SQL.DropTable() method to delete a table in the current namespace. You specify the SQL
table name. Unlike DROP TABLE, this method can delete a table that was defined without [DdlAllowed]. The second
argument specifies whether the table data should also be deleted; by default, data is not deleted.

 DO $SYSTEM.SQL.DropTable("Sample.MyTable",1,.SQLCODE,.%msg)
 IF SQLCODE '= 0 {WRITE "SQLCODE ",SQLCODE," error: ",%msg}

148 InterSystems SQL Reference

SQL Commands

You can use the $SYSTEM.OBJ.Delete() method to delete one or more tables in the current namespace. You must specify
the persistent class name that projects the table (not the SQL table name). You can specify multiple class names using
wildcards. The second argument specifies whether the table data should also be deleted; by default, data is not deleted.

Privileges

The DROP TABLE command is a privileged operation. Prior to using DROP TABLE it is necessary for your process to
have either %DROP_TABLE administrative privilege or a DELETE object privilege for the specified table. Failing to do
so results in an SQLCODE –99 error (Privilege Violation). You can determine if the current user has DELETE privilege
by invoking the %CHECKPRIV command. You can determine if a specified user has DELETE privilege by invoking the
$SYSTEM.SQL.CheckPriv() method. You can use the GRANT command to assign %DROP_TABLE privileges, if you
hold appropriate granting privileges.

In embedded SQL, you can use the $SYSTEM.Security.Login() method to log in as a user with appropriate privileges:

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql()

You must have the %Service_Login:Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, refer to %SYSTEM.Security in the InterSystems Class Reference.

DROP TABLE cannot be used on a table created by defining a persistent class, unless the table class definition includes
[DdlAllowed]. Otherwise, the operation fails with an SQLCODE -300 error with the %msg DDL not enabled for
class 'Schema.tablename'>

Existing Object Privileges

Deleting a table does not delete the object privileges for that table. For example, the privilege granted to a user to insert,
update, or delete data on that table. This has the following two consequences:

• If a table is deleted, and then another table with the same name is created, users and roles will have the same privileges
on the new table that they had on the old table.

• Once a table is deleted, it is not possible to revoke object privileges for that table.

For these reasons, it is generally recommended that you use the REVOKE command to revoke object privileges from a
table before deleting the table.

Table Containing Data

By default, DROP TABLE deletes the table definition and deletes the table’s data. This table data delete is an atomic
operation; if DROP TABLE encounters data that cannot be deleted (for example, a row with a referential constraint) any
data deletion already performed is automatically rolled back, with the result that no table data is deleted.

You can set the system-wide default for table data deletion using the $SYSTEM.SQL.SetDDLDropTabDelData() method.
To determine the current setting, call $SYSTEM.SQL.CurrentSettings(), which displays the Does DDL DROP TABLE
delete the table's data? setting.

The default is 1 (“Yes”). This is the recommended setting for this option. Set this option to 0 (“No”) if you want DROP
TABLE to not delete the table’s data when it deletes the table definition.

The deletion of data can be overridden on a per-table basis. When deleting a table, you can specify DROP TABLE with
the %NODELDATA option to prevent the automatic deletion of the table’s data. If the system-wide default is set to not
delete table data, you can delete data on a per-table basis by specifying DROP TABLE with the %DELDATA option.

In most circumstances DROP TABLE automatically deletes the table’s data using a highly efficient kill extent operation.
The following circumstances prevent the use of kill extent: the table has foreign keys that reference it; the class projecting
the table is a subclass of a persistent class; the class does not use default storage; there is a ForEach = "row/object" trigger;
there is a stream field that references a non-default stream field global location. If any of these apply, DROP TABLE
deletes the table’s data using a less-efficient delete record operation.

InterSystems SQL Reference 149

DROP TABLE

You can use the TRUNCATE TABLE command to delete the table’s data without deleting the table definition.

Lock Applied

The DROP TABLE statement acquires an exclusive table-level lock on table. This prevents other processes from modifying
the table definition or the table data while table deletion is in process. This table-level lock is sufficient for deleting both
the table definition and the table data; DROP TABLE does not acquire a lock on each row of the table data. This lock is
automatically released at the end of the DROP TABLE operation.

Foreign Key Constraints

By default, you cannot drop a table if any foreign key constraints are defined on another table that references the table you
are attempting to drop. You must drop all referencing foreign key constraints before dropping the table they reference.
Failing to delete these foreign key constraints before attempting a DROP TABLE operation results in an SQLCODE -320
error.

This default behavior is consistent with the RESTRICT keyword option. The CASCADE keyword option is not supported
for foreign key constraints.

To change this default foreign key constraint behavior, refer to the COMPILEMODE=NOCHECK option of the SET
OPTION command.

Associated Queries

Dropping a table automatically purges any related cached queries and purges query information as generated by
%SYS.PTools.StatsSQL. Dropping a table automatically purges any SQL runtime statistics (SQL Stats) information for
any related query.

Nonexistent Table

To determine if a specified table exists in the current namespace, use the $SYSTEM.SQL.TableExists() method.

If you try to delete a nonexistent table, DROP TABLE issues an SQLCODE -30 error by default. However, this error-
reporting behavior can be overridden by setting the system-wide configuration using the $SYSTEM.SQL.SetDDLNo30()
method call. To determine the current setting, call $SYSTEM.SQL.CurrentSettings(), which displays a Suppress
SQLCODE=-30 Errors: setting.

The default is “No” (0). This is the recommended setting for this option. Set this option to “Yes” (1) if you want a DROP
TABLE for nonexistent table to perform no operation and not issue an error message.

Examples
The following embedded SQL example creates a table named SQLUser.MyEmployees and later deletes it. This example
specifies that any data associated with this table not be deleted when the table is deleted:

 &sql(CREATE TABLE SQLUser.MyEmployees (
 NAMELAST CHAR (30) NOT NULL,
 NAMEFIRST CHAR (30) NOT NULL,
 STARTDATE TIMESTAMP,
 SALARY MONEY))
 WRITE !,"Created a table"
 /*
 &sql(SQL code populating SQLUser.MyEmployees table)
 &sql(SQL code using SQLUser.MyEmployees table)
 */
 NEW SQLCODE,%msg
 &sql(DROP TABLE SQLUser.MyEmployees %NODELDATA)
 IF SQLCODE=0 {WRITE !,"Table deleted"}
 ELSE {WRITE !,"SQLCODE=",SQLCODE,": ",%msg }

See Also
• ALTER TABLE, CREATE TABLE, TRUNCATE TABLE

150 InterSystems SQL Reference

SQL Commands

• “Defining Tables” chapter in Using InterSystems SQL

• SQL and Object Settings described in Configuration Parameter File Reference.

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

InterSystems SQL Reference 151

DROP TABLE

DROP TRIGGER
Deletes a trigger.

DROP TRIGGER name [FROM table]

Arguments

The name of the trigger to be deleted. A trigger name may be qualified or unqualified;
if qualified, its schema name must match the table’s schema name.

name

Optional — The table the trigger is to be deleted from. If the FROM clause is specified,
only the table is searched for the named trigger. If the FROM clause is not specified,
the entire schema specified in name is searched for the named trigger.

FROM table

Description
The DROP TRIGGER statement deletes a trigger.

Privileges and Locking

The DROP TRIGGER command is a privileged operation. Prior to using DROP TRIGGER it is necessary for your
process to have %DROP_TRIGGER administrative privilege. Failing to do so results in an SQLCODE –99 error (Privilege
Violation). You can use the GRANT command to assign %DROP_TRIGGER privileges, if you hold appropriate granting
privileges.

In embedded SQL, you can use the $SYSTEM.Security.Login() method to log in as a user with appropriate privileges:

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql()

You must have the %Service_Login:Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, refer to %SYSTEM.Security in the InterSystems Class Reference.

• DROP TRIGGER cannot be used on a table projected from a persistent class, unless the table class definition includes
[DdlAllowed]. Otherwise, the operation fails with an SQLCODE -300 error with the %msg DDL not enabled for
class 'Schema.tablename'.

• DROP TRIGGER cannot be used on a table projected from a deployed persistent class. This operation fails with an
SQLCODE -400 error with the %msg Unable to execute DDL that modifies a deployed class:
'classname'.

The DROP TRIGGER statement acquires a table-level lock on table. This prevents other processes from modifying the
table’s data. This lock is automatically released at the conclusion of the DROP TRIGGER operation.

FROM Clause

A trigger and its table must reside in the same schema. If the trigger name is unqualified, the trigger schema name defaults
to the same schema as the table schema, as specified in the FROM clause. If the trigger name is unqualified, and there is
no FROM clause, or the table name is also unqualified, the trigger schema defaults to the system-wide default schema
name; schema search paths are not used. If both names are qualified, the trigger schema name must be the same as the table
schema name. A schema name mismatch results in an SQLCODE -366 error; this should only occur when both the trigger
name and the table name are qualified and they specify different schema names.

In InterSystems SQL, a trigger name must be unique within its schema for a specific table. Thus it is possible to have more
than one trigger in a schema with the same name. The optional FROM clause is used to determine which trigger to delete:

152 InterSystems SQL Reference

SQL Commands

• If no FROM clause is specified, and InterSystems IRIS locates a unique trigger in the schema that matches the specified
name, InterSystems IRIS deletes the trigger.

• If a FROM clause is specified, and InterSystems IRIS locates a unique trigger in the schema that matches both the
specified name and the FROM table name, InterSystems IRIS deletes the trigger.

• If no FROM clause is specified, and InterSystems IRIS locates more than one trigger that matches the specified name,
InterSystems IRIS issues an SQLCODE -365 error.

• If InterSystems IRIS locates no trigger that matches the specified name, either for the table specified in the FROM
clause or, if there is no FROM clause, for any table in the schema, InterSystems IRIS issues an SQLCODE -363 error.

Examples
The following example deletes a trigger named Trigger_1 associated with any table in the system-wide default schema.
(The initial default schema is SQLUser):

DROP TRIGGER Trigger_1

The following example deletes a trigger named Trigger_2 associated with any table in the A schema.

DROP TRIGGER A.Trigger_2

The following example deletes a trigger named Trigger_3 associated with the Patient table in the system-wide default
schema. If a trigger named Trigger_3 is found, but it is not associated with Patient, InterSystems IRIS issues an SQLCODE
-363 error.

DROP TRIGGER Trigger_3 FROM Patient

The following examples all delete a trigger named Trigger_4 associated with the Patient table in the Test schema.

DROP TRIGGER Test.Trigger_4 FROM Patient

DROP TRIGGER Trigger_4 FROM Test.Patient

DROP TRIGGER Test.Trigger_4 FROM Test.Patient

See Also
• CREATE TRIGGER

• GRANT

• “Using Triggers” chapter in Using InterSystems SQL

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

InterSystems SQL Reference 153

DROP TRIGGER

DROP USER
Removes a user account.

DROP USER user-name

Arguments

The name of the user to be removed.user-name

Description
The DROP USER command removes a user account. This user account was created and the user-name specified using
CREATE USER. If the specified user-name does not correspond to an existing user account, InterSystems IRIS issues an
SQLCODE -118 error. User names are not case-sensitive.

You can also delete a user by using the Management Portal. Select System Administration, Security, Users to list the existing
users. On this table of user accounts you can click Delete for the user account you wish to delete.

Privileges

The DROP USER command is a privileged operation. Prior to using DROP USER in embedded SQL, it is necessary to
be logged in as a user with appropriate privileges. Failing to do so results in an SQLCODE -99 error (Privilege Violation).

Use the $SYSTEM.Security.Login() method to assign a user with appropriate privileges:

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql()

You must have the %Service_Login:Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, refer to %SYSTEM.Security in the InterSystems Class Reference.

Examples
You can drop PSMITH by issuing the statement:

DROP USER psmith

See Also
• SQL statements: CREATE USER ALTER USER GRANT REVOKE %CHECKPRIV

• “Users, Roles, and Privileges” chapter of Using InterSystems SQL

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

• ObjectScript: $ROLES and $USERNAME special variables

154 InterSystems SQL Reference

SQL Commands

DROP VIEW
Deletes a view.

DROP VIEW view-name [CASCADE | RESTRICT]

Arguments

The name of the view to be deleted. A view name can be qualified (schema.viewname),
or unqualified (viewname). An unqualified view name takes the system-wide default
schema name.

view-name

Optional — Specify the CASCADE keyword to drop any other view that references
view-name. Specify RESTRICT to issue an SQLCODE -321 error if there is another
view that references view-name. The default is RESTRICT.

CASCADE
RESTRICT

Description
The DROP VIEW command removes a view, but does not removes the underlying tables or data.

A drop view operation can also be invoked using the DropView() method call:

$SYSTEM.SQL.DropView(viewname,SQLCODE,%msg)

Privileges

The DROP VIEW command is a privileged operation. Prior to using DROP VIEW it is necessary for your process to
have either %DROP_VIEW administrative privilege or a DELETE object privilege for the specified view. Failing to do
so results in an SQLCODE -99 error (Privilege Violation). You can determine if the current user has DELETE privilege
by invoking the %CHECKPRIV command. You can determine if a specified user has DELETE privilege by invoking the
$SYSTEM.SQL.CheckPriv() method. You can use the GRANT command to assign %DROP_VIEW privileges, if you
hold appropriate granting privileges.

In embedded SQL, you can use the $SYSTEM.Security.Login() method to log in as a user with appropriate privileges:

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql()

You must have the %Service_Login:Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, refer to %SYSTEM.Security in the InterSystems Class Reference.

You can delete a view based on a table that is projected from a deployed persistent class.

Nonexistent View

To determine if a specified view exists in the current namespace, use the $SYSTEM.SQL.ViewExists() method.

If you try to delete a nonexistent view, DROP VIEW issues an SQLCODE -30 error by default. However, this error-
reporting behavior can be overridden by setting the system-wide configuration using the $SYSTEM.SQL.SetDDLNo30()
method call. To determine the current setting, call $SYSTEM.SQL.CurrentSettings(), which displays a Suppress
SQLCODE=-30 Errors: setting.

The default is “No” (0). This is the recommended setting for this option. Set this option to “Yes” (1) if you want DROP
VIEW and DROP TABLE for nonexistent views and tables to perform no operation and issue no error message.

VIEW Referenced by Other Views

If you try to delete a view referenced by other views in their queries, DROP VIEW issues an SQLCODE -321 error by
default. This is the RESTRICT keyword behavior.

InterSystems SQL Reference 155

DROP VIEW

By specifying the CASCADE keyword, an attempt to delete a view referenced by other views in their queries succeeds.
The DROP VIEW also deletes these other views. If InterSystems IRIS cannot perform all cascade view deletions (for
example, due to an SQLCODE -300 error) no views are deleted.

Associated Queries

Dropping a view automatically purges any related cached queries and purges query information generated by
%SYS.PTools.StatsSQL. Dropping a view automatically purges any SQL runtime statistics (SQL Stats) information for
any related query.

Examples
The following embedded SQL example creates a view named "CityAddressBook" and later deletes the view. Because it is
specified with the RESTRICT keyword (the default), an SQLCODE -321 error is issued if the view is referenced by other
views:

 &sql(CREATE VIEW CityAddressBook AS
 SELECT Name,Home_Street FROM Sample.Person
 WHERE Home_City='Boston')
 IF SQLCODE=0 { WRITE !,"View created" }
 ELSE { WRITE !,"CREATE VIEW error: ",SQLCODE
 QUIT }
 /* Use the view */
 NEW SQLCODE,%msg
 &sql(DROP VIEW CityAddressBook RESTRICT)
 IF SQLCODE=0 { WRITE !,"View dropped" }
 ELSEIF SQLCODE=-30 { WRITE !,"View non-existent",!,%msg }
 ELSEIF SQLCODE=-321 { WRITE !,"View referenced by other views",!,%msg }
 ELSE { WRITE !,"Unexpected DROP VIEW error: ",SQLCODE,!,%msg }

See Also
• ALTER VIEW CREATE VIEW GRANT

• “Views” chapter in Using InterSystems SQL

• SQL and Object Settings described in Configuration Parameter File Reference.

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

156 InterSystems SQL Reference

SQL Commands

EXPLAIN
Returns the query plan(s) for a specified query.

EXPLAIN [ALT] [STAT] [INTO :host-variable] query

Arguments

Optional — returns alternate query plans. The default is to return a single query plan.ALT

Optional — (Dynamic SQL only): returns query plan runtime performance statistics.
The default is to return query plan(s) without runtime statistics. This syntax is ignored
for Embedded SQL.

STAT

Optional — (Embedded SQL only): An output host variable into which the query plan(s)
are placed. This syntax is ignored for Dynamic SQL.

INTO :host-variable

A SELECT query.query

Description
The EXPLAIN command returns the query plan for a specified query as an XML-tagged text string.

The ALT and STAT keywords can be specified in any order. The INTO keyword must be specified after these keywords.

The optional ALT keyword generates alternate query plans. All of the alternate query plans are returned in the same XML-
tagged text string. The query text is listed before each query plan.

The optional STAT keyword generates runtime performance statistics for each module in the query plan:

• “Module”: module name.

• “Time”: total execution time for the module, in seconds.

• “Globals”: a count of global references.

• “Commands”: a count of lines of code executed.

• “Disk Wait”: disk wait time in seconds.

• “Row Count”: number of rows in result set.

• “Mod Execs”: number of times this module was executed.

• “Run Count”: number of times this program was executed.

These statistics are returned within the text of the query plan(s) in the XML-tagged text string. Performance statistics for
all modules in a query plan are returned before the associated query plan. Embedded SQL cannot generate or return runtime
performance statistics.

The EXPLAIN command returns Show Plan results by invoking the ShowPlan() method, then formatting the results as
an XML-tagged text string.

The EXPLAIN ALT command returns the alternate show plans results by invoking the ShowPlanAlt() methods, then
formatting the results as an XML-tagged text string.

Examples
The following Dynamic SQL example returns the query plan as an XML string. It first returns the SQL query text, then
the query plan:

InterSystems SQL Reference 157

EXPLAIN

 SET myquery = "EXPLAIN SELECT Name,DOB FROM Sample.Person WHERE Name ['Q'"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WHILE rset.%Next() {
 DO rset.%Print("")
 }

The following Dynamic SQL example is identical to the previous one, except it uses %Display() to display the results.
Note that %Display() adds to the start of the XML string the column name “Plan” and adds to the end of the XML string
“1 Rows(s) Affected”:

 SET myquery = "EXPLAIN SELECT Name,DOB FROM Sample.Person WHERE Name ['Q'"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()

The following Dynamic SQL example returns the query plan and performance statistics as an XML string. It first returns
the SQL query text, then the performance statistics (by module), then the query plan:

 SET myquery = "EXPLAIN STAT SELECT Name,DOB FROM Sample.Person WHERE Name ['Q'"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WHILE rset.%Next() {
 DO rset.%Print("")
 }

The following Dynamic SQL example returns alternate query plans as an XML string. It returns SQL query text before
each query plan:

 SET myquery = "EXPLAIN ALT SELECT Name,DOB FROM Sample.Person WHERE Name ['Q'"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WHILE rset.%Next() {
 DO rset.%Print("")
 }

The following Dynamic SQL example returns a more complex query plan. Note how performance statistics appear both
before and within the query plan:

 SET q1 = "EXPLAIN STAT SELECT p.Name AS Person, e.Name AS Employee "
 SET q2 = "FROM Sample.Person AS p,Sample.Employee AS e "
 SET q3 = "WHERE p.Name %STARTSWITH 'Q' GROUP BY e.Name ORDER BY p.Name"
 SET myquery = q1_q2_q3
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WHILE rset.%Next() {
 DO rset.%Print("")
 }

The following Embedded SQL example returns the query plan as an XML string. It first returns the SQL query text, then
the query plan:

 #SQLCompile Select=Runtime
 &sql(EXPLAIN INTO :qplan SELECT Name,DOB FROM Sample.Person WHERE Name ['Q')
 WRITE qplan

The following Embedded SQL example returns alternative query plans as an XML string. It first returns the SQL query
text, then the first query plan, then the SQL query text, then the second query plan, and so forth:

 #SQLCompile Select=Runtime
 &sql(EXPLAIN ALT INTO :qplans SELECT Name,DOB FROM Sample.Person WHERE Name ['Q')
 WRITE qplans

158 InterSystems SQL Reference

SQL Commands

The following Embedded SQL example returns the query plan. The STAT keyword is ignored:

 #SQLCompile Select=Runtime
 &sql(EXPLAIN STAT INTO :qplan SELECT Name,DOB FROM Sample.Person WHERE Name ['Q')
 WRITE qplan

See Also
• SELECT

• JOIN

• Show Plan in the “Optimizing SQL Queries” chapter of the SQL Optimization Guide.

• Runtime Performance Statistics in the “Optimizing SQL Queries” chapter of the SQL Optimization Guide.

• “Querying the Database” chapter in Using InterSystems SQL

InterSystems SQL Reference 159

EXPLAIN

FETCH
Repositions a cursor, and retrieves data from it.

FETCH cursor-name [INTO host-variable-list]

Arguments

The name of a currently open cursor. The cursor name was specified in
the DECLARE statement. Cursor names are case-sensitive.

cursor-name

Optional — Places data from the columns of a fetch into local variables.
The host-variable-list specifies a host variable, or a comma-separated
list of host variables, that are targets to contain data associated with the
cursor. The INTO clause is optional. If it is not specified, the FETCH
statement positions the cursor only.

INTO host-variable-list

Description
Within an embedded SQL application, a FETCH statement retrieves data from a cursor. The required sequence of actions
is: DECLARE, OPEN, FETCH, CLOSE. Attempting a FETCH on a cursor that is not open results in an SQLCODE -
102 error.

As an SQL statement, this is supported only from within embedded SQL. Equivalent operations are supported through
ODBC using the ODBC API. For further details, refer to the Embedded SQL chapter in Using InterSystems SQL.

An INTO clause can be specified as a clause of the DECLARE statement, as a clause of the FETCH statement, or both.
The INTO clause allows data from the columns of a fetch to be placed into local host variables. Each host variable in the
list, from left to right, is associated with the corresponding column in the cursor result set. The data type of each variable
must either match or be a supported implicit conversion of the data type of the corresponding result set column. The number
of variables must match the number of columns in the cursor select list.

The FETCH operation completes when the cursor advances to the end of the data. This sets SQLCODE=100 (No more
data). It also sets the %ROWCOUNT variable to the number of fetched rows.

Note: The values returned by INTO clause host variables are only reliable while SQLCODE=0. If SQLCODE=100 (No
more data) the host variable values should not be used.

The cursor-name is not namespace-specific. Changing the current namespace has no effect on use of a declared cursor.
The only namespace consideration is that FETCH must occur in the namespace that contains the table(s) being queried.

FETCH does not support the #SQLCompile Mode=Deferred preprocessor directive. Attempting to use Deferred mode
with a DECLARE, OPEN, FETCH, or CLOSE cursor statement generates a #5663 compilation error.

%ROWID

When a FETCH retrieves a row of an updateable cursor, it sets %ROWID to the RowID value of the fetched row. An
updateable cursor is one in which the top FROM clause contains exactly one element, either a table name or an updateable
view name.

This setting of %ROWID for each row retrieved is subject to the following conditions:

• The DECLARE cursorname CURSOR and OPEN cursorname statements do not initialize %ROWID; the %ROWID
value is unchanged from its prior value. The first successful FETCH sets %ROWID. Each subsequent FETCH that
retrieves a row resets %ROWID to the current RowID. FETCH sets %ROWID if it retrieves a row of an updateable
cursor. If the cursor is not updateable, %ROWID remains unchanged. If no rows matched the query selection criteria,

160 InterSystems SQL Reference

SQL Commands

FETCH does not change the prior the %ROWID value. Upon CLOSE or when FETCH issues an SQLCODE 100
(No Data, or No More Data), %ROWID contains the RowID of the last row retrieved.

• A cursor-based SELECT with a DISTINCT keyword or a GROUP BY clause does not set %ROWID. The %ROWID
value is unchanged from its previous value (if any).

• A cursor-based SELECT that performs only aggregate operations does not set %ROWID. The %ROWID value is
unchanged from its previous value (if any).

An Embedded SQL SELECT with no declared cursor does not set %ROWID. The %ROWID value is unchanged upon
the completion of a simple SELECT statement.

FETCH for UPDATE or DELETE

You can use FETCH to retrieve a row for update or delete. The UPDATE or DELETE must specify the WHERE CURRENT
OF clause. The DECLARE should specify the FOR UPDATE clause. The following example shows a cursor-based delete
that deletes all selected rows:

 ZN "Samples"
 &sql(DECLARE MyCursor CURSOR FOR SELECT %ID,Status
 FROM Sample.Quality WHERE Status='Bad' FOR UPDATE)
 &sql(OPEN MyCursor)
 QUIT:(SQLCODE'=0)
 NEW %ROWCOUNT,%ROWID
 FOR {&sql(FETCH MyCursor) QUIT:SQLCODE'=0
 &sql(DELETE FROM Sample.Quality WHERE CURRENT OF MyCursor) }
 WRITE !,"Number of rows updated=",%ROWCOUNT
 &sql(CLOSE MyCursor)

Examples
The following Embedded SQL example shows FETCH invoked by an argumentless FOR loop retrieving data from a
cursor named EmpCursor. The INTO clause is specified in the DECLARE statement:

 &sql(DECLARE EmpCursor CURSOR FOR
 SELECT Name, Home_State
 INTO :name,:state FROM Sample.Employee
 WHERE Home_State %STARTSWITH 'M')
 &sql(OPEN EmpCursor)
 QUIT:(SQLCODE'=0)
 NEW %ROWCOUNT,%ROWID
 FOR { &sql(FETCH EmpCursor)
 QUIT:SQLCODE'=0
 WRITE "count: ",%ROWCOUNT," RowID: ",%ROWID,!
 WRITE " Name=",name," State=",state,! }
 WRITE !,"Final Fetch SQLCODE: ",SQLCODE
 &sql(CLOSE EmpCursor)

The following Embedded SQL example shows FETCH invoked by an argumentless FOR loop retrieving data from a
cursor named EmpCursor. The INTO clause is specified as part of the FETCH statement:

 &sql(DECLARE EmpCursor CURSOR FOR
 SELECT Name,Home_State FROM Sample.Employee
 WHERE Home_State %STARTSWITH 'M')
 &sql(OPEN EmpCursor)
 QUIT:(SQLCODE'=0)
 FOR { &sql(FETCH EmpCursor INTO :name,:state)
 QUIT:SQLCODE'=0
 WRITE "count: ",%ROWCOUNT," RowID: ",%ROWID,!
 WRITE " Name=",name," State=",state,! }
 WRITE !,"Final Fetch SQLCODE: ",SQLCODE
 &sql(CLOSE EmpCursor)

The following Embedded SQL example shows FETCH invoked using a WHILE loop:

InterSystems SQL Reference 161

FETCH

 &sql(DECLARE C1 CURSOR FOR
 SELECT Name,Home_State INTO :name,:state FROM Sample.Person
 WHERE Home_State %STARTSWITH 'M')
 &sql(OPEN C1)
 QUIT:(SQLCODE'=0)
 &sql(FETCH C1)
 WHILE (SQLCODE = 0) {
 WRITE "count: ",%ROWCOUNT," RowID: ",%ROWID,!
 WRITE " Name=",name," State=",state,!
 &sql(FETCH C1) }
 WRITE !,"Final Fetch SQLCODE: ",SQLCODE
 &sql(CLOSE C1)

The following Embedded SQL example shows FETCH retrieving aggregate function values. %ROWID is not set:

 &sql(DECLARE PersonCursor CURSOR FOR
 SELECT COUNT(*),AVG(Age) FROM Sample.Person)
 &sql(OPEN PersonCursor)
 QUIT:(SQLCODE'=0)
 NEW %ROWCOUNT
 FOR { &sql(FETCH PersonCursor INTO :cnt,:avg)
 QUIT:SQLCODE'=0
 WRITE %ROWCOUNT," Num People=",cnt," Average Age=",avg,! }
 WRITE !,"Final Fetch SQLCODE: ",SQLCODE
 &sql(CLOSE PersonCursor)

The following Embedded SQL example shows FETCH retrieving DISTINCT values. %ROWID is not set:

 &sql(DECLARE EmpCursor CURSOR FOR
 SELECT DISTINCT Home_State FROM Sample.Employee
 WHERE Home_State %STARTSWITH 'M'
 ORDER BY Home_State)
 &sql(OPEN EmpCursor)
 QUIT:(SQLCODE'=0)
 NEW %ROWCOUNT
 FOR { &sql(FETCH EmpCursor INTO :state)
 QUIT:SQLCODE'=0
 WRITE %ROWCOUNT," State=",state,! }
 WRITE !,"Final Fetch SQLCODE: ",SQLCODE
 &sql(CLOSE EmpCursor)

The following Embedded SQL example shows that a cursor persists across namespaces. This cursor is declared in SAMPLES,
opened in DOCBOOK, fetched in SAMPLES, and closed in USER. Note that the FETCH must be executed in the
namespace that contains the table being queried, Sample.Employee:

 &sql(USE DATABASE "USER")
 WRITE $ZNSPACE,!
 &sql(DECLARE NSCursor CURSOR FOR SELECT Name INTO :name FROM Sample.Employee)
 &sql(USE DATABASE DOCBOOK)
 WRITE $ZNSPACE,!
 &sql(OPEN NSCursor)
 QUIT:(SQLCODE'=0)
 &sql(USE DATABASE SAMPLES)
 WRITE $ZNSPACE,!
 NEW SQLCODE,%ROWCOUNT,%ROWID
 FOR { &sql(FETCH NSCursor)
 QUIT:SQLCODE
 WRITE "Name=",name,! }
 &sql(USE DATABASE "USER")
 WRITE $ZNSPACE,!
 &sql(CLOSE NSCursor)
 WRITE "Close SQLCODE: ",SQLCODE,!

See Also
• CLOSE, DECLARE, OPEN

• SQL Cursors in the “Using Embedded SQL” chapter of Using InterSystems SQL

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

162 InterSystems SQL Reference

SQL Commands

FROM
A SELECT clause that specifies one or more tables to query.

SELECT ... FROM [optimize-option] table-ref [[AS] t-alias][,table-ref [[AS]
t-alias]][,...]

Arguments

Optional — A single keyword, or a series of keywords
separated by spaces, that specify query optimization options
(optimizer hints). The following keywords are supported:
%ALLINDEX, %FIRSTTABLE tablename, %FULL,
%IGNOREINDEX name, %INORDER, %NOFLATTEN,
%NOMERGE, %NOREDUCE, %NOSVSO, %NOTOPOPT,
%NOUNIONOROPT, %PARALLEL, and %STARTTABLE.

optimize-option

One or more tables, views, table-valued functions, or
subqueries from which data is being retrieved, specified as
a comma-separated list or with JOIN syntax. Some restrictions
apply on using views with JOIN syntax.You can specify a
subquery, enclosed in parentheses.

table-ref

Optional — An alias for the table name. Must be a valid
identifier. For further details see the “Identifiers” chapter of
Using InterSystems SQL. Can be specified with or without
the optional AS keyword.

AS t-alias

Description
The FROM clause specifies one or more tables (or views, or subqueries) from which data is queried within a SELECT
statement. If no table data is being queried, the FROM clause is optional, as described below.

Multiple tables are specified as a comma-separated list, or a list separated by other JOIN syntax. Each table name can
optionally be supplied an alias.

Table name aliases are used when specifying field names for multiple tables in the SELECT statement. If two (or more)
tables are specified in the FROM clause, you indicate which table’s field you want by specifying tablename.fieldname
for each field in the SELECT select-item clause. Because table names are often long names, a short table name alias is
useful in this context (t-alias.fieldname).

The following example show the use of table name aliases:

SELECT e.Name,c.Name
FROM Sample.Company AS c,Sample.Employee AS e

The AS keyword can be omitted. It is provided for compatibility and clarity.

Supplying a Schema Name to a Table Reference

A table-ref name is either qualified (schema.tablename) or unqualified (tablename). The schema name for an unqualified
table name (or view name) is supplied using a schema search path or the system-wide default schema name:

1. If a schema search path is provided, InterSystems IRIS searches the specified schemas for a matching table name.

2. If a schema search path is not provided, or the schema search path does not produce a match, InterSystems IRIS uses
the system-wide default schema name.

InterSystems SQL Reference 163

FROM

Table Joins

When you specify multiple table names in a FROM clause, InterSystems SQL performs join operations on those tables.
The type of join performed is specified by a join keyword phrase or symbol between each pair of table names. When two
table names are separated by a comma, a cross join is performed. For further details on the different types of joins and their
syntax, refer to JOIN.

The sequence in which joins are performed is automatically determined by the SQL query optimizer and is not based on
the sequence that the tables are listed in the query. If desired, you can control the sequence in which joins are performed
by specifying a query optimization option.

The following three SELECT statements show the row counts for two individual tables, and the row count for a SELECT
specifying both tables. This latter results in a much larger table, a Cartesian product, where every row in the first table is
matched with every row of the second table, an operation known as a Cross Join.

SELECT COUNT(*)
FROM Sample.Company

SELECT COUNT(*)
FROM Sample.Vendor

SELECT COUNT(*)
FROM Sample.Company,Sample.Vendor

You can perform the same operation using explicit CROSS JOIN syntax:

SELECT COUNT(*)
FROM Sample.Company CROSS JOIN Sample.Vendor

In most cases, the extensive data duplication of a cross join is not desirable, and some other type of join is preferable.

If you specify a WHERE clause in the SELECT statement, the cross join is performed, then the WHERE clause predicate(s)
determine the result set. This is equivalent to performing an INNER JOIN with an ON clause. Thus the following two
examples return identical results:

SELECT p.Name,p.Home_State,em.Name,em.Office_State
FROM Sample.Person AS p, Sample.Employee AS em
WHERE p.Name %STARTSWITH 'E' AND em.Name %STARTSWITH 'E'

SELECT p.Name,p.Home_State,em.Name,em.Office_State
FROM Sample.Person AS p INNER JOIN Sample.Employee AS em
ON p.Name %STARTSWITH 'E' AND em.Name %STARTSWITH 'E'

You can specify explicit join syntax (rather than using commas) in the FROM table-ref list to perform other types of join
operations. For further details, refer to JOIN.

Query Optimization Options
By default, the InterSystems SQL query optimizer uses sophisticated and flexible algorithms to optimize the performance
of complex queries involving join operations and/or multiple indexes. In most cases, these defaults provide optimal perfor-
mance. However, in infrequent cases, you may wish to give “hints” to the query optimizer, specifying one or more aspects
of query optimization. For this reason, InterSystems SQL provides optimize-option keywords in the FROM clause. You
can specify multiple optimization keywords in any order, separated by blank spaces. For further details, refer to Optimizing
SQL Queries in the SQL Optimization Guide.

You can use optimize-option FROM clause keywords in a simple SELECT statement, in a CREATE VIEW view definition
SELECT statement, or in a subquery SELECT statement within the FROM clause.

%ALLINDEX

This optional keyword specifies that all indexes that provide any benefit are used for the first table in the query join order.
This keyword should only be used when there are multiple defined indexes. The optimizer default is to use only those
indexes that the optimizer judges to be most beneficial. By default, this includes all efficient equality indexes, and selected

164 InterSystems SQL Reference

SQL Commands

indexes of other types. %ALLINDEX uses all possibly beneficial indexes of all types. Testing all indexes has a larger
overhead, but under some circumstances it may provide better performance than the default optimization. This option is
especially helpful when using multiple range condition indexes and inefficient equality condition indexes. In these circum-
stances, accurate index selectivity may not be available to the query optimizer. %ALLINDEX can be used with
%IGNOREINDEX to include/exclude specific indexes. Generally, %ALLINDEX should not be used with a TOP clause
query.

You can use %STARTTABLE with %ALLINDEX to specify which table the %ALLINDEX applies to.

You can specify exceptions to %ALLINDEX for specific conditions with the %NOINDEX condition-level hint. The
%NOINDEX hint is placed in front of each query selection condition for which no index should be used. For example,
WHERE %NOINDEX hiredate < ?. This is most commonly used when the overwhelming majority of the data is not
excluded by the condition. With a less-than (<) or greater-than (>) condition, use of the %NOINDEX condition-level hint
is often beneficial. With an equality condition, use of the %NOINDEX condition-level hint provides no benefit. With a
join condition, %NOINDEX is supported for ON clause joins. For further details, refer to “Using Indices” in the “Opti-
mizing Query Performance” chapter in SQL Optimization Guide.

%FIRSTTABLE

%FIRSTTABLE tablename

This optional keyword specifies that the query optimizer should start to performs joins with the specified tablename. The
tablename names a table that is specified later in the join sequence. The join order for the remaining tables is left to the
query optimizer. This hint is functionally identical to %STARTTABLE, but provides you with the flexibility to specify the
join table sequence in any order.

The tablename must be a simple identifier, either a table alias or an unqualified table name. A qualified table name
(schema.table) cannot be used. If the query specifies a table alias, the table alias must be used as tablename. For example:

FROM %FIRSTTABLE P Sample.Employee AS E JOIN Sample.Person AS P ON E.Name = P.Name

%FIRSTTABLE and %STARTTABLE both enable you to specify the initial table to use for join operations. %INORDER
enables you to specify the order of all tables used for join operations. These three keywords are mutually exclusive; specify
one and one only. If these keywords are not used the query optimizer performs joins on tables in the sequence it considers
optimal, regardless of the sequence in which the tables are listed.

You cannot use %FIRSTTABLE or %STARTTABLE to begin the join order with the right-hand side of a LEFT OUTER
JOIN (or the left-hand side of a RIGHT OUTER JOIN). Attempting to do so results in an SQLCODE -34 error: “Optimizer
failed to find a usable join order”.

For further details, refer to the %STARTTABLE query optimization option.

%FULL

This optional keyword specifies that the compiler optimizer examines all alternative join sequences to maximize access
performance. For example, when creating a stored procedure, the increased compile time may be worthwhile to provide
for more optimized access. The default optimization is to not examine less likely join sequences when there are many tables
in the FROM clause. %FULL overrides this default behavior.

You might specify both the %INORDER and the %FULL keywords when the FROM clause includes tables accessed with
arrow syntax, which lead to tables whose order is unconstrained.

%IGNOREINDEX

This optional keyword specifies that the query optimizer ignore the specified index or list of indices. (The deprecated synonym
%IGNOREINDICES is supported for backwards compatibility.)

InterSystems SQL Reference 165

FROM

Following this keyword you specify one or more index names. Multiple index names must be separated by commas. You
can specify an index name using either of the following formats:

%IGNOREINDEX [[schemaname.]tablename.]indexname [,...] %IGNOREINDEX
[[schemaname.]tablename.]* [,...]

The schemaname and tablename are optional. If omitted, the current default schema and the table name specified as FROM
table-ref are used. The asterisk (*) wildcard specifies all of the index names for the specified table. You can specify index
names in any order. InterSystems SQL does not validate the index names you specify (or their schemaname and tablename);
a nonexistent or duplicate index name is simply ignored.

By using this optimization constraint, you can cause the query optimizer to not use an index that is not optimal for a specific
query. By specifying all index names but one, you can, in effect, force the query optimizer to use the remaining index.

You can also ignore a specific index for a specific condition expression by prefacing the condition with the %NOINDEX
keyword. For further details, refer to “Using Indices” in the “Optimizing Query Performance” chapter in the SQL Opti-
mization Guide.

%INORDER

This optional keyword specifies that the query optimizer performs joins in the order that the tables are listed in the FROM
clause. This minimizes compile time. The join order of tables referenced with arrow syntax is unrestricted (for information
on using arrow syntax, refer to Implicit Joins in Using InterSystems SQL). Flattening of subqueries and index usage are
unaffected.

%INORDER cannot be used with a CROSS JOIN or a RIGHT OUTER JOIN. If the table order specified is inconsistent
with the requirements of an outer join, an SQLCODE -34 error is generated: “Optimizer failed to find a usable join order.”
To avoid this, it is recommended that %INORDER, when used with outer joins, only be used with ANSI-style left outer
joins or full outer joins.

%INORDER cannot be used when querying a sharded table. See Querying the Sharded Cluster in the chapter “Horizontally
Scaling InterSystems IRIS for Data Volume with Sharding” in the Scalability Guide.

Views and table subqueries are processed in the order that they are specified in the FROM clause.

• Streamed View: %INORDER has no effect on the order of processing of tables within the view.

• Merged View: %INORDER causes the view tables to be processed in the view’s FROM clause order, at the point of
reference to the view.

Compare this keyword with %FIRSTTABLE and %STARTTABLE, both of which specify only the initial join table, rather
than the full join order. See %STARTTABLE for a table of merge behaviors with different join order optimizations.

The %INORDER and %PARALLEL optimizations cannot be used together; if both are specified, %PARALLEL is ignored.

%NOFLATTEN

This optional keyword is specified in the FROM clause of a quantified subquery — a subquery that returns a boolean value.
It specifies that the compiler optimizer should inhibit subquery flattening. This optimization option disables “flattening”
(the default), which optimizes a query containing a quantified subquery by effectively integrating the subquery into the
query: adding the tables of the subquery to the FROM clause of the query and converting conditions in the subquery to
joins or restrictions in the query's WHERE clause.

The following are examples of quantified subqueries using %NOFLATTEN:

SELECT Name,Home_Zip FROM Sample.Person WHERE Home_Zip IN
 (SELECT Office_Zip FROM %NOFLATTEN Sample.Employee)

SELECT Name,(SELECT Name FROM Sample.Company WHERE EXISTS
 (SELECT * FROM %NOFLATTEN Sample.Company WHERE Revenue > 500000000))
 FROM Sample.Person

166 InterSystems SQL Reference

SQL Commands

The %INORDER and %STARTTABLE optimizations implicitly specify %NOFLATTEN.

%NOMERGE

This optional keyword is specified in the FROM clause of a subquery. It specifies that the compiler optimizer should inhibit
the conversion of a subquery to a view. This optimization option disables the optimizing of a query containing a subquery
by adding the subquery to the FROM clause of the query as an in-line view; comparisons from the subquery to fields of
the query are moved to the query's WHERE clause as joins.

%NOREDUCE

This optional keyword is specified in the FROM clause of a streamed subquery — a subquery that returns a result set of
rows, a subquery in the enclosing query’s FROM clause. It specifies that the compiler optimizer should inhibit the merging
of the subquery (or view) into the containing query.

In the following example, the query optimizer would normally “reduce” this query by performing a Cartesian product join
of Sample.Person with the subquery. The %NOREDUCE optimization option prevents this. InterSystems IRIS instead
builds a temporary index on gname and performs the join on this temporary index:

SELECT * FROM Sample.Person AS p,
 (SELECT Name||'goo' AS gname FROM %NOREDUCE Sample.Employee) AS e
 WHERE p.name||'goo' = e.gname

%NOSVSO

This optional keyword is specified in the FROM clause of a quantified subquery — a subquery that returns a boolean value.
It specifies that the compiler optimizer should inhibit Set-Valued Subquery Optimization (SVSO).

In most cases, Set-Valued Subquery Optimization improves the performance of [NOT] EXISTS and [NOT] IN subqueries,
especially with subqueries with only one, separable correlating condition. It does this by populating a temporary index with
the data values that fulfill the condition. Rather than repeatedly executing the subquery, InterSystems IRIS looks up these
values in the temporary index. For example, SVSO optimizes NOT EXISTS (SELECT P.num FROM Products P
WHERE S.num=P.num AND P.color='Pink') by creating a temporary index for P.num.

SVSO optimizes subqueries where the ALL or ANY keyword is used with a relative operator (>, >=, <, or <=) and a sub-
query, such as ...WHERE S.num > ALL (SELECT P.num ...). It does this by replacing the subquery expression
sqbExpr (P.num in this example) with MIN(sqbExpr) or MAX(sqbExpr), as appropriate. This supports fast computation
when there is an index on sqbExpr.

The %INORDER and %STARTTABLE optimizations do not inhibit Set-Valued Subquery Optimization.

%NOTOPOPT

This optional keyword is specified when using a TOP clause with an ORDER BY clause. By default, TOP with ORDER
BY optimizes for fastest time-to-first-row. Specifying %NOTOPOPT (no TOP optimization) instead optimizes the query
for fastest retrieval of the complete result set.

%NOUNIONOROPT

This optional keyword is specified in the FROM clause of a query or subquery. It disables the automatic optimizations
provided for multiple OR conditions and for subqueries against a UNION query expression. These automatic optimizations
transform multiple OR conditions to UNION subqueries, or UNION subqueries to OR conditions, where deemed appropriate.
These UNION/OR transformations allow EXISTS and other low-level predicates to migrate to top-level conditions where
they are available to InterSystems IRIS query optimizer indexing. These default transformations are desirable in most situ-
ations.

However, in some situations these UNION/OR transformations impose a significant overhead burden. %NOUNIONOROPT
disables these automatic UNION/OR transformations for all conditions in the WHERE clause associated with this FROM
clause. Thus, in a complex query, you can disable these automatic UNION/OR optimizations for one subquery while
allowing them in other subqueries.

InterSystems SQL Reference 167

FROM

The UNION %PARALLEL keyword disables automatic UNION-to-OR optimizations.

The %INORDER and %STARTTABLE optimizations inhibit OR-to-UNION optimizations. The %INORDER and
%STARTTABLE optimizations do not inhibit UNION-to-OR optimizations.

%PARALLEL

This optional keyword is specified in the FROM clause of a query. It suggests that InterSystems IRIS perform parallel
processing of the query, using multiple processors (if applicable). This can significantly improve performance of some
queries that uses one or more COUNT, SUM, AVG, MAX, or MIN aggregate functions, and/or a GROUP BY clause, as
well as many other types of queries. These are commonly queries that process a large quantity of data and return a small
result set. For example, SELECT AVG(SaleAmt) FROM %PARALLEL User.AllSales GROUP BY Region would
likely use parallel processing.

A query that specifies both individual fields and an aggregate function and does not include a GROUP BY clause cannot
perform parallel processing. For example, SELECT Name,AVG(Age) FROM %PARALLEL Sample.Person does not
perform parallel processing, but SELECT Name,AVG(Age) FROM %PARALLEL Sample.Person GROUP BY
Home_State does perform parallel processing.

%PARALLEL is intended for SELECT queries and their subqueries. An INSERT command subquery cannot use %PAR-
ALLEL.

Specifying %PARALLEL may degrade performance for some queries. Running a query with %PARALLEL on a system
with multiple concurrent users may result in degraded overall performance.

Note: A query that specifies %PARALLEL must be run in a database that is read/write, not readonly. Otherwise, a
<PROTECT> error may occur.

Regardless of the presence of the %PARALLEL keyword in the FROM clause, some queries may use linear processing,
not parallel processing: some queries do not support parallel processing; some queries, when optimized, may be found to
not benefit from parallel processing. You can determine if and how InterSystems IRIS has partitioned a query for parallel
processing using Show Plan. To determine the number of processors on the current system use the
%SYSTEM.Util.NumberOfCPUs() method.

For further details, refer to Parallel Query Processing in the “Optimizing Query Performance” chapter of the SQL Opti-
mization Guide.

%STARTTABLE

This optional keyword specifies that the query optimizer should start to performs joins with the first table listed in the
FROM clause. The join order for the remaining tables is left to the query optimizer. Compare this keyword with %INORDER,
which specifies the complete join order.

%STARTTABLE cannot be used with a CROSS JOIN or a RIGHT OUTER JOIN. You cannot use %STARTTABLE (or
%FIRSTTABLE) to begin the join order with the right-hand side of a LEFT OUTER JOIN (or the left-hand side of a
RIGHT OUTER JOIN). If the start table specified is inconsistent with the requirements of an outer join, an SQLCODE -
34 error is generated: “Optimizer failed to find a usable join order.” To avoid this, it is recommended that %STARTTABLE,
when used with outer joins, only be used with ANSI-style left outer joins or full outer joins.

The following table shows the merge behavior when combining a superquery parent and an in-line view with %INORDER
and %STARTTABLE optimizations:

168 InterSystems SQL Reference

SQL Commands

Superquery with
%INORDER

Superquery with
%STARTTABLE

Superquery with no join
optimizer

merge if possible; view's
underlying tables are
unordered.

If the view is the super-
query start: don't merge.

Otherwise, merge view if
possible.

merge view if possibleView with no join
optimizer

don't mergeIf the view is the super-
query start: merge, if
possible. View's start
table becomes super-
query's start table.

Otherwise, don’t merge.

don't mergeView with
%STARTTABLE

If the view is not con-
trolled by the
%INORDER: don't
merge.

Otherwise, merge view if
possible; view's order
becomes substituted into
superquery join order.

don't mergedon't mergeView with %INORDER

The %FIRSTTABLE hint is functionally identical to %STARTTABLE, but provides you with the flexibility to specify the
join table sequence in any order.

Table-Valued Functions in the FROM Clause
A table-valued function is a class query that is projected as a stored procedure and returns a single result set. A table-valued
function is any class query which has SqlProc TRUE. A class query used as a table-valued function must be compiled in
either LOGICAL or RUNTIME mode. When used as a table-valued function and compiled in RUNTIME mode, the table-
valued function query will be called in LOGICAL mode.

A table-valued function follows the same naming conventions as a stored procedure name for a class query. Parameter
parentheses are mandatory; the parentheses may be empty, enclose a literal or a host variable, or a comma-separated list
of literals and host variables. If you specify no parameters (empty parentheses or the null string), the table-valued function
returns all data rows.

To issue a query using a table-valued function, the user must hold the EXECUTE privilege on the stored procedure that
defines the table-valued function. The user must also have SELECT privileges on the tables or views accessed by the table-
valued function query.

In the following example, the class query Sample.Person.ByName is projected as a stored procedure and can thus be used
as a table-valued function:

SELECT Name,DOB FROM Sample.SP_Sample_By_Name('A')

The following Dynamic SQL example specifies the same table-valued function. It uses the %Execute() method to supply
parameter values to the ? input parameter:

InterSystems SQL Reference 169

FROM

 SET myquery="SELECT Name,DOB FROM Sample.SP_Sample_By_Name(?)"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute("A")
 DO rset.%Display()
 WRITE !,"End of A data",!!
 SET rset = tStatement.%Execute("B")
 DO rset.%Display()
 WRITE !,"End of B data"

A table-valued function can only be used in the FROM clause of either a SELECT statement or a DECLARE statement.
A table-valued function name can be qualified with a schema name or unqualified (without a schema name); an unqualified
name uses the default schema. In a SELECT statement FROM clause, a table-valued function can be used wherever a table
name can be used. It can be used in a view or a subquery, and can be joined to other table-ref items using a comma-separated
list or explicit JOIN syntax.

A table-valued function cannot be directly used in an INSERT, UPDATE, or DELETE statement. You can, however,
specify a subquery for these commands that specifies a table-valued function.

InterSystems SQL does not define the EXTENTSIZE for a table-valued function, or the SELECTIVITY for table-valued
function columns.

Subqueries in the FROM Clause
You can specify a subquery in the FROM clause. This is known as a streamed subquery. The subquery is treated the same
as a table, including its use in JOIN syntax and the optional assignment of an alias using the AS keyword. A FROM clause
can contain multiple tables, views, and subqueries in any combination, subject to the restrictions of the JOIN syntax, as
described in JOIN.

A subquery is enclosed in parentheses. The following example shows a subquery in a FROM clause:

SELECT name,region
FROM (SELECT t1.name,t1.state,t2.region
 FROM Employees AS t1 LEFT OUTER JOIN Regions AS t2
 ON t1.state=t2.state)
GROUP BY region

A subquery can specify a TOP clause. A subquery can contain an ORDER BY clause when paired with a TOP clause.

A subquery can use SELECT * syntax, subject to the following restriction: because a FROM clause results in a value
expression, a subquery containing SELECT * must yield only one column.

A join within a subquery cannot be a NATURAL join or take a USING clause.

FROM Subqueries and %VID

When a FROM subquery is invoked, it returns a %VID for each subquery row returned. A %VID is an integer counter
field; its values are system-assigned, unique, non-null, non-zero, and non-modifiable. The %VID is only returned when
explicitly specified. It is returned as data type INTEGER. Because %VID values are sequential integers, they are far more
meaningful if the subquery returns ordered data; a subquery can only use an ORDER BY clause when it is paired with a
TOP clause.

Because the %VID is a sequential integer, it can be used to determine the ranking of items in a subquery with an ORDER
BY clause. In the following example, the 10 newest records are listed in Name order, but their timestamp ranking is easily
seen using the %VID values:

SELECT Name,%VID,TimeStamp FROM
 (SELECT TOP 10 * FROM MyTable ORDER BY TimeStamp DESC)
ORDER BY Name

One common use of the %VID is to “window” the result set, dividing execution into sequential subsets that fit the number
of lines available in a display window. For example, display 20 records, then wait for the user to press Enter, then display
the next 20 records.

170 InterSystems SQL Reference

SQL Commands

The following example uses %VID to “window” the results into subsets of 10 records:

 SET myq=4
 SET myq(1)="SELECT %VID,* "
 SET myq(2)="FROM (SELECT TOP 60 Name,Age FROM Sample.Person "
 SET myq(3)="WHERE Age > 55 ORDER BY Name) "
 SET myq(4)="WHERE %VID BETWEEN ? AND ?"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.myq)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 FOR i=1:10:60 {
 SET rset = tStatement.%Execute(i,i+9)
 WHILE rset.%Next() {
 DO rset.%Print() }
 WRITE !!
 }
 WRITE "End of data"

For details on using %VID, refer to the Defining and Using Views chapter of Using InterSystems SQL.

Optional FROM Clause
If no table data is referenced (directly or indirectly) by the SELECT item list, the FROM clause is optional. This kind of
SELECT may be used to return data from functions, operator expressions, constants, or host variables. For a query that
references no table data:

• If the FROM clause is omitted, a maximum of one row of data is returned, regardless of the TOP keyword value; TOP
0 returns no data. The DISTINCT clause is ignored. No privileges are required.

• If the FROM clause is specified, it must specify an existing table in the current namespace. You must have SELECT
privilege for that table, even though the table is not referenced. The number of identical rows of data returned is equal
to the number of rows in the specified table, unless you specify a TOP or DISTINCT clause, or limit it with a WHERE
or HAVING clause. Specifying a DISTINCT clause limits the output to a single row of data. The TOP keyword limits
the output to the number of rows specified by the TOP value; TOP 0 returns no data.

With or without a FROM clause, subsequent clauses (WHERE, GROUP BY, HAVING or ORDER BY) may be specified.
A WHERE or HAVING clause may be used to determine whether or not to return results, or how many identical rows of
results to return. These clauses may reference a table, even if no FROM clause is specified. A GROUP BY or ORDER BY
clause may be specified, but these clauses are not meaningful.

The following are examples of SELECT statements that reference no table data. Both examples return one row of information.

The following example omits the FROM clause. The DISTINCT keyword is not needed, but may be specified. No SELECT
clauses are permitted.

SELECT 3+4 AS Arith,
 {fn NOW} AS NowDateTime,
 {fn DAYNAME({fn NOW})} AS NowDayName,
 UPPER('MixEd cASe EXPreSSioN') AS UpCase,
 {fn PI} AS PiConstant

The following example includes a FROM clause. The DISTINCT keyword is used to return a single row of data. The FROM
clause table reference must be a valid table. The ORDER BY clause is permitted here, but is meaningless. Note that the
ORDER BY clause must specify a valid select item alias:

SELECT DISTINCT 3+4 AS Arith,
 {fn NOW} AS NowDateTime,
 {fn DAYNAME({fn NOW})} AS NowDayName,
 UPPER('MixEd cASe EXPreSSioN') AS UpCase,
 {fn PI} AS PiConstant
FROM Sample.Person
ORDER BY NowDateTime

The following examples both use a WHERE clause to determine whether or not to return results. The first includes a FROM
clause and uses the DISTINCT keyword is to return a single row of data. The second omits the FROM clause, and therefore

InterSystems SQL Reference 171

FROM

returns at most a single row of data. In both cases, the WHERE clause table reference must be a valid table for which you
have SELECT privilege:

SELECT DISTINCT
 {fn NOW} AS DataOKDate
FROM Sample.Person
WHERE FOR SOME (Sample.Person)(Name %STARTSWITH 'A')

SELECT {fn NOW} AS DataOKDate
WHERE FOR SOME (Sample.Person)(Name %STARTSWITH 'A')

See Also
• SELECT

• JOIN

• “Querying the Database” chapter in Using InterSystems SQL

• “Defining Tables” chapter in Using InterSystems SQL

• “Optimizing SQL Queries” in the SQL Optimization Guide.

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

172 InterSystems SQL Reference

SQL Commands

GRANT
Grants privileges to a user or role.

GRANT admin-privilege TO grantee [WITH ADMIN OPTION]

GRANT role TO grantee [WITH ADMIN OPTION]

GRANT object-privilege ON object-list TO grantee [WITH GRANT OPTION]

GRANT SELECT ON CUBE[S] object-list TO grantee [WITH GRANT OPTION]

GRANT column-privilege (column-list) ON table TO grantee [WITH GRANT OPTION]

Arguments

A comma-separated list of one or more users or roles. Valid values are a list
of users, a list of roles, "*", or _PUBLIC.The asterisk (*) specifies all currently
defined users who do not have the %All role.The _PUBLIC keyword specifies
all currently defined and yet-to-be-defined users.

grantee

An administrative-level privilege or a comma-separated list of administrative-
level privileges being granted. The list may consist of one or more of the fol-
lowing in any order:

%CREATE_METHOD, %DROP_METHOD, %CREATE_FUNCTION,
%DROP_FUNCTION, %CREATE_PROCEDURE, %DROP_PROCEDURE,
%CREATE_QUERY, %DROP_QUERY, %CREATE_TABLE,
%ALTER_TABLE, %DROP_TABLE, %CREATE_VIEW, %ALTER_VIEW,
%DROP_VIEW, %CREATE_TRIGGER, %DROP_TRIGGER

%DB_OBJECT_DEFINITION, which grants all 16 of the above privileges.

%NOCHECK, %NOINDEX, %NOLOCK, %NOTRIGGER privileges for
INSERT, UPDATE, and DELETE operations.

admin-privilege

A role or comma-separated list of roles whose privileges are being granted.role

A basic-level privilege or comma-separated list of basic-level privileges being
granted. The list may consist of one or more of the following: %ALTER,
DELETE, SELECT, INSERT, UPDATE, EXECUTE, and REFERENCES.You
can confer all table and view privileges using either "ALL [PRIVILEGES]" or
“* ” as the argument value. Note that you can only grant SELECT privilege
to CUBES.

object-privilege

A comma-separated list of one or more tables, views, stored procedures, or
cubes for which the object-privilege(s) are being granted.You can use the
SCHEMA keyword to specify granting the object-privilege to all objects in the
specified schema.You can use “* ” to specify granting the object-privilege to
all tables, or to all non-hidden Stored Procedures, in the current namespace.
Note that a cubes object-list requires the CUBE (or CUBES) keyword, and
can only be granted SELECT privilege.

object-list

A basic-level privilege being granted to one or more listed columns. Available
options are SELECT, INSERT, UPDATE, and REFERENCES.

column-privilege

InterSystems SQL Reference 173

GRANT

A list of one or more column names, separated by commas and enclosed in
parentheses.

column-list

The name of the table or view that contains the column-list columns.table

Description
The GRANT command gives privileges to do specified tasks on specified tables, views, columns, or other entities to one
or more specified users or roles. You can do the following basic operations:

• Grant a privilege to a user.

• Grant a privilege to a role.

• Grant a role to a user.

• Grant a role to a role, creating a hierarchy of roles.

If you grant a privilege to a user, the user can immediately exercise the privilege. If you grant a privilege to a role, users
who have been granted the role can immediately exercise the privilege. If you revoke a privilege, the user immediately
loses the privilege. A privilege is effectively granted to a user only once. Multiple users can grant the same privilege to a
user multiple times, but a single REVOKE removes the privilege.

Privileges are granted on a per-namespace basis.

SQL privileges are only enforced through ODBC, JDBC, and Dynamic SQL (%SQL.Statement).

Because GRANT prepares and executes quickly, and is generally run only once, InterSystems IRIS does not create a cached
query for GRANT in ODBC, JDBC, or Dynamic SQL. The expansion of * is performed when the GRANT command is
executed.

GRANT admin-privilege

SQL administrative (admin) privileges apply to users or roles. Any privilege that is not tied to any particular object (and
thus is a general right for that user or role) is considered an admin privilege. These privileges are granted on a per-namespace
basis for the current namespace.

The %DB_OBJECT_DEFINITION privilege grants all 16 of the data definition privileges. It does not grant %NOCHECK,
%NOINDEX, %NOLOCK, and %NOTRIGGER privileges, which must be granted explicitly.

The %NOCHECK, %NOINDEX, %NOLOCK, and %NOTRIGGER privileges grant use of these options in the restriction
clause of an INSERT, UPDATE, INSERT OR UPDATE, or DELETE statement. They have no effect on the use of the
%NOINDEX keyword as a preface to a predicate condition. Because TRUNCATE TABLE performs a delete of all of the
rows from a table with %NOTRIGGER behavior, you must have %NOTRIGGER privilege in order to run TRUNCATE
TABLE. You must have the appropriate %NOCHECK, %NOINDEX, %NOLOCK, or %NOTRIGGER privilege to use
that restriction when preparing an INSERT, UPDATE, INSERT OR UPDATE, or DELETE statement.

If the specified admin privilege is not a valid privilege name (for example, due to a spelling error), InterSystems IRIS
completes successfully, issuing an SQLCODE 100 (reached end of data); InterSystems IRIS does not check if the specified
user (or role) exists. If the specified admin privilege is valid, but the specified user (or role) does not exist, InterSystems
IRIS issues an SQLCODE -118 error.

GRANT role

This form of GRANT assigns a user to a specified role. You can also assign a role to another role. If the specified role that
receives the assignment does not exist, InterSystems IRIS issues an SQLCODE 100 (reached end of data). If the specified
user (or role) that is assigned to a role does not exist, InterSystems IRIS issues an SQLCODE -118 error. If you are not the
SuperUser, and you are attempting to grant a role that you don't own and don't have ADMIN OPTION for, InterSystems
IRIS issues an SQLCODE -112 error.

174 InterSystems SQL Reference

SQL Commands

Roles are created using the CREATE ROLE statement. If the role name is a delimited identifier, you must enclose it in
quotation marks when assigning to it.

Roles can be granted or revoked via either the SQL GRANT and REVOKE commands, or via InterSystems IRIS System
Security:

• Go to the Management Portal, select System Administration, Security, Users to display the current users. Select the
name of the desired user to display edit options for that user, then select the Roles tab to assign (or unassign) the user
to one or more roles.

• Go to the Management Portal, select System Administration, Security, Roles to display the current roles. Select the
name of the desired role to display edit options for that role, then select the Assigned To tab to assign (or unassign) the
role to one or more roles. Note that the ObjectScript $ROLES special variable does not display roles granted to roles.

GRANT object-privilege

Object privileges give a user or role some right to a particular object. You grant an object-privilege ON an object-list TO
a grantee. An object-list can specify one or more tables, views, stored procedures, or cubes in the current namespace. By
using comma-separated lists, a single GRANT statement can grant multiple object privileges on multiple objects to multiple
users and/or roles.

The following are the available object-privilege values:

• The %ALTER and DELETE privileges grant access to table or view definitions.

• The SELECT, INSERT, UPDATE, DELETE, and REFERENCES privileges grant access to table data.

• The EXECUTE privilege grants access to stored procedures. This privilege is required to execute a stored procedure
or to call a user-defined SQL function in a query. For example, SELECT Field1,MyFunc() FROM
SQLUser.MyTable requires SELECT privilege on SQLUser.MyTable and EXECUTE privilege on the
SQLUser.MyFunc procedure.

• The ALL PRIVILEGES privilege grants all table and view privileges; it does not grant the EXECUTE privilege.

You can use the asterisk (*) wildcard as the object-list value to grant the object-privilege to all of the objects in the current
namespace. For example, GRANT SELECT ON * TO Deborah grants this user SELECT privilege for all tables and
views. GRANT EXECUTE ON * TO Deborah grants this user EXECUTE privilege for all non-hidden Stored Procedures.

You can use SCHEMA schema-name as the object-list value to grant the object-privilege to all of the tables, views, and
stored procedures in the named schema, in the current namespace. For example, GRANT SELECT ON SCHEMA Sample
TO Deborah grants this user SELECT privilege for all objects in the Sample schema. This includes all objects that will
be defined in this schema in the future. You can specify multiple schemas as a comma-separated list; for example, GRANT
SELECT ON SCHEMA Sample,Cinema TO Deborah grants SELECT privilege for all objects in both the Sample and
the Cinema schemas.

Cubes are SQL identifiers that are not qualified by a schema name. To specify a cubes object-list, you must specify the
CUBE (or CUBES) keyword. You can only grant SELECT privilege to a cube.

The following example demonstrates the granting of the SELECT and UPDATE privileges to a specific user for a specific
table:

InterSystems SQL Reference 175

GRANT

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
CreateUser
 SET x=$SYSTEM.SQL.UserExists("DeborahTest")
 IF x=0 {&sql(CREATE USER DeborahTest IDENTIFY BY birdpw)
 IF SQLCODE '= 0 {WRITE "CREATE USER error: ",SQLCODE,!
 QUIT}
 }
 ELSE {WRITE "User DeborahTest exists, not changing privileges",!
 QUIT }
GrantPrivsToUser
 &sql(GRANT SELECT,UPDATE ON SQLUSER.T1 TO DeborahTest)
 WRITE !,"GRANT error code: ",SQLCODE
DropUser
 &sql(DROP USER DeborahTest)
 IF SQLCODE '= 0 {WRITE "DROP USER error: ",SQLCODE,!}

Privileges can only be granted explicitly to a table, view, or stored procedure that already exists. If the specified object
does not exist, InterSystems IRIS issues an SQLCODE -30 error. You can, however, grant privileges to a schema, which
grant privileges both to all existing objects in that schema and to all future objects in that schema that did not exist when
the privilege was granted.

If the owner of a table is _PUBLIC, users do not need to be granted object privileges to access the table.

If the specified user does not exist, InterSystems IRIS issues an SQLCODE -118 error. If the specified object privilege has
already been granted, InterSystems IRIS issues an SQLCODE 100 (reached end of data).

Object privileges can be granted or revoked by any of the following:

• The GRANT and REVOKE commands.

• The %SYSTEM.SQL GrantObjPriv() and RevokeObjPriv() methods. These methods return a %Status value; if suc-
cessful (%Status=1) an SQLCODE value of 100 indicates that the method did not actually grant or revoke any privileges.
These methods fail with an SQLCODE -118 if any of the provided users or roles are invalid.

• Via InterSystems IRIS System Security. Go to the Management Portal, select System Administration, Security, Users

(or System Administration, Security, Roles) select the name of the desired user or role, then select the SQL Tables or
SQL Views tab. Select the desired Namespace from the drop-down list. Then select the Add Tables or Add Views button.
In the displayed window, choose a schema, select one or more tables, and assign privileges.

You can determine if the current user has a specified object privilege by invoking the %CHECKPRIV command. You can
determine if a specified user has a specified table-level object privilege by invoking the $SYSTEM.SQL.CheckPriv()
method, as shown in the following example:

 WRITE "SELECT privilege? ",$SYSTEM.SQL.CheckPriv("DeborahTest","1,SQLUSER.TestT1","s"),!
 WRITE "UPDATE privilege? ",$SYSTEM.SQL.CheckPriv("DeborahTest","1,SQLUSER.TestT1","u"),!
 WRITE "DELETE privilege? ",$SYSTEM.SQL.CheckPriv("DeborahTest","1,SQLUSER.TestT1","d"),!

Object Owner Privileges

The owner of a table, view, or procedure always has all SQL privileges implicitly on the SQL object. The owner of the
object has privileges on the object in all namespaces to which the object is mapped.

GRANT column-privilege

Column privileges give a user or role a specified privilege to a specified list of columns on a specified table or view. This
permits you to allow access to some table columns and not to other columns of the same table. This gives more specific
access control than the GRANT object-privilege option, which defines privileges for an entire table or view. When granting
privileges to a grantee, you should grant either table-level privilege or column-level privileges for a table, but not both.
The SELECT, INSERT, UPDATE, and REFERENCES privileges can be used to grant access to data in individual columns.

A user having a SELECT, INSERT, UPDATE, or REFERENCES object-privilege on a table WITH GRANT OPTION
can grant to other users a column-privilege of the same type for columns of that table.

176 InterSystems SQL Reference

SQL Commands

You can specify a single column, or a comma-separated list of columns. The column-list must be enclosed in parentheses.
Column names can be specified in any order, and duplication is permitted. Granting a column privilege to a column that
already has that privilege has no effect.

The following example grants the UPDATE privilege for two columns:

GRANT UPDATE(Name,FavoriteColors) ON Sample.Person TO Deborah

You can grant column privileges on a table or a view. You can grant column privileges to any type of grantee, including
a list of users, a list of roles, *, and _PUBLIC. However, you cannot use the asterisk (*) wildcard for privileges, field names,
or table names.

If a user inserts a new record into a table, data is inserted into only those fields for which column privileges have been
granted. All other data columns are set to either the defined column default value, or to NULL if there is no defined default
value. You cannot grant column-level INSERT or UPDATE privileges to the RowID and Identity columns. Upon INSERT,
InterSystems SQL automatically provides a RowID and (if needed) an Identity column value.

Column-level privileges can be granted or revoked via either the SQL GRANT and REVOKE commands, or via InterSystems
IRIS System Security. Go to the Management Portal, select System Administration, Security, Users (or System Administration,
Security, Roles), select the name of the desired user or role, then select the SQL Tables or SQL Views tab. Select the desired
Namespace from the drop-down list. Then select the Add Columns button. In the displayed window, choose a schema,
choose a table, select one or more columns, and assign privileges.

Granting Multiple Privileges

You can use a single GRANT statement to specify the following combinations of privileges:

• One or more roles.

• One or more table-level privileges and one or more column-level privileges. To specify multiple table-level and column-
level privileges, the privilege must immediately precede a column-list to grant a column-level privilege. Otherwise, it
grants a table-level privilege.

• One or more admin-privileges. You cannot include admin-privileges and role names or object privileges in the same
GRANT statement. Attempting to do so results in an SQLCODE -1 error.

The following example grants Deborah table-level SELECT and UPDATE privileges, and column-level INSERT privileges:

GRANT SELECT,UPDATE,INSERT(Name,FavoriteColors) ON Sample.Person TO Deborah

The following example grants Deborah column-level SELECT, INSERT, and UPDATE privileges:

GRANT SELECT(Name,FavoriteColors),INSERT(Name,FavoriteColors),UPDATE(FavoriteColors) ON Sample.Person
 TO Deborah

The WITH GRANT OPTION Clause

The owner of an object automatically holds all privileges on that object. The GRANT statement’s TO clause specifies the
users or roles to whom to access is being granted. After using the TO option to specify the grantee, you may optionally
specify the WITH GRANT OPTION keyword clause to allow the grantee(s) to also be able to grant the same privileges to
other users. You can use the WITH GRANT OPTION keyword clause with object privileges or column privileges. The
REVOKE command with CASCADE can be used to undo this cascading series of granted privileges.

For instance, you can give the user Chris %ALTER, SELECT, and INSERT privileges on the EMPLOYEES table with
the following command:

GRANT %ALTER, SELECT, INSERT
 ON EMPLOYEES
 TO Chris

InterSystems SQL Reference 177

GRANT

To also give Chris the ability to give these privileges to other users, the GRANT command includes the WITH GRANT
OPTION clause:

GRANT %ALTER, SELECT, INSERT
 ON EMPLOYEES
 TO Chris WITH GRANT OPTION

You can find out the results of a GRANT statement using the %SQLCatalogPriv.SQLUsers() method call.

Granting privileges to a schema WITH GRANT OPTION allow the grantee(s) to be able to grant the same schema privileges
to other users. However, it does not allow the grantee to grant a privilege on a specified object within that schema, unless
the user has been explicitly granted the privilege on that particular object WITH GRANT OPTION. This is shown in the
following example:

• UserA and UserB start with no privileges.

• You grant UserA SELECT privilege on schema Sample WITH GRANT OPTION.

• UserA can grant SELECT privilege on schema Sample to UserB.

• UserA cannot grant SELECT privilege on table Sample.Person to UserB.

The WITH ADMIN OPTION Clause

The WITH ADMIN OPTION clause grants the grantee the right to grant the same privileges it received to others. To grant
a system privilege, you must have been granted the system privilege WITH ADMIN OPTION.

You may grant a role if either the role has been granted to you WITH ADMIN OPTION, or if you have the
%Admin_Secure:"U" resource.

A grant WITH ADMIN OPTION supersedes a previous grant of the same privilege(s) without this option. Thus, if you
grant a user a privilege without WITH ADMIN OPTION, and then grant the same privilege to the user WITH ADMIN
OPTION, the user has the WITH ADMIN OPTION rights. However, a grant without the WITH ADMIN OPTION does
not supersede a previous grant of the same privilege(s) with this option. To remove WITH ADMIN OPTION rights from
a privilege, you must revoke the privilege and then re-grant the privilege without this clause.

Exporting Privileges

You can export privileges using the $SYSTEM.SQL.Export() method. When you specify a table in this method, InterSystems
IRIS exports both all table-level privileges and all column-level privileges granted for that table. For further details, refer
to the InterSystems Class Reference.

InterSystems IRIS Security

Before using GRANT in embedded SQL, it is necessary to be logged in as a user with appropriate privileges. Failing to
do so results in an SQLCODE -99 error (Privilege Violation). Use the $SYSTEM.Security.Login() method to assign a
user with appropriate privileges:

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql()

You must have the %Service_Login:Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, refer to %SYSTEM.Security in the InterSystems Class Reference.

Enforcement of Privileges

SQL privileges are only enforced through ODBC, JDBC, and Dynamic SQL (%SQL.Statement).

The enforcement of privileges depends upon the setting of the $SYSTEM.SQL.SetSQLSecurity() method call. To determine
the current setting, call $SYSTEM.SQL.CurrentSettings(), which displays a SQL Security ON: setting.

178 InterSystems SQL Reference

SQL Commands

The default is “Yes” (1). When “Yes” , a user can only perform actions on tables and views for which that user has been
granted privilege. This is the recommended setting for this option.

If this option is set to “No” (0), SQL Security is disabled for any new process started after changing this setting. This
means privilege-based table/view security is suppressed. You can create a table without specifying a user. In this case, the
Management Portal assigns “_SYSTEM” as user, and embedded SQL assigns "" (the empty string) as user. Any user can
perform actions on a table or view even if that user has no privileges to do so.

Examples
The following example creates a user, creates a role, and then assigns the role to the user. If the user or role already exists,
it issues SQLCODE -118 error. If the assignment of the privilege or the role has already been done, no error is issued
(SQLCODE = 0).

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
CreateUser
 SET x=$SYSTEM.SQL.UserExists("MarthaTest")
 IF x=0 {&sql(CREATE USER MarthaTest IDENTIFY BY birdpw)
 IF SQLCODE '= 0 {WRITE "CREATE USER error: ",SQLCODE,!
 QUIT}
 }
 ELSE {WRITE "User MarthaTest exists, not changing its roles",!
 QUIT }
CreateRoleAndGrant
 &sql(CREATE ROLE workerbee)
 WRITE !,"CREATE ROLE error code: ",SQLCODE
 &sql(GRANT %CREATE_TABLE TO workerbee)
 WRITE !,"GRANT privilege error code: ",SQLCODE
 &sql(GRANT workerbee TO MarthaTest)
 WRITE !,"GRANT role error code: ",SQLCODE

The following example shows the assignment of multiple privileges. It creates a user and creates two roles. A single GRANT
statement assigns these roles and a list of admin-privileges to the user. If the user or a role already exists, it issues SQLCODE
-118 error. If the assignment of a privilege or a role has already been done, no error is issued (SQLCODE = 0).

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
CreateUser
 SET x=$SYSTEM.SQL.UserExists("NoahTest")
 IF x=0 {&sql(CREATE USER NoahTest IDENTIFY BY birdpw)
 IF SQLCODE '= 0 {WRITE "CREATE USER error: ",SQLCODE,!
 QUIT}
 }
 ELSE {WRITE "User NoahTest exists, not changing its roles",!
 QUIT }
Create2RolesAndGrant
 &sql(CREATE ROLE workerbee)
 WRITE !,"CREATE ROLE 1 error code: ",SQLCODE
 &sql(CREATE ROLE drone)
 WRITE !,"CREATE ROLE 2 error code: ",SQLCODE
 &sql(GRANT workerbee,drone,%CREATE_TABLE,%DROP_TABLE TO NoahTest)
 WRITE !,"GRANT roles & privileges error code: ",SQLCODE

The following example grants all seven basic privileges ON all tables in the current namespace TO all currently defined
users who do not have the %All role:

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql(GRANT * ON * TO *)

See Also
• %CHECKPRIV REVOKE

• SELECT INSERT DELETE UPDATE

• CREATE USER CREATE ROLE

• “Users, Roles, and Privileges” chapter of Using InterSystems SQL

• CREATE FUNCTION CREATE METHOD CREATE PROCEDURE CREATE QUERY

InterSystems SQL Reference 179

GRANT

• CREATE TABLE CREATE VIEW CREATE TRIGGER

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

• ObjectScript: $ROLES and $USERNAME special variables

180 InterSystems SQL Reference

SQL Commands

GROUP BY
A SELECT clause that groups the resulting rows of a query according to one or more columns.

SELECT ...
GROUP BY field {,field2}

Arguments

One or more fields from which data is being retrieved. Either
a single field name or a comma-separated list of field names.

field

Description
GROUP BY is a clause of the SELECT statement. The optional GROUP BY clause appears after the FROM clause and
the optional WHERE clause, and before the optional HAVING and ORDER BY clauses.

The GROUP BY clause takes the resulting rows of a query and breaks them up into individual groups according to one or
more database columns. When you use SELECT in conjunction with GROUP BY, one row is retrieved for each distinct
value of the GROUP BY fields. GROUP BY treats fields with NULL (no specified value) as a separate distinct value
group.

The GROUP BY clause is conceptually similar to the InterSystems IRIS extension %FOREACH, but GROUP BY operates
on an entire query, while %FOREACH allows selection of aggregates on sub-populations without restricting the entire
query population.

Specifying a Field

The simplest form of a GROUP BY clause specifies a single field, such as GROUP BY City. This selects one arbitrary
row for each unique City value. You can also specify a comma-separated list of fields, the combined value of which is
treated as a single grouping term. It selects one arbitrary row for each unique combination of City and Age values. Therefore,
GROUP BY City,Age returns the same results as GROUP BY Age,City.

The field(s) must be specified by column name. Valid field values include the following: a column name (GROUP BY
City); an %ID (which returns all rows); a scalar function specifying a column name (GROUP BY ROUND(Age,-1)); a
collation function specifying a column name (GROUP BY %EXACT(City)).

You cannot specify a field by column alias; attempting to do so generates an SQLCODE -29 error. You cannot specify a
field by column number; this is interpreted as a literal and returns one row. You cannot specify an aggregate field;
attempting to do so generates an SQLCODE -19 error. You cannot specify a subquery; this is interpreted as a literal and
returns one row.

GROUP BY StreamField operates on the OID of a stream field, not its actual data. Because all stream field OIDs are
unique values, GROUP BY has no effect on actual stream field duplicate data values. GROUP BY StreamField reduces
the number records where the stream field is NULL to one record. For further details, see Storing and Using Stream Data
(BLOBs and CLOBs).

A GROUP BY clause can use the arrow syntax (–>) operator to specify a field in a table that is not the base table. For
example: GROUP BY Company->Name. For further details, refer to Implicit Joins (Arrow Syntax) in Using InterSystems
SQL.

Specifying a literal as the field value in a GROUP BY clause returns 1 row; which row is returned is indeterminate. Thus,
specifying 7, 'Chicago', '', 0, or NULL all return 1 row. However, if you specify a literal as a field value in a comma-separated
list, the literal is ignored and GROUP BY selects one arbitrary row for each unique combination of the specified field
names.

InterSystems SQL Reference 181

GROUP BY

Aggregate Functions with GROUP BY and DISTINCT BY

The GROUP BY clause is applied before aggregate functions are calculated. In the following example, the COUNT
aggregate function counts the number of rows in each GROUP BY group:

SELECT Home_State,COUNT(Home_State)
FROM Sample.Person
GROUP BY Home_State

The DISTINCT BY clause is applied after aggregate functions are calculated. In the following example, the COUNT
aggregate function counts the number of rows in the entire table:

SELECT DISTINCT BY(Home_State) Home_State,COUNT(Home_State)
FROM Sample.Person

In order to calculate an aggregate function for the entire table, rather than a GROUP BY group, you can specify a select-item
subquery:

SELECT Home_State,(SELECT COUNT(Home_State) FROM Sample.Person)
FROM Sample.Person
GROUP BY Home_State

A GROUP BY clause should not be used with a DISTINCT clause when the select list consists of an aggregate field. For
example, the following query is intended to return the distinct numbers of people who share the same Home_State:

/* This query DOES NOT apply the DISTINCT keyword */
/* It is provided as a cautionary example */
SELECT DISTINCT COUNT(*) AS mynum
FROM Sample.Person
GROUP BY Home_State
ORDER BY mynum

This query did not return the expected results because it did not apply the DISTINCT keyword. To apply both a DISTINCT
aggregate and a GROUP BY clause, use a subquery as shown in the following example:

SELECT DISTINCT *
FROM (SELECT COUNT(*) AS mynum
 FROM Sample.Person
 GROUP BY Home_State) AS Sub
ORDER BY Sub.mynum

This example successfully returns the distinct numbers of people who share the same Home_State. For instance, if any
Home_State is shared by 8 people, the query returns an 8.

If an aggregate function does not apply to any data in the table, it returns %ROWCOUNT=1 with a NULL (or 0) value for
the aggregate. For example:

SELECT AVG(Age) FROM Sample.Person WHERE Name %STARTSWITH 'ZZZZ'

However, if this type of query contains a GROUP BY clause, it returns %ROWCOUNT=0.

SELECT AVG(Age) FROM Sample.Person WHERE Name %STARTSWITH 'ZZZZ' GROUP BY Home_State

Collation, Letter Case, and Optimization

This section describes how GROUP BY handles data values that differ only in letter case.

• Group Lettercase Variants Together (return uppercase):

By default, GROUP BY groups together string values based on the collation specified for the field when it was created.
InterSystems IRIS has a default string collation, which can be set for each namespace; the initial string collation default
for all namespaces is SQLUPPER. Therefore, commonly, GROUP BY collation is not case-sensitive unless otherwise
specified.

GROUP BY groups together the values of a field with SQLUPPER collation based on their uppercase letter collation.
Field values that differ only in letter case are grouped together. Grouped field values are returned in all uppercase letters.

182 InterSystems SQL Reference

SQL Commands

This has the performance advantage of allowing GROUP BY to use the index for the field, rather than accessing the
actual field values. It is therefore only meaningful if an index exists for one or more of the selected fields. It has the
consequence that the GROUP BY field value is returned in all uppercase letters, even if none of the actual data values
are in all uppercase letters.

• Group Lettercase Variants Together (return actual lettercase):

GROUP BY can group together values that differ in lettercase and return grouped field values with an actual field
lettercase value (randomly selecting). This has the advantage that the returned value is an actual value, showing the
lettercase of at least one value in the data. It has the performance disadvantage of not being able to use the field’s index.
You can specify this for an individual query by applying the %EXACT collation function to the select-item field.

• Do Not Group Lettercase Variants Together (return actual lettercase):

GROUP BY can perform case-sensitive grouping of values by applying the %EXACT collation function to the GROUP
BY field. This has the advantage of returning every lettercase variant as a separate group. It has the performance dis-
advantage of not being able to use the field’s index.

You can configure this behavior system-wide for all queries that contain a GROUP BY clause by using the Management
Portal. Select System Administration, Configuration, SQL and Object Settings, SQL. View and edit the GROUP BY and DISTINCT

queries must produce original values check box. By default, this check box is not selected. This default groups alphabetic
values by their uppercase letter collation. (This optimization also works for the DISTINCT clause.) For further details,
refer to SQL and Object Settings described in Configuration Parameter FileReference.

You can also set this system-wide option to 1 or 0 with the $SYSTEM.SQL.SetFastDistinct() method:

 WRITE $SYSTEM.SQL.SetFastDistinct(1)

This optimization takes advantage of indices for the selected field(s). It is therefore only meaningful if an index exists for
one or more of the selected fields. It collates field values as they are stored in the index; alphabetic strings are returned in
all uppercase letters. You can set this system-wide option, then override it for specific queries by using the %EXACT col-
lation function to preserve letter case.

The following examples show these behaviors. These examples assume that Sample.Person contains records with a
Home_City field with SQLUPPER collation and values of ‘New York’ and ‘new york’:

SELECT Home_City FROM Sample.Person GROUP BY Home_City
/* groups together Home_City values by their uppercase letter values
 returns the name of each grouped city in uppercase letters.
 Thus, 'NEW YORK' is returned. */

SELECT %EXACT(Home_City) FROM Sample.Person GROUP BY Home_City
/* groups together Home_City values by their uppercase letter values
 returns the name of a grouped city in original letter case.
 Thus, 'New York' or 'new york' may be returned, but not both. */

SELECT Home_City FROM Sample.Person GROUP BY %EXACT(Home_City)
/* groups together Home_City values by their original letter case
 returns the name of each grouped city in original letter case.
 Thus, both 'New York' and 'new york' are returned as separate groups. */

%ROWID

Specifying a GROUP BY clause causes a cursor-based Embedded SQL query to not set the %ROWID variable. %ROWID
is not set even when GROUP BY does not limit the rows returned. This is shown in the following example:

InterSystems SQL Reference 183

GROUP BY

 SET %ROWID=999
 &sql(DECLARE EmpCursor CURSOR FOR
 SELECT Name, Home_State
 INTO :name,:state FROM Sample.Person
 WHERE Home_State %STARTSWITH 'M'
 GROUP BY Home_State)
 &sql(OPEN EmpCursor)
 QUIT:(SQLCODE'=0)
 FOR { &sql(FETCH EmpCursor)
 QUIT:SQLCODE
 WRITE !,"RowID: ",%ROWID," row count: ",%ROWCOUNT
 WRITE " Name=",name," State=",state
 }
 &sql(CLOSE EmpCursor)

This change of query behavior only applies to cursor-based Embedded SQL SELECT queries. Dynamic SQL SELECT
queries and non-cursor Embedded SQL SELECT queries never set %ROWID.

Transaction Committed Changes

A query containing a GROUP BY clause does not support READ COMMITTED isolation level. In a transaction defined
as READ COMMITTED, a SELECT statement without a GROUP BY clause returns only data modifications that have
been committed; in other words, it returns the state of the data before the current transaction. A SELECT statement with
a GROUP BY clause returns all data modifications made, whether or not they have been committed.

Example
The following example groups names by their initial letter. It returns the initial letter, the count of names sharing that initial
letter, and an example of a one of the name values. Names are grouped using their SQLUPPER collation, regardless of the
letter case of the actual values. Note that the Name select-item contains the uppercase initial letter; %EXACT collation is
used to display an actual name value:

SELECT Name AS Initial,COUNT(Name) AS SameInitial,%EXACT(Name) AS Example
FROM Sample.Person GROUP BY %SQLUPPER(Name,2)

See Also
• SELECT

• DISTINCT clause

• JOIN

184 InterSystems SQL Reference

SQL Commands

HAVING
A SELECT clause that specifies one or more restrictive conditions.

SELECT field
FROM table
GROUP BY field
HAVING condition-expression

SELECT aggregatefunc(field %AFTERHAVING)
FROM table
[GROUP BY field]
HAVING condition-expression

Arguments

An expression consisting of one or more boolean predicates
governing which data values are to be retrieved.

condition-expression

Description
The optional HAVING clause appears after the FROM clause and the optional WHERE and GROUP BY clauses, and
before the optional ORDER BY clause.

The HAVING clause of a SELECT statement qualifies or disqualifies specific rows from the query selection. The rows
that qualify are those for which the condition-expression is true. The condition-expression is a series of logical tests
(predicates) which can be linked by the AND and OR logical operators. For further details, see the WHERE clause.

The HAVING clause is like a WHERE clause that can operate on groups, rather than on the full data set. Thus, in most
cases, the HAVING clause is used either with an aggregate function using the %AFTERHAVING keyword, or in combi-
nation with a GROUP BY clause, or both.

A HAVING clause condition-expression can also specify an aggregate function. A WHERE clause condition-expression
cannot specify an aggregate function. This is shown in the following example:

SELECT Name,Age,AVG(Age) AS AvgAge
FROM Sample.Person
HAVING Age > AVG(Age)
ORDER BY Age

A HAVING clause often serves to compare aggregates of sub-populations against aggregates for an entire population.

Specifying a Field

A field specified in a HAVING clause condition-expression or an %AFTERHAVING keyword expression must be specified
as a field name or an aggregate function. You cannot specify a field or aggregate function by column number. You cannot
specify a field or aggregate function by column alias; attempting to do so generates an SQLCODE -29 error. However, you
can use a subquery to define a column alias, then use this alias in the HAVING clause. For example:

SELECT Y AS TeenYear,AVG(Y %AFTERHAVING) AS AvgTeenAge FROM
 (SELECT Age AS Y FROM Sample.Person WHERE Age<20)
HAVING Y > 12 ORDER BY Y

Aggregate Functions in the select-item List

The HAVING clause selects which rows to return. By default, this row selection does not determine the value of aggregate
functions in the select-item list. This is because the HAVING clause is parsed after aggregate functions in the select-item
list.

InterSystems SQL Reference 185

HAVING

In the following example, only those rows with Age > 65 are returned. But the AVG(Age) is calculated based on all rows,
not just those selected by the HAVING clause:

SELECT Name,Age,AVG(Age) AS AvgAge FROM Sample.Person
HAVING Age > 65
 ORDER BY Age

Compare this to a WHERE clause, which selects both which rows to return and which row values to include in aggregate
functions in the select-item list:

SELECT Name,Age,AVG(Age) AS AvgAge FROM Sample.Person
WHERE Age > 65
ORDER BY Age

A HAVING clause can be used in a query that only returns aggregate values:

• Aggregate Threshold: The HAVING clause uses an aggregate threshold to determine whether to return 1 row (containing
the query aggregate values) or 0 rows. Thus you can use a HAVING clause to only return an aggregate calculation
when an aggregate threshold is achieved. The following example only returns an average of the Age values for all rows
in the table when there are at least 100 rows in the table. If there are less than 100 rows, the average of the Age values
for all rows might not be deemed meaningful, and therefore should not be returned:

SELECT AVG(Age) FROM Sample.Person HAVING COUNT(*)>99

• Multiple Rows: A HAVING clause with an aggregate function and no GROUP BY clause returns the number of rows
that fulfill the HAVING clause condition. The aggregate function value is calculated based on all of the rows in the
table:

SELECT AVG(Age) FROM Sample.Person HAVING %ID<10

This is in contrast to a WHERE clause with an aggregate function, which returns one row. The aggregate function
value is calculated based on rows that fulfill the WHERE clause condition:

SELECT AVG(Age) FROM Sample.Person WHERE %ID<10

%AFTERHAVING

The %AFTERHAVING keyword can be used with an aggregate function in the select-item list to specify that the aggregate
operation is to be performed after the HAVING clause condition is applied.

SELECT Name,Age,AVG(Age) AS AvgAge,
 AVG(Age %AFTERHAVING) AS AvgMiddleAge
 FROM Sample.Person
 HAVING Age > 40 AND Age < 65
 ORDER BY Age

The %AFTERHAVING keyword only gives meaningful results if both of the following considerations are met:

• The select-item list must contain at least one item that is a non-aggregate field reference. This field reference may be
to any field in any table specified in the FROM clause, a field referenced using an implicit join (arrow syntax), the
%ID alias, or an asterisk (*).

• The HAVING clause condition must apply at least one non-aggregate condition. Therefore, HAVING Age>50, HAVING
Age>AVG(Age), or HAVING Age>50 AND MAX(Age)>75 are valid conditions, but HAVING Age>50 OR
MAX(Age)>75 is not a valid condition.

The following example uses a HAVING clause with a GROUP BY clause to return the state average age, and the state
average age for people that are older than the average age for all rows in the table. It also uses a subquery to return the
average age for all rows in the table:

186 InterSystems SQL Reference

SQL Commands

SELECT Home_State,(SELECT AVG(Age) FROM Sample.Person) AS AvgAgeAllRecs,
 AVG(Age) AS AvgAgeByState,AVG(Age %AFTERHAVING) AS AvgOlderByState
FROM Sample.Person
GROUP BY Home_State
HAVING Age > AVG(Age)
ORDER BY Home_State

Logical Predicates
The SQL predicates fall into the following categories:

• Equality Comparison Predicates

• BETWEEN Predicate

• IN and %INLIST Predicates

• %STARTSWITH Predicate

• Contains Operator ([)

• FOR SOME Predicate

• NULL Predicate

• EXISTS Predicate

• LIKE, %MATCHES, and %PATTERN Predicates

• %INSET and %FIND Predicates

Note: You cannot use the FOR SOME %ELEMENT collection predicate in a HAVING clause. This predicate can
only be used in a WHERE clause.

Predicate Case-Sensitivity

A predicate uses the collation type defined for the field. By default, string data type fields are defined with SQLUPPER
collation, which is not case-sensitive. The “Collation” chapter of Using InterSystems SQL provides details on defining the
string collation default for the current namespace and specifying a non-default field collation type when defining a
field/property.

The %INLIST, Contains operator ([), %MATCHES, and %PATTERN predicates do not use the field’s default collation.
They always uses EXACT collation, which is case-sensitive.

A predicate comparison of two literal strings is always case-sensitive.

Predicate Conditions and %NOINDEX

You can preface a predicate condition with the %NOINDEX keyword to prevent the query optimizer using an index on
that condition. This is most useful when specifying a range condition that is satisfied by the vast majority of the rows. For
example, HAVING %NOINDEX Age >= 1. For further details, refer to Index Optimization Options in the SQL Optimization
Guide.

Equality Comparison Predicates

The following are the available comparison predicates:

InterSystems SQL Reference 187

HAVING

Table B–1: SQL Equality Comparison Predicates

OperationPredicate

Equals=

Does not equal<>

Does not equal!=

Is greater than>

Is less than<

Is greater than or equal to>=

Is less than or equal to<=

The following example uses a comparison predicate. It returns one record for each Age less than 21:

SELECT Name, Age FROM Sample.Person
GROUP BY Age
HAVING Age < 21
ORDER BY Age

Note that SQL defines comparison operations in terms of collation: the order in which values are sorted. Two values are
equal if they collate in exactly the same way. A value is greater than another value if it collates after the second value.
String data type field collation is based on the field’s default collation. By default, it is not case-sensitive. Thus, a compar-
ison of two string field values or a comparison of a string field value with a string literal is (by default) not case-sensitive.
For example, if Home_State field values are uppercase two-letter strings:

ValueExpression

TRUE for values MA.'MA' = Home_State

TRUE for values MA.'ma' = Home_State

TRUE for values VT, WA, WI, WV, WY.'VA' < Home_State

TRUE for values AK, AL, AR.'ar' >= Home_State

Note, however, that a comparison of two literal strings is case-sensitive: WHERE 'ma'='MA' is always FALSE.

BETWEEN Predicate

This is equivalent to a paired greater than or equal to and less than or equal to. The following example uses a BETWEEN
predicate. It returns one record for each Age between 18 and 35, inclusive of 18 and 35:

SELECT Name, Age FROM Sample.Person
GROUP BY Age
HAVING Age BETWEEN 18 AND 35
ORDER BY Age

For further details, refer to the BETWEEN reference page in this manual.

IN and %INLIST Predicates

The IN predicate is used for matching a value to an unstructured series of items.

The %INLIST predicate is an InterSystems IRIS extension for matching a value to the elements of a list structure.

With either predicate you can perform equality comparisons and subquery comparisons.

188 InterSystems SQL Reference

SQL Commands

IN has two formats. The first serves as shorthand for the use of multiple equality comparisons linked together with the OR
operator. For instance:

SELECT Name, Home_State FROM Sample.Person
GROUP BY Home_State
HAVING Home_State IN ('ME','NH','VT','MA','RI','CT')

evaluates true if Home_State equals any of the values inside the parenthetical list. The list elements can be constants or
expressions. Collation applies to the IN comparison as it applies to an equality test. By default, IN comparisons use the
collation type of the field definition; by default string fields are defined as SQLUPPER, which is not case-sensitive.

When dates or times are used for IN predicate equality comparisons, the appropriate data type conversions are automatically
performed. If the HAVING clause field is type TimeStamp, values of type Date or Time are converted to Timestamp. If
the HAVING clause field is type Date, values of type TimeStamp or String are converted to Date. If the HAVING clause
field is type Time, values of type TimeStamp or String are converted to Time.

The following examples both perform the same equality comparisons and return the same data. The GROUP BY field
specifies to return only one record for each successful equality comparison. The DOB field is of data type Date:

SELECT Name,DOB FROM Sample.Person
GROUP BY DOB
HAVING DOB IN ({d '1951-02-02'},{d '1987-02-28'})

SELECT Name,DOB FROM Sample.Person
GROUP BY DOB
HAVING DOB IN ({ts '1951-02-02 02:37:00'},{ts '1987-02-28 16:58:10'})

For further details refer to Date and Time Constructs.

The %INLIST predicate can be used to perform an equality comparison on the elements of a list structure. %INLIST
uses EXACT collation. Therefore, by default, %INLIST string comparisons are case-sensitive. For further details on list
structures, see the SQL $LIST function.

The following example uses %INLIST to match a string value to the elements of the FavoriteColors list field:

SELECT Name,FavoriteColors FROM Sample.Person
HAVING 'Red' %INLIST FavoriteColors

It returns all records where FavoriteColors includes the element “Red”.

The following embedded SQL example matches Home_State column values to the elements of the northne (northern New
England states) list:

 SET northne=$LISTBUILD("VT","NH","ME")
 &sql(DECLARE StateCursor CURSOR FOR
 SELECT Name,Home_State
 INTO :name,:state FROM Sample.Person
 HAVING Home_State %INLIST :northne)
 &sql(OPEN StateCursor)
 QUIT:(SQLCODE'=0)
 NEW %ROWCOUNT,%ROWID
 FOR { &sql(FETCH StateCursor)
 QUIT:SQLCODE
 WRITE !,"#",%ROWCOUNT," Name=",name," State=",state,!
 }
 WRITE !,"Final Fetch SQLCODE: ",SQLCODE
 &sql(CLOSE StateCursor)

You can also use IN or %INLIST with a subquery to test whether a column value (or any other expression) equals any of
the subquery row values. For example:

SELECT Name,Home_State FROM Sample.Person
HAVING Name IN
 (SELECT Name FROM Sample.Employee
 HAVING Salary < 50000)

Note that the subquery must have exactly one item in the SELECT list.

For further details, refer to the IN and %INLIST reference pages in this manual.

InterSystems SQL Reference 189

HAVING

%STARTSWITH Predicate

The InterSystems IRIS %STARTSWITH comparison operator permits you to perform partial matching on the initial
characters of a string or numeric. The following example uses %STARTSWITH. It selects by age, then returns a record
for each Name that begins with “S”:

SELECT Name,Age FROM Sample.Person
WHERE Age > 30
HAVING Name %STARTSWITH 'S'
ORDER BY Name

Like other string field comparisons, %STARTSWITH comparisons are not case-sensitive. For further details, refer to the
%STARTSWITH reference page in this manual.

Contains Operator ([)

The Contains operator is the open bracket symbol: [. It permits you to match a substring (string or numeric) to any part of
a field value. The comparison is always case-sensitive. The following example uses the Contains operator in a HAVING
clause to select those records in which the Home_State value contains a “K”, and then do an %AFTERHAVING count on
those states:

SELECT Home_State,COUNT(Home_State) AS States,
 COUNT(Home_State %AFTERHAVING) AS KStates
 FROM Sample.Person
 HAVING Home_State ['K'

FOR SOME Predicate

The FOR SOME predicate of the HAVING clause determines whether or not to return a result set based on a condition test
of one or more field values. This predicate has the following syntax:

FOR SOME (table[AS t-alias]) (fieldcondition)

FOR SOME specifies that fieldcondition must evaluate to true; at least one of the field values must match the specified
condition. table can be a single table or a comma-separated list of tables, and can optionally take a table alias. fieldcondition
specifies one or more conditions for one or more fields within the specified table. Both the table argument and the
fieldcondition argument must be delimited by parentheses.

The following example shows the use of the FOR SOME predicate:

SELECT Name,Age
FROM Sample.Person
HAVING FOR SOME (Sample.Person)(Age>20)
ORDER BY Age

In the above example, if at least one field contains an Age value greater than 20, all of the records are returned. Otherwise,
no records are returned.

For further details, refer to the FOR SOME reference page in this manual.

NULL Predicate

This detects undefined values. You can detect all null values, or all non-null values:

SELECT Name, FavoriteColors FROM Sample.Person
HAVING FavoriteColors IS NULL

SELECT Name, FavoriteColors FROM Sample.Person
HAVING FavoriteColors IS NOT NULL
ORDER BY FavoriteColors

Using the GROUP BY clause, you can return one record for each non-null value for a specified field:

190 InterSystems SQL Reference

SQL Commands

SELECT Name, FavoriteColors FROM Sample.Person
GROUP BY FavoriteColors
HAVING FavoriteColors IS NOT NULL
ORDER BY FavoriteColors

For further details, refer to the NULL reference page in this manual.

EXISTS Predicate

This operates with subqueries to test whether a subquery evaluates to the empty set.

SELECT t1.disease FROM illness_tab t1 WHERE EXISTS
 (SELECT t2.disease FROM disease_registry t2
 WHERE t1.disease = t2.disease
 HAVING COUNT(t2.disease) > 100)

For further details, refer to the EXISTS reference page in this manual.

LIKE, %MATCHES, and %PATTERN Predicates

These three predicates allow you to perform pattern matching.

• LIKE allows you to pattern match using literals and wildcards. Use LIKE when you wish to return data values that
contain a known substring of literal characters, or contain several known substrings in a known sequence. LIKE uses
the collation of its target for letter case comparisons.

• %MATCHES allows you to pattern match using literals, wildcards, and lists and ranges. Use %MATCHES when you
wish to return data values that contain a known substring of literal characters, or contain one or more literal characters
that fall within a list or range of possible characters, or contain several such substrings in a known sequence.
%MATCHES uses EXACT collation for letter case comparisons.

• %PATTERN allows you to specify a pattern of character types. For example, '1U4L1",".A' (1 uppercase letter, 4
lowercase letters, one literal comma, followed by any number of letter characters of either case). Use %PATTERN
when you wish to return data values that contain a known sequence of character types. %PATTERN is especially
useful when the data value is unimportant, but the character type format of those values is significant. %PATTERN
can also specify known literal characters. It uses EXACT collation for literal comparisons, which are always case-
sensitive.

To perform a comparison with the first characters of a string, use the %STARTSWITH predicate.

Examples
The following example returns a row for each state that has at least one person under the age of 21. For each row it returns
the average, minimum, and maximum ages of all people in the state.

SELECT Home_State, MIN(Age) AS Youngest,
 AVG(Age) AS AvgAge, MAX(Age) AS Oldest
 FROM Sample.Person
 GROUP BY Home_State
 HAVING Age < 21
 ORDER BY Youngest

The following example returns a row for each state that has at least one person under the age of 21. For each row it returns
the average, minimum, and maximum ages of all people in the state. Using the %AFTERHAVING keyword, it also returns
the average age of those people in the state under the age of 21 (AvgYouth), and the age of the oldest person in the state
under the age of 21 (OldestYouth).

SELECT Home_State,AVG(Age) AS AvgAge,
 AVG(Age %AFTERHAVING) AS AvgYouth,
 MIN(Age) AS Youngest, MAX(Age) AS Oldest,
 MAX(Age %AFTERHAVING) AS OldestYouth
 FROM Sample.Person
 GROUP BY Home_State
 HAVING Age < 21
 ORDER BY AvgAge

InterSystems SQL Reference 191

HAVING

For further examples of %AFTERHAVING, refer to the individual aggregate functions.

See Also
• SELECT statement

• WHERE clause

• GROUP BY clause

• Overview of Predicates

• “Querying the Database” chapter in Using InterSystems SQL

192 InterSystems SQL Reference

SQL Commands

INSERT
Adds a new row (or rows) to a table.

INSERT [%keyword] [INTO] table
 SET column1 = scalar-expression1
 {,column2 = scalar-expression2} ... |
 [(column1{,column2} ...)]
 VALUES (scalar-expression1 {,scalar-expression2} ...) |
 VALUES :array() |
 [(column1{,column2} ...)] query |
 DEFAULT VALUES

Arguments

Optional — One or more of the following keyword options, separated by spaces:
%NOCHECK, %NOFPLAN, %NOINDEX, %NOLOCK, %NOTRIGGER, %PROFILE,
%PROFILE_ALL.

%keyword

The name of the table or view on which to perform the insert operation.This argument
may be a subquery. The INTO keyword is optional. A table name (or view name) can
be qualified (schema.table), or unqualified (table). An unqualified name is matched
to its schema using either a schema search path (if provided) or the default schema
name.

table

Optional — A column name or comma-separated list of column names that correspond
in sequence to the supplied list of values. If omitted, the list of values is applied to all
columns in column-number order.

column

A scalar expression or comma-separated list of scalar expressions that supplies the
data values for the corresponding column fields.

scalar-expression

Embedded SQL only — A dynamic local array of values specified as a host variable.
The lowest subscript level of the array must be unspecified. Thus :myupdates(),
:myupdates(5,), and :myupdates(1,1,) are all valid specifications.

:array()

A SELECT query the result set of which supplies the data values for the corresponding
column fields for one or multiple new rows.

query

Description
The INSERT statement can be used in two ways:

• A single-row INSERT adds one new row to a table. It inserts data values for all specified columns (fields) and defaults
unspecified column values to either NULL or the defined default value. It sets the %ROWCOUNT variable to the
number of affected rows (always either 1 or 0).

• An INSERT with a SELECT adds multiple new rows to a table. It inserts data values for all specified columns (fields)
for each row from the query result set and defaults unspecified column values to either NULL or the defined default
value. This use of an INSERT statement combined with a SELECT query is commonly used to populate a table with
existing data extracted from other tables, as described in the “INSERT Query Results” section below.

This reference page is structured as follows:

• %Keywords Argument

• Table Argument

InterSystems SQL Reference 193

INSERT

• Column and Values Arguments, including single-row INSERT value assignment syntax options and the handling of
special fields, data types, special values, and default values.

• Insert Query Results, using INSERT with a SELECT to insert multiple rows.

• SQLCODE Errors

• Operational Considerations, including privileges and security, atomicity and transaction locking, referential integrity,
and Fast Insert via JDBC.

• Program Examples

INSERT OR UPDATE

The INSERT OR UPDATE statement is a variant of the INSERT statement that performs both insert and update operations.
First it attempts to perform an insert operation. If the insert request fails due to a UNIQUE KEY violation (for the field(s)
of some unique key, there exists a row that already has the same value(s) as the row specified for the insert), then it auto-
matically turns into an update request for that row, and INSERT OR UPDATE uses the specified field values to update
the existing row.

INSERT OR UPDATE does not support Fast Insert.

%Keyword Options
To use a %keyword option argument, you must have the corresponding admin-privilege for the current namespace. Refer
to GRANT for further details.

Specifying %keyword argument(s) restricts processing as follows:

• %NOCHECK — foreign key referential integrity checking is not performed. Column data validation for data type,
maximum length, data constraints, and other validation criteria is also not performed. The WITH CHECK OPTION
validation for a view is not performed when performing an INSERT through a view.

Note: Because use of %NOCHECK can result in invalid data, this %keyword argument should only be used when
performing bulk inserts or updates from a reliable data source.

• %NOFPLAN — the frozen plan (if any) is ignored for this operation; the operation generates a new query plan. The
frozen plan is retained, but not used. For further details, refer to Frozen Plans in SQL Optimization Guide.

• %NOINDEX — the index maps are not set during INSERT processing.

• %NOLOCK — the row is not locked upon INSERT. This should only be used when a single user/process is updating
the database.

• %NOTRIGGER — the base table insert triggers are not pulled during INSERT processing.

• %PROFILE or %PROFILE_ALL — if one of these keyword directives is specified, SQLStats collecting code is gen-
erated. This is the same code that would be generated with PTools turned ON. The difference is that SQLStats collecting
code is only generated for this specific statement. All other SQL statements within the routine/class being compiled
will generate code as if PTools is turned OFF. This enables the user to profile/inspect specific problem SQL statements
within an application without collecting irrelevant statistics for SQL statements that are not being investigated. For
further details, refer to SQL Runtime Statistics in the InterSystems SQL Optimization Guide.

%PROFILE collects SQLStats for the main query module. %PROFILE_ALL collects SQLStats for the main query
module and all of its subquery modules.

You can specify multiple %keyword arguments in any order. Multiple arguments are separated by spaces.

194 InterSystems SQL Reference

SQL Commands

Table Argument
You can specify the table argument to insert into a table directly, insert through a view, or insert via a subquery. Inserting
through a view is subject to requirements and restrictions, as described in CREATE VIEW. The following is an example
of an INSERT using a subquery in place of the table argument:

INSERT INTO (SELECT field1 AS ff1 FROM MyTable) (ff1) VALUES ('test')

The subquery target must be updateable, following the same criteria used to determine if a view's query is updateable.
Attempting to INSERT using a view or a subquery that is not updateable generates an SQLCODE -35 error.

You cannot specify a table-valued function or JOIN syntax in the table argument.

For required table privileges, refer to Privileges. For error codes, refer to SQLCODE Errors.

Value Assignment
This section describes how data values are assigned to columns (fields) during an INSERT operation:

• Value Assignment Syntax describing the various syntax options for specifying data values as literals to columns (fields).

• Display to Logical Data Conversion

• %SerialObject Properties

• Non-Display Characters

• Special Variables

• Stream Data

• List Structured Data

• IDENTITY, ROWVERSION, and SERIAL Counters

• Computed Field Values

• DEFAULT VALUES Clause

If you omit the column list argument, the INSERT assumes all columns are to be inserted, in column number order. If you
specify a column list, the individual values must correspond positionally with the column names in the column list.

Value Assignment Syntax

When inserting a record, you can assign values to specified columns in a variety of ways. All non-specified columns must
either accept NULL by default or have a defined default value.

• Explicit column names using the SET keyword, specify one or more column = scalar-expression pairs as a comma-
separated list. For example:

SET StatusDate='05/12/06',Status='Purged'

• Explicit column names using the VALUES keyword, specify a list of columns equated to a corresponding scalar-
expressions list. For example:

(StatusDate,Status) VALUES ('05/12/06','Purged')

When assigning scalar-expression values to a column list, there must be a scalar-expression for each specified column.

• No column names. When using the VALUES keyword without a column list, specify a list of scalar-expressions that
correspond to the table’s fields in order. For example:

VALUES ('Fred Wang',65342,'22 Main St. Anytown MA','123-45-6789')

InterSystems SQL Reference 195

INSERT

Values must be specified in column number order. You must specify a value for every base table column that takes a
user-supplied value; an INSERT using column order cannot take defined field default values. An SQLCODE -62 error
is issued if you specify fewer values than the number of table columns. An SQLCODE -116 error is issued if you
specify more values than the number of table columns.

The RowID column cannot be user specified, and is therefore not included in this syntax.

By default, a table with a defined IDENTITY field or RowVersion field cannot be populated using this syntax. If one
of these fields is defined, this INSERT syntax issues an SQLCODE -62 error if you do not specify a value for these
fields, and issues an SQLCODE -138 Cannot INSERT/UPDATE a value for a read only field error if
you do specify a value for these fields. (An IDENTITY field can be configured to allow user-supplied values; see
IDENTITY field.)

A table with a defined SERIAL (%Counter) field or %AutoIncrement field can be populated using this syntax, but a
user-supplied value must be specified for these counter fields.

• No column names. When using the VALUES keyword without a column list, specify a dynamic local array of scalar-
expressions that implicitly correspond to the columns of the row in column order. For example:

VALUES :myarray()

This value assignment can only be performed from Embedded SQL using a host variable. Unlike all other value
assignments, this usage allows you to delay specifying which columns are to be inserted until runtime (by populating
the array at runtime). All other types of insert require that you specify which columns are to be inserted at compile
time. This syntax cannot be used with a linked table; attempting to do so results in an SQLCODE -155 error.

Values must be specified in column number order. You must specify a value for every base table column that takes a
user-supplied value; an INSERT using column order cannot take defined field default values. Supplied array values
must begin with array(2). Column 1 is the RowID field; you cannot specify a value for the RowID field. For further
details, see “Host Variable as a Subscripted Array” in the “Using Embedded SQL” chapter of Using InterSystems
SQL.

If you specify column names and corresponding data values, you can omit columns for which there is a defined default
value or which accept NULL. An INSERT can insert a default value for most field data types, including stream fields.

If you do not specify column names, data values must correspond positionally to the defined column list. You must specify
a value for every user-specifiable base table column; defined default values cannot be used. (You can, of course, specify
an empty string as a column value.)

To list all of the column names and column numbers defined for a specified table, refer to Column Names and Numbers
in the “Defining Tables” chapter of Using InterSystems SQL.

For required column privileges, refer to Privileges. For error codes, refer to SQLCODE Errors.

DISPLAY to LOGICAL Data Conversion

Data is stored in LOGICAL mode format. For example, a date is stored as an integer count of days. Input data that is not
in LOGICAL mode format must be converted to LOGICAL mode format. Compiled SQL supports automatic conversion
of input values from DISPLAY or ODBC format to LOGICAL format. Automatic conversion of input data requires two
factors: when compiled, the SQL must specify RUNTIME mode; when executed, the SQL must execute in a LOGICAL
mode environment.

• In Embedded SQL, if you specify #SQLCompile Select=runtime, InterSystems IRIS will compile the SQL statement
with code that converts input values from a display format to LOGICAL mode storage format. InterSystems IRIS
performs this mode conversion both for single values and for arrays of values. For further details, see #SQLCompile
Select in the “ObjectScript Macros and the Macro Preprocessor” chapter of Using ObjectScript.

196 InterSystems SQL Reference

SQL Commands

• In an SQL CREATE FUNCTION, CREATE METHOD, or CREATE PROCEDURE statement, if you specify
SELECTMODE RUNTIME, InterSystems IRIS will compile the SQL statement with code that converts input values
from a display format to LOGICAL mode storage format.

The input data may be in any format: DISPLAY format (for example, 2/22/2018), ODBC format (for example, 2018-02-
22), or LOGICAL format (for example, 64701). The data is stored in LOGICAL format if the SQL execution environment
is in LOGICAL mode. This is the default mode for all InterSystems SQL execution environments.

You can explicitly set the select mode to LOGICAL in SQL execution environments as follows:

• In an ObjectScript program or from the Terminal interface: invoke the $SYSTEM.SQL.SetSelectMode(0) method.

• In Dynamic SQL, specify %SelectMode 0.

• From the SQL Shell, specify SET SELECTMODE LOGICAL.

• From the Management Portal select System Explorer, SQL, then use the Display Mode drop-down list to specify Logical
Mode.

%SerialObject Properties

When inserting data into a %SerialObject, you must insert into the table (persistent class) that references the embedded
%SerialObject; you cannot insert into a %SerialObject directly. From the referencing table, you can either:

• Use the referencing field to insert values for multiple %SerialObject properties as a %List structure. For example, if
the persistent class has a property PAddress that references a serial object contain the properties Street, City, and
Country (in that order), you insert SET PAddress=$LISTBUILD('123 Main St.','Newtown','USA'). The
%List must contain values for the properties of the serial object (or placeholder commas) in the order that these prop-
erties are specified in the serial object.

• Use underscore syntax to insert values for individual %SerialObject properties in any order. For example, if the persistent
class has a property PAddress that references a serial object contain the properties Street, City, and Country, you insert
SET PAddress_City='Newtown',PAddress_Street='123 Main St.',PAddress_Country='USA'.
Unspecified serial object properties default to NULL.

Non-Display Characters

You can insert non-display characters using the CHAR function and the concatenation operator. For example, the following
example inserts a string consisting of the letter “A”, a line feed, and the letter “B”:

INSERT INTO MyTable (Text) VALUES ('A'||CHAR(10)||'B')

Note that to concatenate the results of a function you must use the || concatenation operator, not the _ concatenation operator.

A query can determine if a non-display character is present using the LENGTH or $LENGTH function.

Special Variables

You can insert into a column the value of the following special variables:

A %TABLENAME, or %CLASSNAME pseudo-field variable keyword. %TABLENAME returns the current table name.
%CLASSNAME returns the name of the class corresponding to the current table.

One or more of the following ObjectScript special variables (or their abbreviations): $HOROLOG, $JOB, $NAMESPACE,
$TLEVEL, $USERNAME, $ZHOROLOG, $ZJOB, $ZNSPACE, $ZPI, $ZTIMESTAMP, $ZTIMEZONE, $ZVERSION.

Stream Data

You can insert the following types of data values into a stream field:

InterSystems SQL Reference 197

INSERT

• An object reference (OREF) to a stream object. InterSystems IRIS opens this object and copies its contents into the
new stream field. For example:

 set oref=##class(%Stream.GlobalCharacter).%New()
 do oref.Write("Technique 1")

 //do the insert; use an actual OREF
 &sql(INSERT INTO MyStreamTable (MyStreamField) VALUES (:oref))

• A string version of an OREF of a stream, for example:

 set oref=##class(%Stream.GlobalCharacter).%New()
 do oref.Write("Technique 2")

 //next line converts OREF to a string OREF
 set string=oref_""

 //do the insert
 &sql(INSERT INTO MyStreamTable (MyStreamField) VALUES (:string))

• A numeric value, such as 1 or -1.

• A string literal whose first character is not numeric, for example:

 set literal="Technique 3"

 //do the insert; use a string
 &sql(INSERT INTO MyStreamTable (MyStreamField) VALUES (:literal))

If the first character is numeric, SQL interprets the literal as the string form of an OREF instead. For example, the
value 2@User.MyClass would be considered the string version of an OREF, and not a string literal.

Attempting to insert an improperly defined stream value results in an SQLCODE -412 error: General Stream Error.

List Structured Data

InterSystems IRIS supports the list structure data type %List (data type class %Library.List). This is a compressed binary
format, which does not map to a corresponding native data type for InterSystems SQL. It corresponds to data type
VARBINARY with a default MAXLEN of 32749. For this reason, Dynamic SQL cannot use INSERT or UPDATE to set
a property value of type %List. For further details, refer to the Data Types reference page in this manual.

Insert Counter Values

A table can optionally have one field defined as IDENTITY. By default, this field receives an integer from an automatically
incremented table counter whenever a row is inserted into the table. By default, an insert cannot specify a value for this
field. However, this default is configurable. An IDENTITY field value cannot be modified by an update operation. This
counter is reset by a TRUNCATE TABLE operation.

A table can optionally have one field defined as data type ROWVERSION. If this field is defined, an insert operation
automatically inserts an integer from the namespace-wide RowVersion counter into this field. An update operation auto-
matically updates this integer with the current namespace-wide RowVersion counter value. No user-specified, calculated,
or default value can be inserted for a ROWVERSION field. This counter cannot be reset.

A table can optionally have one or more fields defined as data type SERIAL (%Library.Counter). By default, this field
receives an integer from an automatically incremented table counter whenever a row is inserted into the table. However, a
user can specify an integer value for this field during an insert, overriding the table counter default. A SERIAL (%Counter)
field value cannot be modified by an update operation. This counter is reset by a TRUNCATE TABLE operation.

Inserting SERIAL Values

An INSERT operation can specify one of the following values for a field with the SERIAL data type, with the following
results:

• No value, 0 (zero), or a nonnumeric value: InterSystems IRIS ignores the specified value, and instead increments this
field's current serial counter value by 1, and inserts the resulting integer into the field.

198 InterSystems SQL Reference

SQL Commands

• A positive integer value: InterSystems IRIS inserts the user-specified value into the field, and changes the serial counter
value for this field to this integer value.

Thus a SERIAL field contains a series incremental integer values. These values are not necessarily continuous or unique.
For example, the following is a valid series of values for a SERIAL field: 1, 2, 3, 17, 18, 25, 25, 26, 27. Sequential integers
are either InterSystems IRIS-generated or user-supplied; nonsequential integers are user-supplied. If you wish SERIAL
field values to be unique, you must apply a UNIQUE constraint on the field.

Insert Computed Values

A field defined with COMPUTECODE may insert a value as part of the INSERT operation, unless the field is CALCU-
LATED. If you supply a value for a COMPUTED field or if this field has a default value, INSERT stores this explicit value.
Otherwise, the field value is computed, as follows:

• COMPUTECODE: value is computed and stored upon INSERT, value is not changed upon UPDATE.

• COMPUTECODE with COMPUTEONCHANGE: value is computed and stored upon INSERT, is recomputed and
stored upon UPDATE.

• COMPUTECODE with DEFAULT and COMPUTEONCHANGE: default value is stored upon INSERT, value is
computed and stored upon UPDATE.

• COMPUTECODE with CALCULATED or TRANSIENT: you cannot INSERT a value for this field because no value
is stored. The value is computed when queried. However, InterSystems IRIS does perform validation on this field as
part of the insert operation:

– If you attempt to insert a value into a calculated field, InterSystems IRIS performs validation on the supplied value
and issues an error if the value is invalid. If the value is valid, InterSystems IRIS proceeds with the row insert: it
does not insert the value in this field, issues no SQLCODE error, and increments ROWCOUNT.

– If a field of this type is part of a foreign key constraint, a value for this field is computed during the insert in order
to perform the referential integrity check; this computed value is not stored.

If the compute code contains a programming error (for example, divide by zero), the INSERT operation fails with an
SQLCODE -415 error.

For further details, refer to Computing a field value on INSERT or UPDATE.

DEFAULT VALUES Clause

You can insert a row into a table that has all of its field values set to default values. Fields that have a defined default value
are set to that value. Fields without a defined default value are set to NULL. This is done using the following command:

INSERT INTO Mytable DEFAULT VALUES

Fields defined with the NOT NULL constraint and no defined DEFAULT fail this operation with an SQLCODE -108.

Fields defined with the UNIQUE constraint can be inserted using this statement. If a field is defined with a UNIQUE constraint
and no DEFAULT value, repeated invocations insert multiple rows with this UNIQUE field set to NULL. If a field is
defined with a UNIQUE constraint and a DEFAULT value, this statement can only be used once. A second invocation fails
with an SQLCODE -119.

DEFAULT VALUES inserts a row with a system-generated integer values for counter fields. These include the RowID,
and the optional IDENTITY field, SERIAL (%Counter) field, and ROWVERSION field.

Insert Query Results: INSERT with SELECT
A single INSERT can be used to insert multiple rows into a table by combining it with a SELECT statement. Any valid
SELECT query can be used. The SELECT extracts column data from one or more tables and the INSERT creates corre-
sponding new rows in its table containing this column data. Corresponding fields may have different column names and

InterSystems SQL Reference 199

INSERT

column lengths, so long as the inserted data can fit in the insert table field. Corresponding fields must pass data type and
length validation; otherwise an SQLCODE -104 error is generated.

You can limit the number of rows inserted by specifying a TOP clause in the SELECT statement. You can also use an
ORDER BY clause in the SELECT statement to determine which rows will be selected by the TOP clause.

An INSERT with SELECT operation sets the %ROWCOUNT variable to the number of rows inserted (either 0 or a pos-
itive integer).

The following example uses two embedded SQL programs to show this use of INSERT. The first example uses CREATE
TABLE to create a new table SQLUser.MyStudents, and the second example populates this table with data extracted from
Sample.Person. (Alternatively, you can create a new table from an existing table definition and insert data from the existing
table in a single operation using the $SYSTEM.SQL.QueryToTable() method.)

To demonstrate this, please run the first embedded SQL program, then run the second. (It is necessary to use two embedded
SQL programs here because embedded SQL cannot compile an INSERT statement unless the referenced table already
exists.)

The following program creates the MyStudents table with two stored data fields, and one calculated field:

 WRITE !,"Creating table"
 &sql(CREATE TABLE SQLUser.MyStudents (
 StudentName VARCHAR(32),
 StudentDOB DATE,
 StudentAge INTEGER COMPUTECODE {SET {StudentAge}=
 $PIECE(($PIECE($H,",",1)-{StudentDOB})/365,".",1)}
 CALCULATED)
)
 IF SQLCODE=0 {
 WRITE !,"Created table, SQLCODE=",SQLCODE }
 ELSEIF SQLCODE=-201 {
 WRITE !,"Table already exists, SQLCODE=",SQLCODE }

The following program uses INSERT to populate the MyStudents table with query results. Because the StudentAge field
is calculated you cannot supply a value to this field; its value is calculated each time the MyStudents table is queried:

 WRITE !,"Populating table with data"
 NEW SQLCODE,%ROWCOUNT,%ROWID
 &sql(INSERT INTO SQLUser.MyStudents (StudentName,StudentDOB)
 SELECT Name,DOB
 FROM Sample.Person WHERE Age <= '21')
 IF SQLCODE=0 {
 WRITE !,"Number of records inserted=",%ROWCOUNT
 WRITE !,"Row ID of last record inserted=",%ROWID }
 ELSE {
 WRITE !,"Insert failed, SQLCODE=",SQLCODE }

Note that executing this INSERT program multiple times will succeed, but produces generally undesirable results. Each
execution populates SQLUser.MyStudents with another set of records (%ROWCOUNT) with identical Name and DOB
field values, automatically assigning each record a unique RowID value.

To display the data, go to the Management Portal, select the Globals option for the desired namespace. Scroll to
“SQLUser.MyStudentsD” and click the Data option.

The following programs display the MyStudents table data, then delete this table:

SELECT * FROM SQLUser.MyStudents ORDER BY StudentAge

 &sql(DROP TABLE SQLUser.MyStudents)
 IF SQLCODE=0 {WRITE !,"Table deleted" }
 ELSE {WRITE !,"SQLCODE=",SQLCODE," ",%msg }

By default, an Insert Query Results operation is an atomic operation. Either all of the specified rows are inserted in a table,
or none of the rows are inserted. For example, if inserting one of the specified rows would violate foreign key referential
integrity, the INSERT fails and no rows are inserted. This default is modifiable, as described below.

200 InterSystems SQL Reference

SQL Commands

Copying Data into a Duplicate Table

You can use INSERT with SELECT * to copy the data from a table to a duplicate table, as long as the column order
matches and the data types are compatible. The column names do not have to match.

INSERT INTO Sample.DupTable SELECT * FROM Sample.SrcTable

• Data type compatible with data values: You can, for example, insert integer data from an INTEGER field into a
VARCHAR field, or from a VARCHAR field into an INTEGER field. The INSERT would fail with an SQLCODE
-104 if any data value was incompatible with the destination data type. You can use the CONVERT function to convert
inserted data to the destination data type.

• Data type length compatible with data values: The defined column data lengths do not have to match each other, they
just have to match the actual data. For example, SrcTable can have a column FullName VARCHAR(60) and DupTable
can have a corresponding PersonName VARCHAR(40). The INSERT will succeed as long as no existing FullName
value is longer than 40 characters. The INSERT would fail with an SQLCODE -104 if any FullName value was longer
than 40 characters.

• Compatible column order: The two tables must have the same column order. Otherwise an SQLCODE -64 error is
generated. The DDL CREATE TABLE operation lists the columns in the order defined. A persistent class that defines
a table lists the columns in alphabetical order.

• Compatible column count: The destination table can have additional columns beyond the ones copied. For example,
SrcTable can have the columns FullName VARCHAR(60),Age INTEGER and DupTable can have PersonName
VARCHAR(60),Years INTEGER,ShoeSize INTEGER. However, note that a persistent class that defines a table
lists the columns in alphabetical order.

• Private RowID: Both tables must have the ID (RowID) field defined as private (hidden). Otherwise, this operation
fails with an SQLCODE -111. The DDL CREATE TABLE operation defines the RowID as private by default. A
persistent class that defines a table defines the RowID as public by default; you must specify the SqlRowIdPrivate
class keyword. Whether or not one of the tables is Final has no effect on copying data into a duplicate table.

This operation can be used to copy existing data into a redefined table that will accept future column data values that would
not have been valid in the original table.

SQLCODE Errors
By default, an INSERT is an all-or-nothing event: either the row (or rows) is inserted completely or not at all. InterSystems
IRIS returns a status variable SQLCODE, indicating the success or failure of the INSERT. To insert a row into a table, the
insert must meet all table, field name, and field value requirements, as follows.

Tables:

• The table must already exist. Attempting an insert to a nonexistent table results in an SQLCODE -30 error. Because
INSERT checks for the table's existence at compile time, a single compiled SQL program (such as an Embedded SQL
program) cannot create a table (using CREATE TABLE) and then insert values into it.

• The table cannot be defined as READONLY. Attempting to compile an INSERT that references a ReadOnly table
results in an SQLCODE -115 error. Note that this error is issued at compile time, rather than at execution time. See
the description of READONLY objects in the Other Options for Persistent Classes chapter of Defining and Using
Classes.

• If updating a table through a view, the view cannot be defined as WITH READ ONLY. Attempting to do so results in
an SQLCODE -35 error. If the view is based on a sharded table, you cannot INSERT through a view defined WITH
CHECK OPTION. Attempting to do so results in an SQLCODE -35 with the %msg INSERT/UPDATE/DELETE not
allowed for view (sample.myview) based on sharded table with check option conditions.
See the CREATE VIEW command for further details.

• You must have appropriate privileges to insert to a table.

InterSystems SQL Reference 201

INSERT

Field Names:

• The field must exist. Attempting an insert to a nonexistent field results in an SQLCODE -29 error. To list all of the
field names defined for a specified table, refer to Column Names and Numbers in the “Defining Tables” chapter of
Using InterSystems SQL.

• The insert must specify all required fields. Attempting to insert a row without specifying a value for a required field
results in an SQLCODE -108 error.

• The insert cannot include duplicate field names. Attempting to insert a row containing two fields with the same name
results in an SQLCODE -377 error.

• The insert cannot include fields that are defined as READONLY. Attempting to compile an INSERT that references
a READONLY field results in an SQLCODE -138 error. Note that this error is now issued at compile time, rather than
only occurring at execution time. When you link a table using the Link Table Wizard, you have the option of defining
fields as Read Only. The field on the source system might not be read only, but if IRIS defines the linked table's field
as Read Only, attempting an INSERT that references this field results in an SQLCODE -138 error.

Field Values:

• Every field value must pass data type validation. Attempting to insert a field value inappropriate to the field data type
results in an SQLCODE -104 error. Note that this applies only to a inserted data value; a field’s DEFAULT value, if
taken, does not have to pass data type validation or data size validation.

– Data Type Mismatch: The field’s data type, not the type of the inserted data, determines appropriateness. For
example, attempting to insert a string data type value into a date field fails unless the string passes date validation
for the current mode; however, attempting to insert a date data type value into a string field succeeds, inserting
the date as a literal string. You can use the CONVERT function to convert data to the destination data type.

– Data Size Mismatch: A data value must be within the MAXLEN, MAXVAL, and MINVAL for the field. For
example, attempting to insert a string longer than 24 characters into a field defined as VARCHAR(24), or
attempting to insert a number larger than 127 into a field defined as TINYINT result an SQLCODE -104 error.

– Numeric Type Mismatch: If an invalid DOUBLE number is supplied via ODBC or JDBC an SQLCODE -104
error occurs.

• Every field value must pass data value validation:

– A field defined as NOT NULL must be provided with a data value. If there is no DEFAULT value, not specifying
a data value results in an SQLCODE -108 error, indicating that you have not specified a required field.

– A field value must obey uniqueness constraints. Attempting to insert a duplicate field value in a field (or group
of fields) with a uniqueness constraint results in an SQLCODE -119 error. This error is returned if the field has a
UNIQUE data constraint, or if the unique fields constraint has been applied to a group of fields. This error can
occur when you specify a duplicate value to a unique field, or to a primary key field, or when you do not specify
a value and a second use of the field’s DEFAULT would supply a duplicate value. The SQLCODE -119 %msg
string includes both the field and the value that violate the uniqueness constraint. For example <Table
'Sample.MyTable', Constraint 'MYTABLE_UNIQUE3', Field(s) FullName="Molly Bloom";

failed unique check> or <Table 'Sample.MyTable', Constraint 'MYTABLE_PKEY2',
Field(s) FullName="Molly Bloom"; failed unique check>. For details on listing a table’s unique
value and primary key field constraints and the naming of constraints, refer to Catalog Details: Constraints.

– A field defined as a persistent class property with the VALUELIST parameter can only accept as a valid value
one of the values listed in VALUELIST, or be provided with no value (NULL). VALUELIST valid values are
case-sensitive. Specifying a data value that doesn’t match the VALUELIST values results in an SQLCODE -104
field value failed validation error.

202 InterSystems SQL Reference

SQL Commands

• Numbers are inserted in canonical form, but can be specified with leading and trailing zeros and multiple leading signs.
However, in SQL, two consecutive minus signs are parsed as a single-line comment indicator. Therefore, attempting
to specify a number with two consecutive leading minus signs results in an SQLCODE -12 error.

• By default, an insert cannot specify values for fields for which the value is system-generated, such as the RowID,
IDKey, or IDENTITY field. By default, attempting to insert a non-NULL field value for any of these fields results in
an SQLCODE -111 error. Attempting to insert a NULL for one of these fields causes InterSystems IRIS to override
the NULL with a system-generated value; the insert completes successfully and no error code is issued.

If a field of data type ROWVERSION is defined, it is automatically assigned a system-generated counter value when
a row is inserted. Attempting to insert a value into a ROWVERSION field results in an SQLCODE -138 error.

An IDENTITY field can be made to accept user-specified values. By setting the SetIdentityInsert() method of the
%SYSTEM.SQL class you can override the IDENTITY field default constraint and allow inserts of unique integer
values to IDENTITY fields. (You can return the current setting for this constraint by calling the GetIdentityInsert()
method.) Inserting an IDENTITY field value changes the IDENTITY counter so that subsequent system-generated
values increment from this user-specified value. Attempting to insert a NULL for an IDENTITY field generates an
SQLCODE -108 error.

IDKey data has the following restriction. Because multiple IDKey fields in an index are delimited using the “||” (double
vertical bar) characters, you cannot include this character string in IDKey field data.

• An insert cannot include a field whose value violates foreign key referential integrity, unless the %NOCHECK keyword
is specified, or the foreign key was defined with the NOCHECK keyword. Otherwise, attempting an insert that violates
foreign key referential integrity results in an SQLCODE -121 error, with a %msg such as the following: <Table
'Sample.MyTable', Foreign Key Constraint 'MYTABLEFKey2', Field(s) FULLNAME failed

referential integrity check>. For details on listing a table’s foreign key constraints and the naming of foreign
key constraints, refer to Catalog Details: Constraints.

• A field value cannot be a subquery. Attempting to specify a subquery as a field value results in an SQLCODE -144
error.

The INSERT Operation
This section describes the operational considerations when performing an INSERT:

• Privileges

• Fast Insert via JDBC

• Referential Integrity

• Child Table Insert

• Atomicity

• Transaction Locking

• Row-Level Security

• Microsoft Access

Privileges

To insert one or more rows of data into a table, you must have either table-level privileges or column-level privileges for
that table.

Table-level Privileges

You must have both INSERT and SELECT privileges for the table. Failing to have these privileges results in an SQLCODE
-99 error (Privilege Violation). You can determine if the current user has these privileges by invoking the %CHECKPRIV

InterSystems SQL Reference 203

INSERT

command. You can determine if a specified user has these privileges by invoking the $SYSTEM.SQL.CheckPriv() method.
For privilege assignment, refer to the GRANT command.

To insert to a sharded table you must have INSERT privileges for the target table(s). Failing to have these privileges results
in an SQLCODE -253 error: Sharded INSERT/UPDATE/DELETE run-time error.

Table-level privileges are equivalent to (but not identical to) having column-level privileges on all columns of the table.

Column-level Privileges

If you do not have table-level INSERT privilege, you must have column-level INSERT privilege for at least one column
of the table. To insert a specified value into a column, you must have column-level INSERT privilege for that column.
Only those columns for which you have INSERT privilege receive the value specified in the INSERT command.

If you do not have column-level INSERT privilege for a specified column, InterSystems SQL inserts the column's default
value (if defined), or NULL (if no default is defined). If you do not have INSERT privilege for a column that has no default
and is defined as NOT NULL, InterSystems IRIS issues an SQLCODE -99 (Privilege Violation) error at Prepare time.

If the INSERT command specifies fields in a WHERE clause of a result set SELECT, you must have SELECT privilege
for those fields if they are not data insert fields, and both SELECT and INSERT privileges for those fields if they are
included in the result set.

When a property is defined as ReadOnly, the corresponding table field is also defined as ReadOnly. A ReadOnly field may
only be assigned a value using InitialExpression or SqlComputed. Attempting to insert a value for a field for which you
have column-level ReadOnly (SELECT or REFERENCES) privilege results in an SQLCODE -138 error: Cannot
INSERT/UPDATE a value for a read only field.

You can use %CHECKPRIV to determine if you have the appropriate column-level privileges. See the GRANT command
for privilege assignment.

Fast Insert

When inserting rows in a table using JDBC, InterSystems IRIS by default automatically performs highly efficient Fast
Insert operations. Fast Insert moves the normalization and formatting of the data being inserted from the server over to the
client. The server can then directly set the whole row of data for a table into the global without manipulation on the server.
This offloads these tasks from the server onto the client and can dramatically improve INSERT performance. Because the
client is assuming the task of formatting the data, there may be an unforeseen usage increase in your client environment.
You can use the FeatureOption property to disable Fast Insert if this is an issue.

Fast Insert must be supported on both the server and the client. To enabled or disabled Fast Insert in the client, use the
FeatureOption property in the definition of the class instance as follows:

Properties p = new Properties();
p.setProperty("FeatureOption","3"); / 2 is fast Insert, 1 is fast Select, 3 is both

If Fast Insert is active, an INSERT executed using a cached query is performed using Fast Insert. This initial INSERT that
generated the cached query is not performed using Fast Insert. This enables you to compare the performance of the initial
insert with subsequent Fast Inserts executed using the cached query. If Fast Insert is not supported (for any of the following
reasons), an ordinary INSERT is performed.

Fast Insert must be performed on a table. It cannot be performed on an updateable view. Fast Insert is not performed when
the table has any of the following characteristics:

• The table uses embedded (nested) storage structure (%SerialObject).

• The table is a linked table.

• The table is a child table.

• The table has an explicitly defined multi-field IDKEY index.

• The table has a SERIAL (%Counter), AUTO_INCREMENT, or %RowVersion field.

204 InterSystems SQL Reference

SQL Commands

• The table has a property (field) with a defined VALUELIST parameter.

• The table has a defined insert trigger.

• The table performs LogicalToStorage conversion of field values.

• The table is a Shard Master table.

Fast Insert cannot be performed if the INSERT statement has any of the following characteristics:

• It specifies a stream field ((data type %Stream.GlobalCharacter or %Stream.GlobalBinary), a collection field (lists or
arrays), or a ReadOnly field. These types of fields can exist in the table, but cannot be specified in the INSERT.

• It specifies a literal value enclosed with double parentheses that suppresses literal substitution. For example, (('A')).

• It specifies a {ts } timestamp value that omits the date value.

• It includes a DEFAULT VALUES clause.

For SQL xDBC Statement auditing events, an INSERT statement that uses the Fast Insert interface has a description of
SQL fastINSERT Statement. If the Fast Insert interface is used, the Audit event does not include any parameter data,
but includes the message Parameter values are not available for a fastInsert statement.

Referential Integrity

If you do not specify the %NOCHECK keyword, InterSystems IRIS uses the system configuration setting to determine
whether to perform foreign key referential integrity checking. You can set this system default using the
$SYSTEM.SQL.SetFilerRefIntegrity() method call. To determine the current setting, call
$SYSTEM.SQL.CurrentSettings(). The default is “Yes” . If you change this setting, any new process started after
changing it will have the new setting.

This setting does not apply to foreign keys that have been defined with the NOCHECK keyword.

During an INSERT operation, for every foreign key reference a shared lock is acquired on the corresponding row in the
referenced table. This row is locked while performing referential integrity checking and inserting the row. The lock is then
released (it is not held until the end of the transaction). This ensures that the referenced row is not changed between the
referential integrity check and the completion of the insert operation.

However, if you specify the %NOLOCK keyword, no locking is performed either on the specified table or on the corre-
sponding foreign key row in the referenced table.

Child Table Insert

During an INSERT operation on a child table, a shared lock is acquired on the corresponding row in the parent table. This
row is locked while inserting the child table row. The lock is then released (it is not held until the end of the transaction).
This ensures that the referenced parent row is not changed during the insert operation.

Atomicity

By default, INSERT, UPDATE, DELETE, and TRUNCATE TABLE are atomic operations. An INSERT either completes
successfully or the whole operation is rolled back. If any of the specified rows cannot be inserted, none of the specified
rows are inserted and the database reverts to its state before issuing the INSERT.

You can modify this default for the current process within SQL by invoking SET TRANSACTION %COMMITMODE.
You can modify this default for the current process in ObjectScript by invoking the SetAutoCommit() method. The following
options are available:

• IMPLICIT or 1 (autocommit on) — The default behavior, as described above. Each INSERT constitutes a separate
transaction.

InterSystems SQL Reference 205

INSERT

• EXPLICIT or 2 (autocommit off) — If no transaction is in progress, an INSERT automatically initiates a transaction,
but you must explicitly COMMIT or ROLLBACK to end the transaction. In EXPLICIT mode the number of database
operations per transaction is user-defined.

• NONE or 0 (no auto transaction) — No transaction is initiated when you invoke INSERT. A failed INSERT operation
can leave the database in an inconsistent state, with some of the specified rows inserted and some not inserted. To
provide transaction support in this mode you must use START TRANSACTION to initiate the transaction and
COMMIT or ROLLBACK to end the transaction.

A sharded table is always in no auto transaction mode, which means all inserts, updates, and deletes to sharded tables
are performed outside the scope of a transaction.

You can determine the atomicity setting for the current process using the GetAutoCommit() method, as shown in the fol-
lowing ObjectScript example:

 DO $SYSTEM.SQL.SetAutoCommit($RANDOM(3))
 SET x=$SYSTEM.SQL.GetAutoCommit()
 IF x=1 {
 WRITE "Default atomicity behavior",!
 WRITE "automatic commit or rollback" }
 ELSEIF x=0 {
 WRITE "No transaction initiated, no atomicity:",!
 WRITE "failed DELETE can leave database inconsistent",!
 WRITE "rollback is not supported" }
 ELSE { WRITE "Explicit commit or rollback required" }

Transaction Locking

If you do not specify the %NOLOCK keyword, the system automatically performs standard record locking on INSERT,
UPDATE, and DELETE operations. Each affected record (row) is locked for the duration of the current transaction.

The default lock threshold is 1000 locks per table. This means that if you insert more than 1000 records from a table during
a transaction, the lock threshold is reached and InterSystems IRIS automatically escalates the locking level from record
locks to a table lock. This permits large-scale inserts during a transaction without overflowing the lock table.

InterSystems IRIS applies one of the two following lock escalation strategies:

• “E”-type lock escalation: InterSystems IRIS uses this type of lock escalation if the following are true: (1) the class
uses %Storage.Persistent (you can determine this from the Catalog Details in the Management Portal SQL schema
display). (2) the class either does not specify an IDKey index, or specifies a single-property IDKey index. “E”-type
lock escalation is described in the LOCK command in the ObjectScript Reference.

• Traditional SQL lock escalation: The most likely reason why a class would not use “E”-type lock escalation is the
presence of a multi-property IDKey index. In this case, each %Save increments the lock counter. This means if you
do 1001 saves of a single object within a transaction, InterSystems IRIS will attempt to escalate the lock.

For both lock escalation strategies, you can determine the current systemwide lock threshold value using the
$SYSTEM.SQL.GetLockThreshold() method. The default is 1000. This systemwide lock threshold value is configurable:

• Using the $SYSTEM.SQL.SetLockThreshold() method.

• Using the Management Portal, select System Administration, Configuration, SQL and Object Settings, SQL. Display
and edit the current setting of Lock escalation threshold. The default is 1000 locks. If you change this setting, any new
process started after changing it will have the new setting.

You must have USE permission on the %Admin Manage Resource to change the lock threshold. InterSystems IRIS
immediately applies any change made to the lock threshold value to all current processes.

On potential consequence of automatic lock escalation is a deadlock situation that might occur when an attempt to escalate
to a table lock conflicts with another process holding a record lock in that table. There are several possible strategies to
avoid this: (1) increase the lock escalation threshold so that lock escalation is unlikely to occur within a transaction. (2)
substantially lower the lock escalation threshold so that lock escalation occurs almost immediately, thus decreasing the

206 InterSystems SQL Reference

SQL Commands

opportunity for other processes to lock a record in the same table. (3) apply a table lock for the duration of the transaction
and do not perform record locks. This can be done at the start of the transaction by specifying LOCK TABLE, then UNLOCK
TABLE (without the IMMEDIATE keyword, so that the table lock persists until the end of the transaction), then perform
inserts with the %NOLOCK option.

Automatic lock escalation is intended to prevent overflow of the lock table. However, if you perform such a large number
of inserts that a <LOCKTABLEFULL> error occurs, INSERT issues an SQLCODE -110 error.

For further details on transaction locking refer to Transaction Processing in the “Modifying the Database” chapter of Using
InterSystems SQL.

Row-Level Security

InterSystems IRIS row-level security permits INSERT to add a row even if the row security is defined so that you will not
be permitted to subsequently access the row. To ensure that an INSERT does not prevent you from subsequent SELECT
access to the row, it is recommended that you perform the INSERT through a view that has a WITH CHECK OPTION.
For further details, refer to CREATE VIEW.

Microsoft Access

To use INSERT to add data to an InterSystems IRIS table using Microsoft Access, either mark the table RowID field as
private or define a unique index on one or more additional fields.

Embedded SQL and Dynamic SQL Examples
The following Embedded SQL example creates a new table SQLUser.MyKids. The examples that follow use INSERT to
populate this table with data. After the INSERT examples, an example is provided to delete SQLUser.MyKids.

CreateTable
 &sql(CREATE TABLE SQLUser.MyKids (
 KidName VARCHAR(16) UNIQUE NOT NULL,
 KidDOB INTEGER NOT NULL,
 KidPetName VARCHAR(16) DEFAULT 'no pet'))
 IF SQLCODE=0 {
 WRITE !,"Table created" }
 ELSEIF SQLCODE=-201 {WRITE !,"Table already exists" QUIT}
 ELSE {
 WRITE !,"CREATE TABLE failed. SQLCODE=",SQLCODE }

The following Embedded SQL example inserts a row with two field values (the third field, KidPetName, takes a default
value). Note that the table schema name is supplied as a schema search path by the #SQLCompile Path macro directive:

EmbeddedSQLInsertByColName
 #SQLCompile Path=Sample
 NEW SQLCODE,%ROWCOUNT,%ROWID
 &sql(INSERT INTO MyKids (KidName,KidDOB) VALUES
 ('Molly',60000))
 IF SQLCODE=0 {
 WRITE !,"Insert succeeded"
 WRITE !,"Row count=",%ROWCOUNT
 WRITE !,"Row ID=",%ROWID
 QUIT }
 ELSEIF SQLCODE=-119 {
 WRITE !,"Duplicate record not written",!
 WRITE %msg,!
 QUIT }
 ELSE {
 WRITE !,"Insert failed, SQLCODE=",SQLCODE }

The following Embedded SQL example inserts a row with three field values using the table's column order:

InterSystems SQL Reference 207

INSERT

EmbeddedSQLInsertByColOrder
 NEW SQLCODE,%ROWCOUNT,%ROWID
 &sql(INSERT INTO SQLUser.MyKids VALUES ('Josie','40100','Fido'))
 IF SQLCODE=0 {
 WRITE !,"Insert succeeded"
 WRITE !,"Row count=",%ROWCOUNT
 WRITE !,"Row ID=",%ROWID
 QUIT }
 ELSEIF SQLCODE=-119 {
 WRITE !,"Duplicate record not written",!
 WRITE %msg,!
 QUIT }
 ELSE {
 WRITE !,"Insert failed, SQLCODE=",SQLCODE }

The following Embedded SQL example uses host variables to insert a row with two field values. The INSERT syntax used
here specifies column=value pairs:

EmbeddedSQLInsertHostVars
 #SQLCompile Path=Sample
 NEW SQLCODE,%ROWCOUNT,%ROWID
 SET x = "Sam"
 SET y = "57555"
 &sql(INSERT INTO MyKids SET KidName=:x,KidDOB=:y)
 IF SQLCODE=0 {
 WRITE !,"Insert succeeded"
 WRITE !,"Row count=",%ROWCOUNT
 WRITE !,"Row ID=",%ROWID
 QUIT }
 ELSEIF SQLCODE=-119 {
 WRITE !,"Duplicate record not written",!
 WRITE %msg,!
 QUIT }
 ELSE {
 WRITE !,"Insert failed, SQLCODE=",SQLCODE }

The following Embedded SQL example uses a host variable array to insert a row with three field values. Array elements
are numbered in column order. Note that user-supplied array values start with myarray(2); the first array element corresponds
to the RowID column, which is automatically supplied and cannot be user-defined:

EmbeddedSQLInsertHostVarArray
 #SQLCompile Path=Sample
 NEW SQLCODE,%ROWCOUNT,%ROWID
 SET myarray(2)="Deborah"
 SET myarray(3)=60200
 SET myarray(4)="Bowie"
 &sql(INSERT INTO MyKids VALUES :myarray())
 IF SQLCODE=0 {
 WRITE !,"Insert succeeded"
 WRITE !,"Row count=",%ROWCOUNT
 WRITE !,"Row ID=",%ROWID
 QUIT }
 ELSEIF SQLCODE=-119 {
 WRITE !,"Duplicate record not written",!
 WRITE %msg,!
 QUIT }
 ELSE {
 WRITE !,"Insert failed, SQLCODE=",SQLCODE }

The following Dynamic SQL example uses the %SQL.Statement class to insert a row with three field values. Note that the
table schema name is supplied as a schema search path in the %New() method:

208 InterSystems SQL Reference

SQL Commands

COSDynamicSQLInsert
 SET x = "Noah"
 SET y = "61000"
 SET z = "Luna"
 SET sqltext = "INSERT INTO MyKids (KidName,KidDOB,KidPetName) VALUES (?,?,?)"
 SET tStatement = ##class(%SQL.Statement).%New(0,"Sample")
 SET qStatus = tStatement.%Prepare(sqltext)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rtn = tStatement.%Execute(x,y,z)
 IF rtn.%SQLCODE=0 {
 WRITE !,"Insert succeeded"
 WRITE !,"Row count=",rtn.%ROWCOUNT
 WRITE !,"Row ID=",rtn.%ROWID }
 ELSEIF rtn.%SQLCODE=-119 {
 WRITE !,"Duplicate record not written",!,rtn.%Message
 QUIT }
 ELSE {
 WRITE !,"Insert failed, SQLCODE=",rtn.%SQLCODE }

For further details, refer to the Embedded SQL and Dynamic SQL chapters in Using InterSystems SQL.

The following Embedded SQL example displays the inserted records, then deletes the SQLUser.MyKids table:

DisplayAndDeleteTable
 SET myquery = "SELECT * FROM SQLUser.MyKids"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"
 &sql(DROP TABLE SQLUser.MyKids)
 IF SQLCODE=0 {
 WRITE !,"Deleted table"
 QUIT }
 ELSE {
 WRITE !,"Table delete failed, SQLCODE=",SQLCODE }

The following Embedded SQL example demonstrates the use of a host variable arrays. Note that with a host variable array,
you can use a dynamic local array with an unspecified last subscript to pass an array of values to INSERT at runtime. For
example:

 NEW SQLCODE,%ROWCOUNT,%ROWID
 &sql(INSERT INTO Sample.Employee VALUES :emp('profile',))
 WRITE !,"SQL Error code: ",SQLCODE," Row Count: ",%ROWCOUNT

causes each field in the inserted "Employee" row to be set to:

emp("profile",col)

where "col" is the field’s column number in the Sample.Employee table.

The following example shows how the results of a SELECT query can be used as the data input into an INSERT statement,
supplying the data for multiple rows:

INSERT INTO StudentRoster (NAME,GPA,ID_NUM)
 SELECT FullName,GradeAvg,ID
 FROM temp WHERE SchoolYear = '2004'

See Also
• INSERT OR UPDATE

• UPDATE

• DELETE

• SELECT

• CREATE TABLE

• JOIN

InterSystems SQL Reference 209

INSERT

• SELECT

• VALUES

• “Modifying the Database” chapter in Using InterSystems SQL

• “Defining Tables” chapter in Using InterSystems SQL

• “Defining Views” chapter in Using InterSystems SQL

• Transaction Processing in the “Modifying the Database” chapter of Using InterSystems SQL

• SQL and Object Settings described in Configuration Parameter File Reference.

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

210 InterSystems SQL Reference

SQL Commands

INSERT OR UPDATE
Adds a new row or updates an existing row in a table.

INSERT OR UPDATE [restriction] [INTO] table
 SET column1 = scalar-expression1 {,column2 = scalar-expression2} ... |
 [(column1{,column2} ...)] VALUES (scalar-expression1 {,scalar-expression2}
 ...) |
 VALUES :array() |
 [(column1{,column2} ...)] query |
 DEFAULT VALUES

Arguments

Optional — The %NOFPLAN keyword specifies that InterSystems IRIS will ignore
the frozen plan (if any) for this operation and generate a new query plan. The
frozen plan is retained, but not used. For further details, refer to Frozen Plans
in SQL Optimization Guide.

%NOFPLAN

Optional — One or more of the following keywords, separated by spaces:
%NOCHECK, %NOFPLAN, %NOINDEX, %NOLOCK, %NOTRIGGER.

restriction

The name of the table or view on which to perform the insert operation. This
argument may be a subquery. The INTO keyword is optional.

table

Optional — A column name or comma-separated list of column names that
correspond in sequence to the supplied list of values. If omitted, the list of values
is applied to all columns in column-number order.

column

A scalar expression or comma-separated list of scalar expressions that supplies
the data values for the corresponding column fields.

scalar-expression

Embedded SQL only — A dynamic local array of values specified as a host
variable. The lowest subscript level of the array must be unspecified. Thus
:myupdates(), :myupdates(5,), and :myupdates(1,1,) are all valid
specifications.

:array()

A query’s result set that supplies the data values for the corresponding column
fields for one or more rows.

query

Description
The INSERT OR UPDATE statement is an extension of the INSERT statement (which it closely resembles):

• If the specified record does not exist, INSERT OR UPDATE performs an INSERT.

• If the specified record already exists, INSERT OR UPDATE performs an UPDATE. It updates the record with the
specified field values. An update occurs even when the specified data is identical to the existing data.

INSERT OR UPDATE determines of a record exists by matching UNIQUE KEY field values to the existing data values.
If a UNIQUE KEY constraint violation occurs, INSERT OR UPDATE performs an update operation. Note that a UNIQUE
KEY field value may not be a value explicitly specified in INSERT OR UPDATE; it may be the result of a column default
value or a computed value. When INSERT OR UPDATE is run against a sharded table, if the shard key is the same as
(or is a subset of) the UNIQUE KEY constraint, INSERT OR UPDATE performs an update operation. If the INSERT
OR UPDATE attempts to perform an update because of any other unique key value(s) found (that are not the shard key),
the command fails with an SQLCODE -119 error due to the unique constraint failure.

InterSystems SQL Reference 211

INSERT OR UPDATE

INSERT OR UPDATE of a single record always sets the %ROWCOUNT variable to 1, and the %ROWID variable for
the row that has been either inserted or updated.

An INSERT OR UPDATE statement combined with a SELECT statement can insert and/or update multiple table rows.
For further details, refer to “Insert Query Results: INSERT with SELECT” in the INSERT reference page.

INSERT OR UPDATE uses the same syntax, and generally has the same features and restrictions as the INSERT statement.
Special considerations for INSERT OR UPDATE are described here. Unless otherwise stated here, refer to INSERT for
details.

Privileges

INSERT OR UPDATE requires both INSERT and UPDATE privileges, as well as SELECT privilege. You must have
these privileges either as table-level privileges or as column-level privileges.

IDKEY Fields

You can insert an IDKEY field value, but you cannot update an IDKEY field value. If the table has an IDKEY index and
another unique key constraint, INSERT OR UPDATE matches these fields to determine whether to perform an insert or
an update. If the other key constraint fails, this forces INSERT OR UPDATE to perform an update rather than an insert.
However, if the specified IDKEY field values do not match the existing IDKEY field values, this update fails and generates
an SQLCODE -107 error, because the update is attempting to modify the IDKEY fields.

For example, the table MyTest is defined with four fields: A, B, C, D, with IDKEY (A,B) and UNIQUE (C,D) constraints.
The table contains the following records:

Row 1: A=1, B=1, C=2, D=2
Row 2: A=1, B=2, C=3, D=4

You invoke INSERT OR UPDATE ABC (A,B,C,D) VALUES (2,2,3,4) Because the UNIQUE (C,D) constraint
failed, this statement cannot perform an insert. Instead, it attempts to update Row 2. The IDKEY for Row 2 is (1,2), so the
INSERT OR UPDATE statement would attempt to change the field A value from 1 to 2. But you cannot change an IDKEY
value, so the update fails with an SQLCODE -107 error.

Counter Fields

When an INSERT OR UPDATE is executed, InterSystems IRIS initially assumes the operation will be an insert. Therefore,
it increments by 1 the internal counters used to supply integers to SERIAL (%Library.Counter) fields. An insert uses these
incremented counter values to assign integer values to these fields. If, however, InterSystems IRIS determines that the
operation needs to be an update, INSERT OR UPDATE has already incremented the internal counters, but it does not
assign these incremented integer values to counter fields. If the next operation is an insert, this results in a gap in the integer
sequence for these fields. This is shown in the following example:

1. The internal counter value is 4. INSERT OR UPDATE increments the internal counter then inserts Row 5: internal
counter=5, SERIAL field value=5.

2. INSERT OR UPDATE increments the internal counter then determines that it must performs an update on an existing
row: internal counter=6, no change to field counters.

3. INSERT OR UPDATE increments internal counter then inserts a row: internal counter=7, SERIAL field value=7.

IDENTITY and RowID Fields

The effect of INSERT OR UPDATE on the assignment of RowId values depends on whether an IDENTITY field is
present:

• If no IDENTITY field is defined for the table, an insert operation causes InterSystems IRIS to automatically assigns
the next sequential integer value to the ID (RowID) field. Update operations have no effect on subsequent inserts.
Thus, INSERT OR UPDATE performs the same insert operation as INSERT.

212 InterSystems SQL Reference

SQL Commands

• If an IDENTITY field is defined for the table, an INSERT OR UPDATE causes InterSystems IRIS to increment by
1 the internal counter used to supply integers to the IDENTITY field before determining if the operation will be an
insert or an update. An insert operation assigns this incremented counter value to the IDENTITY field. If, however,
InterSystems IRIS determines that the INSERT OR UPDATE operation needs to be an update, it has already incre-
mented the internal counter, but it does not assign these incremented integer value. If the next INSERT OR UPDATE
operation is an insert, this results in a gap in the integer sequence for the IDENTITY field. The RowID field value is
taken from the IDENTITY field value, resulting in a gap in the assignment of ID (RowID) integer values.

Examples
The following five examples: create a new table (SQLUser.CaveDwellers); use INSERT OR UPDATE to populate this
table with data, use INSERT OR UPDATE to add new rows and update existing rows; use a SELECT * to display the
data; and delete the table.

The following example uses CREATE TABLE to create a table with a unique field (Num):

CreateTable
 &sql(CREATE TABLE SQLUser.CaveDwellers (
 Num INT UNIQUE,
 CaveCluster CHAR(80) NOT NULL,
 Troglodyte CHAR(50) NOT NULL,
 CONSTRAINT CaveDwellerPK PRIMARY KEY (Num))
)
 IF SQLCODE=0 {WRITE !,"Table created" }
 ELSEIF SQLCODE=-201 {WRITE !,"Table already exists"}
 ELSE {WRITE !,"CREATE TABLE failed. SQLCODE=",SQLCODE }

The following example uses a class definition to define the same table, defining a unique key for Num:

 Class SQLUser.CaveDwellers Extends %Persistent [
 DdlAllowed,Owner={UnknownUser},SqlRowIdPrivate,
 SqlTableName=CaveDwellers]
 {
 Property Num As %Integer;
 Property CaveCluster As %String(MAXLEN=80);
 Property Troglodyte As %String(MAXLEN=50);
 Index UniqueNumIdx On Num [Type=index,Unique];
 }

SELECT * FROM SQLUser.CaveDwellers ORDER BY Num

Run the following two examples one or more times in any order. They will insert records 1 thorough 5. If record 4 already
exists, INSERT OR UPDATE will update it. Use the SELECT * example to display the table data:

InsertOrUpdateIndividualRecords
 &sql(INSERT OR UPDATE INTO SQLUser.CaveDwellers (Num,CaveCluster,Troglodyte) VALUES
 (1,'Bedrock','Flintstone,Fred'))
 IF SQLCODE = 0 { SET rcount=%ROWCOUNT }
 &sql(INSERT OR UPDATE INTO SQLUser.CaveDwellers (Num,CaveCluster,Troglodyte) VALUES
 (4,'Bedrock','Flintstone,Wilma'))
 IF SQLCODE = 0 { SET rcount=rcount+%ROWCOUNT
 WRITE !,rcount," records inserted/updated" }
 ELSE { WRITE !,"Insert/Update failed, SQLCODE=",SQLCODE }

InsertOrUpdateWithQueryResults
 NEW SQLCODE,%ROWCOUNT,%ROWID
 &sql(INSERT OR UPDATE SQLUser.CaveDwellers
 (Num,CaveCluster,Troglodyte)
 SELECT %ID,Home_City,Name
 FROM Sample.Person
 WHERE %ID BETWEEN 2 AND 5)
 IF SQLCODE=0 {
 WRITE !,"Insert/Update succeeded"
 WRITE !,%ROWCOUNT," records inserted/updated"
 WRITE !,"Row ID=",%ROWID }
 ELSE {
 WRITE !,"Insert/Update failed, SQLCODE=",SQLCODE }

The following example deletes the table:

InterSystems SQL Reference 213

INSERT OR UPDATE

DeleteTable
 &sql(DROP TABLE SQLUser.CaveDwellers)
 IF SQLCODE=0 {WRITE !,"Table deleted" }
 ELSEIF SQLCODE=-30 {WRITE !,"Table does not exist"}
 ELSE {WRITE !,"DROP TABLE failed. SQLCODE=",SQLCODE }

See Also
• CREATE TABLE

• INSERT

• UPDATE

• “Modifying the Database” chapter in Using InterSystems SQL

• “Defining Tables” chapter in Using InterSystems SQL

• “Defining Views” chapter in Using InterSystems SQL

• Transaction Processing in the “Modifying the Database” chapter of Using InterSystems SQL

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

214 InterSystems SQL Reference

SQL Commands

INTO
A SELECT clause that specifies the storing of selected values in host variables.

INTO :hostvar1 [,:hostvar2]...

Arguments

A host variable that has been declared in the host language.When specified in an INTO clause,
the variable name is preceded by a colon (:). A host variable can be a local variable
(unsubscripted or subscripted) or an object property.You can specify multiple variables as a
comma-separated list, as a single subscripted array variable, or a combination of a
comma-separated list and a single subscripted array variable.

:hostvar1

Description
The INTO clause and host variables are only used in Embedded SQL. They are not used in Dynamic SQL. In Dynamic
SQL, similar functionality for output variables is provided by the %SQL.Statement class. Specifying an INTO clause in a
SELECT query processed via ODBC, JDBC, or Dynamic SQL results in an SQLCODE -422 error.

An INTO clause can be used in a SELECT, DECLARE, or FETCH statement. The INTO clause is identical for all three
statements; examples on this page all refer to the SELECT statement. For usage with DECLARE and FETCH, refer to
“SQL Cursors” in the “Using Embedded SQL” chapter of Using InterSystems SQL.

The INTO clause uses the values retrieved (or calculated) in the SELECT select-item list to set corresponding host variables,
making these returned data values available to ObjectScript. In a SELECT the optional INTO clause appears after the
select-item list and before the FROM clause.

Host Variables

A host variable can contain only a single value. Therefore, a SELECT in embedded SQL only retrieves one row of data.
This defaults to the first row of the table. You can, of course, retrieve data from some other row of the table by limiting the
eligible rows using a WHERE condition.

In embedded SQL you can return data from multiple rows by declaring a cursor and then issuing a FETCH for each suc-
cessive row. The INTO clause host variables can be specified in the DECLARE query or specified in the FETCH.

INTO clause host variables can be specified in either of two ways (or a combination of both):

• A host variable list, consisting of a comma-separated list of host variables, one for each select-item.

• A host variable array, consisting of a single subscripted host variable.

For important restrictions on the use of host variable values in the containing program, refer to the Host Variables section
of the “Embedded SQL” chapter of Using InterSystems SQL.

Note: If the host language declares data types for variables, all host variables must be declared in the host language
before invoking the SELECT statement. The data types of the retrieved field values must match the host variable
declarations. (ObjectScript does not declare data types for variables.)

Using a Host Variable List

The following rules apply when you specify a host variable list in the INTO clause:

• The number of host variables in the INTO clause must match the number of fields specified in the select-item list. If
the number of selected fields and host variables differs, SQL returns a “cardinality mismatch” error.

InterSystems SQL Reference 215

INTO

• Selected fields and host variables are matched by relative position. Therefore, the corresponding items in these two
lists must appear in the same sequence.

• The listed host variables may be any combination of unsubscripted or subscripted variables.

• A listed host variable can return an aggregate value (such as a count, sum, or average) or a function value.

• A listed host variable can return %CLASSNAME and %TABLENAME values.

• Listed host variables can return field values from a SELECT involving multiple tables, or return values from a SELECT
with no FROM clause.

The following example selects four fields into a list of four host variables. The host variables in this example are subscripted:

 &sql(SELECT %ID,Home_City,Name,SSN
 INTO :mydata(1),:mydata(2),:mydata(3),:mydata(4)
 FROM Sample.Person
 WHERE Home_State='MA')
 IF SQLCODE=0 {
 FOR i=1:1:15 {
 IF $DATA(mydata(i)) {
 WRITE "field ",i," = ",mydata(i),! }
 } }
 ELSE {WRITE "SQLCODE=",SQLCODE,! }

For further examples refer to Host Variable List Examples, below.

Using a Host Variable Array

A host variable array uses a single subscripted variable to contain all of the selected field values. This array is populated
according to the order of field definition in the table, not the order of fields in the select-item list.

The following rules apply when using a host variable array in the INTO clause:

• The fields specified in the select-item list are selected into subscripts of a single host variable. Therefore, you do not
have to match the number of items in the select-item list with the host variable count.

• The host variable subscripts are populated by the corresponding field position in the table definition. For example, the
6th field, as defined in the table definition, corresponds to mydata(6). All subscripts that do not correspond to a specified
select-item remain undefined. The order of the items in the select-item has no effect on how subscripts are populated.

• A host variable array can only return field values from a single table.

• A host variable array can only return field values. It cannot return an aggregate value (such as a count, sum, or average),
a function value, or a %CLASSNAME or %TABLENAME value. (You can return these by specifying a host variable
argument that combines host variable list items with the host variable array.)

The following example selects four fields into a host variable array:

 &sql(SELECT %ID,Home_City,Name,SSN
 INTO :mydata()
 FROM Sample.Person
 WHERE Home_State='MA')
 IF SQLCODE=0 {
 FOR i=0:1:15 {
 IF $DATA(mydata(i)) {
 WRITE "field ",i," = ",mydata(i),! }
 } }
 ELSE {WRITE "SQLCODE=",SQLCODE,! }

For further examples refer to Host Variable Array Examples, below.

For further details, refer to “Host Variable as a Subscripted Array” in the “Using Embedded SQL” chapter of Using
InterSystems SQL.

216 InterSystems SQL Reference

SQL Commands

Host Variable List Examples
The following Embedded SQL example selects three fields from the first record in the table (Embedded SQL always
retrieves a single record), and uses INTO to set three corresponding unsubscripted host variables. These variables are then
used by the ObjectScript WRITE commands. It is considered good program practice to immediately test the SQLCODE
variable upon returning from Embedded SQL. If SQLCODE is not equal to 0, the values of output host variables are inde-
terminate.

 WRITE !,"Going to get the first record"
 &sql(SELECT Home_State, Name, Age
 INTO :state, :name, :age
 FROM Sample.Person)
 IF SQLCODE=0 {
 WRITE !," Name=",name
 WRITE !," Age=",age
 WRITE !," Home State=",state }
 ELSE {
 WRITE !,"SQL error ",SQLCODE }

The following Embedded SQL example passes a host variable (today) into the SELECT statement, where a calculation
results in the INTO clause variable value (:tomorrow). This host variable is passed out to the containing program. This
SQL query does not require a FROM clause.

 SET today=$HOROLOG
 &sql(SELECT :today+1
 INTO :tomorrow)
 IF SQLCODE=0 {
 WRITE !,"Tomorrow is: ",$ZDATE(tomorrow) }
 ELSE {
 WRITE !,"SQL error ",SQLCODE }

For restrictions on the use of input and output host variable values, refer to the Host Variables section of the “Embedded
SQL” chapter of Using InterSystems SQL.

The following Embedded SQL example returns aggregate values. It uses the COUNT aggregate function to count the
records in a table and AVG to average the Salary field values. The INTO clause returns these values to ObjectScript as
two subscripted host variables:

 WRITE !,"Counting the records"
 &sql(SELECT COUNT(*),AVG(Salary)
 INTO :agg(1),:agg(2)
 FROM Sample.Employee)
 IF SQLCODE=0 {
 WRITE !,"Total Eymployee records= ",agg(1)
 WRITE !,"Average Employee salary= ",agg(2) }
 ELSE {
 WRITE !,"SQL error ",SQLCODE }

The following Embedded SQL example returns field values from a row resulting from the join of two tables. You must use
a host variable list when returning fields from more than one table:

 &sql(SELECT P.Name,E.Title,E.Name,P.%TABLENAME,E.%TABLENAME
 INTO :name(1),:title,:name(2),:ptname,:etname
 FROM Sample.Person AS P LEFT JOIN
 Sample.Employee AS E ON E.Name %STARTSWITH 'B'
 WHERE P.Name %STARTSWITH 'A')
 IF SQLCODE=0 {
 WRITE ptname," = ",name(1),!
 WRITE etname," = ",title,!
 WRITE etname," = ",name(2) }
 ELSE {
 WRITE !,"SQL error ",SQLCODE }

Host Variable Array Examples
The following two Embedded SQL examples uses a host variable array to return the non-hidden data field values from a
row. In these examples %ID is specified in the select-item list, because, by default, SELECT * does not return the RowId
(though it does for Sample.Person); the RowId is always field 1. Note in Sample.Person fields 4 and 9 can take NULL,
field 5 is not a data field (it references Sample.Address), and field 10 is hidden.

InterSystems SQL Reference 217

INTO

The first example returns a specified number of fields (firstflds); hidden and non-data fields are included in this count,
though not displayed. Using firstflds would be appropriate when returning a row from a table with many fields. Note that
this example can return Field 0, which is the parent reference. Sample.Person is not a child table, so tflds(0) is undefined:

 &sql(SELECT *,%ID INTO :tflds()
 FROM Sample.Person)
 IF SQLCODE=0 {
 SET firstflds=14
 FOR i=0:1:firstflds {
 IF $DATA(tflds(i)) {
 WRITE "field ",i," = ",tflds(i),! }
 } }
 ELSE {WRITE "SQLCODE error=",SQLCODE,! }

The second example returns all the non-hidden data fields in Sample.Person. Note that this example does not attempt to
return Field 0, the parent reference, because in Sample.Person tflds(0) is undefined, and would therefore generate an
<UNDEFINED> error:

 &sql(SELECT *,%ID INTO :tflds()
 FROM Sample.Person)
 IF SQLCODE=0 {
 SET x=1
 WHILE x '="" {
 WRITE "field ",x," = ",tflds(x),!
 SET x=$ORDER(tflds(x)) }
 }
 ELSE { WRITE "SQLCODE error=",SQLCODE,! }

The following Embedded SQL example combines a comma-separated host variable list (for non-field values) and a host
variable array (for field values):

 &sql(SELECT %TABLENAME,Name,Age,AVG(Age)
 INTO :tname,:tflds(),:ageavg
 FROM Sample.Person
 WHERE Age > 50)
 IF SQLCODE=0 {
 WRITE "Table name is = ",tname,!
 FOR i=0:1:25 {
 IF $DATA(tflds(i)) {
 WRITE "field ",i," = ",tflds(i),! }
 }
 WRITE "Average age is = ",ageavg,! }
 ELSE {WRITE "SQLCODE=",SQLCODE,! }

See Also
• SELECT, DECLARE, FETCH statements

• VALUES clause

• “Host Variables” in the “Using Embedded SQL” chapter of Using InterSystems SQL

• ObjectScript: SET command

218 InterSystems SQL Reference

SQL Commands

%INTRANSACTION
Shows transaction state.

%INTRANSACTION
%INTRANS

Arguments

None

Description
The %INTRANSACTION statement sets SQLCODE to indicate the transaction state:

• SQLCODE=0 if currently in a transaction.

• SQLCODE=100 if not in a transaction.

%INTRANSACTION returns SQLCODE=0 while a transaction is in progress. This transaction can be an SQL transaction
initiated by START TRANSACTION or SAVEPOINT. It can also be an ObjectScript transaction initiated by TSTART.

Transaction nesting has no effect on %INTRANSACTION. SET TRANSACTION has no effect on %INTRANSACTION.

You can also determine transaction state using $TLEVEL. %INTRANSACTION only indicates whether a transaction is
in progress. $TLEVEL indicates both whether a transaction is in progress and the current number of transaction levels.

Examples
The following embedded SQL example shows how %INTRANSACTION sets SQLCODE:

 NEW SQLCODE
 &sql(%INTRANSACTION)
 WRITE "Before %INTRANS SQLCODE=",SQLCODE," TL=",$TLEVEL,!
 &sql(SET TRANSACTION %COMMITMODE EXPLICIT)
 NEW SQLCODE
 &sql(%INTRANSACTION)
 WRITE "SetTran %INTRANS SQLCODE=",SQLCODE," TL=",$TLEVEL,!
 &sql(START TRANSACTION)
 NEW SQLCODE
 &sql(%INTRANSACTION)
 WRITE "StartTran %INTRANS SQLCODE=",SQLCODE," TL=",$TLEVEL,!
 &sql(SAVEPOINT a)
 NEW SQLCODE
 &sql(%INTRANSACTION)
 WRITE "Savepoint %INTRANS SQLCODE=",SQLCODE," TL=",$TLEVEL,!
 &sql(ROLLBACK TO SAVEPOINT a)
 NEW SQLCODE
 &sql(%INTRANSACTION)
 WRITE "Rollback to Savepoint %INTRANS SQLCODE=",SQLCODE," TL=",$TLEVEL,!
 &sql(COMMIT)
 NEW SQLCODE
 &sql(%INTRANSACTION)
 WRITE "After Commit %INTRANS SQLCODE=",SQLCODE," TL=",$TLEVEL

See Also
• COMMIT ROLLBACK SAVEPOINT SET TRANSACTION START TRANSACTION $TLEVEL

• Transaction Processing in the “Modifying the Database” chapter of Using InterSystems SQL.

InterSystems SQL Reference 219

%INTRANSACTION

JOIN
A SELECT subclause that creates a table based on the data in two tables.

table1 [[AS] t-alias] CROSS JOIN table2 [[AS] t-alias] |

table1 [[AS] t-alias] , table2 [[AS] t-alias]

table1 [[AS] t-alias]
NATURAL [INNER] JOIN |
NATURAL LEFT [OUTER] JOIN |
NATURAL RIGHT [OUTER] JOIN |
table2 [[AS] t-alias]

table1 [[AS] t-alias]
[INNER] JOIN |
LEFT [OUTER] JOIN |
RIGHT [OUTER] JOIN |
FULL [OUTER] JOIN
table2 [[AS] t-alias]
ON condition-expression

table1 [[AS] t-alias]
[INNER] JOIN |
LEFT [OUTER] JOIN |
RIGHT [OUTER] JOIN |
table2 [[AS] t-alias]
USING (identifier-commalist)

(The above join syntax is used in the SELECT statement FROM clause. Other join syntax can be used in other SELECT
statement clauses.)

Description
A join is an operation that combines two tables to produce a joined table, optionally subject to one or more restrictive
conditions. Every row of the new table must satisfy the restrictive condition(s). Joins provide the means of linking data in
one table with data in another table and are frequently used in defining reports and queries.

There are several syntactical forms for representing joins. The preferred form is specifying an explicit join expression in a
SELECT statement as part of the FROM clause. A FROM clause join expression can contain multiple joins.

Note: InterSystems SQL also supports implicit joins using arrow syntax (–>) in the SELECT statement select-item list,
WHERE clause, ORDER BY clause, and elsewhere. An implicit join is specified to perform a left outer join of
a table with a field from another table; an explicit join is specified to join two tables. This implicit join syntax
can be a useful substitute for explicit join syntax, or appear in the same query with explicit join syntax. There are,
however some important restrictions on combining arrow syntax with explicit join syntax. These restrictions are
described below. For information on using arrow syntax, refer to Implicit Joins in Using InterSystems SQL.

InterSystems IRIS uses complex optimization algorithms to maximize performance of join operations. It does not, neces-
sarily, join tables in the order in which they are specified. Instead, the SQL optimizer determines the table join order based
on Tune Table data for each table (among other factors). It is therefore important that Tune Table be run against a table
before that table is used in complex SQL queries. For further details on query optimization, refer to “Performance with
Multiple Joins and Implicit Joins” and the Optimizing Query Performance chapter of the SQL Optimization Guide.

In most cases, the SQL optimizer strategy provides optimal results. However, InterSystems IRIS also provides join opti-
mization keywords such as %FIRSTTABLE, %INORDER and %FULL that you can use immediately after the FROM
keyword to override the default optimization strategy for a specific query. For a description of these optimization keywords,
refer to “Query Optimization Options” in the FROM clause documentation.

220 InterSystems SQL Reference

SQL Commands

JOIN Definitions

InterSystems IRIS supports many different syntactical forms of JOIN. However, these many formulations refer to the fol-
lowing five types of joins.

Syntactical EquivalentsANSI Join Syntax

Same as symbolic representation: table1,table2 (a list of tables separated
by commas) in the FROM clause.

CROSS JOIN

Same as JOIN. Symbolic representation: "=" (in a WHERE clause).INNER JOIN

Same as LEFT JOIN. Arrow syntax (->) also performs a left outer join.LEFT OUTER JOIN

Same as RIGHT JOIN.RIGHT OUTER JOIN

Same as FULL JOIN.FULL OUTER JOIN

Unless otherwise indicated, all join syntax is specified in the FROM clause.

• A CROSS JOIN is a join that crosses every row of the first table with every row of the second table. This results in a
Cartesian product, a large, logically comprehensive table with much data duplication. Usually this join is performed
by providing a comma-separated list of tables in the FROM clause, then using the WHERE clause to specify restrictive
conditions. The %INORDER or %STARTTABLE optimization keyword cannot be used with a cross join. Attempting
to do so results in an SQLCODE -34 error. For further details on join optimization keywords, refer to the FROM clause.

• An INNER JOIN is a join that links rows of the first table with rows of a second table, excluding any row in the first
table that finds no corresponding row in the second table.

• A LEFT OUTER JOIN and a RIGHT OUTER JOIN are in most respects functionally identical (with reversed syntax),
and thus are frequently referred to collectively as one-way outer joins. A one-way outer join is a join that links rows
of the first (source) table with rows of a second table, including all rows from the first table even if there is no match
in the second table. This results in a table in which some fields of the first (source) table may be paired with NULL
data.

When specifying a one-way outer join, the order in which you name the tables in the FROM clause is very important.
For a LEFT OUTER JOIN, the first table you specify is the source table for the join. For a RIGHT OUTER JOIN the
second table you specify is the source table for the join.

• A FULL OUTER JOIN is a join that combines the results of performing both a LEFT OUTER JOIN and a RIGHT
OUTER JOIN on the two tables. It includes all rows found in either the first table or the second table, and fills in
NULLs for missing matches on either side.

CROSS JOIN Considerations

The explicit use of the JOIN keyword has higher precedence than specifying a cross join using comma syntax. InterSystems
IRIS thus interprets t1,t2 JOIN t3 as t1,(t2 JOIN t3).

You cannot perform a cross join involving a local table and an external table linked through an ODBC or JDBC gateway
connection. For example, FROM Sample.Person,Mylink.Person. Attempting to do so results in SQLCODE -161: “References
to an SQL connection must constitute a whole subquery” . To perform this cross join you must specify the linked table as
a subquery. For example, FROM Sample.Person,(SELECT * FROM Mylink.Person).

NATURAL Joins

A NATURAL JOIN is an INNER JOIN, LEFT OUTER JOIN, or RIGHT OUTER JOIN prefixed with the NATURAL
keyword. Prefixing a join with the word NATURAL specifies that you are joining on all the columns of the two tables that
have the same name. Because a NATURAL join automatically performs an equality condition on all columns having the

InterSystems SQL Reference 221

JOIN

same name, it is not possible to specify an ON clause or a USING clause. Attempting to do so results in an SQLCODE -
25 error.

Only simple base table references (not views or subqueries) are supported for either operand of a NATURAL join.

A NATURAL join can only be specified as the first join within a join expression.

A NATURAL join does not merge columns with the same name.

A FULL JOIN cannot be prefixed with the NATURAL keyword. Attempting to do so results in an SQLCODE -94 error.

ON Clause

An INNER JOIN, LEFT OUTER JOIN, RIGHT OUTER JOIN, or FULL OUTER JOIN may have an ON clause. An ON
clause contains one or more condition expressions used to limit the values returned by the join operation. A join with an
ON clause can be specified anywhere within a join expression. A join with an ON clause can specify tables, views, or
subqueries for either operand of the join.

The ON clause consists of one or more condition expression predicates. These include most of the predicates supported by
InterSystems SQL. However, you cannot use the FOR SOME %ELEMENT collection predicate to limit a join operation.

You can associate multiple condition expressions using AND, OR, and NOT logical operators. AND takes precedence over
OR. Parentheses can be used to nest and group condition expressions. Unless grouped by parentheses, predicates using the
same logical operator are executed in strict left-to-right order.

An ON clause has the following restrictions:

• A join with an ON clause can only use ANSI join keyword syntax.

• A join with an ON clause cannot take the NATURAL keyword prefix. This results in an SQLCODE -25 error.

• A join with an ON clause cannot take a USING clause. This results in an SQLCODE -25 error.

• An ON clause cannot include arrow syntax (–>). This results in an SQLCODE -67 error. For a description of arrow
syntax, refer to Implicit Joins in Using InterSystems SQL.

• An ON clause can only reference tables explicitly specified in the ANSI keyword JOIN operation. Other tables specified
in the FROM clause may not be referenced in the ON clause. This results in an SQLCODE -23 error.

• An ON clause can only reference columns that are in the operands of the JOIN. Syntax precedence in multiple joins
can cause the ON clause to fail. For example, the query SELECT * FROM t1,t2 JOIN t3 ON t1.p1=t3.p3
fails because t1 and t3 are not operands of a join; t1 joins with the result set of t2 JOIN t3. Either of the following
changes in syntax result in the successful execution of this query: SELECT * FROM t1 CROSS JOIN t2 JOIN
t3 ON t1.p1=t3.p3 or SELECT * FROM t2,t1 JOIN t3 ON t1.p1=t3.p3.

• OUTER JOIN with an ON clause restriction. If all the conditions affecting a table use comparisons that may pass null
values, and that table is itself a target of an outer join, this can result in an SQLCODE -94 error: Unsupported
usage of OUTER JOIN. The following is a LEFT OUTER JOIN example of this type of invalid join:

SELECT *
FROM Table1
 LEFT JOIN Table2 ON Table1.k = Table2.k
 LEFT JOIN Table3 ON COALESCE(Table1.k,Table2.k) = Table3.k

Similar examples using FULL OUTER JOIN or RIGHT OUTER JOIN also have this restriction.

ON Clause Indexing

For optimal performance, fields referenced in an ON clause should (in most cases) have an associated index. An ON clause
can use an existing index that satisfies only some of the join conditions. An ON clause specifying conditions on multiple
fields can use an index containing only a subset of those fields as subscripts to partially satisfy the join; InterSystems IRIS
will test the join condition on the remaining fields directly from the table.

222 InterSystems SQL Reference

SQL Commands

The collation type of a field referenced in an ON clause should match the collation type that it has in the corresponding
index. A collation type mismatch can cause an index to not be used. However, if a join condition is on a %EXACT field
value, but only an index on the collated field value is available, InterSystems IRIS can use that index to limit the rows to
be checked for the exact value. For further details on collation type matching, refer to Index Collation in the “Defining
and Building Indices” chapter of SQL Optimization Guide.

In very specific situations you may wish to prevent the use of an index for an ON clause condition by prefacing it with the
%NOINDEX keyword. For further details on indices and performance, refer to the Index Analyzer and Index Optimization
Options in the SQL Optimization Guide.

USING Clause

An INNER JOIN, LEFT OUTER JOIN, or RIGHT OUTER JOIN may have a USING clause. Only simple base table ref-
erences (not views or subqueries) are supported for either operand of a join with a USING clause. A join with a USING
clause can only be specified as the first join within a join expression. A join with a USING clause cannot take the NATURAL
keyword prefix, or an ON clause.

A USING clause lists one or more column names, separated by commas and enclosed within parentheses. The parentheses
are required. Only explicit column names are permitted; %ID is not permitted. Duplicate column names are ignored. A
USING clause does not merge columns with the same name.

A USING clause is a brief way to represent the equality conditions expressed in an ON clause. Thus: t1 INNER JOIN
t2 USING (a,b) is equivalent to t1 INNER JOIN t2 ON t1.a=t2.a AND t1.b=t2.b

One-Way Outer Joins
InterSystems IRIS supports one-way outer joins: LEFT OUTER JOIN and RIGHT OUTER JOIN.

With standard "inner" joins, when rows of one table are linked with rows of a second table, a row in the first table that finds
no corresponding row in the second table is excluded from the output table.

With one-way outer joins, all rows from the first table are included in the output table even if there is no match in the second
table. With one-way outer joins, the first table pulls relevant information out of the second table but never sacrifices its
own rows for lack of a match in the second table.

For example, if a query lists Table1 first and creates a left outer join, then it should be able to see all the rows in Table1
even if they don't have corresponding records in Table2.

When specifying a one-way outer join, the order in which you name the tables in the FROM clause is very important. For
a left outer join, the first table you specify is the source table for the join. For a right outer join the second table you specify
is the source table for the join. For this reason, the %INORDER or %STARTTABLE optimization keyword cannot be used
with a right outer join. The following syntax is contradictory and results in an SQLCODE -34 error: FROM %INORDER
table1 RIGHT OUTER JOIN table2 ON.... For further details on join optimization keywords, refer to the FROM
clause.

Outer Join Syntax

InterSystems IRIS supports two formats for representing outer joins:

1. The ANSI standard syntax: LEFT OUTER JOIN and RIGHT OUTER JOIN. SQL Standard syntax puts the outer join
in the FROM clause of the SELECT statement, rather than the WHERE clause, as shown in the following example:

FROM tbl1 LEFT OUTER JOIN tbl2 ON (tbl1.key = tbl2.key)

2. The ODBC Specification outer join extension syntax, using the escape-syntax {oj join-expression }, where
join-expression is any ANSI standard join syntax.

InterSystems SQL Reference 223

JOIN

Null Padding

A one-way outer join performs null padding. This mean that if a row of the source table has a NULL value for the merged
column, a null value is returned for the corresponding field from the non-source table.

The left outer join condition is expressed by the following syntax:

A LEFT OUTER JOIN B ON A.x=B.y

This specifies that every row in A is returned. For each A row returned, if there is a B row such that A.x=B.y, all of the
corresponding B values are also returned.

If there is no B row such that A.x=B.y, null padding causes all B values for that A row to return as null.

For example, consider the Patient table that contains information about patients, including a field Patient.DocID specifying
and ID code for the patient’s primary doctor. Some patients in the database do not have a primary doctor, so for those
patient records the Patient.DocID field is NULL. Now, we perform a join between the Patient table and the Doctor table
to generate a table of patient names and corresponding doctor names.

The following example is an INNER JOIN.

SELECT Patient.PName,Doctor.DName
 FROM Patient INNER JOIN Doctor
 ON Patient.DocID=Doctor.DocID

An INNER JOIN does not perform null padding. Therefore, no patient name without a corresponding doctor name is
returned.

A one-way outer join does perform null padding. Therefore, a patient name without a corresponding doctor name returns
a NULL for Doctor.DName.

SELECT Patient.PName,Doctor.DName
 FROM Patient LEFT OUTER JOIN Doctor
 ON Patient.DocID=Doctor.DocID

Order of Operations

One-way outer join conditions, including the necessary null padding, are applied before other conditions. Therefore, a
condition in the WHERE clause that cannot be satisfied by a null-padded value (for example, a range or equality condition
on a field in B) effectively converts the one-way outer join of A and B into a regular join (an inner join).

For example, if you add the clause "WHERE Doctor.Age < 45" to the two "Patient" table queries above, it makes them
equivalent. However, if you add the clause "WHERE Doctor.Age < 45 OR Doctor.Age IS NULL", it preserves the difference
between the two queries.

Mixing Outer and Inner Joins
InterSystems IRIS supports all syntax of mixed inner joins and outer joins in any order.

Performance with Multiple Joins and Implicit Joins
By default, the query optimizer sequences multiple join operations in its best estimation of the optimal sequence. This is
not necessarily the join sequence order that you specified in the query. You can specify the %INORDER, %FIRSTTABLE,
or %STARTTABLE query optimization option in the FROM clause to explicitly specify the order in which the tables are
joined.

The query optimizer may perform subquery flattening, converting certain subqueries to explicit joins. This substantially
improves join performance when the number of subqueries is small. When the number of subqueries is more than one or
two, subquery flattening may, in some cases, actually slightly degrade performance. You can specify the %NOFLATTEN
query optimization option in the FROM clause to explicitly specify that subquery flattening should not be performed.

224 InterSystems SQL Reference

SQL Commands

The query optimizer only performs subquery flattening when the total number of joins in a query, after subquery flattening,
would not exceed 15 joins. Specifying more than 15 joins, when some of those joins are implicit joins or joined subqueries,
can result is a significant degradation in query performance.

Examples
The following examples display the results of the JOIN operations performed on Table1 and Table2.

 Table1 Table2
Column1 Column2 Column1 Column3
 aaa bbb ggg hhh
 ccc ccc xxx zzz
 xxx yyy
 hhh zzz

CROSS JOIN Example

The statement:

SELECT * FROM Table1 CROSS JOIN Table2

yields the table:

Column1 Column2 Column1 Column3
 aaa bbb ggg hhh
 aaa bbb xxx zzz
 ccc ccc ggg hhh
 ccc ccc xxx zzz
 xxx yyy ggg hhh
 xxx yyy xxx zzz
 hhh zzz ggg hhh
 hhh zzz xxx zzz

NATURAL JOIN Example

The statement:

SELECT * FROM Table1 NATURAL JOIN Table2

yields the table

Column1 Column2 Column1 Column3
 xxx yyy xxx zzz

Note that the InterSystems IRIS implementation of NATURAL JOIN does not merge columns with the same name.

INNER JOIN with an ON Clause Example

The statement:

SELECT * FROM Table1 INNER JOIN Table2
 ON Table1.Column1=Table2.Column3

yields the table:

Column1 Column2 Column1 Column3
 hhh zzz ggg hhh

INNER JOIN with a USING Clause Example

The statement:

SELECT * FROM Table1 INNER JOIN Table2
 USING (Column1)

yields the table:

InterSystems SQL Reference 225

JOIN

Column1 Column2 Column1 Column3
 xxx yyy xxx zzz

Note that the InterSystems IRIS implementation of a USING clause does not merge columns with the same name.

LEFT OUTER JOIN Example

The statement:

SELECT * FROM Table1 LEFT OUTER JOIN Table2
 ON Table1.Column1=Table2.Column3

yields the table:

Column1 Column2 Column1 Column3
 aaa bbb null null
 ccc ccc null null
 xxx yyy null null
 hhh zzz ggg hhh

RIGHT OUTER JOIN Example

The statement:

SELECT * FROM Table1 RIGHT OUTER JOIN Table2
 ON Table1.Column1=Table2.Column3

yields the table:

Column1 Column2 Column1 Column3
 hhh zzz ggg hhh
 null null xxx zzz

FULL OUTER JOIN Example

The statement:

SELECT * FROM Table1 FULL OUTER JOIN Table2
 ON Table1.Column1=Table2.Column3

yields the table:

Column1 Column2 Column1 Column3
 aaa bbb null null
 ccc ccc null null
 xxx yyy null null
 hhh zzz ggg hhh
 null null xxx zzz

See Also
• SELECT statement, FROM clause, ORDER BY clause, WHERE clause

• ALTER TABLE, CREATE TABLE, DROP TABLE

• INSERT, UPDATE

• “Defining Tables” chapter in Using InterSystems SQL

• “Querying the Database” chapter in Using InterSystems SQL

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

226 InterSystems SQL Reference

SQL Commands

LOCK
Locks a table.

LOCK [TABLE] tablename IN EXCLUSIVE MODE [WAIT seconds]

LOCK [TABLE] tablename IN SHARE MODE [WAIT seconds]

Arguments

The name of the table to be locked. tablename must be an existing table. A tablename
can be qualified (schema.table), or unqualified (table). An unqualified table name takes
the system-wide default schema name. A schema search path is ignored.

tablename

The IN EXCLUSIVE MODE keyword phrase creates a regular InterSystems IRIS lock.
The IN SHARE MODE keyword phrase creates a shared InterSystems IRIS lock.

IN EXCLUSIVE
MODE / IN SHARE
MODE

Optional — An integer specifying the number of seconds to attempt to acquire the lock
before timing out. If omitted, the system default timeout is applied.

seconds

Description
LOCK and LOCK TABLE are synonymous.

The LOCK command explicitly locks an SQL table. This table must be an existing table for which you have the necessary
privileges. If tablename is a nonexistent table, LOCK fails with a compile error. If tablename is a temporary table, the
command completes successfully, but performs no operation. If tablename is a view, the command fails with an SQLCODE
-400 error.

The UNLOCK command reverses the LOCK operation. An explicit LOCK remains in effect until you issue an explicit
UNLOCK for the same mode, or until the process terminates.

You can use LOCK to lock a table multiple times; you must explicitly UNLOCK the table as many times as it was
explicitly locked. Each UNLOCK must specify the same mode as the corresponding LOCK.

Privileges

The LOCK command is a privileged operation. Prior to using LOCK IN SHARE MODE it is necessary for your process
to have SELECT privilege for the specified table. Prior to using LOCK IN EXCLUSIVE MODE it is necessary for your
process to have INSERT, UPDATE, or DELETE privilege for the specified table. For IN EXCLUSIVE MODE, the INSERT
or UPDATE privilege must be on at least one field of the table. Failing to hold sufficient privileges results in an SQLCODE
-99 error (Privilege Violation). You can determine if the current user has the necessary privileges by invoking the
%CHECKPRIV command. You can determine if a specified user has the necessary privileges by invoking the
$SYSTEM.SQL.CheckPriv() method. For privilege assignment, refer to the GRANT command.

These privileges are required to acquire the lock; they do not define the nature of the lock. An IN EXCLUSIVE MODE
lock prevents other processes from performing INSERT, UPDATE, or DELETE operations, regardless of whether the lock
holder has the corresponding privilege.

LOCK Modes

LOCK supports two modes: SHARE and EXCLUSIVE. These lock modes are independent of each other. You can apply
both a SHARE lock and an EXCLUSIVE lock to the same table. A lock in EXCLUSIVE mode can only be unlocked by
an UNLOCK in EXCLUSIVE mode. A lock in SHARE mode can only be unlocked by an UNLOCK in SHARE mode.

InterSystems SQL Reference 227

LOCK

• LOCK mytable IN SHARE MODE prevents other processes from issuing an EXCLUSIVE lock on mytable, or
invoking a DDL operation, such as DROP TABLE.

• LOCK mytable IN EXCLUSIVE MODE prevents other processes from issuing an EXCLUSIVE lock or a SHARE
lock on mytable, performing an insert, update, or delete operation, or invoking a DDL operation, such as DROP
TABLE.

LOCK permits read access to the table. Neither LOCK mode prevents other processes from performing a SELECT on
the table in READ UNCOMMITTED mode (the default SELECT mode).

Locking Conflicts

• If a table is already locked by another user IN EXCLUSIVE MODE, you cannot lock it in any mode.

• If a table is already locked by another user IN SHARE MODE, you can also lock the table IN SHARE MODE, but
you cannot lock it IN EXCLUSIVE MODE.

These LOCK conflicts generate an SQLCODE -110 error and generates a %msg such as the following: Unable to
acquire shared table-level lock for table 'Sample.Person'.

Lock Timeout

LOCK attempts to acquire the specified SQL table lock until timeout occurs. When timeout occurs, LOCK generates an
SQLCODE -110 error.

• If you have specified WAIT seconds, SQL table lock timeout occurs when that number of seconds elapses.

• Otherwise, SQL table lock timeout occurs when the current process SQL timeout elapses. You can set the lock timeout
for the current process using the ProcessLockTimeout methods SetProcessLockTimeout() and
GetProcessLockTimeout(). You can also set the lock timeout for the current process using the SQL command SET
OPTION with the LOCK_TIMEOUT option. (SET OPTION cannot be used from the SQL Shell.) The current process
SQL lock timeout defaults to the system-wide SQL lock timeout.

• Otherwise, SQL table lock timeout occurs when the system-wide SQL timeout elapses. The system-wide default is 10
seconds. You can set the system-wide lock timeout in two ways:

– Using the SetLockTimeout() method. This immediately changes the system-wide lock timeout default for new
processes, and also resets the ProcessLockTimeout for the current process to this new system-wide value. Setting
the system-wide lock timeout has no effect on the ProcessLockTimeout setting for other currently running processes.

– Using the Management Portal, select System Administration, Configuration, SQL and Object Settings, SQL. View
and edit the current setting of Lock timeout (seconds). This changes the system-wide lock timeout default for new
processes that start after you save the configuration change. It has no effect on currently running processes.

The SetLockTimeout() method sets a value and returns the previous value. You can use GetLockTimeout() to return the
current system-wide lock timeout value:

GetSysTimeout
 DO $SYSTEM.SQL.SetLockTimeout()
 SET oldval=$SYSTEM.SQL.GetLockTimeout()
 WRITE oldval," seconds initial system-wide lock setting",!
SetSysTimeout
 DO $SYSTEM.SQL.SetLockTimeout(30,.oldval2)
 WRITE "system-wide lock timeout changed from ",oldval2," to "
 WRITE $SYSTEM.SQL.GetLockTimeout(),!
ResetSysTimeout
 DO $SYSTEM.SQL.SetLockTimeout(oldval,.oldval3)
 WRITE "system-wide lock timeout reset from ",oldval3," to "
 WRITE $SYSTEM.SQL.GetLockTimeout()

The SetProcessLockTimeout() method sets a value and returns a status code. You can use GetProcessLockTimeout() to
return the lock timeout value for the current process:

228 InterSystems SQL Reference

SQL Commands

GetTimeoutDefaults
 SET sysinit=$SYSTEM.SQL.GetLockTimeout()
 WRITE sysinit," initial system-wide lock seconds",!
 SET procinit=$SYSTEM.SQL.GetProcessLockTimeout()
 WRITE procinit," initial process lock seconds",!
SetProcessTimeout
 DO $SYSTEM.SQL.SetProcessLockTimeout(50,.stat)
 IF stat {WRITE $SYSTEM.SQL.GetProcessLockTimeout()," set process lock seconds",! }
SetProcessTimeoutAgain
 DO $SYSTEM.SQL.SetProcessLockTimeout(60,.stat2)
 IF stat2 {WRITE $SYSTEM.SQL.GetProcessLockTimeout()," set process lock seconds",! }
SetProcessTimeoutMinimal
 DO $SYSTEM.SQL.SetProcessLockTimeout()
 WRITE $SYSTEM.SQL.GetProcessLockTimeout()," minimal process lock seconds",!
ResetToDefault
 DO $SYSTEM.SQL.SetProcessLockTimeout(procinit)
 WRITE $SYSTEM.SQL.GetProcessLockTimeout()," reset process lock seconds",!

Transaction Processing

A LOCK operation is not part of a transaction. Rolling back a transaction in which a LOCK is issued does not release the
lock. An UNLOCK can be defined as occurring at the conclusion of the current transaction, or occurring immediately.

Other Locking Operations

Many DDL operations, including ALTER TABLE and DELETE TABLE acquire an exclusive table lock.

The INSERT, UPDATE, and DELETE commands also perform locking. By default they lock at the record level for the
duration of the current transaction; if one of these commands locks a sufficiently large number of records (1000 is the
default setting), the lock is automatically elevated to a table lock. The LOCK command allows you to explicitly set a table
level lock, giving you greater control over the locking of data resources. An INSERT, UPDATE, or DELETE can override
a LOCK by specifying the %NOLOCK keyword.

The InterSystems SQL SET OPTION with the LOCK_TIMEOUT option sets the timeout for the current process for an
INSERT, UPDATE, DELETE, or SELECT operation.

InterSystems SQL supports the SetCachedQueryLockTimeout() method. See “Cached Queries” in the SQL Optimization
Guide.

Examples
The following embedded SQL examples create a table and then lock it:

 NEW SQLCODE,%msg
 &sql(CREATE TABLE mytest (
 ID NUMBER(12,0) NOT NULL,
 CREATE_DATE DATE DEFAULT CURRENT_TIMESTAMP(2),
 WORK_START DATE DEFAULT SYSDATE))
 IF SQLCODE=0 { WRITE "Table created",! }
 ELSEIF SQLCODE=-201 { WRITE "Table already exists",! }
 ELSE { WRITE "CREATE TABLE error: ",SQLCODE
 QUIT }

 NEW SQLCODE,%msg
 SET x=$ZHOROLOG
 &sql(LOCK mytest IN EXCLUSIVE MODE WAIT 4)
 IF SQLCODE=0 { WRITE !,"Table locked" }
 ELSEIF SQLCODE=-110 { WRITE "waited ",$ZHOROLOG-x," seconds"
 WRITE !,"Table is locked by another process",!,%msg }
 ELSE { WRITE !,"Unexpected LOCK error: ",SQLCODE,!,%msg }

SQL programs run from the Management Portal spawn a process that terminates as soon as the program executes. Thus a
lock is almost immediately released. Therefore, to observe a lock conflict, first issue a LOCK mytest IN EXCLUSIVE
MODE command from a Terminal running the SQL Shell in the same namespace. Then run the above embedded SQL
locking program. Issue an UNLOCK mytest IN EXCLUSIVE MODE from the Terminal SQL Shell. Then rerun the
above Embedded SQL locking program.

InterSystems SQL Reference 229

LOCK

See Also
• UNLOCK

• INSERT, UPDATE, DELETE

• SQL and Object Settings described in Configuration Parameter File Reference.

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

230 InterSystems SQL Reference

SQL Commands

OPEN
Opens a cursor.

OPEN cursor-name

Arguments

The name of the cursor, which has already been declared. The cursor name was
specified in the DECLARE statement. Cursor names are case-sensitive.

cursor-name

Description
An OPEN statement opens a cursor according to the parameters specified in the cursor’s DECLARE statement. Once
opened, a cursor can be fetched. An open cursor must be closed.

• Attempting to open a cursor that is not declared results in an SQLCODE -52 error.

• Attempting to open a cursor that is already open results in an SQLCODE -101 error.

• Attempting to fetch or close a cursor that is not open results in an SQLCODE -102 error.

A successful OPEN sets SQLCODE = 0, even if the result set is empty.

OPEN does not support the #SQLCompile Mode=Deferred preprocessor directive. Attempting to use Deferred mode with
a DECLARE, OPEN, FETCH, or CLOSE cursor statement generates a #5663 compilation error.

As an SQL statement, this is only supported from embedded SQL. Equivalent operations are supported through ODBC
using the ODBC API.

Example
The following embedded SQL example shows a cursor (named EmpCursor) being opened and closed:

 SET name="LastName,FirstName",state="##"
 &sql(DECLARE EmpCursor CURSOR FOR
 SELECT Name, Home_State
 INTO :name,:state FROM Sample.Person
 WHERE Home_State %STARTSWITH 'A')
 WRITE !,"BEFORE: Name=",name," State=",state
 &sql(OPEN EmpCursor)
 IF SQLCODE '= 0 { WRITE "Open error: ",SQLCODE
 QUIT }
 NEW %ROWCOUNT,%ROWID
 FOR { &sql(FETCH EmpCursor)
 QUIT:SQLCODE
 WRITE !,"DURING: Name=",name," State=",state }
 WRITE !,"FETCH status SQLCODE=",SQLCODE
 WRITE !,"Number of rows fetched=",%ROWCOUNT
 &sql(CLOSE EmpCursor)
 WRITE !,"AFTER: Name=",name," State=",state

See Also
• CLOSE, DECLARE, FETCH

• SQL Cursors in the “Using Embedded SQL” chapter of Using InterSystems SQL

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

InterSystems SQL Reference 231

OPEN

ORDER BY
A SELECT clause that specifies the sorting of rows in a result set.

ORDER BY ordering-item [ASC | DESC]{,ordering-item [ASC | DESC] ...}

Arguments

A literal that determines the sort order. A column name, column alias, or column
number. An ORDER BY clause can contain a single ordering-item or a
comma-separated list of ordering-items specifying a sorting hierarchy.

ordering-item

Optional — Sort in either ascending order (ASC), or descending order (DESC).
The default is ascending order.

ASC

DESC

Description
The ORDER BY clause sorts the records in a query result set by the data values of a specified column or a comma-separated
sequence of columns. This statement operates on a single result set, either from a SELECT statement or from a UNION of
multiple SELECT statements.

ORDER BY sorts records by the Logical (internal storage) data value, regardless of the current Select Mode setting.

The ORDER BY clause is the last clause in a SELECT statement. It appears after the FROM, WHERE, GROUP BY, and
HAVING clauses. Specifying SELECT clauses in the incorrect order generates an SQLCODE –25 error.

If a SELECT statement does not specify an ORDER BY clause, the returned record order is not predictable.

If a SELECT statement specifies an ORDER BY and a TOP clause, the records that are returned as the “top” rows are in
accord with the order specified in the ORDER BY clause. For example. SELECT TOP 5 Name,Age FROM MyTable
ORDER BY Age DESC returns the 5 rows from MyTable with the highest age value, ordered from older to younger.

Specifying Sort Columns

You can specify a single column on which to sort, or multiple columns as a comma-separated list. Sorting is done by the
first listed column, then within that column by the second listed column, and so on.

Columns can be specified by column name, column alias, or column number.

ORDER BY is not limited to field values. You can specify an expression as an ordering-item, such as ORDER BY
LENGTH(Name). You cannot specify an aggregate function directly in an ORDER BY clause; attempting to do so generates
an SQLCODE -73 error. However, you can specify in an ORDER BY clause any select-item by column alias or column
number, including an aggregate function or an expression.

An ORDER BY clause can specify any combination of column names, column aliases, and select-item column numbers.
If the first character of the ordering-item is a number, InterSystems IRIS assumes you are specifying a column number.
Otherwise a column name or column alias is assumed. Note that column names and column aliases are not case-sensitive.

With few exceptions, an ordering-item must be specified as a literal. If an ordering-item cannot be parsed as either a valid
identifier (column name or column alias) or parsed as an unsigned integer (column number), that ordering-item is ignored
and ORDER BY execution proceeds to the next ordering-item in the comma-separated list. Some examples of ignored
ordering-item values are a Dynamic SQL ? input parameter or an Embedded SQL :var host variable, a subquery, an
expression that resolves to a number, a signed number, or a number enclosed in parentheses.

232 InterSystems SQL Reference

SQL Commands

Column Name

A column name can be specified as a literal. In some cases, an expression that operates upon a column name can be used
as an ordering-item. You cannot use a variable or other expression that provides a column name as a string.

The following ORDER BY clause sorts by column names:

SELECT Name,Home_State,DOB
FROM Sample.Person
ORDER BY Home_State,Name

You can sort by column name whether or not the sort column is in the select-item list. (For obvious reasons, you cannot
sort by column alias or column number unless the sort column is in the select-item list.) The following example returns the
same records in the same order as the previous example:

SELECT Name,DOB
FROM Sample.Person
ORDER BY Home_State,Name

If the ordering-item is not an existing column name (or column alias) in the specified table, an SQLCODE –29 error is
issued.

You can sort by the RowID value even if the RowID is private and not listed in the select-item list. You should specify the
%ID pseudo-column name as the ordering-item, rather than the actual RowID field name. If the query contains a TOP
clause, sorting by RowID changes which rows are selected by the TOP clause. For example, if a table has 100 rows (with
sequential RowIDs), SELECT TOP 5 %ID FROM Table ORDER BY %ID returns RowIDs 1, 2, 3, 4, 5; SELECT TOP
5 %ID FROM Table ORDER BY %ID DESC returns RowIDs 100, 99, 98, 97, 96.

An ORDER BY clause can specify a table name or table alias as part of the ordering-item:

SELECT P.Name AS People,E.Name As Employees
FROM Sample.Person AS P,Sample.Employee AS E
ORDER BY P.Name

An ORDER BY clause can use arrow syntax (–>) operator to specify a field in a table that is not the base table:

SELECT Name,Company->Name AS CompName
FROM Sample.Employee ORDER BY Company->Name,Name

For further details, refer to Implicit Joins in Using InterSystems SQL.

Column Alias

A column alias must be specified as a literal. You cannot specify a column alias in an expression, or supply it using a
variable.

The following ORDER BY clause sorts by column alias:

SELECT Name,Home_State AS HS,DOB
FROM Sample.Person
ORDER BY HS,Name

A column alias can be the same as a column name (though this is not recommended). If column aliases are provided,
ORDER BY first references column alias and then references any unaliased column names. If ambiguity between a column
alias and a non-aliased column name exists, the ORDER BY clause generates an SQLCODE –24 error. However, if a
column alias is the same as an aliased column name, this apparent ambiguity does not generate an error, but can produce
unexpected results. This is shown in the following example:

SELECT Name AS Moniker,Home_City AS Name
FROM Sample.Person
ORDER BY Name

Because aliases are referenced first, this example orders the data by Home_City. This is probably not what was intended.
If the Name column was not aliased, an SQLCODE –24 error would occur. If Home_City was given a different alias,
ORDER BY would find no match on aliases, and would then check column names; it would order by the Name column.

InterSystems SQL Reference 233

ORDER BY

You can use a column alias to sort by an expression in the select-item list, as shown in the following example:

SELECT Name,Age,$PIECE(AVG(Age)-Age,'.',1) AS AgeDev
FROM Sample.Employee ORDER BY AgeDev,Name

You cannot specify a non-field column name default such as Expression_3; instead, specify the select-item column
number (3 in this case), or, preferably, assign a column alias to this select-item.

Column Number

A column number must be specified as an unsigned numeric literal. You cannot specify a column number as a variable or
the result of an expression. You cannot enclose a column number in parentheses. Integer truncation rules apply to resolve
a non-integer value to an integer; for example, 1.99 resolves to 1.

The following ORDER BY clause sorts by column number (the numeric sequence of the retrieved columns, as specified
in the SELECT select-item list):

SELECT Name,Home_State,DOB
FROM Sample.Person
ORDER BY 2,1

Column numbers refer to the position in the SELECT clause list. They do not refer to the positions of columns in the table
itself. However, you can sort SELECT * results by column number; if the RowID is public, it counts as column 1, if the
RowID is hidden, it does not count as column 1.

Specifying a column number in ORDER BY that does not correspond to a SELECT list column results in an SQLCODE
-5 error. ORDER BY 0 results in an SQLCODE -5 error.

You can use a column number to sort by an expression in the select-item list, as shown in the following example:

SELECT Name,Age,$PIECE(AVG(Age)-Age,'.',1)
FROM Sample.Employee ORDER BY 3,Name

Specifying Collation

Sorting is done in collation order. By default, ordering of string values is done based on the collation specified for the
ordering-item field when it was created. InterSystems IRIS has a default string collation for each namespace; the initial
collation default for string data type fields is SQLUPPER, which is not case-sensitive. Therefore, commonly, ORDER BY
collation is not case-sensitive.

Ordering of numeric data type fields is done based on numeric collation. For expressions, the default collation is EXACT.

You can override the default collation for a field by applying a collation function to a ordering-item field name. For
example, ORDER BY %EXACT(Name). You cannot apply a collation function to a column alias; attempting to do so gen-
erates an SQLCODE -29 error.

The default ascending collation sequence considers NULL to be the lowest value, followed by the empty string (''). ORDER
BY does not distinguish between the empty string and strings that consist only of blank spaces.

If the collation specified for a column is alphanumeric, leading numbers are sorted in character collation sequence, not
integer sequence. You can use the %PLUS collation function to order in integer sequence. However, the %PLUS collation
function treats all non-numeric characters as 0.

Therefore, to properly sort mixed numeric strings in numeric sequence requires more than one ordering-item. For example,
in Sample.Person a street address consists of an integer house number separated by a space from a street name. The street
name consists of two parts separated by a space. Compare the following two examples. The first example sorts street
addresses in character collation sequence:

SELECT Name,Home_Street FROM Sample.Person
ORDER BY Home_Street

The second example sorts the house number in integer sequence and the street name in character collation sequence:

234 InterSystems SQL Reference

SQL Commands

SELECT Name,Home_Street FROM Sample.Person
ORDER BY $PIECE(%PLUS(Home_Street),' ',1),$PIECE(Home_Street,' ',2),$PIECE(Home_Street,' ',3)

Note that this example only works with a column name, not with a column alias or a column number.

ASC and DESC

Sorting can be specified for each column in ascending or descending collation sequence order, as specified by the optional
ASC (ascending) or DESC (descending) keyword following the column identifier. If ASC or DESC is not specified, ORDER
BY sorts that column in ascending order. You cannot specify the ASC or DESC keyword using a Dynamic SQL ? input
parameter or an Embedded SQL :var host variable.

NULL is always the lowest value in ASC sequence and the highest value in DESC sequence.

Multiple comma-separated ORDER BY values specify a hierarchy of sort operations, as shown in the following example:

SELECT A,B,C,M,E,X,J
FROM LetterTable
ORDER BY 3,7 DESC,1 ASC

This example sorts the data values of the third-listed item (C) in the SELECT clause list in ascending order; within this
sequence, it sorts the seventh-listed item (J) values in descending order; within this, it sorts the first-listed item (A) values
in ascending order.

Duplicate columns in the list of ORDER BY values have no effect. This is because the second sort is within the order of
the first sort. For example, ORDER BY Name ASC, Name DESC sorts the Name column in ascending order.

NLS Collation

If you have specified a non-default NLS collation, you must make sure that all collations are aligned and use the exact same
national collation sequence. This includes not only globals used by the tables, but also globals used for indexes, in temporary
files such as in IRISTEMP and process-private globals. For further details, refer to “SQL Collation and NLS Collations”
in Using InterSystems SQL.

Restrictions

If your SELECT query specifies an ORDER BY clause, the resulting data is not updateable. Thus, if you specify a subsequent
DECLARE CURSOR FOR UPDATE statement, the FOR UPDATE clause is ignored, and the cursor is declared read-
only.

If the ORDER BY applies to a UNION, an ordering item must be a number or a simple column name. It cannot be an
expression. If a column name is used, it refers to result columns as they are named in the first SELECT list of the UNION.

When used in a subquery, an ORDER BY clause must be paired with a TOP clause. This may be a TOP ALL clause. For
example, the following FROM clause subquery is not valid: (SELECT DISTINCT age FROM table1 ORDER BY
age); however, the following FROM clause subquery is valid: (SELECT DISTINCT TOP ALL age FROM table1
ORDER BY age).

Cached Queries

Each literal value used in an ORDER BY clause generates a different cached query. Literal substitution is not performed
on ORDER BY literals. This is because ORDER BY can use an integer to specify a column number. Changing this integer
would result in a fundamentally different query.

ORDER BY and Long Global References

An ORDER BY ordering-item value should not exceed (approximately) between 400 and 500 characters, depending on
the number of ordering-items and other factors. If an ordering-item value exceeds this maximum length, running a query
with an ORDER BY clause may result in an SQLCODE -400 fatal error. This occurs because of a limitation in the maximum
encoded length of a global reference, which is a fixed InterSystems IRIS system limit. To prevent this problem, use a
truncation length in the collation setting for the field that is the basis of the ORDER BY clause. For example, the following
query exceeds this limit:

InterSystems SQL Reference 235

ORDER BY

 TRY {
 SET myquery = 3
 SET myquery(1) = "SELECT LocationCity,NarrativeSummary FROM Aviation.Event "
 SET myquery(2) = "WHERE LocationCity %Startswith 'Be' "
 SET myquery(3) = "ORDER BY NarrativeSummary"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 IF rset.%SQLCODE=0 { WRITE !,"Executed query",! }
 ELSE { SET badSQL=##class(%Exception.SQL).%New(,rset.%SQLCODE,,rset.%Message)
 THROW badSQL }
 DO rset.%Display()
 WRITE !,"End of data"
 RETURN
 }
 CATCH exp { WRITE "In the CATCH block",!
 IF 1=exp.%IsA("%Exception.SQL") {
 WRITE "SQLCODE: ",exp.Code,!
 WRITE "Message: ",exp.Data,! }
 ELSE { WRITE "Not an SQL exception",! }
 RETURN
 }

Adding a collation function with a maxlen truncation length allows this program to execute successfully:

 TRY {
 SET myquery = 3
 SET myquery(1) = "SELECT LocationCity,NarrativeSummary FROM Aviation.Event "
 SET myquery(2) = "WHERE LocationCity %Startswith 'Be' "
 SET myquery(3) = "ORDER BY %SqlUpper(NarrativeSummary,400)"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 IF rset.%SQLCODE=0 { WRITE !,"Executed query",! }
 ELSE { SET badSQL=##class(%Exception.SQL).%New(,rset.%SQLCODE,,rset.%Message)
 THROW badSQL }
 DO rset.%Display()
 WRITE !,"End of data"
 RETURN
 }
 CATCH exp { WRITE "In the CATCH block",!
 IF 1=exp.%IsA("%Exception.SQL") {
 WRITE "SQLCODE: ",exp.Code,!
 WRITE "Message: ",exp.Data,! }
 ELSE { WRITE "Not an SQL exception",! }
 RETURN
 }

InterSystems IRIS truncates the collated value of the field at 400 characters. Remember that if the field contents are not
unique within the first 400 characters, the data may be slightly misordered, but this is unlikely to occur. If this does occur,
you can attempt to avoid displaying misordered data by using a larger value for truncation; however, if a value is too large,
it will result in a <SUBSCRIPT> error.

Note also that the maximum length is for the entire encoded length of the global reference, including the length of the global
name. It is not simply per subscript.

Examples
The following example sorts records in reverse RowID order:

SELECT %ID,Name
FROM Sample.Person
ORDER BY %ID DESC

The following two examples show different ways of specifying sort columns in an ORDER BY clause. The following two
queries are equivalent; the first uses column names as sort items, the second uses column numbers (the sequence number
of the items in the select-item list):

SELECT Name,Age,Home_State
FROM Sample.Person
ORDER BY Home_State,Age DESC

236 InterSystems SQL Reference

SQL Commands

SELECT Name,Age,Home_State
FROM Sample.Person
ORDER BY 3,2 DESC

The following example sorts by a field containing InterSystems IRIS list data. Because an InterSystems IRIS list is an
encoded character string that begins with formatting characters, this example uses $LISTTOSTRING to sort by the actual
field data value, rather than the list element encoding:

SELECT Name,FavoriteColors
FROM Sample.Person
WHERE FavoriteColors IS NOT NULL
ORDER BY $LISTTOSTRING(FavoriteColors)

Dynamic SQL can use an input parameter to supply a literal value to an ORDER BY clause; it cannot use an input
parameter to supply a field name, field alias, field number, or collation keyword. The following Dynamic SQL example
uses an input parameter to sort result set records by first name:

 SET myquery = 4
 SET myquery(1) = "SELECT TOP ? Name,Age,"
 SET myquery(2) = "CURRENT_DATE AS Today"
 SET myquery(3) = "FROM Sample.Person WHERE Age > ?"
 SET myquery(4) = "ORDER BY $PIECE(Name,',',?)"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute(10,60,2)
 DO rset.%Display()
 WRITE !,"%Display SQLCODE=",rset.%SQLCODE

The following cursor-based Embedded SQL example performs the same operation:

 SET topnum=10,agemin=60,firstname=2
 &sql(DECLARE pCursor CURSOR FOR
 SELECT TOP :topnum Name,Age,CURRENT_DATE AS Today
 INTO :name,:years,:today FROM Sample.Person
 WHERE Age > :agemin
 ORDER BY $PIECE(Name,',',:firstname))
 &sql(OPEN pCursor)
 QUIT:(SQLCODE'=0)
 FOR { &sql(FETCH pCursor)
 QUIT:SQLCODE
 WRITE "Name=",name," Age=",years," today=",today,!
 }
 &sql(CLOSE pCursor)

See Also
• SELECT

• UNION

• TOP clause

• “Collation” chapter in Using InterSystems SQL

• “Querying the Database” chapter in Using InterSystems SQL

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

InterSystems SQL Reference 237

ORDER BY

REVOKE
Removes privileges from a user or role.

REVOKE admin-privilege FROM grantee

REVOKE role FROM grantee

REVOKE [GRANT OPTION FOR] object-privilege
 ON object-list FROM grantee [CASCADE | RESTRICT] [AS grantor]

REVOKE [GRANT OPTION FOR] SELECT ON CUBE[S] object-list FROM grantee

REVOKE column-privilege (column-list)
 ON table FROM grantee [CASCADE | RESTRICT]

Arguments

An administrative-level privilege or a comma-separated list of administrative-
level privileges previously granted to be revoked.The available syspriv options
include sixteen object definition privileges and four data modification privileges.

The object definition privileges are: %CREATE_FUNCTION,
%DROP_FUNCTION, %CREATE_METHOD, %DROP_METHOD, %CRE-
ATE_PROCEDURE, %DROP_PROCEDURE, %CREATE_QUERY,
%DROP_QUERY, %CREATE_TABLE, %ALTER_TABLE, %DROP_TABLE,
%CREATE_VIEW, %ALTER_VIEW, %DROP_VIEW, %CREATE_TRIGGER,
%DROP_TRIGGER. Alternatively, you can specify %DB_OBJECT_DEFINI-
TION, which revokes all 16 object definition privileges.

The data modification privileges are the %NOCHECK, %NOINDEX,
%NOLOCK, %NOTRIGGER privileges for INSERT, UPDATE, and DELETE
operations.

admin-privilege

A list of one or more users having SQL System Privileges, SQL Object
Privileges, or Roles.Valid values are a comma-separated list of users or roles,
or "*". The asterisk (*) specifies all currently defined users who do not have
the %All role.

grantee

This clause permits you to revoke a privilege granted by another user by
specifying the name of the original grantor. Valid grantor values are a user
name, a comma-separated list of user names, or "*".The asterisk (*) specifies
all currently defined users who are grantors. To use the AS grantor clause,
you must have the %All role or the %Admin_Secure resource.

AS grantor

A role or comma-separated list of roles whose privileges are being revoked
from a user.

role

A basic-level privilege or comma-separated list of basic-level privileges
previously granted to be revoked. The list may consist of one or more of the
following: %ALTER, DELETE, SELECT, INSERT, UPDATE, EXECUTE, and
REFERENCES. To revoke all privileges, use either "ALL [PRIVILEGES]" or
"*" as the value for this argument. Note that you can only revoke SELECT
privilege from cubes, because this is the only grantable cubes privilege.

object-privilege

238 InterSystems SQL Reference

SQL Commands

A comma-separated list of one or more tables, views, stored procedures, or
cubes for which the object-privilege(s) are being revoked.You can use the
SCHEMA keyword to specify revoking the object-privilege from all objects in
the specified schema.You can use “* ” to specify revoking the object-privilege
from all objects in the current namespace.

object-list

A basic-level privilege being revoked from one or more column-list listed
columns. Available options are SELECT, INSERT, UPDATE, and
REFERENCES.

column-privilege

A list of one or more column names, separated by commas and enclosed in
parentheses.

column-list

The name of the table or view that contains the column-list columns.table

Description
The REVOKE statement revokes privileges that allow a user or role to perform specified tasks on specified tables, views,
columns, or other entities. REVOKE can also revoke a role assignment from a user. REVOKE reverses the actions of the
GRANT command; see that command for more details on privileges generally.

A privilege can only be revoked by the user who granted the privilege, or through a CASCADE operation (as described
below).

You can revoke a role or privilege from a specified user, a list of users, or all users (using the * syntax).

Because REVOKE prepares and executes quickly, and is generally run only once, InterSystems IRIS does not create a
cached query for REVOKE in ODBC, JDBC, or Dynamic SQL.

A REVOKE completes successfully, even if no actual revoke can be performed (for example, the specified privilege was
never granted or has already been revoked). However, if an error occurs during the REVOKE operation, SQLCODE is set
to a negative number.

Revoking Roles

Roles can be granted or revoked via either the SQL GRANT and REVOKE commands, or via ^SECURITY InterSystems
IRIS System Security. You can use REVOKE to revoke a role from a user or to revoke a role from another role. You
cannot use InterSystems IRIS System Security to grant or revoke roles to other roles. The $ROLES special variable does
not display roles granted to roles.

REVOKE can specify a single role, or a comma-separated list of roles to revoke. REVOKE can revoke one or more roles
from a specified user (or role), a list of users (or roles), or all users (using the * syntax).

The GRANT command can grant a non-existent role to a user. You can use REVOKE to revoke a non-existent role from
an existing user. However, the role name must be specified using the same letter case that was used to grant the role.

If you attempt to revoke an existing role from a non-existent user or role, InterSystems IRIS issues an SQLCODE -118
error. If you are not the SuperUser, and you attempt to revoke a role that you don't own and don't have ADMIN OPTION
for, InterSystems IRIS issues an SQLCODE -112 error.

Revoking Object Privileges

Object privileges give a user or role some right to a particular object. You revoke an object-privilege ON an object-list
FROM a grantee. An object-list can specify one or more tables, views, stored procedures, or cubes in the current namespace.
By using comma-separated lists, a single REVOKE statement can revoke multiple object privileges on multiple objects
from multiple users and/or roles.

You can use the asterisk (*) wildcard as the object-list value to revoke the object-privilege from all of the objects in the
current namespace. For example, REVOKE SELECT ON * FROM Deborah revokes this user’s SELECT privilege for

InterSystems SQL Reference 239

REVOKE

all tables and views. REVOKE EXECUTE ON * FROM Deborah revokes this user’s EXECUTE privilege for all non-
hidden Stored Procedures.

You can use SCHEMA schema-name as the object-list value to revoke the object-privilege for all of the tables, views, and
stored procedures in the named schema, in the current namespace. For example, REVOKE SELECT ON SCHEMA Sample
FROM Deborah revokes this user’s SELECT privilege for all objects in the Sample schema. You can specify multiple
schemas as a comma-separated list; for example, REVOKE SELECT ON SCHEMA Sample,Cinema FROM Deborah
revokes SELECT privilege for all objects in both the Sample and the Cinema schemas.

You can revoke an object privilege from a user or from a role. If you revoke it from a role, a user that only had that privilege
through the role no longer has the privilege. A user that no longer has a privilege can no longer execute an existing cached
query that requires that object privilege.

When REVOKE revokes an object privilege, it completes successfully and sets SQLCODE to 0. If REVOKE does not
perform an actual revoke (for example, the specified object privilege was never granted or has already been revoked), it
completes successfully and sets SQLCODE to 100 (no more data). If an error occurs during the REVOKE operation, it
sets SQLCODE to a negative number.

Cubes are SQL identifiers that are not qualified by a schema name. To specify a cubes object-list, you must specify the
CUBE (or CUBES) keyword. Because cubes can only have SELECT privilege, you can only revoke SELECT privilege
from a cube.

Object privileges can be revoked by any of the following:

• The REVOKE command.

• The %SYSTEM.SQL RevokeObjPriv() method.

• Via InterSystems IRIS System Security. Go to the Management Portal, select System Administration, Security, Users

(or System Administration, Security, Roles) select Edit for the desired user or role, then select the SQL Tables or SQL

Views tab. Select the desired Namespace from the drop-down list. Scroll down to the desired table, then click revoke

to revoke privileges.

You can determine if the current user has a specified object privilege by invoking the %CHECKPRIV command. You can
determine if a specified user has a specified table-level object privilege by invoking the $SYSTEM.SQL.CheckPriv()
method.

Revoking Object Owner Privileges

If you revoke the privileges on an SQL object from the owner of the object, the owner will still implicitly have privileges
on the object. In order to completely revoke all privileges on the object from the owner of the object, the object must be
changed to specify a different owner or no owner.

Revoking Table-level and Column-level Privileges

REVOKE can be used to reverse the granting of table-level privileges or column-level privileges. A table-level privilege
provides access to all of the columns in a table. A column-level privilege provides access to every specified column in the
table. Granting a column-level privilege to all of the columns in a table is functionally equivalent to granting a table-level
privilege. However, the two are not functionally identical. A column-level REVOKE can only revoke privileges granted
at the column level. You cannot grant a table-level privilege to the table, then revoke this privilege at the column level for
one or more columns. In this case, the REVOKE statement has no effect on granted privileges.

CASCADE or RESTRICT

InterSystems IRIS supports the optional CASCADE and RESTRICT keywords to specify REVOKE object-privilege
behavior. If neither keyword is specified, the default is RESTRICT.

You can use CASCADE or RESTRICT to specify whether revoking an object-privilege or column-privilege from a user
will also revoke that privilege from any other users that received it via the WITH GRANT OPTION. CASCADE revokes

240 InterSystems SQL Reference

SQL Commands

all such associated privileges. RESTRICT (the default) causes REVOKE to fail when an associated privilege is detected.
Instead it sets the SQLCODE -126 error “REVOKE with RESTRICT failed”.

The use of these keywords is shown by the following example:

--UserA
 GRANT Select ON MyTable TO UserB WITH GRANT OPTION

--UserB
 GRANT Select ON MyTable TO UserC

--UserA
 REVOKE Select ON MyTable FROM UserB
 -- This REVOKE fails with SQLCODE -126

--UserA
 REVOKE Select ON MyTable FROM UserB CASCADE
 -- This REVOKE succeeds
 -- It revokes this privilege from UserB and UserC

Note that CASCADE and RESTRICT have no effect on a view created by UserB that references MyTable.

Effect on Cached Queries

When you revoke a privilege or role, InterSystems IRIS updates all cached queries on the system to reflect this change in
privileges. However, when a namespace is inaccessible — for example, when an ECP connection to a database server is
down — the REVOKE successfully completes but performs no operation on cached queries in that namespace. This is
because REVOKE cannot update the cached queries in the unreachable namespace to revoke the privileges at the cached
query level. No error is issued.

If the database server later comes up, the privileges for the cached queries in that namespace may be incorrect. It is advised
that you purge cached queries in a namespace if a role or privilege might have been revoked while the namespace was not
accessible.

InterSystems IRIS Security

The REVOKE command is a privileged operation. Prior to using REVOKE in embedded SQL, it is necessary to be logged
in as a user with appropriate privileges. Failing to do so results in an SQLCODE -99 error (Privilege Violation).

Use the $SYSTEM.Security.Login() method to assign a user with appropriate privileges:

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql()

You must have the %Service_Login:Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, refer to %SYSTEM.Security in the InterSystems Class Reference.

Examples
The following embedded SQL example creates two users, creates a role, and assigns the role to the users. It then revokes
the role from all users using the asterisk (*) syntax. If the user or the role already exists, the CREATE statement issues an
SQLCODE -118 error. If the user does not exist, the GRANT or REVOKE statement issues an SQLCODE -118 error. If
the user exists but the role does not, the GRANT or REVOKE statement issues SQLCODE 100. If the user and role exist,
the GRANT or REVOKE statement issues SQLCODE 0. This is true even when the granting or revoking of the role has
already been done, of if you are attempting to revoke a role that was never granted.

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql(CREATE USER User1 IDENTIFY BY fredpw)
 &sql(CREATE USER User2 IDENTIFY BY barneypw)
 WRITE !,"CREATE USER error code: ",SQLCODE
 &sql(CREATE ROLE workerbee)
 WRITE !,"CREATE ROLE error code: ",SQLCODE
 &sql(GRANT workerbee TO User1,User2)
 WRITE !,"GRANT role error code: ",SQLCODE
 &sql(REVOKE workerbee FROM *)
 WRITE !,"REVOKE role error code: ",SQLCODE

InterSystems SQL Reference 241

REVOKE

In the following example, one user (Joe) grants a privilege and a different user (John) revokes that privilege, using the AS
grantor clause:

 /* User Joe */
 GRANT SELECT ON Sample.Person TO Michael

 /* User John */
 REVOKE SELECT ON Sample.Person FROM Michael AS Joe

Note that John must have the %All role or the %Admin_Secure resource.

See Also
• SQL statements: CREATE USER, DROP USER, CREATE ROLE, DROP ROLE, GRANT, %CHECKPRIV

• “Users, Roles, and Privileges” chapter of Using InterSystems SQL

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

• ObjectScript: $ROLES and $USERNAME special variables

242 InterSystems SQL Reference

SQL Commands

ROLLBACK
Rolls back a transaction.

ROLLBACK [WORK]

ROLLBACK TO SAVEPOINT pointname

Arguments

The name of an existing savepoint, specified as an identifier. For further details see the
“Identifiers” chapter of Using InterSystems SQL.

pointname

Description
A ROLLBACK statement rolls back a transaction, undoing work performed but not committed, decrementing the $TLEVEL
transaction level counter, and releasing locks. ROLLBACK is used to restore the database to a previous consistent state.

• A ROLLBACK rolls back all work completed during the current transaction, resets the $TLEVEL transaction level
counter to zero and releases all locks. This restores the database to its state before the beginning of the transaction.
ROLLBACK and ROLLBACK WORK are equivalent statements; both versions are supported for compatibility.

• A ROLLBACK TO SAVEPOINT pointname rolls back all work done since the specified savepoint and decrements
the $TLEVEL transaction level counter by the number of savepoints undone. When all savepoints have been either
rolled back or committed and the transaction level counter reset to zero, the transaction is completed. If the specified
savepoint does not exist, or has already been rolled back, ROLLBACK issues an SQLCODE -375 error and rolls back
the entire current transaction.

A ROLLBACK TO SAVEPOINT must specify a pointname. Failing to do so results in an SQLCODE -301 error.

For details on establishing savepoints, refer to SAVEPOINT.

An SQLCODE -400 error is issued if a transaction operation fails to complete successfully.

Not Rolled Back

The following items are not affected by a ROLLBACK operation:

• A roll back does not decrement the IDKey counter for a default class. The IDKey is automatically generated by
$INCREMENT (or $SEQUENCE), which maintains a count independent of the SQL transaction.

• A roll back does not reverse the creation, modification, or purging of a Cached Query. These operations are not treated
as part of a transaction.

• A DDL operation or a Tune Table operation that occur within a transaction may create and run a temporary routine.
This temporary routine is treated the same as a Cached Query. That is, the creation, compilation, and deletion of a
temporary routine are not treated as part of the transaction. The execution of the temporary routine is considered part
of the transaction.

For non-SQL items rolled back or not rolled back, refer to the ObjectScript TROLLBACK command.

Rollback Logging

Messages indicating that a rollback occurred, and errors encountered during the rollback operation are logged in the
messages.log file in the MGR directory. You can use the Management Portal System Operation, System Logs, Messages

Log option to view messages.log.

InterSystems SQL Reference 243

ROLLBACK

Transactions Suspended

The TransactionsSuspended() method of the %SYSTEM.Process class can be used to suspend and resume all current
transactions system-wide. Suspending transactions suspends journaling of changes. Therefore, if transaction suspension
occurred during the current transaction, ROLLBACK cannot roll back any changes made while transactions were suspended;
however, ROLLBACK rolls back any changes made during the current transaction that occurred before or after the trans-
action suspension was in effect.

For further details, refer to Using ObjectScript for Transaction Processing in Using ObjectScript.

ObjectScript Transaction Commands

ObjectScript and SQL transaction commands are fully compatible and interchangeable, with the following exception:

ObjectScript TSTART and SQL START TRANSACTION both start a transaction if no transaction is current. However,
START TRANSACTION does not support nested transactions. Therefore, if you need (or may need) nested transactions,
it is preferable to start the transaction with TSTART. If you need compatibility with the SQL standard, use START
TRANSACTION.

ObjectScript transaction processing provides limited support for nested transactions. SQL transaction processing supplies
support for savepoints within transactions.

Examples

The following Embedded SQL example demonstrates how a ROLLBACK restores the transaction level counter ($TLEVEL)
to 0, the level immediately prior to the START TRANSACTION:

 &sql(SET TRANSACTION %COMMITMODE EXPLICIT)
 WRITE !,"Set transaction mode, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(START TRANSACTION)
 WRITE !,"Start transaction, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(SAVEPOINT a)
 WRITE !,"Set Savepoint a, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(SAVEPOINT b)
 WRITE !,"Set Savepoint b, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(SAVEPOINT c)
 WRITE !,"Set Savepoint c, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(ROLLBACK)
 WRITE !,"Rollback transaction, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL

The following Embedded SQL example demonstrates how a ROLLBACK TO SAVEPOINT name restores the transaction
level ($TLEVEL) to the level immediately prior to the specified SAVEPOINT:

 &sql(SET TRANSACTION %COMMITMODE EXPLICIT)
 WRITE !,"Set transaction mode, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(START TRANSACTION)
 WRITE !,"Start transaction, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(SAVEPOINT a)
 WRITE !,"Set Savepoint a, SQLCODE=",SQLCODE
 WRITE !,"Transaction level at a=",$TLEVEL
 &sql(SAVEPOINT b)
 WRITE !,"Set Savepoint b, SQLCODE=",SQLCODE
 WRITE !,"Transaction level at b=",$TLEVEL
 &sql(ROLLBACK TO SAVEPOINT b)
 WRITE !,"Rollback to b, SQLCODE=",SQLCODE
 WRITE !,"Rollback transaction level=",$TLEVEL
 &sql(SAVEPOINT c)
 WRITE !,"Set Savepoint c, SQLCODE=",SQLCODE
 WRITE !,"Transaction level at c=",$TLEVEL
 &sql(SAVEPOINT d)
 WRITE !,"Set Savepoint d, SQLCODE=",SQLCODE
 WRITE !,"Transaction level at d=",$TLEVEL

244 InterSystems SQL Reference

SQL Commands

 &sql(COMMIT)
 WRITE !,"Commit transaction, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL

See Also
• SQL commands: COMMIT, SAVEPOINT, SET TRANSACTION, START TRANSACTION, $TLEVEL

• Transaction Processing in the “Modifying the Database” chapter of Using InterSystems SQL

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

• ObjectScript: TROLLBACK

• ObjectScript: the Transaction Processing chapter of Using ObjectScript

InterSystems SQL Reference 245

ROLLBACK

SAVEPOINT
Marks a point within a transaction.

SAVEPOINT pointname

Arguments

The name of the savepoint, specified as an identifier. For further details see the “Identifiers”
chapter of Using InterSystems SQL.

pointname

Description
A SAVEPOINT statement marks a point within a transaction. Establishing a savepoint enables you to perform transaction
roll back to the savepoint, undoing all work done and releasing all locks acquired during that period. In a long-running
transaction, or a transaction with internal control structure, it is often desirable to be able to roll back part of the transaction
without undoing all work submitted during the transaction.

The establishment of a savepoint increments the $TLEVEL transaction level counter. Rolling back to a savepoint decrements
the $TLEVEL transaction level counter to its value immediately prior to the savepoint. You can establish up to 255 savepoints
within a transaction. Exceeding this number of savepoints results in an SQLCODE -400 fatal error, a <TRANSACTION
LEVEL> exception caught during SQL execution. The Terminal prompt displays the current transaction level as a TLn:
prefix to the prompt, where n is an integer between 1 and 255 representing the current $TLEVEL count.

Each savepoint is associated with an savepoint name, a unique identifier. Savepoint names are not case-sensitive. A savepoint
name can be a delimited identifier.

• If you specify a SAVEPOINT with no pointname, or with a pointname that is not a valid identifier or is an SQL
Reserved Word, a runtime SQLCODE -301 error is issued.

• If you specify a SAVEPOINT with a pointname that begins with “SYS”, a runtime SQLCODE -302 error is issued.
These savepoint names are reserved.

Savepoint names are not case-sensitive; therefore resetpt, ResetPt and "RESETPT" are the same pointname. This
duplication is detected during ROLLBACK TO SAVEPOINT, not during SAVEPOINT. When you specify a SAVEPOINT
statement with a duplicate pointname, InterSystems IRIS increments the transaction level counter, just as if the pointname
was unique. However, the most recent pointname overwrites all prior duplicate values in the table of savepoint names.
Therefore, when you specify a ROLLBACK TO SAVEPOINT pointname, InterSystems IRIS rolls back to the most
recently established SAVEPOINT with that pointname, and decrements the transaction level counter appropriately. However,
if you again specify a ROLLBACK TO SAVEPOINT pointname with the same name, an SQLCODE -375 error is gen-
erated, with the %msg: Cannot ROLLBACK to unestablished savepoint 'name', the full transaction is rolled
back and the $TLEVEL count reverts to 0.

Using Savepoints

The SAVEPOINT statement is supported for Embedded SQL, Dynamic SQL, ODBC, and JDBC. In JDBC,
connection.setSavepoint(pointname) sets a savepoint, and connection.rollback(pointname) rolls back
to the named savepoint.

If savepoints have been established:

• A ROLLBACK TO SAVEPOINT pointname rolls back work done since the specified savepoint, deletes that savepoint
and all intermediate savepoints, and decrements the $TLEVEL transaction level counter by the number of savepoints
deleted. If pointname does not exist, or has already been rolled back, this command rolls back the entire transaction,
resets $TLEVEL to 0, and releases all locks.

246 InterSystems SQL Reference

SQL Commands

• A ROLLBACK rolls back all work done during the current transaction, rolling back the work done since START
TRANSACTION. It resets the $TLEVEL transaction level counter to zero and releases all locks. Note that a generic
ROLLBACK ignores savepoints.

• A COMMIT commits all work done during the current transaction. It resets the $TLEVEL transaction level counter
to zero and releases all locks. Note that a COMMIT ignores savepoints.

Issuing a second START TRANSACTION within a transaction has no effect on savepoints or the $TLEVEL transaction
level counter.

An SQLCODE -400 error is issued if a transaction operation fails to complete successfully.

Examples
The following embedded SQL example creates a transaction with two savepoints:

 NEW SQLCODE,%ROWCOUNT,%ROWID
 &sql(START TRANSACTION)
 &sql(DELETE FROM Sample.Person WHERE Name=NULL)
 IF SQLCODE=100 { WRITE !,"No null name records to delete" }
 ELSEIF SQLCODE'=0 {&sql(ROLLBACK)}
 ELSE {WRITE !,%ROWCOUNT," null name records deleted"}
 &sql(SAVEPOINT svpt_age1)
 &sql(DELETE FROM Sample.Person WHERE Age=NULL)
 IF SQLCODE=100 { WRITE !,"No null age records to delete" }
 ELSEIF SQLCODE'=0 {&sql(ROLLBACK TO SAVEPOINT svpt_age1)}
 ELSE {WRITE !,%ROWCOUNT," null age records deleted"}
 &sql(SAVEPOINT svpt_age2)
 &sql(DELETE FROM Sample.Person WHERE Age>65)
 IF SQLCODE=0 { &sql(COMMIT)}
 ELSEIF SQLCODE=100 { &sql(COMMIT)}
 ELSE {
 &sql(ROLLBACK TO SAVEPOINT svpt_age2)
 WRITE !,"retirement age deletes failed"
 }
 &sql(COMMIT)
 &sql(COMMIT)

ObjectScript and SQL Transactions
ObjectScript transaction processing, using TSTART and TCOMMIT, differs from, and is incompatible with, SQL transaction
processing using the SQL statements START TRANSACTION, SAVEPOINT, and COMMIT. Both ObjectScript and
InterSystems SQL provides limited support for nested transactions. ObjectScript transaction processing does not interact
with SQL lock control variables; of particular concern is the SQL lock escalation variable. An application should not attempt
to mix the two types of transaction processing.

If a transaction involves SQL update statements, then the transaction should be started by the SQL START TRANSACTION
statement and committed with the SQL COMMIT statement. Methods that use TSTART/TCOMMIT nesting can be
included in the transaction, as long as they don't initiate the transaction. Methods and stored procedures should not normally
use SQL transaction control statements, unless, by design, they are the main controller of the transaction.

See Also
• SQL commands: COMMIT ROLLBACK SET TRANSACTION START TRANSACTION $TLEVEL

• Transaction Processing in the “Modifying the Database” chapter of Using InterSystems SQL

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

• ObjectScript command: TCOMMIT

InterSystems SQL Reference 247

SAVEPOINT

SELECT
Retrieves rows from one or more tables within a database.

[(] SELECT [%keyword]
 [DISTINCT [BY (item {,item2})] | ALL]
 [TOP {int | ALL}]

select-item {,select-item, ...}
 [INTO host-variable-list]
 [FROM [optimize-option] table-ref [[AS] t-alias]
 {,table-ref [[AS] t-alias]}]
 [WHERE condition-expression [{AND | OR condition-expression]]
 [GROUP BY scalar-expression]
 [HAVING condition-expression [{AND | OR condition-expression]]
 [ORDER BY item-order-list [ASC | DESC]]
[)]

select-item ::=
 [t-alias.]* |
 [t-alias.]scalar-expression [[AS] c-alias]

Arguments

Optional — One or more of the following %keyword options,
separated by spaces: %NOFPLAN, %NOLOCK, %NORUNTIME,
%PROFILE, %PROFILE_ALL.

%keyword

Optional — The DISTINCT clause specifies that each row
returned must contain a unique value for the specified field or
combination of fields. A DISTINCT keyword specifies that the
select-item value(s) must be unique. A DISTINCT BY keyword
clause specifies that item value(s) must be unique. An item (or
a comma-separated list of items) is enclosed in parentheses.
Commonly, an item is the name of a column. It may or may not
also be listed as a select-item.

Optional — The ALL keyword specifies that all rows that meet
the SELECT criteria be returned.This is the default for InterSys-
tems SQL.The ALL keyword performs no operation; it is provided
for SQL compatibility.

See DISTINCT clause for more details.

DISTINCT

DISTINCT BY (item)

ALL

248 InterSystems SQL Reference

SQL Commands

Optional — The TOP clause limits the number of rows returned
to the number specified in int. If no ORDER BY clause is specified
in the query, which records are returned as the “top” rows is
unpredictable. If an ORDER BY clause is specified, the top rows
accord to the specified order. The DISTINCT keyword (if speci-
fied) is applied before TOP, specifying that int number of unique
values are to be returned. The int argument can be either a
positive integer or a Dynamic SQL ? input parameter that resolves
to a positive integer. If no TOP keyword is specified, the default
is to display all the rows that meet the SELECT criteria.

TOP ALL is only meaningful in a subquery or in a CREATE VIEW
statement. It is used to support the use of an ORDER BY clause
in these situations, fulfilling the requirement that an ORDER BY
clause must be paired with a TOP clause in a subquery or a
query used in a CREATE VIEW. TOP ALL does not restrict the
number of rows returned.

See TOP clause for more details.

TOP int

TOP ALL

One or more columns (or other values) to be retrieved. Multiple
select-items are specified as a comma-separated list.You can
also retrieve all columns by using the * symbol.

select-item

Optional — (Embedded SQL only): One or more host variables
into which select-item values are placed. Multiple host variables
are specified as a comma-separated list or as a single host
variable array. See INTO clause for more details. Specifying an
INTO clause in a SELECT query processed via ODBC, JDBC,
or Dynamic SQL results in an SQLCODE -422 error.

INTO host-variable-list

InterSystems SQL Reference 249

SELECT

Optional — A reference to one or more tables from which data
is being retrieved. A valid table-ref is required for every FROM
clause, even if the SELECT makes no reference to that table. A
SELECT that makes no references to table data can omit the
FROM clause.

A table-ref can be specified as one or more tables, views, table-
valued functions, or subqueries, specified as a comma-separated
list or with JOIN syntax. Some restrictions apply on using views
with JOIN syntax. A subquery must be enclosed in parentheses.

A table-ref is either qualified (schema.tablename) or unqualified
(tablename). An unqualified table-ref is supplied either the sys-
tem-wide default schema name, or a schema name from the
schema search path.

Multiple tables can be specified as a comma-separated list or
associated with ANSI join keywords. Any combination of tables
or views can be specified. If you specify a comma between two
table-refs here, InterSystems IRIS performs a CROSS JOIN on
the tables and retrieves data from the results table of the JOIN
operation. If you specify ANSI join keywords between two
table-refs here, InterSystems IRIS performs the specified join
operation. For further details, refer to the JOIN page of this
manual.

You can optionally assign an alias (t-alias) to each table-ref. The
AS keyword is optional.

You can optionally specify one or more optimize-option keywords
to optimize query execution. The available options are:
%ALLINDEX, %FIRSTTABLE, %FULL, %INORDER, %IGNOR-
EINDEX, %NOFLATTEN, %NOMERGE, %NOREDUCE,
%NOSVSO, %NOTOPOPT, %NOUNIONOROPT, %PARALLEL,
and %STARTTABLE. See FROM clause for more details.

FROM table-ref

Optional — A qualifier specifying one or more predicate conditions
for what data is to be retrieved. See WHERE clause for more
details.

WHERE condition-expression

Optional — A comma-separated list of one or more scalar
expressions specifying how the retrieved data is to be organized;
these may include column names. See GROUP BY clause for
more details.

GROUP BY scalar-expression

Optional — A qualifier specifying one or more predicate conditions
for what data is to be retrieved. See HAVING clause for more
details.

HAVING condition-expression

250 InterSystems SQL Reference

SQL Commands

Optional — A select-item or a comma-separated list of items that
specify the order in which rows are displayed. Each item can
have an optional ASC (ascending order) or DESC (descending
order). The default is ascending order. An ORDER BY clause is
used on the results of a query. An ORDER BY clause in a
subquery (for example, in a UNION statement) must be paired
with a TOP clause. If no ORDER BY clause is specified, the
order of the records returned is unpredictable. See ORDER BY
clause for more details.

ORDER BY item-order-list

A field identifier, an expression containing a field identifier, or a
general expression, such as a function call or an arithmetic
operation.

scalar-expression

Optional — An alias for a table or view name (table-ref). An alias
must be a valid identifier; it can be a delimited identifier. For
further details see the “Identifiers” chapter of Using InterSystems
SQL. The AS keyword is optional.

AS t-alias

Optional — An alias for a column name (select-item). An alias
must be a valid identifier. For further details see the “Identifiers”
chapter of Using InterSystems SQL.The AS keyword is optional.

AS c-alias

Description
The SELECT statement performs a query that retrieves data from an InterSystems IRIS database. In its simplest form, it
retrieves one or more items from a single table. The items are specified by the select-item list and the table is specified by
the FROM table-ref clause. In more complex queries, a SELECT can retrieve data from multiple tables and can retrieve
data using views.

A SELECT can also be used to return a value from an SQL function, a host variable, or a literal. A SELECT query can
combine returning these non-database values with retrieving values from tables or views. When a SELECT is only used
to return such non-database values, the FROM clause is optional. See FROM clause for more details.

The values returned from a SELECT query are known as a result set. In Dynamic SQL, SELECT retrieves values into
the %SQL.Statement class. Refer to the Dynamic SQL chapter of Using InterSystems SQL, and the %SQL.Statement class
in the InterSystems Class Reference.

InterSystems IRIS sets a status variable SQLCODE, which indicates the success or failure of the SELECT. In addition,
the SELECT operation sets the %ROWCOUNT local variable to the number of selected rows. Successful completion of
a SELECT generally sets SQLCODE=0 and %ROWCOUNT to the number of rows selected. In the case of an embedded
SQL containing a simple SELECT, data from (at most) one row is selected, so SQLCODE=0 and %ROWCOUNT is set
to either 0 or 1. However, in the case of an embedded SQL SELECT that declares a cursor and fetches data from multiple
rows, the operation completes when the cursor has been advanced to the end of the data (SQLCODE=100); at that point,
%ROWCOUNT is set to the total number of rows selected. Refer to the FETCH command for further details.

Uses of SELECT

You can use a SELECT statement in the following contexts:

• As an independent query.

• As a subquery, a SELECT statement that supplies values to a clause of an enclosing SELECT statement. A subquery
in a SELECT statement can be specified in the select-item list, in a FROM clause, or in a WHERE clause with an
EXISTS or IN predicate. A subquery can also be specified in an UPDATE or DELETE statement. A subquery must
be enclosed in parentheses.

InterSystems SQL Reference 251

SELECT

• As a leg of a UNION. The UNION statement allows you to combine two or more SELECT statements into a single
query.

• As part of a CREATE VIEW defining the data available to the view.

• As part of a DECLARE CURSOR used with Embedded SQL.

• As part of an INSERT with a SELECT. An INSERT statement can use a SELECT to insert data values for multiple
rows into a table, selecting the data from another table.

You can enclose the entire SELECT statement with one or more sets of parentheses, as follows:

• Parentheses are optional for an independent SELECT query, a UNION leg SELECT query, a CREATE VIEW
SELECT query, or a DECLARE CURSOR SELECT query. Enclosing a SELECT query in parentheses causes it
to follow the syntax rules for a subquery; specifically, an ORDER BY clause must be paired with a TOP clause.

• Parentheses are mandatory for a subquery. One set of parentheses is mandatory; you can specify additional optional
sets of parentheses.

• Parentheses are not permitted for an INSERT statement SELECT query.

Specifying optional parentheses generates a separate cached query for each set of parentheses added.

Privileges

To perform a SELECT query on one or more tables, you must either have column-level SELECT privileges for all of the
specified select-item column(s), or table-level SELECT privileges for the specified table-ref table(s) or view(s). A select-item
column specified using a table alias (such as t.Name or "MyAlias".Name) only requires column-level SELECT privilege,
not table-level SELECT privilege.

When using SELECT *, note that column-level privileges cover all table columns named in the GRANT statement; table-
level privileges cover all table columns, including those added after the privilege was assigned.

Failing to have the necessary privileges results in an SQLCODE -99 error (Privilege Violation). You can determine if the
current user has SELECT privilege by invoking the %CHECKPRIV command. You can determine if a specified user has
table-level SELECT privilege by invoking the $SYSTEM.SQL.CheckPriv() method. For privilege assignment, refer to
the GRANT command.

Note: Having table-level SELECT privilege for a table is not a sufficient test that the table actually exists. If the specified
user has the %All role, CheckPriv() returns 1 even if the specified table or view does not exist.

A SELECT query that does not have a FROM clause does not require any SELECT privileges. A SELECT query that
contains a FROM clause requires SELECT privilege, even if no column data is accessed by the query.

Required Clauses

The following are required clauses for all SELECT statements:

• A select-item list, a comma-separated list of one or more items (the select-item arguments) to be retrieved from the
table or otherwise generated. Most commonly, these items are the names of columns in a table. The select-item consists
of either a scalar expression specifying one or more individual items, or an asterisk (*) referring to all the columns of
a base table.

• A FROM clause specifies one or more tables, views, or subqueries from which rows are to be retrieved. These tables
may be associated by JOIN expressions. In InterSystems SQL a FROM clause with a valid table-ref is required for a
SELECT that makes any reference to table data. A FROM clause is optional for a SELECT that does not access table
data. The optional FROM clause is further described in the FROM clause reference page.

252 InterSystems SQL Reference

SQL Commands

Optional Clauses

The following optional clauses operate on the virtual table that a FROM clause returns. All are optional, but, if used, must
appear in the order specified:

• A DISTINCT clause, which specifies that only distinct (non-duplicate) values should be returned.

• A TOP clause, which specifies how many rows to return.

• A WHERE clause, which specifies boolean predicate conditions that rows must match. The WHERE clause predicate
condition both determines which rows are returned and limits the values supplied to aggregate functions to the values
from those rows. These conditions are specified by one or more predicates linked by logical operators; the WHERE
clause returns all records that satisfy these predicate conditions. A WHERE clause predicate cannot include aggregate
functions.

• A GROUP BY clause, which specifies a comma-delimited list of columns. These organize a query’ result set into
subsets with matching values for one or more columns and determine the ordering of the rows returned. GROUP BY
allows scalar expressions as well as columns.

• A HAVING clause, which specifies boolean predicate conditions that rows must match. These conditions are specified
by one or more predicates linked by logical operators. The HAVING clause predicate condition determines which
rows are returned, but (by default) it does not limits the values supplied to aggregate functions to the values from those
rows. This default can be overridden using the %AFTERHAVING keyword. A HAVING clause predicate can specify
aggregate functions. These predicates typically operate on each group specified by a GROUP BY clause.

• An ORDER BY clause, which specifies the order in which rows should be displayed. An ORDER BY clause in a
subquery or a CREATE VIEW query must be paired with a TOP clause.

Specifying SELECT clauses in the incorrect order generates an SQLCODE –25 error.

The SELECT syntax order is not the same as the SELECT clauses semantic processing order. For further details, refer to
SELECT Clause Order of Execution.

%Keyword Argument
To use a %keyword argument, you must have the corresponding admin-privilege for the current namespace. Refer to
GRANT for further details.

Specifying %keyword argument(s) affects processing as follows:

• %NOFPLAN — the frozen plan (if any) is ignored for this operation; the operation generates a new query plan. The
frozen plan is retained, but not used. For further details, refer to Frozen Plans in SQL Optimization Guide.

• %NOLOCK — InterSystems IRIS will perform no locking on any of the specified tables. If you specify this keyword,
the query retrieves data in READ UNCOMMITTED mode, regardless of current transaction’s isolation mode. For
further details, refer to Transaction Processing in the “Modifying the Database” chapter of Using InterSystems SQL.

• %NORUNTIME — Runtime Plan Choice (RTPC) optimization is not used.

• %PROFILE or %PROFILE_ALL — if one of these keyword directives is specified, SQLStats collecting code is gen-
erated. This is the same code that would be generated with PTools turned ON. The difference is that SQLStats collecting
code is only generated for this specific statement. All other SQL statements within the routine/class being compiled
will generate code as if PTools is turned OFF. This enables the user to profile/inspect specific problem SQL statements
within an application without collecting irrelevant statistics for SQL statements that are not being investigated. For
further details, refer to SQL Runtime Statistics in the InterSystems SQL Optimization Guide.

%PROFILE collects SQLStats for the main query module. %PROFILE_ALL collects SQLStats for the main query
module and all of its subquery modules.

You can specify multiple %keyword arguments in any order. Multiple arguments are separated by spaces.

InterSystems SQL Reference 253

SELECT

The DISTINCT Clause
The DISTINCT keyword clause causes redundant field values to be eliminated. It has two forms:

• SELECT DISTINCT: Returns one row for each unique combination of select-item values. You can specify one or
more than one select-items. For example, the following query returns a row with Home_State and Age values for each
unique combination of Home_State and Age values:

SELECT DISTINCT Home_State,Age FROM Sample.Person

• SELECT DISTINCT BY (item): Returns one row for each unique combination of item values. You can specify a single
item or a comma-separated list of items. The select-item list may, but does not have to, include the specified item(s).
For example, the following query returns a row with Name and Age values for each unique combination of Home_State
and Age values:

SELECT DISTINCT BY (Home_State,Age) Name,Age FROM Sample.Person

An item can be any valid select-item value, except an asterisk. It cannot be a column name alias.

Either type of DISTINCT clause can specify more than one item to test for uniqueness. Listing more than one item retrieves
all rows that are distinct for the combination of both items. DISTINCT does consider NULL a unique value. For further
details, see the DISTINCT clause reference page.

The TOP Clause
The TOP keyword clause specifies that the SELECT statement return only a specified number of rows. It returns the
specified number of rows that appear at the “top” of the returned virtual table. By default, which rows are the “top” rows
of the table is unpredictable. However, InterSystems IRIS applies the DISTINCT and ORDER BY clauses (if specified)
before selecting the TOP rows. For further details, see the TOP clause reference page.

The select-item
This is a mandatory element for all SELECT statements. Commonly, a select-item refers to a field in the table(s) specified
in the FROM clause. A select-item consists of one or more of the following items, with multiple items separated by commas:

• A column name (field name), with or without a table name alias:

SELECT Name,Age FROM Sample.Person

Field names are not case-sensitive. However, the label associated with the field in the result set uses the letter case of
the SqlFieldName as specified in the table definition, not the letter case specified in the select-item. See “Field Column
Alias” for further details on letter case resolution.

A field name containing one or more underscores references an embedded serial object property. For example, for the
field name Home_City, the table contains a referencing field Home that references an embedded serial object that
defines the property City. For the field name Home_Phone_AreaCode, the table contains a referencing field Home
that references an embedded serial object property Phone that references a nested embedded serial object that defines
the property AreaCode. If you select a referencing field such as Home or Home_Phone, you receive the values of all
of properties in the serial object in %List data type format.

To list all of the column names defined for a specified table, refer to Column Names and Numbers in the “Defining
Tables” chapter of Using InterSystems SQL.

To display the RowID (record ID), you can use the %ID pseudo-field variable alias, which displays the RowID
regardless of what name it is assigned. By default, the name of the RowID is ID, but InterSystems IRIS may rename
it if there is a user-defined field named ID. By default, RowID is a hidden field.

A SELECT on a stream field returns the oref (object reference) of the opened stream object:

SELECT Name,Picture FROM Sample.Employee WHERE Picture IS NOT NULL

254 InterSystems SQL Reference

SQL Commands

When the FROM clause specifies more than one table or view, you must include the table name (or a table name alias)
as part of the select-item, using periods, as shown in the following two examples:

Full table name:

SELECT Sample.Person.Name,Sample.Employee.Company
 FROM Sample.Person, Sample.Employee

Table name alias:

SELECT p.Name, e.Company
 FROM Sample.Person AS p, Sample.Employee AS e

However, you cannot use a full table name as part of a select-item if an alias has been assigned to that table name.
Attempting to so results in an SQLCODE -23 error.

You can use a collation function to specify the sorting and display of a select-item field. You can supply the collation
function without parentheses (SELECT %SQLUPPER Name) or with parentheses (SELECT %SQLUPPER(Name)). If
the collation function specifies truncation, the parentheses are required (SELECT %SQLUPPER(Name,10)).

When the select-item references an embedded serial object property (embedded serial class data), use underline syntax.
Underline syntax consists of the name of the object property, an underscore, and the property within the embedded
object: for example, Home_City and Home_State. (In other contexts, index tables for example, these are represented
using dot syntax: Home.City.)

SELECT Home_City,Home_State FROM Sample.Person

You can use SELECT to directly query a referencing field (such as Home), rather than using underline syntax. Because
the data returned is in list format, you may want to use a $LISTTOSTRING or $LISTGET function to display the
data. For example:

SELECT $LISTTOSTRING(Home,'^') AS HomeAddress FROM Sample.Person

• A subquery. A subquery returns a single column from a specified table. This column can be the values of a single table
field (SELECT Name), or the values of multiple table fields returned as a single column, either by using concatenation
(SELECT Home_City||Home_State) or by specifying a container field (SELECT Home). A subquery can use implicit
joins (arrow syntax). A subquery cannot use asterisk syntax, even when the table cited in the subquery has only one
data field.

One common use of a subquery is to specify an aggregate function that is not subject to the GROUP BY clause. In the
following example, the GROUP BY clause groups ages by decades (for example, 25 through 34). The AVG(Age)
select-item gives the average age of each group, as defined by the GROUP BY clause. In order to get the average age
of all of the records in all groups, it uses a subquery:

SELECT Age AS Decade,
 COUNT(Age) AS PeopleInDecade,
 AVG(Age) AS AvgAgeForDecade,
 (SELECT AVG(Age) FROM Sample.Person) AS AvgAgeAllDecades
FROM Sample.Person
GROUP BY ROUND(Age,-1)
ORDER BY Age

• Arrow syntax, used to access a field from a table other than the FROM clause table. This is known as an implicit join.
In the following example, the Sample.Employee table contains a Company field containing the RowID for the corre-
sponding company name in the Sample.Company table. The arrow syntax retrieves the company name from that table:

SELECT Name,Company->Name AS CompanyName
 FROM Sample.Employee

In this case, you must have SELECT privileges for the referenced table: either table-level SELECT privilege, or column-
level SELECT privilege for both the referenced field and the RowID column of the referenced table. For further details
on arrow syntax, refer to Implicit Joins (Arrow Syntax) in Using InterSystems SQL.

InterSystems SQL Reference 255

SELECT

• Asterisk syntax (*), which selects all the columns in a table in column number order:

SELECT TOP 5 * FROM Sample.Person

Asterisk syntax selects embedded serial object properties (fields), including properties from a serial object nested
within a serial object. A field referencing a serial object is not selected. For example, the Home_City property from
an embedded serial object is selected, but the Home referencing field used to access the Sample.Address embedded
serial class (which contains the City property) is not selected.

Asterisk syntax does not select hidden fields. By default, the RowID is hidden (not displayed by SELECT *). However,
if the table was defined with %PUBLICROWID, SELECT * returns the RowID field and all non-hidden fields. By
default, the name of this field is ID, but InterSystems IRIS may rename it if there is a user-defined field named ID.

If the select-item is an asterisk and more than one table is specified, it selects all the columns in all of the joined tables:

SELECT TOP 5 * FROM Sample.Company,Sample.Employee

Asterisk syntax can be qualified or unqualified. If the select-item is qualified by prefixing a table name (or table name
alias) and period (.) before the asterisk, the select-item selects all the columns in the specified table. Qualified asterisk
syntax can be combined with other select items for other tables.

In the following example, select-item consists of an unqualified asterisk syntax that selects all columns from the table.
Note that you can also specify duplicate column names (in this case Name) and non-column select-item elements (in
this case {fn NOW}):

SELECT TOP 5 {fn NOW} AS QueryDate,
 Name AS Client,
 *
FROM Sample.Person

In the following example, select-item consists of qualified asterisk syntax that selects all columns from one table, and
a list of column names from another table.

SELECT TOP 5 E.Name AS EmpName,
 C.*,
 E.Home_State AS EmpState
FROM Sample.Employee AS E, Sample.Company AS C

Note: SELECT * is a fully supported part of InterSystems SQL that can be extremely convenient during application
development and debugging. However, in production applications the preferred programming practice is to
explicitly list the selected fields, rather than using the asterisk syntax form. Explicitly listing fields makes
your application clearer and easier to understand, easier to maintain, and easier to search for fields by name.

• A select-item containing one or more SQL aggregate functions. An aggregate function always returns a single value.
The argument of an aggregate function may be any of the following:

– A single column name—computes the aggregate for all non-null values of the rows selected by the query:

SELECT AVG(Age) FROM Sample.Person

– A scalar expression is also permitted to compute an aggregate:

SELECT SUM(Age) / COUNT(*) FROM Sample.Person

– Asterisk syntax (*) — used with the COUNT function to compute the number of rows in the table:

SELECT COUNT(*) FROM Sample.Person

– A select distinct function — computes the aggregate by eliminating redundant values:

SELECT COUNT(DISTINCT Home_State) FROM Sample.Person

256 InterSystems SQL Reference

SQL Commands

– While ANSI SQL does not allow the combination of column names and aggregate functions in a single SELECT
statement, InterSystems SQL extends the standard by allowing this:

SELECT Name, COUNT(DISTINCT Home_State) FROM Sample.Person

– An aggregate function using %FOREACH. This causes the aggregate to be computed for each distinct value of a
column or columns:

SELECT DISTINCT Home_State, AVG(Age %FOREACH(Home_State))
 FROM Sample.Person

– An aggregate function using %AFTERHAVING. This causes the aggregate to be computed on a sub-population
specified with the HAVING clause:

SELECT Name,AVG(Age %AFTERHAVING)
 FROM Sample.Person
 HAVING (Age > AVG(Age))

would return those records where Age is greater than average age, giving the average age for those persons whose
age is above the average for all persons in the database.

• A user-defined class method stored as a procedure. May be an unqualified method name or a qualified method name.
The following are all valid class method names: RandLetter() an unqualified name for which a schema is supplied;
Sample.RandLetter() a qualified class method name; and Sample.Rand_Letter() invoking class method
"Rand_Letter"(). In the following example, RandCaseLetter() is a class method that returns a random letter, in
either uppercase (‘U’) or lowercase ('L'):

SELECT RandCaseLetter('U')

The return value from the method is automatically converted from Logical format to Display/ODBC format. An input
value to the method is, by default, not converted from Display/ODBC format to Logical format. However, input display-
to-logical conversion can be configured system-wide using the $SYSTEM.SQL.SetSQLFunctionArgConversion()
method. You can use $SYSTEM.SQL.GetSQLFunctionArgConversion() to determine the current configuration of
this option.

If the specified method does not exist in the current namespace, the system generates a SQLCODE -359 error. If the
specified method is ambiguous (could refer to more than one method), the system generates a SQLCODE -358 error.
For further details on creating a class method, refer to CREATE METHOD.

• A user-supplied ObjectScript function call (extrinsic function) operating on a database column:

SELECT $$REFORMAT^ABC(name)FROM MyTable

MySQL
 &sql(SELECT Name,$$MyFunc() INTO :n,:f FROM Sample.Person)
 WRITE "name is: ",n,!
 WRITE "function value is: ",f,!
 QUIT
MyFunc()
 SET x="my text"
 QUIT x

You can only invoke user-supplied (extrinsic) functions within an SQL statement if you configured this option system-
wide. The default is “No” ; by default, attempting to invoke user-supplied functions issues an SQLCODE -372 error.
To configure use of extrinsic functions use the SetAllowExtrinsicFunctions() method of the %SYSTEM.SQL class.
To determine the current setting, call $SYSTEM.SQL.CurrentSettings().

You cannot use a user-supplied function to call a % routine (a routine with a name that begins with the % character).
Attempting to do so issues an SQLCODE -373 error.

• A select-item that applies additional processing to a field value:

Arithmetic operations:

InterSystems SQL Reference 257

SELECT

SELECT Name, Age,Age-AVG(Age) FROM Sample.Person

If a select-item arithmetic operation includes division, and there are any values for that field in the database that could
produce a divisor with a value of zero or a NULL value, you cannot rely on order of testing to avoid division by zero.
Instead, use a case statement to suppress the risk.

SQL functions:

SELECT Name,$LENGTH(Name) FROM Sample.Person

SQL case conversion functions:

SELECT Name,UCASE(Name) FROM Sample.Person

An XMLELEMENT, XMLFOREST, or XMLCONCAT function, which place XML (or HTML) tags around the
data values retrieved from specified column names. Refer to XMLELEMENT for further details.

• A select-item that returns the same value for all records.

When all of the select-items references no table data, the FROM clause is optional. If you include the FROM clause,
the specified table must exist. For further details on optional FROM clause, refer to the FROM clause reference page.

– Arithmetic operations:

SELECT 7 * 7, 7 * 8 FROM Sample.Person

SELECT Name, Age, 9 - 6 FROM Sample.Person

– A string literal or a function operating on a string literal:

SELECT UCASE('fred') FROM Sample.Person

String literals can be used to produce a more readable output, as shown in the following example:

SELECT TOP 10 Name,'was born on',%EXTERNAL(DOB)
FROM Sample.Person

The way a numeric literal is specified determines its data type. Therefore, the string '123' is reported as data type
VARCHAR, and the numeric 123 is reported as data type INTEGER or NUMERIC.

– A %TABLENAME, or %CLASSNAME pseudo-field variable keyword. %TABLENAME returns the current
table name. %CLASSNAME returns the name of the class corresponding to the current table. If the query references
multiple tables, you can prefix the keyword with a table alias. For example, t1.%TABLENAME.

– One of the following ObjectScript special variables (or their abbreviations): $HOROLOG, $JOB, $NAMESPACE,
$TLEVEL, $USERNAME, $ZHOROLOG, $ZJOB, $ZNSPACE, $ZPI, $ZTIMESTAMP, $ZTIMEZONE,
$ZVERSION.

The Column Alias

When specifying a select-item, you can use the AS keyword to specify an alias for the name of a column:

SELECT Name AS PersonName, DOB AS BirthDate, ...

The column alias is displayed as the column header in the result set. Specifying a column alias is optional; a default is
always provided. A column alias is displayed with the specified letter case; it is not, however, case-sensitive when referenced
in an ORDER BY clause. The c-alias name must be a valid identifier. A c-alias name can be a delimited identifier. Using
a delimited identifier permits a column alias to contain spaces, other punctuation characters, or to be an SQL reserved name.
For example, SELECT Name AS "Customer Name" or SELECT Home_State AS "From". For further details see
the “Identifiers” chapter of Using InterSystems SQL.

258 InterSystems SQL Reference

SQL Commands

The AS keyword is not required, but makes the query text easier to read. Thus the following is also valid syntax:

SELECT Name PersonName, DOB BirthDate, ...

SQL does not perform uniqueness checking for column aliases. It is possible (though not desirable) for a field column and
a column alias to have the same name, or for two column aliases to be identical. Such non-unique column aliases may cause
an SQLCODE -24 “Ambiguous sort column” error when referenced by an ORDER BY clause. Column aliases, like all
SQL identifiers, are not case-sensitive.

Use of column aliases in other SELECT clauses is governed by query semantic processing order. You can reference a
column by its column alias in an ORDER BY clause. You cannot reference a column alias in another select-item in the
select list, in a DISTINCT BY clause, a WHERE clause, a GROUP BY clause, or a HAVING clause. You cannot reference
a column alias in a JOIN operation’s ON clause or USING clause. You can, however, use a subquery to make a column
alias available for use by other these other SELECT clauses, as shown in the “Querying the Database” chapter of Using
InterSystems SQL.

Field Column Aliases

A select-item field name is not case-sensitive. However, unless you supply a column alias, the name of a field column in
the result set follows the letter case of the SqlFieldName associated with the column property. The letter case of the Sql-
FieldName corresponds to the field name as specified in the table definition, not as specified in the select-item list. Therefore,
SELECT name FROM Sample.Person returns the field column label as Name. Using a field column alias allows you
to specify the letter case to display, as shown in the following example:

SELECT name,name AS NAME
FROM Sample.Person

Letter case resolution takes time. To maximize SELECT performance, you can specify the exact letter case of the field
name, as specified in the table definition. However, determining the exact letter case of a field in the table definition is
often inconvenient and prone to error. Instead, you can use a field column alias to avoid letter case issues. Note that all
references to the field column alias must match in letter case.

The following Dynamic SQL example requires letter case resolution (the SqlFieldNames are “Latitude” and “Longitude”):

 SET myquery = "SELECT latitude,longitude FROM Sample.USZipCode"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WHILE rset.%Next() {WRITE rset.latitude," ",rset.longitude,! }

The following Dynamic SQL example does not requires letter case resolution, and therefore executes faster:

 SET myquery = "SELECT latitude AS northsouth,longitude AS eastwest FROM Sample.USZipCode"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WHILE rset.%Next() {WRITE rset.northsouth," ",rset.eastwest,! }

The t-alias table alias prefix is not included in the column name. Therefore, in the following example, both columns are
labeled as Name:

SELECT p.Name,e.Name
FROM Sample.Person AS p LEFT JOIN Sample.Employee AS e ON p.Name=e.Name

To distinguish the columns in a query that specifies multiple tables, you should specify column aliases:

SELECT p.Name AS PersonName,e.Name AS EmployeeName
FROM Sample.Person AS p LEFT JOIN Sample.Employee AS e ON p.Name=e.Name

You may also wish to provide a column alias to make the data easier to understand. In the following example, the table
column “Home_State” is renamed “US_State_Abbrev”:

InterSystems SQL Reference 259

SELECT

SELECT Name,Home_State AS US_State_Abbrev
FROM Sample.Person

Note that %ID references a specific column, and therefore returns that field name (ID, by default), or a specified column
alias, as shown in the following example:

SELECT %ID,%ID AS Ident,Name
FROM Sample.Person

Non-Field Column Aliases

Non-field columns are automatically assigned a column name. If you provide no alias for such fields, InterSystems SQL
supplies a unique column name, such as “Expression_1”, or “Aggregate_3”. The integer suffix refers to the select-item
position as specified in the SELECT statement (the select-item column number). They are not a count of fields of that type.

The following are automatically assigned column names (n is an integer). These are listed in increasingly inclusive order.
For example, adding a plus or minus sign to a number promotes it from a HostVar to an Expression; concatenating a
HostVar and a Literal promotes it to an Expression; specifying a Literal, HostVar, Aggregate, or Expression in a subquery
promotes it to a SubQuery:

• Literal_n: a pseudo-field variable such as %TABLENAME, or the NULL specifier. Note that %ID is not Literal_n;
it is given the column name of the actual RowID field.

• HostVar_n: a host variable. This may be a literal, such as ‘text’, 123, or the empty string (''), an input variable
(:myvar), or a ? input parameter replaced by a literal. Note that any expression evaluation on a literal, such appending
a sign to a number, string concatenation, or an arithmetic operation, makes it an Expression_n. A literal value
supplied to a ? parameter is returned unchanged without expression evaluation. For example, supplying 5+7 returns
the string '5+7' as HostVar_n.

• Aggregate_n: an aggregate function, such as AVG(Age) or COUNT(*). A column is named Aggregate_n if the
outermost operation is an aggregate function, even when this aggregate contains an expression. For example,
COUNT(Name)+COUNT(Spouse) is Expression_n, but MAX(COUNT(Name)+COUNT(Spouse)) is Aggregate_n,
-AVG(Age) is Expression_n, but AVG(-Age) is Aggregate_n.

• Expression_n: any operation in the select-item list on a literal, a field, or on an Aggregate_n, HostVar_n,
Literal_n, or Subquery_n select-item changes its column name to Expression_n. This includes unary operations
on numbers (-Age), arithmetic operations (Age+5), concatenation ('USA:'||Home_State), data type CAST
operations, SQL collation functions (%SQLUPPER(Name) or %SQLUPPER Name), SQL scalar functions
($LENGTH(Name)), user-defined class methods, CASE expressions, and special variables (such as CURRENT_DATE
or $ZPI).

• Subquery_n: the result of a subquery that specifies a single select-item. The select-item may be a field, aggregate
function, expression, or literal. You specify the column alias after the subquery, not within the subquery.

In the following example, the aggregate field column created by the AVG function is given the column alias “AvgAge”;
its default name is “Aggregate_3” (an aggregate field in position 3 in the SELECT list).

SELECT Name, Age, AVG(Age) AS AvgAge FROM Sample.Person

The following example is identical to the previous, except that the AS keyword is here omitted. The use of this keyword
is recommended, but not required.

SELECT Name, Age, AVG(Age) AvgAge FROM Sample.Person

The following example show how to specify a column alias for a select-item subquery:

SELECT Name AS PersonName,
 (SELECT Name FROM Sample.Employee) AS EmpName,
 Age AS YearsOld
FROM Sample.Person

260 InterSystems SQL Reference

SQL Commands

FROM Clause
The FROM table-ref clause specifies one or more tables, views, table-valued functions, or subqueries. You can specify any
combination of these table-ref types as a comma-separated list or with JOIN syntax. If you specify a single table-ref, the
specified data is retrieved from that table or view. If you specify multiple table-refs, SQL performs a join operation on the
tables, merging their data into a results table from which the specified data is retrieved.

If you specify more than one table-ref, you can separate these table names with commas or with explicit join syntax keywords.
For further details on specifying a comma-separated list of table names, see the FROM clause reference page. For further
details on specifying multiple table names with explicit JOIN syntax (such as RIGHT JOIN) see the JOIN reference page.

You can use the $SYSTEM.SQL.TableExists() or $SYSTEM.SQL.ViewExists() method to determine whether a table
or view exists in the current namespace. You can use the $SYSTEM.SQL.CheckPriv() method to determine if you have
SELECT privileges for that table or view.

The Table Alias

When specifying a table-ref, you can use the AS keyword to specify an alias for that table name or view name:

FROM Sample.Person AS P

The AS keyword is not required, but makes the query text easier to read. The following is valid equivalent syntax:

FROM Sample.Person P

The t-alias name must be a valid identifier. A t-alias name can be a delimited identifier. A t-alias must be unique among
table aliases within the query. A t-alias, like all identifiers, is not case-sensitive. Therefore, you cannot specify two t-alias
names that differ only in letter case. This results in an SQLCODE -20 “Name conflict” error. For further details see the
“Identifiers” chapter of Using InterSystems SQL.

The table alias is used as a prefix (with a period) to a field name to indicate the table to which the field belongs. For
example:

SELECT P.Name, E.Name
FROM Sample.Person AS P, Sample.Employee AS E

You must use a table reference prefix when a query specifies multiple tables that have the same field name. A table reference
prefix can be a t-alias (as shown above) or it can be the fully qualified table name, as shown in the following equivalent
example:

SELECT Sample.Person.Name, Sample.Employee.Name
FROM Sample.Person, Sample.Employee

However, you cannot use a full table name as part of a select-item if a t-alias has been assigned to that table name.
Attempting to so results in an SQLCODE -23 error.

Specifying a table alias is optional when a query references only one table (or view). Specifying a table alias is optional
(but recommended) when a query references multiple tables (and/or views) and the field names referenced are unique to
each table. Specifying a table alias is required when a query references multiple tables (and/or views) and the field names
referenced are the same in different tables. Failing to specify a t-alias (or fully qualified table name) prefix results in an
SQLCODE -27 “Field %1 is ambiguous among the applicable tables” error.

A t-alias can be used, but is not required, when specifying a subquery such as the following:

SELECT Name,(SELECT Name FROM Sample.Vendor)
FROM Sample.Person

A t-alias only uniquely identifies a field for query execution; to uniquely identify a field for query result set display you
must also use a column alias (c-alias). The following example uses both table aliases (Per and Emp) and column aliases
(PName and Ename):

InterSystems SQL Reference 261

SELECT

SELECT Per.Name AS PName, Emp.Name AS EName
FROM Sample.Person AS Per, Sample.Employee AS Emp
WHERE Per.Name %STARTSWITH 'G'

You can use the same name for a field, a column alias, and/or a table alias without a naming conflict.

A t-alias prefix is used wherever it is necessary to distinguish which table is being referred to. Some examples of this are
shown in the following:

SELECT P.%ID As PersonID,
 AVG(P.Age) AS AvgAge,
 Z.%TABLENAME||'=' AS Tablename,
 Z.*
FROM Sample.Person AS P, Sample.USZipCode AS Z
WHERE P.Home_City = Z.City
GROUP BY P.Home_City
ORDER BY Z.City

Sharding Transparent to SELECT Queries

Sharding is transparent to SQL queries; no special query syntax is required. A query does not need to know whether a table
specified in the FROM clause is sharded or non-sharded. The same query can access sharded and non-sharded tables. A
query can include joins between sharded and non-sharded tables.

A sharded table is defined using the CREATE TABLE command. It must be defined in the master namespace on the shard
master data server. This master namespace can also include non-sharded tables.

WHERE Clause
The WHERE clause qualifies or disqualifies specific rows from the query selection. The rows that qualify are those for
which the condition-expression is true. The condition-expression is a list of logical tests (predicates) which can be linked
by the AND and OR logical operators. These predicates may be inverted using the NOT unary logical operator.

The SQL predicates fall into the following categories:

• Comparison Predicates

• BETWEEN Predicate

• LIKE Predicate

• NULL Predicate

• IN and %INLIST Predicates

• EXISTS Predicate

• FOR SOME Predicate

• FOR SOME %ELEMENT Predicate

For further details on these logical predicates, see the WHERE clause reference page. The condition-expression cannot
contain aggregate functions. If you wish to specify a selection condition using a value returned by an aggregate function,
use a HAVING clause.

A WHERE clause can specify an explicit join between two tables using the = (inner join) symbolic join operators. For
further details, refer to the JOIN page of this manual.

A WHERE clause can specify an implicit join between the base table and a field from another table using the arrow syntax
(–>) operator. For further details, refer to Implicit Joins in Using InterSystems SQL.

GROUP BY Clause
The GROUP BY clause takes the resulting rows of a query and breaks them up into individual groups according to one or
more database columns. When you use SELECT in conjunction with GROUP BY, one row is retrieved for each distinct

262 InterSystems SQL Reference

SQL Commands

value of the GROUP BY fields. The GROUP BY clause is conceptually similar to the InterSystems IRIS extension
%FOREACH, but GROUP BY operates on an entire query, while %FOREACH allows selection of aggregates on sub-
populations without restricting the entire query population. For instance:

SELECT Home_State, COUNT(Home_State) AS Population
 FROM Sample.Person
 GROUP BY Home_State

This query returns one row for each distinct Home_State.

For further details, see the GROUP BY clause reference page.

HAVING Clause
The HAVING clause is like a WHERE clause that operates on groups. It is typically used in combination with the GROUP
BY clause, or with the %AFTERHAVING keyword. The HAVING clause qualifies or disqualifies specific rows from the
query selection. The rows that qualify are those for which the condition-expression is true. The condition-expression is a
list of logical tests (predicates) which can be linked by the AND and OR logical operators. The condition-expression can
contain aggregate functions. For further details, see the HAVING clause reference page.

ORDER BY Clause
An ORDER BY clause consists of the ORDER BY keywords followed by a select-item or a comma-separated list of items
that specify the order in which rows are displayed. Each item can have an optional ASC (ascending order) or DESC
(descending order). The default is ascending order. An ORDER BY clause is applied to the results of a query, and is frequently
paired with a TOP clause. For further details, see the ORDER BY clause reference page.

The following example returns the selected fields for all rows in the database, and orders these rows in ascending order by
age:

SELECT Home_State, Name, Age
FROM Sample.Person
ORDER BY Age

SELECT and Transaction Processing
A transaction performing a query is defined as either READ COMMITTED or READ UNCOMMITTED. The default is
READ UNCOMMITTED. A query that is not in a transaction is defined as READ UNCOMMITTED.

• If READ UNCOMMITTED, a SELECT returns the current state of the data, including changes made to the data by
transactions in progress which have not been committed. These changes may be subsequently rolled back.

• If READ COMMITTED, the behavior depends on the contents of the SELECT statement. Normally, a SELECT
statement in read committed mode would only return insert and update changes to data that has been committed. Data
rows that have been deleted by a transaction in progress are not returned, even though these deletes have not been
committed and may be rolled back.

However, if the SELECT statement contains a %NOLOCK keyword, a DISTINCT clause, or a GROUP BY clause,
the SELECT returns the current state of the data, including changes made to data during the current transaction which
have not been committed. An aggregate function in a SELECT also returns the current state of the data for the specified
column(s), including uncommitted changes.

For further details, refer to SET TRANSACTION and START TRANSACTION.

Query Metadata
You can use Dynamic SQL to return metadata about the query, such as the number of columns specified in the query, the
name (or alias) of a column specified in the query, and the data type of a column specified in the query. For further details,
refer to the Dynamic SQL chapter of Using InterSystems SQL, and the %SQL.Statement class in the InterSystems Class
Reference.

InterSystems SQL Reference 263

SELECT

Examples
The following four examples perform similar queries, using different combinations of SELECT clauses. Note that these
clauses must be specified in the correct order. In all four examples, three fields are selected from the Sample.Person table:
Name, Home_State, and Age, and two fields (AvgAge and AvgMiddleAge) are computed.

HAVING/ORDER BY

In the following example, the AvgAge computed field is computed on all records in Sample.Person. The HAVING clause
governs the AvgMiddleAge computed field, calculating the average age of those over 40 from all records in Sample.Person.
Thus, every row has the same value for AvgAge and AvgMiddleAge. The ORDER BY clause sequences the display of the
rows alphabetically by the Home_State field value.

SELECT Name,Home_State,Age,AVG(Age) AS AvgAge,
 AVG(Age %AFTERHAVING) AS AvgMiddleAge
 FROM Sample.Person
 HAVING Age > 40
 ORDER BY Home_State

WHERE/HAVING/ORDER BY

In the following example, the WHERE clause limits the selection to the seven specified northeastern states. The AvgAge
computed field is computed on the records from those Home_States. The HAVING clause governs the AvgMiddleAge
computed field, calculating the average age of those over 40 from the records from the specified Home_States. Thus, every
row has the same value for AvgAge and AvgMiddleAge. The ORDER BY clause sequences the display of the rows
alphabetically by the Home_State field value.

SELECT Name,Home_State,Age,AVG(Age) AS AvgAge,
 AVG(Age %AFTERHAVING) AS AvgMiddleAge
 FROM Sample.Person
 WHERE Home_State IN ('ME','NH','VT','MA','RI','CT','NY')
 HAVING Age > 40
 ORDER BY Home_State

GROUP BY/HAVING/ORDER BY

The GROUP BY clause causes the AvgAge computed field to be separately computed for each Home_State group. The
GROUP BY clause also limits the output display to the first record encountered from each Home_State. The HAVING
clause governs the AvgMiddleAge computed field, calculating the average age of those over 40 in each Home_State group.
The ORDER BY clause sequences the display of the rows alphabetically by the Home_State field value.

SELECT Name,Home_State,Age,AVG(Age) AS AvgAge,
 AVG(Age %AFTERHAVING) AS AvgMiddleAge
 FROM Sample.Person
 GROUP BY Home_State
 HAVING Age > 40
 ORDER BY Home_State

WHERE/GROUP BY/HAVING/ORDER BY

The WHERE clause limits the selection to the seven specified northeastern states. The GROUP BY clause causes the
AvgAge computed field to be separately computed for each of these seven Home_State groups. The GROUP BY clause
also limits the output display to the first record encountered from each specified Home_State. The HAVING clause governs
the AvgMiddleAge computed field, calculating the average age of those over 40 in each of the seven Home_State groups.
The ORDER BY clause sequences the display of the rows alphabetically by the Home_State field value.

SELECT Name,Home_State,Age,AVG(Age) AS AvgAge,
 AVG(Age %AFTERHAVING) AS AvgMiddleAge
 FROM Sample.Person
 WHERE Home_State IN ('ME','NH','VT','MA','RI','CT','NY')
 GROUP BY Home_State
 HAVING Age > 40
 ORDER BY Home_State

264 InterSystems SQL Reference

SQL Commands

Embedded SQL and Dynamic SQL Examples

Embedded SQL and Dynamic SQL can be used to issue a SELECT query from within an ObjectScript program.

The following Embedded SQL program retrieves data values from one record and places them in the output host variables
specified in the INTO clause.

 NEW SQLCODE,%ROWCOUNT
 &sql(SELECT Home_State,Name,Age
 INTO :a, :b, :c
 FROM Sample.Person)
 IF SQLCODE=0 {
 WRITE !," Name=",b
 WRITE !," Age=",c
 WRITE !," Home State=",a
 WRITE !,"Row count is: ",%ROWCOUNT }
 ELSE {
 WRITE !,"SELECT failed, SQLCODE=",SQLCODE }

This program retrieves (at most) one row, so the %ROWCOUNT variable is set to either 0 or 1. To retrieve multiple rows,
you must declare a cursor and use the FETCH command. For further details, refer to the Embedded SQL chapter in Using
InterSystems SQL.

The following Dynamic SQL example first tests whether the desired table exists and checks the current user’s SELECT
privilege for that table. It then executes the query and returns a result set. It uses the WHILE loop to repeatedly invoke the
%Next method for the first 10 records of the result set. It displays three field values using %GetData methods that specify
the field position as specified in the SELECT statement:

 SET tname="Sample.Person"
 IF $SYSTEM.SQL.TableExists(tname)
 & $SYSTEM.SQL.CheckPriv($USERNAME,"1,"_tname,"s")
 {GOTO SpecifyQuery}
 ELSE {WRITE "Table unavailable" QUIT}
SpecifyQuery
 SET myquery = 3
 SET myquery(1) = "SELECT Home_State,Name,SSN,Age"
 SET myquery(2) = "FROM "_tname
 SET myquery(3) = "ORDER BY Name"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 IF rset.%SQLCODE=0 {
 SET x=0
 WHILE x < 10 {
 SET x=x+1
 SET status=rset.%Next()
 WRITE rset.%GetData(2)," " /* Name field */
 WRITE rset.%GetData(1)," " /* Home_State field */
 WRITE rset.%GetData(4),! /* Age field */
 }
 WRITE !,"End of Data"
 WRITE !,"SQLCODE=",rset.%SQLCODE," Row Count=",rset.%ROWCOUNT
 }
 ELSE {
 WRITE !,"SELECT failed, SQLCODE=",rset.%SQLCODE }

For further details, refer to the Dynamic SQL chapter in Using InterSystems SQL.

See Also
• SELECT clauses: DISTINCT, FROM, GROUP BY, HAVING, INTO, ORDER BY, TOP, WHERE

• JOIN, UNION

• CREATE VIEW

• CREATE TABLE, ALTER TABLE, DROP TABLE

• CREATE QUERY, DROP QUERY

• INSERT, INSERT OR UPDATE, UPDATE, DELETE

InterSystems SQL Reference 265

SELECT

• “Querying the Database” chapter in Using InterSystems SQL

• SQL and Object Settings described in Configuration Parameter File Reference.

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

266 InterSystems SQL Reference

SQL Commands

SET OPTION
Sets an execution option.

SET OPTION option_keyword = value

Description
The SET OPTION statement is used to set execution options, such as the compile mode, SQL configuration settings, and
the locale settings governing date, time, and numeric conventions. Only one keyword option can be set by each SET
OPTION statement.

SET OPTION can be used in Dynamic SQL or Embedded SQL. SET OPTION cannot be issued from the SQL Shell.

Other SET OPTION arguments (not documented here) are parsed by InterSystems IRIS for SQL compatibility, but perform
no operation.

Because SET OPTION prepares and executes quickly, and is generally run only once, InterSystems IRIS does not create
a cached query for SET OPTION in ODBC, JDBC, or Dynamic SQL.

The following options are supported by InterSystems IRIS:

COMPILEMODE

The COMPILEMODE option sets the compile mode to DEFERRED, IMMEDIATE, INSTALL, or NOCHECK for the
current namespace. The default is IMMEDIATE. Changing from DEFERRED to IMMEDIATE compile mode causes any
classes in the Deferred Compile Queue to be compiled immediately. If all class compilations are successful, InterSystems
IRIS sets SQLCODE to 0. If there are any errors, SQLCODE is set to -400. Class compilation errors are logged in the
^mtemp2 ("Deferred Compile Mode","Error"). If SQLCODE is set to -400, you should view this global structure for more
precise error messages. The INSTALL compile mode is similar to the DEFERRED compile mode, but it should only be
used for DDL installations where there is no data in the tables.

The NOCHECK compile mode is similar to IMMEDIATE, except that it skips checking of the following constraints when
compiling: If a table is dropped, InterSystems IRIS does not check foreign key constraints in other tables that reference the
dropped table. If a foreign key constraint is added, InterSystems IRIS does not check existing data to ensure that it is valid
for this foreign key. If a NOT NULL constraint is added, InterSystems IRIS does not check existing data for NULLs or
assign the field’s default value. If a UNIQUE or Primary Key constraint is deleted, InterSystems IRIS does not check if a
foreign key in this table or another table references the dropped key.

LOCK_TIMEOUT

The LOCK_TIMEOUT numeric option lets you set the default lock timeout for the current process. The LOCK_TIMEOUT
value is the number of seconds to wait when trying to establish a lock during SQL execution. This lock timeout is used
when a locking conflict prevents the current process from immediately locking a record, table, or other entity for a LOCK,
INSERT, UPDATE, DELETE, or SELECT operation. InterSystems SQL continue to try to establish the lock until the
timeout expires, at which point an SQLCODE -110 or -114 error is generated.

Available values are positive integers and zero. The timeout setting is per process. You can determine the lock timeout
setting for the current process using the GetProcessLockTimeout() method.

If you do not set the lock timeout for the current process, it defaults to the current system-wide lock timeout setting. If your
ODBC connection disconnects and reconnects, the reconnected process uses the current system-wide lock timeout setting.
The default system-wide lock timeout is 10 seconds.

For further details on locking conflicts and per-process and system-wide SQL lock timeout settings, refer to the LOCK
command.

InterSystems SQL Reference 267

SET OPTION

PKEY_IS_IDKEY

The PKEY_IS_IDKEY boolean option specifies whether primary keys are also ID keys system-wide. Available values are
TRUE and FALSE. If TRUE, and the field does not contain data, the primary key is created as an ID key. That is, the primary
key of the table also becomes the IDKey index in the class definition. If the field does contain data, the IDKey index is not
defined. If the primary key is defined as the IDKey index, data access is more efficient, but a primary key value, once set,
can never be modified. Once set, you cannot change the value assigned to a primary key, nor can you assign a different
key as the primary key. Use of this option also changes the primary key collation default; primary key string values default
to EXACT collation. If FALSE, the primary key and ID key are defined as independent, which is less efficient. However,
primary key values are modifiable, and primary key string values default to the current collation type default, which is
SQLUPPER by default.

To set the PKEY_IS_IDKEY option, you must have the %Admin_Manage:USE privilege. Otherwise, you receive an
SQLCODE -99 error (Privilege Violation). Once set, this option takes effect system-wide for all processes. The system-
wide default for this option can also be set using:

• The $SYSTEM.SQL.SetDDLPKeyNotIDKey() method call. To determine the current setting, call
$SYSTEM.SQL.CurrentSettings().

• A Management Portal configuration setting. Select System Administration, Configuration, SQL and Object Settings,
SQL. View or modify the current setting of Define primary key as ID key for tables created via DDL.

The PKEY_IS_IDKEY setting remains in effect until reset through another SET OPTION PKEY_IS_IDKEY or until the
InterSystems IRIS Configuration is reactivated, which resets this parameter to the InterSystems IRIS System Configuration
setting.

SUPPORT_DELIMITED_IDENTIFIERS

By default, delimited identifiers are supported system-wide. The SUPPORT_DELIMITED_IDENTIFIERS boolean option
allows you to change support for delimited identifiers system-wide. Available values are TRUE and FALSE. If TRUE, a
string delimited by double quotation marks is considered an identifier within an SQL statement. If FALSE, a string delimited
by double quotation marks is considered a string literal within an SQL statement.

To set the SUPPORT_DELIMITED_IDENTIFIERS option, you must have the %Admin_Manage:USE privilege. Otherwise,
you receive an SQLCODE -99 error (Privilege Violation). Once set, this option takes effect system-wide for all processes.
The SUPPORT_DELIMITED_IDENTIFIERS setting remains in effect until reset through another SET OPTION SUP-
PORT_DELIMITED_IDENTIFIERS, or until changed by the $SYSTEM.SQL.SetDelimitedIdentifiers() method call.

To determine the current setting, call $SYSTEM.SQL.CurrentSettings().

Locale Options

Locale options are keyword options used to set your InterSystems IRIS Locale settings for date, time, and numeric conventions
for the current process. The available keyword options are AM, DATE_FORMAT, DATE_MAXIMUM, DATE_MINIMUM,
DATE_SEPARATOR, DECIMAL_SEPARATOR, MIDNIGHT, MINUS_SIGN, MONTH_ABBR, MONTH_NAME,
NOON, NUMERIC_GROUP_SEPARATOR, NUMERIC_GROUP_SIZE, PM, PLUS_SIGN, TIME_FORMAT,
TIME_PRECISION, TIME_SEPARATOR, WEEKDAY_ABBR, WEEKDAY_NAME, and YEAR_OPTION. All of these
options can be set to a literal, and all take a default (American English conventions). The TIME_PRECISION option is
configurable (see below). If you set any of these options to an invalid value, InterSystems IRIS issues an SQLCODE -129
error (Illegal value for SET OPTION locale property). See the ObjectScript $ZDATETIME function for an explanation
of date and time formats and options.

DescriptionDate/Time Option Keyword

String. Default is 'AM'AM

268 InterSystems SQL Reference

SQL Commands

DescriptionDate/Time Option Keyword

Integer. Default is 1. Available values are 0 through 15. For
an explanation of these date formats, see the ObjectScript
$ZDATE function.

DATE_FORMAT

Integer. Default is 2980013 (12/31/9999). Can be set to an
earlier date, but not to a later date.

DATE_MAXIMUM

Positive Integer. Default is 0 (12/31/1840). Can be set to a
later date, but not to an earlier date.

DATE_MINIMUM

Character. Default is '/'DATE_SEPARATOR

Character. Default is '.'DECIMAL_SEPARATOR

String. Default is 'MIDNIGHT'MIDNIGHT

Character. Default is '-'MINUS_SIGN

String. Default is ' Jan Feb Mar Apr May Jun Jul Aug Sep Oct
Nov Dec'. (Note that this string begins with a space character,
which is the default separator character.)

MONTH_ABBR

String. Default is ' January February March April May June ...
November December'. (Note that this string begins with a
space character, which is the default separator character.)

MONTH_NAME

String. Default is 'NOON'NOON

Character. Default is ','NUMERIC_GROUP_SEPARATOR

Integer. Default is 3.NUMERIC_GROUP_SIZE

String. Default is 'PM'PM

Character. Default is '+'PLUS_SIGN

Integer. Default is 1. Available values are 1 through 4. For an
explanation of these time formats, see the ObjectScript
$ZTIME function.

TIME_FORMAT

Integer from 0 through 9 (inclusive). Default is 0. The number
of digits of fractional seconds. Configurable, as described
below.

TIME_PRECISION

Character. Default is ':'TIME_SEPARATOR

String. Default is ' Sun Mon Tue Wed Thu Fri Sat'. (Note that
this string begins with a space character, which is the default
separator character.)

WEEKDAY_ABBR

String. Default is ' Sunday Monday Tuesday Wednesday
Thursday Friday Saturday'. (Note that this string begins with
a space character, which is the default separator character.)

WEEKDAY_NAME

Integer. Default is 0. Available values are 0 through 6. For an
explanation of these ways of representing 2-digit and 4-digit
years, see the ObjectScript $ZDATE function.

YEAR_OPTION

To configure TIME_PRECISION system-wide, go to the Management Portal, select System Administration, Configuration,
SQL and Object Settings, SQL. View and edit the current setting of Default time precision for GETDATE(), CURRENT_TIME,

InterSystems SQL Reference 269

SET OPTION

and CURRENT_TIMESTAMP. This specifies the number of digits of precision for fractional seconds. The default is 0. The
range of allowed values is 0 through 9 digits of precision. The actual number of meaningful digits of fractional seconds is
platform-dependent.

See Also
• SQL date and time functions: CURRENT_TIMESTAMP, DATEPART, DATENAME, GETDATE, NOW

• SQL date functions: DAYNAME, DAYOFWEEK, DAYOFMONTH, DAYOFYEAR, WEEK, MONTH, MONTH-
NAME, QUARTER, YEAR, CURDATE, CURRENT_DATE, TO_DATE

• SQL time functions: HOUR, MINUTE, SECOND, CURTIME, CURRENT_TIME

• SQL and Object Settings described in Configuration Parameter File Reference.

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

• ObjectScript functions: $ZDATE $ZDATETIME $ZTIME

270 InterSystems SQL Reference

SQL Commands

SET TRANSACTION
Sets parameters for transactions.

SET TRANSACTION [%COMMITMODE commitmode]

SET TRANSACTION [transactionmodes]

Arguments

Optional — Specifies the manner in which
transactions are committed to the database. Available
values are EXPLICIT, IMPLICIT, and NONE. The
default is IMPLICIT.

%COMMITMODE commitmode

Optional — Specifies the isolation mode and access
mode for the transaction.You can specify a value for
either an isolation mode, an access mode, or for both
modes as a comma-separated list.

Valid values for isolation mode are ISOLATION
LEVEL READ COMMITTED, ISOLATION LEVEL
READ UNCOMMITTED, and ISOLATION LEVEL
READ VERIFIED. The default is ISOLATION LEVEL
READ UNCOMMITTED.

Valid values for access mode are READ ONLY and
READ WRITE. Note that only ISOLATION LEVEL
READ COMMITTED is compatible with access mode
READ WRITE.

transactionmodes

Description
A SET TRANSACTION statement sets parameters that govern SQL transactions for the current process. These parameters
take effect at the beginning of the next transaction and continue in effect for the duration of the current process or until
explicitly reset. They do not automatically reset to defaults at the end of a transaction.

A single SET TRANSACTION statement can be used to set either the commitmode parameter or the transactionmodes
parameters, but not both.

The same parameters can be set using the START TRANSACTION command, which can both set parameters and begin
a new transaction. The parameters can also be set using method calls.

SET TRANSACTION does not begin a transaction, and therefore does not increment the $TLEVEL transaction level
counter.

%COMMITMODE

The %COMMITMODE keyword allows you to specify whether or not automatic transaction commitment is performed.
The available options are:

• IMPLICIT: automatic transaction commitment is on (the default). SQL automatically initiates a transaction when a
program issues a database modification operation (INSERT, UPDATE, or DELETE). The transaction continues until
either the operation completes successfully and SQL automatically commits the changes, or the operation is unable to
complete successfully on all rows and SQL automatically rolls back the entire operation. Each database operation
(INSERT, UPDATE, or DELETE) constitutes a separate transaction. Successful completion of the database operation

InterSystems SQL Reference 271

SET TRANSACTION

automatically clears the rollback journal, releases locks, and decrements $TLEVEL. No COMMIT statement is needed.
This is the default setting.

• EXPLICIT: automatic transaction commitment is off. SQL automatically initiates a transaction when a program issues
the first database modification operation (INSERT, UPDATE, or DELETE). This transaction continues until it is
explicitly concluded. Upon successful completion you issue a COMMIT statement. If a database modification operation
fails you issue a ROLLBACK statement to revert the database to the point prior to the beginning of the transaction.
In EXPLICIT mode the number of database operations per transaction is user-defined.

• NONE: no automatic transaction processing. A transaction is not initiated unless explicitly invoked by a START
TRANSACTION statement. The transaction must be explicitly concluded by issuing either a COMMIT or
ROLLBACK statement. Thus whether a database operation is included in a transaction, and the number of database
operations in a transaction are both user-defined.

TRUNCATE TABLE does not occur within an automatically initiated transaction. If journaling and rollback of TRUNCATE
TABLE is required, you must explicitly specify a START TRANSACTION and conclude with an explicit COMMIT or
ROLLBACK.

You can determine the %COMMITMODE setting for the current process using the GetAutoCommit() method, as shown
in the following ObjectScript example:

 DO $SYSTEM.SQL.SetAutoCommit($RANDOM(3))
 SET x=$SYSTEM.SQL.GetAutoCommit()
 IF x=1 {
 WRITE "%COMMITMODE IMPLICIT (default behavior):",!,
 "each database operation is a separate transaction",!,
 "with automatic commit or rollback" }
 ELSEIF x=0 {
 WRITE "%COMMITMODE NONE:",!,
 "No automatic transaction support",!,
 "You must use START TRANSACTION to start a transaction",!,
 "and COMMIT or ROLLBACK to conclude one" }
 ELSE {
 WRITE "%COMMITMODE EXPLICIT:",!,
 "the first database operation automatically",!,
 "starts a transaction; to end the transaction",!,
 "explicit COMMIT or ROLLBACK required" }

The %COMMITMODE can be set in ObjectScript using the SetAutoCommit() method call. The available method values
are 0 (NONE), 1 (IMPLICIT), and 2 (EXPLICIT).

ISOLATION LEVEL

You specify an ISOLATION LEVEL for a process that is issuing a query. The ISOLATION LEVEL options permit you
to specify whether or not changes that are in progress should be available for read access by the query. If another concurrent
process is performing inserts or updates to a table and those changes to the table are in a transaction, those changes are in
progress, and could, potentially, be rolled back. By setting the ISOLATION LEVEL for your process that is querying that
table, you can specify whether you wish to include or exclude these changes in progress from the query results.

• READ UNCOMMITTED states that all changes are immediately available for query access. This includes changes
that may subsequently be rolled back. READ UNCOMMITTED insures that your query will return results without
waiting for a concurrent insert or update process, and will not fail due to a lock timeout error. However, the results of
a READ UNCOMMITTED may include values that are not committed; these values may be internally inconsistent
because the insert or update operation has only partially completed, and these values may be subsequently rolled back.
READ UNCOMMITTED is the default if your query process is not in an explicit transaction, or if the transaction does
not specify an ISOLATION LEVEL. READ UNCOMMITTED is incompatible with READ WRITE access; attempting
to specify both in the same statement results in an SQLCODE -92 error.

• READ VERIFIED states that uncommitted data from other transactions is immediately available, and no locking is
performed. This includes changes that may subsequently be rolled back. However, unlike READ UNCOMMITTED,
a READ VERIFIED transaction will re-check any conditions that could be invalidated by uncommitted or newly
committed data which would result in output that does not satisfy the query conditions. Because of this condition re-

272 InterSystems SQL Reference

SQL Commands

check, READ VERIFIED is more accurate but less efficient than READ UNCOMMITTED and should only be used
when concurrent updates to the data being checked by the conditions is likely to occur. READ VERIFIED is incompat-
ible with READ WRITE access; attempting to specify both in the same statement results in an SQLCODE -92 error.

• READ COMMITTED states that only those changes that have been committed are available for query access. This
ensures that a query is performed on the database in a consistent state, not while a group of changes are being made,
a group of changes which may be subsequently rolled back. If requested data has been changed, but the changes have
not been committed (or rolled back), the query waits for transaction completion. If a lock timeout occurs while waiting
for this data to be available, an SQLCODE -114 error is issued.

READ UNCOMMITTED or READ VERIFIED?

The difference between READ UNCOMMITTED and READ VERIFIED is demonstrated by the following example:

SELECT Name,SSN FROM Sample.Person WHERE Name >= 'M'

The query optimizer may choose first to collect all RowID's containing Names meeting the >= 'M' condition from a Name
index. Once collected, the Person table is accessed one RowID at a time to retrieve the Name and SSN fields for output.
A concurrently running updating transaction could change the Name field of a Person with RowID 72 from 'Smith' to 'Abel'
in-between the query's collection of RowID's from the index and its row-by-row access to the table. In this case, the collection
of RowID's from the index would contain the RowID for a row that no longer conforms to the Name >= 'M' condition.

READ UNCOMMITTED query processing assumes that the Name >= 'M' condition has been satisfied by the index, and
will output whatever Name is present in the table for each RowID it collected from the index. In this example it would
therefore output a row with a Name of 'Abel', which does not satisfy the condition.

READ VERIFIED query processing notes that it is retrieving a field from a table for output (Name) that participates in a
condition which should have been previously satisfied by the index, and re-checks the condition in case the field value has
changed since the index was examined. Upon re-check, it notes that the row no longer satisfies the condition and omits it
from the output. Only values that are needed for output have their conditions re-checked: SELECT SSN FROM Person
WHERE Name >= 'M' would output the row with RowID 72 in this example.

Exceptions to READ COMMITTED

When ISOLATION LEVEL read committed is in effect, either through setting ISOLATION LEVEL READ COMMITTED
or $SYSTEM.SQL.SetIsolationMode(1), SQL can retrieve only those changes to the data that have been committed.
However, there are significant exceptions to this rule:

• A deleted row is never returned by a query, even when the transaction that deleted the row is in progress and the delete
may be subsequently rolled back. ISOLATION LEVEL READ COMMITTED ensures that inserts and updates are in
a consistent state, but not deletes.

• If you query contains an aggregate function, the aggregate result returns the current state of the data, regardless of the
specified ISOLATION LEVEL. Therefore, inserts and updates are in progress (and may subsequently be rolled back)
are included in aggregate results. Deletes that are in progress (and may subsequently be rolled back) are not included
in aggregate results. This is because an aggregate operation requires access to data from many rows of a table.

• A SELECT query that contains a DISTINCT clause or a GROUP BY clause is unaffected by the ISOLATION LEVEL
setting. A query containing one of these clauses returns the current state of the data, including changes in progress that
may be subsequently rolled back. This is because these query operations require access to data from many rows of a
table.

• A query with the %NOLOCK keyword.

Note: On InterSystems IRIS implementations with ECP (Enterprise Cache Protocol) use of READ COMMITTED may
result in significantly slower performance when compared to READ UNCOMMITTED. Developers should weigh
the superior performance of READ UNCOMMITTED against the greater data accuracy of READ COMMITTED
when defining transactions that involve ECP.

InterSystems SQL Reference 273

SET TRANSACTION

For further details, refer to Transaction Processing in the “Modifying the Database” chapter of Using InterSystems SQL.

ISOLATION LEVEL in Effect

You can set the ISOLATION LEVEL for a process using SET TRANSACTION (without starting a transaction), START
TRANSACTION (setting isolation mode and starting a transaction), or a SetIsolationMode() method call.

The specified ISOLATION LEVEL remains in effect until explicitly reset by a SET TRANSACTION, START
TRANSACTION, or a SetIsolationMode() method call. Because COMMIT or ROLLBACK is only meaningful for
changes to the data, not data queries, a COMMIT or ROLLBACK operation has no effect on the ISOLATION LEVEL
setting.

The ISOLATION LEVEL in effect at the start of a query remains in effect for the duration of the query.

you can determine the ISOLATION LEVEL for the current process using the GetIsolationMode() method call. You can
also set the isolation mode for the current process using the SetIsolationMode() method call. These methods specify READ
UNCOMMITTED (the default) as 0, READ COMMITTED as 1, and READ VERIFIED as 3. Specifying any other numeric
value leaves the isolation mode unchanged. No error or change occurs if you set the isolation mode to the current isolation
mode. Use of these methods is shown in the following example:

 WRITE $SYSTEM.SQL.GetIsolationMode()," default",!
 &sql(START TRANSACTION ISOLATION LEVEL READ COMMITTED,READ WRITE)
 WRITE $SYSTEM.SQL.GetIsolationMode()," after START TRANSACTION",!
 DO $SYSTEM.SQL.SetIsolationMode(0,.stat)
 IF stat=1 {
 WRITE $SYSTEM.SQL.GetIsolationMode()," after SetIsolationMode(0) call",! }
 ELSE { WRITE "SetIsolationMode() error" }
 &sql(COMMIT)

The isolation mode and the access mode must always be compatible. Changing the access mode changes the isolation mode,
as shown in the following example:

 WRITE $SYSTEM.SQL.GetIsolationMode()," default",!
 &sql(SET TRANSACTION ISOLATION LEVEL READ COMMITTED,READ WRITE)
 WRITE $SYSTEM.SQL.GetIsolationMode()," after SET TRANSACTION",!
 &sql(START TRANSACTION READ ONLY)
 WRITE $SYSTEM.SQL.GetIsolationMode()," after changing access mode",!
 &sql(COMMIT)

Examples
The following Embedded SQL example uses two SET TRANSACTION statements to set transaction parameters. Note
that SET TRANSACTION does not increment the transaction level ($TLEVEL). The START TRANSACTION command
initiates a transaction and increments $TLEVEL:

 &sql(SET TRANSACTION %COMMITMODE EXPLICIT)
 WRITE !,"Set transaction commit mode, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED)
 WRITE !,"Set transaction isolation mode, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(START TRANSACTION)
 WRITE !,"Start transaction, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(SAVEPOINT a)
 WRITE !,"Set Savepoint a, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(COMMIT)
 WRITE !,"Commit transaction, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL

See Also
• COMMIT ROLLBACK SAVEPOINT START TRANSACTION $TLEVEL

• Transaction Processing in the “Modifying the Database” chapter of Using InterSystems SQL

274 InterSystems SQL Reference

SQL Commands

START TRANSACTION
Begins a transaction.

START TRANSACTION [%COMMITMODE commitmode]

START TRANSACTION [transactionmodes]

Arguments

Optional — Specifies how future transactions will be committed to the
database during the current process.Valid values are EXPLICIT, IMPLICIT,
and NONE.The default is to maintain the existing commit mode; the initial
commit mode default for a process is IMPLICIT.

commitmode

Optional — Specifies the isolation mode and access mode for the transac-
tion.You can specify a value for either an isolation mode, an access mode,
or for both modes as a comma-separated list.

Valid values for isolation mode are ISOLATION LEVEL READ COMMIT-
TED, ISOLATION LEVEL READ UNCOMMITTED, and ISOLATION LEVEL
READ VERIFIED. The default is ISOLATION LEVEL READ UNCOMMIT-
TED.

Valid values for access mode are READ ONLY and READ WRITE. Note
that only ISOLATION LEVEL READ COMMITTED is compatible with
access mode READ WRITE.

transactionmodes

Description
A START TRANSACTION statement initiates a transaction. START TRANSACTION immediately initiates a transaction,
regardless of the current commit mode setting. A transaction begun with START TRANSACTION must be concluded
by issuing an explicit COMMIT or ROLLBACK, regardless of the current commit mode setting.

START TRANSACTION is optional.

• If your process is only querying the data (SELECT statements), you can use SET TRANSACTION to establish the
ISOLATION LEVEL. A START TRANSACTION is not needed.

• If your process is modifying the data, whether you need to explicitly begin an SQL transaction by issuing a START
TRANSACTION depends on the current commit mode setting for the process (also referred to as the AutoCommit
setting). If the commit mode for the current process is IMPLICIT or EXPLICIT, issuing a START TRANSACTION
is optional. If you omit START TRANSACTION, the system automatically initiates a transaction when you invoke
a modify data operation (DELETE, UPDATE, or INSERT). If you specify START TRANSACTION a transaction
is immediately initiated, and must be concluded by an explicit COMMIT or ROLLBACK.

When START TRANSACTION initiates a transaction it increments the $TLEVEL transaction level counter from 0 to 1,
indicating a transaction is in progress. You can also determine if a transaction is in progress by checking the SQLCODE
set by the %INTRANSACTION statement. Issuing a START TRANSACTION when a transaction is in progress has no
effect on $TLEVEL or %INTRANSACTION.

InterSystems SQL does not support nested transactions. Issuing a START TRANSACTION when a transaction is already
in progress does not initiate another transaction and does not return an error code. InterSystems SQL does support savepoints,
allowing a partial rollback of a transaction.

InterSystems SQL Reference 275

START TRANSACTION

If a transaction is not in progress when you issue a SAVEPOINT statement, SAVEPOINT initiates a transaction. However,
this means of initiating a transaction is not recommended.

An SQLCODE -400 is issued if a transaction operation fails to complete successfully.

Setting Parameters

Optionally, START TRANSACTION can be used to set parameters. The parameter settings you specify take effect
immediately. However, any transaction initiated with a START TRANSACTION must be concluded with an explicit
COMMIT or ROLLBACK, regardless of how you set the commitmode parameter. Parameter settings continue in effect
for the duration of the current process or until explicitly reset. They do not automatically reset to defaults at the end of a
transaction.

A single START TRANSACTION statement can be used to set either the commitmode parameter or the transactionmodes
parameters, but not both. To set both, you may issue a SET TRANSACTION and a START TRANSACTION, or two
START TRANSACTION statements. Only the first START TRANSACTION initiates a transaction.

After issuing a START TRANSACTION, you can change these parameter settings during the transaction by issuing
another START TRANSACTION, a SET TRANSACTION, or a method call. Changing the commitmode parameter does
not remove the requirement to conclude the current transaction with an explicit COMMIT or ROLLBACK.

You can use the SET TRANSACTION statement to set the commitmode or transactionmodes parameters without starting
a transaction. These parameters can also be set using method calls, either outside of a transaction or within a transaction.

%COMMITMODE

The %COMMITMODE keyword allows you to specify automatic transaction initiation and commitment behavior for the
current process. A START TRANSACTION %COMMITMODE changes the commit mode setting for all future transactions
on the current process. It does not affect the transaction initiated by the START TRANSACTION statement. Regardless
of the current or set commit mode, a START TRANSACTION immediately initiates a transaction, and this transaction
must be concluded by issuing an explicit COMMIT or ROLLBACK.

The available %COMMITMODE options are:

• IMPLICIT: automatic transaction commitment is on (the initial process default). SQL automatically initiates a transaction
when a program issues a database modification operation (INSERT, UPDATE, or DELETE). The transaction continues
until either the operation completes successfully and SQL automatically commits the changes, or the operation is
unable to complete successfully on all rows and SQL automatically rolls back the entire operation. Each database
operation (INSERT, UPDATE, or DELETE) constitutes a separate transaction. Successful completion of the database
operation automatically clears the rollback journal, releases locks, and decrements $TLEVEL. No COMMIT statement
is needed.

• EXPLICIT: automatic transaction commitment is off. SQL automatically initiates a transaction when a program issues
the first database modification operation (INSERT, UPDATE, or DELETE). This transaction continues until it is
explicitly concluded. Upon successful completion you issue a COMMIT statement. If a database modification operation
fails you issue a ROLLBACK statement to revert the database to the point prior to the beginning of the transaction.
In EXPLICIT mode multiple database modification operations can constitute a single transaction.

• NONE: no automatic transaction processing. Transactions are not initiated unless explicitly invoked by a START
TRANSACTION. All transactions must be explicitly concluded by issuing either a COMMIT or ROLLBACK
statement. Thus whether a database operation is included in a transaction, and the number of database operations in a
transaction are both user-defined.

TRUNCATE TABLE does not occur within an automatically initiated transaction. If journaling and rollback of TRUNCATE
TABLE is required, you must explicitly specify a START TRANSACTION and conclude with an explicit COMMIT or
ROLLBACK.

You can set the %COMMITMODE in ObjectScript using the SetAutoCommit() method call. The available method values
are 0 (NONE), 1 (IMPLICIT), and 2 (EXPLICIT).

276 InterSystems SQL Reference

SQL Commands

Note: A sharded table is always in No AutoCommit mode ($SYSTEM.SQL.SetAutoCommit(0)), which means all
inserts, updates, and deletes to sharded tables are performed outside the scope of a transaction.

ISOLATION LEVEL

You specify an ISOLATION LEVEL for a process that is issuing a query. The ISOLATION LEVEL options permit you
to specify whether or not changes that are in progress should be available for read access by the query. If another concurrent
process is performing inserts or updates to a table and those changes to the table are in a transaction, those changes are in
progress, and could, potentially, be rolled back. By setting the ISOLATION LEVEL for your process that is querying that
table, you can specify whether you wish to include or exclude these changes in progress from the query results.

• READ UNCOMMITTED states that all changes are immediately available for query access. This includes changes
that may subsequently be rolled back. READ UNCOMMITTED insures that your query will return results without
waiting for a concurrent insert or update process, and will not fail due to a lock timeout error. However, the results of
a READ UNCOMMITTED may include values that are not committed; these values may be internally inconsistent
because the insert or update operation has only partially completed, and these values may be subsequently rolled back.
READ UNCOMMITTED is the default if your query process is not in an explicit transaction, or if the transaction does
not specify an ISOLATION LEVEL. READ UNCOMMITTED is incompatible with READ WRITE access; attempting
to specify both in the same statement results in an SQLCODE -92 error.

• READ VERIFIED states that uncommitted data from other transactions is immediately available, and no locking is
performed. This includes changes that may subsequently be rolled back. However, unlike READ UNCOMMITTED,
a READ VERIFIED transaction will re-check any conditions that could be invalidated by uncommitted or newly
committed data which would result in output that does not satisfy the query conditions. Because of this condition re-
check, READ VERIFIED is more accurate but less efficient than READ UNCOMMITTED and should only be used
when concurrent updates to the data being checked by the conditions is likely to occur. READ VERIFIED is incompat-
ible with READ WRITE access; attempting to specify both in the same statement results in an SQLCODE -92 error.

• READ COMMITTED states that only those changes that have been committed are available for query access. This
ensures that a query is performed on the database in a consistent state, not while a group of changes are being made,
a group of changes which may be subsequently rolled back. If requested data has been changed, but the changes have
not been committed (or rolled back), the query waits for transaction completion. If a lock timeout occurs while waiting
for this data to be available, an SQLCODE -114 error is issued.

READ UNCOMMITTED or READ VERIFIED?

The difference between READ UNCOMMITTED and READ VERIFIED is demonstrated by the following example:

SELECT Name,SSN FROM Sample.Person WHERE Name >= 'M'

The query optimizer may choose first to collect all RowID's containing Names meeting the >= 'M' condition from a Name
index. Once collected, the Person table is accessed one RowID at a time to retrieve the Name and SSN fields for output.
A concurrently running updating transaction could change the Name field of a Person with RowID 72 from 'Smith' to 'Abel'
in-between the query's collection of RowID's from the index and its row-by-row access to the table. In this case, the collection
of RowID's from the index would contain the RowID for a row that no longer conforms to the Name >= 'M' condition.

READ UNCOMMITTED query processing assumes that the Name >= 'M' condition has been satisfied by the index, and
will output whatever Name is present in the table for each RowID it collected from the index. In this example it would
therefore output a row with a Name of 'Abel', which does not satisfy the condition.

READ VERIFIED query processing notes that it is retrieving a field from a table for output (Name) that participates in a
condition which should have been previously satisfied by the index, and re-checks the condition in case the field value has
changed since the index was examined. Upon re-check, it notes that the row no longer satisfies the condition and omits it
from the output. Only values that are needed for output have their conditions re-checked: SELECT SSN FROM Person
WHERE Name >= 'M' would output the row with RowID 72 in this example.

InterSystems SQL Reference 277

START TRANSACTION

Exceptions to READ COMMITTED

When ISOLATION LEVEL read committed is in effect, either through setting ISOLATION LEVEL READ COMMITTED
or $SYSTEM.SQL.SetIsolationMode(1), SQL can retrieve only those changes to the data that have been committed.
However, there are significant exceptions to this rule:

• A deleted row is never returned by a query, even when the transaction that deleted the row is in progress and the delete
may be subsequently rolled back. ISOLATION LEVEL READ COMMITTED ensures that inserts and updates are in
a consistent state, but not deletes.

• If you query contains an aggregate function, the aggregate result returns the current state of the data, regardless of the
specified ISOLATION LEVEL. Therefore, inserts and updates are in progress (and may subsequently be rolled back)
are included in aggregate results. Deletes that are in progress (and may subsequently be rolled back) are not included
in aggregate results. This is because an aggregate operation requires access to data from many rows of a table.

• A SELECT query that contains a DISTINCT clause or a GROUP BY clause is unaffected by the ISOLATION LEVEL
setting. A query containing one of these clauses returns the current state of the data, including changes in progress that
may be subsequently rolled back. This is because these query operations require access to data from many rows of a
table.

• A query with the %NOLOCK keyword.

Note: On InterSystems IRIS implementations with ECP (Enterprise Cache Protocol) use of READ COMMITTED may
result in significantly slower performance when compared to READ UNCOMMITTED. Developers should weigh
the superior performance of READ UNCOMMITTED against the greater data accuracy of READ COMMITTED
when defining transactions that involve ECP.

For further details, refer to Transaction Processing in the “Modifying the Database” chapter of Using InterSystems SQL.

ISOLATION LEVEL in Effect

You can set the ISOLATION LEVEL for a process using SET TRANSACTION (without starting a transaction), START
TRANSACTION (setting isolation mode and starting a transaction), or a SetIsolationMode() method call.

The specified ISOLATION LEVEL remains in effect until explicitly reset by a SET TRANSACTION, START
TRANSACTION, or a SetIsolationMode() method call. Because COMMIT or ROLLBACK is only meaningful for
changes to the data, not data queries, a COMMIT or ROLLBACK operation has no effect on the ISOLATION LEVEL
setting.

The ISOLATION LEVEL in effect at the start of a query remains in effect for the duration of the query.

you can determine the ISOLATION LEVEL for the current process using the GetIsolationMode() method call. You can
also set the isolation mode for the current process using the SetIsolationMode() method call. These methods specify READ
UNCOMMITTED (the default) as 0, READ COMMITTED as 1, and READ VERIFIED as 3. Specifying any other numeric
value leaves the isolation mode unchanged. No error or change occurs if you set the isolation mode to the current isolation
mode. Use of these methods is shown in the following example:

 WRITE $SYSTEM.SQL.GetIsolationMode()," default",!
 &sql(START TRANSACTION ISOLATION LEVEL READ COMMITTED,READ WRITE)
 WRITE $SYSTEM.SQL.GetIsolationMode()," after START TRANSACTION",!
 DO $SYSTEM.SQL.SetIsolationMode(0,.stat)
 IF stat=1 {
 WRITE $SYSTEM.SQL.GetIsolationMode()," after SetIsolationMode(0) call",! }
 ELSE { WRITE "SetIsolationMode() error" }
 &sql(COMMIT)

The isolation mode and the access mode must always be compatible. Changing the access mode changes the isolation mode,
as shown in the following example:

278 InterSystems SQL Reference

SQL Commands

 WRITE $SYSTEM.SQL.GetIsolationMode()," default",!
 &sql(SET TRANSACTION ISOLATION LEVEL READ COMMITTED,READ WRITE)
 WRITE $SYSTEM.SQL.GetIsolationMode()," after SET TRANSACTION",!
 &sql(START TRANSACTION READ ONLY)
 WRITE $SYSTEM.SQL.GetIsolationMode()," after changing access mode",!
 &sql(COMMIT)

ObjectScript and SQL Transactions
ObjectScript and SQL transaction commands are fully compatible and interchangeable, with the following exception:

ObjectScript TSTART and SQL START TRANSACTION both start a transaction if no transaction is current. However,
START TRANSACTION does not support nested transactions. Therefore, if you need (or may need) nested transactions,
it is preferable to start the transaction with TSTART. If you need compatibility with the SQL standard, use START
TRANSACTION.

ObjectScript transaction processing provides limited support for nested transactions. SQL transaction processing supplies
support for savepoints within transactions.

If a transaction involves SQL data modification statements, the transaction should be started with the SQL START
TRANSACTION statement and committed with the SQL COMMIT statement. (These statements may be explicit or
implicit, depending on the %COMMITMODE setting.) Methods that use TSTART/TCOMMIT nesting can be included
in the transaction, as long as they don't initiate the transaction. Methods and stored procedures should not normally use
SQL transaction control statements, unless, by design, they are the main controller of the transaction. Stored procedures
should not normally use SQL transaction control statements, because these stored procedures are normally called from
ODBC/JDBC, which has its own model of transaction control.

Examples
The following Embedded SQL example uses two START TRANSACTION statements to start a transaction and set its
parameters. Note that the first START TRANSACTION initiates a transaction, setting the commit mode and incrementing
the $TLEVEL transaction level counter. The second START TRANSACTION sets the isolation mode for query read
operations in the current transaction, but does not increment $TLEVEL, because the transaction has already been started.
The SAVEPOINT statement increments$TLEVEL:

 WRITE !,"Transaction level=",$TLEVEL
 &sql(START TRANSACTION %COMMITMODE EXPLICIT)
 WRITE !,"Start transaction commit mode, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(START TRANSACTION ISOLATION LEVEL READ COMMITTED)
 WRITE !,"Start transaction isolation mode, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(SAVEPOINT a)
 WRITE !,"Set Savepoint a, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL
 &sql(COMMIT)
 WRITE !,"Commit transaction, SQLCODE=",SQLCODE
 WRITE !,"Transaction level=",$TLEVEL

See Also
• COMMIT %INTRANSACTION ROLLBACK SAVEPOINT SET TRANSACTION $TLEVEL

• Transaction Processing in the “Modifying the Database” chapter of Using InterSystems SQL.

InterSystems SQL Reference 279

START TRANSACTION

TOP
A SELECT clause that specifies how many rows to return.

SELECT [DISTINCT clause]
 [TOP {[((]int[))] | ALL}]

select-item {,select-item2}

Arguments

Limits the number of rows returned to the specified integer number.
The int argument can be either a positive integer, a Dynamic SQL
input parameter (?) or an Embedded SQL host variable (:var) that
resolve to a positive integer.

In Dynamic SQL, the int value can optionally be enclosed with
single parentheses or double parentheses (double parentheses
are the preferred syntax); these parentheses suppress literal
substitution of the int value in the corresponding cached query.

int

TOP ALL is only meaningful in a subquery or in a CREATE VIEW
statement. It is used to support the use of an ORDER BY clause
in these situations, fulfilling the requirement that an ORDER BY
clause must be paired with a TOP clause in a subquery or a query
used in a CREATE VIEW. TOP ALL does not restrict the number
of rows returned.

ALL

Description
The optional TOP clause appears after the SELECT keyword and the optional DISTINCT clause, and before the first
select-item.

The TOP keyword is used in Dynamic SQL and in cursor-based Embedded SQL. In non-cursor Embedded SQL the only
meaningful use of the TOP keyword is TOP 0. Any other TOP int (where int is any non-zero integer) is valid but not
meaningful because a SELECT in non-cursor Embedded SQL always returns at most one row of data.

The TOP clause of a SELECT statement limits the number of rows returned to the number specified in int. If no TOP clause
is specified, the default is to display all the rows that meet the SELECT criteria. If a TOP clause is specified, the number
or rows displayed is either int or all of the rows that fulfill the query predicate requirements, whichever is smaller. If you
specify ALL, SELECT returns all the rows in the table that fulfill the query predicate requirements.

If no ORDER BY clause is specified in the query, which records are returned as the “top” rows is unpredictable. If an
ORDER BY clause is specified, the top rows accord to the order specified in that clause.

The DISTINCT clause (if specified) is applied before TOP, specifying that (at most) int number of unique values are to be
returned.

TOP short circuits when all rows have been delivered. Thus, if you select until you get SQLCODE 100, the FETCH that
sets SQLCODE 100 is instant.

When accessing data through a view, or through a FROM clause subquery, you can limit the number of rows returned by
using the %vid view ID, rather than (or in addition to) the TOP clause. For further details on using %vid, refer to the
Defining and Using Views chapter of Using InterSystems SQL.

280 InterSystems SQL Reference

SQL Commands

The TOP int Value

The int numeric value can be an integer, or a numeric string, a Dynamic SQL input parameter (?), or an input host variable
(:var) that resolve to an integer value.

The int value specifies the number of rows to return. Permitted values are 0 and positive numbers. You cannot specify the
int value as an arithmetic expression, field name, subquery column alias, scalar function, or aggregate function. A fractional
number or a numeric string is parsed as its integer value. Zero (0) is a valid int value. TOP 0 executes the query but returns
no data.

TOP ALL must be specified as a keyword in the query. You cannot specify ALL as a ? input parameter or :var host variable
value. The query parser interprets the string “ALL” supplied in this way as a numeric string with a value of 0.

Note that the TOP argument metadata is returned as xDBC data type 12 (VARCHAR) rather than 4 (INTEGER) because
it is possible to specify TOP int as a numeric string or an integer.

TOP and Cached Queries

An int value can be specified with or without enclosing parentheses. These parentheses affect how a Dynamic SQL query
is cached (non-cursor Embedded SQL queries are not cached). An int value without parentheses is converted to a ?
parameter variable in the cached query. This means that repeatedly invoking the same query with different TOP int values
invokes the same cached query, rather than preparing and optimizing the query each time.

Enclosing parentheses suppress literal substitution. For example, TOP ((7)). When int is enclosed in parentheses, the
cached query preserves the specific int value. Re-invoking the query with the same TOP int value uses the cached query;
invoking the query with a different TOP int value causes SQL to prepare, optimize, and cache this new version of the query.

TOP ALL is not cached as a ? parameter variable. ALL is parsed as a keyword, not a literal. Therefore, the same query
with TOP 7 and with TOP ALL will generate two different cached queries.

TOP and ORDER BY

TOP is generally used in a SELECT with an ORDER BY clause. Note that the default ascending ORDER BY collation
sequence considers NULL to be the lowest (“top”) value, followed by the empty string ('').

TOP is required in a subquery SELECT or a CREATE VIEW SELECT when specifying an ORDER BY clause. In these
cases you can specify either TOP int (to limit the number of rows to return) or TOP ALL.

TOP ALL is only used in a subquery or in a CREATE VIEW statement. It is used to support the use of an ORDER BY
clause in these situations, fulfilling the requirement that an ORDER BY clause must be paired with a TOP clause in a
subquery or a CREATE VIEW query. TOP ALL does not restrict the number of rows returned. TOP ALL ... ORDER BY
does not change default SELECT optimization. The ALL keyword cannot be enclosed in parentheses.

TOP Optimization

By default, a SELECT optimizes for fastest time to return all data. Adding both a TOP int clause and an ORDER BY
clause optimizes for fastest time to return first row. (Note that both clauses are required to change the optimization.) You
can use the %SYS.PTools.StatsSQL class TotalTimeToFirstRow property to return the time required to return the first row.

The following are special case optimizations:

• You may wish to use the TOP and ORDER BY optimization strategy without limiting the number of rows returned;
for example, if you are returning data that is displayed in page units. In such a case, you may want to issue a TOP
clause with an int value larger than the total number of rows.

• You may wish to limit the number of rows returned and specify their order without changing the default SELECT
optimization. In this case, specify a TOP clause, an ORDER BY clause, and the %NOTOPOPT keyword to preserve
fastest time to return all data optimization. See the FROM clause for more details.

InterSystems SQL Reference 281

TOP

TOP with Aggregates and Functions

An aggregate function or a scalar function can only return a single value. If the query select-item list contains only aggregates
and functions, the application of the TOP clause is as follows:

• If the select-item list contains an aggregate function, for example COUNT(*) or AVG(Age), and does not contain any
field references, no more than one row is returned, regardless of the TOP int value or the presence of an ORDER BY
clause. These clauses are validated, but ignored. This is shown in the following examples:

SELECT TOP 5 AVG(Age),CURRENT_TIMESTAMP(3) FROM Sample.Person
 /* returns 1 row */

SELECT TOP 1 AVG(Age),CURRENT_TIMESTAMP(3) FROM Sample.Person ORDER BY Age
 /* returns 1 row */

• If the select-item list contains one or more scalar functions, expressions, literals (such as %TABLENAME), subqueries,
or host variables, and does not contain any field references or aggregates, the TOP clause is applied. This is shown in
the following example:

SELECT TOP 5 ROUND(678.987,2),CURRENT_TIMESTAMP(3) FROM Sample.Person
 /* returns 5 identical rows */

The actual number of rows returned depends on the number of rows in the table, even when table fields are not referenced.
For example:

SELECT TOP 300 CURRENT_TIMESTAMP(3) FROM Sample.Person
 /* returns either the number of rows in Sample.Person
 or 300 rows, whichever is smaller */

When the query is restricted by a predicate condition, the number of rows returned is restricted by that condition, even
when table fields are not referenced in the select-item list. For example:

SELECT TOP 300 CURRENT_TIMESTAMP(3) FROM Sample.Person WHERE Home_State = 'MA'
 /* returns either the number of rows in Sample.Person
 where Home_State = 'MA'
 or 300 rows, whichever is smaller */

• If the SELECT statement does not contain a FROM clause, at most one row is returned, regardless of the TOP value.
For example:

SELECT TOP 5 ROUND(678.987,2),CURRENT_TIMESTAMP(3)
 /* returns 1 row */

• The DISTINCT clause further limits the TOP clause. If there are fewer distinct values than the TOP value, only the
rows with distinct values are returned. When only scalar functions are referenced, only one row is returned. For
example:

SELECT DISTINCT TOP 15 CURRENT_TIMESTAMP(3) FROM Sample.Person
 /* returns 1 row */

• TOP 0 always returns no rows, regardless of the contents of the select-item list, or whether the SELECT statement
contains a FROM clause or a DISTINCT clause.

In non-cursor Embedded SQL, a query with TOP 0 returns no rows and sets SQLCODE=100; a non-cursor Embedded
SQL query with TOP 1 (or any other TOP int value) returns one row and sets SQLCODE=0. In cursor-based Embedded
SQL, completion of the fetch loop always sets SQLCODE=100, regardless of the TOP int value.

Examples
The following query returns the first 20 rows retrieved from Sample.Person in the order that they are stored in the database.
This record order is generally not predictable.

SELECT TOP 20 Home_State,Name FROM Sample.Person

282 InterSystems SQL Reference

SQL Commands

The following query returns the first 20 distinct Home_State values retrieved from Sample.Person in ascending collation
sequence order.

SELECT DISTINCT TOP 20 Home_State FROM Sample.Person ORDER BY Home_State

The following query returns the first 40 distinct FavoriteColor values. The “top” rows reflect the ORDER BY clause
sequencing of all of the rows in Sample.Person in descending (DESC) collation sequence. Descending collation sequence
is used rather than the default ascending collation sequence because the FavoriteColors field is known to have NULLs,
which would appear at the top of the ascending collation sequence.

SELECT DISTINCT TOP 40 FavoriteColors FROM Sample.Person
 ORDER BY FavoriteColors DESC

Also note in the preceding example that because FavoriteColors is a list field, the collation sequence includes the element
length byte. Thus six-letter elements (YELLOW, PURPLE, ORANGE) collate together, listed before five-letter elements
(WHITE, GREEN, etc.).

Dynamic SQL can specify the int value as an input parameter (indicated by “?”). In the following example, the TOP ?
input parameter is set to 10 by the %Execute method:

 SET myquery = "SELECT TOP ? Name,Age FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute(10)
 DO rset.%Display()

The following cursor-based Embedded SQL example performs the same operation:

 SET topnum=10
 &sql(DECLARE pCursor CURSOR FOR
 SELECT TOP :topnum Name,Age INTO :name,:years FROM Sample.Person
)
 &sql(OPEN pCursor)
 QUIT:(SQLCODE'=0)
 FOR { &sql(FETCH pCursor)
 QUIT:SQLCODE
 WRITE "Name=",name," Age=",years,!
 }
 &sql(CLOSE pCursor)

See Also
• SELECT statement

• DISTINCT clause

• ORDER BY clause

• “Querying the Database” chapter in Using InterSystems SQL

InterSystems SQL Reference 283

TOP

TRUNCATE TABLE
Removes all data from a table and resets counters.

TRUNCATE TABLE [restriction] tablename

Arguments

Optional — One or more of the following restriction keywords, separated by spaces:
%NOCHECK, %NOLOCK.

restriction

The table from which you are deleting all rows.You can also specify an updateable
view through which you can delete all of the rows of a table. A table name (or view
name) can be qualified (schema.table), or unqualified (table). An unqualified name
is matched to its schema using either a schema search path (if provided) or the
system-wide default schema name.

tablename

Description
The TRUNCATE TABLE command removes all rows from a table, and resets all table counters. You can truncate a table
directly, or through a view. Truncating a table through a view is subject to delete requirements and restrictions, as described
in CREATE VIEW.

TRUNCATE TABLE resets the internal counters used for generating RowID field, IDENTITY field, and SERIAL
(%Library.Counter) field sequential integer values. InterSystems IRIS assigns a value of 1 for these fields in the first row
inserted into a table following a TRUNCATE TABLE. Performing a DELETE on all rows of a table does not reset these
internal counters.

TRUNCATE TABLE resets the internal counter used for generating stream field OID values when data is inserted into a
stream field. Performing a DELETE on all rows of a table does not reset this internal counter.

TRUNCATE TABLE always sets the %ROWCOUNT local variable to –1; it does not set %ROWCOUNT to the number
of rows deleted.

TRUNCATE TABLE does not reset the ROWVERSION counter.

TRUNCATE TABLE suppresses the pulling of base table triggers that are otherwise pulled during DELETE processing.
Because TRUNCATE TABLE performs a delete with %NOTRIGGER behavior, the user must have been granted the
%NOTRIGGER privilege (using the GRANT statement) in order to run TRUNCATE TABLE. This aspect of TRUNCATE
TABLE is functionally identical to:

DELETE %NOTRIGGER FROM tablename

Note: The DELETE command can also be used to delete all rows from a table. DELETE provides more functionality
than TRUNCATE TABLE, including returning the number of rows deleted in %ROWCOUNT. DELETE does
not reset internal counters.

TRUNCATE TABLE provides compatibility for code migration from other database software.

To truncate a table:

• The table must exist in the current (or specified) namespace. If the specified table cannot be located, InterSystems IRIS
issues an SQLCODE -30 error.

• You must have DELETE privilege for the table. Failing to have this privilege results in an SQLCODE -99 (Privilege
Violation) error. You can determine if the current user has DELETE privilege by invoking the %CHECKPRIV command.

284 InterSystems SQL Reference

SQL Commands

You can determine if a specified user has DELETE privilege by invoking the $SYSTEM.SQL.CheckPriv() method.
For privilege assignment, refer to the GRANT command.

• The table cannot be defined as READONLY. Attempting to compile a TRUNCATE TABLE that references a read-
only table results in an SQLCODE -115 error. Note that this error is now issued at compile time, rather than only
occurring at execution time. See the description of READONLY objects in the Other Options for Persistent Classes
chapter of Defining and Using Classes.

• If deleting through a view, the view must be updateable; it cannot be defined as WITH READ ONLY. Attempting to
do so results in an SQLCODE -35 error. See the CREATE VIEW command for further details.

• All of the rows must be available for deletion. By default, if one or more rows cannot be deleted the TRUNCATE
TABLE operation fails and no rows are deleted. If a row cannot be locked, TRUNCATE TABLE fails to delete any
rows and issues an error. If deleting a row would violate foreign key referential integrity, TRUNCATE TABLE fails
to delete any rows and instead issues an SQLCODE -124 error. This default behavior is modifiable, as described below.

Fast Truncate

When possible, the SQL optimizer performs a highly efficient Fast Truncate table operation. A Fast Truncate operation
deletes the table’s extent, rather than deleting each record individually. Fast Truncate is automatically applied where possible.
When Fast Truncate is not possible, a standard TRUNCATE TABLE operation is performed.

Note: TRUNCATE TABLE does not initialize or set %ROWID if no rows are deleted, or if rows are deleted using
Fast Truncate. Therefore, the use of the %ROWID value following a TRUNCATE TABLE should be avoided.

Fast Truncate Restrictions

Fast Truncate can be applied to standard table or a sharded table.

Fast Truncate cannot be applied:

• If the user is unable to acquire a table-level lock (unless %NOLOCK is specified).

• If the table is the target of a foreign key constraint.

• If the table contains a stream field with a specified LOCATION parameter. Fast Truncate can be applied when all
stream fields do not specify the optional LOCATION parameter.

Atomicity

TRUNCATE TABLE does not occur within an automatically initiated transaction, and therefore no journaling or rollback
option is provided.

If journaling and the option to rollback TRUNCATE TABLE is required, you must explicitly specify a START
TRANSACTION and conclude with an explicit COMMIT or ROLLBACK.

This is the same as SET TRANSACTION %COMMITMODE= NONE or 0 (no auto transaction) — No transaction is ini-
tiated when you invoke TRUNCATE TABLE. A failed TRUNCATE TABLE operation can leave the database in an
inconsistent state, with some rows deleted and some not deleted. To provide transaction support in this mode you must use
START TRANSACTION to initiate the transaction and COMMIT or ROLLBACK to end the transaction.

TRUNCATE TABLE for a sharded table is always performed using SET TRANSACTION %COMMITMODE NONE,
even when the user has explicitly set SET TRANSACTION %COMMITMODE EXPLICIT.

Restriction Arguments

To use a restriction argument, you must have the corresponding admin-privilege for the current namespace. Refer to GRANT
for further details.

Specifying restriction argument(s) restricts processing as follows:

InterSystems SQL Reference 285

TRUNCATE TABLE

• %NOCHECK — suppress referential integrity checking for foreign keys that reference the rows being deleted.

• %NOLOCK — suppress row locking of the row being deleted. This should only be used when a single user/process
is updating the database. If you do not specify %NOLOCK, a fast truncate attempts to acquire a table-level lock. If
TRUNCATE TABLE cannot acquire a table-level lock, it performs a standard truncate table, acquiring row-level
locks on each row of the table.

You can specify multiple restriction arguments in any order. Multiple arguments are separated by spaces.

If you specify a restriction argument when deleting a parent record, the same restriction argument will be applied when
deleting the corresponding child records.

TRUNCATE TABLE always performs a delete with implicit %NOTRIGGER behavior, and requires the corresponding
admin-privilege.

Referential Integrity

InterSystems IRIS uses the system configuration setting to determine whether to perform foreign key referential integrity
checking. You can set this system default using the $SYSTEM.SQL.SetFilerRefIntegrity() method call. To determine
the current setting, call $SYSTEM.SQL.CurrentSettings(). The default is “Yes” . If you change this setting, any new
process started after changing it will have the new setting.

During a TRUNCATE TABLE operation, for every foreign key reference a shared lock is acquired on the corresponding
row in the referenced table. This row is locked until the end of the transaction. This ensures that the referenced row is not
changed before a potential rollback of the TRUNCATE TABLE.

Transaction Locking

InterSystems IRIS performs standard locking on a TRUNCATE TABLE operation. Unique field values are locked for the
duration of the current transaction.

The default lock threshold is 1000 locks per table. This means that if you delete more than 1000 unique field values from
a table during a transaction, the lock threshold is reached and InterSystems IRIS automatically elevates the locking level
from unique field value locks to a table lock. This permits large-scale deletes during a transaction without overflowing the
lock table.

You can determine the current system-wide lock threshold value using the GetLockThreshold() method. This system-
wide lock threshold value is configurable:

• Using the SetLockThreshold() method.

• Using the Management Portal. Go to System Administration, Configuration, SQL and Object Settings, SQL. View and
edit the current setting of Lock escalation threshold.

You must have USE permission on the %Admin Manage Resource to change the lock threshold. InterSystems IRIS
immediately applies any change made to the lock threshold value to all current processes.

For further details on transaction locking refer to Transaction Processing in the “Modifying the Database” chapter of Using
InterSystems SQL.

Imported SQL Code

The DDLImport("IRIS") and IRIS() methods do not support the TRUNCATE TABLE command. A TRUNCATE
TABLE command found in an SQL code file imported by these methods is ignored. These import methods do support the
DELETE command.

Examples
The following two Dynamic SQL examples compare DELETE and TRUNCATE TABLE. Each example creates a table,
inserts rows into the table, deletes all the rows in the table, then inserts a single row into the now empty table.

286 InterSystems SQL Reference

SQL Commands

The first example uses DELETE to delete all the records in the table. Note that DELETE does not reset the RowID counter:

 SET tcreate = "CREATE TABLE SQLUser.MyStudents (StudentName VARCHAR(32),StudentDOB DATE)"
 SET tinsert = "INSERT INTO SQLUser.MyStudents (StudentName,StudentDOB) "_
 "SELECT Name,DOB FROM Sample.Person WHERE Age <= '21'"
 SET tinsert1 = "INSERT INTO SQLUser.MyStudents (StudentName,StudentDOB) VALUES ('Bob Jones',60123)"
 SET tdelete = "DELETE SQLUser.MyStudents"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(tcreate)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WRITE rset.%StatementTypeName,!

 NEW %ROWCOUNT,%ROWID
 SET qStatus = tStatement.%Prepare(tinsert)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WRITE rset.%StatementTypeName," rowcount ",rset.%ROWCOUNT,!

 SET qStatus = tStatement.%Prepare(tdelete)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WRITE rset.%StatementTypeName," rowcount ",rset.%ROWCOUNT,!

 SET qStatus = tStatement.%Prepare(tinsert1)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WRITE rset.%StatementTypeName," rowcount ",rset.%ROWCOUNT," RowID ",rset.%ROWID,!
 &sql(DROP TABLE SQLUser.MyStudents)

The second example uses TRUNCATE TABLE to delete all the records in the table. Note that %StatementTypeName
returns “DELETE” for TRUNCATE TABLE. Note that TRUNCATE TABLE does reset the RowID counter:

 SET tcreate = "CREATE TABLE SQLUser.MyStudents (StudentName VARCHAR(32),StudentDOB DATE)"
 SET tinsert = "INSERT INTO SQLUser.MyStudents (StudentName,StudentDOB) "_
 "SELECT Name,DOB FROM Sample.Person WHERE Age <= '21'"
 SET tinsert1 = "INSERT INTO SQLUser.MyStudents (StudentName,StudentDOB) VALUES ('Bob Jones',60123)"
 SET ttrunc = "TRUNCATE TABLE SQLUser.MyStudents"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(tcreate)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WRITE rset.%StatementTypeName,!

 NEW %ROWCOUNT,%ROWID
 SET qStatus = tStatement.%Prepare(tinsert)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WRITE rset.%StatementTypeName," rowcount ",rset.%ROWCOUNT,!

 SET qStatus = tStatement.%Prepare(ttrunc)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WRITE rset.%StatementTypeName," (TRUNCATE TABLE) rowcount ",rset.%ROWCOUNT,!

 SET qStatus = tStatement.%Prepare(tinsert1)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WRITE rset.%StatementTypeName," rowcount ",rset.%ROWCOUNT," RowID ",rset.%ROWID,!
 &sql(DROP TABLE SQLUser.MyStudents)

See Also
• DELETE, INSERT, UPDATE

• CREATE VIEW

• “Defining Tables” chapter in Using InterSystems SQL

• “Defining Views” chapter of Using InterSystems SQL

• Transaction Processing in the “Modifying the Database” chapter of Using InterSystems SQL

• SQL and Object Settings described in Configuration Parameter File Reference.

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

InterSystems SQL Reference 287

TRUNCATE TABLE

TUNE TABLE
Tunes a table based on representative data.

TUNE TABLE tablename [tune_options]

Arguments

The name of an existing table to be tuned. The table name can be qualified
(schema.table), or unqualified (table). An unqualified table name takes the
system default schema name.

tablename

Optional — If specified, one or more TUNE TABLE options, specified in any
order, separated by spaces. These tune_options are not case sensitive.

tune_options

Description
The TUNE TABLE command tunes an existing table based on the data currently in the table. This data should be represen-
tative of the data expected when the table is fully populated.

To execute a TUNE TABLE statement, the user must have the %ALTER_TABLE SQL system privilege. To execute
TUNE TABLE the user must have %ALTER privilege on the table being tuned.

If TUNE TABLE is successful, it sets SQLCODE = 0. If the specified tablename does not exist, TUNE TABLE issues
an SQLCODE -30 error. If the user does not have %ALTER privileges for the specified table, TUNE TABLE issues an
SQLCODE -99 error.

TUNE TABLE calculates and sets the blocksize, selectivity, and extent size of the table, based on representative data.
Normally, TUNE TABLE sets one or more of these values, and purges all cached queries that use this persistent class
(table) so that queries will use these new values. However, if TUNE TABLE does not change any of these values (for
example, if the data has not changed since the last time TUNE TABLE was run against this table) cached queries are not
purged and the table’s class definition is not flagged for recompile.

TUNE TABLE Options

• %KEEP_UP_TO_DATE: if not specified (the default), the up-to-date flag on the modified class definition is not set.
This indicates that the class definition is out of date and is flagged for recompile. If specified, the class definition
remains flagged as up-to-date. This is the preferred option when making changes to statistics on a live system, because
it makes it less likely that a table class definition will be recompiled.

• %CLEAR_VALUES: if specified, calls TuneTable with ClearValues=1. When ClearValues=1, the existing SELEC-
TIVITY, EXTENTSIZE, etc. values are cleared from the class and table definition. The default is ClearValues=0, so
not specifying this option provides the default TuneTable behavior.

• %SAMPLE_PERCENT percentage: if specified, calls TuneTable with a percentage value passed to the SamplePercent
argument of TuneTable. This specifies the percentage of rows of the table to be used for sampling the data for the
TuneTable utility. This percentage can be specified as .## or ##%; for example, either .12 or 12% will cause TuneTable
to use 12% of the rows in the table when sampling the data. Specify percentage with a value greater than 0 and less
than or equal to 100%; a value out of this range issues an SQLCODE -1 error. This value does not usually need to be
specified when calling TuneTable. Only specify this value when potential outlier values for a field are not evenly dis-
tributed among rows throughout the table. Note, for any table with an extentsize < 1000 rows, the entire extent will be
used by TuneTable regardless of the %SAMPLE_PERCENT value.

• %RECOMPILE_CQ: if specified, calls TuneTable with RecompileCQ=1. When RecompileCQ=1, instead of just
purging cached queries for the table that was tuned, TuneTable will instead recompile the cached query classes using

288 InterSystems SQL Reference

SQL Commands

the new Tune Table statistics. The default is RecompileCQ=0, so not specifying this option would provide the default
TuneTable behavior.

If the specified tune_options value does not exist, TUNE TABLE issues an SQLCODE -25 error. If the same tune_options
value is specified twice, TUNE TABLE issues an SQLCODE -326 error.

For further details on these options refer to the $SYSTEM.SQL.TuneTable() method.

Cached Queries

Executing TUNE TABLE creates a cached query. The Show Plan display indicates that no Query Plan is created. No SQL
Statement is created. The cached query is general to the namespace; it is not listed for the specific table. You can re-run
the same TUNE TABLE statement using the cached query.

Executing TUNE TABLE purges all existing cached queries for the specified table, including the cached query for the
previous execution of TUNE TABLE. You can optionally have TUNE TABLE recompile all of these cached queries with
the new Tune Table values.

If running TUNE TABLE does not change any Tune Table values, cached queries are not purged.

Other Ways to Run Tune Table

There are two other interfaces for running Tune Table:

• Using the Management Portal SQL interface Actions drop-down list,, which allows you to run Tune Table on a single
table or on all of the tables in a schema.

• Invoking the $SYSTEM.SQL.TuneTable() method for a single table.

For further details, refer to Tune Table in the “Optimizing Tables” chapter of the SQL Optimization Guide.

Examples
The following Dynamic SQL example tunes a table:

 TRY {
 SET mysql = "TUNE TABLE Sample.MyTest %KEEP_UP_TO_DATE"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(mysql)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 IF rset.%SQLCODE=0 { WRITE !,"Executed Tune Table",! }
 ELSE { SET badSQL=##class(%Exception.SQL).%New(,rset.%SQLCODE,,rset.%Message)
 THROW badSQL }
 RETURN
 }
 CATCH exp { WRITE "In the CATCH block",!
 IF 1=exp.%IsA("%Exception.SQL") {
 WRITE "SQLCODE: ",exp.Code,!
 WRITE "Message: ",exp.Data,! }
 ELSE { WRITE "Not an SQL exception",! }
 RETURN
 }

See Also
• Tune Table in the “Optimizing Tables” chapter of the SQL Optimization Guide

• ExtentSize, Selectivity, and BlockCount in the “Optimizing Tables” chapter of the SQL Optimization Guide

InterSystems SQL Reference 289

TUNE TABLE

UNION
Combines two or more SELECT statements.

select-statement {UNION [ALL] [%PARALLEL] select-statement}

select-statement {UNION [ALL] [%PARALLEL] (query)}

(query) {UNION [ALL] [%PARALLEL] select-statement}

(query) {UNION [ALL] [%PARALLEL] (query)}

Arguments

Optional — A keyword literal. If specified, duplicate data values are
returned. If omitted, duplicate data values are suppressed.

ALL

Optional — The %PARALLEL keyword. If specified, each side of the union
is run in parallel as a separate process.

%PARALLEL

A SELECT statement, which retrieves data from a database.select-statement

A query that combines one or more SELECT statements.query

Description
A UNION combines two or more queries into a single query that retrieves data into a result. The queries that are combined
by a UNION can be simple queries, consisting of a single SELECT statement, or compound queries.

For a union to be possible between SELECT statements, the number of columns specified in each must match. Specifying
SELECTs with different numbers of columns results in an SQLCODE -9 error. You can specify a NULL column in one
SELECT to pair with a data column in another SELECT in order to match the number of columns. This use of NULL is
shown in the “Examples” section below.

CAUTION: To use the SELECT * syntax in a UNION, the tables must contain the same number of columns. Therefore,
future changes to the table definition by adding or deleting a column may cause unforeseen errors in unions
of this sort.

Result column names and data types are taken from the column names and data types of the first leg of the UNION query.
In situations where the corresponding columns in the two legs do not have the same names, it is may be useful to use the
AS clause to identify the result columns.

An ordinary UNION eliminates duplicate rows (all values identical) from the result. A UNION ALL preserves duplicate
rows in the result.

String fields in the UNION result have the collation type of the corresponding SELECT fields, but are assigned EXACT
collation if the field collations do not match.

TOP and ORDER BY Clauses

A UNION statement can conclude with an ORDER BY clause which orders the result. This ORDER BY applies to the
whole statement; it must be part of the outermost query, not a subquery. It does not have to be paired with a TOP clause.
The following example shows this use of ORDER BY: the two SELECT statements select data, the data is combined by
the UNION, then the ORDER BY sequences the results:

290 InterSystems SQL Reference

SQL Commands

SELECT Name,Home_Zip FROM Sample.Person
 WHERE Home_Zip %STARTSWITH 9
UNION
SELECT Name,Office_Zip FROM Sample.Employee
 WHERE Office_Zip %STARTSWITH 8
ORDER BY Home_Zip

Using a column number in ORDER BY that does not correspond to a SELECT list column results in an SQLCODE -5
error. Using a column name in ORDER BY that does not correspond to a SELECT list column results in an SQLCODE
-6 error.

Either SELECT statements (or both) in a union can also contain an ORDER BY clause, but it must be paired with a TOP
clause. This ORDER BY is applied to determine which rows are selected by the TOP clause. The following example
shows this use of ORDER BY: the two SELECT statements each use an ORDER BY to sequence their rows, which
determines which rows are selected as the top rows. The selected data is combined by the UNION, then the final ORDER
BY sequences the results:

SELECT TOP 5 Name,Home_Zip FROM Sample.Person
 WHERE Home_Zip %STARTSWITH 9
 ORDER BY Name
UNION
SELECT TOP 5 Name,Office_Zip FROM Sample.Employee
 WHERE Office_Zip %STARTSWITH 8
 ORDER BY Office_Zip
ORDER BY Home_Zip

TOP may apply to the first SELECT in the union, or to the result of the union, depending on the placement of the ORDER
BY clause:

• TOP...ORDER BY applies to UNION result: If the UNION is within a FROM clause subquery, and TOP and ORDER
BY are applied to the results of the UNION. For example:

SELECT TOP 10 Name,Home_Zip
 FROM (SELECT Name,Home_Zip FROM Sample.Person
 WHERE Name %STARTSWITH 'A'
 UNION
 SELECT Name,Home_Zip FROM Sample.Person
 WHERE Home_Zip %STARTSWITH 8)
ORDER BY Home_Zip

• TOP applies to first SELECT; ORDER BY applies to UNION result. For example:

SELECT TOP 10 Name,Home_Zip
 FROM Sample.Person
 WHERE Name %STARTSWITH 'A'
UNION
SELECT Name,Home_Zip FROM Sample.Person
 WHERE Home_Zip %STARTSWITH 8
ORDER BY Home_Zip

Enclosing Parentheses

UNION supports optional enclosing parentheses for either or both of its SELECT statements, or for the entire UNION
statement. You may specify one or more pairs of enclosing parentheses. The following are all valid uses of enclosing
parentheses:

(SELECT ...) UNION SELECT ...
(SELECT ...) UNION (SELECT ...)
((SELECT ...)) UNION ((SELECT ...))
(SELECT ... UNION SELECT ...)
((SELECT ...) UNION (SELECT ...))

Each use of parentheses generates a separate cached Query.

UNION/OR Optimization

By default, SQL automatic optimization transforms UNION subqueries to OR conditions, where deemed appropriate. This
UNION/OR transformation allows EXISTS and other low-level predicates to migrate to top-level conditions where they

InterSystems SQL Reference 291

UNION

are available to InterSystems IRIS query optimizer indexing. This default transformation is desirable in most situations.
However, in some situations this UNION/OR transformation imposes a significant overhead burden. The
%NOUNIONOROPT query optimization option disables this automatic UNION/OR transformation for all conditions in
the WHERE clause associated with the FROM clause. Thus, in a complex query, you can disable automatic UNION/OR
optimization for one subquery while allowing it in other subqueries. For further information on %NOUNIONOROPT, refer
to the FROM clause.

If a condition involving a subquery is applied to a UNION, it is applied within each union operand, rather than at the end.
This allows subquery optimizations to be applied in each UNION operand. For descriptions of subquery optimization
options, refer to the FROM clause. In the following example, the WHERE clause condition is applied to each of the subqueries
in the union, rather than to the result of the union:

SELECT Name,Age FROM
 (SELECT Name,Age FROM Sample.Person
 UNION SELECT Name,Age FROM Sample.Employee)
WHERE Age IN (SELECT TOP 5 Age FROM Sample.Employee WHERE Age>55 ORDER BY Age)

UNION ALL Aggregate Optimization

SQL automatic optimization of a UNION ALL pushes a top-level aggregate into the legs of the union. This can result in
significantly improved performance with or without the %PARALLEL keyword, For example:

SELECT COUNT(*) FROM (SELECT item1 FROM table1 UNION ALL SELECT item2 FROM table2)

is optimized as:

SELECT SUM(y) FROM (SELECT COUNT(*) AS y FROM table1 UNION ALL SELECT COUNT(*) AS y FROM table2)

This optimization applies to all top-level aggregate functions (not just COUNT), including queries with multiple top-level
aggregate functions. For this optimization to be applied, the outer query must be a "onerow" query, with no WHERE or
GROUP BY clause, it cannot reference %VID, and the UNION ALL must be the only stream in its FROM clause. The
aggregates cannot be nested, and any aggregate function used cannot use %FOREACH() grouping or DISTINCT.

Parallel Processing

The %PARALLEL keyword supports parallelism and distributed processing on a multiprocessor system. It causes InterSys-
tems IRIS to perform parallel processing on the UNION queries, assigning each query to a separate process on the same
machine. In some cases that process will send the query to a different machine to be processed. These processes communicate
via pipes, with InterSystems IRIS creating one or more temporary files to hold subquery results. The main process combines
the resulting rows and returns the final results. For further details, refer to the Show Plan for a UNION query, comparing
the Show Plan with and without the %PARALLEL keyword. To determine the number of processors on the current system
use the %SYSTEM.Util.NumberOfCPUs() method.

In general, the more effort expended to produce each row, the more beneficial %PARALLEL becomes.

Specifying the %PARALLEL keyword disables automatic UNION-to-OR optimizations.

The following examples show the use of the %PARALLEL keyword:

SELECT Name FROM Sample.Employee WHERE Name %STARTSWITH 'A'
UNION %PARALLEL
SELECT Name FROM Sample.Person WHERE Name %STARTSWITH 'A'
ORDER BY Name

SELECT Name FROM Sample.Employee WHERE Name %STARTSWITH 'A'
UNION ALL %PARALLEL
SELECT Name FROM Sample.Person WHERE Name %STARTSWITH 'A'
ORDER BY Name

%PARALLEL is intended for SELECT queries and their subqueries. An INSERT command subquery cannot use
%PARALLEL.

292 InterSystems SQL Reference

SQL Commands

Adding the %PARALLEL keyword may not be appropriate for all UNION queries, and may result in an error. The following
SQL constructs generally do not support UNION %PARALLEL execution: an outer join, a correlated field, an IN predicate
condition containing a subquery, or a collection predicate. UNION %PARALLEL is supported for a FOR SOME predicate,
but not for a FOR SOME %ELEMENT collection predicate. To determine if a UNION query can successfully use
%PARALLEL, test each leg of the UNION separately. Separately test each leg query by adding a FROM %PARALLEL
keyword. If one of the FROM %PARALLEL queries generates a query plan that does not show parallelization, then the
UNION query will not support %PARALLEL.

UNION ALL and Aggregate Functions

SQL automatic optimization pushes UNION ALL aggregate functions into the union leg subqueries. SQL calculates the
aggregate value for each subquery, and then combines the results to return the original aggregate value. For example:

SELECT COUNT(Name) FROM (SELECT Name FROM Sample.Person
 UNION ALL SELECT Name FROM Sample.Employee)

Is optimized as:

SELECT SUM(y) FROM (SELECT COUNT(Name) AS y FROM Sample.Person
 UNION ALL SELECT COUNT(Name) AS y FROM Sample.Employee)

This can result in substantial performance improvement. This optimization is applied with or without the %PARALLEL
keyword. This optimization is applied to multiple aggregate functions.

This optimization transform only occurs under the following circumstances:

• The outer query FROM clause must contain only a UNION ALL statement.

• The outer query cannot contain a WHERE clause or a GROUP BY clause.

• The outer query cannot contain a %VID (view ID) field.

• Aggregate functions cannot contain a DISTINCT or %FOREACH keyword.

• Aggregate functions cannot be nested.

Examples
The following example creates a result that contains a row for every Name found in each of the two tables; if a Name is
found in both tables, two rows are created. When the Name is an employee, it lists the office location, concatenated with
the word “office” as State, and the employee’s Title. When Name is a person, it lists the home location, concatenated with
the word “home” as State, and <null> for Title. The ORDER BY clause operates on the result; the combined rows are
ordered by Name:

SELECT Name,Office_State||' office' AS State,Title
FROM Sample.Employee
UNION
SELECT Name,Home_State||' home',NULL
FROM Sample.Person
ORDER BY Name

The following two examples show the effects of the ALL keyword. In the first example, UNION returns only unique values.
In the second example, UNION ALL returns all values, including duplicates:

SELECT Name
FROM Sample.Employee
WHERE Name %STARTSWITH 'A'
UNION
SELECT Name
FROM Sample.Person
WHERE Name %STARTSWITH 'A'
ORDER BY Name

InterSystems SQL Reference 293

UNION

SELECT Name
FROM Sample.Employee
WHERE Name %STARTSWITH 'A'
UNION ALL
SELECT Name
FROM Sample.Person
WHERE Name %STARTSWITH 'A'
ORDER BY Name

See Also
• SELECT

• ORDER BY clause, TOP clause

• CREATE QUERY, CREATE PROCEDURE

• “Querying the Database” chapter in Using InterSystems SQL

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

294 InterSystems SQL Reference

SQL Commands

UNLOCK
Unlocks a table.

UNLOCK [TABLE] tablename IN EXCLUSIVE MODE [IMMEDIATE]

UNLOCK [TABLE] tablename IN SHARE MODE [IMMEDIATE]

Arguments

The name of the table to be unlocked. tablename must be an existing table. A tablename
can be qualified (schema.table), or unqualified (table). An unqualified table name takes
the system-wide default schema name. A schema search path is ignored.

tablename

The IN EXCLUSIVE MODE keyword phrase releases a regular InterSystems IRIS lock.
The IN SHARE MODE keyword phrase releases a shared lock at the InterSystems
IRIS level.

IN EXCLUSIVE
MODE / IN SHARE
MODE

Optional — If not specified, InterSystems IRIS releases the lock at the end of the current
transaction. If specified, InterSystems IRIS releases the lock immediately.

IMMEDIATE

Description
The UNLOCK command unlocks an SQL table that was locked by the LOCK command. This table must be an existing
table for which you have the necessary privileges. If tablename is a temporary table, the command completes successfully,
but performs no operation. If tablename is a view, the command fails with an SQLCODE -400 error.

UNLOCK and UNLOCK TABLE are synonymous.

The UNLOCK command reverses the LOCK operation. The UNLOCK command completes successfully even when no
lock is held. You can use LOCK to lock a table multiple times; you must explicitly UNLOCK the table as many times as
it was explicitly locked.

Privileges

The UNLOCK command is a privileged operation. Prior to using UNLOCK IN SHARE MODE it is necessary for your
process to have SELECT privilege for the specified table. Prior to using UNLOCK IN EXCLUSIVE MODE it is necessary
for your process to have INSERT, UPDATE, or DELETE privilege for the specified table. For IN EXCLUSIVE MODE,
the INSERT or UPDATE privilege must be on at least one field of the table. Failing to hold sufficient privileges results in
an SQLCODE -99 error (Privilege Violation). You can determine if the current user has the necessary privileges by
invoking the %CHECKPRIV command. You can determine if a specified user has the necessary table-level privileges by
invoking the $SYSTEM.SQL.CheckPriv() method. For privilege assignment, refer to the GRANT command.

Nonexistent Table

If you try to unlock a nonexistent table, UNLOCK fails with a compile error, and the message SQLCODE=-30 : Table
'SQLUser.mytable' not found.

Examples
The following embedded SQL examples create a table, lock it and then unlock it:

 NEW SQLCODE,%msg
 &sql(CREATE TABLE mytest (
 ID NUMBER(12,0) NOT NULL,
 CREATE_DATE DATE DEFAULT CURRENT_TIMESTAMP(2),
 WORK_START DATE DEFAULT SYSDATE))
 IF SQLCODE=0 { WRITE !,"Table created" }
 ELSE { WRITE !,"CREATE TABLE error: ",SQLCODE
 QUIT }

InterSystems SQL Reference 295

UNLOCK

 NEW SQLCODE,%msg
 &sql(LOCK mytest IN EXCLUSIVE MODE)
 IF SQLCODE=0 { WRITE !,"Table locked" }
 ELSEIF SQLCODE=-110 { WRITE !,"Table is locked by another process",!,%msg }
 ELSE { WRITE !,"Unexpected LOCK error: ",SQLCODE,!,%msg }
 &sql(UNLOCK mytest IN EXCLUSIVE MODE)
 IF SQLCODE=0 { WRITE !,"Table unlocked" }
 ELSE { WRITE !,"Unexpected UNLOCK error: ",SQLCODE,!,%msg }

See Also
• LOCK

• INSERT UPDATE DELETE

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

296 InterSystems SQL Reference

SQL Commands

UPDATE
Sets new values for specified columns in a specified table.

UPDATE [%keyword] table-ref [[AS] t-alias]
value-assignment-statement

 [FROM [optimize-option] select-table [[AS] t-alias]
 {, select-table2 [[AS] t-alias]}]
 [WHERE condition-expression]

UPDATE [%keyword] table-ref [[AS] t-alias]
value-assignment-statement

 [WHERE CURRENT OF cursor]

value-assignment-statement ::=
 SET column1 = scalar-expression1 {,column2 = scalar-expression2} ... |
 [(column1 {,column2} ...)] VALUES (scalar-expression1 {,scalar-expression2} ...)
 |
 VALUES :array()

Arguments

Optional — One or more of the following keyword options, separated
by spaces: %NOCHECK, %NOFPLAN, %NOINDEX, %NOLOCK,
%NOTRIGGER, %PROFILE, %PROFILE_ALL.

%keyword

The name of an existing table where data is to be updated.You can
also specify a view through which to perform the update on a table.
You cannot specify a table-valued function or JOIN syntax in this
argument.

A table name (or view name) can be qualified (schema.table), or
unqualified (table). An unqualified name is matched to its schema
using either a schema search path (if provided) or the default schema
name.

table-ref

Optional — An alias for a table-ref (table or view) name. An alias
must be a valid identifier. The AS keyword is optional.

AS t-alias

Optional — A FROM clause used to specify the table or tables used
to determine which rows are to be updated.

Multiple tables can be specified as a comma-separated list or
associated with ANSI join keywords. Any combination of tables or
views can be specified. If you specify a comma between two
select-tables here, InterSystems IRIS performs a CROSS JOIN on
the tables and retrieves data from the results table of the JOIN
operation. If you specify ANSI join keywords between two
select-tables here, InterSystems IRIS performs the specified join
operation. For further details, refer to the JOIN page of this manual.

You can optionally specify one or more optimize-option keywords
to optimize query execution.The available options are: %ALLINDEX,
%FIRSTTABLE select-table, %FULL, %INORDER, %IGNOR-
EINDICES, %NOFLATTEN, %NOMERGE, %NOSVSO,
%NOTOPOPT, %NOUNIONOROPT, %PARALLEL, and
%STARTTABLE. See the FROM clause for further details.

FROM select-table

InterSystems SQL Reference 297

UPDATE

Optional — Specifies one or more boolean predicates used to
determine which rows are to be updated. If a WHERE clause (or a
WHERE CURRENT OF clause) is not supplied, UPDATE updates
all the rows in the table. See the WHERE clause for further details.

WHERE condition-expression

Optional: Embedded SQL only — Specifies that the UPDATE
operation updates the record at the current position of cursor.You
can specify a WHERE CURRENT OF clause or a WHERE clause,
but not both. For further details, see WHERE CURRENT OF.

WHERE CURRENT OF cursor

Optional — The name of an existing column. Multiple column names
are specified as a comma-separated list. If omitted, all columns are
updated.

column

A column data value expressed as a scalar expression. Multiple
data values are specified as a comma-separated list with each data
value corresponding in sequence to a column.

scalar-expression

Embedded SQL only — An array of values specified as a host
variable.The lowest subscript level of the array must be unspecified.
Thus :myupdates(), :myupdates(5,), and :myupdates(1,1,)
are all valid specifications.

:array()

Description
An UPDATE command changes existing values for columns in a table. You can update data in a table directly, update
through a view, or update using a subquery enclosed in parentheses. Updating through a view is subject to requirements
and restrictions, as described in CREATE VIEW.

The UPDATE command provides one or more new column values to one or more existing base table rows that contain
those columns. Assignment of data values to columns is done using a value-assignment-statement. By default, a
value-assignment-statement updates all rows in the table.

More commonly, an UPDATE specifies the updating of a specific row (or rows) based on a condition-expression. By
default, an UPDATE operation goes through all of the rows of a table and updates all rows that satisfy the
condition-expression. If no rows satisfy the condition-expression, UPDATE completes successfully and sets SQLCODE=100
(No more data).

You can specify a WHERE clause or a WHERE CURRENT OF clause (but not both). If the WHERE CURRENT OF
clause is used, UPDATE updates the record at the current position of the cursor. For details on positioned operations, see
WHERE CURRENT OF.

The UPDATE operation sets the %ROWCOUNT local variable to the number of updated rows, and the %ROWID local
variable to the RowID value of the last row updated.

By default, the UPDATE operation is an all-or-nothing event. Either all specified rows and columns are updated, or none
are.

INSERT OR UPDATE

The INSERT OR UPDATE statement is a variant of the INSERT statement, the performs both insert and update operations.
First it attempts to perform an insert operation. If the insert request fails due to a UNIQUE KEY violation (for the field(s)
of some unique key, there exists a row that already has the same value(s) as the row specified for the insert), then it auto-
matically turns into an update request for that row, and INSERT OR UPDATE uses the specified field values to update
the existing row.

298 InterSystems SQL Reference

SQL Commands

Privileges

To perform an update, you must either have table-level UPDATE privilege for the specified table (or view) or column-level
UPDATE privilege for the specified column(s). When updating all fields in a row, note that column-level privileges cover
all table columns named in the GRANT command; table-level privileges cover all table columns, including those added
after the privilege was assigned. Failing to have the necessary privileges results in an SQLCODE -99 error (Privilege Vio-
lation). You can determine if the current user has UPDATE privilege by invoking the %CHECKPRIV command. You can
determine if a specified user has table-level UPDATE privilege by invoking the $SYSTEM.SQL.CheckPriv() method.
For privilege assignment, refer to the GRANT command.

When a property is defined as ReadOnly, the corresponding table field is also defined as ReadOnly. A ReadOnly field may
only be assigned a value using InitialExpression or SqlComputed. Attempting to update a value (even a NULL value) for
a field for which you have column-level ReadOnly (SELECT or REFERENCES) privilege results in an SQLCODE -138
error: Cannot INSERT/UPDATE a value for a read only field. When you link a table using the Link Table
Wizard, you have the option of defining fields as Read Only. The field on the source system might not be read only, but if
IRIS defines the linked table's field as Read Only, attempting an UPDATE that references this field results in an SQLCODE
-138 error.

You must have SELECT privilege for fields in a WHERE clause, whether or not those fields are to be updated. You must
have both SELECT and UPDATE privileges for those fields if they are included in the update field list. In the following
example, the Name field must have (at least) column-level SELECT privilege:

UPDATE Sample.Employee (Salary) VALUES (1000000) WHERE Name='Smith, John'

In the above example, the Salary field requires only column-level UPDATE privilege.

Value Assignment

You can assign new values to specified columns in a variety of ways.

• Using the SET keyword, specify one or more column = scalar-expression pairs as a comma-separated list. For example:

SET StatusDate='05/12/06',Status='Purged'

• Using the VALUES keyword, specify a list of columns equated to a corresponding scalar-expressions list. For example:

(StatusDate,Status) VALUES ('05/12/06','Purged')

When assigning scalar-expression values to a column list, there must be a scalar-expression for each specified column.

• Using the VALUES keyword without a column list, specify a list of scalar-expressions that implicitly correspond to
the columns of the row in column order. The following example specifies all of the columns in the table, specifying a
literal value to update the Address column:

VALUES (Name,DOB,'22 Main St. Anytown MA 12345',SSN)

When assigning values to an implicit column list, you must supply a value for every updateable field, in the order that
the columns are defined in the DDL. (You do not specify the non-updateable RowID column.) These values can either
be a literal to specify a new value, or the field name to specify the existing value. You cannot specify placeholder
commas or omit trailing fields.

• Using the VALUES keyword without a column list, specify a subscripted array in which the numeric subscripts corre-
spond to the column numbers, including in your column count the non-updateable RowID as column number 1. For
example:

VALUES :myarray()

This value assignment can only be performed from Embedded SQL using a host variable. Unlike all other value
assignments, this usage allows you to delay specifying which columns are to be updated until runtime (by populating
the array at runtime). All other types of update require that the columns to be updated must be specified at compile

InterSystems SQL Reference 299

UPDATE

time. This syntax cannot be used with a linked table; attempting to do so results in an SQLCODE=-155 error. For
further details, see “Host Variable as a Subscripted Array” in the “Using Embedded SQL” chapter of Using InterSys-
tems SQL.

For program examples demonstrating each of these types of UPDATE, refer to the Examples section, below.

DISPLAY to LOGICAL Data Conversion

Data is stored in LOGICAL mode format. For example, a date is stored as an integer count of days. Data supplied in an
UPDATE operation that is not in LOGICAL mode format must be converted to LOGICAL mode format. Compiled SQL
supports automatic conversion of UPDATE data values from DISPLAY or ODBC format to LOGICAL format. Automatic
conversion of UPDATE data requires two factors: when compiled, the SQL must specify RUNTIME mode; when executed,
the SQL must execute in a LOGICAL mode environment.

• In Embedded SQL, if you specify #SQLCompile Select=runtime, InterSystems IRIS will compile the SQL statement
with code that converts data values from a display format to LOGICAL mode storage format. InterSystems IRIS performs
this mode conversion both for single values and for arrays of values. For further details, see #SQLCompile Select in
the “ObjectScript Macros and the Macro Preprocessor” chapter of Using ObjectScript.

• In an SQL CREATE FUNCTION, CREATE METHOD, or CREATE PROCEDURE statement, if you specify
SELECTMODE RUNTIME, InterSystems IRIS will compile the SQL statement with code that converts data values
from a display format to LOGICAL mode storage format.

The UPDATE data may be in any format: DISPLAY format (for example, 2/22/2018), ODBC format (for example, 2018-
02-22), or LOGICAL format (for example, 64701). The data is stored in LOGICAL format if the SQL execution environment
is in LOGICAL mode. This is the default mode for all InterSystems SQL execution environments.

You can explicitly set the select mode to LOGICAL in SQL execution environments as follows:

• In an ObjectScript program or from the Terminal interface: invoke the $SYSTEM.SQL.SetSelectMode(0) method.

• In Dynamic SQL, specify %SelectMode 0.

• From the SQL Shell, specify SET SELECTMODE LOGICAL.

• From the Management Portal, select System Explorer, SQL, then use the Display Mode drop-down list to specify
Logical Mode.

SQLCODE Errors

By default, a multi-row UPDATE is an atomic operation. If one or more rows cannot be updated, the UPDATE operation
fails and no rows are updated. InterSystems IRIS sets the SQLCODE variable, which indicates the success or failure of the
UPDATE, and if the operation failed also sets %msg. To update a table, the update must meet all table, column name, and
value requirements, as follows.

Tables:

• The table must exist in the current (or specified) namespace. If the specified table cannot be located, InterSystems IRIS
issues an SQLCODE -30 error.

• The table cannot be defined as READONLY. Attempting to compile an UPDATE that references a read-only table
results in an SQLCODE -115 error. Note that this error is issued at compile time, rather than occurring at execution
time. See the description of READONLY objects in the Other Options for Persistent Classes chapter of Defining and
Using Classes.

• The table cannot be locked IN EXCLUSIVE MODE by another process. Attempting to update a locked table results
in an SQLCODE -110 error, with a %msg such as the following: Unable to acquire lock for UPDATE of
table 'Sample.Person' on row with RowID = '10'. Note that an SQLCODE -110 error occurs only
when the UPDATE statement locates the first record to be updated, then cannot lock it within the timeout period.

300 InterSystems SQL Reference

SQL Commands

• If the UPDATE specifies a non-existent field, an SQLCODE -29 is issued. To list all of the field names defined for a
specified table, refer to Column Names and Numbers in the “Defining Tables” chapter of Using InterSystems SQL.
If the field exists but none of the field values fulfill the UPDATE command’s WHERE clause, no rows are affected
and SQLCODE 100 (end of data) is issued.

• In rare cases, UPDATE with %NOLOCK locates a row to be updated, but then the row is immediately deleted by
another process; this situation results in an SQLCODE -109 error: Cannot find the row designated for
UPDATE. The %msg for this error lists the table name and the RowID.

• If updating a table through a view, the view cannot be defined as WITH READ ONLY. Attempting to do so results in
an SQLCODE -35 error. If the view is based on a sharded table, you cannot UPDATE through a view defined WITH
CHECK OPTION. Attempting to do so results in an SQLCODE -35 with the %msg INSERT/UPDATE/DELETE not
allowed for view (sample.myview) based on sharded table with check option conditions.
See the CREATE VIEW command for further details.

Column Names and Values:

• The update cannot include duplicate field names. Attempting an update that specifies two fields with the same name
results in an SQLCODE -377 error.

• You cannot update a field that has been locked by another concurrent process. Attempting to do so results in an SQL-
CODE -110 error. This SQLCODE error can also occur if you are performing such a large number of updates that a
<LOCKTABLEFULL> error occurs.

• You cannot update integer counter fields. These fields are non-modifiable. Attempting to do so generates the following
errors: RowID field (SQLCODE -107); IDENTITY field (SQLCODE -107); SERIAL (%Library.Counter) field (SQL-
CODE -105); ROWVERSION field (SQLCODE -138). The field values for these fields are system-generated and not
user-modifiable. Even when the user can insert an initial value for a counter field, the user cannot update the value.

The one exception is when adding a SERIAL (%Library.Counter) field to a table that has existing data. Existing records
will have NULL for this added counter field. In this case, you can use UPDATE to change a NULL to an integer value.
See the ALTER TABLE command for further details.

• You cannot update a shard key field. Attempting a update a field that is part of a shard key generates an SQLCODE -
154 error.

• You cannot update a field value if the update would violate the field’s uniqueness constraints. Attempting to update
the value of a field (or group of fields) such that the update would violate a uniqueness constraint or a primary key
constraint results in an SQLCODE -120 error. This error is returned if the field has a UNIQUE data constraint, or if
the unique fields constraint has been applied to a group of fields. The SQLCODE -120 %msg string includes both the
field and the value that violate the uniqueness constraint. For example <Table 'Sample.MyTable', Constraint
'MYTABLE_UNIQUE3', Field(s) FullName="Molly Bloom"; failed unique check> or <Table
'Sample.MyTable', Constraint 'MYTABLE_PKEY2', Field(s) FullName="Molly Bloom"; failed

unique check>. For details on listing a table’s unique value and primary key field constraints and the naming of
constraints, refer to Catalog Details: Constraints.

• You cannot update a field value if the update specifies a value that is not listed in its VALUELIST parameter. A
property of a persistent class defined with a VALUELIST parameter can only accept as a valid value one of the values
listed in VALUELIST, or be provided with no value (NULL). VALUELIST valid values are case-sensitive. Attempting
to update with a data value that doesn’t match the VALUELIST values results in an SQLCODE -105 field value failed
validation error.

• Numbers are inserted in canonical form, but can be specified with leading and trailing zeros and multiple leading signs.
However, in SQL, two consecutive minus signs are parsed as a single-line comment indicator. Therefore, attempting
to specify a number with two consecutive leading minus signs results in an SQLCODE -12 error.

InterSystems SQL Reference 301

UPDATE

• When using a WHERE CURRENT OF clause, you cannot update a field using the current field value to generate an
updated value. For example, SET Salary=Salary+100 or SET Name=UPPER(Name). Attempting to do so results
in an SQLCODE -69 error: SET <field> = <value expression> not allowed with WHERE CURRENT OF <cursor>.

• If updating one of the specified rows would violate foreign key referential integrity (and %NOCHECK is not specified),
the UPDATE fails to update any rows and instead issues an SQLCODE -124 error. This does not apply if the foreign
key was defined with the NOCHECK keyword.

• You cannot update a non-stream field with stream data. This results in an SQLCODE -303 error, as described below.

List Structures

InterSystems IRIS supports the list structure data type %List (data type class %Library.List). This is a compressed binary
format, which does not map to a corresponding native data type for InterSystems SQL. It corresponds to data type
VARBINARY with a default MAXLEN of 32749. For this reason, Dynamic SQL cannot use UPDATE or INSERT to set
a property value of type %List. For further details, refer to the Data Types reference page in this manual.

Stream Values

You can update a Stream field with a literal value, or with an object reference (oref) to an existing stream object. InterSystems
IRIS opens this object and copies its contents into the stream field you wish to update.

You cannot update a non-Stream field with the contents of a Stream field. This results in an SQLCODE -303 error: “No
implicit conversion of Stream value to non-Stream field in UPDATE assignment is supported”. To update a string field
with Stream data, you must first use the SUBSTRING function to convert the first n characters of the Stream data to a
string, as shown in the following example:

UPDATE MyTable
 SET MyStringField=SUBSTRING(MyStreamField,1,2000)

Computed Fields

A field defined with COMPUTECODE may recompute its value as part of the UPDATE operation, as follows:

• COMPUTECODE: value is computed and stored upon INSERT, value is not changed upon UPDATE.

• COMPUTECODE with COMPUTEONCHANGE: value is computed and stored upon INSERT, is recomputed and
stored upon UPDATE.

• COMPUTECODE with DEFAULT and COMPUTEONCHANGE: default value is stored upon INSERT, value is
computed and stored upon UPDATE. If the compute code contains a programming error (for example, divide by zero),
the UPDATE operation fails with an SQLCODE -415 error.

• COMPUTECODE with CALCULATED or TRANSIENT: you cannot UPDATE a value for this field because no value
is stored. The value is computed when queried. However, if you attempt to update a value in a calculated field, Inter-
Systems IRIS performs validation on the supplied value and issues an error if the value is invalid. If the value is valid,
InterSystems IRIS performs no update operation, issues no SQLCODE error, and increments ROWCOUNT.

A COMPUTEONCHANGE computed field is not recomputed when no actual update occurs: when the UPDATE operation
new field value is the same as the prior field value.

In most cases, you define a computed field as read-only. This prevents an update operation directly changing a value that
is intended to be the result of a computation involving other field values. In this case, attempting to use UPDATE to
overwrite the value of a computed field results in an SQLCODE -138 error.

However, you may wish to revise a computed field value to reflect an update to one (or more) of its source field values.
You can do this by using an update trigger that recomputes the computed field value after you have updated a specified
source field. For example, an update to the Salary data field might trip a trigger that recalculates the Bonus computed field.
This update trigger recalculates Bonus and completes successfully, even when Bonus is a read-only field. See the CREATE
TRIGGER statement.

302 InterSystems SQL Reference

SQL Commands

You can use the CREATE TABLE ON UPDATE keyword phrase to define a field that is set to a literal or a system variable
(such as the current timestamp) when the record is updated.

For further details, refer to Computing a field value on INSERT or UPDATE.

FROM Clause

An UPDATE command may have no FROM keyword. It may simply specify the table (or view) to update, and select
which rows to update using a WHERE clause.

However, you can also include an optional FROM clause after the value-assignment-statement. This FROM clause specifies
one or more tables used to determine which records are to be updated. The FROM clause is commonly, but not always,
used with a WHERE clause involving multiple tables. A FROM clause can be complex, and can include ANSI join syntax.
Any syntax supported in a SELECT FROM clause is permitted in an UPDATE FROM clause. This UPDATE FROM
clause provides functionality compatibility with Transact-SQL.

The following example shows how this FROM clauses might be used. It updates those records from the Employees table
where the same EmpId is also found in the Retirees table:

UPDATE Employees AS Emp
 SET retired='Yes'
 FROM Retirees AS Rt
 WHERE Emp.EmpId = Rt.EmpId

If the UPDATE table-ref and the FROM clause make reference to the same table, these references may either be to the
same table, or to a join of two instances of the table. This depends on how table aliases are used:

• If neither table reference has an alias, both reference the same table:

 UPDATE table1 value-assignment FROM table1,table2 /* join of 2 tables */

• If both table references have the same alias, both reference the same table:

 UPDATE table1 AS x value-assignment FROM table1 AS x,table2 /* join of 2 tables */

• If both table references have aliases, and the aliases are different, InterSystems IRIS performs a join of two instances
of the table:

 UPDATE table1 AS x value-assignment FROM table1 AS y,table2 /* join of 3 tables */

• If the first table reference has an alias, and the second does not, InterSystems IRIS performs a join of two instances of
the table:

 UPDATE table1 AS x value-assignment FROM table1,table2 /* join of 3 tables */

• If the first table reference does not have an alias, and the second has a single reference to the table with an alias, both
reference the same table, and this table has the specified alias:

 UPDATE table1 value-assignment FROM table1 AS x,table2 /* join of 2 tables */

• If the first table reference does not have an alias, and the second has more than one reference to the table, InterSystems
IRIS considers each aliased instance a separate table and performs a join on these tables:

 UPDATE table1 value-assignment FROM table1,table1 AS x,table2 /* join of 3 tables */
 UPDATE table1 value-assignment FROM table1 AS x,table1 AS y,table2 /* join of 4 tables */

%Keyword Arguments

To use a %keyword argument, you must have the corresponding admin-privilege for the current namespace. Refer to
GRANT for further details.

Specifying %keyword argument(s) restricts processing as follows:

InterSystems SQL Reference 303

UPDATE

• %NOCHECK — foreign key referential integrity checking is not performed. Column data validation for data type,
maximum length, data constraints, and other validation criteria is also not performed. The WITH CHECK OPTION
validation for a view is not performed when performing an UPDATE through a view.

Note: Because use of %NOCHECK can result in invalid data, this keyword option should only be used when per-
forming bulk inserts or updates from a reliable data source.

• %NOFPLAN — FROM clause syntax only: the frozen plan (if any) is ignored for this operation; the operation generates
a new query plan. The frozen plan is retained, but not used. For further details, refer to Frozen Plans in SQL Optimization
Guide.

• %NOINDEX — the index maps are not set during UPDATE processing.

• %NOLOCK — the row is not locked upon UPDATE. This should only be used when a single user/process is updating
the database.

• %NOTRIGGER — the base table triggers are not pulled (executed) during UPDATE processing. Neither BEFORE
nor AFTER triggers are executed.

• %PROFILE or %PROFILE_ALL — if one of these keyword directives is specified, SQLStats collecting code is gen-
erated. This is the same code that would be generated with PTools turned ON. The difference is that SQLStats collecting
code is only generated for this specific statement. All other SQL statements within the routine/class being compiled
will generate code as if PTools is turned OFF. This enables the user to profile/inspect specific problem SQL statements
within an application without collecting irrelevant statistics for SQL statements that are not being investigated. For
further details, refer to SQL Runtime Statistics in the InterSystems SQL Optimization Guide.

%PROFILE collects SQLStats for the main query module. %PROFILE_ALL collects SQLStats for the main query
module and all of its subquery modules.

You can specify multiple %keyword arguments in any order. Multiple arguments are separated by spaces.

Referential Integrity

If you do not specify %NOCHECK, InterSystems IRIS uses the system configuration setting to determine whether to perform
foreign key referential integrity checking. You can set this system default using the $SYSTEM.SQL.SetFilerRefIntegrity()
method call. To determine the current setting, call $SYSTEM.SQL.CurrentSettings(). The default is “Yes” . If you change
this setting, any new process started after changing it will have the new setting.

This setting does not apply to foreign keys that have been defined with the NOCHECK keyword.

During an UPDATE operation, for every foreign key reference which has a field value being updated, a shared lock is
acquired on both the old (pre-update) referenced row and the new (post-update) referenced row in the referenced table(s).
These rows are locked while performing referential integrity checking and updating the row. The lock is then released (it
is not held until the end of the transaction). This ensures that the referenced row is not changed between the referential
integrity check and the completion of the update operation. Locking the old row ensures that the referenced row is not
changed before a potential rollback of the UPDATE. Locking the new row ensures that the referenced row is not changed
between the referential integrity checking and the completion of the update operation.

If an UPDATE operation with %NOLOCK is performed on a foreign key field defined with CASCADE, SET NULL, or
SET DEFAULT, the corresponding referential action changing the foreign key table is also performed with %NOLOCK.

Atomicity

By default, UPDATE, INSERT, DELETE, and TRUNCATE TABLE are atomic operations. An UPDATE either completes
successfully or the whole operation is rolled back. If any of the specified rows cannot be updated, none of the specified
rows are updated and the database reverts to its state before issuing the UPDATE.

304 InterSystems SQL Reference

SQL Commands

You can modify this default for the current process within SQL by invoking SET TRANSACTION %COMMITMODE.
You can modify this default for the current process in ObjectScript by invoking the SetAutoCommit() method. The following
options are available:

• IMPLICIT or 1 (autocommit on) — The default behavior, as described above. Each UPDATE constitutes a separate
transaction.

• EXPLICIT or 2 (autocommit off) — If no transaction is in progress, an UPDATE automatically initiates a transaction,
but you must explicitly COMMIT or ROLLBACK to end the transaction. In EXPLICIT mode the number of database
operations per transaction is user-defined.

• NONE or 0 (no auto transaction) — No transaction is initiated when you invoke UPDATE. A failed UPDATE operation
can leave the database in an inconsistent state, with some of the specified rows updated and some not updated. To
provide transaction support in this mode you must use START TRANSACTION to initiate the transaction and
COMMIT or ROLLBACK to end the transaction.

A sharded table is always in no auto transaction mode, which means all inserts, updates, and deletes to sharded tables
are performed outside the scope of a transaction.

You can determine the atomicity setting for the current process using the GetAutoCommit() method, as shown in the fol-
lowing ObjectScript example:

 DO $SYSTEM.SQL.SetAutoCommit($RANDOM(3))
 SET x=$SYSTEM.SQL.GetAutoCommit()
 IF x=1 {
 WRITE "Default atomicity behavior",!
 WRITE "automatic commit or rollback" }
 ELSEIF x=0 {
 WRITE "No transaction initiated, no atomicity:",!
 WRITE "failed DELETE can leave database inconsistent",!
 WRITE "rollback is not supported" }
 ELSE { WRITE "Explicit commit or rollback required" }

Transaction Locking

If you do not specify %NOLOCK, the system automatically performs standard record locking on INSERT, UPDATE,
and DELETE operations. Each affected record (row) is locked for the duration of the current transaction.

The default lock threshold is 1000 locks per table. This means that if you update more than 1000 records from a table during
a transaction, the lock threshold is reached and InterSystems IRIS automatically escalates the locking level from record
locks to a table lock. This permits large-scale updates during a transaction without overflowing the lock table.

InterSystems IRIS applies one of the two following lock escalation strategies:

• “E”-type lock escalation: InterSystems IRIS uses this type of lock escalation if the following are true: (1) the class
uses %Storage.Persistent (you can determine this from the Catalog Details in the Management Portal SQL schema
display). (2) the class either does not specify an IDKey index, or specifies a single-property IDKey index. “E”-type
lock escalation is described in the LOCK command in the ObjectScript Reference.

• Traditional SQL lock escalation: The most likely reason why a class would not use “E”-type lock escalation is the
presence of a multi-property IDKey index. In this case, each %Save increments the lock counter. This means if you
do 1001 saves of a single object within a transaction, InterSystems IRIS will attempt to escalate the lock.

For both lock escalation strategies, you can determine the current system-wide lock threshold value using the
$SYSTEM.SQL.GetLockThreshold() method. The default is 1000. This system-wide lock threshold value is configurable:

• Using the $SYSTEM.SQL.SetLockThreshold() method.

• Using the Management Portal. Go to System Administration, Configuration, SQL and Object Settings, SQL. View and
edit the current setting of Lock escalation threshold. The default is 1000 locks. If you change this setting, any new
process started after changing it will have the new setting.

InterSystems SQL Reference 305

UPDATE

You must have USE permission on the %Admin Manage Resource to change the lock threshold. InterSystems IRIS
immediately applies any change made to the lock threshold value to all current processes.

On potential consequence of automatic lock escalation is a deadlock situation that might occur when an attempt to escalate
to a table lock conflicts with another process holding a record lock in that table. There are several possible strategies to
avoid this: (1) increase the lock escalation threshold so that lock escalation is unlikely to occur within a transaction. (2)
substantially lower the lock escalation threshold so that lock escalation occurs almost immediately, thus decreasing the
opportunity for other processes to lock a record in the same table. (3) apply a table lock for the duration of the transaction
and do not perform record locks. This can be done at the start of the transaction by specifying LOCK TABLE, then UNLOCK
TABLE (without the IMMEDIATE keyword, so that the table lock persists until the end of the transaction), then perform
updates with the %NOLOCK option.

Automatic lock escalation is intended to prevent overflow of the lock table. However, if you perform such a large number
of updates that a <LOCKTABLEFULL> error occurs, UPDATE issues an SQLCODE -110 error.

For further details on transaction locking refer to Transaction Processing in the “Modifying the Database” chapter of Using
InterSystems SQL.

Row-Level Security

InterSystems IRIS row-level security permits UPDATE to modify any row that security permits it to access. It allows you
to update a row even if the update creates a row that security will not permit you to subsequently access. To ensure that an
update does not prevent you from subsequent SELECT access to the row, it is recommended that you perform the UPDATE
through a view that has a WITH CHECK OPTION. For further details, refer to CREATE VIEW.

ROWVERSION Counter Increment

If a table has a field of data type ROWVERSION, performing an update on a row automatically updates the integer value
of this field. The ROWVERSION field takes the next sequential integer from the namespace-wide row version counter.
Attempting to specify an update value to a ROWVERSION field results in an SQLCODE -138 error.

SERIAL (%Counter) Counter Increment

An UPDATE operation has no effect on SERIAL (%Library.Counter) counter field values. However, an update performed
using INSERT OR UPDATE causes a skip in integer sequence for subsequent insert operations for a SERIAL field. Refer
to INSERT OR UPDATE for further details.

Examples
The examples in this section update the SQLUser.MyStudents table. The following example creates the SQLUser.MyStudents
table and populates it with data. Because repeated execution of this example would accumulate records with duplicate data,
it uses TRUNCATE TABLE to remove old data before invoking INSERT. Execute this example before invoking the
UPDATE examples:

CreateStudentTable
 SET stuDDL=5
 SET stuDDL(1)="CREATE TABLE SQLUser.MyStudents ("
 SET stuDDL(2)="StudentName VARCHAR(32),StudentDOB DATE,"
 SET stuDDL(3)="StudentAge INTEGER COMPUTECODE {SET {StudentAge}="
 SET stuDDL(4)="$PIECE(($PIECE($H,"","",1)-{StudentDOB})/365,""."",1)} CALCULATED,"
 SET stuDDL(5)="Q1Grade CHAR,Q2Grade CHAR,Q3Grade CHAR,FinalGrade VARCHAR(2))"
 SET tStatement = ##class(%SQL.Statement).%New(0,"Sample")
 SET qStatus = tStatement.%Prepare(.stuDDL)
 IF qStatus'=1 {WRITE "DDL %Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rtn = tStatement.%Execute()
 IF rtn.%SQLCODE=0 {WRITE !,"Table Create successful"}
 ELSEIF rtn.%SQLCODE=-201 {WRITE "Table already exists, SQLCODE=",rtn.%SQLCODE,!}
 ELSE {WRITE !,"table create failed, SQLCODE=",rtn.%SQLCODE,!
 WRITE rtn.%Message,! }
RemoveOldData
 SET clearit="TRUNCATE TABLE SQLUser.MyStudents"
 SET qStatus = tStatement.%Prepare(clearit)
 IF qStatus'=1 {WRITE "Truncate %Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET truncrtn = tStatement.%Execute()
 IF truncrtn.%SQLCODE=0 {WRITE !,"Table old data removed",!}

306 InterSystems SQL Reference

SQL Commands

 ELSEIF truncrtn.%SQLCODE=100 {WRITE !,"no data to be removed",!}
 ELSE {WRITE !,"truncate failed, SQLCODE=",truncrtn.%SQLCODE," ",truncrtn.%Message,! }
PopulateStudentTable
 SET studentpop=2
 SET studentpop(1)="INSERT INTO SQLUser.MyStudents (StudentName,StudentDOB) "
 SET studentpop(2)="SELECT Name,DOB FROM Sample.Person WHERE Age <= '21'"
 SET qStatus = tStatement.%Prepare(.studentpop)
 IF qStatus'=1 {WRITE "Populate %Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET poprtn = tStatement.%Execute()
 IF poprtn.%SQLCODE=0 {WRITE !,"Table Populate successful",!
 WRITE poprtn.%ROWCOUNT," rows inserted"}
 ELSE {WRITE !,"table populate failed, SQLCODE=",poprtn.%SQLCODE,!
 WRITE poprtn.%Message }

You can use the following query to display the results of these examples:

SELECT %ID,* FROM SQLUser.MyStudents ORDER BY StudentAge,%ID

Some of the following UPDATE examples depend on field values set by other UPDATE examples; they should be run in
the order specified.

In the following Dynamic SQL example, a SET field=value UPDATE modifies a specified field in selected records.
In the MyStudents table, children under the age of 7 are not given grades:

 SET studentupdate=3
 SET studentupdate(1)="UPDATE SQLUser.MyStudents "
 SET studentupdate(2)="SET FinalGrade='NA' "
 SET studentupdate(3)="WHERE StudentAge <= 6"
 SET tStatement = ##class(%SQL.Statement).%New(0,"Sample")
 SET qStatus = tStatement.%Prepare(.studentupdate)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET uprtn = tStatement.%Execute()
 IF uprtn.%SQLCODE=0 {WRITE !,"Table Update successful"
 WRITE !,"Rows updated=",uprtn.%ROWCOUNT," Final RowID=",uprtn.%ROWID}
 ELSE {WRITE !,"Table update failed, SQLCODE=",uprtn.%SQLCODE," ",uprtn.%Message }

In the following cursor-based Embedded SQL example, a SET field1=value1,field2=value2 UPDATE modifies
several fields in selected records. In the MyStudents table, it updates specified student records with Q1 and Q2 grades:

 #SQLCompile Path=Sample
 NEW %ROWCOUNT,%ROWID
 &sql(DECLARE StuCursor CURSOR FOR
 SELECT * FROM MyStudents
 WHERE %ID IN(10,12,14,16,18,20,22,24) AND StudentAge > 6)
 &sql(OPEN StuCursor)
 QUIT:(SQLCODE'=0)
 FOR { &sql(FETCH StuCursor)
 QUIT:SQLCODE
 &sql(Update MyStudents SET Q1Grade='A',Q2Grade='A'
 WHERE CURRENT OF StuCursor)
 IF SQLCODE=0 {
 WRITE !,"Table Update successful"
 WRITE !,"Row count=",%ROWCOUNT," RowID=",%ROWID }
 ELSE {
 WRITE !,"Table Update failed, SQLCODE=",SQLCODE }
 }
 &sql(CLOSE StuCursor)

In the following Dynamic SQL example, a field-list VALUES value-listUPDATE modifies the values of several
fields in selected records. In the MyStudents table, children who don’t receive a final grade also don’t receive quarterly
grades:

 SET studentupdate=3
 SET studentupdate(1)="UPDATE SQLUser.MyStudents "
 SET studentupdate(2)="(Q1Grade,Q2Grade,Q3Grade) VALUES ('x','x','x') "
 SET studentupdate(3)="WHERE FinalGrade='NA'"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.studentupdate)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET uprtn = tStatement.%Execute()
 IF uprtn.%SQLCODE=0 {WRITE !,"Table Update successful"
 WRITE !,"Rows updated=",uprtn.%ROWCOUNT," Final RowID=",uprtn.%ROWID}
 ELSE {WRITE !,"Table Update failed, SQLCODE=",uprtn.%SQLCODE," ",uprtn.%Message,! }

InterSystems SQL Reference 307

UPDATE

In the following Dynamic SQL example, a VALUES value-list UPDATE modifies all the field values in selected
records. Note that this syntax requires that you specify a value for every field in the record. In the MyStudents table, several
children have been withdrawn from school. Their record IDs and names are retained, with the word WITHDRAWN appended
to the name; all other data is removed and the DOB field is used for the withdrawal date:

 SET studentupdate=4
 SET studentupdate(1)="UPDATE SQLUser.MyStudents "
 SET studentupdate(2)="VALUES (StudentName||' WITHDRAWN',"
 SET studentupdate(3)="$PIECE($HOROLOG,',',1),00,'-','-','-','XX') "
 SET studentupdate(4)="WHERE %ID IN(7,10,22)"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.studentupdate)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET uprtn = tStatement.%Execute()
 IF uprtn.%SQLCODE=0 {WRITE !,"Table Update successful"
 WRITE !,"Rows updated=",uprtn.%ROWCOUNT," Final RowID=",uprtn.%ROWID}
 ELSE {WRITE !,"Table Update failed, SQLCODE=",uprtn.%SQLCODE," ",uprtn.%Message,! }

In the following Dynamic SQL example, a subquery UPDATE uses a subquery to select records. It then modifies these
records using SET field=value syntax. Because of the way that StudentAge is calculated from date of birth in
SQLUser.MyStudents, anyone less than a year old has a calculated age of <Null>, and anyone whose date of birth has been
nulled has a very high calculated age. Here the StudentName field is flagged for future confirmation of the date of birth:

 SET studentupdate=3
 SET studentupdate(1)="UPDATE (SELECT StudentName FROM SQLUser.MyStudents "
 SET studentupdate(2)="WHERE StudentAge IS NULL OR StudentAge > 21) "
 SET studentupdate(3)="SET StudentName = StudentName||' *** CHECK DOB' "
 SET tStatement = ##class(%SQL.Statement).%New(0,"Sample")
 SET qStatus = tStatement.%Prepare(.studentupdate)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET uprtn = tStatement.%Execute()
 IF uprtn.%SQLCODE=0 {WRITE !,"Table Update successful"
 WRITE !,"Rows updated=",uprtn.%ROWCOUNT," Final RowID=",uprtn.%ROWID}
 ELSE {WRITE !,"Table Update failed, SQLCODE=",uprtn.%SQLCODE," ",uprtn.%Message,! }

In the following Embedded SQL example, a VALUES :array() UPDATE modifies the field values specified by column
number in the array in selected records. A VALUES :array() update can only be done in Embedded SQL. Note that this
syntax requires that you specify each value by DDL column number (including in your column count the RowID column
(column 1) but supplying no value to this non-modifiable field). In the MyStudents table, children between 4 and 6 (inclusive)
are given a ‘P’ (for ‘Present’) in their Q1Grade (column 5) and Q2Grade (column 6) fields. All other record data remains
unchanged:

 SET arry(5)="P"
 SET arry(6)="P"
 &sql(UPDATE SQLUser.MyStudents VALUES :arry()
 WHERE FinalGrade='NA' AND StudentAge > 3)
 IF SQLCODE=0 {WRITE "Table Update successful",!
 WRITE "Rows updated=",%ROWCOUNT," Final RowID=",%ROWID }
 ELSE {WRITE "Table Update failed, SQLCODE=",SQLCODE,! }

See Also
• INSERT

• INSERT OR UPDATE

• DELETE

• SELECT

• VALUES

• FROM

• WHERE

• WHERE CURRENT OF

• CREATE TABLE

308 InterSystems SQL Reference

SQL Commands

• CREATE VIEW

• “Modifying the Database” chapter in Using InterSystems SQL

• “Defining Tables” chapter in Using InterSystems SQL

• “Defining Views” chapter of Using InterSystems SQL

• Transaction Processing in the “Modifying the Database” chapter of Using InterSystems SQL

• SQL and Object Settings described in Configuration Parameter File Reference.

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

InterSystems SQL Reference 309

UPDATE

USE DATABASE
Sets the current namespace and database.

USE [DATABASE] dbname

Arguments

The namespace and corresponding database to be used by the current process as
the current namespace.

dbname

Description
The USE DATABASE command switches the current process to the specified namespace and its associated database. This
allows you to change namespaces within SQL. The DATABASE keyword is optional.

The specified dbname is the name of the desired namespace and corresponding directory that contains the database files.
Specify dbname as an identifier. Namespace names are not case-sensitive. For further information on using namespaces,
see Namespaces and Databases in the Orientation Guide for Server-Side Programming.

Because USER is an SQL Reserved Word, you must use a delimited identifier to specify the USER namespace, as shown
in the following SQL Shell example:

USER>>USE DATABASE Samples
SAMPLES>>USE DATABASE "User"
USER>>

If the specified dbname does not exist, InterSystems IRIS issues an SQLCODE -400 error.

The USE DATABASE command is a privileged operation. Prior to using USE DATABASE, it is necessary to be logged
in as a user with appropriate privileges. Failing to do so results in an SQLCODE -99 error (Privilege Violation).

Use the $SYSTEM.Security.Login() method to assign a user with appropriate privileges:

 DO $SYSTEM.Security.Login("_SYSTEM","SYS")
 &sql()

You must have the %Service_Login:Use privilege to invoke the $SYSTEM.Security.Login method. For further
information, refer to %SYSTEM.Security in the InterSystems Class Reference.

You can also switch to a different namespace using the ObjectScript ZNSPACE command, or the SET $NAMESPACE
statement.

Executing via xDBC

When the USE DATABASE command is executed via xDBC, the server process performs a simulated connection reset.
Data structures used by the server process are cleaned up. However, commit mode is not changed. The Read Committed
setting is not changed either. If a transaction is in process, the transaction simply continues and is not committed or rolled
back.

See Also
• CREATE DATABASE command

• DROP DATABASE command

310 InterSystems SQL Reference

SQL Commands

VALUES
An INSERT/UPDATE clause that specifies data values for use in fields.

(field1{,fieldn})
 VALUES (value1{,valuen})

Arguments

A field name or a comma-separated list of field names.field

A value or comma-separated list of values. Each value is assigned to the corresponding field.value

Description
The VALUES clause is used in an INSERT or UPDATE statement to specify the data values to insert into the fields.
Typically:

• INSERT queries use the following syntax:

INSERT INTO tablename (fieldname,fieldname,...)
 VALUES (value,...)

• UPDATE queries use the following syntax:

UPDATE tablename (fieldname,fieldname,...)
 VALUES (value,...)

The elements in the VALUES clause correspond in sequence to the fields specified after the table name. Note if there is
only one value element specified in the VALUES clause, it is not necessary to enclose the element in parentheses.

The following embedded SQL example shows an INSERT statement that adds a single row to the "Employee" table:

 &sql(INSERT INTO Employee (Name,SocSec,Telephone)
 VALUES("Boswell",333448888,"546-7989"))

 &sql(INSERT INTO Employee (Name,SocSec,Telephone)
 VALUES ('Boswell',333448888,'546-7989'))

INSERT and UPDATE queries can use a VALUES clause without requiring you to explicitly specify a list of field names
after the table name. In order to omit the list of field names after the table name, your query must meet the following two
criteria:

• The number of values specified in the VALUES clause is the same as the number of fields in the table (exclusive of
the ID field).

• The values in the VALUES clause are listed in order of the internal column numbers of the fields, beginning with
column 2. Column 1 is always reserved for the system-generated ID field, and is not specified in a VALUES clause.

For example, the query:

INSERT INTO Sample.Person VALUES (5,'John')

is equivalent to the query:

INSERT INTO Sample.Person (Age,Name) VALUES (5,'John')

if the table "Sample.Person" has exactly two user-defined fields.

InterSystems SQL Reference 311

VALUES

In this example, the value 5 is assigned to the field with the lower column number, and the value "John" is assigned to the
other field.

A VALUES clause can specify an element of an array, as is the following embedded SQL example:

 &sql(UPDATE Person(Tel)
 VALUES :per('tel',)
 WHERE ID = :id)

An UPDATE query can also reference an array with unspecified last subscript. Whereas INSERT uses the presence and
absence of array elements to assign values and default values to a newly created row, UPDATE uses the presence of an
array element to indicate that the corresponding field should be updated. For example, consider the following array for a
table with six columns:

emp("profile",2)="Smith"
emp("profile",3)=2
emp("profile",3,1)="1441 Main St."
emp("profile",3,2)="Cableton, IL 60433"
emp("profile",5)=NULL
emp("profile",7)=25
emp("profile","next")="F"

Column 1 is always reserved for the ID field, and is not user-specified. The inserted "Employee" row has Column 2, "Name",
set to "Smith"; Column 3, "Address", set to a two-line value; Column 4, "Department", is not specified, and is thus set to
the default, and Column 5, "Location", is set to NULL. The default value for "Location" is not used since the corresponding
array element is defined with a null value. The array elements "7" and "next" do not correspond to column numbers in the
"Employee" table, therefore the query ignores them. Here’s the UPDATE statement that uses this array:

 &sql(UPDATE Employee
 VALUES :emp('profile',)
 WHERE Employee = 379)

Given the above definitions and array values, this statement will update the values of the "Name", "Address", and "Location"
fields of the "Employee" row for which Row ID = 379.

However, omitting the subscript entirely results in an SQLCODE -54 error: Array designator (last subscript omitted)
expected after VALUES.

You may also use an array reference with an UPDATE query that targets multiple rows, for example:

 &sql(UPDATE Employee
 VALUES :emp('profile',)
 WHERE Type = 'PART-TIME')

A VALUES clause variable cannot use dot syntax. Therefore, the following embedded SQL example is correct:

 SET sname = state.Name
 &sql(INSERT INTO StateTbl VALUES :sname)

The following is not correct:

 &sql(INSERT INTO State VALUES :state.Name)

NULL and empty string values are different. For further details, see NULL. For backward compatibility, all empty string
('') values in older existing data are considered as NULL values. In new data, empty strings are stored in the data as
$CHAR(0). Through SQL, NULL is referenced as 'NULL'. For example:

INSERT INTO Sample.Person
(SSN,Name,Home_City) VALUES ('123-45-6789','Doe,John',NULL)

Through SQL, empty string is referenced as '' (two single quotes). For example:

INSERT INTO Sample.Person
(SSN,Name,Home_City) VALUES ('123-45-6789','Doe,John','')

You cannot insert a NULL value for the ID field.

312 InterSystems SQL Reference

SQL Commands

Examples
The following embedded SQL example inserts a record for “Doe,John” into the Sample.Person table. It then selects this
record, and then deletes this record. A second SELECT confirms the deletion.

 SET x="Doe,John",y="123-45-6789",z="Metropolis"
 SET (a,b,c,d,e)=0
 NEW SQLCODE,%ROWCOUNT,%ROWID
 &sql(INSERT INTO Sample.Person
 (Name,SSN,Home_City) VALUES (:x,:y,:z))
 IF SQLCODE'=0 {
 WRITE !,"INSERT Error code ",SQLCODE
 QUIT }
 &sql(SELECT Name,SSN,Home_City
 INTO :a,:b,:c
 FROM Sample.Person
 WHERE Name =:x)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"After INSERT:"
 WRITE !,"Name=",a," SSN=",b," City=",c
 WRITE !,"SQL code=",SQLCODE," Number of rows=",%ROWCOUNT }
 &sql(DELETE FROM Sample.Person
 WHERE Name=:x)
 &sql(SELECT Name,SSN
 INTO :d,:e
 FROM Sample.Person
 WHERE Name='Doe,John')
 IF SQLCODE <0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"After DELETE:"
 WRITE !,"Name=",d," SSN=",e
 WRITE !,"SQL code=",SQLCODE," Number of rows=",%ROWCOUNT }

See Also
• INSERT

• UPDATE

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

InterSystems SQL Reference 313

VALUES

WHERE
A SELECT clause that specifies one or more restrictive conditions.

SELECT fields
FROM table
WHERE condition-expression

Arguments

An expression consisting of one or more boolean predicates
governing which data values are to be retrieved.

condition-expression

Description
The optional WHERE clause can be used for the following purposes:

• To specify predicates that restrict which data values are to be returned.

• To specify an explicit join between two tables.

• To specify an implicit join between the base table and a field in another table.

The WHERE clause is most commonly used to specify one or more predicates that are used to restrict the data (filter out
rows) retrieved by a SELECT query or subquery. You can also use a WHERE clause in an UPDATE command, DELETE
command, or in a result set SELECT in an INSERT (or INSERT OR UPDATE) command.

The WHERE clause qualifies or disqualifies specific rows from the query selection. The rows that qualify are those for
which the condition-expression is true. The condition-expression can be one or more logical tests (predicates). Multiple
predicates can be linked by the AND and OR logical operators. See “Predicates and Logical Operators” for further details
and restrictions.

If a predicate includes division and there are any values in the database that could produce a divisor with a value of zero
or a NULL value, you cannot rely on order of evaluation to avoid division by zero. Instead, use a CASE statement to suppress
the risk.

A WHERE clause can specify a condition-expression that includes a subquery. The subquery must be enclosed in paren-
theses.

A WHERE clause can specify an explicit join between two tables using the = (inner join) symbolic join operator. For further
details, refer to the JOIN page of this manual.

A WHERE clause can specify an implicit join between the base table and a field from another table using the arrow syntax
(–>) operator. For further details, refer to Implicit Joins in Using InterSystems SQL.

Specifying a Field

The simplest form of a WHERE clause specifies a predicate comparing a field to a value, such as WHERE Age > 21.
Valid field values include the following: A column name (WHERE Age > 21); an %ID, %TABLENAME, or %CLASS-
NAME; a scalar function specifying a column name (WHERE ROUND(Age,-1)=60), a collation function specifying a
column name (WHERE %SQLUPPER(Name) %STARTSWITH ' AB').

You cannot specify a field by column number.

Because the name of the RowID field can change when a table is re-compiled, a WHERE clause should avoid referring
to the RowID by name (for example, WHERE ID=22). Instead, refer to the RowID using the %ID pseudo-column name
(for example, WHERE %ID=22).

314 InterSystems SQL Reference

SQL Commands

You cannot specify a field by column alias; attempting to do so generates an SQLCODE -29 error. However, you can use
a subquery to define a column alias, then use this alias in the WHERE clause. For example:

SELECT Interns FROM
 (SELECT Name AS Interns FROM Sample.Employee WHERE Age<21)
WHERE Interns %STARTSWITH 'A'

You cannot specify an aggregate field; attempting to do so generates an SQLCODE -19 error. However, you can supply
an aggregate function value to a WHERE clause by using a subquery. For example:

SELECT Name,Age,AvgAge
FROM (SELECT Name,Age,AVG(Age) AS AvgAge FROM Sample.Person)
WHERE Age < AvgAge
ORDER BY Age

Integers and Strings

If a field defined as integer data type is compared to a numeric value, the numeric value is converted to canonical form
before performing the comparison. For example, WHERE Age=007.00 parses as WHERE Age=7. This conversion occurs
in all modes.

If a field defined as integer data type is compared to a string value in Display mode, the string is parsed as a numeric value.
For instance, an empty string (''), like any non-numeric string, is parsed as the number 0. This parsing follows ObjectScript
rules for handling strings as numbers. For example, WHERE Age='twenty' parses as WHERE Age=0; WHERE
Age='20something' parses as WHERE Age=20. For further details, refer to Strings as Numbers in the “Data Types
and Values” chapter of Using ObjectScript. SQL only performs this parsing in Display mode; in Logical or ODBC mode
comparing an integer to a string value returns null.

To compare a string field with a string containing a single quote, double the single quote. For example, WHERE Name
%STARTSWITH 'O''' returns O’Neil and O’Connor, but not Obama.

Date and Time

In InterSystems SQL dates and times are compared and stored using a Logical Mode internal representation. They can be
returned in Logical mode, Display Mode, or ODBC mode. For example, the date September 28, 1944 is represented as:
Logical mode 37891, Display mode 09/28/1944, ODBC mode 1944-09-28. When specifying a date or time in a
condition-expression an error can occur due to a mismatch of SQL mode and date or time format, or due to an invalid date
or time value.

A WHERE clause condition-expression must use the date or time format that corresponds to the current mode. For example,
when in Logical mode, to return records with a date of birth in 2005, the WHERE clause would appear as follows: WHERE
DOB BETWEEN 59901 AND 60265. When in Display mode, the same WHERE clause would appear as follows: WHERE
DOB BETWEEN '01/01/2005' AND '12/31/2005'.

Failing to match the condition-expression date or time format to the display mode results in an error:

• In Display mode or ODBC mode, specifying date data in the incorrect format generates an SQLCODE -146 error.
Specifying time data in the incorrect format generates an SQLCODE -147 error.

• In Logical mode, specifying date or time data in the incorrect format does not generate an error, but either returns no
data or returns unintended data. This is because Logical mode does not parse a date or time in Display or ODBC format
as a date or time value. The following WHERE clause, when executed in Logical mode, returns unintended data:
WHERE DOB BETWEEN 37500 AND 38000 AND DOB <> '1944-09-28' returns a range of DOB values,
including DOB=37891 (September 28, 1944), which the <> predicate was attempting to omit.

An invalid date or time value also generates an SQLCODE -146 or -147 error. An invalid date is one that you can specify
in Display mode/ODBC mode, but InterSystems IRIS cannot convert into a Logical mode equivalent. For example, in
ODBC mode the following generates an SQLCODE -146 error: WHERE DOB > '1830-01-01' because InterSystems
IRIS cannot process a date value prior to December 31, 1840. The following in ODBC mode also generates an SQLCODE
-146 error: WHERE DOB BETWEEN '2005-01-01' AND '2005-02-29', because 2005 is not a leap year.

InterSystems SQL Reference 315

WHERE

When in Logical mode, a Display mode or ODBC mode value is not parsed as a date or time value, and therefore its value
is not validated. For this reason, in Logical mode a WHERE clause such as WHERE DOB > '1830-01-01' does not
return an error.

Stream Fields

In most situations, you cannot use a stream field in a WHERE clause predicate. Doing so results in an SQLCODE -313
error. However, the following uses of stream fields are allowed in a WHERE clause:

• Stream null testing: you can specify the predicate streamfield IS NULL or streamfield IS NOT NULL.

• Stream length testing: you can specify a CHARACTER_LENGTH(streamfield), CHAR_LENGTH(streamfield),
or DATALENGTH(streamfield) function in a WHERE clause predicate.

• Stream substring testing: you can specify a SUBSTRING(streamfield,start,length) function in a WHERE
clause predicate.

List Structures

InterSystems IRIS supports the list structure data type %List (data type class %Library.List). This is a compressed binary
format, which does not map to a corresponding native data type for InterSystems SQL. It corresponds to data type
VARBINARY with a default MAXLEN of 32749. For this reason, Dynamic SQL cannot use %List data in a WHERE
clause comparison. For further details, refer to the Data Types reference page in this manual.

To reference structured list data, use the %INLIST predicate or the FOR SOME %ELEMENT predicate.

To use the data values of a list field in a condition-expression, you can use %EXTERNAL to compare the list values to a
predicate. For example, to return all records in which the FavoriteColors list field value consists of the single element 'Red':

SELECT Name,FavoriteColors FROM Sample.Person
WHERE %EXTERNAL(FavoriteColors)='Red'

When %EXTERNAL converts a list to DISPLAY format, the displayed list items appear to be separated by a blank space.
This “space” is actually the two non-display characters CHAR(13) and CHAR(10). To use a condition-expression against
more than one element in the list, you must specify these characters. For example, to return all records in which the
FavoriteColors list field value consists of the two elements 'Orange' and 'Black' (in that order):

SELECT Name,FavoriteColors FROM Sample.Person
WHERE %EXTERNAL(FavoriteColors)='Orange'||CHAR(13)||CHAR(10)||'Black'

Variables

A WHERE clause predicate can specify:

A %TABLENAME, or %CLASSNAME pseudo-field variable keyword. %TABLENAME returns the current table name.
%CLASSNAME returns the name of the class corresponding to the current table. If the query references multiple tables,
you can prefix the keyword with a table alias. For example, t1.%TABLENAME.

One or more of the following ObjectScript special variables (or their abbreviations): $HOROLOG, $JOB, $NAMESPACE,
$TLEVEL, $USERNAME, $ZHOROLOG, $ZJOB, $ZNSPACE, $ZPI, $ZTIMESTAMP, $ZTIMEZONE, $ZVERSION.

List of Predicates

The SQL predicates fall into the following categories:

• Equality Comparison Predicates

• BETWEEN Predicate

• IN and %INLIST Predicates

• %STARTSWITH Predicate and Contains Operator

316 InterSystems SQL Reference

SQL Commands

• NULL Predicate

• EXISTS Predicate

• FOR SOME Predicate

• FOR SOME %ELEMENT Predicate

• LIKE, %MATCHES, and %PATTERN Predicates

• %INSET and %FIND Predicates

Predicate Case-Sensitivity

A predicate uses the collation type defined for the field. By default, string data type fields are defined with SQLUPPER
collation, which is not case-sensitive. The “Collation” chapter of Using InterSystems SQL provides details on defining the
string collation default for the current namespace and specifying a non-default field collation type when defining a
field/property.

The %INLIST, Contains operator ([), %MATCHES, and %PATTERN predicates do not use the field’s default collation.
They always uses EXACT collation, which is case-sensitive.

A predicate comparison of two literal strings is always case-sensitive.

Predicate Conditions and %NOINDEX

You can preface a predicate condition with the %NOINDEX keyword to prevent the query optimizer using an index on
that condition. This is most useful when specifying a range condition that is satisfied by the vast majority of the rows. For
example, WHERE %NOINDEX Age >= 1. For further details, refer to Index Optimization Options in the SQL Optimization
Guide.

Predicate Condition on Outlier Value

If the WHERE clause in a Dynamic SQL query selects on a non-null outlier value, you can significantly improve performance
by enclosing the outlier value literal in double parentheses. These double parentheses cause Dynamic SQL to use the outlier
selectivity when optimizing. For example, if your business is located in Massachusetts (MA), a large percentage of your
employees will reside in Massachusetts. For the Employees table Home_State field, 'MA' is the outlier value. To optimally
select for this value, you should specify WHERE Home_State=(('MA')).

This syntax should not be used in Embedded SQL or in a view definition. In Embedded SQL or a view definition, the outlier
selectivity is always used and requires no special coding.

A WHERE clause in a Dynamic SQL query automatically optimizes for a null outlier value. For example, a clause such
as WHERE FavoriteColors IS NULL. No special coding is required for IS NULL and IS NOT NULL predicates when
NULL is the outlier value.

Outlier selectivity is determined by running the Tune Table utility. For further details, refer to Outlier Optimization in the
“Optimizing Tables” chapter of the SQL Optimization Guide.

Equality Comparison Predicates
The following are the available equality comparison predicates:

InterSystems SQL Reference 317

WHERE

Table B–2: SQL Equality Comparison Predicates

OperationPredicate

Equals=

Does not equal<>

Does not equal!=

Is greater than>

Is less than<

Is greater than or equal to>=

Is less than or equal to<=

For example:

SELECT Name, Age FROM Sample.Person
WHERE Age < 21

SQL defines comparison operations in terms of collation: the order in which values are sorted. Two values are equal if they
collate in exactly the same way. A value is greater than another value if it collates after the second value. String field collation
takes the field’s default collation. The InterSystems IRIS default collation is not case-sensitive. Thus, a comparison of two
string field values or a comparison of a string field value with a string literal is (by default) not case-sensitive. For example,
if Home_State field values are uppercase two-letter strings:

ValueExpression

TRUE for values MA.'MA' = Home_State

TRUE for values MA.'ma' = Home_State

TRUE for values VT, WA, WI, WV, WY.'VA' < Home_State

TRUE for values AK, AL, AR.'ar' >= Home_State

Note, however, that a comparison of two literal strings is case-sensitive: WHERE 'ma'='MA' is always FALSE.

BETWEEN Predicate
The BETWEEN comparison operator allows you to select those data values that are in the range specified by the syntax
BETWEEN lowval AND highval. This range is inclusive of the lowval and highval values themselves. This is equivalent
to a paired greater than or equal to operator and a less than or equal to operator. This comparison is shown in the following
example:

SELECT Name,Age FROM Sample.Person
WHERE Age BETWEEN 18 AND 21

This returns all the records in the Sample.Person table with an Age value between 18 and 21, inclusive of those values.
Note that you must specify the BETWEEN values in ascending order; a predicate such as BETWEEN 21 AND 18 would
return no records.

Like most predicates, BETWEEN can be inverted using the NOT logical operator, as shown in the following example:

SELECT Name,Age FROM Sample.Person
WHERE Age NOT BETWEEN 20 AND 55
ORDER BY Age

318 InterSystems SQL Reference

SQL Commands

This returns all the records in the Sample.Person table with an Age value less than 20 or greater than 55, exclusive of those
values.

BETWEEN is commonly used for a range of numeric values, which collate in numeric order. However, BETWEEN can
be used for a collation sequence range of values of any data type.

BETWEEN uses the same collation type as the column it is matching against. By default, string data types collate as not
case-sensitive.

For further details, refer to the BETWEEN predicate reference page in this manual.

IN and %INLIST Predicates
The IN predicate is used for matching a value to an unstructured series of items. It has the following syntax:

WHERE field IN (item1,item2[,...])

Collation applies to the IN comparison as it applies to an equality test. IN uses the field’s default collation. By default,
comparisons with field string values are not case-sensitive.

The %INLIST predicate is an InterSystems IRIS extension for matching a value to the elements of an InterSystems IRIS
list structure. It has the following syntax:

WHERE item %INLIST listfield

%INLIST uses EXACT collation. Therefore, by default, %INLIST string comparisons are case-sensitive.

With either predicate you can perform equality comparisons and subquery comparisons.

For further details, refer to the IN and %INLIST predicate reference pages in this manual.

Substring Predicates
You can use the following to compare a field value to a substring:

Table B–3: SQL Substring Predicates

OperationPredicate

The value must start with the specified substring.%STARTSWITH

Contains operator. The value must contain the specified substring.[

%STARTSWITH Predicate

The InterSystems IRIS %STARTSWITH comparison operator permits you to perform partial matching on the initial
characters of a string or numeric. The following example uses %STARTSWITH. to select those records in which the
Name value begins with “S”:

SELECT Name,Age FROM Sample.Person
WHERE Name %STARTSWITH 'S'

Like other string field comparisons, %STARTSWITH comparisons use the field’s default collation. By default, string
fields are not case-sensitive. For example:

SELECT Name,Home_City,Home_State FROM Sample.Person
WHERE Home_City %STARTSWITH Home_State

For further details, refer to the %STARTSWITH predicate reference page in this manual.

InterSystems SQL Reference 319

WHERE

Contains Operator ([)

The Contains operator is the open bracket symbol: [. It permits you to match a substring (string or numeric) to any part of
a field value. The comparison is always case-sensitive. The following example uses the Contains operator to select those
records in which the Name value contains a “S”:

SELECT Name, Age FROM Sample.Person
WHERE Name ['S'

NULL Predicate
This detects undefined values. You can detect all null values, or all non-null values. The NULL predicate has the following
syntax:

WHERE field IS [NOT] NULL

NULL predicate conditions are one of the few predicates that can be used on stream fields in a WHERE clause.

For further details, refer to the NULL predicate reference page in this manual.

EXISTS Predicate
This operates with subqueries to test whether a subquery evaluates to the empty set.

SELECT t1.disease FROM illness_tab t1 WHERE EXISTS
 (SELECT t2.disease FROM disease_registry t2
 WHERE t1.disease = t2.disease
 HAVING COUNT(t2.disease) > 100)

For further details, refer to the EXISTS predicate reference page in this manual.

FOR SOME Predicate
The FOR SOME predicate of the WHERE clause can be used to determine whether or not to return any records based on
a condition test of one or more field values. This predicate has the following syntax:

FOR SOME (table [AS t-alias]) (fieldcondition)

FOR SOME specifies that fieldcondition must evaluate to true; at least one of the field values must match the specified
condition. table can be a single table or a comma-separated list of tables, and each table can optionally take a table alias.
fieldcondition specifies one or more conditions for one or more fields within the specified table. Both the table argument
and the fieldcondition argument must be delimited by parentheses.

The following example shows the use of the FOR SOME predicate to determine whether to return a result set:

SELECT Name,Age AS AgeWithWorkers
FROM Sample.Person
WHERE FOR SOME (Sample.Person) (Age<65)
ORDER BY Age

In the above example, if at least one field contains an Age value less than the specified age, all of the records are returned.
Otherwise, no records are returned.

For further details, refer to the FOR SOME predicate reference page in this manual.

320 InterSystems SQL Reference

SQL Commands

FOR SOME %ELEMENT Predicate
The FOR SOME %ELEMENT predicate of the WHERE clause has the following syntax:

FOR SOME %ELEMENT(field) [AS e-alias] (predicate)

The FOR SOME %ELEMENT predicate matches the elements in field with the specified predicate clause value. The
SOME keyword specifies that at least one of the elements in field must satisfy the specified predicate condition. The
predicate can contain the %VALUE or %KEY keyword.

The FOR SOME %ELEMENT predicate is a Collection Predicate.

For further details, refer to the FOR SOME %ELEMENT predicate reference page in this manual.

LIKE, %MATCHES, and %PATTERN Predicates
These three predicates allow you to perform pattern matching.

• LIKE allows you to pattern match using literals and wildcards. Use LIKE when you wish to return data values that
contain a known substring of literal characters, or contain several known substrings in a known sequence. LIKE uses
the collation of its target for letter case comparisons.

• %MATCHES allows you to pattern match using literals, wildcards, and lists and ranges. Use %MATCHES when you
wish to return data values that contain a known substring of literal characters, or contain one or more literal characters
that fall within a list or range of possible characters, or contain several such substrings in a known sequence.
%MATCHES uses EXACT collation for letter case comparisons.

• %PATTERN allows you to specify a pattern of character types. For example, '1U4L1",".A' (1 uppercase letter, 4
lowercase letters, one literal comma, followed by any number of letter characters of either case). Use %PATTERN
when you wish to return data values that contain a known sequence of character types. %PATTERN can specify known
literal characters, but is especially useful when the data value is unimportant, but the character type format of those
values is significant.

To perform a comparison with the first characters of a string, use the %STARTSWITH predicate.

Predicates and Logical Operators
Multiple predicates can be associated using the AND and OR logical operators. Multiple predicates can be grouped using
parentheses. Because InterSystems IRIS optimizes execution of the WHERE clause using defined indices and other opti-
mizations, the order of evaluation of predicates linked by AND and OR logical operators cannot be predicted. For this
reason, the order in which you specify multiple predicates has little or no effect on performance. If strict left-to-right eval-
uation of predicates is desired, you can use a CASE statement.

Note: The OR logical operator cannot be used to associate a FOR SOME %ELEMENT collection predicate that references
a table field with a predicate that a references a field in a different table. For example,

WHERE FOR SOME %ELEMENT(t1.FavoriteColors) (%VALUE='purple')
OR t2.Age < 65

Because this restriction depends on how the optimizer uses indices, SQL may only enforce this restriction when
indices are added to a table. It is strongly suggested that this type of logic be avoided in all queries.

For further details, refer to “Logical Operators” in the “Language Elements” chapter of Using InterSystems SQL.

See Also
• SELECT statement

• HAVING clause

InterSystems SQL Reference 321

WHERE

• Overview of Predicates

• “Querying the Database” chapter in Using InterSystems SQL

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

322 InterSystems SQL Reference

SQL Commands

WHERE CURRENT OF
An UPDATE/DELETE clause that specifies the current row using a cursor.

WHERE CURRENT OF cursor

Arguments

Specifies that the operation is done at the current position of
cursor, which is a cursor that points to the table.

cursor

Description
The WHERE CURRENT OF clause can be used in a cursor-based Embedded SQL UPDATE or DELETE statement to
specify the cursor positioned on the record to be updated or deleted. For example:

 &sql(DELETE FROM Sample.Employees WHERE CURRENT OF EmployeeCursor)

which deletes the row that the last FETCH command obtained from the "EmployeeCursor" cursor.

An Embedded SQL UPDATE or DELETE can use a WHERE clause (with no cursor), or a WHERE CURRENT OF
with a declared cursor, but not both. If you specify an UPDATE or DELETE with neither WHERE nor WHERE
CURRENT OF, all of the records in the table are updated or deleted.

UPDATE Restriction

When using a WHERE CURRENT OF clause, you cannot update a field using the current field value to generate an
updated value. For example, SET Salary=Salary+100 or SET Name=UPPER(Name). Attempting to do so results in
an SQLCODE -69 error: SET <field> = <value expression> not allowed with WHERE CURRENT OF <cursor>.

Examples
The following Embedded SQL example shows an UPDATE operation using WHERE CURRENT OF:

 NEW %ROWCOUNT,%ROWID
 &sql(DECLARE WPCursor CURSOR FOR
 SELECT Lang FROM SQLUser.WordPairs
 WHERE Lang='Sp')
 &sql(OPEN WPCursor)
 QUIT:(SQLCODE'=0)
 FOR { &sql(FETCH WPCursor)
 QUIT:SQLCODE
 &sql(UPDATE SQLUser.WordPairs SET Lang='Es'
 WHERE CURRENT OF WPCursor)
 IF SQLCODE=0 {
 WRITE !,"Update succeeded"
 WRITE !,"Row count=",%ROWCOUNT," RowID=",%ROWID }
 ELSE {
 WRITE !,"Update failed, SQLCODE=",SQLCODE }
 }
 &sql(CLOSE WPCursor)

The following Embedded SQL example shows a DELETE operation using WHERE CURRENT OF:

InterSystems SQL Reference 323

WHERE CURRENT OF

 NEW %ROWCOUNT,%ROWID
 &sql(DECLARE WPCursor CURSOR FOR
 SELECT Lang FROM SQLUser.WordPairs
 WHERE Lang='En')
 &sql(OPEN WPCursor)
 QUIT:(SQLCODE'=0)
 FOR { &sql(FETCH WPCursor)
 QUIT:SQLCODE
 &sql(DELETE FROM SQLUser.WordPairs
 WHERE CURRENT OF WPCursor)
 IF SQLCODE=0 {
 WRITE !,"Delete succeeded"
 WRITE !,"Row count=",%ROWCOUNT," RowID=",%ROWID }
 ELSE {
 WRITE !,"Delete failed, SQLCODE=",SQLCODE }
 }
 &sql(CLOSE WPCursor)

See Also
• DECLARE, OPEN, FETCH, CLOSE

• DELETE, UPDATE, INSERT OR UPDATE

• SQL Cursors in the “Using Embedded SQL” chapter of Using InterSystems SQL

• SQLCODE error messages listed in the InterSystems IRIS Error Reference

324 InterSystems SQL Reference

SQL Commands

SQL Predicate Conditions

InterSystems SQL Reference 325

Overview of Predicates
Describes logical conditions that evaluate to either true or false.

Use of Predicates
A predicate is a condition expression that evaluates to a boolean value, either true or false.

Predicates can be used as follows:

• In a SELECT statement's WHERE clause or HAVING clause to determine which rows are relevant to a particular
query. Note that not all predicates can be used in a HAVING clause.

• In a JOIN operation’s ON clause to determine which rows are relevant to the join operation.

• In an UPDATE or DELETE statement's WHERE clause, to determine which rows are to be modified.

• In a WHERE CURRENT OF statement's AND clause.

• In a CREATE TRIGGER statement's WHEN clause to determine when to apply triggered action code.

List of Predicates
Every predicate contains one or more comparison operators, either symbols or keyword clauses. InterSystems SQL supports
the following comparison operators:

DescriptionComparison Operator

Equality comparison conditions. Can be used for
numeric comparisons or string collation order
comparisons. For numeric comparisons, an empty
string value ('') is evaluated as 0. A NULL in any
equality comparison always returns the empty set;
use the IS NULL predicate instead. See Relational
Operators in Using InterSystems SQL.

= (equals)

<> (does not equal)

!= (does not equal)

> (is greater than)

>= (is greater than or equal to)

< (is less than)

<= (is less than or equal to)

Tests whether a field has undefined (NULL) values.
See IS NULL.

IS [NOT] NULL

Tests whether a value is a JSON formatted string or
an oref to a JSON array or a JSON object. See IS
JSON.

IS [NOT] JSON

Uses a subquery to test a specified table for existence
of one or more rows. See EXISTS.

EXISTS (subquery)

A BETWEEN condition uses >= and <= comparison
conditions together. Match must be between two
specified range limit values (inclusive). See
BETWEEN.

BETWEEN x AND y

An equality condition that matches a field value to any
of the items in a comma-separated list, or any of the
items returned by a subquery. See IN.

IN (item1,item2[...,itemn])

IN (subquery)

326 InterSystems SQL Reference

SQL Predicate Conditions

DescriptionComparison Operator

An equality condition that matches a field value to any
of the elements in a %List structured list. See
%INLIST.

%INLIST listfield

Contains operator. Match must contain the specified
string. The Contains operator uses EXACT collation,
and is therefore case-sensitive. Must specify value in
Logical format.

[

Follows operator. Match must appear after the
specified item in collation sequence. Must specify
value in Logical format.

]

Match must begin with the specified string. See
%STARTSWITH.

%STARTSWITH string

A boolean comparison condition. The FOR SOME
condition must be true for at least one data value of
the specified field. See FOR SOME.

FOR SOME

A list element comparison condition with a %VALUE
or %KEY predicate clause. %VALUE must match the
value of at least one element of the list. %KEY must
be less than or equal to the number of elements in
the list. %VALUE and %KEY clauses can use any of
the other comparison operators. See FOR SOME
%ELEMENT.

FOR SOME %ELEMENT

A pattern match condition using literals and wildcards.
Use LIKE when you wish to return data values that
contain a known substring of literal characters, or
contain several known substrings in a known
sequence. LIKE uses the collation of its target for
letter case comparisons. (Contrast with the Contains
operator, which uses EXACT collation.) See LIKE.

LIKE

A pattern match condition using literals, wildcards,
and lists and ranges. Use %MATCHES when you
wish to return data values that contain a known
substring of literal characters, or contain one or more
literal characters that fall within a list or range of
possible characters, or contain several such
substrings in a known sequence. %MATCHES uses
EXACT collation for letter case comparisons. See
%MATCHES.

%MATCHES

InterSystems SQL Reference 327

Overview of Predicates

DescriptionComparison Operator

A pattern match condition using character types. For
example, '1U4L1",".A' (1 uppercase letter, 4
lowercase letters, one literal comma, followed by any
number of letter characters of either case). Use
%PATTERN when you wish to return data values that
contain a known sequence of character types.
%PATTERN can specify known literal characters, but
is especially useful when the data value is
unimportant, but the character type format of those
values is significant. See %PATTERN.

%PATTERN

A quantified-comparison condition. See ALL, ANY,
and SOME.

ALL

ANY

SOME

Field value comparison conditions that enable filtering
of RowId field values using an abstract,
programmatically specified temp-file or bitmap index.
%INSET supports simple comparisons. %FIND
supports comparisons involving a bitmap index.

%INSET

%FIND

NULL
A NULL is the absence of any value. By definition, it fails all boolean tests: no value is equal to NULL, no value is unequal
to NULL, no value is greater than or less than NULL. Even NULL=NULL fails as a predicate. Because the IN predicate
is a series of OR’ed equality tests, it is not meaningful to specify NULL in the IN value list. Therefore, specifying any
predicate condition eliminates any instances of that field that are NULL. The only way to include NULL fields in the result
set from a predicate condition is to use the IS NULL predicate. This is shown in the following example:

SELECT FavoriteColors FROM Sample.Person
WHERE FavoriteColors = $LISTBUILD('Red') OR FavoriteColors IS NULL

Collation
A predicate uses the collation type defined for the field. By default, string data type fields are defined with SQLUPPER
collation, which is not case-sensitive. The “Collation” chapter of Using InterSystems SQL provides details on defining the
string collation default for the current namespace and specifying a non-default field collation type when defining a
field/property.

If you specify a collation type in a query, you must specify it on both sides of the comparison. Specifying a collation type
can affect index usage; for further details, refer to Index Collation in the “Defining and Building Indices” chapter of the
SQL Optimization Guide.

Certain predicate comparisons can involve substrings embedded within a string: the Contains operator ([), the %MATCHES
predicate, and the %PATTERN predicate. These predicates always uses EXACT collation, and are therefore always case-
sensitive. Because some collations append a blank space to a string, these predicates could not perform their function if
they followed the field’s default collation. However, the LIKE predicate can use wildcards to match substrings embedded
within a string. LIKE uses the field’s default collation, which by default is not case-sensitive.

Compound Predicates
A predicate is the simplest version of a condition expression; a condition expression can consist of one or more predicates.
You can link multiple predicates together with the AND and OR logical operators. You can invert the sense of a predicate

328 InterSystems SQL Reference

SQL Predicate Conditions

by placing the NOT unary operator before the predicate. The NOT unary operator only affects the predicate that immediately
follows it. Predicates are evaluated in strict left-to-right order. You can use parentheses to group predicates. You can place
a NOT unary operator before the opening parentheses to invert the sense of a group of predicates. Spaces are not required
before or after parentheses, or between parentheses and logical operators.

The IN and %INLIST predicates are functionally equivalent to multiple OR equality predicates. The following examples
are equivalent:

 SET q1="SELECT Name,Home_State FROM Sample.Person "
 SET q2="WHERE Home_State='MA' OR Home_State='VT' OR Home_State='NH'"
 SET myquery=q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()

 SET q1="SELECT Name,Home_State FROM Sample.Person "
 SET q2="WHERE Home_State IN('MA','VT','NH')"
 SET myquery=q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()

 SET list=$LISTBUILD("MA","VT","NH")
 SET q1="SELECT Name,Home_State FROM Sample.Person "
 SET q2="WHERE Home_State %INLIST(?)"
 SET myquery=q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute(list)
 DO rset.%Display()

The FOR SOME %ELEMENT predicate can contain logical operators, as well as be linked to other predicates using
logical operators. This is shown in the following example:

SELECT Name,FavoriteColors FROM Sample.Person
WHERE FOR SOME %ELEMENT(FavoriteColors)(%VALUE='Red' OR %Value='White'
 OR %Value %STARTSWITH 'B')
 AND (Name BETWEEN 'A' AND 'F' OR Name %STARTSWITH 'S')
ORDER BY Name

Note the parentheses around (Name BETWEEN 'A' AND 'F' OR Name %STARTSWITH 'S'); without these grouping
parentheses, the FOR SOME %ELEMENT condition would not apply to Name %STARTSWITH 'S'.

Collection Predicates with OR
FOR SOME %ELEMENT is a Collection Predicate. The use of this predicate with the OR logical operator is restricted,
as follows. The OR logical operator cannot be used to associate a Collection Predicate that references a table field with a
predicate that a references a field in a different table. For example,

WHERE FOR SOME %ELEMENT(t1.FavoriteColors) (%VALUE='purple')
OR t2.Age < 65

Because this restriction depends on how the optimizer uses indices, SQL may only enforce this restriction when indices
are added to a table. It is strongly suggested that this type of logic be avoided in all queries.

Predicates and %SelectMode
All predicates perform their comparisons using Logical (internal storage) data values. However, some predicates can perform
format mode conversion on the predicate value(s), converting it from ODBC or Display format to Logical format. Other
predicates cannot perform format mode conversion, and therefore must always specify the predicate value in Logical format.

Predicates that perform format mode conversion determine whether conversion is required from the data type (such as
DATE or %List) of the matching field and determine the type of conversion from the %SelectMode setting. If %SelectMode

InterSystems SQL Reference 329

Overview of Predicates

is set to a value other than Logical format (such as %SelectMode=ODBC or %SelectMode=Display) the predicate value(s)
must be specified in the correct ODBC or Display format.

• Equality predicates perform format mode conversion. InterSystems IRIS converts the predicate value to Logical format,
then matches it with the field values. If %SelectMode is set to a mode other than Logical format, the predicate value(s)
must be specified in the %SelectMode format (ODBC or Display) for data types whose display value differs from the
Logical storage value. For example, dates, times, and %List-formatted strings. Because InterSystems IRIS automatically
performs this format conversion, specifying this type of predicate value in Logical format commonly results in an
SQLCODE error. For example, SQLCODE -146 “Unable to convert date input to a valid logical date value” (InterSystems
IRIS assumes the supplied Logical value is an ODBC or Display value and attempts to convert it to a Logical value
— which doesn’t succeed.) Affected predicates include =, <, >, BETWEEN, and IN.

• Pattern predicates cannot perform format mode conversion, because InterSystems IRIS cannot meaningfully convert
the predicate value. Therefore, the predicate value must be specified in Logical format, regardless of the %SelectMode
setting. Specifying predicate value(s) in ODBC or Display format commonly results in no data matches or unintended
data matches. Affected predicates include %INLIST, LIKE, %MATCHES, %PATTERN, %STARTSWITH, [(the
Contains operator), and] (the Follows operator).

You can use the %INTERNAL, %EXTERNAL, or %ODBCOUT format-transform functions to transform the field that
the predicate operates upon. This allows you to specify the predicate value in another format. For example, WHERE
%ODBCOut(DOB) %STARTSWITH '1955-'. However, specifying a format-transform function on a matching field prevents
the use of an index for the field. This can have a significant negative effect upon performance.

In the following Dynamic SQL example, the BETWEEN predicate (an equality predicate) must specify dates in %Select-
Mode=1 (ODBC) format:

 SET q1 = "SELECT Name,DOB FROM Sample.Person "
 SET q2 = "WHERE DOB BETWEEN '1950-01-01' AND '1960-01-01'"
 SET myquery = q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

In the following Dynamic SQL examples, the %STARTSWITH predicate (a pattern predicate) cannot perform format
mode conversion. The first example attempts to specify a %STARTSWITH for dates in the %SelectMode=ODBC format
for years in the 1950s. However, because the table does not contain birth dates that begin with $HOROLOG 195 (dates in
the year 1894), no rows are selected:

 SET q1 = "SELECT Name,DOB FROM Sample.Person "
 SET q2 = "WHERE DOB %STARTSWITH '195'"
 SET myquery = q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

The following example uses the %ODBCOut format-transform function on the matching DOB field so that
%STARTSWITH can be used to select for years in the 1950s in ODBC format. However, note that this usage prevents
the use of an index on the DOB field.

330 InterSystems SQL Reference

SQL Predicate Conditions

 SET q1 = "SELECT Name,DOB FROM Sample.Person "
 SET q2 = "WHERE %ODBCOut(DOB) %STARTSWITH '195'"
 SET myquery = q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

In the following example the %STARTSWITH predicate specifies a %STARTSWITH for dates in Logical (internal)
format. Rows with DOB Logical values beginning with 41 (dates from April 4 1953 ($HOROLOG 41000) through
December 28 1955 ($HOROLOG 41999)) are selected. The DOB field index is used:

 SET q1 = "SELECT Name,DOB FROM Sample.Person "
 SET q2 = "WHERE DOB %STARTSWITH '41'"
 SET myquery = q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

Predicates and PosixTime,Timestamp, and Date
Equality predicate comparisons automatically perform conversion between these different date and datetime representations.
This conversion is independent of %SelectMode. Therefore, the following are all meaningful comparison predicates:

WHERE MyPosixField = MyTimestampField
WHERE MyPosixField < CURRENT_TIMESTAMP
WHERE MyPosixField BETWEEN DATEADD('month',-1,CURRENT_TIMESTAMP) AND $HOROLOG
WHERE MyPosixField BETWEEN DATEADD('day',-1,CURRENT_DATE) AND LAST_DAY(CURRENT_DATE)

Pattern predicate comparisons, such as %STARTSWITH, do not perform conversion between different date and datetime
representations. The operate on the actual stored data value.

Suppress Literal Substitution
You can suppress literal substitution during compile pre-parsing by enclosing the predicate argument in double parentheses.
For example, LIKE(('abc%')). This may improve query performance by improving overall selectivity and/or subscript
bounding selectivity. However, it should be avoided when the same query is called multiple times with different values,
as it will result in the creation of a separate cached query for each query call.

Example
The following example uses a variety of conditions in the WHERE clause of a query:

SELECT PurchaseOrder FROM MyTable
 WHERE OrderTotal >= 1000
 AND ItemName %STARTSWITH :partname
 AND AnnualOrders BETWEEN 50000 AND 100000
 AND City LIKE 'Ch%'
 AND CustomerNumber IN
 (SELECT CustNum FROM TheTop100
 WHERE TheTop100.City='Boston')
 AND :minorder > SOME
 (SELECT OrderTotal FROM Orders
 WHERE Orders.Customer = :cust)

See Also
• SELECT statement, HAVING clause, WHERE clause

• CREATE TRIGGER

InterSystems SQL Reference 331

Overview of Predicates

ALL
Matches a value with all corresponding values from a subquery.

scalar-expression comparison-operator ALL (subquery)

Arguments

A scalar expression (most commonly a data column) whose values
are being compared with the result set generated by the subquery.

scalar-expression

One of the following comparison operators: = (equal to), <> or !=
(not equal to), < (less than), <= (less than or equal to), > (greater
than), >= (greater than or equal to), [(contains), or] (follows).

comparison-operator

A subquery, enclosed in parentheses, which returns a result set
from a single column that is used for the comparison with
scalar-expression.

subquery

Description
The ALL keyword works in conjunction with a comparison operator to create a predicate (a quantified comparison condition)
that is true if the value of a scalar expression matches all of the corresponding values retrieved by the subquery. The ALL
predicate compares a single scalar-expression item with a single subquery SELECT item. A subquery with more than one
select item generates an SQLCODE -10 error.

ALL can be used wherever a predicate condition can be specified, as described in the Overview of Predicates page of this
manual.

Where applicable, the system automatically applies Set-Valued Subquery Optimization (SVSO) to an ALL subquery. For
details on this optimization, and using the %NOSVSO keyword to override it, refer to “Query Optimization Options” on
the FROM clause reference page.

Examples
The following example selects those ages in the Person database that are less than all of the ages in the Employee database:

SELECT DISTINCT Age FROM Sample.Person
WHERE Age < ALL
 (SELECT Age FROM Sample.Employee)
ORDER BY Age

The following example selects those names in the Person database that are longer or shorter than all of the names in the
Employee database:

SELECT $LENGTH(Name) AS NameLength,Name FROM Sample.Person
WHERE $LENGTH(Name) > ALL
 (SELECT $LENGTH(Name) FROM Sample.Employee)
OR $LENGTH(Name) < ALL
 (SELECT $LENGTH(Name) FROM Sample.Employee)

The following example returns a list of states west of the Mississippi River, all of which states do not contain an employee
with the title of Manager or Director:

SELECT DISTINCT State
FROM Sample.USZipCode
WHERE Longitude < -93
 AND State != ALL
 (SELECT Home_State FROM Sample.Employee
 WHERE Title ['Manager' OR Title ['Director')
ORDER BY State

332 InterSystems SQL Reference

SQL Predicate Conditions

See Also
• SELECT statement HAVING clause WHERE clause

• ANY SOME

• Overview of Predicates

InterSystems SQL Reference 333

ALL

ANY
Matches a value with at least one matching value from a subquery.

scalar-expression comparison-operator ANY (subquery)

Arguments

A scalar expression (most commonly a data column) whose values
are being compared with the result set generated by subquery.

scalar-expression

One of the following comparison operators: = (equal to), <> or != (not
equal to), < (less than), <= (less than or equal to), > (greater than),
>= (greater than or equal to), [(contains), or] (follows).

comparison-operator

A subquery, enclosed in parentheses, which returns a result set that
is used for the comparison with scalar-expression.

subquery

Description
The ANY keyword works in conjunction with a comparison operator to create a predicate (a quantified comparison condition)
that is true if the value of a scalar expression matches one or more of the corresponding values retrieved by the subquery.
The ANY predicate compares a single scalar-expression item with a single subquery SELECT item. A subquery with
more than one select item generates an SQLCODE -10 error.

Note: The ANY and SOME keywords are synonyms.

ANY can be used wherever a predicate condition can be specified, as described in the Overview of Predicates page of this
manual.

Where applicable, the system automatically applies Set-Valued Subquery Optimization (SVSO) to an ANY subquery. For
details on this optimization, and using the %NOSVSO keyword to override it, refer to “Query Optimization Options” on
the FROM clause reference page.

Example
The following example selects those employees with salaries greater than $75,000 that live in any of the states west of the
Mississippi River:

SELECT Name,Salary,Home_State FROM Sample.Employee
WHERE Salary > 75000
AND Home_State = ANY
 (SELECT State FROM Sample.USZipCode
 WHERE Longitude < -93)
ORDER BY Home_State

See Also
• SELECT statement HAVING clause WHERE clause

• ALL SOME

• Overview of Predicates

334 InterSystems SQL Reference

SQL Predicate Conditions

BETWEEN
Matches a value to a range of values.

scalar-expression BETWEEN lowval AND highval

Arguments

A scalar expression (most commonly a data column) whose values
are being compared with the range of values between lowval and
highval (inclusive).

scalar-expression

Expression that resolves to the low collation sequence value
specifying the beginning of a range of values to match with each value
in scalar-expression.

lowval

Expression that resolves to the high collation sequence value
specifying the end of a range of values to match with each value in
scalar-expression.

highval

Description
The BETWEEN predicate allows you to select those data values that are in the range specified by lowval and highval. This
range is inclusive of the lowval and highval values themselves. This is equivalent to a paired greater than or equal to oper-
ator and a less than or equal to operator. This comparison is shown in the following example:

SELECT Name,Age FROM Sample.Person
WHERE Age BETWEEN 18 AND 21
ORDER BY Age

This returns all the records in the Sample.Person table with an Age value between 18 and 21, inclusive of those values.
Note that you must specify the BETWEEN values in ascending order; a predicate such as BETWEEN 21 AND 18 would
return the null string. If none of the scalar expression values fall within the specified range, BETWEEN returns the null
string.

Like most predicates, BETWEEN can be inverted using the NOT logical operator. Neither BETWEEN nor NOT
BETWEEN can be used to return NULL fields. To return NULL fields use IS NULL. NOT BETWEEN is shown in the
following example:

SELECT Name,Age FROM Sample.Person
WHERE Age NOT BETWEEN 20 AND 55
ORDER BY Age

This returns all the records in the Sample.Person table with an Age value less than 20 or greater than 55, exclusive of those
values.

BETWEEN can be used wherever a predicate condition can be specified, as described in the Overview of Predicates page
of this manual.

Collation Types

BETWEEN is commonly used for a range of numeric values, which collate in numeric order. However, BETWEEN can
be used for a collation sequence range of values of any data type.

BETWEEN uses the same collation type as the column it is matching against. By default, string data types collate as
SQLUPPER, which is not case-sensitive. The “Collation” chapter of Using InterSystems SQL provides details on defining
the string collation default for the current namespace and specifying a non-default field collation type when defining a
field/property.

InterSystems SQL Reference 335

BETWEEN

If your query assigns a different collation type to the column, you must also apply this collation type to the BETWEEN
substring. This is shown in the following examples:

In the following example, BETWEEN uses the fields’ default letter case collation, SQLUPPER, which is not case-sensitive.
It returns records where Name is higher in alphabetical order than Home_State, and Home_State is higher in alphabetical
order than Home_City:

SELECT Name,Home_State,Home_City
FROM Sample.Person
WHERE Home_State BETWEEN Name AND Home_City
ORDER BY Home_State

In the following example, BETWEEN string comparisons are not case-sensitive, because the Home_State field is defined
as SQLUPPER. This means that the lowval and highval are functionally identical, selecting 'MA' in any lettercase:

SELECT Name,Home_State FROM Sample.Person
WHERE Home_State
 BETWEEN 'MA' AND 'Ma'
ORDER BY Home_State

In the following example, the %SQLSTRING collation function causes BETWEEN string comparisons to be case-sensitive.
It selects those records with Home_State values of 'MA' through 'Ma', which in this data set includes 'MA', 'MD', 'ME',
'MO', 'MS', and 'MT':

SELECT Name,Home_State FROM Sample.Person
WHERE %SQLSTRING(Home_State)
 BETWEEN %SQLSTRING('MA') AND %SQLSTRING('Ma')
ORDER BY Home_State

In the following example, the BETWEEN string comparison is not case-sensitive and ignores blank spaces and punctuation
marks:

SELECT Name FROM Sample.Person
WHERE %STRING(Name) BETWEEN %SQLSTRING('OA') AND %SQLSTRING('OZ')
ORDER BY Name

Refer to %SQLUPPER for further information on case transformation functions.

The following example shows BETWEEN used in an INNER JOIN operation ON clause. It is performing a string compar-
ison which is not case-sensitive:

SELECT P.Name AS PersonName,E.Name AS EmpName
FROM Sample.Person AS P INNER JOIN Sample.Employee AS E
ON P.Name BETWEEN 'an' AND 'ch' AND P.Name=E.Name

%SelectMode

If %SelectMode is set to a value other than Logical format, the BETWEEN predicate values must be specified in the
%SelectMode format (ODBC or Display). This applies mainly to dates, times, and InterSystems IRIS format lists (%List).
Specifying predicate value(s) in Logical format commonly results in an SQLCODE error. For example, SQLCODE -146
“Unable to convert date input to a valid logical date value”.

In the following Dynamic SQL example, the BETWEEN predicate must specify dates in %SelectMode=1 (ODBC) format:

 SET q1 = "SELECT Name,DOB FROM Sample.Person "
 SET q2 = "WHERE DOB BETWEEN '1950-01-01' AND '1960-01-01'"
 SET myquery = q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

336 InterSystems SQL Reference

SQL Predicate Conditions

See Also
• SELECT statement, HAVING clause, WHERE clause

• Overview of Predicates

• “Collation” chapter in Using InterSystems SQL

InterSystems SQL Reference 337

BETWEEN

EXISTS
Checks a table for the existence of at least one corresponding row.

EXISTS select-statement

Arguments

A simple query, usually containing a condition expression.select-statement

Description
The EXISTS predicate tests a specified table, typically for existence of at least a row. Since the SELECT statement fol-
lowing the EXISTS is being checked for containing something, the clause is often of the form:

EXISTS (SELECT... FROM... WHERE...)

where a typical statement might be:

SELECT name
 FROM Table_A
 WHERE EXISTS
 (SELECT *
 FROM Table_B
 WHERE Table_B.Number = Table_A.Number)

In this example, the predicate tests for the existence of one or more rows specified by the subquery.

Note that the test must occur on a SELECT statement (not on a UNION).

The NOT EXISTS clause tests for the non-existence of a row in a table, as shown in the following example:

SELECT EmployeeName,Age
 FROM Employees
 WHERE NOT EXISTS (SELECT * FROM BonusTable
 WHERE NOT (BonusTable.Result = 'Positive'
 AND Employees.EmployeeNum = BonusTable.EmployeeNum))

EXISTS can be used wherever a predicate condition can be specified, as described in the Overview of Predicates page of
this manual.

Where applicable, the system automatically applies Set-Valued Subquery Optimization (SVSO) to an EXISTS or NOT
EXISTS subquery. For details on this optimization, and using the %NOSVSO keyword to override it, refer to “Query
Optimization Options” on the FROM clause reference page.

See Also
• SELECT statement HAVING clause WHERE clause

• Overview of Predicates

338 InterSystems SQL Reference

SQL Predicate Conditions

%FIND
Matches a value to a set of generated values with bitmap chunks iteration.

scalar-expression %FIND valueset [SIZE ((nn))]

Arguments

A scalar expression (most commonly the RowId field of a table) whose
values are being compared with valueset.

scalar-expression

An object reference (oref) to a user-defined object that implements
bitmap chunks iteration methods and the ContainsItem() method.
This method takes a set of data values and returns a boolean when
there is a match with a value in scalar-expression.

valueset

Optional — An order-of-magnitude integer (10, 100, 1000, etc.) used
for query optimization.

SIZE ((nn))

Description
The %FIND predicate allows you to filter a result set by selecting those data values that match the values specified in
valueset, iterating through values in a sequence of bitmap chunks. This match is successful when a scalar-expression value
matches a value in valueset. If the valueset values do not match any of the scalar expression values, %FIND returns the
null string. This match is always performed on the logical (internal storage) data value, regardless of the display mode.

%FIND, like the other comparison conditions, is used in the WHERE clause or the HAVING clause of a SELECT
statement.

%FIND enables filtering of field values using an abstract, programmatically specified set of matching values. Specifically,
it enables filtering of RowId field values using an abstract, programmatically specified bitmap, where valueset behaves
similar to the subscript layer of a bitmap index.

The user-defined class is derived from the abstract class %SQL.AbstractFind. this abstract class defines the ContainsItem()
boolean method. The ContainsItem() method matches the scalar-expression values to the valueset values.

Iteration through values in a sequence of bitmap chunks is performed using the following three methods:

• GetChunk(c), which returns the bitmap chunk with chunk number c.

• NextChunk(.c), which returns the first bitmap chunk with chunk number > c.

• PreviousChunk(.c), which returns the first bitmap chunk with chunk number < c.

Refer to %SQL.AbstractFind for further details concerning these four methods.

Collation Types

%FIND uses the same collation type as the column it is matched against. By default, string data type fields are defined
with SQLUPPER collation, which is not case-sensitive. The “Collation” chapter of Using InterSystems SQL provides
details on defining the string collation default for the current namespace and specifying a non-default field collation type
when defining a field/property. If you assign a different collation type to the column, you must also apply this collation
type to the %FIND substring. Refer to %SQLUPPER for further information on case transformation functions.

SIZE Clause

The optional %FIND SIZE clause provides the integer nn, which specifies an order-of-magnitude estimate of the number
of values in valueset. InterSystems IRIS uses this order-of-magnitude estimate to determine the optimal query plan. Specify

InterSystems SQL Reference 339

%FIND

nn as one of the following literals: 10, 100, 1000, 10000, etc. Because nn must be available as a constant value at compile
time, it must be specified as a literal in all SQL code. Note that nesting parentheses must be specified as shown for all SQL,
with the exception of Embedded SQL.

%FIND and %INSET Compared

• %INSET is the simplest and most general interface. It supports the ContainsItem() method.

• %FIND supports iteration over bitmap chunks using a bitmap index. It emulates the functionality of the ObjectScript
$ORDER function, supporting NextChunk(), PreviousChunk(), and GetChunk() iteration methods, as well as the
ContainsItem() method.

•

See Also
• SELECT statement HAVING clause WHERE clause

• %INSET predicate

• Overview of Predicates

• SEARCH_INDEX function

340 InterSystems SQL Reference

SQL Predicate Conditions

FOR SOME
Determines whether to return a record based on a condition test of field values.

FOR SOME (table [AS t-alias]) (fieldcondition)

Arguments

table can be a single table or a comma-separated list of tables. The
enclosing parentheses are mandatory.

table

Optional — An alias for the preceding table name. An alias must be
a valid identifier; it can be a delimited identifier. For further details
see the “Identifiers” chapter of Using InterSystems SQL. The AS
keyword is optional.

AS t-alias

fieldcondition specifies one or more condition expressions referencing
one or more fields. Thefieldcondition is enclosed with parentheses.
You can specify multiple condition expressions within fieldcondition
using AND (&) and OR (!) logical operators.

fieldcondition

Description
The FOR SOME predicate allows you to determine whether or not to return a record based on a boolean condition test of
the values of one or more fields in a table. If fieldcondition evaluates as true, the record is returned. If fieldcondition evaluates
as false, the record is not returned.

FOR SOME can be used wherever a predicate condition can be specified, as described in the Overview of Predicates page
of this manual.

Delimiting parentheses are mandatory for the table (and its optional t-alias) argument. Delimiting parentheses are also
mandatory for the fieldcondition argument. Whitespace is permitted, but not required, between these two sets of parentheses.

Commonly, FOR SOME is used to determine whether to return a record from a table based on the contents of a record in
another table. FOR SOME can also be used to determine whether to return a record from a table based on the contents of
a record in the same table. In this latter case, either all records are returned or no records are returned.

In the following example, FOR SOME returns all records in the Sample.Person table in which its Name field value matches
the Name field value in the Sample.Employee table:

SELECT Name,COUNT(Name) AS NameCount
FROM Sample.Person AS p
WHERE FOR SOME (Sample.Employee AS e)(e.Name=p.Name)
ORDER BY Name

In the following example, FOR SOME returns records in the Sample.Person table based on a boolean test of the same
table. This program returns all Sample.Person records if at least one record has an Age value greater than 65. Otherwise,
it returns no records. Because at least one record in Sample.Person has an Age field value greater than 65, all Sample.Person
records are returned:

SELECT Name,Age,COUNT(Name) AS NameCount
FROM Sample.Person
WHERE FOR SOME (Sample.Person)(Age>65)
ORDER BY Age

Like most predicates, FOR SOME can be inverted using the NOT logical operator, as shown in the following example:

InterSystems SQL Reference 341

FOR SOME

SELECT Name,Age,COUNT(Name) AS NameCount
FROM Sample.Person
WHERE NOT FOR SOME (Sample.Person)(Age>65)
ORDER BY Age

Compound Conditions

A fieldcondition can contain more than one condition expression. The set of conditions is enclosed in parentheses. Multiple
conditions are specified with the logical operators AND and OR, which can also be specified using the & and ! symbols.
A logical operator may be followed by the NOT unary operator. By default, conditions are evaluated in left-to-right order.
You can specify a different order of evaluation by grouping multiple conditions using parentheses.

SELECT Name,COUNT(Name) AS NameCount
FROM Sample.Person AS p
WHERE FOR SOME (Sample.Employee AS e)(e.Name=p.Name AND p.Name %STARTSWITH 'A')
ORDER BY Name

SELECT Name,COUNT(Name) AS NameCount
FROM Sample.Person AS p
WHERE FOR SOME (Sample.Employee AS e)(e.Name=p.Name OR p.Name %STARTSWITH 'A')
ORDER BY Name

In the following example, FOR SOME returns all records in the Sample.Person table in which its Name field value matches
the Name field value in the Sample.Employee table, and their residence (Home_State) is in the same state as their office
(Office_State):

SELECT Name,Home_State,COUNT(Name) AS NameCount
FROM Sample.Person AS p
WHERE FOR SOME (Sample.Employee AS e)(p.Name=e.Name AND p.Home_State=e.Office_State)
ORDER BY Name

Multiple Tables

You can specify multiple tables as a comma-separated list before the fieldcondition. The condition that determines whether
to return records may reference the table from which data is being selected, or may reference field values in another table.
Table aliases are usually required to associate each specified field with its table.

In the following example, all records are returned if there is at least one Name in the Sample.Person table that is also found
in the Sample.Employee table. Because this condition is true for at least one record, all Sample.Person records are returned:

SELECT Name AS PersonName,Age,COUNT(Name) AS NameCount
FROM Sample.Person
WHERE FOR SOME (Sample.Employee AS e,Sample.Person AS p) (e.Name=p.Name)
ORDER BY Name

In the following example, all records are returned if there is at least one Name in the Sample.Person table that is also found
in the Sample.Company table. Because names of persons and names of companies (in this data set) are never the same, this
condition is not true for any record. Therefore, no Sample.Person records are returned:

SELECT Name AS PersonName,Age,COUNT(Name) AS NameCount
FROM Sample.Person
WHERE FOR SOME (Sample.Company AS c,Sample.Person AS p) (c.Name=p.Name)
ORDER BY Name

See Also
• SELECT statement, HAVING clause, WHERE clause

• Overview of Predicates

• FOR SOME %ELEMENT predicate

342 InterSystems SQL Reference

SQL Predicate Conditions

FOR SOME %ELEMENT
Matches list element values or the number of list elements with a predicate.

FOR SOME %ELEMENT(field) [[AS] e-alias] (predicate)

Arguments

A scalar expression (most commonly a data column) whose elements
are being compared with predicate.

field

Optional — An element alias used to qualify %KEY or %VALUE within
the predicate. Commonly, this alias is used when the predicate
contains a nested FOR SOME %ELEMENT condition.The alias must
be a valid identifier. For further details see the “Identifiers” chapter of
Using InterSystems SQL. The AS keyword is optional.

AS e-alias

A predicate condition, enclosed in parentheses. Within this condition
use %VALUE and/or %KEY to determine what the condition is
matching. %VALUE matches the element value (%VALUE=’Red’).
%KEY matches the minimum number of elements (%KEY=2).Within
this condition, %VALUE and %KEY may be optionally qualified if you
have specified an e-alias. This predicate can consist of multiple
condition expressions with AND and OR logical operators.

(predicate)

Description
The FOR SOME %ELEMENT predicate matches the list elements in field with the specified predicate. The SOME
keyword specifies that at least one of the elements in the field must satisfy the specified predicate clause.

The predicate clause must contain either the %VALUE or the %KEY keyword, followed by a predicate condition. These
keywords are not case-sensitive.

The use of %VALUE and %KEY is explained in the following examples:

• (%VALUE=’Red’) matches all field values that contain the value Red as one of their list elements. The field may only
contain the single element Red, or it may contain multiple elements, one of which is the element Red.

• (%KEY=2) matches all field values that contain at least 2 elements. The field may contain exactly two elements or it
may contain more than two elements. The %KEY value must be a positive integer. (%KEY=0) does not match any
field values.

FOR SOME %ELEMENT cannot be used to match a field that is NULL.

The predicate clause can use any predicate condition, not just the equality condition. The following are some examples of
predicate clauses:

(%VALUE='Red')
(%VALUE > 21)
(%VALUE %STARTSWITH 'R')
(%VALUE ['e')
(%VALUE IN ('Red','Blue')
(%VALUE IS NOT NULL)
(%KEY=3)
(%KEY > 1)
(%KEY IS NOT NULL)

For performance reasons, the predicate %STARTSWITH 'abc' is preferable to the equivalent predicate LIKE 'abc%'.

InterSystems SQL Reference 343

FOR SOME %ELEMENT

You can specify multiple predicate conditions using AND, OR, and NOT logical operators. InterSystems IRIS applies the
combined predicate conditions to each element. Therefore, it is not meaningful to apply two %VALUE or two %KEY
predicates using an AND test.

For example, using FOR SOME %ELEMENT to match a field containing the values Red, Green, Red Green, Black Red,
Green Yellow Red, Green Black, Yellow, or Black Yellow:

• (%VALUE='Red') matches any field containing the element Red: Red, Red Green, Black Red, and Red Yellow Green.

• (%VALUE='Red' OR %VALUE='Green') matches any field containing either element (or both, in any order): Red,
Green, Red Green, Black Red, Green Yellow Red, Green Black. This is functionally identical to (%VALUE
IN('Red','Green')).

• (%VALUE='Red' AND %VALUE='Green') matches no field values because it matches each element against both
Red and Green, and no element can have the value Red and the value Green. This predicate does not match the two-
element value Red Green.

• (%VALUE='Red' AND %KEY=2) matches Red Green, Black Red, Green Yellow Red.

• (%VALUE='Red' OR %KEY=2) matches Red, Red Green, Black Red, Green Yellow Red, Green Black, Black Yellow.

FOR SOME %ELEMENT is a collection predicate. It can be used in most contexts where a predicate condition can be
specified, as described in the Overview of Predicates page of this manual. It is subject to the following restrictions:

• You cannot use FOR SOME %ELEMENT in a HAVING clause.

• You cannot use FOR SOME %ELEMENT as a predicate that selects fields for a JOIN operation.

• You cannot associate FOR SOME %ELEMENT with another predicate condition using the OR logical operator if
the two predicates reference fields in different tables. For example:

WHERE FOR SOME %ELEMENT(t1.FavoriteColors) (%VALUE='purple') OR t2.Age < 65

Because this restriction depends on how the optimizer uses indices, SQL may only enforce this restriction when indices
are added to a table. It is strongly suggested that this type of logic be avoided in all queries.

• You cannot use FOR SOME %ELEMENT when querying a sharded table. See Querying the Sharded Cluster in the
chapter “Horizontally Scaling InterSystems IRIS for Data Volume with Sharding” in the Scalability Guide.

Collection Index

An important use of FOR SOME %ELEMENT is to select elements using a collection index. If the appropriate KEYS
or ELEMENTS index is defined for field, InterSystems IRIS uses this index rather than directly referencing the field value
elements.

If the following collection index is defined:

 INDEX fcIDX1 ON FavoriteColors(ELEMENTS);

The following query uses this index:

SELECT Name,FavoriteColors FROM Sample.Person
WHERE FOR SOME %ELEMENT(FavoriteColors) (%VALUE='Red')

If the following collection index is defined:

 INDEX fcIDX2 ON FavoriteColors(KEYS) [Type = bitmap];

The following query uses this index:

SELECT Name,FavoriteColors FROM Sample.Person
WHERE FOR SOME %ELEMENT(FavoriteColors) (%KEY=2)

344 InterSystems SQL Reference

SQL Predicate Conditions

For further details on FOR SOME %ELEMENT with collection indices, refer to Collection Indexing and Querying
Collections through SQL in the “Querying the Database” chapter of Using InterSystems SQL.

Examples
The following example uses FOR SOME %ELEMENT to return those rows where the FavoriteColors list contains the
element 'Red':

SELECT Name,FavoriteColors
FROM Sample.Person
WHERE FOR SOME %ELEMENT(FavoriteColors) (%VALUE='Red')

In the following example, the %VALUE predicate contains an IN statement specifying a comma-separated list. This
example returns those rows where the FavoriteColors list contains either the element 'Red' or the element 'Blue' (or both):

SELECT Name,FavoriteColors
FROM Sample.Person
WHERE FOR SOME %ELEMENT(FavoriteColors) (%VALUE IN ('Red','Blue'))

The following example uses a predicate clause with two Contains operators ([). It returns those rows where the Favorite-
Colors list has an element that contains a lowercase 'l' and a lowercase 'e' (the contains operator is case-sensitive). In this
case, the elements 'Blue', 'Yellow', and 'Purple':

SELECT Name,FavoriteColors AS Preferences
FROM Sample.Person
WHERE FOR SOME %ELEMENT(FavoriteColors) AS fc (fc.%VALUE ['l' AND fc.%VALUE ['e')

This example also demonstrates how an element alias (e-alias) is used.

The following Dynamic SQL example uses %KEY to return rows based on the number of elements in FavoriteColors. The
first %Execute() sets %KEY=1, returning all rows that have one or more FavoriteColors elements. The second %Execute()
sets %KEY=2, returning all rows that have two or more FavoriteColors elements:

 SET q1 = "SELECT %ID,Name,FavoriteColors FROM Sample.Person "
 SET q2 = "WHERE FOR SOME %ELEMENT(FavoriteColors) (%KEY=?)"
 SET myquery = q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute(1)
 DO rset.%Display()
 WRITE !,"End of data %KEY 1",!!
 SET rset = tStatement.%Execute(2)
 DO rset.%Display()
 WRITE !,"End of data %KEY 2"

See Also
• SELECT statement, WHERE clause

• Overview of Predicates

• FOR SOME predicate

InterSystems SQL Reference 345

FOR SOME %ELEMENT

IN
Matches a value to items in an unstructured comma-separated list.

scalar-expression IN (item1,item2[,...])

scalar-expression IN (subquery)

Description
The IN predicate is used for matching a value to an unstructured series of items. Typically, it compares column data values
to a comma-separated list of values. IN can perform equality comparisons and subquery comparisons.

Like most predicates, IN can be inverted using the NOT logical operator. Neither IN nor NOT IN can be used to return
NULL fields. To return NULL fields use IS NULL.

IN can be used wherever a predicate condition can be specified, as described in the Overview of Predicates page of this
manual.

Equality Comparison

The IN predicate can serve as shorthand for the use of multiple equality comparisons linked together with the OR operator.
For instance:

SELECT Name, Home_State FROM Sample.Person
WHERE Home_State IN ('ME','NH','VT','MA','RI','CT')

evaluates true if Home_State equals any of the values in the comma-separated list. The listed items can be constants or
expressions.

IN comparisons use the collation type defined for the scalar-expression, regardless of the collation type of the individual
items. By default, string data type fields are defined with SQLUPPER collation, which is not case-sensitive. The “Collation”
chapter of Using InterSystems SQL provides details on defining the string collation default for the current namespace and
specifying a non-default field collation type when defining a field/property.

The following two examples show that collation matching is based on the scalar-expression collation. The Home_State
field is defined with SQLUPPER (not case-sensitive) collation. Therefore, the following example returns NH Home_State
values:

SELECT Name, Home_State FROM Sample.Person
WHERE Home_State IN ('ME','nH','VT')

The following example does not return NH Home_State values:

SELECT Name, Home_State FROM Sample.Person
WHERE %EXACT(Home_State) IN ('ME','nH','VT')

It is not meaningful to include NULL in the list of values. NULL is the absence of a value, and therefore fails all equality
tests. Specifying an IN predicate (or any other predicate) eliminates any instances of the specified field that are NULL.
This is shown in the following incorrect (but executable) example:

SELECT FavoriteColors FROM Sample.Person
WHERE FavoriteColors IN ($LISTBUILD('Red'),$LISTBUILD('Blue'),NULL)
 /* NULL here is meaningless. No FavoriteColor NULL fields returned */

The only way to include a field with NULL in the predicate result set is to specify the IS NULL predicate, as shown in the
following example:

SELECT FavoriteColors FROM Sample.Person
WHERE FavoriteColors IN ($LISTBUILD('Red'),$LISTBUILD('Blue')) OR FavoriteColors IS NULL

346 InterSystems SQL Reference

SQL Predicate Conditions

When dates or times are used for IN predicate equality comparisons, the appropriate data type conversions are automatically
performed. If the WHERE field is type TimeStamp, values of type Date or Time are converted to Timestamp. If the WHERE
field is type Date, values of type TimeStamp or String are converted to Date. If the WHERE field is type Time, values of
type TimeStamp or String are converted to Time.

The following examples both perform the same equality comparisons and return the same data. The DOB field is of data
type Date:

SELECT Name,DOB FROM Sample.Person
WHERE DOB IN ({d '1951-02-02'},{d '1987-02-28'})

SELECT Name,DOB FROM Sample.Person
WHERE DOB IN ({ts '1951-02-02 02:37:00'},{ts '1987-02-28 16:58:10'})

For further details refer to Date and Time Constructs.

%SelectMode

If %SelectMode is set to a value other than Logical format, the IN predicate values must be specified in the %SelectMode
format (ODBC or Display). This applies mainly to dates, times, and InterSystems IRIS format lists (%List). Specifying
predicate values in Logical format commonly results in an SQLCODE error. For example, SQLCODE -146 “Unable to
convert date input to a valid logical date value”.

In the following Dynamic SQL example, the IN predicate must specify dates in %SelectMode=1 (ODBC) format:

 SET q1 = "SELECT Name,DOB FROM Sample.Person "
 SET q2 = "WHERE DOB IN('1956-03-05','1956-04-08','1956-04-18','1956-12-08')"
 SET myquery = q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

Subquery Comparison

You can use the IN predicate with a subquery to test whether a column value (or any other expression) equals any of the
subquery row values. For example:

SELECT Name,Home_State FROM Sample.Person
WHERE Name IN
 (SELECT Name FROM Sample.Employee
 HAVING Salary < 50000)

Note that the subquery must have exactly one select-item in the SELECT list.

The following example uses an IN subquery to return the Employee states that are not Vendor states:

SELECT Home_State
FROM Sample.Employee
WHERE Home_State NOT IN (SELECT Address_State FROM Sample.Vendor)
GROUP BY Home_State

The following example matches a collation function expression to an IN predicate with a subquery:

SELECT Name,Id FROM Sample.Person
WHERE %EXACT(Spouse) NOT IN
 (SELECT Id FROM Sample.Person
 WHERE Age < 65)

An IN cannot specify both a subquery and a comma-separated list of literal values.

Literal Substitution Override

You can override literal substitution during compile pre-parsing by enclosing each IN predicate argument with parentheses.
For example, WHERE Home_State IN (('ME'),('NH'),('VT'),('MA'),('RI'),('CT')). This may improve

InterSystems SQL Reference 347

IN

query performance by improving overall selectivity and/or subscript bounding selectivity. However, it should be avoided
when the same query is called multiple times with different values, as it will result in the creation of a separate cached
query for each query call. For further details, refer to Literal Substitution in the “Cached Queries” chapter of the SQL
Optimization Guide.

IN and %INLIST

Both the IN and %INLIST predicates can be used to supply multiple values to use for OR equality comparisons. The
%INLIST predicate is used for matching a value to the elements of a %List structure. In Dynamic SQL you can supply
the %INLIST predicate values as a single host variable. You must supply the IN predicate values as individual host variables.
Therefore, changing the number of IN predicate values results in the creation of a separate cached query. %INLIST takes
a single predicate value, a %List with multiple elements; changing the number of %List elements does not result in the
creation of a separate cached query. %INLIST also provides an order-of-magnitude SIZE argument that SQL uses to
optimize performance. For these reasons it is often advantageous to use %INLIST($LISTFROMSTRING(val)) rather
than IN(val1,val2,val3,..valn).

%INLIST can perform equality comparisons; it cannot perform subquery comparisons.

For further details, refer to %INLIST.

See Also
• SELECT statement HAVING clause WHERE clause

• %INLIST predicate

• Overview of Predicates

348 InterSystems SQL Reference

SQL Predicate Conditions

%INLIST
Matches a value to the elements in a %List structured list.

scalar-expression %INLIST list [SIZE ((nn))]

Arguments

A scalar expression (most commonly a data column) whose values
are being compared with list elements.

scalar-expression

A %List structure containing one or more elements.list

Optional — An integer specifying an order-of-magnitude estimate of
the number of elements in list. Must be specified as a literal with one
of the following values: 10, 100, 1000, 10000, and so forth.

SIZE ((nn))

Description
The %INLIST predicate is an InterSystems IRIS extension for matching the values of a field with the elements of a list
structure. Both %INLIST and IN allow you to perform such equality comparisons with multiple specified values. %INLIST
specifies these multiple values as the elements of a single list argument. Therefore, %INLIST allows you to vary the
number of values to match without creating a separate cached query.

The optional %INLIST SIZE clause provides the integer nn, which specifies an order-of-magnitude estimate of the number
of list elements in list. InterSystems IRIS uses this order-of-magnitude estimate to determine the optimal query plan. Because
the same cached query is used regardless of the number of elements in list, specifying SIZE allows you to create a cached
query optimized for the anticipated approximate number of elements in list. Changing the SIZE literal creates a separate
cached query. Specify nn as one of the following literals: 10, 100, 1000, 10000, etc. Because nn must be available as a
constant value at compile time, it must be specified as a literal in all SQL code. Note that double parentheses must be
specified as shown for all compiled SQL (Dynamic SQL). Double parentheses are not used with Embedded SQL. For further
details, refer to the “Cached Queries” chapter in SQL Optimization Guide.

%INLIST performs an equality comparison with each of the elements of list. %INLIST comparisons use the collation
type defined for the scalar-expression. Therefore, comparisons of list elements may be case-sensitive or not case-sensitive,
depending on the collation of scalar-expression. By default, string data type fields are defined with SQLUPPER collation,
which is not case-sensitive. The “Collation” chapter of Using InterSystems SQL provides details on defining the string
collation default for the current namespace and specifying a non-default field collation type when defining a field/property.

It is not meaningful to specify NULL as a comparison value. NULL is the absence of a value, and therefore fails all
equality tests. Specifying an %INLIST predicate (or any other predicate) eliminates any instances of the specified field
that are NULL. You must specify the IS NULL predicate to include fields with NULL in the predicate result set.

Like most predicates, %INLIST can be inverted using the NOT logical operator. Neither %INLIST nor NOT %INLIST
can be used to return NULL fields. To return NULL fields use IS NULL.

If the match expression is not in %List format, %INLIST generates an SQLCODE -400 error. For example, if the SqlListType
of the collection property is DELIMITED, the logical value of the list field is not in %List format. For further details on
list structures, see the SQL $LIST function.

%INLIST can be used wherever a predicate condition can be specified, as described in the Overview of Predicates page
of this manual.

For matching a value to an unstructured series of items, such as a comma-separated list of values, use the IN predicate. IN
can perform equality comparisons and subquery comparisons.

InterSystems SQL Reference 349

%INLIST

%SelectMode

The %INLIST predicate does not use the current %SelectMode setting. The elements of list should be specified in Logical
format, regardless of the %SelectMode setting. Attempting to specify list elements in ODBC format or Display format
commonly results in no data matches or unintended data matches.

You can use the %EXTERNAL or %ODBCOUT format-transform functions to transform the scalar-expression field that
the predicate operates upon. This allows you to specify the list elements in Display format or ODBC format. However,
using a format-transform function prevents the use of the index for the field, and can thus have a significant performance
impact.

In the following Dynamic SQL example, the %INLIST predicate specifies a list containing date value elements for the
year 1978 in Logical format, not in %SelectMode=1 (ODBC) format. Dates that correspond to these $HOROLOG format
dates are selected:

 SET bday=$LISTBUILD(50039)
 FOR i=50039:1:50403 {SET bday=bday_$LISTBUILD(i) }
 SET q1 = "SELECT Name,DOB FROM Sample.Person "
 SET q2 = "WHERE DOB %INLIST ?"
 SET myquery = q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute(bday)
 DO rset.%Display()

The following Dynamic SQL example uses the %ODBCOUT format-transform function to transform the DOB field matched
by the predicate. This allows you to specify the %INLIST list elements in ODBC format. However, specifying the format-
transform function prevents the use of an index for DOB field values:

 SET births=$LISTBUILD("1978-01-15","1978-08-22","1978-10-01")
 SET q1 = "SELECT Name,DOB FROM Sample.Person "
 SET q2 = "WHERE %ODBCOUT(DOB) %INLIST ?"
 SET myquery = q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute(births)
 DO rset.%Display()

%INLIST and IN

Both the %INLIST and IN predicates can be used to supply multiple values to use for equality comparisons. The following
Dynamic SQL examples return the same results:

 SET states=$LISTBUILD("VT","NH","ME")
 SET myquery = "SELECT Name,Home_State FROM Sample.Person WHERE Home_State %INLIST ?"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute(states)
 DO rset.%Display()

 SET s1="VT"
 SET s2="NH"
 SET s3="ME"
 SET myquery = "SELECT Name,Home_State FROM Sample.Person WHERE Home_State IN(?,?,?)"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute(s1,s2,s3)
 DO rset.%Display()

However, in Dynamic SQL you can supply the %INLIST predicate values as a single host variable; you must supply the
IN predicate values as individual host variables. Therefore, changing the number of IN predicate values results in the creation
of a separate cached query. Changing the number of %INLIST predicate values does not result in the creation of a separate
cached query. For further details, refer to the “Cached Queries” chapter in SQL Optimization Guide.

350 InterSystems SQL Reference

SQL Predicate Conditions

Examples
The following example matches Home_State column values to the elements of a structured list of northern New England
states:

 SET states=$LISTBUILD("VT","NH","ME")
 SET myquery="SELECT Name,Home_State FROM Sample.Person "_
 "WHERE Home_State %INLIST ?"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute(states)
 DO rset.%Display()

The following two examples show that collation matching is based on the scalar-expression collation. The Home_State
field is defined with SQLUPPER collation which is not case-sensitive. The list in these examples specifies New Hampshire
as “nH”, rather than “NH”. The first example returns NH Home_State values, the second example does not return NH
Home_State values:

 SET states=$LISTBUILD("VT","nH","ME")
 SET myquery="SELECT Name,Home_State FROM Sample.Person "_
 "WHERE Home_State %INLIST ?"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute(states)
 DO rset.%Display()

 SET states=$LISTBUILD("VT","nH","ME")
 SET myquery="SELECT Name,Home_State FROM Sample.Person "_
 "WHERE %EXACT(Home_State) %INLIST ?"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute(states)
 DO rset.%Display()

The following example creates a cached query with a SIZE literal of 10. Specifying SIZE 10 is optimal for this query,
because 10 corresponds in order-of-magnitude to the actual number of elements in the list. Changing the number of elements
in the list does not create a separate cached query. Changing the SIZE literal does create a separate cached query:

 SET states=$LISTBUILD("VT","NH","ME")
 SET myquery="SELECT Name,Home_State FROM Sample.Person "_
 "WHERE Home_State %INLIST ? SIZE ((10))"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute(states)
 DO rset.%Display()

 SET states=$LISTBUILD("VT","nH","ME")
 SET myquery="SELECT Name,Home_State FROM Sample.Person "_
 "WHERE Home_State %INLIST ?"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute(states)
 DO rset.%Display()

The following example creates a cached query with a SIZE literal of 10. Specifying SIZE 10 is optimal for this query,
because 10 corresponds in order-of-magnitude to the actual number of elements in the list. Changing the number of elements
in the list does not create a separate cached query. Changing the SIZE literal does create a separate cached query:

 SET states=$LISTBUILD("VT","NH","ME")
 SET myquery="SELECT Name,Home_State FROM Sample.Person "_
 "WHERE Home_State %INLIST ? SIZE ((10))"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute(states)
 DO rset.%Display()

InterSystems SQL Reference 351

%INLIST

See Also
• SELECT statement, HAVING clause, WHERE clause

• $LISTBUILD function

• IN predicate

• Overview of Predicates

352 InterSystems SQL Reference

SQL Predicate Conditions

%INSET
Matches a value to a set of generated values.

scalar-expression %INSET valueset [SIZE ((nn))]

Arguments

A scalar expression (most commonly the RowId field of a table) whose
values are being compared with valueset.

scalar-expression

An object reference (oref) to a user-defined object that implements
a ContainsItem() method. This method takes a set of data values
and returns a boolean when there is a match with a value in
scalar-expression.

valueset

Optional — An order-of-magnitude integer (10, 100, 1000, etc.) used
for query optimization.

SIZE ((nn))

Description
The %INSET predicate allows you to filter a result set by selecting those data values that match the values specified in
valueset. This match is successful when a scalar-expression value matches a value in valueset. If the valueset values do
not match any of the scalar expression values, %INSET returns the null string. This match is always performed on the
logical (internal storage) data value, regardless of the display mode.

%INSET, like the other comparison conditions, is used in the WHERE clause or the HAVING clause of a SELECT
statement.

%INSET enables filtering of field values using an abstract, programmatically specified set of matching values. Specifically,
it enables filtering of RowId field values using an abstract, programmatically specified temp-file or bitmap index, where
valueset behaves similar to the lowest subscript layer of a bitmap index or a regular index.

The user-defined class is derived from the abstract class %SQL.AbstractFind. this abstract class defines the ContainsItem()
method, which is the only method supported by %INSET. The ContainsItem() method returns the valueset. Refer to
%SQL.AbstractFind for further details.

Collation Types

%INSET uses the same collation type as the column it is matched against. By default, string data type fields are defined
with SQLUPPER collation, which is not case-sensitive. The “Collation” chapter of Using InterSystems SQL provides
details on defining the string collation default for the current namespace and specifying a non-default field collation type
when defining a field/property. If you assign a different collation type to the column, you must also apply this collation
type to the %INSET substring. Refer to %SQLUPPER for further information on case transformation functions.

SIZE Clause

The optional %INSET SIZE clause provides the integer nn, which specifies an order-of-magnitude estimate of the number
of values in valueset. InterSystems IRIS uses this order-of-magnitude estimate to determine the optimal query plan. Specify
nn as one of the following literals: 10, 100, 1000, 10000, etc. Because nn must be available as a constant value at compile
time, it must be specified as a literal in all SQL code. Note that nesting parentheses must be specified as shown for all SQL,
with the exception of Embedded SQL.

%INSET and %FIND Compared

• %INSET is the simplest and most general interface. It supports the ContainsItem() method.

InterSystems SQL Reference 353

%INSET

• %FIND supports iteration over bitmap chunks using a bitmap index. It emulates the functionality of the ObjectScript
$ORDER function, supporting NextChunk(), PreviousChunk(), and GetChunk() iteration methods, as well as the
ContainsItem() method.

•

See Also
• SELECT statement HAVING clause WHERE clause

• %FIND predicate

• Overview of Predicates

354 InterSystems SQL Reference

SQL Predicate Conditions

IS JSON
Determines if a data value is in JSON format.

scalar-expression IS [NOT] JSON [keyword]

Arguments

A scalar expression that is being checked for JSON formatting.scalar-expression

Optional — One of the following: VALUE, SCALAR, ARRAY, or
OBJECT. The default is VALUE.

keyword

Description
The IS JSON predicate determines if a data value is in JSON format. The following example determines if the predicate
is a properly-formatted JSON string, either a JSON object or a JSON array:

 SET q1 = "SELECT TOP 5 Name FROM Sample.Person "
 SET q2 = "WHERE '{""name"":""Fred"",""spouse"":""Wilma""}' IS JSON"
 SET myquery = q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()

IS JSON (with or without the optional VALUE keyword) returns true for any JSON array or JSON object. This includes
an empty JSON array '[]' or an empty JSON object '{}'.

The VALUE keyword and the SCALAR keyword are synonyms.

IS JSON ARRAY returns true for a JSON array oref. IS JSON OBJECT returns true for a JSON object oref. This is
shown in the following examples:

 SET jarray=[1,2,3,5,8,13,21,34]
 WRITE "JSON array: ",jarray,!
 SET myquery = "SELECT TOP 5 Name FROM Sample.Person WHERE ? IS JSON ARRAY"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute(jarray)
 DO rset.%Display()

 SET jarray=[1,2,3,5,8,13,21,34]
 WRITE "JSON array: ",jarray,!
 SET myquery = "SELECT TOP 5 Name FROM Sample.Person WHERE ? IS JSON OBJECT"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute(jarray)
 DO rset.%Display()

 SET jobj={"name":"Fred","spouse":"Wilma"}
 WRITE "JSON object: ",jobj,!
 SET myquery = "SELECT TOP 5 Name FROM Sample.Person WHERE ? IS JSON OBJECT"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute(jobj)
 DO rset.%Display()

For further details, refer to the ObjectScript SET command subsection “JSON Object and JSON Array” .

The IS NOT JSON predicate is one of the few predicates that can be used on a stream field in a WHERE clause. Its
behavior is the same as IS NOT NULL. This is shown in the following example:

InterSystems SQL Reference 355

IS JSON

 SET q1 = "SELECT Title,%OBJECT(Picture) AS PhotoOref FROM Sample.Employee "
 SET q2 = "WHERE Picture IS NOT JSON"
 SET myquery = q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()

IS JSON can be used wherever a predicate condition can be specified, as described in the Overview of Predicates page of
this manual.

See Also
• SELECT statement, HAVING clause, WHERE clause

• JSON_ARRAY, JSON_OBJECT functions

• JSON_ARRAYAGG aggregate function

• Overview of Predicates

356 InterSystems SQL Reference

SQL Predicate Conditions

IS NULL
Determines if a data value is NULL.

scalar-expression IS [NOT] NULL

Description
The IS NULL predicate detects undefined values. You can detect all null values, or all non-null values:

SELECT Name, FavoriteColors FROM Sample.Person
WHERE FavoriteColors IS NULL

SELECT Name, FavoriteColors FROM Sample.Person
WHERE FavoriteColors IS NOT NULL

The IS NULL / IS NOT NULL predicate is one of the few predicates that can be used on a stream field in a WHERE
clause. This is shown in the following example:

SELECT Title,%OBJECT(Picture) AS PhotoOref FROM Sample.Employee
WHERE Picture IS NOT NULL

IS NULL can be used wherever a predicate condition can be specified, as described in the Overview of Predicates page of
this manual.

The IS NULL predicate should not be confused with the SQL ISNULL function.

See Also
• SELECT statement, HAVING clause, WHERE clause

• Overview of Predicates

InterSystems SQL Reference 357

IS NULL

LIKE
Matches a value with a pattern string containing literals and wildcards.

scalar-expression LIKE pattern [ESCAPE char]

Arguments

A scalar expression (most commonly a data column) whose values
are being compared with pattern.

scalar-expression

A quoted string representing the pattern of characters to match with
each value in scalar-expression.The pattern string can contain literal
characters, and the underscore (_) and percent (%) wildcard
characters.

pattern

Optional — A string containing a single character.This char character
can be used in pattern to specify that the character immediately
following it is to be treated as a literal.

ESCAPE char

Description
The LIKE predicate allows you to select those data values that match the character or characters specified in pattern. The
pattern may contain wildcard characters. If pattern does not match any of the scalar expression values, LIKE returns the
null string.

LIKE can be used wherever a predicate condition can be specified, as described in the Overview of Predicates page of this
manual.

The LIKE predicate supports the following wildcards:

Table C–1: LIKE Wildcard Characters

MatchesCharacter

Any single character._

Any sequence of 0 or more characters. (In accordance with the SQL standard, NULL
is not considered a sequence of 0 characters, and is thus not selected by this wildcard.)

%

In Dynamic SQL or Embedded SQL, a pattern can represent wildcard characters and input parameters or input host variables
as concatenated strings, as shown in the Examples section.

Collation Types

The pattern string uses the same collation type as the column it is matching against. By default, string data type fields are
defined with SQLUPPER collation, which is not case-sensitive. The “Collation” chapter of Using InterSystems SQL provides
details on defining the string collation default for the current namespace and specifying a non-default field collation type
when defining a field/property.

If LIKE is applied against a field with the SQLUPPER default collation type, the LIKE clause returns matches that ignore
letter case. You can use the SQLSTRING collation type to perform a LIKE string comparison that is case-sensitive.

The following example returns all names that contain the substring “Ro”. Because LIKE is not case-sensitive, LIKE
'%Ro%' returns Robert, Rogers, deRocca, LaRonga, Brown, Mastroni, and so forth:

SELECT Name FROM Sample.Person
WHERE Name LIKE '%Ro%'

358 InterSystems SQL Reference

SQL Predicate Conditions

Compare this to the Contains operator ([), which uses EXACT (case-sensitive) collation:

SELECT Name FROM Sample.Person
WHERE Name ['Ro'

By using the %SQLSTRING collation type, you can use LIKE to return only those names that contain the case-sensitive
substring “Ro”. It would not return Mastroni or Brown:

SELECT Name FROM Sample.Person
WHERE %SQLSTRING(Name) LIKE '%Ro%'

In the above example, the leading space that %SQLSTRING appended to Name values was handled by the % wildcard. A
more robust example would specify the collation type on both sides of the predicate:

SELECT Name FROM Sample.Person
WHERE %SQLSTRING(Name) LIKE %SQLSTRING('%Ro%')

Refer to %SQLUPPER for further information on case transformation functions.

All Values, Empty String Values, and NULL

If the pattern value is percent (%), LIKE selects all values for the specified field, including empty string values:

SELECT Name,FavoriteColors FROM Sample.Person
WHERE FavoriteColors LIKE '%'

It does not select fields that are NULL.

Specifying a pattern value of empty string returns empty string values.

SELECT Name,FavoriteColors FROM Sample.Person
WHERE FavoriteColors LIKE ''

Specifying a pattern value of NULL is not a meaningful operation. It completes successfully, but returns no values.

SELECT Name,FavoriteColors FROM Sample.Person
WHERE FavoriteColors LIKE NULL

Like most predicates, LIKE can be inverted using the NOT logical operator. Neither LIKE nor NOT LIKE can be used
to return NULL fields. To return NULL fields use IS NULL.

ESCAPE Clause

ESCAPE permits the use of a wildcard character as a literal character within pattern. ESCAPE char, if provided and if it
is a single character, indicates that any character directly following it in pattern is to be understood as a literal character,
rather than a wildcard or formatting character. The following example shows the use of ESCAPE to return values that
contain the string '_SYS':

SELECT * FROM MyTable
WHERE symbol_field LIKE '%_SYS%' ESCAPE '\'

%SelectMode

The LIKE predicate does not use the current %SelectMode setting. A pattern should be specified in Logical format,
regardless of the %SelectMode setting. Attempting to specify a pattern in ODBC format or Display format commonly
results in no data matches or unintended data matches.

You can use the %EXTERNAL or %ODBCOUT format-transform functions to transform the scalar-expression field that
the predicate operates upon. This allows you to specify the pattern in Display format or ODBC format. However, using a
format-transform function prevents the use of the index for the field, and can thus have a significant performance impact.

In the following Dynamic SQL example, the LIKE predicate specifies the date pattern in Logical format, not in %Select-
Mode=1 (ODBC) format. Rows with DOB Logical values beginning with 41 (dates from April 4 1953 ($HOROLOG
41000) through December 28 1955 ($HOROLOG 41999)) are selected:

InterSystems SQL Reference 359

LIKE

 SET q1 = "SELECT Name,DOB FROM Sample.Person "
 SET q2 = "WHERE DOB LIKE '41%'"
 SET myquery = q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

The following Dynamic SQL example uses the %ODBCOUT format-transform function to transform the DOB field matched
by the predicate. This allows you to specify the LIKE pattern in ODBC format. It selects rows with DOB field ODBC
values beginning with 195 (dates within the range of years 1950 through 1959). However, specifying the format-transform
function prevents the use of an index for DOB field values:

 SET q1 = "SELECT Name,DOB FROM Sample.Person "
 SET q2 = "WHERE %ODBCOUT(DOB) LIKE '195%'"
 SET myquery = q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

Literal Substitution Override

You can override literal substitution during compile pre-parsing by enclosing the LIKE predicate argument with double
parentheses. For example, WHERE Name LIKE (('Mc%')) or WHERE Name LIKE (('%son%')). This may improve
query performance by improving overall selectivity and/or subscript bounding selectivity. However, it should be avoided
when the same query is called multiple times with different values, as it will result in the creation of a separate cached
query for each query call.

Examples
The following example uses the WHERE clause to select Name values that contain “son”, including those that begin or
end with “son”. By default, LIKE string comparisons are not case-sensitive:

SELECT %ID,Name FROM Sample.Person
WHERE Name LIKE '%son%'

The following Embedded SQL example returns the same result set as the previous example. Note how the input host variable
(:subname) is specified in the LIKE pattern using the concatenation operator:

 SET subname="son"
 &sql(DECLARE C1 CURSOR FOR SELECT %ID,Name INTO :id,:nameout FROM Sample.Person
 WHERE Name LIKE '%'_:subname_'%')
 &sql(OPEN C1)
 QUIT:(SQLCODE'=0)
 &sql(FETCH C1)
 WHILE (SQLCODE = 0) {
 WRITE id," ",nameout,!
 &sql(FETCH C1) }
 &sql(CLOSE C1)

The following Dynamic SQL example returns the same result set as the previous example. Note how the input parameter
(?) is specified in the LIKE pattern using the concatenation operator:

 SET myquery = "SELECT %ID,Name FROM Sample.Person WHERE Name LIKE '%'_?_'%'"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute("son")
 DO rset.%Display()

The following example uses the WHERE clause to select FavoriteColors values that contain “blue”. The FavoriteColors
field is a %List field; the % wildcards handle the %List formatting characters:

360 InterSystems SQL Reference

SQL Predicate Conditions

SELECT Name,FavoriteColors FROM Sample.Person
WHERE FavoriteColors LIKE '%blue%'

The following example uses a HAVING clause to select records for people whose age starts with a 1 followed by a single
character. It displays the average for all ages and the average for the ages selected by the HAVING clause. It orders the
results by age. All returned values have ages from 10 through 19.

SELECT Name,
 Age,
 AVG(Age) AS AvgAge,
 AVG(Age %AFTERHAVING) AS AvgTeen
FROM Sample.Person
HAVING Age LIKE '1_'
ORDER BY Age

See Also
• SELECT statement HAVING clause WHERE clause

• %MATCHES predicate

• %PATTERN predicate

• Overview of Predicates

InterSystems SQL Reference 361

LIKE

%MATCHES
Matches a value with a pattern string containing literals, wildcards, and ranges.

scalar-expression %MATCHES pattern [ESCAPE char]

Arguments

A scalar expression (most commonly a data column) whose values are
being compared with pattern.

scalar-expression

A quoted string representing the pattern of characters to match with
each value in scalar-expression. The pattern string can contain literal
characters, the question mark (?) and asterisk (%) wildcard characters,
square brackets used to specify allowed values, and the backslash (\)
used to specify that the character immediately following it is to be treated
as a literal. The pattern can also be the empty string or NULL, though
it does not match or return NULL items.

pattern

Optional — A string containing a single character. This char character
can be used in pattern to specify that the character immediately
following it is to be treated as a literal. If not specified, the default escape
character is backslash (\).

ESCAPE char

Description
The %MATCHES predicate is an InterSystems IRIS extension for matching a value to a pattern string. %MATCHES
returns True or False for the match operation. The pattern string can consist of literal characters, wild card characters, and
list or ranges of matching literals.

Pattern matches are case-sensitive. Pattern matching is based on the EXACT value of scalar-expression, not its collation
value. Therefore, a %MATCHES operation is always case-sensitive, even when the collation type of scalar-expression
is not case-sensitive.

%MATCHES supports the following pattern wildcards:

Matches any single character of any type.?

Matches zero or more characters of any type.*

Matches any one of the characters specified in brackets.[abc]

Matches character within the range specified in brackets, inclusive of the specified characters.[a-z]

These ranges match any characters except those specified in brackets.You can use this
syntax to specify no uppercase letters, or no lowercase letters, or no numbers. Only the
specified literal ranges shown are supported.

[^A-Z]

[^a-z]

[^0–9]

Treats the character following as a literal character, rather than as a wildcard. Backslash
is the default escape character; you can specify another character as the escape character
using the optional ESCAPE clause.

\

Like most predicates, %MATCHES can be inverted using the NOT operator: item NOT %MATCHES pattern. Neither
%MATCHES nor NOT %MATCHES can be used to return NULL fields. To return NULL fields use IS NULL.

362 InterSystems SQL Reference

SQL Predicate Conditions

The backslash (\) character is the default escape character. It can be used to specify that a wildcard character is to be used
as a literal match at the specified pattern location. For example, to match a question mark as the first character of a string
specify '\?*'. To match a question mark as the fourth character of a string specify '???\?*'. To match a question mark
anywhere in a string specify '*\?*'. To match a string that consists of only an asterisk character specify '*'. To match
a string that contains at least one asterisk character specify '***'. To match a backslash character anywhere in a string
specify '**'.

%MATCHES can be used wherever a predicate condition can be specified, as described in the Overview of Predicates
page of this manual.

%MATCHES is supported for compatibility with Informix SQL.

%SelectMode

The %MATCHES predicate does not use the current %SelectMode setting. A pattern should be specified in Logical format,
regardless of the %SelectMode setting. Attempting to specify a pattern in ODBC format or Display format commonly
results in no data matches or unintended data matches.

You can use the %EXTERNAL or %ODBCOUT format-transform functions to transform the scalar-expression field that
the predicate operates upon. This allows you to specify the pattern in Display format or ODBC format. However, using a
format-transform function prevents the use of the index for the field, and can thus have a significant performance impact.

In the following Dynamic SQL example, the %MATCHES predicate specifies the date pattern in Logical format, not in
%SelectMode=1 (ODBC) format. Rows with DOB Logical values beginning with 41 (dates from April 4 1953 ($HOROLOG
41000) through December 28 1955 ($HOROLOG 41999)) are selected:

 SET q1 = "SELECT Name,DOB FROM Sample.Person "
 SET q2 = "WHERE DOB %MATCHES '41*'"
 SET myquery = q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

The following Dynamic SQL example uses the %ODBCOUT format-transform function to transform the DOB field matched
by the predicate. This allows you to specify the %MATCHES pattern in ODBC format. It selects rows with DOB field
ODBC values beginning with 195 (dates within the range of years 1950 through 1959). However, specifying the format-
transform function prevents the use of an index for DOB field values:

 SET q1 = "SELECT Name,DOB FROM Sample.Person "
 SET q2 = "WHERE %ODBCOUT(DOB) %MATCHES '195*'"
 SET myquery = q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

Examples
The following example returns all last names that begin with “A”:

SELECT Name FROM Sample.Person
WHERE Name %MATCHES 'A*'

The following example returns all first names that begin with “A”:

SELECT Name FROM Sample.Person
WHERE Name %MATCHES '*,A*'

The following example returns all names that contain the letter “A” (in last name, first name, or middle initial):

InterSystems SQL Reference 363

%MATCHES

SELECT Name FROM Sample.Person
WHERE Name %MATCHES '*A*'

The following example returns all names that do not contain the letters “A”, “a”, “E” or “e”:

SELECT Name FROM Sample.Person
WHERE Name NOT %MATCHES '*[AaEe]*'

The following example returns all five-letter last names with first names that begin with “A” through “D”:

SELECT Name FROM Sample.Person
WHERE Name %MATCHES '?????,[A-D]*'

See Also
• SELECT statement, HAVING clause, WHERE clause

• LIKE predicate

• %PATTERN predicate

• Overview of Predicates

364 InterSystems SQL Reference

SQL Predicate Conditions

%PATTERN
Matches a value with a pattern string containing literals, wildcards, and character type codes.

scalar-expression %PATTERN pattern

Arguments

A scalar expression (most commonly a data column) whose values
are being compared with pattern.

scalar-expression

A quoted string representing the pattern of characters to match with
each value in scalar-expression.The pattern string can contain literal
characters enclosed in double quotes, letter codes that specify types
of characters, and numbers and the period (.) character as wildcard
characters.

pattern

Description
The %PATTERN predicate allows you to match a pattern of character type codes and literals to the data values supplied
by scalar-expression. If pattern matches a complete scalar expression value, this value is returned. If pattern does not fully
match any of the scalar expression values, %PATTERN returns the null string.

%PATERN can be used wherever a predicate condition can be specified, as described in the Overview of Predicates page
of this manual.

%PATTERN uses the same pattern codes as the ObjectScript pattern match operator (the ? operator). A pattern consists
of one or more pairs of a repetition count followed by a value. A repetition count can be an integer, a period (.) meaning
“any number of characters”, or a range specified by using a combination of a period with integers. A value can be either a
character type code letter or a literal string (specified in quotes).

Note that a pattern often consists of multiple repetition/value pairs, because the pattern must exactly match the entire data
value. For this reason, many patterns end with the “.E” pair, which means that the rest of the data value can consist of any
number of characters of any type.

A few simple examples of pattern match pairs:

• 1L means one (and only one) lowercase letter.

• 1"L" means one literal character “L”.

• 1"617" means one literal string “617”.

• .U means any number of uppercase letters.

• .E means any number of printable characters of any type.

• .3A means any number up to three (three or less) letters (either uppercase or lowercase).

• 3.N means three or more numeric digits.

• 3.6N means three to six (inclusive) numeric digits.

Pattern matches are case-sensitive. Pattern matching is based on the EXACT value of scalar-expression, not its collation
value. Therefore, a literal letter specified in a %PATTERN operation is always matched case-sensitive, even when the
collation type of scalar-expression is not case-sensitive.

InterSystems SQL Reference 365

%PATTERN

In Dynamic SQL the SQL query is specified as an ObjectScript string, delimited by double quotes. For this reason, double
quotes within a pattern string must be doubled. Thus the pattern for a US dollar amount: '1"$"1.N1"."2N' would be
specified in Dynamic SQL as '1""$""1.N1"".""2N'.

For further details on pattern codes, refer to Pattern Matching in the Operators and Expressions chapter of Using ObjectScript.

%SelectMode

The %PATTERN predicate does not use the current %SelectMode setting. A pattern should be specified in Logical format,
regardless of the %SelectMode setting. Attempting to specify a pattern in ODBC format or Display format commonly
results in no data matches or unintended data matches.

You can use the %EXTERNAL or %ODBCOUT format-transform functions to transform the scalar-expression field that
the predicate operates upon. This allows you to specify the pattern in Display format or ODBC format. However, using a
format-transform function prevents the use of the index for the field, and can thus have a significant performance impact.

In the following Dynamic SQL example, the %PATTERN predicate specifies the date pattern in Logical format, not in
%SelectMode=1 (ODBC) format. Rows with DOB Logical values beginning with 41 (dates from April 4 1953 ($HOROLOG
41000) through December 28 1955 ($HOROLOG 41999)) are selected:

 SET q1 = "SELECT Name,DOB FROM Sample.Person "
 SET q2 = "WHERE DOB %PATTERN '1""41""3N' "
 SET myquery = q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

The following Dynamic SQL example uses the %ODBCOUT format-transform function to transform the DOB field matched
by the predicate. This allows you to specify the %PATTERN pattern in ODBC format. It selects rows with DOB field
ODBC values beginning with 195 (dates within the range of years 1950 through 1959). However, specifying the format-
transform function prevents the use of an index for DOB field values:

 SET q1 = "SELECT Name,DOB FROM Sample.Person "
 SET q2 = "WHERE %ODBCOUT(DOB) %PATTERN '1""195"".E' "
 SET myquery = q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

Examples
The following example uses a %PATTERN operator in the WHERE clause to select Home_State values in which the
first character is any uppercase letter and the second character is the letter “C”:

SELECT Name,Home_State FROM Sample.Person
WHERE Home_State %PATTERN '1U1"C"'

This example selects records with a Home_State of North Carolina (NC) or South Carolina (SC).

The following example uses a %PATTERN operator in the WHERE clause to select Name values that start with an
uppercase letter followed by a lowercase letter.

SELECT Name FROM Sample.Person
WHERE Name %PATTERN '1U1L.E'

The pattern here translates as: 1U (one uppercase letter), followed 1L (one lowercase letter), followed by .E (any number
of characters of any type). Note that this pattern would exclude names such as ”JONES”, O'Reilly” and “deGastyne”.

366 InterSystems SQL Reference

SQL Predicate Conditions

The following example uses a %PATTERN operator in a HAVING clause to select records for people whose first name
starts with the letters “Jo”, and to return the count of records searched and records returned.

SELECT Name,
 COUNT(Name) AS TotRecs,
 COUNT(Name %AFTERHAVING) AS JoRecs
FROM Sample.Person
HAVING Name %PATTERN '1U.L1","1"Jo".E'

In this case, the Name field values are formatted as Lastname,Firstname and may contain an optional middle name or initial.
To reflect this name format, the pattern here translates as: 1U (one uppercase letter), followed .L (any number of lowercase
letters), followed by 1"," (one literal comma character), followed by 1"Jo" (one literal string with the value “Jo”), followed
by .E (any number of characters of any type).

See Also
• SELECT statement HAVING clause WHERE clause

• LIKE predicate

• %MATCHES predicate

• Overview of Predicates

InterSystems SQL Reference 367

%PATTERN

SOME
Matches a value with at least one matching value from a subquery.

scalar-expression comparison-operator SOME (subquery)

Arguments

A scalar expression (most commonly a data column) whose values
are being compared with the result set generated by subquery.

scalar-expression

One of the following comparison operators: = (equal to), <> or !=
(not equal to), < (less than), <= (less than or equal to), > (greater
than), >= (greater than or equal to), [(contains), or] (follows).

comparison-operator

A subquery, enclosed in parentheses, which returns a result set that
is used for the comparison with scalar-expression.

subquery

Description
The SOME keyword works in conjunction with a comparison operator to create a predicate (a quantified comparison
condition) that is true if the value of a scalar expression matches one or more of the corresponding values retrieved by the
subquery. The SOME predicate compares a single scalar-expression item with a single subquery SELECT item. A subquery
with more than one select item generates an SQLCODE -10 error.

Note: The SOME and ANY keywords are synonyms.

SOME can be used wherever a predicate condition can be specified, as described in the Overview of Predicates page of
this manual.

Example
The following example selects those employees with salaries greater than $75,000 that live in any of the states west of the
Mississippi River:

SELECT Name,Salary,Home_State FROM Sample.Employee
WHERE Salary > 75000
AND Home_State = SOME
 (SELECT State FROM Sample.USZipCode
 WHERE Longitude < -93)
ORDER BY Home_State

See Also
• SELECT statement HAVING clause WHERE clause

• ALL ANY

• Overview of Predicates

368 InterSystems SQL Reference

SQL Predicate Conditions

%STARTSWITH
Matches a value with a substring specifying initial characters.

scalar-expression %STARTSWITH substring

Arguments

A scalar expression (most commonly a data column) whose values
are being compared with substring.

scalar-expression

An expression that resolves to a string or a numeric containing the
first character or characters to match with values in scalar-expression.

substring

Description
The %STARTSWITH predicate allows you to select those data values that begin with the character or characters specified
in substring. If substring does not match any of the scalar expression values, %STARTSWITH returns the null string.
This match is always performed on the logical (internal storage) data value, regardless of the display mode.

%STARTSWITH can be used wherever a predicate condition can be specified, as described in the Overview of Predicates
page of this manual.

The following example selects all names that begin with “M”:

SELECT Name FROM Sample.MyTest WHERE Name %STARTSWITH 'M'

You can use NOT to invert the sense of a predicate. The following example selects all names except those that begin with
“M”:

SELECT Name FROM Sample.MyTest WHERE NOT Name %STARTSWITH 'M'

For other ways of matching a value, refer to Other Equivalence Comparisons below.

Collation Types

%STARTSWITH uses the same collation type as the field it is matched against. By default, string data type fields are
defined with SQLUPPER collation, which is not case-sensitive. The “Collation” chapter of Using InterSystems SQL provides
details on defining the string collation default for the current namespace and specifying a non-default field collation type
when defining a field/property.

In the following example, UpName is defined as SQLUPPER; the substring match is case-insensitive:

SELECT UpName FROM Sample.MyTest WHERE UpName %STARTSWITH 'mo'

If you assign a different collation type to the column in the WHERE clause, this collation type is matched to the literal
value of the %STARTSWITH substring.

In the following example, UpName is defined as SQLUPPER; but the substring match is EXACT (case-sensitive):

SELECT UpName FROM Sample.MyTest WHERE %EXACT(UpName) %STARTSWITH 'mo'

Some collation functions append a space character to a field value. This can cause %STARTSWITH to match no values,
unless you apply an equivalent collation function to the substring.

In the following example, ExactName is defined as EXACT; because the query applies %SQLUPPER to the
scalar-expression, the comparison now involves a string starting with an appended space character. This comparison would
return no fields:

InterSystems SQL Reference 369

%STARTSWITH

SELECT ExactName FROM Sample.MyTest WHERE %SQLUPPER(ExactName) %STARTSWITH 'Ra'

Therefore, you must append a space character to the substring as well. The following example applies a non-case-sensitive
match to an EXACT field:

SELECT ExactName FROM Sample.MyTest WHERE %SQLUPPER(ExactName) %STARTSWITH %SQLUPPER('Ra')

Refer to collation types for further information on case transformation functions.

%SelectMode

The %STARTSWITH predicate cannot use the current %SelectMode setting. A substring must be specified in Logical
format, regardless of the %SelectMode setting. Specifying predicate value(s) in ODBC or Display format commonly results
in no data matches or unintended data matches. This applies mainly to dates, times, and InterSystems IRIS format lists
(%List).

In the following Dynamic SQL example, the %STARTSWITH predicate must specify the date substring in Logical format,
not in %SelectMode=1 (ODBC) format. Rows with DOB Logical values beginning with 41 (dates from April 4 1953
($HOROLOG 41000) through December 28 1955 ($HOROLOG 41999)) are selected:

 SET q1 = "SELECT Name,DOB FROM Sample.Person "
 SET q2 = "WHERE DOB %STARTSWITH '41%'"
 SET myquery = q1_q2
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

List Fields

If scalar-expression is a list field, %STARTSWITH can use %EXTERNAL to compare the list values to substring. For
example, to determine all records in which the FavoriteColors list field begins with 'Bl':

SELECT Name,FavoriteColors FROM Sample.Person
WHERE %EXTERNAL(FavoriteColors) %STARTSWITH 'Bl'

When %EXTERNAL converts a list to DISPLAY format, the displayed list items appear to be separated by a blank space.
This “space” is actually the two non-display characters CHAR(13) and CHAR(10). To use %STARTSWITH with more
than one element in the list, you must specify these characters:

SELECT Name,FavoriteColors FROM Sample.Person
WHERE %EXTERNAL(FavoriteColors) %STARTSWITH 'Orange'||CHAR(13)||CHAR(10)||'B'

Filtering Out NULLs

• If the scalar-expression is any non-null data value and the substring is an “empty” value, %STARTSWITH always
returns the scalar-expression.

• If the scalar-expression is null and the substring is an “empty” value, %STARTSWITH does not return the
scalar-expression.

An “empty” substring value can be any of the following: NULL, CHAR(0), the empty string (''), a string consisting of only
blank spaces (' '), CHAR(32) the space character, and CHAR(9) the tab character. Be default, %STARTSWITH uses all
of these values for filtering out nulls.

To return scalar-expression values that consist of only whitespace characters, you must use %EXACT collation.

In all of the following examples, %STARTSWITH returns the same results. It restricts the result set to non-null
FavoriteColors values:

370 InterSystems SQL Reference

SQL Predicate Conditions

SELECT Name,FavoriteColors FROM Sample.Person
WHERE FavoriteColors %STARTSWITH NULL

SELECT Name,FavoriteColors FROM Sample.Person
WHERE FavoriteColors %STARTSWITH ''

SELECT Name,FavoriteColors FROM Sample.Person
WHERE FavoriteColors %STARTSWITH ' '

SELECT Name,FavoriteColors FROM Sample.Person
WHERE FavoriteColors %STARTSWITH CHAR(9)

Note that the %EXTERNAL collation type is not used for scalar-expression when filtering nulls from a list field.

%STARTSWITH NULL and empty string behavior differs with a compound substring, because of the definitions of
NULL and empty string. When you concatenate a value with NULL, the result is NULL. When you concatenate a value
with the empty string, the result is the value. This is shown in the following examples:

SELECT Name,FavoriteColors
FROM Sample.Person
WHERE %EXTERNAL(FavoriteColors) %STARTSWITH 'B'||NULL
/* Selects all non-null rows */

SELECT Name,FavoriteColors
FROM Sample.Person
WHERE %EXTERNAL(FavoriteColors) %STARTSWITH 'B'||''
/* Selects all values that begin with B */

Leading and Trailing Blanks

In most cases, %STARTSWITH treats leading blanks the same as any other character. For example, %STARTSWITH '
B' can be used to select field values with exactly one leading blank followed by the letter B. However, a substring containing
only blanks does not select for leading blanks; it selects for non-null values.

%STARTSWITH behavior with trailing blanks depends on the data type and collation type. %STARTSWITH ignores
trailing blanks in a string substring defined as SQLUPPER. %STARTSWITH does not ignore trailing blanks in a numeric,
date, or list substring.

In the following example, %STARTSWITH restricts the result set to names that begin with 'M'. Because Name is an
SQLUPPER string data type, the trailing blanks in the substring are ignored:

SELECT Name FROM Sample.Person
WHERE Name %STARTSWITH 'M '

In the following example, %STARTSWITH eliminates all rows from the result set because the trailing blanks in the
substring are not ignored for a numeric value:

SELECT Name,Age FROM Sample.Person
WHERE Age %STARTSWITH '6 '

In the following example, %STARTSWITH eliminates all rows from the result set because the trailing blank in the
substring is not ignored for a list value:

SELECT Name,FavoriteColors FROM Sample.Person
WHERE %EXTERNAL(FavoriteColors) %STARTSWITH 'Blue '

However, in the following example, the result set consists of those list values that start with Blue followed by a list delimiter
(which is displayed as a blank space); in other words, lists beginning with ‘Blue’ that contain more than one item:

SELECT Name,FavoriteColors FROM Sample.Person
WHERE %EXTERNAL(FavoriteColors) %STARTSWITH 'Blue'||CHAR(13)||CHAR(10)

InterSystems SQL Reference 371

%STARTSWITH

Range of Subscripts

When scalar-expression is retrieved from a subscript, %STARTSWITH can be used as an index-limiting range condition,
narrowing the range of scalar-expression subscript values that needs to be traversed. The logic is to start the subscript range
with the given substring prefix value, and stop as soon as the subscript value no longer starts with substring.

National Collation Ambiguous Characters

In some national languages two characters or character combinations are considered first-pass collation equivalent. Commonly
this is a character with or without an accent mark, such as in the Czech2 locale, in which CHAR(65) and CHAR(193) both
collate as “A”. %STARTSWITH recognizes these characters as equivalent.

The following example shows the first-pass collation for Czech2 CHAR(65) (A) and CHAR(193) (Á):

M
MA
MÁ
MAC
MÁC
MACX
MÁCX
MAD
MÁD
MB

It is important to note that you cannot know at query compile time which national collation would be used at run time.
Therefore, %STARTSWITH subscript traversal code has to be written so that it will correctly satisfy any likely runtime
situation.

Other Equivalence Comparisons
%STARTSWITH performs an equivalence comparison on the initial character(s) of a string. You can perform other types
of equivalence comparisons by using string comparison operators. These include the following:

• An equivalence comparison on the entire string, using the equal sign operator:

SELECT Name,Home_State FROM Sample.Person
WHERE Home_State = 'VT'

This example selects any record that contains the Home_State field value “VT”. Because Home_State is defined as
SQLUPPER, this string comparison is not case-sensitive.

You can also perform a non-equivalence comparison on the entire string, using the not equal operator (<>).

• An equivalence comparison of a substring to a value, using the Contains operator:

SELECT Name FROM Sample.Person
WHERE Name ['y'

This example selects all Name records that contain the lowercase letter “y”. By default, a Contains operator comparison
is case-sensitive, even when the field is defined as not case-sensitive.

• A context-aware equivalence comparison using InterSystems SQL Search. One use of SQL Search is to determine if
a value contains a specified word or phrase. SQL Search is not case-sensitive.

• An equivalence comparison on the entire string to multiple values, using the IN keyword operator:

SELECT Name,Home_State FROM Sample.Person
WHERE Home_State IN ('VT','MA','NH','ME')
ORDER BY Home_State

This example selects any record that contains any of the specified Home_State field values.

• An equivalence comparison on the entire string to a value pattern, using the %PATTERN keyword operator:

372 InterSystems SQL Reference

SQL Predicate Conditions

SELECT Name,Home_State FROM Sample.Person
WHERE Home_State %PATTERN '1U1"C"'
ORDER BY Home_State

This example selects any record that contains a Home_State field value that matches the pattern of 1U (one uppercase
letter) followed by 1"C" (one literal letter “C”). This pattern would be fulfilled by the Home_State abbreviations “NC”
or “SC”.

• An equivalence comparison of a substring with one or more wildcards to a value, using the LIKE keyword operator:

SELECT Name FROM Sample.Person
WHERE Name LIKE '_a%'

This example selects all Name records that contain the letter “a” as the second letter. This string comparison uses the
Name collation type to determine whether the comparison is case-sensitive or not case-sensitive.

For further details on these and other comparison conditional predicates, refer to the WHERE clause.

Examples
The following example uses the WHERE clause to select Name values that start with the letter “R” or “r”. By default,
%STARTSWITH string comparisons are not case-sensitive:

SELECT Name FROM Sample.Person
WHERE Name %STARTSWITH 'r'

The following example returns one record for each distinct Home_State name that begins with “M”:

SELECT DISTINCT Home_State FROM Sample.Person
WHERE Home_State %STARTSWITH 'M'
ORDER BY Home_State

The following example uses a HAVING clause to select records for people whose age starts with a 2, displays the average
for all ages and the average for the ages selected by the HAVING clause. It orders the results by age:

SELECT Name,
 Age,
 AVG(Age) AS AvgAge,
 AVG(Age %AFTERHAVING) AS Avg20
FROM Sample.Person
HAVING Age %STARTSWITH 2
ORDER BY Age

The following example performs a %STARTSWITH comparison with the internal date format value for the DOB (date
of birth) field. In this case, it select all dates from 11/5/1988 ($H=54000) through 08/1/1991 ($H=54999):

SELECT Name,DOB
FROM Sample.Person
WHERE DOB %STARTSWITH 54
ORDER BY DOB

See Also
• SELECT statement HAVING clause WHERE clause

• Overview of Predicates

• “Collation” chapter in Using InterSystems SQL

InterSystems SQL Reference 373

%STARTSWITH

SQL Aggregate Functions

InterSystems SQL Reference 375

Overview of Aggregate Functions
Functions that evaluate all of the values of a column and return a single aggregate value.

Supported Aggregate Functions
An aggregate function performs a task in relation to one or more values from a single column and returns a single value.
The supported functions are:

• SUM — returns the sum of the values of a specified column.

• AVG — returns the average of the values of the specified column.

• COUNT — returns the number of rows in a table, or the number of non-null values in a specified column.

• MAX — returns the maximum value used within a specified column.

• MIN — returns the minimum value used within a specified column.

• VARIANCE, VAR_SAMP, VAR_POP — returns the statistical variance of the values of a specified column.

• STDDEV, STDDEV_SAMP, STDDEV_POP — returns the statistical standard deviation of the values of a specified
column.

• LIST — returns all of the values used within a specified column as a comma-separated list.

• %DLIST — returns all of the values used within a specified column as elements in an InterSystems IRIS list structure.

• XMLAGG — returns all of the values used within a specified column as a concatenated string.

• JSON_ARRAYAGG — returns all of the values used within a specified column as a JSON format array.

Aggregate functions ignore fields that are NULL. For example, LIST and %DLIST do not include elements for rows in
which the specified field is NULL. COUNT only counts non-null values of the specified field.

All aggregate functions support the optional DISTINCT keyword clause. This keyword limits the aggregate operation to
only distinct (unique) field values. The default is to perform the aggregate operation on all non-NULL values, including
duplicate values. The MIN and MAX aggregate functions support the DISTINCT keyword, although it perform no operation.

Aggregate functions support the full DISTINCT keyword clause syntax, including the optional BY(item-list) subclause.
Refer to the DISTINCT clause for details.

The aggregate function DISTINCT field1 clause ignores field1 values that are NULL. This differs from the DISTINCT
clause of the SELECT statement: a SELECT DISTINCT clause returns one row for the distinct NULL, just as it returns
one row for each distinct field value. However, an aggregate function DISTINCT BY(field2) field1 does not ignore the
distinct NULL for field2. For example, if FavoriteColors has 50 distinct values and multiple NULLs, the number of DIS-
TINCT rows returned is 51, the COUNT(DISTINCT FavoriteColors) is 50, and the COUNT(DISTINCT
BY(FavoriteColors) %ID) is 51:

SELECT DISTINCT FavoriteColors,
 COUNT(DISTINCT FavoriteColors),
 COUNT(DISTINCT BY(FavoriteColors) %ID)
 FROM Sample.Person

Aggregate functions (with the exception of COUNT) cannot be applied to a stream field. Attempting to do so generates
an SQLCODE -37 error. You can use COUNT to count stream field values, with some restrictions.

Using Aggregate Functions
An aggregate function can be used in:

• SELECT list, either as a listed select-item or in a subquery select-item.

376 InterSystems SQL Reference

SQL Aggregate Functions

• HAVING clause. However, a HAVING clause must explicitly specify the aggregate function; it cannot specify an
aggregate using the corresponding select-item column alias or select-item sequence number.

• DISTINCT BY clause. However, specifying an aggregate function by itself is not meaningful and always returns a
single row. More meaningful is to specify an aggregate function as part of an expression, such as DISTINCT
BY(MAX(Age)-Age).

An aggregate function cannot be used directly in:

• an ORDER BY clause. Attempting to do so generates an SQLCODE -73 error. However, you can use an aggregate
function in an ORDER BY clause by specifying the corresponding column alias or select-item sequence number.

• a WHERE clause. Attempting to do so generates an SQLCODE -19 error.

• a GROUP BY clause. Attempting to do so generates an SQLCODE -19 error.

• a TOP clause. Attempting to do so generates an SQLCODE -1 error.

• a JOIN. Attempting to specify an aggregate in an ON clause generates an SQLCODE -19 error. Attempting to specify
an aggregate in a USING clause generates an SQLCODE -1 error.

However, you can supply an aggregate function value to these clauses (with the exception of the TOP clause) by using a
subquery supplying a column alias. For example, to use a WHERE clause to select Age values that are less than the average
Age value, you can place the AVG aggregate function in a subquery:

SELECT Name,Age,AvgAge
FROM (SELECT Name,Age,AVG(Age) AS AvgAge FROM Sample.Person)
WHERE Age < AvgAge
ORDER BY Age

Combining Aggregates and Fields

InterSystems SQL allows you to specify an aggregate function with other SELECT items in a query. An aggregate such as
COUNT(*) does not need to be in a separate query.

SELECT TOP 5 COUNT(*),Name,AVG(Age)
FROM Sample.Person
ORDER BY Name

When you specify an aggregate function and specify no field select items in the select list, InterSystems SQL returns one
row. A TOP clause is ignored, unless it is TOP 0 (return no rows):

SELECT TOP 7 AVG(Age),LIST(Age)
FROM Sample.Person
WHERE Age > 75

When you specify an aggregate function and specify one or more field select items in the select list, InterSystems SQL
returns as many rows as required for the field item:

SELECT DISTINCT Age,AVG(Age),LIST(Age)
FROM Sample.Person
WHERE Age > 75

Column Names and Aliases

By default, the column name assigned to the results of an aggregate function is Aggregate_n, where the n number suffix
is the column order number, as specified in the SELECT list. Thus, the following example creates column names Aggregate_2
and Aggregate_5:

SELECT TOP 5 Home_State,COUNT(*),Name,Age,AVG(Age)
FROM Sample.Person
ORDER BY Name

To specify another column name (a column alias), use the AS keyword:

InterSystems SQL Reference 377

Overview of Aggregate Functions

SELECT COUNT(*) AS PersonCount
FROM Sample.Person,Sample.Employee

You can use a column alias to specify an aggregate field in an ORDER BY clause. The following example lists people in
the order that their ages diverge from the average age:

SELECT Name,Age,
 AVG(Age) AS AvgAge,
 ABS(Age - AVG(Age)) AS RelAge
FROM Sample.Person
ORDER BY RelAge

For further details on column aliases, refer to the SELECT statement.

With ORDER BY

The LIST, %DLIST, XMLAGG, and JSON_ARRAYAGG functions combine the values of a table column from multiple
rows into a single aggregate value. Because an ORDER BY clause is applied to the query result set after all aggregate
fields are evaluated, ORDER BY cannot directly affect the sequence of values within these aggregates. Under certain cir-
cumstances, the results of these aggregates may appear in sequential order, but this ordering should not be relied upon. The
values listed within a given aggregate result value cannot be explicitly ordered.

With DISTINCT and GROUP BY

A SELECT DISTINCT with a select-item aggregate function and a GROUP BY clause returns the same results as if the
DISTINCT keyword were not present. To achieve the desired results, put the aggregate function in a subquery.

For example, you wish to return the number of distinct counts of persons in states (there are states with 4 people, there are
states with 6 people, etc.). You would expect to achieve this result as follows:

SELECT DISTINCT COUNT(*) AS PersonCounts
FROM Sample.Person
GROUP BY Home_State

Instead, you get a person count for each state, the same as if the DISTINCT keyword were not present:

SELECT COUNT(*) AS PersonCounts
FROM Sample.Person
GROUP BY Home_State

To achieve your intended result, you need to use a subquery, as follows:

SELECT DISTINCT *
FROM (SELECT COUNT(*) AS PersonCounts FROM Sample.Person
 GROUP BY Home_State)

Row Counts

When a query returns aggregate values, the %ROWCOUNT value depends on the query:

• Aggregate functions only: calculates aggregate values and returns %ROWCOUNT 1. If an aggregates-only query
selects no rows, it still returns %ROWCOUNT 1: COUNT=0, other aggregate functions return NULL.

• Aggregate functions only with GROUP BY: returns aggregate values for each group selected by the GROUP BY
clause. %ROWCOUNT is the number of groups selected. If the query selects no rows, the GROUP BY selects no
groups, and the query returns %ROWCOUNT 0.

• Aggregate functions only with DISTINCT: calculates aggregate values and returns %ROWCOUNT 1. If the query
selects no rows, the DISTINCT selects no distinct values, and the query returns %ROWCOUNT 0.

• Aggregate functions only with TOP clause: For any non-zero TOP value, calculates aggregate values and returns
%ROWCOUNT 1. For TOP=0, returns %ROWCOUNT 0, aggregates are not calculated.

378 InterSystems SQL Reference

SQL Aggregate Functions

• Aggregates with fields: If the query returns field values as well as aggregate functions, the number of rows returned
is the number of rows selected. If the query selects no rows, it returns %ROWCOUNT 0 and aggregates are not calcu-
lated.

These results are not affected the presence in the select-item of subqueries or expressions.

Aggregates,Transactions, and Locking
Including an aggregate function in a query causes the query to return the current state of the data to all result set fields,
including uncommitted changes to the data. Thus, an ISOLATION LEVEL READ COMMITTED setting is ignored for a
query containing an aggregate function. The current state of uncommitted data is as follows:

• INSERT and UPDATE: the aggregate calculation does include the modified values, even though these modifications
are not yet committed and may be rolled back.

• DELETE and TRUNCATE TABLE: the aggregate calculation does not include deleted rows, even though these
deletions are not yet committed and may be rolled back.

Because aggregate functions usually involve data from a large number of rows, it is not acceptable to issue a transaction
lock on all of the rows involved in an aggregate calculation. It is therefore possible that another user may be performing a
transaction that modifies the data while an aggregate calculation is in process.

Aggregates and Sharded Tables
Support for aggregate functions is limited for sharded tables. For example, the aggregate function DISTINCT, %FOREACH,
and %AFTERHAVING clauses are not supported for sharded tables. See Querying the Sharded Cluster in the chapter
“Horizontally Scaling InterSystems IRIS for Data Volume with Sharding” in the Scalability Guide.

See Also
• AVG, COUNT, %DLIST, JSON_ARRAYAGG, LIST, MAX, MIN, STDDEV, STDDEV_SAMP, STDDEV_POP,

SUM, VARIANCE, VAR_SAMP, VAR_POP, XMLAGG aggregate functions

• SELECT statement

InterSystems SQL Reference 379

Overview of Aggregate Functions

AVG
An aggregate function that returns the average of the values of the specified column.

AVG([ALL | DISTINCT [BY(col-list)]] expression [%FOREACH(col-list)] [%AFTERHAVING])

Arguments

Optional — Specifies that AVG return the average of all values for expression. This is
the default if no keyword is specified.

ALL

Optional — A DISTINCT clause that specifies that AVG calculate the average on only
the unique instances of a value. DISTINCT can specify a BY(col-list) subclause,
where col-list can be a single field or a comma-separated list of fields.

DISTINCT

Any valid expression. Usually the name of a column that contains the data values to
be averaged.

expression

Optional — A column name or a comma-separated list of column names. See SELECT
for further information on %FOREACH.

%FOREACH(col-list)

Optional — Applies the condition found in the HAVING clause.%AFTERHAVING

AVG returns either the NUMERIC or DOUBLE data type. If expression is data type DOUBLE, AVG returns DOUBLE;
otherwise, it returns NUMERIC.

Description
The AVG aggregate function returns the average of the values of expression. Commonly, expression is the name of a field,
(or an expression containing one or more field names) in the multiple rows returned by a query.

AVG can be used in a SELECT query or subquery that references either a table or a view. AVG can appear in a SELECT
list or HAVING clause alongside ordinary field values.

AVG cannot be used in a WHERE clause. AVG cannot be used in the ON clause of a JOIN, unless the SELECT is a
subquery.

AVG, like all aggregate functions, can take an optional DISTINCT clause. AVG(DISTINCT col1) averages only those
col1 field values that are distinct (unique). AVG(DISTINCT BY(col2) col1) averages only those col1 field values in
records where the col2 values are distinct (unique). Note however that the distinct col2 values may include a single NULL
as a distinct value.

Data Values

For non-DOUBLE expression values, AVG returns a double-precision floating point number. The precision of the value
returned by AVG is 18. The scale of the returned value depends upon the precision and scale of expression: the scale of
the value returned by AVG is equal to 18 minus the expression precision, plus the expression scale (as=ap-ep+es).

For DOUBLE expression values, the scale is 0.

AVG is normally applied to a field or expression that has a numeric value, such as a number field or a date field. By default,
aggregate functions use Logical (internal) data values, rather than Display values. Because no type checking is performed,
it is possible (though rarely meaningful) to invoke it for nonnumeric fields; AVG evaluates nonnumeric values, including
the empty string (''), as zero (0). If expression is data type VARCHAR, the return value is data type DOUBLE.

NULL values in data fields are ignored when deriving an AVG aggregate function value. If no rows are returned by the
query, or the data field value for all rows returned is NULL, AVG returns NULL.

380 InterSystems SQL Reference

SQL Aggregate Functions

Averaging a Single Value

If all of the expression values supplied to AVG are the same, the resulting average depends on the number of accessed
rows in the table (the divisor). For example, if all of the rows in the table have the same value for a specific column, the
average value of that column is a calculated value, which may differ slightly from the value in the individual columns. To
avoid this descrepancy, you can use the DISTINCT keyword.

The following example shows how a slight inequality can result from the calculation of an average. The first query does
not reference table rows, so AVG calculates by dividing by 1. The second query references table rows, so AVG calculates
by dividing by the number of rows in the table. The third query references table rows, but averages the DISTINCT values
of a single value; in this case AVG calculates by dividing by 1.

 SET pi=$ZPI
 &sql(SELECT :pi,AVG(:pi) INTO :p,:av FROM Sample.Person)
 WRITE p," the value of pi",!
 WRITE av," avg of pi/1",!
 &sql(SELECT Name,:pi,AVG(:pi) INTO :n,:p,:av FROM Sample.Person)
 WRITE av," avg calculated using numrows",!
 &sql(SELECT Name,:pi,AVG(DISTINCT :pi) INTO :n,:p,:av FROM Sample.Person)
 WRITE av," avg of pi/1"

Optimization

SQL optimization of an AVG calculation can use a bitslice index, if this index is defined for the field.

Changes Made During the Current Transaction

Like all aggregate functions, AVG always returns the current state of the data, including uncommitted changes, regardless
of the current transaction’s isolation level. For further details, refer to SET TRANSACTION and START TRANSACTION.

Examples
The following query lists the average salary for all employees in the Sample.Employee database. Because all rows returned
by the query would have identical values for this average, this query only returns a single row, consisting of the average
salary. For display purposes, this query concatenates a dollar sign to the value (using the || operator), and uses the AS clause
to label the column:

SELECT '$' || AVG(Salary) AS AverageSalary
 FROM Sample.Employee

The following query lists each state with the average salary for the employees in that state:

SELECT Home_State,'$' || AVG(Salary) AS AverageSalary
 FROM Sample.Employee
GROUP BY Home_State

The following query lists the name and salary for those employees whose salary is greater than the average salary. It also
lists the average salary for all employees; this value is the same for all rows returned by the query:

SELECT Name,Salary,
 '$' || AVG(Salary) AS AverageAllSalary
FROM Sample.Employee
HAVING Salary>AVG(Salary)
ORDER BY Salary

The following query lists the name and salary for those employees whose salary is greater than the average salary. It also
lists the average salary for those employees with above-average salaries; this value is the same for all rows returned by the
query:

SELECT Name,Salary,
 '$' || AVG(Salary %AFTERHAVING) AS AverageHighSalary
FROM Sample.Employee
HAVING Salary>AVG(Salary)
ORDER BY Salary

InterSystems SQL Reference 381

AVG

The following query lists those states containing more than three employees with the average salary of that state's
employees, and the average salary of that state's employees earning more than $20,000:

SELECT Home_State,
 '$' || AVG(Salary) AS AvgStateSalary,
 '$' || AVG(Salary %AFTERHAVING) AS AvgLargerSalaries
FROM Sample.Employee
GROUP BY Home_State
HAVING COUNT(*) > 3 AND Salary > 20000
ORDER BY Home_State

The following query uses several forms of the DISTINCT clause. The AVG(DISTINCT BY col-list examples may
include an additional Age value in the average, because the BY clause can include a single NULL as a distinct value, if
Home_City contains one or more NULLs:

SELECT AVG(Age) AS AveAge,AVG(ALL Age) AS Synonym,
 AVG(DISTINCT Age) AS AveDistAge,
 AVG(DISTINCT BY(Home_City) Age) AS AvgAgeDistCity,
 AVG(DISTINCT BY(Home_City,Home_State) Age) AS AvgAgeDistCityState
 FROM Sample.Person

The following query uses both the %FOREACH and the %AFTERHAVING keywords. It returns a row for those states
containing people whose names start with “A”, “M”, or “W” (HAVING clause and GROUP BY clause). Each state row
contains the following values:

• LIST(Age %FOREACH(Home_State)): a list of the ages of all of the people in the state.

• AVG(Age %FOREACH(Home_State)): the average age of all of the people in the state.

• AVG(Age %AFTERHAVING): the average age of all of the people in the database that meet the HAVING clause criteria.
(This number is the same for all rows.)

• LIST(Age %FOREACH(Home_State) %AFTERHAVING): a list of the ages of all of the people in the state that
meet the HAVING clause criteria.

• AVG(Age %FOREACH(Home_State) %AFTERHAVING): the average age of all of the people in the state that meet
the HAVING clause criteria.

SELECT Home_State,
 LIST(Age %FOREACH(Home_State)) AS StateAgeList,
 AVG(Age %FOREACH(Home_State)) AS StateAgeAvg,
 AVG(Age %AFTERHAVING) AS AgeAvgHaving,
 LIST(Age %FOREACH(Home_State)%AFTERHAVING) AS StateAgeListHaving,
 AVG(Age %FOREACH(Home_State)%AFTERHAVING) AS StateAgeAvgHaving
FROM Sample.Person
GROUP BY Home_State
HAVING Name LIKE 'A%' OR Name LIKE 'M%' OR Name LIKE 'W%'
ORDER BY Home_State

See Also
• Aggregate Functions overview

• COUNT aggregate function

• SUM aggregate function

382 InterSystems SQL Reference

SQL Aggregate Functions

COUNT
An aggregate function that returns the number of rows in a table or a specified column.

COUNT(*)

COUNT([ALL | DISTINCT [BY(col-list)]] expression [%FOREACH(col-list)] [%AFTERHAVING])

Arguments

Specifies that all rows should be counted to return the total number of rows in the
specified table. COUNT(*) takes no other arguments and cannot be used with the ALL
or DISTINCT keywords. COUNT(*) does not take an expression argument, and does
not use information about any particular column. COUNT(*) returns the number of rows
in a specified table or view without eliminating duplicates. It counts each row separately,
including rows that contain NULL values.

*

Optional — Specifies that COUNT return the count of all values for expression. This
is the default if no keyword is specified.

ALL

Optional — A DISTINCT clause that specifies that COUNT return the count of the
distinct (unique) values for expression. Cannot be used with a stream field. DISTINCT
can specify a BY(col-list) subclause, where col-list can be a single column name
or a comma-separated list of column names.

DISTINCT

Any valid expression. Usually the name of a column that contains the data values to
be counted.

expression

Optional — A column name or a comma-separated list of column names. See SELECT
for further information on %FOREACH. The col-list cannot contain a stream field.

%FOREACH(col-list)

Optional — Applies the condition found in the HAVING clause.%AFTERHAVING

COUNT returns the BIGINT data type.

Description
The COUNT aggregate function has two forms:

• COUNT(expression) returns the count of the number of values in expression as an integer. Commonly, expression is
the name of a field, (or an expression containing one or more field names) in the multiple rows returned by a query.
COUNT(expression) does not count NULL values. It can optionally count or not count duplicate field values. COUNT
always returns data type BIGINT with xDBC length 8, precision 19, and scale 0.

• COUNT(*) returns the count of the number of rows in the table as an integer. COUNT(*) counts all rows, regardless
of the presence of duplicate field values or NULL values.

COUNT can be used in a SELECT query or subquery that references either a table or a view. COUNT can appear in a
SELECT list or HAVING clause alongside ordinary field values.

COUNT cannot be used in a WHERE clause. COUNT cannot be used in the ON clause of a JOIN, unless the SELECT
is a subquery.

COUNT(expression) like all aggregate functions, can take an optional DISTINCT clause. The DISTINCT clause counts
only those columns having distinct (unique) values. COUNT DISTINCT does not count NULL as a distinct value.
COUNT(DISTINCT BY(col2) col1) counts col1 values for distinct col2 values; however, the distinct col2 values may
include a single NULL as a distinct value.

InterSystems SQL Reference 383

COUNT

The ALL keyword counts all non-NULL values, including all duplicates. ALL is the default behavior if no keyword is
specified.

No Rows Returned

If no rows are selected, COUNT either returns 0 or NULL, depending on the query:

• COUNT returns 0 if the select-list does not contain any references to fields in the FROM clause table(s), other than
fields supplied to aggregate functions. Only the COUNT aggregate function returns 0; other aggregate functions return
NULL. The query returns a %ROWCOUNT of 1. This is shown in the following example:

 SET myquery = 3
 SET myquery(1) = "SELECT COUNT(*) AS Recs,COUNT(Name) AS People,"
 SET myquery(2) = "AVG(Age) AS AvgAge,MAX(Age) AS MaxAge,CURRENT_TIMESTAMP AS Now"
 SET myquery(3) = " FROM Sample.Employee WHERE Name %STARTSWITH 'ZZZ'"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"Rowcount:",rset.%ROWCOUNT

• COUNT returns NULL if the select-list contains any direct reference to a field in a FROM clause table, or if TOP 0
is specified. The query returns a %ROWCOUNT of 0. The following example does not return a COUNT value because
the %ROWCOUNT value is 0:

 SET myquery = 2
 SET myquery(1) = "SELECT COUNT(*) AS Recs,COUNT(Name) AS People,$LENGTH(Name) AS NameLen"
 SET myquery(2) = " FROM Sample.Employee WHERE Name %STARTSWITH 'ZZZ'"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"Rowcount:",rset.%ROWCOUNT

• COUNT(*) returns 1 if no table is specified. The query returns a %ROWCOUNT of 1. This is shown in the following
example:

 SET myquery = "SELECT COUNT(*) AS Recs"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"Rowcount:",rset.%ROWCOUNT

Stream Fields

You can use COUNT(expression) to count stream field values, with some restrictions. COUNT(streamfield) counts all
non-NULL values. It does not check for duplicate values.

You cannot specify the COUNT function’s DISTINCT keyword when expression is a stream field. Attempting to use a
DISTINCT keyword with a stream field results in an SQLCODE -37 error.

You cannot specify a stream field in a %FOREACH col-list. Attempting to do so results in an SQLCODE -37 error.

The following example shows valid uses of the COUNT function, where Title is a string field and Notes and Picture are
stream fields:

SELECT DISTINCT Title,COUNT(Notes),COUNT(Picture %FOREACH(Title))
FROM Sample.Employee

The following examples are not valid when Title is a string field and Notes and Picture are stream fields:

-- Invalid: DISTINCT keyword with stream field
SELECT Title,COUNT(DISTINCT Notes) FROM Sample.Employee

384 InterSystems SQL Reference

SQL Aggregate Functions

-- Invalid: %FOREACH col-list contains stream field
SELECT Title,COUNT(Notes %FOREACH(Picture))
FROM Sample.Employee

Privileges

To use COUNT(*) you must have table-level SELECT privilege for the specified table. To use COUNT(column-name)
you must have column-level SELECT privilege for the specified column, or table-level SELECT privilege for the specified
table. You can determine if the current user has SELECT privilege by invoking the %CHECKPRIV command. You can
determine if a specified user has table-level SELECT privilege by invoking the $SYSTEM.SQL.CheckPriv() method.
For privilege assignment, refer to the GRANT command.

Performance

For optimal COUNT performance, you should define indices as follows:

• For COUNT(*), define a bitmap extent index, if needed. This index may have been automatically defined when the
table was created.

• For COUNT(fieldname), define a bitslice index for the specified field.

Changes Made by Uncommitted Transactions

Like all aggregate functions, COUNT always returns the current state of the data, including uncommitted changes,
regardless of the current transaction's isolation level, as follows:

• COUNT counts inserted and updated records, even though those changes have not been committed and may be rolled
back.

• COUNT does not count deleted records, even though those deletions have not been committed and may be rolled back.

For further details, refer to SET TRANSACTION and START TRANSACTION.

Examples
The following example returns the total number of rows in Sample.Person:

SELECT COUNT(*) AS TotalPersons
 FROM Sample.Person

The following example returns the count of names, spouses, and favorite colors in Sample.Person. These counts differ
because some Spouse and FavoriteColors fields have NULL; COUNT does not count nulls:

SELECT COUNT(Name) AS People,
 COUNT(Spouse) AS PeopleWithSpouses,
 COUNT(FavoriteColors) AS PeopleWithColorPref
FROM Sample.Person

The following example returns three values: the total number of rows, the total number of non-NULL values in the
FavoriteColors field, and the total number of distinct non-NULL values in the FavoriteColors field:

SELECT COUNT(*) As TotalPersons,
 COUNT(FavoriteColors) AS WithColorPref,
 COUNT(DISTINCT FavoriteColors) AS ColorPrefs
 FROM Sample.Person

The following example uses COUNT DISTINCT to return the count of distinct FavoriteColors values in Sample.Person.
(FavoriteColors contains several data values and multiple NULLs.) This example also uses the DISTINCT clause to return
one row for each distinct FavoriteColors value. The row count is one larger than the COUNT(DISTINCT FavoriteColors)
count, because DISTINCT returns a row for a single NULL as a distinct value, but COUNT DISTINCT does not count
NULL. The COUNT(DISTINCT BY(FavoriteColors) %ID) value is the same as the row count, because the BY
clause does count a single NULL as a distinct value:

InterSystems SQL Reference 385

COUNT

SELECT DISTINCT FavoriteColors,
 COUNT(DISTINCT FavoriteColors) AS DistColors,
 COUNT(DISTINCT BY(FavoriteColors) %ID) AS DistColorPeople
FROM Sample.Person

The following example use GROUP BY to return a row for each FavoriteColors value, including a row for NULL. Associated
with each row are two counts. The first counts the number or records with that FavoriteColors option; records with NULL
are not counted. The second counts the number of names associated with each FavoriteColor choice; since Name does not
include NULL values, this enables a count of FavoriteColors with NULL:

SELECT FavoriteColors,
 COUNT(FavoriteColors) AS ColorPreference,
 COUNT(Name) AS People
 FROM Sample.Person
 GROUP BY FavoriteColors

The following example returns the count of person records for each Home_State value in Sample.Person:

SELECT Home_State, COUNT(*) AS AllPersons
 FROM Sample.Person
 GROUP BY Home_State

The following example uses %AFTERHAVING to return the count of person records and the count of persons over 65 for
each state in which there is at least one person over 65:

SELECT Home_State, COUNT(Name) AS AllPersons,
 COUNT(Name %AFTERHAVING) AS Seniors
 FROM Sample.Person
 GROUP BY Home_State
 HAVING Age > 65
 ORDER BY Home_State

The following example uses both the %FOREACH and the %AFTERHAVING keywords. It returns a row for those states
containing people whose names start with “A”, “M”, or “W” (HAVING clause and GROUP BY clause). Each state row
contains the following values:

• COUNT(Name): a count of all of the people in the database. (This number is the same for all rows.)

• COUNT(Name %FOREACH(Home_State)): a count of all of the people in the state.

• COUNT(Name %AFTERHAVING): a count of all of the people in the database that meet the HAVING clause criteria.
(This number is the same for all rows.)

• COUNT(Name %FOREACH(Home_State) %AFTERHAVING): a count of all of the people in the state that meet the
HAVING clause criteria.

SELECT Home_State,
 COUNT(Name) AS NameCount,
 COUNT(Name %FOREACH(Home_State)) AS StateNameCount,
 COUNT(Name %AFTERHAVING) AS NameCountHaving,
 COUNT(Name %FOREACH(Home_State) %AFTERHAVING) AS StateNameCountHaving
FROM Sample.Person
GROUP BY Home_State
HAVING Name LIKE 'A%' OR Name LIKE 'M%' OR Name LIKE 'W%'
ORDER BY Home_State

The following example shows COUNT with a concatenation expression. It returns the total number of non-NULL values
in the FavoriteColors field, and the total number of non-NULL values in FavoriteColors concatenated with two other fields,
using the concatenate operator (||):

SELECT COUNT(FavoriteColors) AS Color,
 COUNT(FavoriteColors||Home_State) AS ColorState,
 COUNT(FavoriteColors||Spouse) AS ColorSpouse
 FROM Sample.Person

When two fields are concatenated, COUNT counts only those rows in which neither field has a NULL value. Because
every row in Sample.Person has a non-NULL Home_State value, the concatenation FavoriteColors||Home_State
returns the same count as FavoriteColors. Because some rows in Sample.Person have a NULL value for Spouse, the

386 InterSystems SQL Reference

SQL Aggregate Functions

concatenation FavoriteColors||Spouse returns the count of rows which have non-NULL values for both Favorite-
Colors and Spouse.

See Also
• Aggregate Functions overview

• AVG aggregate function

• SUM aggregate function

InterSystems SQL Reference 387

COUNT

%DLIST
An aggregate function that creates an InterSystems IRIS list of values.

%DLIST([ALL | DISTINCT [BY(col-list)]] string-expr [%FOREACH(col-list)] [%AFTERHAVING])

Arguments

Optional — Specifies that %DLIST returns a list of all values for
string-expr. This is the default if no keyword is specified.

ALL

Optional — A DISTINCT clause that specifies that %DLIST returns
a %List structured list containing only the unique string-expr values.
DISTINCT can specify a BY(col-list) subclause, where col-list
can be a single field or a comma-separated list of fields.

DISTINCT

An SQL expression that evaluates to a string. Usually the name of a
column from the selected table.

string-expr

Optional — A column name or a comma-separated list of column
names. See SELECT for further information on %FOREACH.

%FOREACH(col-list)

Optional — Applies the condition found in the HAVING clause.%AFTERHAVING

Description
The %DLIST aggregate function returns an ObjectScript %List structure containing the values in the specified column as
list elements.

A simple %DLIST (or %DLIST ALL) returns InterSystems IRIS list composed of all the non-NULL values for string-expr
in the selected rows. Rows where string-expr is NULL are not included as elements in the list structure.

A %DLIST DISTINCT returns an InterSystems IRIS list composed of all the distinct (unique) non-NULL values for
string-expr in the selected rows: %DLIST(DISTINCT col1). NULL is not included as an element in the %List structure.
%DLIST(DISTINCT BY(col2) col1) returns a %List of elements including only those col1 field values in records
where the col2 values are distinct (unique). Note however that the distinct col2 values may include a single NULL as a
distinct value.

For further information about InterSystems IRIS list structures, see $LIST and related functions.

%DLIST and %SelectMode

You can use the %SelectMode property to specify the data display mode returned by %DLIST: 0=Logical (the default),
1=ODBC, 2=Display.

Note that %DLIST in ODBC mode separates column value lists with commas, and $LISTTOSTRING (by default) returns
elements within a %List column value separated with commas.

%DLIST and ORDER BY

The %DLIST function combines the values of a table column from multiple rows into %List structured list of values.
Because an ORDER BY clause is applied to the query result set after all aggregate fields are evaluated, ORDER BY
cannot directly affect the sequence of values within this list. Under certain circumstances, %DLIST results may appear in
sequential order, but this ordering should not be relied upon. The values listed within a given aggregate result value cannot
be explicitly ordered.

388 InterSystems SQL Reference

SQL Aggregate Functions

Related Aggregate Functions

• %DLIST returns an InterSystems IRIS list of values.

• LIST returns a comma-separated list of values.

• JSON_ARRAYAGG returns a JSON array of values.

• XMLAGG returns a concatenated string of values.

Examples
The following Embedded SQL example returns a host variable containing an InterSystems IRIS list of all of the values
listed in the Home_State column of the Sample.Person table that start with the letter “A”:

 &sql(SELECT %DLIST(Home_State)
 INTO :statelist
 FROM Sample.Person
 WHERE Home_State %STARTSWITH 'A')
 WRITE "The states (as list):",statelist,!
 WRITE "The states (as string):",$LISTTOSTRING(statelist,"^")

Note that this InterSystems IRIS list contains elements with duplicate values.

The following Embedded SQL example returns a host variable containing an InterSystems IRIS list of all of the distinct
(unique) values listed in the Home_State column of the Sample.Person table that start with the letter “A”:

 &sql(SELECT %DLIST(DISTINCT Home_State)
 INTO :statelist
 FROM Sample.Person
 WHERE Home_State %STARTSWITH 'A')
 WRITE "The states (as list):",statelist,!
 WRITE "The states (as string):",$LISTTOSTRING(statelist,"^")

The following SQL example creates an InterSystems IRIS list of all of the values found in the Home_City column for each
of the states, and a count of these city values by state. Every Home_State row contains a list of all of the Home_City values
for that state. These lists may include duplicate city names:

SELECT Home_State,
 %DLIST(Home_City) AS AllCities,
 COUNT(Home_City) AS CityCount
FROM Sample.Person
GROUP BY Home_State

Perhaps more useful would be a list of all of the distinct values found in the Home_City column for each of the states, as
shown in the following example:

SELECT Home_State,
 %DLIST(DISTINCT Home_City) AS CitiesList,
 COUNT(DISTINCT Home_City) AS DistinctCities,
 COUNT(Home_City) AS TotalCities
FROM Sample.Person
GROUP BY Home_State

Note that this example returns integer counts of both the distinct city names and the total city names for each state.

The following example returns %List structures of Home_State values that begin with “A”. It returns as %List elements
the distinct Home_State values (DISTINCT Home_State); the Home_State values corresponding to distinct Home_City
values (DISTINCT BY(Home_City) Home_State), which may possibly including one unique NULL for Home_City;
and all Home_State values:

SELECT %DLIST(DISTINCT Home_State) AS DistStates,
 %DLIST(DISTINCT BY(Home_City) Home_State) AS DistCityStates,
 %DLIST(Home_State) AS AllStates
FROM Sample.Person
WHERE Home_State %STARTSWITH 'A'

InterSystems SQL Reference 389

%DLIST

The following Dynamic SQL example uses the %SelectMode property to specify the ODBC display mode for the %List
structure FavoriteColors date field. ODBC mode returns the value for each column as a comma-separated list, and the
$LISTTOSTRING function specifies a different delimiter (in this example, ||) to separate the values from the different
columns:

 SET myquery = "SELECT %DLIST(FavoriteColors) AS colors FROM Sample.Person WHERE Name %STARTSWITH 'A'"

 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WHILE rset.%Next() {
 WRITE $LISTTOSTRING(rset.colors,"||"),!
 }
 WRITE !,"End of data"

The following example uses the %AFTERHAVING keyword. It returns a row for each Home_State that contains at least
one Name value that fulfills the HAVING clause condition (a name that begins with “M”). The first %DLIST function
returns a list of all of the names for that state. The second %DLIST function returns a list containing only those names
that fulfill the HAVING clause condition:

SELECT Home_State,
 %DLIST(Name) AS AllNames,
 %DLIST(Name %AFTERHAVING) AS HaveClauseNames
 FROM Sample.Person
 GROUP BY Home_State
 HAVING Name LIKE 'M%'
 ORDER BY Home_state

See Also
• Aggregate Functions overview

• SELECT

• $LIST function

• JSON_ARRAYAGG aggregate function

• LIST aggregate function

• XMLAGG aggregate function

390 InterSystems SQL Reference

SQL Aggregate Functions

JSON_ARRAYAGG
An aggregate function that creates a JSON format array of values.

JSON_ARRAYAGG([ALL | DISTINCT [BY(col-list)]] string-expr [%FOREACH(col-list)]
[%AFTERHAVING])

Arguments

Optional — Specifies that JSON_ARRAYAGG returns a JSON array
containing all values for string-expr. This is the default if no keyword
is specified.

ALL

Optional — A DISTINCT clause that specifies that
JSON_ARRAYAGG returns a JSON array containing only the unique
string-expr values. DISTINCT can specify a BY(col-list)
subclause, where col-list can be a single field or a comma-separated
list of fields.

DISTINCT

An SQL expression that evaluates to a string. Usually the name of a
column from the selected table.

string-expr

Optional — A column name or a comma-separated list of column
names. See SELECT for further information on %FOREACH.

%FOREACH(col-list)

Optional — Applies the condition found in the HAVING clause.%AFTERHAVING

Description
The JSON_ARRAYAGG aggregate function returns a JSON format array of the values in the specified column. For further
details on JSON array format, refer to the JSON_ARRAY function.

A simple JSON_ARRAYAGG (or JSON_ARRAYAGG ALL) returns a JSON array containing all the values for
string-expr in the selected rows. Rows where string-expr is the empty string ('') are represented by ("\u0000") in the array.
Rows where string-expr is NULL are not included in the array. If there is only one string-expr value, and it is the empty
string (''), JSON_ARRAYAGG returns the JSON array ["\u0000"]. If all string-expr values are NULL,
JSON_ARRAYAGG returns an empty JSON array [].

A JSON_ARRAYAGG DISTINCT returns a JSON array composed of all the different (unique) values for string-expr
in the selected rows: JSON_ARRAYAGG(DISTINCT col1). The NULL string-expr is not included in the JSON array.
JSON_ARRAYAGG(DISTINCT BY(col2) col1) returns a JSON array containing only those col1 field values in records
where the col2 values are distinct (unique). Note however that the distinct col2 values may include a single NULL as a
distinct value.

The JSON_ARRAYAGG string-expr cannot be a stream field. Specifying a stream field results in an SQLCODE -37.

Data Values Containing Escaped Characters

• Double Quote: If a string-expr value contains a double quote character ("), JSON_ARRAYAGG represents this
character using the literal escape sequence \".

• Backslash: If a string-expr value contains a backslash character (\), JSON_ARRAYAGG represents this character
using the literal escape sequence \\.

• Single Quote: When a string-expr value contains a single quote as a literal character, InterSystems SQL requires that
this character must be escaped by doubling it as two single quote characters (''. JSON_ARRAYAGG represents this
character as a single quote character '.

InterSystems SQL Reference 391

JSON_ARRAYAGG

Maximum JSON Array Size

The default JSON_ARRAYAGG return type is VARCHAR(8192). This length includes the JSON array formatting char-
acters as well as the field data characters. If you anticipate the value returned will need to be longer than 8192, you can use
the CAST function to specify a larger return value. For example, CAST(JSON_ARRAYAGG(value)) AS
VARCHAR(12000)). If the actual JSON array returned is longer than the JSON_ARRAYAGG return type length, Inter-
Systems IRIS truncates the JSON array at the return type length without issuing an error. Because truncating a JSON array
removes its closing] character, this makes the return value invalid.

JSON_ARRAYAGG and %SelectMode

You can use the %SelectMode property to specify the data display values for the elements in the JSON array: 0=Logical
(the default), 1=ODBC, 2=Display. If the string-expr contains a %List structure, the elements are represented in ODBC
mode separated by a comma, and in Logical and Display mode with %List format characters represented by \ escape
sequences. Refer to $ZCONVERT “Encoding Translation” for an table listing these JSON \ escape sequences.

JSON_ARRAYAGG and ORDER BY

The JSON_ARRAYAGG function combines the values of a table column from multiple rows into a JSON array of element
values. Because an ORDER BY clause is applied to the query result set after all aggregate fields are evaluated, ORDER
BY cannot directly affect the sequence of values within this list. Under certain circumstances, JSON_ARRAYAGG results
may appear in sequential order, but this ordering should not be relied upon. The values listed within a given aggregate
result value cannot be explicitly ordered.

Related Aggregate Functions

• LIST returns a comma-separated list of values.

• %DLIST returns an InterSystems IRIS list containing an element for each value.

• XMLAGG returns a concatenated string of values.

Examples
The following Embedded SQL example returns a host variable containing a JSON array of all of the values in the Home_State
column of the Sample.Person table that start with the letter “A”:

 &sql(SELECT JSON_ARRAYAGG(Home_State)
 INTO :statearray
 FROM Sample.Person
 WHERE Home_State %STARTSWITH 'A')
 WRITE "JSON array of states:",!,statearray

Note that this JSON array contains duplicate values.

The following Dynamic SQL example returns a host variable containing a JSON array of all of the distinct (unique) values
in the Home_State column of the Sample.Person table that start with the letter “A”:

 SET myquery = 2
 SET myquery(1) = "SELECT JSON_ARRAYAGG(DISTINCT Home_State) AS DistinctStates "
 SET myquery(2) = "FROM Sample.Person WHERE Home_State %STARTSWITH 'A'"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

The following SQL example creates a JSON array of all of the values found in the Home_City column for each of the
states, and a count of these city values by state. Every Home_State row contains a JSON array of all of the Home_City
values for that state. These JSON arrays may include duplicate city names:

392 InterSystems SQL Reference

SQL Aggregate Functions

SELECT Home_State,
 COUNT(Home_City) AS CityCount,
 JSON_ARRAYAGG(Home_City) AS ArrayAllCities
FROM Sample.Person
GROUP BY Home_State

Perhaps more useful would be a JSON array of all of the distinct values found in the Home_City column for each of the
states, as shown in the following Dynamic SQL example:

 SET myquery = 4
 SET myquery(1) = "SELECT Home_State,COUNT(DISTINCT Home_City) AS DistCityCount,"
 SET myquery(2) = "COUNT(Home_City) AS TotCityCount,"
 SET myquery(3) = "JSON_ARRAYAGG(DISTINCT Home_City) AS ArrayDistCities "
 SET myquery(4) = "FROM Sample.Person GROUP BY Home_State"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

Note that this example returns integer counts of both the distinct city names and the total city names for each state.

The following Dynamic SQL example uses the %SelectMode property to specify the ODBC display mode for the JSON
array of values returned by the DOB date field:

 SET myquery = 2
 SET myquery(1) = "SELECT JSON_ARRAYAGG(DOB) AS DOBs "
 SET myquery(2) = "FROM Sample.Person WHERE Name %STARTSWITH 'A'"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

The following Dynamic SQL example uses the %FOREACH keyword. It returns a row for each distinct Home_State con-
taining a JSON array of age values for that Home_State.

 SET myquery = 3
 SET myquery(1) = "SELECT DISTINCT Home_State,"
 SET myquery(2) = "JSON_ARRAYAGG(Age %FOREACH(Home_State)) AgesForState "
 SET myquery(3) = "FROM Sample.Person WHERE Home_State %STARTSWITH 'M'"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

The following Dynamic SQL example uses the %AFTERHAVING keyword. It returns a row for each Home_State that
contains at least one Name value that fulfills the HAVING clause condition (a name that begins with “M”). The first
JSON_ARRAYAGG function returns a JSON array of all of the names for that state. The second JSON_ARRAYAGG
function returns a JSON array containing only those names that fulfill the HAVING clause condition:

 SET myquery = 4
 SET myquery(1) = "SELECT Home_State,JSON_ARRAYAGG(Name) AS AllNames,"
 SET myquery(2) = "JSON_ARRAYAGG(Name %AFTERHAVING) AS HavingClauseNames "
 SET myquery(3) = "FROM Sample.Person GROUP BY Home_State "
 SET myquery(4) = "HAVING Name LIKE 'M%' ORDER BY Home_State"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

See Also
• Aggregate Functions overview

InterSystems SQL Reference 393

JSON_ARRAYAGG

• JSON_ARRAY function

• IS JSON predicate condition

• LIST aggregate function

• %DLIST aggregate function

• XMLAGG aggregate function

• SELECT statement

394 InterSystems SQL Reference

SQL Aggregate Functions

LIST
An aggregate function that creates a comma-separated list of values.

LIST([ALL | DISTINCT [BY(col-list)]] string-expr [%FOREACH(col-list)] [%AFTERHAVING])

Arguments

Optional — Specifies that LIST returns a list of all values for
string-expr. This is the default if no keyword is specified.

ALL

Optional — A DISTINCT clause that specifies that LIST returns a list
containing only the unique string-expr values. DISTINCT can specify
a BY(col-list) subclause, where col-list can be a single field or a
comma-separated list of fields.

DISTINCT

An SQL expression that evaluates to a string. Usually the name of a
column from the selected table.

string-expr

Optional — A column name or a comma-separated list of column
names. See SELECT for further information on %FOREACH.

%FOREACH(col-list)

Optional — Applies the condition found in the HAVING clause.%AFTERHAVING

Description
The LIST aggregate function returns a comma-separated list of the values in the specified column.

A simple LIST (or LIST ALL) returns a string containing a comma-separated list composed of all the values for string-expr
in the selected rows. Rows where string-expr is the empty string ('') are represented by a placeholder comma in the comma-
separated list. Rows where string-expr is NULL are not included in the comma-separated list. If there is only one string-expr
value, and it is the empty string (''), LIST returns the empty string.

A LIST DISTINCT returns a string containing a comma-separated list composed of all the distinct (unique) values for
string-expr in the selected rows: LIST(DISTINCT col1). The NULL string-expr is not included in the comma-separated
list. LIST(DISTINCT BY(col2) col1) returns a comma-separated list containing only those col1 field values in
records where the col2 values are distinct (unique). Note however that the distinct col2 values may include a single NULL
as a distinct value.

Data Values Containing Commas

Because LIST uses commas to separate string-expr values, LIST should not be used for data values that contain commas.
Use %DLIST or JSON_ARRAYAGG instead.

LIST and %SelectMode

You can use the %SelectMode property to specify the data display mode returned by LIST: 0=Logical (the default),
1=ODBC, 2=Display.

Note that LIST separates column values with commas, and ODBC mode separates elements within a %List column value
with commas. Therefore, using ODBC mode when using LIST on a %List structure produces ambiguous results.

LIST and ORDER BY

The LIST function combines the values of a table column from multiple rows into a single comma-separated list of values.
Because an ORDER BY clause is applied to the query result set after all aggregate fields are evaluated, ORDER BY
cannot directly affect the sequence of values within this list. Under certain circumstances, LIST results may appear in

InterSystems SQL Reference 395

LIST

sequential order, but this ordering should not be relied upon. The values listed within a given aggregate result value cannot
be explicitly ordered.

Maximum LIST Size

The largest permitted LIST return value is the maximum string length, 3,641,144 characters.

Related Aggregate Functions

• LIST returns a comma-separated list of values.

• %DLIST returns a list containing an element for each value.

• JSON_ARRAYAGG returns a JSON array of values.

• XMLAGG returns a concatenated string of values.

Examples
The following Embedded SQL example returns a host variable containing a comma-separated list of all of the values listed
in the Home_State column of the Sample.Person table that start with the letter “A”:

 &sql(SELECT LIST(Home_State)
 INTO :statelist
 FROM Sample.Person
 WHERE Home_State %STARTSWITH 'A')
 WRITE "The states are:",!,statelist

Note that this list contains duplicate values.

The following Embedded SQL example returns a host variable containing a comma-separated list of all of the distinct
(unique) values listed in the Home_State column of the Sample.Person table that start with the letter “A”:

 &sql(SELECT LIST(DISTINCT Home_State)
 INTO :statelist
 FROM Sample.Person
 WHERE Home_State %STARTSWITH 'A')
 WRITE "The distinct states are:",!,statelist

The following SQL example creates a comma-separated list of all of the values found in the Home_City column for each
of the states, and a count of these city values by state. Every Home_State row contains a list of all of the Home_City values
for that state. These lists may include duplicate city names:

SELECT Home_State,
 COUNT(Home_City) AS CityCount,
 LIST(Home_City) AS ListAllCities
FROM Sample.Person
GROUP BY Home_State

Perhaps more useful would be a comma-separated list of all of the distinct values found in the Home_City column for each
of the states, as shown in the following example:

SELECT Home_State,
 COUNT(DISTINCT Home_City) AS DistCityCount,
 COUNT(Home_City) AS TotCityCount,
 LIST(DISTINCT Home_City) AS DistCitiesList
FROM Sample.Person
GROUP BY Home_State

Note that this example returns integer counts of both the distinct city names and the total city names for each state.

The following example returns lists of Home_State values that begin with “A”. It returns the distinct Home_State values
(DISTINCT Home_State); the Home_State values corresponding to distinct Home_City values (DISTINCT
BY(Home_City) Home_State), which may possibly including one unique NULL for Home_City; and all Home_State
values:

396 InterSystems SQL Reference

SQL Aggregate Functions

SELECT LIST(DISTINCT Home_State) AS DistStates,
 LIST(DISTINCT BY(Home_City) Home_State) AS DistCityStates,
 LIST(Home_State) AS AllStates
FROM Sample.Person
WHERE Home_State %STARTSWITH 'A'

The following Dynamic SQL example uses the %SelectMode property to specify the ODBC display mode for the list of
values returned by the DOB date field:

 SET myquery = "SELECT LIST(DOB) AS DOBs FROM Sample.Person WHERE Name %STARTSWITH 'A'"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

The following Dynamic SQL example uses the %FOREACH keyword. It returns a row for each distinct Home_State con-
taining a list of age values for that Home_State:

 SET myquery = 3
 SET myquery(1) = "SELECT DISTINCT Home_State,"
 SET myquery(2) = "LIST(Age %FOREACH(Home_State)) AgesForState "
 SET myquery(3) = "FROM Sample.Person WHERE Home_State %STARTSWITH 'M'"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

The following example uses the %AFTERHAVING keyword. It returns a row for each Home_State that contains at least
one Name value that fulfills the HAVING clause condition (a name that begins with “M”). The first LIST function returns
a list of all of the names for that state. The second LIST function returns a list containing only those names that fulfill the
HAVING clause condition:

SELECT Home_State,
 LIST(Name) AS AllNames,
 LIST(Name %AFTERHAVING) AS HavingClauseNames
 FROM Sample.Person
 GROUP BY Home_State
 HAVING Name LIKE 'M%'
 ORDER BY Home_State

See Also
• Aggregate Functions overview

• %DLIST aggregate function

• JSON_ARRAYAGG aggregate function

• XMLAGG aggregate function

• SELECT statement

InterSystems SQL Reference 397

LIST

MAX
An aggregate function that returns the maximum data value in a specified column.

MAX([ALL | DISTINCT [BY(col-list)]] expression [%FOREACH(col-list)] [%AFTERHAVING])

Arguments

Optional — Applies the aggregate function to all values. ALL has no effect on the
value returned by MAX. It is provided for SQL-92 compatibility.

ALL

Optional — A DISTINCT clause that specifies that each unique value is considered.
DISTINCT has no effect on the value returned by MAX. It is provided for SQL-92
compatibility.

DISTINCT

Any valid expression. Usually the name of a column that contains the values from
which the maximum value is to be returned.

expression

Optional — A column name or a comma-separated list of column names. See SELECT
for further information on %FOREACH.

%FOREACH(col-list)

Optional — Applies the condition found in the HAVING clause.%AFTERHAVING

MAX returns the same data type as expression.

Description
The MAX aggregate function returns the largest (maximum) of the values of expression. Commonly, expression is the
name of a field, (or an expression containing one or more field names) in the multiple rows returned by a query.

MAX can be used in a SELECT query or subquery that references either a table or a view. MAX can appear in a SELECT
list or HAVING clause alongside ordinary field values.

MAX cannot be used in a WHERE clause. MAX cannot be used in the ON clause of a JOIN, unless the SELECT is a
subquery.

Like most other aggregate functions, MAX cannot be applied to a stream field. Attempting to do so generates an SQLCODE
-37 error.

Unlike most other aggregate functions, the ALL and DISTINCT keywords, including MAX(DISTINCT BY(col2) col1),
perform no operation in MAX. They are provided for SQL–92 compatibility.

Data Values

The specified field used by MAX can be numeric or nonnumeric. For a numeric data type field, maximum is defined as
highest in numeric value; thus -3 is higher than -7. For a non-numeric data type field, maximum is defined as highest in
string collation sequence; thus '-7' is higher than '-3'.

An empty string ('') value is treated as CHAR(0).

A predicate uses the collation type defined for the field. By default, string data type fields are defined with SQLUPPER
collation, which is not case-sensitive. The “Collation” chapter of Using InterSystems SQL provides details on defining the
string collation default for the current namespace and specifying a non-default field collation type when defining a
field/property.

When the field’s defined collation type is SQLUPPER, MAX returns strings in all uppercase letters. Thus SELECT
MAX(Name) returns 'ZWIG', regardless of the original lettercase of the data. But because comparisons are performed using
uppercase collation, the clause HAVING Name=MAX(Name) selects rows with the Name value 'Zwig', 'ZWIG', and 'zwig'.

398 InterSystems SQL Reference

SQL Aggregate Functions

For numeric values, the scale returned is the same as the expression scale.

NULL values in data fields are ignored when deriving a MAX aggregate function value. If no rows are returned by the
query, or the data field value for all rows returned is NULL, MAX returns NULL.

Changes Made During the Current Transaction
Like all aggregate functions, MAX always returns the current state of the data, including uncommitted changes, regardless
of the current transaction’s isolation level. For further details, refer to SET TRANSACTION and START TRANSACTION.

Examples
The following query returns the highest (maximum) salary in the Sample.Employee database:

SELECT '$' || MAX(Salary) As TopSalary
 FROM Sample.Employee

The following query returns one row for each state that contains at least one employee with a salary smaller than $25,000.
Using the %AFTERHAVING keyword, each row returns the maximum employee salary smaller than $25,000. Each row
also returns the minimum salary and the maximum salary for all employees in that state:

SELECT Home_State,
 '$' || MAX(Salary %AFTERHAVING) AS MaxSalaryBelow25K,
 '$' || MIN(Salary) AS MinSalary,
 '$' || MAX(Salary) AS MaxSalary
 FROM Sample.Employee
 GROUP BY Home_State
 HAVING Salary < 25000
 ORDER BY Home_State

The following query returns the lowest (minimum) and highest (maximum) name in collation sequence found in the Sam-
ple.Employee database:

SELECT Name,MIN(Name),MAX(Name)
 FROM Sample.Employee

Note that MIN and MAX convert Name values to uppercase before comparison.

The following query returns the highest (maximum) salary for an employee whose Home_State is 'VT' in the Sam-
ple.Employee database:

SELECT MAX(Salary)
 FROM Sample.Employee
 WHERE Home_State = 'VT'

The following query returns the number of employees and the highest (maximum) employee salary for each Home_State
in the Sample.Employee database:

SELECT Home_State,
 COUNT(Home_State) As NumEmployees,
 MAX(Salary) As TopSalary
 FROM Sample.Employee
 GROUP BY Home_State
 ORDER BY TopSalary

See Also
• Aggregate Functions overview

• MIN aggregate function

InterSystems SQL Reference 399

MAX

MIN
An aggregate function that returns the minimum data value in a specified column.

MIN([ALL | DISTINCT [BY(col-list)]] expression [%FOREACH(col-list)] [%AFTERHAVING])

Arguments

Optional — Applies the aggregate function to all values. ALL has no effect on the value
returned by MIN. It is provided for SQL-92 compatibility.

ALL

Optional — Specifies that each unique value is considered. DISTINCT has no effect
on the value returned by MIN. It is provided for SQL-92 compatibility.

DISTINCT

Any valid expression. Usually the name of a column that contains the values from
which the minimum value is to be returned.

expression

Optional — A column name or a comma-separated list of column names. See SELECT
for further information on %FOREACH.

%FOREACH(col-list)

Optional — Applies the condition found in the HAVING clause.%AFTERHAVING

MIN returns the same data type as expression.

Description
The MIN aggregate function returns the smallest (minimum) of the values of expression. Commonly, expression is the
name of a field, (or an expression containing one or more field names) in the multiple rows returned by a query.

MIN can be used in a SELECT query or subquery that references either a table or a view. MIN can appear in a SELECT
list or HAVING clause alongside ordinary field values.

MIN cannot be used in a WHERE clause. MIN cannot be used in the ON clause of a JOIN, unless the SELECT is a subquery.

Like most other aggregate functions, MIN cannot be applied to a stream field. Attempting to do so generates an SQLCODE
-37 error.

Unlike most other aggregate functions, the ALL and DISTINCT keywords, including MIN(DISTINCT BY(col2) col1),
perform no operation in MIN. They are provided for SQL–92 compatibility.

Data Values

The specified field used by MIN can be numeric or nonnumeric. For a numeric data type field, minimum is defined as
lowest in numeric value; thus -7 is lower than -3. For a non-numeric data type field, minimum is defined as lowest in string
collation sequence; thus '-3' is lower than '-7'.

An empty string ('') value is treated as CHAR(0).

A predicate uses the collation type defined for the field. By default, string data type fields are defined with SQLUPPER
collation, which is not case-sensitive. The “Collation” chapter of Using InterSystems SQL provides details on defining the
string collation default for the current namespace and specifying a non-default field collation type when defining a
field/property.

When the field’s defined collation type is SQLUPPER, MIN returns strings in all uppercase letters. Thus SELECT
MIN(Name) returns 'AARON', regardless of the original lettercase of the data. But because comparisons are performed
using uppercase collation, the clause HAVING Name=MIN(Name) selects rows with the Name value 'Aaron', 'AARON',
and 'aaron'.

For numeric values, the scale returned is the same as the expression scale.

400 InterSystems SQL Reference

SQL Aggregate Functions

NULL values in data fields are ignored when deriving a MIN aggregate function value. If no rows are returned by the
query, or the data field value for all rows returned is NULL, MIN returns NULL.

Changes Made During the Current Transaction
Like all aggregate functions, MIN always returns the current state of the data, including uncommitted changes, regardless
of the current transaction’s isolation level. For further details, refer to SET TRANSACTION and START TRANSACTION.

Examples
In the following examples a dollar sign ($) is concatenated to Salary amounts.

The following query returns the lowest (minimum) salary in the Sample.Employee database:

SELECT '$' || MIN(Salary) AS LowSalary
 FROM Sample.Employee

The following query returns one row for each state that contains at least one employee with a salary larger than $75,000.
Using the %AFTERHAVING keyword, each row returns the minimum employee salary larger than $75,000. Each row
also returns the minimum salary and the maximum salary for all employees in that state:

SELECT Home_State,
 '$' || MIN(Salary %AFTERHAVING) AS MinSalaryAbove75K,
 '$' || MIN(Salary) AS MinSalary,
 '$' || MAX(Salary) AS MaxSalary
 FROM Sample.Employee
 GROUP BY Home_State
 HAVING Salary > 75000
 ORDER BY MinSalaryAbove75K

The following query returns the lowest (minimum) and highest (maximum) name in collation sequence found in the Sam-
ple.Employee database:

SELECT Name,MIN(Name),MAX(Name)
 FROM Sample.Employee

Note that MIN and MAX convert Name values to uppercase before comparison.

The following query returns the lowest (minimum) salary for an employee whose Home_State is 'VT' in the Sample.Employee
database:

SELECT MIN(Salary)
 FROM Sample.Employee
 WHERE Home_State = 'VT'

The following query returns the number of employees and the lowest (minimum) employee salary for each Home_State in
the Sample.Employee database:

SELECT Home_State,
 COUNT(Home_State) As NumEmployees,
 MIN(Salary) As LowSalary
 FROM Sample.Employee
 GROUP BY Home_State
 ORDER BY LowSalary

See Also
• Aggregate Functions overview

• MAX aggregate function

InterSystems SQL Reference 401

MIN

STDDEV, STDDEV_SAMP, STDDEV_POP
Aggregate functions that return the statistical standard deviation of a data set.

STDDEV([ALL | DISTINCT [BY(col-list)]] expression [%FOREACH(col-list)] [%AFTERHAVING])

STDDEV_SAMP([ALL | DISTINCT [BY(col-list)]] expression [%FOREACH(col-list)]
[%AFTERHAVING])

STDDEV_POP([ALL | DISTINCT [BY(col-list)]] expression [%FOREACH(col-list)]
[%AFTERHAVING])

Arguments

Optional — Specifies that standard deviation functions return the standard deviation of
all values for expression. This is the default if no keyword is specified.

ALL

Optional — A DISTINCT clause that specifies that standard deviation functions return
the standard deviation of the distinct (unique) expression values. DISTINCT can specify
a BY(col-list) subclause, where col-list can be a single field or a comma-separated
list of fields.

DISTINCT

Any valid expression. Usually the name of a column that contains the data values to
be analyzed for standard deviation.

expression

Optional — A column name or a comma-separated list of column names. See SELECT
for further information on %FOREACH.

%FOREACH(col-list)

Optional — Applies the condition found in the HAVING clause.%AFTERHAVING

These functions return the NUMERIC data type unless expression is data type DOUBLE. If expression is DOUBLE, they
return DOUBLE.

Description
These three standard deviation aggregate functions return the statistical standard deviation of the distribution of the values
of expression, after discarding NULL values. That is, the amount of standard deviation from the mean value of the data
set, expressed as a positive number. The larger the return value, the more variation there is within the data set of values.

The STDDEV, STDDEV_SAMP (sample), and STDDEV_POP (population) functions are derived from the corresponding
variance aggregate functions:

VARIANCESTDDEV

VAR_SAMPSTDDEV_SAMP

VAR_POPSTDDEV_POP

The standard deviation is the square root of the corresponding variance value. Refer to these variance aggregate functions
for further details.

These standard deviation functions can be used in a SELECT query or subquery that references either a table or a view.
They can appear in a SELECT list or HAVING clause alongside ordinary field values.

These standard deviation functions cannot be used in a WHERE clause. They cannot be used in the ON clause of a JOIN,
unless the SELECT is a subquery.

These standard deviation functions return a value of data type NUMERIC with a precision of 36 and a scale of 17, unless
expression is data type DOUBLE in which case it returns data type DOUBLE.

402 InterSystems SQL Reference

SQL Aggregate Functions

These functions are normally applied to a field or expression that has a numeric value. They evaluate nonnumeric values,
including the empty string (''), as zero (0).

These standard deviation functions ignore NULL values in data fields. If no rows are returned by the query, or the data
field value for all rows returned is NULL, they return NULL.

The standard deviation functions, like all aggregate functions, can take an optional DISTINCT clause. STDDEV(DISTINCT
col1) returns the standard deviation of those col1 field values that are distinct (unique). STDDEV(DISTINCT BY(col2)
col1) returns the standard deviation of the col1 field values in records where the col2 values are distinct (unique). Note
however that the distinct col2 values may include a single NULL as a distinct value.

Changes Made During the Current Transaction
Like all aggregate functions, standard deviation functions always returns the current state of the data, including uncommitted
changes, regardless of the current transaction’s isolation level. For further details, refer to SET TRANSACTION and
START TRANSACTION.

Examples
The following example uses STDDEV to return the standard deviation in the ages of the employees in Sample.Employee,
and the standard deviation in the distinct ages represented by one or more employees:

SELECT STDDEV(Age) AS AgeSD,STDDEV(DISTINCT Age) AS PerAgeSD
 FROM Sample.Employee

The following example uses STDDEV_POP to return the population standard deviation in the ages of the employees in
Sample.Employee, and the standard deviation in the distinct ages represented by one or more employees:

SELECT STDDEV_POP(Age) AS AgePopSD,STDDEV_POP(DISTINCT Age) AS PerAgePopSD
 FROM Sample.Employee

See Also
• Aggregate Functions overview

• VARIANCE, VAR_SAMP, VAR_POP aggregate functions

• AVG aggregate function

• COUNT aggregate function

InterSystems SQL Reference 403

STDDEV, STDDEV_SAMP, STDDEV_POP

SUM
An aggregate function that returns the sum of the values of a specified column.

SUM([ALL | DISTINCT [BY(col-list)]] expression [%FOREACH(col-list)] [%AFTERHAVING])

Arguments

Optional — Specifies that SUM return the sum of all values for expression. This is the
default if no keyword is specified.

ALL

Optional — A DISTINCT clause that specifies that SUM return the sum of the distinct
(unique) values for expression. DISTINCT can specify a BY(col-list) subclause,
where col-list can be a single field or a comma-separated list of fields.

DISTINCT

Any valid expression. Usually the name of a column that contains the data values to
be summed.

expression

Optional — A column name or a comma-separated list of column names. See SELECT
for further information on %FOREACH.

%FOREACH(col-list)

Optional — Applies the condition found in the HAVING clause.%AFTERHAVING

SUM returns the same data type as expression, with the following exception: TINYINT, SMALLINT and INTEGER are
all returned as data type INTEGER.

Description
The SUM aggregate function returns the sum of the values of expression. Commonly, expression is the name of a field,
(or an expression containing one or more field names) in the multiple rows returned by a query.

SUM can be used in a SELECT query or subquery that references either a table or a view. SUM can appear in a SELECT
list or HAVING clause alongside ordinary field values.

SUM cannot be used in a WHERE clause. SUM cannot be used in the ON clause of a JOIN, unless the SELECT is a
subquery.

SUM, like all aggregate functions, can take an optional DISTINCT clause. SUM(DISTINCT col1) totals only those col1
field values that are distinct (unique). SUM(DISTINCT BY(col2) col1) totals only those col1 field values in records
where the col2 values are distinct (unique). Note however that the distinct col2 values may include a single NULL as a
distinct value.

Data Values

SUM returns data type INTEGER for an expression with data type INT, SMALLINT, or TINYINT. SUM returns data
type BIGINT for an expression with data type BIGINT. SUM returns data type DOUBLE for an expression with data type
DOUBLE. For all other numeric data types, SUM returns data type NUMERIC.

SUM returns a value with a precision of 18. The scale of the returned value is the same as the expression scale, with the
following exception. If expression is a numeric value with data type VARCHAR or VARBINARY, the scale of the returned
value is 8.

By default, aggregate functions use Logical (internal) data values, rather than Display values.

SUM is normally applied to a field or expression that has a numeric value. Because only minimal type checking is performed,
it is possible (though rarely meaningful) to invoke it for nonnumeric fields. SUM evaluates nonnumeric values, including
the empty string (''), as zero (0). If expression is data type VARCHAR, the return value to ODBC or JDBC is of data type
DOUBLE.

404 InterSystems SQL Reference

SQL Aggregate Functions

NULL values in data fields are ignored when deriving a SUM aggregate function value. If no rows are returned by the
query, or the data field value for all rows returned is NULL, SUM returns NULL.

Optimization

SQL optimization of a SUM calculation can use a bitslice index, if this index is defined for the field.

Changes Made During the Current Transaction
Like all aggregate functions, SUM always returns the current state of the data, including uncommitted changes, regardless
of the current transaction’s isolation level. For further details, refer to SET TRANSACTION and START TRANSACTION.

Examples
In the following examples a dollar sign ($) is concatenated to Salary amounts.

The following query returns the sum of the salaries of all employees in the Sample.Employee database:

SELECT '$' || SUM(Salary) AS Total_Payroll
 FROM Sample.Employee

The following query uses %AFTERHAVING to return the sum of all salaries and the sum of salaries over $80,000 for each
state in which there is at least one person with a salary > $80,000:

SELECT Home_State,
 '$' || SUM(Salary) AS Total_Payroll,
 '$' || SUM(Salary %AFTERHAVING) AS Exec_Payroll
 FROM Sample.Employee
 GROUP BY Home_State
 HAVING Salary > 80000
 ORDER BY Home_State

The following query returns the sum and the average of the salaries for each job title in the Sample.Employee database:

SELECT Title,
 '$' || SUM(Salary) AS Total,
 '$' || AVG(Salary) AS Average
 FROM Sample.Employee
 GROUP BY Title
 ORDER BY Average

The following query shows SUM used with an arithmetic expression. For each job title in the Sample.Employee database
it returns the sum of the current salaries and the sum of the salaries with a 10% increase in pay:

SELECT Title,
 '$' || SUM(Salary) AS BeforeRaises,
 '$' || SUM(Salary * 1.1) AS AfterRaises
 FROM Sample.Employee
 GROUP BY Title
 ORDER BY Title

The following query shows SUM used with a logical expression using the CASE statement. It counts all of the salaried
employees, and uses SUM to count all of the salaried employees earning $90,000 or more.

SELECT COUNT(Salary) As AllPaid,
 SUM(CASE WHEN (Salary >= 90000)
 THEN 1 ELSE 0 END) As TopPaid
 FROM Sample.Employee

See Also
• Aggregate Functions overview

• AVG aggregate function

• COUNT aggregate function

InterSystems SQL Reference 405

SUM

VARIANCE,VAR_SAMP,VAR_POP
Aggregate functions that return the statistical variance of a data set.

VARIANCE([ALL | DISTINCT [BY(col-list)]] expression [%FOREACH(col-list)]
[%AFTERHAVING])

VAR_SAMP([ALL | DISTINCT [BY(col-list)]] expression [%FOREACH(col-list)]
[%AFTERHAVING])

VAR_POP([ALL | DISTINCT [BY(col-list)]] expression [%FOREACH(col-list)] [%AFTERHAVING])

Arguments

Optional — Specifies that statistical variance functions return the variance of all values
for expression. This is the default if no keyword is specified.

ALL

Optional — A DISTINCT clause that specifies that statistical variance functions return
the variance of the distinct (unique) expression values. DISTINCT can specify a
BY(col-list) subclause, where col-list can be a single field or a comma-separated
list of fields.

DISTINCT

Any valid expression. Usually the name of a column that contains the data values to
be analyzed for variance.

expression

Optional — A column name or a comma-separated list of column names. See SELECT
for further information on %FOREACH.

%FOREACH(col-list)

Optional — Applies the condition found in the HAVING clause.%AFTERHAVING

These functions return the NUMERIC data type unless expression is data type DOUBLE. If expression is DOUBLE, they
return DOUBLE.

Description
These three variance aggregate functions return the statistical variance of the values of expression, after discarding NULL
values. That is, the amount of variation from the mean value of the data set, expressed as a positive number. The larger the
return value, the more variation there is within the data set of values. InterSystems SQL also supplies aggregate functions
to return the standard deviation corresponding to each of these variance functions.

There are slight variations in how this statistical variation is derived:

• VARIANCE: Returns 0 if all of the values in the data set have the same value (no variability). Returns 0 if the data
set consists of only one value (no possible variability). Returns NULL if the data set has no values.

The VARIANCE calculation is:

(SUM(expression**2) * COUNT(expression)) - SUM(expression**2)

COUNT(expression) * (COUNT(expression) - 1)

• VAR_SAMP: Sample variance. Returns 0 if all of the values in the data set have the same value (no variability).
Returns NULL if the data set consists of only one value (no possible variability). Returns NULL if the data set has no
values. Uses the same variant calculation as VARIANCE.

• VAR_POP: Population variance. Returns 0 if all of the values in the data set have the same value (no variability).
Returns 0 if the data set consists of only one value (no possible variability). Returns NULL if the data set has no values.

The VAR_POP calculation is:

406 InterSystems SQL Reference

SQL Aggregate Functions

(SUM(expression**2) * COUNT(expression)) - (SUM(expression) **2)

(COUNT(expression) **2)

These variance aggregate functions can be used in a SELECT query or subquery that references either a table or a view.
They can appear in a SELECT list or HAVING clause alongside ordinary field values.

These variance aggregate functions cannot be used in a WHERE clause. They cannot be used in the ON clause of a JOIN,
unless the SELECT is a subquery.

These variance aggregate functions return a value of data type NUMERIC with a precision of 36 and a scale of 17, unless
expression is data type DOUBLE in which case the function returns data type DOUBLE.

These variance aggregate functions are normally applied to a field or expression that has a numeric value. They evaluate
nonnumeric values, including the empty string (''), as zero (0).

These variance aggregate functions ignore NULL values in data fields. If no rows are returned by the query, or the data
field value for all rows returned is NULL, they return NULL.

The statistical variance functions, like all aggregate functions, can take an optional DISTINCT clause. VARIANCE(DISTINCT
col1) returns the variance of those col1 field values that are distinct (unique). VARIANCE(DISTINCT BY(col2)
col1) returns the variance of the col1 field values in records where the col2 values are distinct (unique). Note however
that the distinct col2 values may include a single NULL as a distinct value.

Changes Made During the Current Transaction
Like all aggregate functions, the variance functions always returns the current state of the data, including uncommitted
changes, regardless of the current transaction’s isolation level. For further details, refer to SET TRANSACTION and
START TRANSACTION.

Examples
The following example uses VARIANCE to return the variance in the ages of the employees in Sample.Employee, and
the variance in the distinct ages represented by one or more employees:

SELECT VARIANCE(Age) AS AgeVar,VARIANCE(DISTINCT Age) AS PerAgeVar
 FROM Sample.Employee

The following example uses VAR_POP to return the population variance in the ages of the employees in Sample.Employee,
and the variance in the distinct ages represented by one or more employees:

SELECT VAR_POP(Age) AS AgePopVar,VAR_POP(DISTINCT Age) AS PerAgePopVar
 FROM Sample.Employee

See Also
• Aggregate Functions overview

• AVG aggregate function

• COUNT aggregate function

• STDDEV, STDDEV_SAMP, STDDEV_POP aggregate functions

InterSystems SQL Reference 407

VARIANCE, VAR_SAMP, VAR_POP

XMLAGG
An aggregate function that creates a concatenated string of values.

XMLAGG([ALL | DISTINCT [BY(col-list)]] string-expr [%FOREACH(col-list)] [%AFTERHAVING])

Arguments

Optional — Specifies that XMLAGG returns a concatenated string
of all values for string-expr. This is the default if no keyword is
specified.

ALL

Optional — A DISTINCT clause that specifies that XMLAGG returns
a concatenated string containing only the unique string-expr values.
DISTINCT can specify a BY(col-list) subclause, where col-list
can be a single field or a comma-separated list of fields.

DISTINCT

An SQL expression that evaluates to a string. Commonly this is the
name of a column from which to retrieve data.

string-expr

Optional — A column name or a comma-separated list of column
names. See SELECT for further information on %FOREACH.

%FOREACH(col-list)

Optional — Applies the condition found in the HAVING clause.%AFTERHAVING

Description
The XMLAGG aggregate function returns a concatenated string of all values from string-expr. The return value is of data
type VARCHAR, with a default length of 4096.

• A simple XMLAGG (or XMLAGG ALL) returns a string containing a concatenated string composed of all the values
for string-expr in the selected rows. Rows where string-expr is NULL are ignored.

The following two examples both return the same single value, a concatenated string of all of the values listed in the
Home_State column of the Sample.Person table.

SELECT XMLAGG(Home_State) AS All_State_Values
FROM Sample.Person

SELECT XMLAGG(ALL Home_State) AS ALL_State_Values
FROM Sample.Person

Note that this concatenated string contains duplicate values.

• An XMLAGG DISTINCT returns a concatenated string composed of all the distinct (unique) values for string-expr
in the selected rows: XMLAGG(DISTINCT col1). Rows where string-expr is NULL are ignored. XMLAGG(DISTINCT
BY(col2) col1) returns a concatenated string containing only those col1 field values in records where the col2
values are distinct (unique). Note however that the distinct col2 values may include a single NULL as a distinct value.

Rows where string-expr is NULL are omitted from the return value. Rows where string-expr is the empty string ('') are
omitted from the return value if at least one non-empty string value is returned. If the only non-NULL string-expr values
are the empty string (''), the return value is a single empty string.

XMLAGG does not support data stream fields. Specifying a stream field for string-expr results in an SQLCODE -37.

XML and XMLAGG

One common use of XMLAGG is to tag each data item from a column. This is done by combining XMLAGG and
XMLELEMENT as shown in the following example:

408 InterSystems SQL Reference

SQL Aggregate Functions

SELECT XMLAGG(XMLELEMENT("para",Home_State))
FROM Sample.Person

This results in an output string such as the following:

<para>LA</para><para>MN</para><para>LA</para><para>NH</para><para>ME</para>...

XMLAGG and ORDER BY

The XMLAGG function concatenates values of a table column from multiple rows into a single string. Because an ORDER
BY clause is applied to the query result set after all aggregate fields are evaluated, ORDER BY cannot directly affect the
sequence of values within this string. Under certain circumstances, XMLAGG results may appear in sequential order, but
this ordering should not be relied upon. The values listed within a given aggregate result value cannot be explicitly ordered.

Related Aggregate Functions

• XMLAGG returns a string of concatenated values.

• LIST returns a comma-separated list of values.

• %DLIST returns an InterSystems IRIS list containing an element for each value.

• JSON_ARRAYAGG returns a JSON array of values.

Examples
The following example creates a concatenated string of all of the distinct values found in the FavoriteColors column of the
Sample.Person table. Thus every row has the same value for the All_Colors column. Note that while some rows have a
NULL value for FavoriteColors, this value is not included in the concatenated string. Data values are returned in internal
format.

SELECT Name,FavoriteColors,
 XMLAGG(DISTINCT FavoriteColors) AS All_Colors_In_Table
FROM Sample.Person
ORDER BY FavoriteColors

The following example returns concatenated strings of Home_State values that begin with “A”. It returns the distinct
Home_State values (DISTINCT Home_State); the Home_State values corresponding to distinct Home_City values
(DISTINCT BY(Home_City) Home_State), which may possibly including one unique NULL for Home_City; and
all Home_State values:

SELECT XMLAGG(DISTINCT Home_State) AS DistStates,
 XMLAGG(DISTINCT BY(Home_City) Home_State) AS DistCityStates,
 XMLAGG(Home_State) AS AllStates
FROM Sample.Person
WHERE Home_State %STARTSWITH 'A'

The following example creates a concatenated string of all of the distinct values found in the Home_City column for each
of the states. Every row from the same state contains a list of all of the distinct city values for that state:

SELECT Home_State, Home_City,
 XMLAGG(DISTINCT Home_City %FOREACH(Home_State)) AS All_Cities_In_State
FROM Sample.Person
ORDER BY Home_State

The following example uses the %AFTERHAVING keyword. It returns a row for each Home_State that contains at least
one Name value that fulfills the HAVING clause condition (a name that begins with either “C” or “K”). The first XMLAGG
function returns a concatenated string consisting of all of the names for that state. The second XMLAGG function returns
a concatenated string consisting of only those names that fulfill the HAVING clause condition:

InterSystems SQL Reference 409

XMLAGG

SELECT Home_State,
 XMLAGG(Name) AS AllNames,
 XMLAGG(Name %AFTERHAVING) AS HaveClauseNames
 FROM Sample.Person
 GROUP BY Home_State
 HAVING Name LIKE 'C%' OR Name LIKE 'K%'
 ORDER BY Home_state

For the following examples, suppose we have the following table, AutoClub:

YearModelMakeName

1971FirebirdPontiacSmith,Joe

1997SW2SaturnSmith,Joe

1999BonnevillePontiacSmith,Joe

1966MustangFordJones,Scott

2000MiataMazdaJones,Scott

The query:

SELECT DISTINCT Name, XMLAGG(Make) AS String_Of_Makes
FROM AutoClub WHERE Name = 'Smith,Joe'

returns:

String_Of_MakesName

PontiacSaturnPontiacSmith,Joe

The query:

SELECT DISTINCT Name, XMLAGG(DISTINCT Make) AS String_Of_Makes
FROM AutoClub WHERE Name = 'Smith,Joe'

returns:

String_Of_MakesName

PontiacSaturnSmith,Joe

See Also
• Aggregate Functions overview

• %DLIST aggregate function

• JSON_ARRAYAGG aggregate function

• LIST aggregate function

• XMLELEMENT function

• SELECT statement

410 InterSystems SQL Reference

SQL Aggregate Functions

SQL Functions

InterSystems SQL Reference 411

ABS
A numeric function that returns the absolute value of a numeric expression.

ABS(numeric-expression)
{fn ABS(numeric-expression)}

Arguments

A number whose absolute value is to be returned.numeric-expression

ABS returns the same data type as numeric-expression.

Description
ABS returns the absolute value, which is always zero or a positive number. If numeric-expression is not a number (for
example, the string 'abc', or the empty string '') ABS returns 0. ABS returns <null> when passed a NULL value.

Note that ABS can be used as an ODBC scalar function (with the curly brace syntax) or as an SQL general function.

This function can also be invoked from ObjectScript using the ABS() method call:

 WRITE $SYSTEM.SQL.ABS(-0099)

Examples
The following example shows the two forms of ABS:

SELECT ABS(-99) AS AbsGen,{fn ABS(-99)} AS AbsODBC

both returns 99.

The following examples show how ABS handles some other numbers. InterSystems SQL converts numeric-expression to
canonical form, deleting leading and trailing zeros and evaluating exponents, before invoking ABS.

SELECT ABS(007) AS AbsoluteValue

returns 7.

SELECT ABS(-0.000) AS AbsoluteValue

returns 0.

SELECT ABS(-99E4) AS AbsoluteValue

returns 990000.

SELECT ABS(-99E-4) AS AbsoluteValue

returns .0099.

See Also
• SQL functions: CONVERT TO_NUMBER

• ObjectScript function: $ZABS

412 InterSystems SQL Reference

SQL Functions

ACOS
A scalar numeric function that returns the arc-cosine, in radians, of a given cosine.

{fn ACOS(numeric-expression)}

Arguments

A numeric expression whose value is between -1 and 1. This is the cosine of
the angle.

numeric-expression

ACOS returns either the NUMERIC or DOUBLE data type. If numeric-expression is data type DOUBLE, ACOS returns
DOUBLE; otherwise, it returns NUMERIC.

Description
ACOS takes a numeric value and returns the inverse (arc) of its cosine as a floating point number. The value of
numeric-expression must be a signed decimal number ranging from 1 to -1 (inclusive). A number outside of this range
causes a runtime error, generating an SQLCODE -400 (fatal error occurred). ACOS returns NULL if passed a NULL value.
ACOS treats nonnumeric strings, including the empty string (''), as the numeric value 0.

ACOS returns a value with a precision of 19 and a scale of 18.

ACOS can only be used as an ODBC scalar function (with the curly brace syntax).

You can use the DEGREES function to convert radians to degrees. You can use the RADIANS function to convert degrees
to radians.

Examples
The following examples show the effect of ACOS on two cosines:

SELECT {fn ACOS(0.52)} AS ArcCosine

returns 1.023945...

SELECT {fn ACOS(-1)} AS ArcCosine

returns pi (3.14159...).

See Also
• SQL functions: ASIN, ATAN, COS, COT, SIN, TAN

• ObjectScript function: $ZARCCOS

InterSystems SQL Reference 413

ACOS

ASCII
A string function that returns the integer ASCII code value of the first (leftmost) character of a string expression.

ASCII(string-expression)
{fn ASCII(string-expression)}

Arguments

A string expression, which can be the name of a column, a string literal,
or the result of another scalar function, where the underlying data type
can be represented as any character type (such as CHAR or VARCHAR).
A string expression of type CHAR or VARCHAR.

string-expression

Description
ASCII returns NULL if passed a NULL or an empty string value. The returning of NULL for empty string is consistent
with SQL Server.

Note that ASCII can be invoked as an ODBC scalar function (with the curly brace syntax) or as an SQL general function.

Examples
The following examples both returns 90, which is the ASCII value of the character Z:

SELECT ASCII('Z') AS AsciiCode

SELECT {fn ASCII('ZEBRA')} AS AsciiCode

InterSystems SQL converts numerics to canonical form before performing ASCII conversion. The following example
returns 55, which is the ASCII value of the number 7:

SELECT ASCII(+007) AS AsciiCode

This number parsing is not done if the numeric is presented as a string. The following example returns 43, which is the
ASCII value of the plus (+) character:

SELECT ASCII('+007') AS AsciiCode

See Also
• SQL functions: CHAR

• ObjectScript functions: $ASCII $ZLASCII $ZWASCII

414 InterSystems SQL Reference

SQL Functions

ASIN
A scalar numeric function that returns the arc-sine, in radians, of the sine of an angle.

{fn ASIN(numeric-expression)}

Arguments

A numeric expression whose value is between -1 and 1. This is the sine of the
angle.

numeric-expression

ASIN returns either the NUMERIC or DOUBLE data type. If numeric-expression is data type DOUBLE, ASIN returns
DOUBLE; otherwise, it returns NUMERIC.

Description
ASIN returns the inverse (arc) of the sine of an angle as a floating point number. The value of numeric-expression must
be a signed decimal number ranging from 1 to -1 (inclusive). A number outside of this range causes a runtime error, gener-
ating an SQLCODE -400 (fatal error occurred). ASIN returns NULL if passed a NULL value. ASIN treats nonnumeric
strings, including the empty string (''), as the numeric value 0.

ASIN returns a value with a precision of 19 and a scale of 18.

ASIN can only be used as an ODBC scalar function (with the curly brace syntax).

You can use the DEGREES function to convert radians to degrees. You can use the RADIANS function to convert degrees
to radians.

Examples
The following examples show the effect of ASIN on two sines.

SELECT {fn ASIN(0.52)} AS ArcSine

returns 0.5468509506...

SELECT {fn ASIN(-1.00)} AS ArcSine

returns -1.5707963267...

See Also
• SQL functions: ACOS, ATAN, COS, COT, SIN, TAN

• ObjectScript function: $ZARCSIN

InterSystems SQL Reference 415

ASIN

ATAN
A scalar numeric function that returns the arc-tangent, in radians, of the tangent of an angle.

{fn ATAN(numeric-expression)}

Arguments

A numeric expression. This is the tangent of the angle.numeric-expression

ATAN returns either the NUMERIC or DOUBLE data type. If numeric-expression is data type DOUBLE, ATAN returns
DOUBLE; otherwise, it returns NUMERIC.

Description
ATAN takes any numeric value and returns the inverse (arc) of the tangent of an angle as a floating point number. ATAN
returns NULL if passed a NULL value. ATAN treats nonnumeric strings, including the empty string (''), as the numeric
value 0.

ATAN returns a value with a precision of 36 and a scale of 18.

ATAN can only be used as an ODBC scalar function (with the curly brace syntax).

You can use the DEGREES function to convert radians to degrees. You can use the RADIANS function to convert degrees
to radians.

Example
The following example shows the effect of ATAN:

SELECT {fn ATAN(0.52)} AS ArcTangent

returns 0.47951929199...

See Also
• SQL functions: ACOS, ASIN, COS, COT, SIN, TAN

• ObjectScript function: $ZARCTAN

416 InterSystems SQL Reference

SQL Functions

ATAN2
A scalar numeric function that takes two coordinates and returns the arc-tangent angle in radians.

{fn ATAN2(y,x)}

Arguments

A numeric expression specifying the y axis coordinate.y

A numeric expression specifying the x axis coordinate.x

ATAN2 returns either the NUMERIC or DOUBLE data type. If numeric-expression is data type DOUBLE, ATAN2 returns
DOUBLE; otherwise, it returns NUMERIC.

Description
ATAN2 takes the Cartesian coordinates of a ray (y,x) and returns the inverse (arc) of the tangent of an angle as a floating
point number. The signs of both coordinates are used to determine the Cartesian coordinate. When x is a positive value,
ATAN2 returns the same value as ATAN(y/x). ATAN2 returns NULL if passed a NULL value. ATAN2 treats nonnumeric
strings, including the empty string (''), as the numeric value 0.

ATAN2 returns a value with a precision of 36 and a scale of 18.

ATAN2 can only be used as an ODBC scalar function (with the curly brace syntax).

You can use the DEGREES function to convert radians to degrees. You can use the RADIANS function to convert degrees
to radians.

Example
The following example invokes ATAN2:

SELECT {fn ATAN2(15,30)} AS ArcTangent

returns 0.46

See Also
• SQL functions: ACOS, ASIN, ATAN, COS, COT, SIN, TAN

• ObjectScript function: $ZARCTAN

InterSystems SQL Reference 417

ATAN2

CAST
A function that converts a given expression to a specified data type.

CAST(expr AS CHAR | CHARACTER | VARCHAR | NCHAR | NVARCHAR)
CAST(expr AS CHAR(n) | CHARACTER(n) | VARCHAR(n))
CAST(expr AS CHAR VARYING | CHARACTER VARYING)
CAST(expr AS INT | INTEGER | BIGINT | SMALLINT | TINYINT)
CAST(expr AS DEC | DECIMAL | NUMERIC)
CAST(expr AS DEC(p[,s]) | DECIMAL(p[,s]) | NUMERIC(p[,s])
CAST(expr AS DOUBLE)
CAST(expr AS MONEY | SMALLMONEY)
CAST(expr AS DATE)
CAST(expr AS TIME)
CAST(expr AS POSIXTIME)
CAST(expr AS TIMESTAMP | DATETIME | SMALLDATETIME)
CAST(expr AS BIT)
CAST(expr AS BINARY | BINARY VARYING | VARBINARY)
CAST(expr AS BINARY(n) | BINARY VARYING(n) | VARBINARY(n))
CAST(expr AS GUID)

Arguments

An SQL expression, commonly a literal or a data field of a table.expr

An integer, indicating the maximum number of characters to return. If n is smaller than the expr
data, the returned data is truncated to n characters. If n is larger than the expr data, no padding
is performed.

n

Optional — p=Precision (maximum number of total digits), expressed as an integer. s=Scale
(maximum number of decimal digits), expressed as an integer. If scale is not specified, it defaults
to 15.

p,s

Description
The SQL CAST function converts the data type of an expression to the specified data type. CAST can convert the data
type of expr when that data type is a standard data type or a subclass of a standard data type such as %Library.String,
%Library.Time, %Library.Date, or %Library.TimeStamp.

You can cast expr to any of the following data types:

• CHAR or CHARACTER: represent a numeric or a string by its initial character. VARCHAR with no n defaults to a
length of 30 characters when specified to CAST or CONVERT. Otherwise, the VARCHAR data type (with no spec-
ified size) is mapped to a MAXLEN of 1 character, as shown in the Data Types table. NCHAR is equivalent to CHAR;
NVARCHAR is equivalent to VARCHAR.

• CHAR(n), CHARACTER(n), or VARCHAR(n): represent a numeric or a string by the number of characters specified
by n.

• CHAR VARYING or CHARACTER VARYING: represent a numeric or a string by the number of characters in the
original value.

• INT, INTEGER, BIGINT, SMALLINT, and TINYINT: represent a numeric by its integer portion. Decimal digits are
truncated.

• DEC, DECIMAL, and NUMERIC: represent a numeric by the number of digits in the original value. Converts using
the InterSystems IRIS $DECIMAL function, which converts $DOUBLE values to $DECIMAL values. The p (precision),
if specified, is retained as part of the defined data type, but does not affect the value returned by CAST. If you specify
a s (scale) value of a positive integer, the decimal value is rounded to the specified number of digits. (The appropriate

418 InterSystems SQL Reference

SQL Functions

number of trailing zeros are included for Display mode, but are truncated for Logical mode and ODBC mode.) If you
specify s=0, the numeric value is rounded to an integer. If you specify s=-1, the numeric value is truncated to an integer.

• DOUBLE represents the IEEE floating point standard. For further details, refer to the ObjectScript $DOUBLE function.

• MONEY and SMALLMONEY are currency numeric data types. The scale for currency data types is always 4.

• DATE: represents a date. Dates can be represented in any of the following formats, depending on context: the display
date format for your locale (for example, MM/DD/YYYY); the ODBC date format (YYYY-MM-DD); or the
$HOROLOG integer date storage format (nnnnn). You must specify the $HOROLOG date part value as an integer,
not a numeric string.

• TIME: represents a time. Times can be represented in any of the following formats, depending on context: the display
time format for your locale (for example, hh:mm:ss); the ODBC date format (hh:mm:ss); or the $HOROLOG integer
time storage format (nnnnn). You must specify the $HOROLOG time part value as an integer, not a numeric string.

• POSIXTIME: represents a date and time stamp as an encoded 64-bit signed integer. Refer to Date, Time, PosixTime,
and TimeStamp Data Types in Data Types for details.

• TIMESTAMP, DATETIME, and SMALLDATETIME: represents a date and time stamp with the format YYYY-MM-DD
hh:mm:ss.nnn. This corresponds to the ObjectScript $ZTIMESTAMP special variable.

• BIT represents a single binary value.

• BINARY, BINARY VARYING, and VARBINARY represent a value of data type %Library.Binary (xDBC data type
BINARY). The optional n length defaults to 1 for BINARY, 30 for BINARY VARYING and VARBINARY. No
conversion of the data is actually performed when casting to a binary value. InterSystems IRIS does truncate the length
of the value at the specified n length.

• GUID represents a 36-character value of data type %Library.UniqueIdentifier. If you supply an expr longer than 36
characters, CAST returns the first 36 characters of expr. To generate a GUID value, use the
%SYSTEM.Util.CreateGUID() method.

For a list of the data types supported by InterSystems SQL, see Data Types. For other data type conversions, refer to the
CONVERT function. If you specify a CAST with an unsupported data type, InterSystems IRIS issues an SQLCODE -376.

Casting Numerics

A numeric value can be cast to a numeric data type or to a character data type.

When casting a numeric results in a shortened value, the numeric is truncated, not rounded. For example, casting 98.765
to INT returns 98, to CHAR returns 9, and to CHAR(4) returns 98.7. Note that casting a negative number to CHAR returns
just the negative sign, and casting a fractional number to CHAR returns just the decimal point.

A numeric value can consist of the digits 0 through 9, a decimal point, one or more leading signs (+ or –), and the exponent
sign (the letter E or e) followed by, at most, one + or – sign. A numeric cannot contain group separator characters (commas).
For further details, see the literals section of “Language Elements” in Using InterSystems SQL.

Before a cast is performed, InterSystems SQL resolves a numeric to its canonical form: Exponentiation is performed.
InterSystems IRIS strips leading and trailing zeros, a leading plus sign, and a trailing decimal point. Multiple signs are
resolved before casting a numeric. However, SQL treats double negative signs as a comment indicator; encountering double
negative signs in a number results in InterSystems IRIS processing the remainder of that line of code as a comment.

An InterSystems IRIS floating point number can take a DEC, DECIMAL, or NUMERIC data type. The DOUBLE data
type represents floating point numbers according to the IEEE floating point standard. The InterSystems IRIS floating point
data types have greater precision than the DOUBLE data type, and are preferable for most applications. You cannot use
CAST to cast a floating point number to the DOUBLE data type; instead, use the ObjectScript $DOUBLE function.

When a numeric value is cast to a date or time data type, it displays in SQL as zero (0); however, when a numeric cast as
a date or time is passed out of embedded SQL to ObjectScript, it displays as the corresponding $HOROLOG value.

InterSystems SQL Reference 419

CAST

Casting a Character String

You can cast a character string to another character data type, returning either a single character, the first n characters, or
the entire character string.

Before a cast is performed, InterSystems SQL resolves embedded quote characters ('can''t'=can't) and string concatenation
('can'||'not'=cannot). Leading and trailing blanks are retained.

When a character string is cast to a numeric type, it always returns the single digit zero (0).

Casting to DATE,TIME, and TIMESTAMP

You can cast a character string to the DATE, TIME, or TIMESTAMP data type. The following operations result in a valid
value:

• DATE: A string of the format 'yyyy-mm-dd' can be cast to DATE. This string format corresponds to ODBC date format.
Value and range checking are performed. The year must be between 0001 and 9999 (inclusive), the month 01 through
12, and the day appropriate for that month (for example, 02/29 is only valid on leap years). An invalid date, such as
2013–02–29 returns 1840–12–31 (logical date 0).

Missing leading zeros in month and day fields are added. How this cast is displayed depends on the display mode and
the locale's date display format. For example, '2004–11–23' might display as '11/23/2004'. In Embedded SQL, this cast
is returned as the corresponding $HOROLOG date integer. An invalid ODBC date or a non-numeric string is represented
as 0 in logical mode when cast to DATE; date 0 is displayed as 1840–12–31.

• TIME: A string of the format 'hh:mm', 'hh:mm:ss' or 'hh:mm:ss.nn' (with any number of n fractional second digits) can
be cast to TIME. This string format corresponds to ODBC time format. Value and range checking are performed.
Missing leading zeros are added. In embedded SQL, this cast is returned as the corresponding $HOROLOG time
integer. An invalid ODBC time or a non-numeric string is represented as 0 in logical mode when cast to TIME; time
0 is displayed as 00:00:00.

• TIMESTAMP: A string consisting of a valid date and time, a valid date, or a valid time can be cast to TIMESTAMP.
The date portion can be in a variety of formats. A missing date portion defaults to 1841–01–01. A missing time portion
defaults to 00:00:00. Missing leading zeros are added for month and day. Fractional seconds (if specified) can be preceded
by either a period (.) or a colon (:). The symbols have different meanings. A period indicates a standard fraction; thus
12:00:00.4 indicates four-tenths of a second, and 12:00:00.004 indicates four-thousandth of a second. A colon
indicates that what follows is in thousandths of a second; thus 12:00:00:4 indicates four-thousandth of a second.
The permitted number of digits following a colon is limited to three.

Casting NULL and the Empty String

NULL can be cast to any data type and returns NULL.

The empty string ('') casts as follows:

• All character data types return NULL.

• All numeric data types return 0 (zero), with the appropriate number of trailing fractional zeros. The DOUBLE data
type returns zero with no trailing fractional zeros.

• The DATE data type returns 12/31/1840.

• The TIME data type returns 00:00:00.

• The TIMESTAMP, DATETIME, and SMALLDATETIME data types return NULL.

• The BIT data type returns 0.

• All binary data types return NULL.

420 InterSystems SQL Reference

SQL Functions

Casting Dates

You can cast a date to a date data type, to a numeric data type, or to a character data type.

Casting a date to the POSIXTIME data type returns a timestamp as an encoded 64-bit signed integer. Since a date does not
have a time portion, the time portion is supplied to the timestamp encoding as 00:00:00. CAST performs date validation;
if the expr value is not a valid date, it issues an SQLCODE -400 error.

Casting a date to the TIMESTAMP, DATETIME, or SMALLDATETIME data type returns a timestamp with the format
YYYY-MM-DD hh:mm:ss. Since a date does not have a time portion, the time portion of the resulting timestamp is always
00:00:00. CAST performs date validation; if the expr value is not a valid date, it issues an SQLCODE -400 error.

The following Dynamic SQL example casts a field of DATE data type to TIMESTAMP and POSIXTIME:

 SET myquery=2
 SET myquery(1)="SELECT TOP 5 DOB,CAST(DOB AS TIMESTAMP) AS TStamp,"
 SET myquery(2)="CAST(DOB AS POSIXTIME) AS Posix FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

The following Dynamic SQL example casts a field of TIMESTAMP data type to DATE and POSIXTIME:

 SET myquery=2
 SET myquery(1)="SELECT TOP 5 EventDate,CAST(EventDate AS DATE) AS Horolog,"
 SET myquery(2)="CAST(EventDate AS POSIXTIME) AS Posix FROM Aviation.Event"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

Casting a date to a numeric data type returns the $HOROLOG value for the date. This is an integer value representing the
number of days since Dec. 31, 1840.

Casting a date to a character data type returns either the complete date, or as much of the date as the length of the data type
permits. However, the display format is not the same for all character data types. The CHAR VARYING and CHARACTER
VARYING data types return the complete date in display format. For example, if a date displays as MM/DD/YYYY, these
data types return the date as a character string with the same format. The other character data types return the date (or a
part thereof) as a character string in ODBC date format. For example, if a date displays as mm/dd/yyyy, these data types
return the date as a character string with the format YYYY-MM-DD. Thus for the date 04/24/2004, the CHAR data type
returns '2' (the first character of the year), and a CHAR(8) returns '2004–04–'.

Casting a Bit Value

You can cast an expr value AS BIT to return a 0 or 1. If expr is 1 or any other non-zero numeric value, it returns 1. If expr
is “TRUE”, “True”, or “true”, it returns 1. (The word “True” can be represented in any combination of uppercase and
lowercase, but cannot be abbreviated as “T”.) If expr is any other non-numeric value, it returns 0. If expr is 0, it returns 0.

In the following example, the first five CAST operations return 1, the second five CAST operations return 0:

SELECT CAST(1 AS BIT) AS One,
 CAST(7 AS BIT) AS Num,
 CAST(743.6 AS BIT) AS Frac,
 CAST(0.3 AS BIT) AS Zerofrac,
 CAST('tRuE' AS BIT) AS TrueWord,
 CAST(0 AS BIT) AS Zero,
 CAST('FALSE' AS BIT) AS FalseWord,
 CAST('T' AS BIT) AS T,
 CAST('F' AS BIT) AS F,
 CAST(0.0 AS BIT) AS Zerodot

InterSystems SQL Reference 421

CAST

Examples
The following example uses the CAST function to present an average as an integer, not a floating point. Note that the
CAST truncates the number, rather than rounding it:

SELECT DISTINCT AVG(Age) AS AvgAge,
 CAST(AVG(Age) AS INTEGER) AS IntAvgAge
 FROM Sample.Person

The following example shows how the CAST function converts pi (a floating point number) to different numeric data
types:

SELECT
 CAST({fn PI()} As INTEGER) As IntegerPi,
 CAST({fn PI()} As SMALLINT) As SmallIntPi,
 CAST({fn PI()} As DECIMAL) As DecimalPi,
 CAST({fn PI()} As NUMERIC) As NumericPi,
 CAST({fn PI()} As DOUBLE) As DoublePi

Note in the following example that the precision and scale values are parsed, but do not change the value returned by CAST:

SELECT
 CAST({fn PI()} As DECIMAL) As DecimalPi,
 CAST({fn PI()} As DECIMAL(6,3)) As DecimalPSPi

The following example shows how the CAST function converts pi (a floating point number) to different character data
types:

SELECT
 CAST({fn PI()} As CHAR) As CharPi,
 CAST({fn PI()} As CHAR(4)) As CharNPi,
 CAST({fn PI()} As CHAR VARYING) As CharVaryingPi,
 CAST({fn PI()} As VARCHAR(4)) As VarCharNPi

The following example shows how the CAST function converts Name (a character string) to different character data types:

SELECT DISTINCT
 CAST(Name As CHAR) As CharName,
 CAST(Name As CHAR(4)) As CharNName,
 CAST(Name As CHAR VARYING) As CharVaryingName,
 CAST(Name As VARCHAR(4)) As VarCharNName
 FROM Sample.Person

The following example shows what happens when you use the CAST function to converts Name (a character string) to
different numeric data types. In every case, the value returned is 0 (zero):

SELECT DISTINCT
 CAST(Name As INT) As IntName,
 CAST(Name As SMALLINT) As SmallIntName,
 CAST(Name As DEC) As DecName,
 CAST(Name As NUMERIC) As NumericName
 FROM Sample.Person

The following example casts a date field (DOB) to a numeric data type and several character data types. Casting a date to
a numeric returns the $HOROLOG integer equivalent. Casting a date to a character data type returns either a date string
in input format (CHAR VARYING or CHARACTER VARYING) or the date (partial or full) in ODBC date string format:

SELECT DISTINCT DOB,
 CAST(DOB As INT) AS IntDate,
 CAST(DOB As CHAR) AS CharDate,
 CAST(DOB As CHAR(6)) AS CharNDate,
 CAST(DOB As CHAR VARYING) AS CharVaryDate,
 CAST(DOB As VARCHAR(10)) AS VarCharNDate
 FROM Sample.Person

The following example casts character strings to the DATE and TIME data types:

SELECT CAST('1936-11-26' As DATE) AS StringToDate,
 CAST('14:33:45.78' AS TIME) AS StringToTime

422 InterSystems SQL Reference

SQL Functions

Only a string with the format YYYY-MM-DD can be converted to a date. Strings with other formats return 0. Note that
fractional seconds are truncated (not rounded) when converting a string to the TIME data type.

The following example casts a date to the TIMESTAMP data type:

SELECT DISTINCT DOB,
 CAST(DOB As TIMESTAMP) AS DateToTstamp
 FROM Sample.Person

The resulting timestamp is in the format: YYYY-MM-DD hh:mm:ss.

The following example casts a character string to the TIME data type, then casts the resulting time to the TIMESTAMP
data type:

SELECT CAST(CAST('14:33:45.78' AS TIME) As TIMESTAMP) AS TimeToTstamp

The resulting timestamp is in the format: YYYY-MM-DD hh:mm:ss. The time portion is supplied by the nested CAST;
the date portion is the current system date.

See Also
• Data type, CONVERT

• TO_CHAR, TO_DATE, TO_NUMBER, TO_POSIXTIME, TO_TIMESTAMP

InterSystems SQL Reference 423

CAST

CEILING
A numeric function that returns the smallest integer greater than or equal to a given numeric expression.

CEILING(numeric-expression)
{fn CEILING(numeric-expression)}

Arguments

A number whose ceiling is to be calculated.numeric-expression

CEILING returns the same data type as numeric-expression.

Description
CEILING returns the nearest integer value greater than or equal to numeric-expression. The returned value has a scale of
0. When numeric-expression is a NULL value, an empty string (''), or any nonnumeric string, CEILING returns NULL.

Note that CEILING can be invoked as an ODBC scalar function (with the curly brace syntax) or as an SQL general function.

This function can also be invoked from ObjectScript using the CEILING() method call:

$SYSTEM.SQL.CEILING(numeric-expression)

Examples
The following examples show how CEILING converts a fraction to its ceiling integer:

SELECT CEILING(167.111) AS CeilingNum1,
 CEILING(167.456) AS CeilingNum2,
 CEILING(167.999) AS CeilingNum3

all return 168.

SELECT {fn CEILING(167.00)} AS CeilingNum1,
 {fn CEILING(167.00)} AS CeilingNum2

return 167.

SELECT CEILING(-167.111) AS CeilingNum1,
 CEILING(-167.456) AS CeilingNum2,
 CEILING(-167.999) AS CeilingNum3

all return -167.

SELECT CEILING(-167.00) AS CeilingNum

returns -167.

The following example uses a subquery to reduce a large table of US Zip Codes (postal codes) to one representative city
for each ceiling Latitude integer:

SELECT City,State,CEILING(Latitude) AS CeilingLatitude
FROM (SELECT City,State,Latitude,CEILING(Latitude) AS CeilingNum
 FROM Sample.USZipCode)
GROUP BY CeilingNum
ORDER BY CeilingNum DESC

See Also
• FLOOR

• ROUND

424 InterSystems SQL Reference

SQL Functions

CHAR
A string function that returns the character that has the ASCII code value specified in a string expression.

CHAR(code-value)
{fn CHAR(code-value)}

Arguments

An integer code that corresponds to a character.code-value

Description
CHAR returns the character that corresponds to the specified integer code value. Because InterSystems IRIS is a Unicode
system, you can specify the integer code for any Unicode character, 0 through 65535. CHAR returns NULL if code-value
is a integer that exceeds the permissible range of values.

CHAR returns an empty string ('') if code-value is a nonnumeric string. CHAR returns NULL if passed a NULL value.

Note that CHAR can be used as an ODBC scalar function (with the curly brace syntax) or as an SQL general function.

Examples
The following examples both return the character Z:

SELECT CHAR(90) AS CharCode

SELECT {fn CHAR(90)} AS CharCode

The following example returns the Greek letter lambda:

 &sql(SELECT {fn CHAR(955)}
 INTO :greeklet)
 WRITE !,"Greek letter: ",greeklet

See Also
• SQL functions: ASCII, CHAR_LENGTH, CHARACTER_LENGTH

• ObjectScript functions: $CHAR, $ZLCHAR, $ZWCHAR

InterSystems SQL Reference 425

CHAR

CHARACTER_LENGTH
A function that returns the number of characters in an expression.

CHARACTER_LENGTH(expression)

Arguments

An expression, which can be the name of a column, a string literal, or
the result of another scalar function. The underlying data type can be a
character type (such as CHAR or VARCHAR), a numeric, or a data
stream.

expression

CHARACTER_LENGTH returns the INTEGER data type.

Description
CHARACTER_LENGTH returns an integer value representing the number of characters, not the number of bytes, in the
specified expression. The expression can be a string, or any other data type such as a numeric or a data stream field. This
integer count returned including leading and trailing blanks and the string-termination character. CHARACTER_LENGTH
returns NULL if passed a NULL value, and 0 if passed an empty string ('') value.

Numbers are parsed to canonical form before counting the characters; quoted number strings are not parsed. In the following
example, the first CHARACTER_LENGTH returns 1 (because number parsing removes leading and trailing zeros), the
second CHARACTER_LENGTH returns 8.

SELECT CHARACTER_LENGTH(007.0000) AS NumLen,
 CHARACTER_LENGTH('007.0000') AS NumStringLen

Note: The CHARACTER_LENGTH, CHAR_LENGTH, and DATALENGTH functions are identical. All of them
accept a stream field argument. The LENGTH and $LENGTH functions do not accept a stream field argument.

LENGTH also differs from these functions by stripping trailing blanks and the string-termination character before
counting characters. $LENGTH also differs from these functions because it returns 0 if passed a NULL value,
and 0 if passed an empty string.

Examples
The following example returns the number of characters in the state abbreviation field (Home_State) in the Sample.Employee
table. (All U.S. states have a two-letter postal abbreviation):

SELECT DISTINCT CHARACTER_LENGTH(Home_State) AS StateLength
 FROM Sample.Employee

The following example returns the names of the employees and the number of characters in each employee name, ordered
by ascending number of characters:

SELECT Name,
 CHARACTER_LENGTH(Name) AS NameLength
 FROM Sample.Employee
 ORDER BY NameLength

The following examples return the number of characters in a character stream field (Notes) and a binary stream field (Picture)
in the Sample.Employee table:

SELECT DISTINCT CHARACTER_LENGTH(Notes) AS NoteLen
 FROM Sample.Employee WHERE Notes IS NOT NULL

426 InterSystems SQL Reference

SQL Functions

SELECT DISTINCT CHARACTER_LENGTH(Picture) AS PicLen
 FROM Sample.Employee WHERE Picture IS NOT NULL

The following Embedded SQL example demonstrates how CHARACTER_LENGTH handles Unicode characters.
CHARACTER_LENGTH counts the number of characters, regardless of their byte length:

 SET a=$CHAR(960)_"FACE"
 WRITE !,a
 &sql(SELECT CHARACTER_LENGTH(:a) INTO :b)
 IF SQLCODE'=0 {WRITE !,"Error code ",SQLCODE }
 ELSE {WRITE !,"The CHARACTER length is ",b }

returns 5.

See Also
• SQL functions: CHAR, CHAR_LENGTH, DATALENGTH, LENGTH, LEN, $LENGTH

• ObjectScript function: $LENGTH

InterSystems SQL Reference 427

CHARACTER_LENGTH

CHARINDEX
A string function that returns the position of a substring within a string, with optional search start point.

CHARINDEX(substring,string[,start])

Arguments

A substring to match within string.substring

A string expression that is the target for the substring search.string

Optional — The starting point for substring search, specified as a positive integer. A
character count from the beginning of string, counting from 1.To search from the beginning
of string, omit this argument or specify a start of 0 or 1. A negative number, the empty
string, NULL, or a nonnumeric value is treated as 0.

start

CHARINDEX returns the INTEGER data type.

Description
CHARINDEX searches a string for a substring. If a match is found, it returns the starting position of the first matching
substring, counting from 1. If the substring cannot be found, CHARINDEX returns 0.

The empty string is a string value. You can, therefore, use the empty string for either string argument value. The start
argument treats an empty string value as 0. However, note that the ObjectScript empty string is passed to InterSystems
SQL as NULL.

NULL is not a string value in InterSystems SQL. For this reason, specifying NULL for either CHARINDEX string argument
returns NULL.

CHARINDEX is case-sensitive. Use one of the case-conversion functions to locate both uppercase and lowercase instances
of a letter or character string.

This function provides compatibility with Transact-SQL implementations.

CHARINDEX, POSITION, $FIND, and INSTR

CHARINDEX, POSITION, $FIND, and INSTR all search a string for a specified substring and return an integer position
corresponding to the first match. CHARINDEX, POSITION, and INSTR return the integer position of the first character
of the matching substring. $FIND returns the integer position of the first character after the end of the matching substring.
CHARINDEX, $FIND, and INSTR support specifying a starting point for substring search. INSTR also support specifying
the substring occurrence from that starting point.

The following example demonstrates these four functions, specifying all optional arguments. Note that the positions of
string and substring differ in these functions:

SELECT POSITION('br' IN 'The broken brown briefcase') AS Position,
 CHARINDEX('br','The broken brown briefcase',6) AS Charindex,
 $FIND('The broken brown briefcase','br',6) AS Find,
 INSTR('The broken brown briefcase','br',6,2) AS Inst

For a list of functions that search for a substring, refer to String Manipulation.

Examples
The following example searches for the substring KONG. It returns 6, the character position of this substring within the
string:

SELECT CHARINDEX('KONG','KING KONG')

428 InterSystems SQL Reference

SQL Functions

The following example searches for all Name field values that contain the substring 'Fred':

SELECT Name
FROM Sample.Person
WHERE CHARINDEX('Fred',Name)>0

The following example matches a substring after the first 10 characters:

SELECT CHARINDEX('Re','Reduce, Reuse, Recycle',10)

it returns 16.

The following example specifies a start location beyond the length of the string:

SELECT CHARINDEX('Re','Reduce, Reuse, Recycle',99)

it returns 0.

The following example shows that CHARINDEX handles the empty string ('') just like any other string value:

SELECT CHARINDEX('','King Kong'),
 CHARINDEX('K',''),
 CHARINDEX('','')

In the above example, the first and second CHARINDEX functions return 0 (no match). The third returns 1, because the
empty string matches the empty string at position 1.

The following example shows that CHARINDEX does not treat NULL as a string value. Specifying NULL for either
string always returns NULL:

SELECT CHARINDEX(NULL,'King Kong'),
 CHARINDEX('K',NULL),
 CHARINDEX(NULL,NULL)

See Also
• $FIND function

• INSTR function

• POSITION function

• String Manipulation

InterSystems SQL Reference 429

CHARINDEX

CHAR_LENGTH
A function that returns the number of characters in an expression.

CHAR_LENGTH(expression)

Arguments

An expression, which can be the name of a column, a string literal, or
the result of another scalar function. The underlying data type can be a
character type (such as CHAR or VARCHAR), a numeric, or a data
stream.

expression

CHAR_LENGTH returns the INTEGER data type.

Description
CHAR_LENGTH returns an integer value representing the number of characters, not the number of bytes, in the specified
expression. The expression can be a string, or any other data type such as a numeric or a data stream field. This integer
count returned including leading and trailing blanks and the string-termination character. CHARACTER_LENGTH
returns NULL if passed a NULL value, and 0 if passed an empty string ('') value.

Numbers are parsed to canonical form before counting the characters; quoted number strings are not parsed. In the following
example, the first CHAR_LENGTH returns 1 (because number parsing removes leading and trailing zeros), the second
CHAR_LENGTH returns 8.

SELECT CHAR_LENGTH(007.0000) AS NumLen,
 CHAR_LENGTH('007.0000') AS NumStringLen

Note: The CHAR_LENGTH, CHARACTER_LENGTH, and DATALENGTH functions are identical. All of them
accept a stream field argument. The LENGTH and $LENGTH functions do not accept a stream field argument.

LENGTH also differs from these functions by stripping trailing blanks and the string-termination character before
counting characters.

$LENGTH also differs from these functions because it returns 0 if passed a NULL value, and 0 if passed an
empty string. $LENGTH differs from the other length function by returning data type SMALLINT; all the other
length functions return data type INTEGER.

Examples
The following example returns the number of characters in the state abbreviation field (Home_State) in the Sample.Employee
table. (All U.S. states have a two-letter postal abbreviation):

SELECT DISTINCT CHAR_LENGTH(Home_State) AS StateLength
 FROM Sample.Employee

The following example returns the names of the employees and the number of characters in each employee name, ordered
by ascending number of characters:

SELECT Name,
 CHAR_LENGTH(Name) AS NameLength
 FROM Sample.Employee
 ORDER BY NameLength

The following examples return the number of characters in a character stream field (Notes) and a binary stream field (Picture)
in the Sample.Employee table:

430 InterSystems SQL Reference

SQL Functions

SELECT DISTINCT CHAR_LENGTH(Notes) AS NoteLen
 FROM Sample.Employee WHERE Notes IS NOT NULL

SELECT DISTINCT CHAR_LENGTH(Picture) AS PicLen
 FROM Sample.Employee WHERE Picture IS NOT NULL

The following Embedded SQL example shows how CHAR_LENGTH handles Unicode characters. CHAR_LENGTH
counts the number of characters, regardless of their byte length:

 SET a=$CHAR(960)_"FACE"
 WRITE !,a
 &sql(SELECT CHAR_LENGTH(:a) INTO :b)
 IF SQLCODE'=0 {WRITE !,"Error code ",SQLCODE }
 ELSE {WRITE !,"The CHAR length is ",b }

returns 5.

See Also
• SQL functions: CHAR, CHARACTER_LENGTH, DATALENGTH, LENGTH, LEN, $LENGTH

• ObjectScript function: $LENGTH

InterSystems SQL Reference 431

CHAR_LENGTH

COALESCE
A function that returns the value of the first expression that is not NULL.

COALESCE(expression,expression)

Arguments

A series of expressions to be evaluated. Multiple expressions are specified as a
comma-separated list. This expression list has a limit of 140 expressions.

expression

Description
The COALESCE function evaluates a list of expressions in left-to-right order and returns the value of the first non-NULL
expression. If all expressions evaluate to NULL, NULL is returned.

A string is returned unchanged; leading and trailing blanks are retained. A number is returned in canonical form, with
leading and trailing zeros removed.

For further details on NULL handling, refer to the NULL and the Empty String section of “Language Elements” in Using
InterSystems SQL.

Data Type of Returned Value

Non-numeric expressions (such as strings or dates) must all be of the same data type, and return a value of that data type.
Specifying expressions with incompatible data types results in an SQLCODE -378 error with a Datatype mismatch error
message. You can use the CAST function to convert an expression to a compatible data type.

Numeric expressions may be of different data types. If you specify numeric expressions with different data types, the data
type returned is the expression data type most compatible with all of the possible result values, the data type with the
highest data type precedence.

A literal value (string, number, or NULL) is treated as data type VARCHAR. If you specify only two expressions, a literal
value is compatible with a numeric expression: if the first expression is the numeric expression, its data type is returned;
if the first expression is a literal value, the VARCHAR data type is returned.

NULL Handling Functions Compared
The following table shows the various SQL comparison functions. Each function returns one value if the logical comparison
tests True (A same as B) and another value if the logical comparison tests False (A not same as B). These functions allow
you to perform NULL logical comparisons. You cannot specify NULL in an actual equality (or non-equality) condition
comparison.

432 InterSystems SQL Reference

SQL Functions

Return ValueComparison TestSQL Function

True tests next ex argument. If all
ex arguments are True (NULL),
returns NULL.

False returns ex

ex = NULL for each argumentCOALESCE(ex1,ex2,...)

True returns ex2

False returns NULL

ex1 = NULLIFNULL(ex1,ex2) [two-argument
form]

True returns ex2

False returns ex3

ex1 = NULLIFNULL(ex1,ex2) [three-argument
form]

True returns ex2

False returns ex1

ex1 = NULL{fn IFNULL(ex1,ex2)}

True returns ex2

False returns ex1

ex1 = NULLISNULL(ex1,ex2)

True returns ex2

False returns ex1

ex1 = NULLNVL(ex1,ex2)

True returns NULL

False returns ex1

ex1 = ex2NULLIF(ex1,ex2)

Examples
The following Embedded SQL example takes a series of host variable values and returns the first (value d) that is not NULL.
Note that the ObjectScript empty string ("") is translated as NULL in InterSystems SQL:

 SET (a,b,c,e)=""
 SET d="firstdata"
 SET f="nextdata"
 &sql(SELECT COALESCE(:a,:b,:c,:d,:e,:f) INTO :x)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The first non-null value is: ",x }

The following example compares the values of two columns in left-to-right order and returns the value of the first non-
NULL column. The FavoriteColors column is NULL for some rows; the Home_State column is never NULL. For
COALESCE to compare the two, FavoriteColors must be cast as a string:

SELECT TOP 25 Name,FavoriteColors,Home_State,
COALESCE(CAST(FavoriteColors AS VARCHAR),Home_State) AS CoalesceCol
FROM Sample.Person

The following Dynamic SQL example compares COALESCE to the other NULL-processing functions:

InterSystems SQL Reference 433

COALESCE

 SET myquery = "SELECT TOP 50 %ID,"_
 "IFNULL(FavoriteColors,'blank') AS Ifn2Col,"_
 "IFNULL(FavoriteColors,'blank','value') AS Ifn3Col,"_
 "COALESCE(CAST(FavoriteColors AS VARCHAR),Home_State) AS CoalesceCol,"_
 "ISNULL(FavoriteColors,'blank') AS IsnullCol,"_
 "NULLIF(FavoriteColors,$LISTBUILD('Orange')) AS NullifCol,"_
 "NVL(FavoriteColors,'blank') AS NvlCol"_
 " FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

See Also
• CASE command

• IFNULL function

• ISNULL function

• NULLIF function

• NVL function

434 InterSystems SQL Reference

SQL Functions

CONCAT
A scalar string function that returns a character string as a result of concatenating two character expressions.

{fn CONCAT(string-expression1,string-expression2)}

Arguments

The string expressions to be concatenated. The expressions can be
the name of a column, a string literal, a numeric, or the result of
another scalar function, where the underlying data type can be
represented as any character type (such as CHAR or VARCHAR).

string-expression1,
string-expression2

Description
CONCAT concatenates two strings to return a concatenated string. You can perform exactly the same operation using the
concatenate operator (||).

You can concatenate any combination of numerics or numeric strings; the concatenation result is a numeric string. Inter-
Systems SQL converts numerics to canonical form (exponents are expanded and leading and trailing zeros are removed)
before concatenation. Numeric strings are not converted to canonical form before concatenation.

You can concatenate leading or trailing blanks to a string. Concatenating a NULL value to a string results in a NULL; this
is the industry-wide SQL standard.

The STRING function can also be used to concatenate two or more expressions into a single string.

Examples
The following example concatenates the Home_State and Home_City columns to create a location value. The concatenation
is shown twice, using the CONCAT function and the concatenate operator:

SELECT {fn CONCAT(Home_State,Home_City)} AS LocationFunc,
Home_State||Home_City AS LocationOp
FROM Sample.Person

The following example shows what happens when you attempt to concatenate a string and a NULL:

SELECT {fn CONCAT(Home_State,NULL)} AS StrNull
FROM Sample.Person

The following example shows that numbers are converted to canonical form before concatenation. To avoid this, you can
specify the number as a string, as shown:

SELECT {fn CONCAT(Home_State,0012.00E2)} AS StrNum,
{fn CONCAT(Home_State,'0012.00E2')} AS StrStrNum
FROM Sample.Person

The following example shows that trailing blank spaces are retained:

SELECT CHAR_LENGTH({fn CONCAT(Home_State,' ')}) AS StrSpace
FROM Sample.Person

See Also
ASCII CHAR STRING SUBSTRING

InterSystems SQL Reference 435

CONCAT

CONVERT
A function that converts a given expression to a specified data type.

CONVERT(datatype,expression[,format-code])

{fn CONVERT(expression,datatype)}

Arguments

The expression to be converted.expression

The data type to which expression is to be converted.datatype

Optional — An integer code that specifies date and time formats, used to convert
between date/time/timestamp data types and character data types.This argument
is only used with the general scalar syntax form.

format-code

Description
Two different implementations of the CONVERT function are described here. Both convert an expression in one data type
to a corresponding value in another data type. Both perform date and time conversions.

Note: The arguments in these two implementations of CONVERT are presented in a different order. The first is a
general InterSystems IRIS scalar function compatible with MS SQL Server, which takes three arguments. The
second is an InterSystems ODBC scalar function with two arguments. These two forms of CONVERT are handled
separately in the text that follows.

• CONVERT(datatype,expression) function supports conversion of stream data. For example, you can convert the
contents of a character stream field to a string of data type VARCHAR.

• {fn CONVERT(expression,datatype)} does not support conversion of stream data; specifying a stream field to
expression results in an SQLCODE -37 error.

Specifying an invalid value to either version of CONVERT results in an SQLCODE -141.

If an expression does not have a defined data type (for example a host variable supplied by ObjectScript) its data type
defaults to the string data type.

For a list of the data types supported by InterSystems SQL, see Data Types. For other data type conversions, refer to the
CAST function.

CONVERT(datatype,expression,format-code)
This is the MS SQL Server compatible function. It takes as datatype any valid InterSystems SQL data type, including
character stream data. For a list of the data types supported by InterSystems SQL, see Data Types.

You can truncate a string by performing a VARCHAR-to-VARCHAR conversion, specifying an output string length shorter
than the expression string length.

When using CONVERT (or CAST), if a character data type (such as CHAR or VARCHAR) has no specified length, the
default maximum length is 30 characters. If a binary data type (such as BINARY or VARBINARY) has no specified length,
the default maximum length is 30 characters. Otherwise, these data types with no specified length are mapped to a MAXLEN
of 1 character, as shown in the Data Types table.

436 InterSystems SQL Reference

SQL Functions

You can perform a BIT data type conversion. The permitted values are 1, 0, or NULL. If you specify any other value,
InterSystems IRIS issues an SQLCODE -141 error. In the following Embedded SQL example, both are BIT conversions
of a NULL:

 SET a=""
 &sql(SELECT CONVERT(BIT,:a),
 CONVERT(BIT,NULL)
 INTO :x,:y)
 WRITE !,"SQLCODE=",SQLCODE
 WRITE !,"the host variable is:",x
 WRITE !,"the NULL keyword is:",y

The optional format-code argument specifies a date, datetime, or time format. This format can either be used to define the
output when converting from a date/time/timestamp data type to a character string, or to define the input when converting
from a character string to a date/time/timestamp data type. The following format codes are supported; format codes that
output a two-digit year are listed in the first column; formats that either output a four-digit year or do not output a year at
all are listed in the second column:

FormatFour-digit year
codes

Two-digit year
codes

Mon dd yyyy hh:mmAM (or PM)0 or 100

mm/dd/yy1011

yy.dd.mm1022

dd/mm/yy1033

dd.mm.yy1044

dd-mm-yy1055

dd Mon yy1066

Mon dd, yy (no leading zero when dd < 10)1077

hh:mm:ss8 or 108

Mon dd yyyy hh:mm:ss:nnnAM (or PM)9 or 109

mm-dd-yy11010

yy.mm.dd11111

yymmdd11212

dd Mon yyyy hh:mm:ss:nnn (24 hour)13 or 113

hh:mm:ss.nnn (24 hour)14 or 114

yyyy-mm-dd hh:mm:ss (24 hour)20 or 120

yyyy-mm-dd hh:mm:ss.nnnn (24 hour)21 or 121

yyyy-mm-ddThh:mm:ss,nnnn (24 hour)126

dd Mon yyyy hh:mm:ss:nnnAM (or PM)130

dd/mm/yyyy hh:mm:ss:nnnAM (or PM)131

The following are features of date and time conversions:

• Range of Values: The range of permitted dates is 0001-01-01 through 9999-12-31.

• Default Values:

InterSystems SQL Reference 437

CONVERT

– When converting a time value to TIMESTAMP, POSIXTIME, DATETIME, or SMALLDATETIME, the date
defaults to 1900-01-01. Note that for {fn CONVERT()} the date defaults to 1841-01-01.

– When converting a date value to TIMESTAMP, POSIXTIME, DATETIME, or SMALLDATETIME, the time
defaults to 00:00:00.

• Default Format: If format-code is not specified, CONVERT attempts to determine the format from the specified value.
If it cannot, it defaults to format-code 100.

• Two-digit Years: Two-digit years from 00 through 49 are converted to 21st century dates (2000 through 2049); two-
digit years from 50 through 99 are converted to 20th century dates (1950 through 1999).

• Fractional seconds: fractional seconds can be preceded by either a period (.) or a colon (:). The symbols have different
meanings:

– A period is the default, and can be used with all format codes. A period indicates a standard fraction; thus
12:00:00.4 indicates four-tenths of a second, and 12:00:00.004 indicates four-thousandth of a second. There
is no limit on the number of digits of fractional precision.

– A colon can only be used with the following format-code values: 9/109, 13/113, 14/114, 130, and 131. A colon
indicates that the number that follows is in thousandths of a second; thus 12:00:00:4 indicates four-thousandth
of a second (12:00:00.004). The permitted number of digits following a colon is limited to three.

Specifying an expression with an invalid format or a format that does not match the format-code generates an SQLCODE
-141 error. Specifying a non-existent format-code returns 1900-01-01 00:00:00.

{fn CONVERT(expression,datatype)}
This is the ODBC scalar function. It supports the following ODBC explicit data type conversions. You must use the “SQL_”
keywords for specifying data type conversions with this form of CONVERT. In the following table, where there are two
groups of conversion data types, the first group converts both the data value and the data type, the second group converts
the data type but does not convert the data value:

438 InterSystems SQL Reference

SQL Functions

ConversionSource

SQL_VARCHAR, SQL_DOUBLE, SQL_DATE,
SQL_TIME

Any numeric data type

SQL_DATE, SQL_TIME, SQL_TIMESTAMP%String

SQL_VARCHAR, SQL_POSIXTIME, SQL_TIMES-
TAMP

SQL_INTEGER, SQL_BIGINT, SQL_SMALLINT,
SQL_TINYINT, SQL_DATE

%Date

SQL_VARCHAR, SQL_POSIXTIME, SQL_TIMES-
TAMP

SQL_VARCHAR, SQL_INTEGER, SQL_BIGINT,
SQL_SMALLINT, SQL_TINYINT, SQL_TIME

%Time

SQL_TIMESTAMP, SQL_DATE, SQL_TIME

SQL_VARCHAR, SQL_INTEGER, SQL_BIGINT,
SQL_SMALLINT, SQL_TINYINT

%PosixTime

SQL_POSIXTIME, SQL_DATE, SQL_TIME

SQL_VARCHAR, SQL_INTEGER, SQL_BIGINT,
SQL_SMALLINT, SQL_TINYINT

%TimeStamp

SQL_INTEGER, SQL_BIGINT, SQL_SMALLINT,
SQL_TINYINT

Any non-stream data type

SQL_DOUBLEAny non-stream data type

SQL_VARCHAR is the standard ODBC representation. When converting to SQL_VARCHAR, dates and times are converted
to their appropriate ODBC representations; numeric datatype values are converted to a string representation. When converting
from SQL_VARCHAR, the value must be a valid ODBC Time, Timestamp, or Date representation.

• When converting a time value to SQL_TIMESTAMP or SQL_POSIXTIME, an unspecified date defaults to 1841-01-
01. Note that for CONVERT() the date defaults to 1900-01-01.

• When converting a date value to SQL_TIMESTAMP or SQL_POSIXTIME the time defaults to 00:00:00.

In this syntactic form, fractional seconds can be preceded by either a period (.) or a colon (:). The symbols have different
meanings. A period indicates a standard fraction; thus 12:00:00.4 indicates four-tenths of a second, and 12:00:00.004
indicates four-thousandth of a second. A colon indicates that what follows is in thousandths of a second; thus 12:00:00:4
indicates four-thousandth of a second. The permitted number of digits following a colon is limited to three.

When converting to an integer data type or the SQL_DOUBLE data type, data values (including dates and times) are converted
to a numeric representation. For SQL_DATE, this is the number of days since January 1, 1841. For SQL_TIME, this is the
number of seconds since midnight. Input strings are truncated when a nonnumeric character is encountered. The integer
data types also truncates decimal digits, returning the integer portion of the number.

{fn CONVERT(expression,datatype)} does not support conversion of stream data; specifying a stream field to expression
results in an SQLCODE -37 error.

A NULL converted to any data type remains NULL.

An empty string (''), or any nonnumeric string value converts as follows:

InterSystems SQL Reference 439

CONVERT

• SQL_VARCHAR and SQL_TIMESTAMP return the supplied value.

• Numeric data types convert to 0 (zero).

• SQL_DATE and SQL_TIME convert to NULL.

For other data type conversions, refer to the CAST function.

CONVERT Class Method
You can also perform data type conversions using the CONVERT() method call, using “SQL_” keywords for specifying
data types:

$SYSTEM.SQL.CONVERT(expression,convert-to-type,convert-from-type)

as shown in the following example:

 WRITE $SYSTEM.SQL.CONVERT(60945,"SQL_VARCHAR","SQL_DATE")

Examples

CONVERT() Examples

The following examples uses the InterSystems IRIS scalar syntactical form of CONVERT.

The following example compares the conversion of a fractional number using the DECIMAL and DOUBLE data types:

SELECT CONVERT(DECIMAL,-123456789.0000123456789) AS DecimalVal,
 CONVERT(DOUBLE,-123456789.0000123456789) AS DoubleVal

The following example converts a character stream field to a VARCHAR text string. It also displays the length of the
character stream field using CHAR_LENGTH:

SELECT Notes,CONVERT(VARCHAR(80),Notes) AS NoteText,CHAR_LENGTH(Notes) AS TextLen
FROM Sample.Employee WHERE Notes IS NOT NULL

The following example shows several conversions of the date-of-birth field (DOB) to a formatted character string:

SELECT DOB,
 CONVERT(VARCHAR(20),DOB) AS DOBDefault,
 CONVERT(VARCHAR(20),DOB,100) AS DOB100,
 CONVERT(VARCHAR(20),DOB,107) AS DOB107,
 CONVERT(VARCHAR(20),DOB,114) AS DOB114,
 CONVERT(VARCHAR(20),DOB,126) AS DOB126
FROM Sample.Person

The default format and the code 100 format are the same. Because the DOB field does not contain a time value, formats
that display time (here including the default, 100, 114, and 126) supply a zero value, which represents 12:00AM (midnight).
The code 126 format provides a date and time string that contains no spaces.

{fn CONVERT()} Examples

The following examples uses the ODBC syntactical form of CONVERT.

The following Embedded SQL example converts a mixed string to an integer. InterSystems IRIS truncates the string at the
first nonnumeric character and then converts the resulting numeric to canonical form:

 SET a="007 James Bond"
 &sql(SELECT {fn CONVERT(:a,SQL_INTEGER)} INTO :x)
 WRITE !,"SQLCODE=",SQLCODE
 WRITE !,"the host variable is:",x

returns the integer 7.

The following example converts dates in the "DOB" (Date Of Birth) column to the SQL_TIMESTAMP data type.

440 InterSystems SQL Reference

SQL Functions

SELECT DOB,{fn CONVERT(DOB,SQL_TIMESTAMP)} AS DOBtoTstamp
 FROM Sample.Person

The resulting timestamp is in the format: yyyy-mm-dd hh:mm:ss.

The following example converts dates in the "DOB" (Date Of Birth) column to the SQL_INTEGER data type.

SELECT DOB,{fn CONVERT(DOB,SQL_INTEGER)} AS DOBtoInt
 FROM Sample.Person

The resulting integer is the $HOROLOG count of days since December 31, 1840.

The following example converts dates in the "DOB" (Date Of Birth) column to the SQL_VARCHAR data type.

SELECT DOB,{fn CONVERT(DOB,SQL_VARCHAR)} AS DOBtoVChar
 FROM Sample.Person

The resulting string is in the format: yyyy-mm-dd.

See Also
• CAST function

• Data Types

InterSystems SQL Reference 441

CONVERT

COS
A scalar numeric function that returns the cosine, in radians, of an angle.

{fn COS(numeric-expression)}

Arguments

A numeric expression. This is an angle expressed in radians.numeric-expression

COS returns either the NUMERIC or DOUBLE data type. If numeric-expression is data type DOUBLE, COS returns
DOUBLE; otherwise, it returns NUMERIC.

Description
COS takes any numeric value and returns the cosine as a floating point number. The returned value is within the range -1
to 1, inclusive. COS returns NULL if passed a NULL value. COS treats nonnumeric strings as the numeric value 0.

COS returns a value with a precision of 19 and a scale of 18.

COS can only be used as an ODBC scalar function (with the curly brace syntax).

You can use the DEGREES function to convert radians to degrees. You can use the RADIANS function to convert degrees
to radians.

Examples
These examples show the effect of COS on two sines.

SELECT {fn COS(0.52)} AS Cosine

returns 0.86781.

SELECT {fn COS(-.31)} AS Cosine

returns 0.95233.

See Also
• SQL functions: ACOS, ASIN, ATAN, COT, SIN, TAN

• ObjectScript function: $ZCOS

442 InterSystems SQL Reference

SQL Functions

COT
A scalar numeric function that returns the cotangent, in radians, of an angle.

{fn COT(numeric-expression)}

Arguments

A numeric expression. This is an angle expressed in radians.numeric-expression

COT returns either the NUMERIC or DOUBLE data type. If numeric-expression is data type DOUBLE, COT returns
DOUBLE; otherwise, it returns NUMERIC.

Description
COT takes any nonzero number and returns its cotangent as a floating point number. COT returns NULL if passed a NULL
value. A numeric value of 0 (zero) causes a runtime error, generating an SQLCODE -400 (fatal error occurred). COT treats
nonnumeric strings as the numeric value 0.

COT returns a value with a precision of 36 and a scale of 18.

COT can only be used as an ODBC scalar function (with the curly brace syntax).

You can use the DEGREES function to convert radians to degrees. You can use the RADIANS function to convert degrees
to radians.

Examples
The following examples show the effect of COT:

SELECT {fn COT(0.52)} AS Cotangent

returns 1.74653.

SELECT {fn COT(124.1332)} AS Cotangent

returns -0.040312.

See Also
• SQL functions: ACOS, ASIN, ATAN, COS, SIN, TAN

• ObjectScript function: $ZCOT

InterSystems SQL Reference 443

COT

CURDATE
A scalar date/time function that returns the current local date.

{fn CURDATE()}
{fn CURDATE}

Description
CURDATE takes no arguments. It returns the current local date as data type DATE. Note that the argument parentheses
are optional. CURDATE returns the current local date for this timezone; it adjusts for local time variants, such as Daylight
Saving Time.

CURDATE in Logical mode returns the current local date in $HOROLOG format; for example, 64701. CURDATE in
Display mode returns the current local date in the default format for the locale. For example, in an American locale
02/22/2018, in a European locale 22/02/2018, in a Russian locale 22.02.2018.

To specify a different date format, use the TO_DATE function. To change the default date format, use the SET OPTION
command with the DATE_FORMAT, YEAR_OPTION, or DATE_SEPARATOR options.

To return just the current date, use CURDATE or CURRENT_DATE. These functions return their values in DATE data
type. The CURRENT_TIMESTAMP, GETDATE and NOW functions can also be used to return the current date and time
as a TIMESTAMP data type.

Note that all InterSystems SQL time and date functions except GETUTCDATE are specific to the local time zone setting.
To get a current timestamp that is universal (independent of time zone) you can use GETUTCDATE or the ObjectScript
$ZTIMESTAMP special variable.

These data types perform differently when using embedded SQL. The DATE data type stores values as integers in
$HOROLOG format; when displayed in SQL they are converted to date display format; when returned from embedded
SQL they are returned as integers. A TIMESTAMP data type stores and displays its value in the same format. You can use
the CONVERT function to change the data type of dates and times.

Examples
The following examples both return the current date:

SELECT {fn CURDATE()} AS Today

SELECT {fn CURDATE} AS Today

The following Embedded SQL example returns the current date. Because this date is stored in $HOROLOG format, it is
returned as an integer:

 &sql(SELECT {fn CURDATE()} INTO :a)
 WRITE !,"Current date is: ",a

The following example shows how CURDATE can be used in a SELECT statement to return all records that have a
shipment date that is the same or later than today's date:

SELECT * FROM Orders
 WHERE ShipDate >= {fn CURDATE()}

See Also
• SQL functions: CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, CURTIME, GETDATE,

GETUTCDATE, NOW

• ObjectScript function: $ZDATE

444 InterSystems SQL Reference

SQL Functions

CURRENT_DATE
A date/time function that returns the current local date.

CURRENT_DATE

Description
CURRENT_DATE takes no arguments. It returns the current local date as data type DATE. Argument parentheses are
not permitted. CURRENT_DATE returns the current local date for this timezone; it adjusts for local time variants, such
as Daylight Saving Time.

CURRENT_DATE in Logical mode returns the current local date in $HOROLOG format; for example, 64701.
CURRENT_DATE in Display mode returns the current local date in the default format for the locale. For example, in an
American locale 02/22/2018, in a European locale 22/02/2018, in a Russian locale 22.02.2018.

To specify a different date format, use the TO_DATE function. To change the default date format, use the SET OPTION
command with the DATE_FORMAT, YEAR_OPTION, or DATE_SEPARATOR options.

To return just the current date, use CURRENT_DATE or CURDATE. These functions return their values in DATE data
type. The CURRENT_TIMESTAMP, GETDATE and NOW functions can also be used to return the current date and time
as a TIMESTAMP data type.

Note that all InterSystems SQL time and date functions except GETUTCDATE are specific to the local time zone setting.
To get a current timestamp that is universal (independent of time zone) you can use GETUTCDATE or the ObjectScript
$ZTIMESTAMP special variable.

These data types perform differently when using embedded SQL. The DATE data type stores values as integers in
$HOROLOG format; when displayed in SQL they are converted to date display format; when returned from embedded
SQL they are returned as integers. A TIMESTAMP data type stores and displays its value in the same format. You can use
the CONVERT function to change the datatype of dates and times.

CURRENT_DATE can be used as a default specification keyword in CREATE TABLE or ALTER TABLE.

Examples
The following example returns the current date, converted to Display mode:

SELECT CURRENT_DATE AS Today

The following Embedded SQL example returns the current date as stored. Because this date is stored in $HOROLOG format,
it is returned as an integer:

 &sql(SELECT CURRENT_DATE INTO :a)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"Current date is: ",a }

The following example shows how CURRENT_DATE can be used in a WHERE clause to return records of people born
in the last 1000 days:

SELECT Name,DOB,Age
FROM Sample.Person
WHERE DOB > CURRENT_DATE - 1000

See Also
CURDATE, CURRENT_TIME, CURRENT_TIMESTAMP, CURTIME, GETDATE, GETUTCDATE, NOW

InterSystems SQL Reference 445

CURRENT_DATE

CURRENT_TIME
A date/time function that returns the current local time.

CURRENT_TIME
CURRENT_TIME(precision)

Arguments
A positive integer that specifies the time precision as the number of digits of fractional
seconds. The default is 0 (no fractional seconds); this default is configurable.

precision

CURRENT_TIME returns the TIME data type.

Description
CURRENT_TIME takes either no arguments or a precision argument. Empty argument parentheses are not permitted.

CURRENT_TIME returns the current local time for this timezone. It adjusts for local time variants, such as Daylight
Saving Time.

CURRENT_TIME in Logical mode returns the current local time in $HOROLOG format; for example, 37065.
CURRENT_TIME in Display mode returns the current local time in the default format for the locale; for example,
10:18:27.

To change the default time format, use the SET OPTION command with the TIME_FORMAT and TIME_PRECISION
options. You can configure fractional seconds of precision, as described below.

To return just the current time, use CURRENT_TIME or CURTIME. These functions return their values in TIME data
type. The CURRENT_TIMESTAMP, GETDATE and NOW functions can also be used to return the current date and time
as a TIMESTAMP data type.

Note that all InterSystems SQL time and date functions except GETUTCDATE are specific to the local time zone setting.
To get a current timestamp that is universal (independent of time zone) you can use GETUTCDATE or the ObjectScript
$ZTIMESTAMP special variable.

These data types perform differently when using embedded SQL. The TIME data type stores values as integers in
$HOROLOG format (as the number of seconds since midnight); when displayed in SQL they are converted to time display
format; when returned from embedded SQL they are returned as integers. A TIMESTAMP data type stores and displays
its value in the same format. You can use the CAST or CONVERT function to change the datatype of times and dates.

CURRENT_TIME can be used as a default specification keyword in CREATE TABLE or ALTER TABLE.
CURRENT_TIME cannot specify a precision argument when used as a default specification keyword.

Fractional Seconds Precision

CURRENT_TIME can return up to nine digits of fractional seconds of precision. The default for the number of digits of
precision can be configured using the following:

• SET OPTION with the TIME_PRECISION option.

• The $SYSTEM.SQL.SetDefaultTimePrecision() method call.

• Go to the Management Portal, select System Administration, Configuration, SQL and Object Settings, SQL. View and
edit the current setting of Default time precision for GETDATE(), CURRENT_TIME, and CURRENT_TIMESTAMP.

446 InterSystems SQL Reference

SQL Functions

Specify an integer 0 through 9 (inclusive) for the default number of decimal digits of precision to return. The default is 0.
The actual precision returned is platform dependent; digits of precision in excess of the precision available on your system
are returned as zeroes.

Examples
The following example returns the current system time:

SELECT CURRENT_TIME

The following example returns the current system time with three digits of fractional seconds precision:

SELECT CURRENT_TIME(3)

The following Embedded SQL example returns the current time. Because this time is stored in $HOROLOG format, it is
returned as an integer:

 &sql(SELECT CURRENT_TIME INTO :a)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"Current time is: ",a }

The following example sets the LastCall field in the selected row of the Contacts table to the current system time:

UPDATE Contacts SET LastCall = CURRENT_TIME
 WHERE Contacts.ItemNumber=:item

See Also
• SQL concepts: Data Type, Date and Time Constructs

• SQL time functions: CAST, CONVERT, CURTIME, HOUR, MINUTE, SECOND

• SQL timestamp functions: CURRENT_TIMESTAMP, GETDATE, GETUTCDATE, NOW, SYSDATE, TIMESTAM-
PADD, TIMESTAMPDIFF

• InterSystems IRIS ObjectScript: $ZTIME function, $HOROLOG special variable, $ZTIMESTAMP special variable

InterSystems SQL Reference 447

CURRENT_TIME

CURRENT_TIMESTAMP
A date/time function that returns the current local date and time.

CURRENT_TIMESTAMP
CURRENT_TIMESTAMP(precision)

Arguments

A positive integer that specifies the time precision as the number of digits of fractional
seconds. The default is 0 (no fractional seconds); this default is configurable.

precision

CURRENT_TIMESTAMP returns the TIMESTAMP data type.

Description
CURRENT_TIMESTAMP takes either no arguments or a precision argument. Empty argument parentheses are not per-
mitted.

CURRENT_TIMESTAMP returns the current local date and time for this timezone; it adjusts for local time variants,
such as Daylight Saving Time.

CURRENT_TIMESTAMP can return a timestamp in either %TimeStamp data type format (yyyy-mm-dd hh:mm:ss.ffff)
or %PosixTime data type format (an encoded 64-bit signed integer). The following rules determine which timestamp format
is returned:

1. If the current timestamp is being supplied to a field of data type %PosixTime, the current timestamp value is returned
in POSIXTIME data type format. For example, WHERE PosixField=CURRENT_TIMESTAMP or INSERT INTO
MyTable (PosixField) VALUES (CURRENT_TIMESTAMP).

2. If the current timestamp is being supplied to a field of data type %TimeStamp, the current timestamp value is returned
in TIMESTAMP data type format. For example, WHERE TSField=CURRENT_TIMESTAMP or INSERT INTO
MyTable (TSField) VALUES (CURRENT_TIMESTAMP).

3. If the current timestamp is being supplied without context, the current timestamp value is returned in TIMESTAMP
data type format. For example, SELECT CURRENT_TIMESTAMP.

You can use $HOROLOG to store or return the current local date and time in internal format.

To change the default datetime string format, use the SET OPTION command with the various date and time options.

You can specify CURRENT_TIMESTAMP, with or without precision, as the field default value when defining a datetime
field using CREATE TABLE or ALTER TABLE. CURRENT_TIMESTAMP can be specified as the field default value
for a field of data type %Library.PosixTime or %Library.TimeStamp; the current date and time is stored in the format specified
by the field’s data type.

Fractional Seconds Precision

CURRENT_TIMESTAMP has two syntax forms:

• Without argument parentheses, CURRENT_TIMESTAMP is functionally identical to NOW. It uses the system-wide
default time precision.

• With argument parentheses, CURRENT_TIMESTAMP(precision), is functionally identical to GETDATE, except
that the CURRENT_TIMESTAMP() precision argument is mandatory. CURRENT_TIMESTAMP() always returns
its specified precision and ignores the configured system-wide default time precision.

Fractional seconds are always truncated, not rounded, to the specified precision.

448 InterSystems SQL Reference

SQL Functions

• In TIMESTAMP data type format, the maximum possible digits of precision is nine. The actual number of digits sup-
ported is determined by the precision argument, the configured default time precision, and the system capabilities. If
you specify a precision larger than the configured default time precision, the additional digits of precision are returned
as trailing zeros.

• In POSIXTIME data type format, the maximum possible digits of precision is six. Every POSIXTIME value is computed
using six digits of precision; these fractional digits default to zeros unless supplied. The actual number of non-zero
digits supported is determined by the precision argument, the configured default time precision, and the system capa-
bilities.

Configuring Precision

The default precision can be configured using the following:

• SET OPTION with the TIME_PRECISION option.

• The $SYSTEM.SQL.SetDefaultTimePrecision() method call.

• Go to the Management Portal, select System Administration, Configuration, SQL and Object Settings, SQL. View and
edit the current setting of Default time precision for GETDATE(), CURRENT_TIME, and CURRENT_TIMESTAMP.

Specify an integer 0 through 9 (inclusive) for the default number of decimal digits of precision to return. The default is 0.
The actual precision returned is platform dependent; precision digits in excess of the precision available on your system
are returned as zeroes.

Date and Time Functions Compared

GETDATE and NOW can also be used to return the current local date and time as either a TIMESTAMP data type or a
POSIXTIME data type value. GETDATE supports precision, NOW does not support precision.

SYSDATE is identical to CURRENT_TIMESTAMP, with the exception that SYSDATE does not support precision.
CURRENT_TIMESTAMP is the preferred InterSystems SQL function; SYSDATE is provided for compatibility with
other vendors.

GETUTCDATE can be used to return the universal (independent of time zone) date and time as either a TIMESTAMP
data type or a POSIXTIME data type value. Note that all InterSystems SQL time and date functions except GETUTCDATE
are specific to the local time zone setting. To get a universal (time zone independent) timestamp, you can use GETUTCDATE
or the ObjectScript $ZTIMESTAMP special variable.

To return just the current local date, use CURDATE or CURRENT_DATE. To return just the current local time, use
CURRENT_TIME or CURTIME. These functions return their values in DATE or TIME data type. None of these functions
support precision.

The TIMESTAMP data type storage format and display format are the same. The POSIXTIME data type storage format
is an encoded 64-bit signed integer. The TIME and DATE data types store their values as integers in $HOROLOG format;
when displayed in SQL they are converted to date or time display format. Embedded SQL returns them in logical (storage)
format by default. You can change the Embedded SQL returned value format using the #SQLCompile Select macro prepro-
cessor directive, as described in the “ObjectScript Macros and the Macro Preprocessor” chapter of Using ObjectScript.

You can use the CAST or CONVERT function to change the data type of dates and times.

Examples
The following example returns the current local date and time three different ways: in TIMESTAMP data type format with
system default time precision, with a precision of two digits of fractional seconds, and in $HOROLOG internal storage
format with full seconds:

SELECT
 CURRENT_TIMESTAMP AS FullSecStamp,
 CURRENT_TIMESTAMP(2) AS FracSecStamp,
 $HOROLOG AS InternalFullSec

InterSystems SQL Reference 449

CURRENT_TIMESTAMP

The following Embedded SQL example sets a locale default time precision. The first CURRENT_TIMESTAMP specifies
no precision; it returns the current time with the default time precision. The second CURRENT_TIMESTAMP specifies
precision; this overrides the configured default time precision. The precision argument can be larger or smaller than the
default time precision setting:

InitialVal
 SET pre=##class(%SYS.NLS.Format).GetFormatItem("TimePrecision")
ChangeVal
 SET x=##class(%SYS.NLS.Format).SetFormatItem("TimePrecision",4)
 &sql(SELECT CURRENT_TIMESTAMP,CURRENT_TIMESTAMP(2) INTO :a,:b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"Timestamp is: ",a
 WRITE !,"Timestamp is: ",b }
RestoreVal
 SET x=##class(%SYS.NLS.Format).SetFormatItem("$TimePrecision",pre)

The following Embedded SQL example compares local (time zone specific) and universal (time zone independent) time
stamps:

 &sql(SELECT CURRENT_TIMESTAMP,GETUTCDATE() INTO :a,:b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"Local timestamp is: ",a
 WRITE !,"UTC timestamp is: ",b
 WRITE !,"$ZTIMESTAMP is: ",$ZDATETIME($ZTIMESTAMP,3,,3)
 }

The following example sets the LastUpdate field in the selected row of the Orders table to the current system date and time.
If LastUpdate is data type %TimeStamp, CURRENT_TIMESTAMP returns the current date and time as an ODBC
timestamp; if LastUpdate is data type %PosixTime, CURRENT_TIMESTAMP returns the current date and time as an
encoded 64-bit signed integer:

UPDATE Orders SET LastUpdate = CURRENT_TIMESTAMP
 WHERE Orders.OrderNumber=:ord

The following example creates a table named Orders, which records product orders received:

CREATE TABLE Orders (
 OrderId INT NOT NULL,
 ClientId INT,
 ItemName CHAR(40) NOT NULL,
 OrderDate TIMESTAMP DEFAULT CURRENT_TIMESTAMP(3),
 PRIMARY KEY (OrderId))

The OrderDate column contains the date and time that the order was received. It uses the TIMESTAMP data type and
inserts the current system date and time as the default value using the CURRENT_TIMESTAMP function with a precision
of 3.

See Also
• SQL concepts: Data Type, Date and Time Constructs

• SQL timestamp functions: CAST, CONVERT, GETDATE, GETUTCDATE, NOW, SYSDATE, TIMESTAMPADD,
TIMESTAMPDIFF, TO_POSIXTIME, TO_TIMESTAMP

• SQL current date and time functions: CURDATE, CURRENT_DATE, CURRENT_TIME, CURTIME

• ObjectScript: $ZDATETIME function, $HOROLOG special variable, $ZTIMESTAMP special variable

450 InterSystems SQL Reference

SQL Functions

CURTIME
A scalar date/time function that returns the current local time.

{fn CURTIME()}
{fn CURTIME}

Description
CURTIME takes no arguments. It returns the current local time as data type TIME. Note that the argument parentheses
are optional. CURTIME returns the current local time for this timezone; it adjusts for local time variants, such as Daylight
Saving Time.

CURTIME in Logical mode returns the current local time in $HOROLOG format; for example, 37065. CURTIME in
Display mode returns the current local time in the default format for the locale; for example, 10:18:27.

Hours are represented in 24-hour format.

To change the default time format, use the SET OPTION command with the TIME_FORMAT and TIME_PRECISION
options.

To return just the current time, use CURTIME or CURRENT_TIME. These functions return their values in TIME data
type. The CURRENT_TIMESTAMP, GETDATE and NOW functions can also be used to return the current date and time
as a TIMESTAMP data type.

Note that all InterSystems SQL time and date functions except GETUTCDATE are specific to the local time zone setting.
To get a current timestamp that is universal (independent of time zone) you can use GETUTCDATE or the ObjectScript
$ZTIMESTAMP special variable.

These data types perform differently when using embedded SQL. The TIME data type stores values as integers in
$HOROLOG format (as the number of seconds since midnight); when displayed in SQL they are converted to time display
format; when returned from embedded SQL they are returned as integers. A TIMESTAMP data type stores and displays
its value in the same format. You can use the CAST or CONVERT function to change the data type of times and dates.

Examples
The following examples both return the current system time:

SELECT {fn CURTIME()} AS TimeNow

SELECT {fn CURTIME} AS TimeNow

The following Embedded SQL example returns the current time. Because this time is stored in $HOROLOG format, it is
returned as an integer:

 &sql(SELECT {fn CURTIME} INTO :a)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"Current time is: ",a }

The following example sets the LastCall field in the selected row of the Contacts table to the current system time:

UPDATE Contacts Set LastCall = {fn CURTIME()}
 WHERE Contacts.ItemNumber=:item

See Also
• SQL concepts: Data Type Date and Time Constructs

• SQL time functions: CAST CONVERT CURRENT_TIME HOUR MINUTE SECOND

InterSystems SQL Reference 451

CURTIME

• SQL timestamp functions: CURRENT_TIMESTAMP GETDATE GETUTCDATE NOW TIMESTAMPADD
TIMESTAMPDIFF

• ObjectScript: $ZTIME function $HOROLOG special variable $ZTIMESTAMP special variable

452 InterSystems SQL Reference

SQL Functions

DATABASE
A scalar string function that returns the database name qualifier.

{fn DATABASE()}

Description
DATABASE returns the current qualifier for the name of the database corresponding to the connection handle. In InterSys-
tems IRIS, DATABASE always returns the empty string ('').

InterSystems SQL Reference 453

DATABASE

DATALENGTH
A function that returns the number of characters in an expression.

DATALENGTH(expression)

Arguments

An expression, which can be the name of a column, a string literal, or the
result of another scalar function.The underlying data type can be a character
type (such as CHAR or VARCHAR), a numeric, or a data stream.

expression

DATALENGTH returns the INTEGER data type.

Description

Note: The DATALENGTH, CHAR_LENGTH, and CHARACTER_LENGTH functions are identical. Use of the
CHAR_LENGTH function is recommended for new code. DATALENGTH is provided for TSQL compatibility.
Refer to CHAR_LENGTH for further details.

See Also
• CHAR_LENGTH function

• CHARACTER_LENGTH function

454 InterSystems SQL Reference

SQL Functions

DATE
A function that takes a timestamp and returns a date.

DATE(timestamp)

Arguments

An expression that specifies a timestamp or other date or date and time
representation.

timestamp

Description
DATE takes a timestamp expression and returns a date. The return value is of data type DATE. This is functionally the
same as CAST(timestamp AS DATE). It accepts timestamp values with any of the following data type classes (or their
subclasses): %Library.TimeStamp, %Library.PosixTime, %Library.Date, and %Library.Integer or %Library.Numeric (for implicit
logical dates, such as +$HOROLOG). It can also accept %Library.String values that are in a format compatible with
%Library.TimeStamp (a valid ODBC date).

An invalid ODBC date string is evaluated as zero, which corresponds to the date December 31, 1840. A timestamp may
contain just an ODBC format date or an ODBC format date and time. Although only the date portion of the ODBC timestamp
is converted, the entire string is validated. An ODBC timestamp fails validation if the date portion is incomplete, if either
the date or time portion contain an out-of-range value (including leap year calculations), or if timestamp contains any invalid
format characters or trailing characters.

An empty string ('') argument returns 0 (December 31, 1840). A NULL argument returns NULL.

This function can also be invoked from ObjectScript using the DATE() method call:

 WRITE $SYSTEM.SQL.DATE("2018-02-23 12:37:45")

$HOROLOG and $ZTIMESTAMP

$HOROLOG and $ZTIMESTAMP return character string values. When a character string is cast to a numeric type, it
always returns a numeric value of zero (0). The InterSystems IRIS DATE data type value for 0 is December 31, 1840.

Therefore, in order to interpret $HOROLOG or $ZTIMESTAMP as the current date, you must prefix it was a plus (+)
sign, which forces numeric interpretation. This is shown in the following examples:

SELECT DATE($HOROLOG),DATE($ZTIMESTAMP) // both return 0 (12/31/1840)

SELECT DATE(+$HOROLOG),DATE(+$ZTIMESTAMP) // both return the current date

ODBC Date Strings

The DATE function and the $SYSTEM.SQL.DATE() method can both take an ODBC date format string. They validate
the input string. If it passes validation, they return the corresponding date. If it fails validation, they return 0. Validation is
performed as following:

• The string must correspond to ODBC format: yyyy-mm-dd hh:mm:ss.xx. The entire string is parsed for correct
format, not just the date portion of the string.

• The string must contain (at least) a full date: yyyy-mm-dd. Leading zeros may be omitted or included. The time portion
is optional, and any part of the time portion may be included: yyyy-mm-dd hh:.

• Each numeric element of the string (both date portion and time portion) must contain a valid value. For example, month
values must be in the range of 1 through 12 (inclusive). Day values cannot exceed the number of days for the specified
month. Leap year days are calculated.

InterSystems SQL Reference 455

DATE

• Dates must be within the %Library.TimeStamp date range. The minimum date is 0001-01-01, the maximum date is
9999-12-31.

Examples
The following examples take a value of data type %Library.TimeStamp:

 SET myquery = "SELECT {fn NOW} AS NowCol,DATE({fn NOW}) AS DateCol"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()

 SET myquery = "SELECT CURRENT_TIMESTAMP AS TSCol,DATE(CURRENT_TIMESTAMP) AS DateCol"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()

 SET myquery = "SELECT GETDATE() AS GetDateCol,DATE(GETDATE()) AS DateCol"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()

The following example takes a string value in %Library.TimeStamp format:

 SET myquery = "SELECT '2018-02-22 13:14:23' AS DateStrCol,DATE('2018-02-22 13:14:23') AS DateCol"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()

The following examples take string values that represent dates in InterSystems IRIS logical format. In order to properly
convert these values to %Library.Date data type, the value must be prefixed with a plus sign (+) to force numeric evaluation:

 SET myquery = "SELECT $H AS HoroCol,DATE(+$H) AS DateCol"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()

 SET myquery = "SELECT $ZTIMESTAMP AS TSCol,DATE(+$ZTIMESTAMP) AS DateCol"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()

See Also
• CAST function

• CURDATE and CURRENT_DATE functions

• CURRENT_TIMESTAMP function

• GETUTCDATE function

• NOW function

• TO_TIMESTAMP function

• $HOROLOG special variable

• $ZTIMESTAMP special variable

456 InterSystems SQL Reference

SQL Functions

DATEADD
A date/time function that returns a timestamp calculated by adding or subtracting a number of date part units (such as hours
or days) to a date or timestamp.

DATEADD(datepart,integer-exp,date-exp)

Arguments

The name (or abbreviation) of a date or time part. This name can be specified in
uppercase or lowercase, with or without enclosing quotes. The datepart can be
specified as a literal or a host variable.

datepart

A numeric expression of any number type. The value is truncated to an integer
(positive or negative). The value indicates the number of datepart units that will be
added to (or subtracted from) date-exp.

integer-exp

The date/time expression to be modified. This can be a date string, or a timestamp
string (either %PosixTime or %TimeStamp data type), or a function such as
CURRENT_DATE.The value returned is always a timestamp, in either %PosixTime
or %TimeStamp data type format.

date-exp

Description
The DATEADD function modifies a date/time expression by incrementing the specified date part by the specified number
of units. For example, if datepart is 'month' and integer-exp is 5, DATEADD increments date-exp by five months. You
can also decrement a date part by specifying a negative integer for integer-exp.

The calculated date is returned as a complete date/time expression (a timestamp). The returned data type depends on the
data type of date-exp. If date-exp is %Library.PosixTime (an encoded 64-bit signed integer), DATEADD returns data type
%Library.PosixTime. Otherwise, DATEADD returns data type %Library.TimeStamp (yyyy-mm-dd hh:mm:ss.fff).

DATEADD always returns a valid date, taking into account the number of days in a month, and calculating for leap year.
For example, incrementing January 31 by one month returns February 28 (the highest valid date in the month), unless the
specified year is a leap year, in which case it returns February 29. Incrementing a leap year date of February 29 by one year
returns February 28. Incrementing a leap year date of February 29 by four years returns February 29.

If you specify a date-exp that includes fractional seconds, the returned value also includes fractional seconds. If you omit
the time portion of date-exp, DATEADD returns a default time of 00:00:00. If you omit the date portion of date-exp,
DATEADD returns a default date of 1900–01–01.

DATEADD and TIMESTAMPADD handle quarters (3–month intervals); DATEDIFF and TIMESTAMPDIFF do not
handle quarters.

Similar time/date modification operations can be performed using the TIMESTAMPADD ODBC scalar function.

This function can also be invoked from ObjectScript using the DATEADD() method call:

$SYSTEM.SQL.DATEADD(datepart,integer-exp,date-exp)

Datepart Argument

The datepart argument can be one of the following date/time components, either the full name (the Date Part column) or
its abbreviation (the Abbreviation column). These datepart component names and abbreviations are not case-sensitive.

InterSystems SQL Reference 457

DATEADD

integer-exp = 1AbbreviationsDate Part

Increments year by 1.yyyy, yyyear

Increments month by 3.qq, qquarter

Increments month by 1.mm, mmonth

Increments day by 7.wk, wwweek

Increments day by 1.dwweekday

Increments day by 1.dd, dday

Increments day by 1.dy, ydayofyear

Increments hour by 1.hhhour

Increments minute by 1.mi, nminute

Increments second by 1.ss, ssecond

Increments by .001 of a second.msmillisecond

Incrementing or decrementing a date part causes other date parts to be modified appropriately. For example, incrementing
the hour past midnight automatically increments the day, which may in turn increment the month, and so forth.

A datepart can be specified as a quoted string or without quotes. These syntax variants perform slightly different operations:

• Quotes: DATEADD('month',12,$HOROLOG): the datepart is treated as a literal when creating cached queries.
InterSystems SQL performs literal substitution. This produces a more generally reusable cached query.

• No quotes: DATEADD(month,12,$HOROLOG): the datepart is treated as a keyword when creating cached queries.
No literal substitution. This produces a more specific cached query.

If you specify an invalid datepart value as a literal, an SQLCODE -8 error code is issued. However, if you supply an invalid
datepart value as a host variable, no SQLCODE error is issued and the DATEPART function returns a value of NULL.

Date Expression Formats

The date-exp argument can be in any of the following formats, and may include or omit fractional seconds:

• An InterSystems IRIS %Date logical value (+$H)

• An InterSystems IRIS %PosixTime (%Library.PosixTime) logical value (an encoded 64-bit signed integer)

• An InterSystems IRIS %TimeStamp (%Library.TimeStamp) logical value (YYYY-MM-DD HH:MM:SS)

• An InterSystems IRIS %String (or compatible) value

The InterSystems IRIS %String (or compatible) value can be in any of the following formats:

• 99999,99999 ($H format)

• Sybase/SQL-Server-date Sybase/SQL-Server-time

• Sybase/SQL-Server-time Sybase/SQL-Server-date

• Sybase/SQL-Server-date (default time is 00:00:00)

• Sybase/SQL-Server-time (default date is 01/01/1900)

458 InterSystems SQL Reference

SQL Functions

Sybase/SQL-Server-date is one of these five formats:

mmdelimiterdddelimiter[yy]yy dd Mmm[mm][,][yy]yy dd [yy]yy Mmm[mm] yyyy Mmm[mm] dd
yyyy [dd] Mmm[mm]

where delimiter is a slash (/), hyphen (-), or period (.).

Sybase/SQL-Server-time represents one of these three formats:

HH:MM[:SS:SSS][{AM|PM}] HH:MM[:SS.S] HH['']{AM|PM}

If the year is given as two digits, InterSystems IRIS checks the sliding window to interpret the date. The system default for
the sliding window can be set via the %DATE utility, which is documented in the legacy documentation available at
http://docs.intersystems.com/priordocexcerpts. For information on setting the sliding window for the current process, see
the documentation for the ObjectScript $ZDATE, $ZDATEH, $ZDATETIME and $ZDATETIMEH functions.

Note that DATEADD is provided for Sybase and Microsoft SQL Server compatibility.

Range and Value Checking

DATEADD performs the following checks on input values. If a value fails a check, the null string is returned.

• A date string must be complete and properly formatted with the appropriate number of elements and digits for each
element, and the appropriate separator character. Years must be specified as four digits.

• Date values must be within a valid range. Years: 0001 through 9999. Months: 1 through 12. Days: 1 through 31. Hours:
0 through 23. Minutes: 0 through 59. Seconds: 0 through 59.

• The incremented year value returned must be within the range 0001 through 9999. Incrementing beyond this range
returns <null>.

• The number of days in a month must match the month and year. For example, the date '02–29' is only valid if the
specified year is a leap year.

• Date values less than 10 may include or omit a leading zero. Other non-canonical integer values are not permitted.
Therefore, a Day value of '07' or '7' is valid, but '007', '7.0' or '7a' are not valid.

Examples
The following example adds 1 week to the specified date:

SELECT DATEADD('week',1,'2018-02-26') AS NewDate

it returns 2018-03-05 00:00:00, because adding 1 week adds 7 days. Note that DATEADD supplies the omitted time portion.

The following example adds 5 months to the timestamp:

SELECT DATEADD(MM,5,'2017-11-26 12:00:00') AS NewDate

it returns 2018-04-26 12:00:00 because adding 5 months also increments the year.

The following example also adds 5 months to the timestamp:

SELECT DATEADD('mm',5,'2018-01-31 12:00:00') AS NewDate

it returns 2018-06-30 12:00:00. Here DATEADD modified the day value as well as the month, because simply incrementing
the month would result in June 31, which is an invalid date.

The following example adds 45 minutes to the timestamp:

SELECT DATEADD(MI,45,'2018-02-26 12:00:00') AS NewTime

it returns 2018-02-26 12:45:00.

InterSystems SQL Reference 459

DATEADD

http://docs.intersystems.com/priordocexcerpts

The following example also adds 45 minutes to the timestamp, but in this case the addition increments the day, which
increments the month:

SELECT DATEADD('mi',45,'2018-02-28 23:30:00') AS NewTime

it returns 2018-03-01 00:15:00.

The following example decrements the original timestamp by 45 minutes:

SELECT DATEADD(N,-45,'2018-01-01 00:10:00') AS NewTime

it returns 2017-12-31 23:25:00.

The following example adds 60 days to the current date, adjusting for the varying lengths of months:

SELECT DATEADD(D,60,CURRENT_DATE) AS NewDate

In the following example, the first DATEADD adds 92 days to the specified date, the second DATEADD adds 1 quarter
to the specified date:

SELECT DATEADD('dd',92,'2018-12-20') AS NewDateD,
 DATEADD('qq',1,'2018-12-20') AS NewDateQ

The first returns 2019-03-22 00:00:00; the second returns 2019-03-20 00:00:00. Incrementing by a quarter increments the
month field by 3, and, when needed, increments the year field. It also corrects for the maximum number of days for a given
month.

The above examples all use date part abbreviations. However, you can also specify the date part by its full name, as in this
example:

SELECT DATEADD('day',92,'2018-12-20') AS NewDate

it returns 2019-03-22 00:00:00.

The following Embedded SQL example uses host variables to perform the same DATEADD operation as the previous
example:

 SET x="day"
 SET datein="2019-12-20"
 &sql(SELECT DATEADD(:x,92,:datein)
 INTO :dateout)
 WRITE "in: ",datein,!,"out: ",dateout

See Also
• DATEDIFF function

• DATENAME function

• DATEPART function

• TIMESTAMPADD function

• TIMESTAMPDIFF function

460 InterSystems SQL Reference

SQL Functions

DATEDIFF
A date/time function that returns an integer difference for a specified datepart between two dates.

DATEDIFF(datepart,startdate,enddate)

Arguments

The name (or abbreviation) of a date or time part. This name can be specified in
uppercase or lowercase, with or without enclosing quotes.The datepart can be specified
as a literal or a host variable.

datepart

The starting date/time for the interval. May be a date, a time, or a datetime in a variety
of standard formats.

startdate

The ending date/time for the interval. May be a date, a time, or a datetime in a variety
of standard formats. startdate is subtracted from enddate to determine how many datepart
intervals are between the two dates.

enddate

Description
The DATEDIFF function returns the INTEGER number of the specified datepart difference between the two specified
dates. The date range begins at startdate and ends at enddate. (If enddate is earlier than startdate, DATEDIFF returns a
negative INTEGER value.)

DATEDIFF returns the total number of the specified unit between startdate and enddate. For example, the number of
minutes between two datetime values evaluates the date component as well as the time component, and adds 1440 minutes
for each day difference. DATEDIFF returns the count of the specified date part boundaries crossed between startdate and
enddate. For example, that any two dates that specify sequential years (for example 2018-09-23 and 2019-01-01) return a
year DATEDIFF of 1, regardless of whether the actual duration between the two dates is more than or less than 365 days.
Similarly, the number of minutes between 12:23:59 and 12:24:05 is 1, although only 6 seconds actually separate the two
values.

Note that DATEDIFF is provided for Sybase and Microsoft SQL Server compatibility. Similar time/date comparison
operations can be performed using the TIMESTAMPDIFF ODBC scalar function.

This function can also be invoked from ObjectScript using the DATEDIFF() method call:

$SYSTEM.SQL.DATEDIFF(datepart,startdate,enddate)

Specifying an invalid datepart, startdate, or enddate to the DATEDIFF() method generates a <ZDDIF> error.

Datepart Argument

The datepart argument can be one of the following date/time components, either the full name (the Date Part column) or
its abbreviation (the Abbreviation column). These datepart component names and abbreviations are not case-sensitive.

InterSystems SQL Reference 461

DATEDIFF

AbbreviationsDate Part

yyyy, yyyear

mm, mmonth

wk, wwweek

dwweekday

dd, dday

dydayofyear

hhhour

mi, nminute

ss, ssecond

msmillisecond

The weekday and dayofyear datepart values are functionally identical to the day datepart value.

DATEDIFF and TIMESTAMPDIFF do not handle quarters (3-month intervals).

If you specify a startdate and enddate that include fractional seconds, you can return the difference as a number of fractional
seconds, expressed as thousands of a second (.001), as shown in the following example:

SELECT DATEDIFF('ms','64701,56670.10','64701,56670.27'), /* returns 170 */
 DATEDIFF('ms','64701,56670.1111','64701,56670.27222') /* returns 161.12 */

A datepart can be specified as a quoted string or without quotes. These syntax variants perform slightly different operations:

• Quotes: DATEDIFF('month','2018-02-25',$HOROLOG): the datepart is treated as a literal when creating cached
queries. InterSystems SQL performs literal substitution. This produces a more generally reusable cached query.

• No quotes: DATEDIFF(month,'2018-02-25',$HOROLOG): the datepart is treated as a keyword when creating
cached queries. No literal substitution. This produces a more specific cached query.

Date Expression Formats

The startdate and enddate arguments can be in different data type formats.

The startdate and enddate arguments can be in any of the following formats:

• An InterSystems IRIS %Date logical value (+$H), also known as $HOROLOG format.

• An InterSystems IRIS %PosixTime (%Library.PosixTime) logical value (an encoded 64-bit signed integer)

• An InterSystems IRIS %TimeStamp (%Library.TimeStamp) logical value (YYYY-MM-DD HH:MM:SS.FFF), also
known as ODBC format.

• An InterSystems IRIS %String (or compatible) value.

The InterSystems IRIS %String (or compatible) value can be in any of the following formats, and may include or omit
fractional seconds:

• 99999,99999 ($HOROLOG format). The $HOROLOG special variable does not return fractional seconds. However,
you can specify a value in $HOROLOG format that includes fractional seconds: 99999,99999.999

• Sybase/SQL-Server-date Sybase/SQL-Server-time

• Sybase/SQL-Server-time Sybase/SQL-Server-date

462 InterSystems SQL Reference

SQL Functions

• Sybase/SQL-Server-date (default time is 00:00:00)

• Sybase/SQL-Server-time (default date is 01/01/1900)

Sybase/SQL-Server-date is one of these five formats:

mm/dd/[yy]yy dd Mmm[mm][,][yy]yy dd [yy]yy Mmm[mm] yyyy Mmm[mm] dd yyyy [dd] Mmm[mm]

In the first syntactic format the delimiter can be a slash (/), a hyphen (-), or a period (.).

Sybase/SQL-Server-time represents one of these three formats:

HH:MM[:SS[:FFF]][{AM|PM}] HH:MM[:SS[.FFF]] HH['']{AM|PM}

Years

If the year is given as two digits or the date is omitted entirely, InterSystems IRIS checks the sliding window to interpret
the date. The system-wide default for the sliding window is 1900; thus by default a two-digit year is assumed to be in the
20th century. This is shown in the following example:

SELECT DATEDIFF('year','10/11/14','02/22/2018'),
 DATEDIFF('year','12:00:00','2018-02-22 12:00:00')

The sliding window default can be set system-wide or for the current process via the %DATE utility, which is documented
in the legacy documentation available at http://docs.intersystems.com/priordocexcerpts. For information on establishing a
sliding window for interpreting a specified date with a two-digit year, see the documentation for the ObjectScript $ZDATE,
$ZDATEH, $ZDATETIME and $ZDATETIMEH functions.

Fractional Seconds

DATEDIFF returns fractional seconds as milliseconds (a three-digit integer) regardless of the number of fractional digits
precision in startdate and enddate. Fractional digits beyond three are represented as fractional milliseconds. This is shown
in the following example:

SELECT DATEDIFF('ms','12:00:00.1','12:00:00.2'),
 DATEDIFF('ms','12:00:00.10009','12:00:00.20007')

Some NLS locales specify the fractional separator as a comma (European usage) rather than as a period. If the current locale
is one of these locales, DATEDIFF accepts either a period or a comma as the fractional seconds separator character for
local date formats. You cannot use a comma as the fractional seconds separator for a date in $HOROLOG format, or a date
in ODBC format. Attempting to do so generates an SQLCODE -8. Both of these formats require a period regardless of the
current NLS locale.

Time Differences Independent of TimeFormat

DATEDIFF returns a time difference in seconds and milliseconds, even when the TimeFormat for the current process is
set to not return seconds. This is shown in the following example:

 SET tfmt=##class(%SYS.NLS.Format).GetFormatItem("TimeFormat")
 DO ##class(%SYS.NLS.Format).SetFormatItem("TimeFormat",1)
 WRITE "datetime values (with seconds) are: ",!,
 $ZDATETIME("64701,56670.10",1,-1)," ",$ZDATETIME("64701,56673.27",1,-1),!
 &sql(SELECT DATEDIFF('ss','64701,56670.10','62871,56673.27') INTO :x)
 WRITE "DATEDIFF number of seconds is: ",x,!!
 DO ##class(%SYS.NLS.Format).SetFormatItem("TimeFormat",2)
 WRITE "datetime values (without seconds) are: ",!,
 $ZDATETIME("64701,56670.10",1,-1)," ",$ZDATETIME("64701,56673.27",1,-1),!
 &sql(SELECT DATEDIFF('ss','64701,56670.10','64701,56673.27') INTO :x)
 WRITE "DATEDIFF number of seconds is: ",x,!
 DO ##class(%SYS.NLS.Format).SetFormatItem("TimeFormat",tfmt)

Range and Value Checking

DATEDIFF performs the following checks on input values:

InterSystems SQL Reference 463

DATEDIFF

http://docs.intersystems.com/priordocexcerpts

• All specified parts of the startdate and enddate must be valid before any DATEDIFF operation can be performed.

• A date string must be complete and properly formatted with the appropriate number of elements and digits for each
element, and the appropriate separator character. Years must be specified as four digits. If you omit the date portion
of an input value, DATEDIFF defaults to '1900–01–01'. An invalid date value results in an SQLCODE -8 error.

• Date and time values must be within a valid range. Years: 0001 through 9999. Months: 1 through 12. Days: 1 through
31. Hours: 00 through 23. Minutes: 0 through 59. Seconds: 0 through 59. The number of days in a month must match
the month and year. For example, the date '02–29' is only valid if the specified year is a leap year. An invalid date
value results in an SQLCODE -8 error.

• Date values less than 10 (month and day) may include or omit a leading zero. Other non-canonical integer values are
not permitted. Therefore, a Day value of '07' or '7' is valid, but '007', '7.0' or '7a' are not valid.

• Time values may be wholly or partially omitted. If startdate or enddate specifies an incomplete time, zeros are supplied
for the unspecified parts.

• An hour value less than 10 must include a leading zero. Omitting this leading zero results in an SQLCODE -8 error.

Error Handling

• In Embedded SQL, if you specify an invalid datepart as an input variable, an SQLCODE -8 error code is issued. If
you specify an invalid datepart as a literal, a <SYNTAX> error occurs. If you specify an invalid startdate or enddate
as either an input variable or a literal, an SQLCODE -8 error code is issued.

• In Dynamic SQL, if you supply an invalid datepart, startdate, or enddate, the DATEDIFF function returns a value
of NULL. No SQLCODE error is issued.

Examples
The following example returns 353 because there are 353 days (D) between the two timestamps:

SELECT DATEDIFF(D,'2018-01-01 00:00:00','2018-12-20 12:00:00')

In the following example, each DATEDIFF returns 1, because the year portion of the dates differs by 1. The actual duration
between the dates is not considered:

SELECT DATEDIFF('yyyy','1910-08-21','1911-08-21') AS ExactYear,
 DATEDIFF('yyyy','1910-06-30','1911-01-01') AS HalfYear,
 DATEDIFF('yyyy','1910-01-01','1911-12-31') AS Nearly2Years,
 DATEDIFF('yyyy','1910-12-31 11:59:59','1911-01-01 00:00:00') AS NewYearSecond

Note that the above examples use an abbreviation for the date part. However, you can specify the full name, as in this
example:

SELECT DATEDIFF('year','2017-09-10 13:19:00','2018-12-20 00:00:00')

The following Embedded SQL example uses host variables to perform the same DATEDIFF operation as the previous
example:

 SET x="year"
 SET date1="2017-09-10 13:19:00"
 SET date2="2018-12-20 00:00:00"
 &sql(SELECT DATEDIFF(:x,:date1,:date2)
 INTO :diff)
 WRITE diff

The following example uses a subquery to return those records where the person date of birth is 1500 days or less from the
current date:

SELECT Name,Age,DOB
FROM (SELECT Name,Age,DOB, DATEDIFF('dy',DOB,$HOROLOG) AS DaysTo FROM Sample.Person)
WHERE DaysTo <= 1500
ORDER BY Age

464 InterSystems SQL Reference

SQL Functions

See Also
• DATEADD function

• DATENAME function

• DATEPART function

• TIMESTAMPADD function

• TIMESTAMPDIFF function

InterSystems SQL Reference 465

DATEDIFF

DATENAME
A date/time function that returns a string representing the value of the specified part of a date/time expression.

DATENAME(datepart,date-expression)

Arguments

The type of date/time information to return. The name (or abbreviation) of
a date or time part. This name can be specified in uppercase or lowercase,
with or without enclosing quotes. The datepart can be specified as a literal
or a host variable.

datepart

A date, time, or timestamp expression from which thedatepart value is to
be returned. date-expression must contain a value of type datepart.

date-expression

Description
The DATENAME function returns the name of the specified part (such as the month "June") of a date/time value. The
result is returned as data type VARCHAR(20). If the result is numeric (such as "23" for the day), it is still returned as a
VARCHAR(20) string. To return this information as an integer, use DATEPART. To return a string containing multiple
date parts, use TO_DATE.

Note that DATENAME is provided for Sybase and Microsoft SQL Server compatibility.

This function can also be invoked from ObjectScript using the DATENAME() method call:

$SYSTEM.SQL.DATENAME(datepart,date-expression)

Datepart Argument

The datepart argument can be a string containing one (and only one) of the following date/time components, either the full
name (the Date Part column) or its abbreviation (the Abbreviation column). These datepart component names and abbrevi-
ations are not case-sensitive.

Return ValuesAbbreviationsDate Part

0001-9999yyyy, yyyear

1-4qq, qquarter

January,...Decembermmmonth

1-53wk, wwweek

Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday

dwweekday

1-366dy, ydayofyear

1-31dd, dday

0-23hhhour

0-59mi, nminute

0-59 (with fractional seconds, if provided)ss, ssecond

0-999 (with precision of 3)msmillisecond

466 InterSystems SQL Reference

SQL Functions

If you specify an invalid datepart value as a literal, an SQLCODE -8 error code is issued. However, if you supply an invalid
datepart value as a host variable, no SQLCODE error is issued and the DATENAME function returns a value of NULL.

The preceding table shows the default return values for the various date parts. You can modify the returned values for
several of these date parts by using the SET OPTION command with various time and date options.

week: InterSystems IRIS can be configured to determine the week of the year for a given date using either the InterSystems
IRIS default algorithm or the ISO 8601 standard algorithm. For further details, refer to the WEEK function.

weekday: The InterSystems IRIS default for weekday is to designate Sunday as first day of the week (weekday=1).
However, you can configure the first day of the week to another value, or you can apply the ISO 8601 standard which
designates Monday as first day of the week. For further details, refer to the DAYOFWEEK function.

second: InterSystems IRIS returns a string containing the date-expression value for seconds and (if provided) fractional
seconds with the precision of date-expression.

millisecond: InterSystems IRIS returns a string containing the number of milliseconds (thousandths of a second). If the
date-expression has more than three fractional digits of precision, InterSystems IRIS truncates it to three digits and returns
this number as a string.

A datepart can be specified as a quoted string or without quotes. These syntax variants perform slightly different operations:

• Quotes: DATENAME('month','2018-02-25'): the datepart is treated as a literal when creating cached queries.
InterSystems SQL performs literal substitution. This produces a more generally reusable cached query.

• No quotes: DATENAME(month,'2018-02-25'): the datepart is treated as a keyword when creating cached queries.
No literal substitution. This produces a more specific cached query.

Date Expression Formats

The date-expression argument can be in any of the following formats:

• An InterSystems IRIS %Date logical value (+$H)

• An InterSystems IRIS %PosixTime (%Library.PosixTime) logical value (an encoded 64-bit signed integer)

• An InterSystems IRIS %TimeStamp (%Library.TimeStamp) logical value (YYYY-MM-DD HH:MM:SS.FFF), also
known as ODBC format.

• An InterSystems IRIS %String (or compatible) value

The InterSystems IRIS %String (or compatible) value can be in any of the following formats:

• 99999,99999 ($H format)

• Sybase/SQL-Server-date Sybase/SQL-Server-time

• Sybase/SQL-Server-time Sybase/SQL-Server-date

• Sybase/SQL-Server-date (default time is 00:00:00)

• Sybase/SQL-Server-time (default date is 01/01/1900)

Sybase/SQL-Server-date is one of these five formats:

mmdelimiterdddelimiter[yy]yy dd Mmm[mm][,][yy]yy dd [yy]yy Mmm[mm] yyyy Mmm[mm] dd
yyyy [dd] Mmm[mm]

where delimiter is a slash (/), hyphen (-), or period (.).

If the year is given as two digits, InterSystems IRIS checks the sliding window to interpret the date. The system default for
the sliding window can be set via the %DATE utility, which is documented in the legacy documentation available at

InterSystems SQL Reference 467

DATENAME

http://docs.intersystems.com/priordocexcerpts. For information on setting the sliding window for the current process, see
the documentation for the ObjectScript $ZDATE, $ZDATEH, $ZDATETIME and $ZDATETIMEH functions.

Sybase/SQL-Server-time represents one of these three formats:

HH:MM[:SS:SSS][{AM|PM}] HH:MM[:SS.S] HH['']{AM|PM}

If the date-expression specifies a time format but does not specify a date format, DATENAME defaults to the date
1900–01–01, which has a weekday value of Monday.

Range and Value Checking

DATENAME performs the following checks on input values. If a value fails a check, the null string is returned.

• A valid date-expression may consist of a date string (yyyy-mm-dd), a time string (hh:mm:ss), or a date and time string
(yyyy-mm-dd hh:mm:ss). If both date and time are specified, both must be valid. For example, you can return a Year
value if no time string is specified, but you cannot return a Year value if an invalid time string is specified.

• A date string must be complete and properly formatted with the appropriate number of elements and digits for each
element, and the appropriate separator character. For example, you cannot return a Year value if the Day value is
omitted. Years must be specified as four digits.

• A time string must be properly formatted with the appropriate separator character. Because a time value can be zero,
you can omit one or more time elements (either retaining or omitting the separator characters) and these elements will
be returned with a value of zero. Thus, 'hh:mm:ss', 'hh:mm:', 'hh:mm', 'hh::ss', 'hh::', 'hh', and ':::' are all valid. To omit
the Hour element, date-expression must not have a date portion of the string, and you must retain at least one separator
character (:).

• Date and time values must be within a valid range. Years: 0001 through 9999. Months: 1 through 12. Days: 1 through
31. Hours: 0 through 23. Minutes: 0 through 59. Seconds: 0 through 59.

• The number of days in a month must match the month and year. For example, the date '02–29' is only valid if the
specified year is a leap year.

• Most date and time values less than 10 may include or omit a leading zero. However, an Hour value of less than 10
must include the leading zero if it is part of a datetime string. Other non-canonical integer values are not permitted.
Therefore, a Day value of '07' or '7' is valid, but '007', '7.0' or '7a' are not valid.

• If date-expression specifies a time format but does not specify a date format, DATENAME does not perform range
validation for the time component values.

Examples
In the following example, each DATENAME returns 'Wednesday' because that is the day of week ('dw') of the specified
date:

SELECT DATENAME('dw','2018-02-21') AS DayName,
 DATENAME(dw,'02/21/2018') AS DayName,
 DATENAME('DW',64700) AS DayName

The following example returns 'December' because that is the month name ('mm') of the specified date:

SELECT DATENAME('mm','2018-12-20 12:00:00') AS MonthName

The following example returns '2018' (as a string) because that is the year ('yy') of the specified date:

SELECT DATENAME('yy','2018-12-20 12:00:00') AS Year

Note that the above examples use the abbreviations of the date parts. However, you can specify the full name, as in this
example:

SELECT DATENAME('year','2018-12-20 12:00:00') AS Year

468 InterSystems SQL Reference

SQL Functions

http://docs.intersystems.com/priordocexcerpts

The following example returns the current quarter, week-of-year, and day-of-year. Each value is returned as a string:

SELECT DATENAME('Q',$HOROLOG) AS Q,
 DATENAME('WK',$HOROLOG) AS WkCnt,
 DATENAME('DY',$HOROLOG) AS DayCnt

The following Embedded SQL example passes in the datepart and date-expression as a host variables:

 SET a="year"
 SET b=$HOROLOG
 &sql(SELECT DATENAME(:a,:b) INTO :c)
 WRITE "this year is: ",c

The following example uses a subquery to returns records from Sample.Person whose day of birth was a Wednesday:

SELECT Name AS WednesdaysChild,DOB
FROM (SELECT Name,DOB,DATENAME('dw',DOB) AS Wkday FROM Sample.Person)
WHERE Wkday='Wednesday'
ORDER BY DOB

See Also
• SQL functions: DATEADD, DATEDIFF, DATEPART, TO_DATE, TIMESTAMPADD, TIMESTAMPDIFF

• ObjectScript function: $ZDATETIME

InterSystems SQL Reference 469

DATENAME

DATEPART
A date/time function that returns an integer representing the value of the specified part of a date/time expression.

DATEPART(datepart,date-expression)

Arguments

The type of date/time information to return. The name (or abbreviation) of a
date or time part. This name can be specified in uppercase or lowercase,
with or without enclosing quotes. The datepart can be specified as a literal
or a host variable.

datepart

A date, time, or timestamp expression from which thedatepart value is to be
returned. date-expression must contain a value of type datepart.

date-expression

Description
The DATEPART function returns the datepart information about a specified date/time expression as an integer. To return
this information as a character string, use DATENAME. If the datepart value is sqltimestamp (or sts), the DATEPART
can return either data type TIMESTAMP or INTEGER, as described below.

DATEPART returns the value of only one element of date-expression; to return a string containing multiple date parts,
use TO_DATE.

This function can also be invoked from ObjectScript using the DATEPART() method call:

$SYSTEM.SQL.DATEPART(datepart,date-expression)

DATEPART is provided for Sybase and Microsoft SQL Server compatibility.

Datepart Argument

The datepart argument can be one of the following date/time components, either the full name (the Date Part column) or
its abbreviation (the Abbreviation column). These datepart component names and abbreviations are not case-sensitive.

Return ValuesAbbreviationsDate Part

0001-9999yyyy, yyyear

1-4qq, qquarter

1-12mm, mmonth

1-53wk, wwweek

1-7 (Sunday,...,Saturday)dwweekday

1-366dy, ydayofyear

1-31dd, dday

0-23hhhour

0-59mi, nminute

0-59ss, ssecond

0-999 (with precision of 3).msmillisecond

SQL_TIMESTAMP: yyyy-mm-dd hh:mm:ssstssqltimestamp

470 InterSystems SQL Reference

SQL Functions

The preceding table shows the default return values for the various date parts. You can modify the returned values for
several of these date parts by using the SET OPTION command with various time and date options.

week: InterSystems IRIS can be configured to determine the week of the year for a given date using either the InterSystems
IRIS default algorithm or the ISO 8601 standard algorithm. For further details, refer to the WEEK function.

weekday: The InterSystems IRIS default for weekday is to designate Sunday as first day of the week (weekday=1).
However, you can configure the first day of the week to another value, or you can apply the ISO 8601 standard which
designates Monday as first day of the week. For further details, refer to the DAYOFWEEK function. Note that the
ObjectScript $ZDATE and $ZDATETIME functions count week days from 0 through 6 (not 1 through 7).

second: If the date-expression contains fractional seconds, InterSystems IRIS returns second as a decimal number with
whole seconds as the integer component, and fractional seconds as the decimal component. Precision is not truncated.

millisecond: InterSystems IRIS returns three fractional digits of precision, with trailing zeroes removed. If the
date-expression has more than three fractional digits of precision, InterSystems IRIS truncates it to three digits.

sqltimestamp: InterSystems IRIS converts the input data to timestamp format and supplies zero values for the time
elements, if necessary. Can return either data type TIMESTAMP or data type INTEGER (see below). The sqltimestamp
(abbreviated sts) datepart value is for use only with DATEPART. Do not attempt to use this value in other contexts.

A datepart can be specified as a quoted string, without quotes, or with parentheses around a quoted string. No literal sub-
stitution is performed on datepart, regardless of how specified; literal substitution is performed on date-expression. All
datepart values return a data type INTEGER value, except sqltimestamp (or sts), which returns its value as a character
string of data type TIMESTAMP.

Date Input Formats

The date-expression argument can be in any of the following formats:

• An InterSystems IRIS %Date logical value (+$H)

• An InterSystems IRIS %PosixTime (%Library.PosixTime) logical value (an encoded 64-bit signed integer)

• An InterSystems IRIS %TimeStamp (%Library.TimeStamp) logical value (YYYY-MM-DD HH:MM:SS.FFF), also
known as ODBC format.

• An InterSystems IRIS %String (or compatible) value

The InterSystems IRIS %String (or compatible) value can be in any of the following formats:

• 99999,99999 ($H format)

• Sybase/SQL-Server-date Sybase/SQL-Server-time

• Sybase/SQL-Server-time Sybase/SQL-Server-date

• Sybase/SQL-Server-date (default time is 00:00:00)

• Sybase/SQL-Server-time (default date is 01/01/1900)

Sybase/SQL-Server-date is one of these five formats:

mmdelimiterdddelimiter[yy]yy dd Mmm[mm][,][yy]yy dd [yy]yy Mmm[mm] yyyy Mmm[mm] dd
yyyy [dd] Mmm[mm]

where delimiter is a slash (/), hyphen (-), or period (.).

If the year is given as two digits, InterSystems IRIS checks the sliding window to interpret the date. The system default for
the sliding window can be set via the %DATE utility, which is documented in the legacy documentation available at
http://docs.intersystems.com/priordocexcerpts. For information on setting the sliding window for the current process, see
the documentation for the ObjectScript $ZDATE, $ZDATEH, $ZDATETIME and $ZDATETIMEH functions.

InterSystems SQL Reference 471

DATEPART

http://docs.intersystems.com/priordocexcerpts

Sybase/SQL-Server-time represents one of these three formats:

HH:MM[:SS:SSS][{AM|PM}] HH:MM[:SS.S] HH['']{AM|PM}

If the date-expression specifies a time format but does not specify a date format, DATENAME defaults to the date
1900–01–01, which has a weekday value of 2 (Monday).

For sqltimestamp, time is returned as a 24-hour clock. Fractional seconds are truncated.

Invalid Argument Error Codes

If you specify an invalid datepart option, DATEPART generates an SQLCODE -8 error code, and the following %msg:
'badopt' is not a recognized DATEPART option.

If you specify an invalid date-expression value (for example, an alphabetic text string), DATEPART generates an SQLCODE
-400 error code, and the following %msg: Invalid input to DATEPART() function:
DATEPART('year','badval'). If you specify a date-expression that fails validation (as described below), DATEPART
generates an SQLCODE -400 error code, and the following %msg: Unexpected error occurred: <ILLEGAL
VALUE>datepart.

Range and Value Checking

DATEPART performs the following checks on date-expression values. If a value fails a check, the null string is returned.

• A valid date-expression may consist of a date string (yyyy-mm-dd), a time string (hh:mm:ss), or a date and time string
(yyyy-mm-dd hh:mm:ss). If both date and time are specified, both must be valid. For example, you can return a Year
value if no time string is specified, but you cannot return a Year value if an invalid time string is specified.

• A date string must be complete and properly formatted with the appropriate number of elements and digits for each
element, and the appropriate separator character. For example, you cannot return a Year value if the Day value is
omitted. Years must be specified as four digits.

• A time string must be properly formatted with the appropriate separator character. Because a time value can be zero,
you can omit one or more time elements (either retaining or omitting the separator characters) and these elements will
be returned with a value of zero. Thus, 'hh:mm:ss', 'hh:mm:', 'hh:mm', 'hh::ss', 'hh::', 'hh', and ':::' are all valid. To omit
the Hour element, date-expression must not have a date portion of the string, and you must retain at least one separator
character (:).

• Date and time values must be within a valid range. Years: 0001 through 9999. Months: 1 through 12. Days: 1 through
31. Hours: 0 through 23. Minutes: 0 through 59. Seconds: 0 through 59.

• The number of days in a month must match the month and year. For example, the date '02–29' is only valid if the
specified year is a leap year.

• Most date and time values less than 10 may include or omit a leading zero. However, an Hour value of less than 10
must include the leading zero if it is part of a datetime string. Other non-canonical integer values are not permitted.
Therefore, a Day value of '07' or '7' is valid, but '007', '7.0' or '7a' are not valid.

• If date-expression specifies a time format but does not specify a date format, DATEPART does not perform range
validation for the time component values.

Examples
In the following example, each DATEPART returns the year portion of the datetime string (in this case, 2018) as an integer.
Note that date-expression can be in various formats, and datepart can be specified as either the datepart name or datepart
abbreviation, quoted or unquoted:

472 InterSystems SQL Reference

SQL Functions

SELECT DATEPART('yy','2018-02-22 12:00:00') AS YearDTS,
 DATEPART('year','2018-02-22') AS YearDS,
 DATEPART(YYYY,'02/22/2018') AS YearD,
 DATEPART(YEAR,64701) AS YearHD,
 DATEPART('Year','64701,23456') AS YearHDT

The following example returns the current year and quarter, based on the $HOROLOG value:

SELECT DATEPART('yyyy',$HOROLOG) AS Year,DATEPART('q',$HOROLOG) AS Quarter

The following Embedded SQL example uses host variables to supply the DATEPART argument values:

 SET x="year"
 SET datein="2018-02-22"
 &sql(SELECT DATEPART(:x,:datein)
 INTO :partout)
 WRITE "the ",x," is ",partout

The following example returns the birth day-of-week for the Sample.Person table, ordered by day of week:

SELECT Name,DOB,DATEPART('weekday',DOB) AS bday
FROM Sample.Person
ORDER BY bday,DOB

In the following example, each DATEPART returns 20 as the minutes portion of the date-expression string:

SELECT DATEPART('mi','2018-2-20 12:20:07') AS Minutes,
 DATEPART('n','2018-02-20 10:20:') AS Minutes,
 DATEPART(MINUTE,'2018-02-20 10:20') AS Minutes

In the following example, each DATEPART returns 0 as the seconds portion of the date-expression string:

SELECT DATEPART('ss','2018-02-20 03:20:') AS Seconds,
 DATEPART('S','2018-02-20 03:20') AS Seconds,
 DATEPART('Second','2018-02-20') AS Seconds

The following example returns the full SQL timestamp as a TIMESTAMP data type. DATEPART fills in the missing time
information to return a timestamp of '2018-02-25 00:00:00':

SELECT DATEPART(sqltimestamp,'2/25/2018') AS DTStamp

The following example returns the full SQL timestamp as an INTEGER data type. DATEPART fills in the missing time
information to return a timestamp of '2018-02-25 00:00:00':

SELECT DATEPART('sqltimestamp','2/25/2018') AS DTStampAsInt

The following example supplies a date and time in $HOROLOG format, and returns a timestamp of '2018-02-22 06:30:56':

SELECT DATEPART(sqltimestamp,'64701,23456') AS DTStamp

The following example uses a subquery with DATEPART to return those people whose birthday is leap year day (February
29th):

SELECT Name,DOB
FROM (SELECT Name,DOB,DATEPART('dd',DOB) AS DayNum,DATEPART('mm',DOB) AS Month FROM Sample.Person)
WHERE Month=2 AND DayNum=29

See Also
• DATEDIFF function

• DATENAME function

• TIMESTAMPADD function

• TIMESTAMPDIFF function

• TO_DATE function

InterSystems SQL Reference 473

DATEPART

DAY
A date function that returns the day of the month for a date expression.

DAY(date-expression)
{fn DAY(date-expression)}

Arguments

An expression that is the name of a column, the result of another scalar
function, or a date or timestamp literal.

date-expression

Description

Note: The DAY function is an alias for the DAYOFMONTH function. DAY is provided for TSQL compatibility. Refer
to DAYOFMONTH for further details.

See Also
• DAYOFMONTH

474 InterSystems SQL Reference

SQL Functions

DAYNAME
A date function that returns the name of the day of the week for a date expression.

{fn DAYNAME(date-expression)}

Arguments

An expression that evaluates to either an InterSystems IRIS date integer,
an ODBC date, or a timestamp. This expression can be the name of a
column, the result of another scalar function, or a date or timestamp literal.

date-expression

Description
DAYNAME returns the name of the day that corresponds to a specified date. The returned value is a character string with
a maximum length of 15. The default day names returned are: Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday.

To change these default day name values, use the SET OPTION command with the WEEKDAY_NAME option.

The day name is calculated for an InterSystems IRIS date integer, a $HOROLOG or $ZTIMESTAMP value, an ODBC
format date string, or a timestamp.

A date-expression timestamp can be either data type %Library.PosixTime (an encoded 64-bit signed integer), or data type
%Library.TimeStamp (yyyy-mm-dd hh:mm:ss.fff).

The time portion of the timestamp is not evaluated and can be omitted.

DAYNAME checks that the date supplied is a valid date. The year must be between 0001 and 9999 (inclusive), the month
01 through 12, and the day appropriate for that month (for example, 02/29 is only valid on leap years). If the date is not
valid, DAYNAME issues an SQLCODE -400 error (Fatal error occurred).

The same day of week information can be returned by using the DATENAME function. You can use TO_DATE to retrieve
a day name or day name abbreviation with other date elements. To return an integer corresponding to the day of the week,
use DAYOFWEEK DATEPART or TO_DATE.

This function can also be invoked from ObjectScript using the DAYNAME() method call:

$SYSTEM.SQL.DAYNAME(date-expression)

Examples
The following examples both return the character string Wednesday because the day of the date (February 21, 2018) is a
Wednesday. The first example takes a timestamp string:

SELECT {fn DAYNAME('2018-02-21 12:35:46')} AS Weekday

The second example takes an InterSystems IRIS date integer:

SELECT {fn DAYNAME(64700)} AS Weekday

The following examples all return the name of the current day of the week:

SELECT {fn DAYNAME({fn NOW()})} AS Wd_Now,
 {fn DAYNAME(CURRENT_DATE)} AS Wd_CurrDate,
 {fn DAYNAME(CURRENT_TIMESTAMP)} AS Wd_CurrTstamp,
 {fn DAYNAME($ZTIMESTAMP)} AS Wd_ZTstamp,
 {fn DAYNAME($HOROLOG)} AS Wd_Horolog

InterSystems SQL Reference 475

DAYNAME

Note that $ZTIMESTAMP returns Coordinated Universal Time (UTC). The other time-expression values return the local
time. This may affect the DAYNAME value.

The following embedded SQL example shows how DAYNAME responds to an invalid date (the year 2017 was not a leap
year):

 SET testdate="2017-02-29"
 &sql(SELECT {fn DAYNAME(:testdate)}
 INTO :a)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"returns: ",a }
 QUIT

See Also
• SQL functions: DATENAME, DATEPART, DAYOFMONTH, DAYOFWEEK, DAYOFYEAR, TO_DATE

• ObjectScript function: $ZDATE

• ObjectScript special variables: $HOROLOG, $ZTIMESTAMP

476 InterSystems SQL Reference

SQL Functions

DAYOFMONTH
A date function that returns the day of the month for a date expression.

{fn DAYOFMONTH(date-expression)}

Arguments

A date or timestamp expression from which the day of the month value is to
be returned. An expression that is the name of a column, the result of another
scalar function, or a date or timestamp literal.

date-expression

Description
DAYOFMONTH returns the day of the month as an integer from 1 to 31. The date-expression can be an InterSystems
IRIS date integer, a $HOROLOG or $ZTIMESTAMP value, an ODBC format date string, or a timestamp.

A date-expression timestamp can be either data type %Library.PosixTime (an encoded 64-bit signed integer), or data type
%Library.TimeStamp (yyyy-mm-dd hh:mm:ss.fff).

The time portion of the timestamp or $HOROLOG string is not evaluated and can be omitted.

The DAYOFMONTH and DAY functions are functionally identical.

This function can also be invoked from ObjectScript using the DAYOFMONTH() method call:

 WRITE $SYSTEM.SQL.DAYOFMONTH("2018-02-25")

Timestamp date-expression

The day (dd) portion of a timestamp string should be an integer in the range from 1 through 31. There is, however, no range
checking for user-supplied values. Numbers greater than 31 and fractions are returned as specified. Because (–) is used as
a separator character, negative numbers are not supported. Leading zeros are optional on input; leading zeros are suppressed
on output.

DAYOFMONTH returns NULL when the day portion is '0', '00', or a nonnumeric value. NULL is also returned if the day
portion of the date string is omitted entirely ('yyyy–mm hh:mm:ss'), or if no date expression is supplied.

The elements of a datetime string can be returned using the following SQL scalar functions: YEAR, MONTH,
DAYOFMONTH (or DAY), HOUR, MINUTE, SECOND. The same elements can be returned by using the DATEPART
or DATENAME function. DATEPART and DATENAME performs value and range checking on day values.

$HOROLOG date-expression

When calculating day of the month for a $HOROLOG value, DAYOFMONTH calculates leap years differences,
including century day adjustments: 2000 is a leap year, 1900 and 2100 are not leap years.

DAYOFMONTH can process date-expression values prior to December 31, 1840 as negative integers. This is shown in
the following example:

SELECT {fn DAYOFMONTH(-306)} AS DayOfMonthFeb, /* February 29, 1840 */
 {fn DAYOFMONTH(-305)} AS DayOfMonthMar, /* March 1, 1840 */
 {fn DAYOFMONTH(-127410)} AS DayOfMonthFeb /* February 29, 1492 */

The LAST_DAY function returns the date (in $HOROLOG format) of the last day of the month for a specified date.

Examples
The following examples return the number 25 because the date specified is the twenty-fifth day of the month:

InterSystems SQL Reference 477

DAYOFMONTH

SELECT {fn DAYOFMONTH('2018-02-25')} AS DayNumTS,
 {fn DAYOFMONTH(64704)} AS DayNumH

The following example also returns the number 25 for the day of the month. The year is omitted, but the separator character
(–) serves as a placeholder:

SELECT {fn DAYOFMONTH('-02-25 11:45:32')} AS DayNum

The following examples return <null>:

SELECT{fn DAYOFMONTH('2018-02-00 11:45:32')} AS DayNum

SELECT {fn DAYOFMONTH('2018-02 11:45:32')} AS DayNum

SELECT {fn DAYOFMONTH('11:45:32')} AS DayNum

The following DAYOFMONTH examples all returns the current day of the month:

SELECT {fn DAYOFMONTH({fn NOW()})} AS DoM_Now,
 {fn DAYOFMONTH(CURRENT_DATE)} AS DoM_CurrD,
 {fn DAYOFMONTH(CURRENT_TIMESTAMP)} AS DoM_CurrTS,
 {fn DAYOFMONTH($HOROLOG)} AS DoM_Horolog,
 {fn DAYOFMONTH($ZTIMESTAMP)} AS DoM_ZTS

Note that $ZTIMESTAMP returns Coordinated Universal Time (UTC). The other time-expression values return the local
time. This may affect the DAYOFMONTH value.

The following example shows that leading zeros are suppressed. It returns a length of either 1 or 2, depending on the day
of the month value:

SELECT LENGTH({fn DAYOFMONTH('2018-02-05')}),
 LENGTH({fn DAYOFMONTH('2018-02-15')})

See Also
• SQL functions: DATENAME, DATEPART, DAY, DAYNAME, DAYOFWEEK, DAYOFYEAR, LAST_DAY,

MONTH, TO_DATE

• ObjectScript function: $ZDATE

• ObjectScript special variables: $HOROLOG, $ZTIMESTAMP

478 InterSystems SQL Reference

SQL Functions

DAYOFWEEK
A date function that returns the day of the week as an integer for a date expression.

{fn DAYOFWEEK(date-expression)}

Arguments

A valid ODBC-format date or $HOROLOG format date, with or without the
time component. An expression that is the name of a column, the result of
another scalar function, or a date or timestamp literal.

date-expression

Description
DAYOFWEEK takes a date-expression and returns an integer corresponding to the day of the week for that date. Days of
the week are counted from the first day of the week; the InterSystems IRIS default is that Sunday is the first day of the
week. Therefore, by default, the returned values represent these days:

• 1 — Sunday

• 2 — Monday

• 3 — Tuesday

• 4 — Wednesday

• 5 — Thursday

• 6 — Friday

• 7 — Saturday

The first day of the week default can be overridden system-wide or for specific namespaces, as described in “Setting First
Day of Week” .

Note that the ObjectScript $ZDATE and $ZDATETIME functions count days of the week from 0 through 6 (not 1 through
7).

The date-expression can be an InterSystems IRIS date integer, a $HOROLOG or $ZTIMESTAMP value, an ODBC format
date string, or a timestamp.

A date-expression timestamp can be either data type %Library.PosixTime (an encoded 64-bit signed integer), or data type
%Library.TimeStamp (yyyy-mm-dd hh:mm:ss.fff).

The time portion of the timestamp is not evaluated and can be omitted.

The same day of week information can be returned by using the DATEPART or TO_DATE function. To return the name
of the day of the week, use DAYNAME, DATENAME, or TO_DATE.

This function can also be invoked from ObjectScript using the DAYOFWEEK() method call:

$SYSTEM.SQL.DAYOFWEEK(date-expression)

Date Validation

DAYOFWEEK performs the following checks on input values. If a value fails a check, the null string is returned.

• A valid date-expression may consist of a date string (yyyy-mm-dd), a date and time string (yyyy-mm-dd hh:mm:ss),
an InterSystems IRIS date integer, or a $HOROLOG value. DAYOFWEEK evaluates only the date portion of the
date-expression.

InterSystems SQL Reference 479

DAYOFWEEK

• A date string must be complete and properly formatted with the appropriate number of elements and digits for each
element, and the appropriate separator character. Years must be specified as four digits.

• Date values must be within a valid range. Years: 0001 through 9999. Months: 1 through 12. Days: 1 through 31.

• The number of days in a month must match the month and year. For example, the date '02–29' is only valid if the
specified year is a leap year.

• Date values less than 10 may include or omit a leading zero. Other non-canonical integer values are not permitted.
Therefore, a Day value of '07' or '7' is valid, but '007', '7.0' or '7a' are not valid.

Setting First Day of Week

By default, the first day of the week is Sunday. You can override this default system-wide by specifying SET
^%SYS("sql","sys","day of week")=n, where n values are 1=Monday through 7=Sunday. To set Monday as the
first day of the week specify SET ^%SYS("sql","sys","day of week")=1. If Monday is the first day of the week,
a Wednesday date-expression returns 3, rather than the 4 that would be returned if Sunday was the first day of the week.
To reset the InterSystems IRIS default (Sunday as first day of week), specify SET ^%SYS("sql","sys","day of
week")=7.

You can set the first day of the week for a specific namespace by specifying SET ^%SYS("sql","sys","day of
week",namespace)=n, where n values are 1=Monday through 7=Sunday. To set Monday as the first day of the week
for the USER namespace, specify SET ^%SYS("sql","sys","day of week","USER")=1. Once the first day of
the week is set at the namespace level, changing the system-wide setting by specifying SET ^%SYS("sql","sys","day
of week")=n has no effect on that namespace. To restore the ability to change that namespace’s first day of week default,
you must kill ^%SYS("sql","sys","day of week",namespace). See example below.

InterSystems IRIS also supports the ISO 8601 standard for determining the day of the week, week of the year, and other
date settings. This standard is principally used in European countries. The ISO 8601 standard begins counting the days of
the week with Monday. To activate ISO 8601, SET ^%SYS("sql","sys","week ISO8601")=1; to deactivate, set
it to 0. If week ISO8601 is activated and InterSystems IRIS day of week is undefined or set to the default (7=Sunday),
the ISO 8601 standard overrides the InterSystems IRIS default. If InterSystems IRIS day of week is set to any other
value, it overrides week ISO8601 for DAYOFWEEK. See example below.

Examples
In the following example, both select-items return the number 5 (if Sunday is set as the first day of the week) because the
specified date-expression (64701 = February 22, 2018) is a Thursday:

SELECT {fn DAYOFWEEK('2018-02-22')}||' '||DATENAME('dw','2018-02-22') AS ODBCDoW,
 {fn DAYOFWEEK(64701)}||' '||DATENAME('dw','64701') AS HorologDoW

In the following example, all select-items return the integer corresponding to the current day of the week:

SELECT {fn DAYOFWEEK({fn NOW()})} AS DoW_Now,
 {fn DAYOFWEEK(CURRENT_DATE)} AS DoW_CurrDate,
 {fn DAYOFWEEK(CURRENT_TIMESTAMP)} AS DoW_CurrTstamp,
 {fn DAYOFWEEK($ZTIMESTAMP)} AS DoW_ZTstamp,
 {fn DAYOFWEEK($HOROLOG)} AS DoW_Horolog

Note that $ZTIMESTAMP returns Coordinated Universal Time (UTC). The other time-expression values return the local
time. This may affect the DAYOFWEEK value.

The following Embedded SQL example demonstrates changing the first day of week for a namespace. It initially sets the
system-wide first day of week (to 7), then sets the first day of week for a namespace (to 3). A subsequent system-wide first
day of week change (to 2) has no effect on namespace first day of week until the program kills the namespace-specific
setting. Killing the namespace-specific setting immediately resets that namespace’s first day of week to the current system-
wide value. Finally, the program restores the initial system-wide setting.

480 InterSystems SQL Reference

SQL Functions

Note: The following program tests if you have namespace-specific first day of week settings for the %SYS or USER
namespaces. If you do, this program aborts to prevent changing these settings.

SetUp
 SET TestNsp="USER"
 SET ControlNsp="%SYS"
InitialDoWValues
 WRITE "Systemwide default DoW initial values",!
 DO TestDayofWeek()
 IF a=b {WRITE "No namespace-specific DoW defaults",!!}
 ELSE {WRITE "DoW initial settings are namespace-specific",!
 WRITE "Stopping this program"
 QUIT }
 SET initialDoW=^%SYS("sql","sys","day of week")
SetSystemwideDoW
 KILL ^%SYS("sql","sys","day of week",TestNsp)
 KILL ^%SYS("sql","sys","day of week",ControlNsp)
 SET ^%SYS("sql","sys","day of week")=7
 WRITE "Systemwide DoW set",!
 DO TestDayofWeek()
SetNamespaceDoW
 SET ^%SYS("sql","sys","day of week",TestNsp)=3
 WRITE TestNsp," namespace DoW set",!
 &sql(SELECT {fn DAYOFWEEK($HOROLOG)} INTO :a)
 DO TestDayofWeek()
ResetSystemwideDoW
 SET ^%SYS("sql","sys","day of week")=2
 WRITE "Systemwide DoW set with ",TestNsp," DoW set",!
 DO TestDayofWeek
KillNamespaceDoW
 KILL ^%SYS("sql","sys","day of week",TestNsp)
 WRITE "Namespace ",TestNsp," DoW killed",!
 DO TestDayofWeek
ResetSystemwideDoWDefault
 SET ^%SYS("sql","sys","day of week")=initialDoW
 WRITE "Systemwide DoW reset after ",TestNsp," DoW killed",!
 DO TestDayofWeek
TestDayofWeek()
 ZNSPACE TestNsp
 &sql(SELECT {fn DAYOFWEEK($HOROLOG)} INTO :a)
 WRITE "Today is the ",a," day of week in ",$NAMESPACE,!
 ZNSPACE ControlNsp
 &sql(SELECT {fn DAYOFWEEK($HOROLOG)} INTO :b)
 WRITE "Today is the ",b," day of week in ",$NAMESPACE,!!
 RETURN

The following Embedded SQL example shows the default day of the week and the day of the week with the ISO 8601
standard applied. It assumes that the InterSystems IRIS day of week is undefined or set to the default:

TestISO
 SET def=$DATA(^%SYS("sql","sys","week ISO8601"))
 IF def=0 {SET ^%SYS("sql","sys","week ISO8601")=0}
 ELSE {SET isoval=^%SYS("sql","sys","week ISO8601")}
 IF isoval=1 {GOTO UnsetISO }
 ELSE {SET isoval=0 GOTO DayofWeek }
UnsetISO
 SET ^%SYS("sql","sys","week ISO8601")=0
DayofWeek
 &sql(SELECT {fn DAYOFWEEK($HOROLOG)} INTO :a)
 WRITE "Today:",!
 WRITE "default day of week is ",a,!
 SET ^%SYS("sql","sys","week ISO8601")=1
 &sql(SELECT {fn DAYOFWEEK($HOROLOG)} INTO :b)
 WRITE "ISO8601 day of week is ",b,!
ResetISO
 SET ^%SYS("sql","sys","week ISO8601")=isoval

See Also
• SQL functions: DATENAME, DATEPART, DAYNAME, DAYOFMONTH, DAYOFYEAR, TO_DATE

• ObjectScript function: $ZDATE

• ObjectScript special variables: $HOROLOG, $ZTIMESTAMP

InterSystems SQL Reference 481

DAYOFWEEK

DAYOFYEAR
A date function that returns the day of the year as an integer for a date expression.

{fn DAYOFYEAR(date-expression)}

Arguments

A date expression that is the name of a column, the result of another scalar
function, or a date or timestamp literal.

date-expression

Description
DAYOFYEAR returns an integer from 1 to 366 that corresponds to the day of the year for a given date expression.
DAYOFYEAR calculates leap year dates.

The day of year is calculated for an InterSystems IRIS date integer, a $HOROLOG or $ZTIMESTAMP value, an ODBC
format date string, or a timestamp.

A date-expression timestamp can be either data type %Library.PosixTime (an encoded 64-bit signed integer), or data type
%Library.TimeStamp (yyyy-mm-dd hh:mm:ss.fff).

The time portion of the timestamp is not evaluated and can be omitted.

When calculating day of the month for a $HOROLOG value, DAYOFYEAR calculates leap years differences, including
century day adjustments: 2000 is a leap year, 1900 and 2100 are not leap years.

DAYOFYEAR can process date-expression values prior to December 31, 1840 as negative integers. This is shown in the
following example:

SELECT {fn DAYOFYEAR(-306)} AS LastDayFeb, /* February 29, 1840 */
 {fn DAYOFYEAR(-305)} AS FirstDayMar /* March 1, 1840 */

The earliest valid date-expression is -672045 (January 1, 0001).

The same day count can be returned by using the DATEPART or DATENAME function. DATEPART and DATENAME
performs value and range checking on date expressions.

This function can also be invoked from ObjectScript using the DAYOFYEAR() method call:

$SYSTEM.SQL.DAYOFYEAR(date-expression)

Examples
The following examples both return the number 64 because the day in the date expression (March 4, 2016) is the 64th day
of the year (the leap year day is automatically counted):

SELECT {fn DAYOFYEAR('2016-03-04 12:45:37')} AS DayCount

SELECT {fn DAYOFYEAR(63981)} AS DayCount

The following examples all return the count for the current day:

SELECT {fn DAYOFYEAR({fn NOW()})} AS DNumNow,
 {fn DAYOFYEAR(CURRENT_DATE)} AS DNumCurrD,
 {fn DAYOFYEAR(CURRENT_TIMESTAMP)} AS DNumCurrTS,
 {fn DAYOFYEAR($HOROLOG)} AS DNumHorolog,
 {fn DAYOFYEAR($ZTIMESTAMP)} AS DNumZTS

Note that $ZTIMESTAMP returns Coordinated Universal Time (UTC). The other time-expression values return the local
time. This may affect the DAYOFYEAR value.

482 InterSystems SQL Reference

SQL Functions

The following example uses a subquery to return Employee records ordered by the day of year of each person’s birthday:

SELECT Name,DOB
FROM (SELECT Name,DOB,{fn DAYOFYEAR(DOB)} AS BDay FROM Sample.Employee)
ORDER BY BDay

See Also
• SQL functions: DATENAME, DATEPART, DAYNAME, DAYOFMONTH, DAYOFWEEK

• ObjectScript special variables: $HOROLOG, $ZTIMESTAMP

InterSystems SQL Reference 483

DAYOFYEAR

DECODE
A function that evaluates a given expression and returns a specified value.

DECODE(expr {,search,result}[,default])

Arguments

The expression to be decoded.expr

The value to which expr is compared.search

The value which is returned if expr matches search.result

Optional — The default value which is returned if expr does not match any search.default

Description
You can specify multiple search,result pairs, separated by commas. You can specify one default. The maximum number
of parameters in the DECODE expression (including expr, search, result, and default) is about 100. The search, result,
and default values can be derived from expressions.

To evaluate a DECODE expression, InterSystems IRIS compares expr to each search value, one by one:

• If expr is equal to a search value, the corresponding result is returned.

• If expr is not equal to any search value, the default value is returned, or, if default is omitted, null is returned.

InterSystems IRIS evaluates each search value only before comparing it to expr, rather than evaluating all search values
before comparing any of them to expr. Therefore, InterSystems IRIS never evaluates a search if a previous search is equal
to expr.

In a DECODE expression, InterSystems IRIS considers two nulls to be equivalent. If expr is null, InterSystems IRIS returns
the result of the first search that is also null.

Note that DECODE is supported for Oracle compatibility.

Data Type of Returned Value

DECODE returns the data type of the first result argument. If the data type of the first result argument cannot be determined,
DECODE returns VARCHAR. For numeric values, DECODE returns the largest length, precision, and scale from all of
the possible result argument values.

If the data types of result and default are different, the data type returned is the type most compatible with all of the possible
return values, the data type with the highest data type precedence. For example, if result is an integer and default is a fractional
number, DECODE returns a value with data type NUMERIC. This is because NUMERIC is the data type with the highest
precedence that is compatible with both.

Examples
The following example “decodes” ages from 13 through 19 as 'Teen'; the default is 'Adult':

SELECT Name,Age,DECODE(Age,
 13,'Teen',14,'Teen',15,'Teen',16,'Teen',
 17,'Teen',18,'Teen',19,'Teen',
 'Adult') AS AgeBracket
FROM Sample.Person
WHERE Age > 12

484 InterSystems SQL Reference

SQL Functions

The following example decodes NULLs. If there is no value for FavoriteColors, DECODE replaces it with the string ‘No
Preference’; otherwise, it returns the FavoriteColors value:

SELECT Name,DECODE(FavoriteColors,
 NULL,'No Preference',
 $LISTTOSTRING(FavoriteColors,'^')) AS ColorPreference
FROM Sample.Person
ORDER BY Name

The following example decodes color preferences. If the person has a single favorite color, that color name is replaced by
a letter abbreviation. If the person has more than one favorite color, DECODE returns the FavoriteColors value:

SELECT Name,DECODE(FavoriteColors,
 $LISTBUILD('Red'),'R',
 $LISTBUILD('Orange'),'O',
 $LISTBUILD('Yellow'),'Y',
 $LISTBUILD('Green'),'G',
 $LISTBUILD('Blue'),'B',
 $LISTBUILD('Purple'),'V',
 $LISTBUILD('White'),'W',
 $LISTBUILD('Black'),'K',
 $LISTTOSTRING(FavoriteColors,'^'))
FROM Sample.Person
WHERE FavoriteColors IS NOT NULL
ORDER BY FavoriteColors

Note that the ORDER BY clause sorts by the original field values. The following example sorts by the DECODE values:

SELECT Name,DECODE(FavoriteColors,
 $LISTBUILD('Red'),'R',
 $LISTBUILD('Orange'),'O',
 $LISTBUILD('Yellow'),'Y',
 $LISTBUILD('Green'),'G',
 $LISTBUILD('Blue'),'B',
 $LISTBUILD('Purple'),'V',
 $LISTBUILD('White'),'W',
 $LISTBUILD('Black'),'K',
 $LISTTOSTRING(FavoriteColors,'^')) AS ColorCode
FROM Sample.Person
WHERE FavoriteColors IS NOT NULL
ORDER BY ColorCode

The following example decodes the numeric code in the Company code field in Employee records and returns the corre-
sponding department name. If an employee’s Company code is not 1 through 10, DECODE returns the default of “Admin
(non-tech)”:

SELECT Name,
DECODE (Company,
 1, 'TECH MARKETING', 2, 'TECH SALES', 3, 'DOCUMENTATION',
 4, 'BASIC RESEARCH', 5, 'SOFTWARE DEVELOPMENT', 6, 'HARDWARE DEVELOPMENT',
 7, 'QUALITY TESTING', 8, 'FIELD SUPPORT', 9, 'PHONE SUPPORT',
 10, 'TECH TRAINING',
 'Admin (non-tech)') AS TechJobs
FROM Sample.Employee

The expression has Company as the expr parameter and uses ten pairs of search and result parameters. "Admin (non-tech)"
is the default parameter.

See Also
• CASE

InterSystems SQL Reference 485

DECODE

DEGREES
A numeric function that converts radians to degrees.

DEGREES(numeric-expression)

{fn DEGREES(numeric-expression)}

Arguments

The measure of an angle in radians. An expression that resolves to a
numeric value.

numeric-expression

DEGREES returns either the NUMERIC or DOUBLE data type. If numeric-expression is data type DOUBLE, DEGREES
returns DOUBLE; otherwise, it returns NUMERIC.

DEGREES can be specified as either a standard scalar function or an ODBC scalar function with curly brace syntax.

Description
DEGREES takes an angle measurement in radians and returns the corresponding angle measurement in degrees. DEGREES
returns NULL if passed a NULL value.

The returned value has a default precision of 36 and a default scale of 18.

You can use the RADIANS function to convert degrees to radians.

Examples
The following Embedded SQL example returns the degree equivalents corresponding to the radian values 0 through 6:

 SET a=0
 WHILE a<7 {
 &sql(SELECT DEGREES(:a) INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE
 QUIT }
 ELSE {
 WRITE !,"radians ",a," = degrees ",b
 SET a=a+1 }
 }

See Also
• SQL functions: CONVERT, RADIANS, TO_NUMBER

486 InterSystems SQL Reference

SQL Functions

%EXACT
A collation function that converts characters to the EXACT collation format.

%EXACT(expression)

%EXACT expression

Arguments

A string expression, which can be the name of a column, a string literal, or the result
of another function, where the underlying data type can be represented as any character
type (such as CHAR or VARCHAR2).

expression

Description
%EXACT returns expression in the EXACT collation sequence. This is principally used to collate data values in case-
sensitive order. The SQL default is to convert all letters to uppercase for the purpose if collation.

This collation sequence orders values as follows:

• String values collate in case-sensitive string order. The EXACT collation sequence for strings is the same as the ANSI-
standard ASCII collation sequence: digits are collated before uppercase alphabetic characters and uppercase alphabetic
characters are collated before lowercase alphabetic characters. Punctuation characters occur at several places in the
sequence.

A mixed-numeric string, such as “123 Elm Street” is collated in case-sensitive string order. This means that 123 Elm
sorts before 2 Elm.

• Pure numeric values (values for which x=+x) collate in numeric order. For example, -19, -2, -1, 0, 1, 5, 10, 20, 100.
This is the same as default collation.

• NULL collates before all actual values. %EXACT has no effect on NULLs. This is the same as default collation.

%EXACT is an InterSystems SQL extension and is intended for SQL lookup queries.

You can perform the same collation conversion in ObjectScript using the Collation() method of the %SYSTEM.Util class.

%EXACT collates an input string as either wholly numeric or as a mixed-character string in which numbers are treated
the same as any other character. Compare this to %MVR collation, which sorts a string based on the numeric substrings
within the string.

DISTINCT and GROUP BY

The DISTINCT clause and the GROUP BY clause group values based on their uppercase default collation, and return
values in all uppercase letters, even when none of the actual data values are in all uppercase letters.

• You can use %EXACT to group values by case-sensitive values: SELECT Name FROM mytable GROUP BY
%EXACT(Name)

• You can use %EXACT to return an actual case-sensitive value for each group: SELECT %EXACT(Name) FROM
mytable GROUP BY Name

Note: By default, SQL indices represent string data in uppercase default collation. For this reason, specifying EXACT
collation may prevent the use of an index with potentially significant performance implications.

InterSystems SQL Reference 487

%EXACT

Examples
The following examples uses %EXACT to return all Name values that are higher in the collating sequence than 'Smith'.
The first example uses parentheses syntax, the second omits the parentheses.

SELECT Name
FROM Sample.Person
WHERE %EXACT(Name) > 'Smith'

SELECT Name
FROM Sample.Person
WHERE %EXACT Name > 'Smith'

See Also
• ASCII function

• %SQLSTRING collation function

• %SQLUPPER collation function

• %TRUNCATE collation function

• Collation chapter in Using InterSystems SQL

488 InterSystems SQL Reference

SQL Functions

EXP
A scalar numeric function that returns the exponential (inverse of natural logarithm) of a number.

{fn EXP(expression)}

Arguments

The logarithmic exponent, which is a numeric expression.expression

EXP returns either the NUMERIC or DOUBLE data type. If expression is data type DOUBLE, EXP returns DOUBLE;
otherwise, it returns NUMERIC.

Description
EXP is the exponential function en, where e is the constant 2.718281828. Therefore, to return the value of e, you can
specify {fn EXP(1)}. EXP is the inverse of the natural logarithm function LOG.

EXP returns a value with a precision of 36 and a scale of 18. EXP returns NULL if passed a NULL value.

EXP can only be used as an ODBC scalar function (with the curly brace syntax).

Examples
The following example returns the constant e:

SELECT {fn EXP(1)} AS e_constant

returns 2.718281828...

The following Embedded SQL example returns the exponential values for the integers 0 through 10:

 SET a=0
 WHILE a<11 {
 &sql(SELECT {fn EXP(:a)} INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE
 QUIT }
 ELSE {
 WRITE !,"Exponential of ",a," = ",b
 SET a=a+1 }
 }

The following Embedded SQL example demonstrates that EXP is the inverse of LOG:

 SET x=7
 &sql(SELECT {fn EXP(:x)} AS Exp,
 {fn LOG(:x)} AS Log,
 {fn EXP({fn LOG(:x)})} AS ExpOfLog
 INTO :a,:b,:c)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE
 QUIT }
 ELSE {
 WRITE "Exponential of ",x," = ",a,!
 WRITE "Natural log of ",x," = ",b,!
 WRITE "Exp of Log of ",x," = ",c
 }

Note in the third function call the small discrepancy between the number input and the calculated return value. The next
example shows how to handle this computational discrepancy.

The following Embedded SQL example shows the relationship between the LOG and EXP functions for the integers 1
through 10:

InterSystems SQL Reference 489

EXP

 SET a=1
 WHILE a<11 {
 &sql(SELECT {fn LOG(:a)} INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE
 QUIT }
 ELSE {
 WRITE !,"Logarithm of ",a," = ",b }
 &sql(SELECT ROUND({fn EXP(:b)},12) INTO :c)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"Exponential of log ",b," = ",c
 SET a=a+1 }
 }

Note that the ROUND function is needed here to correct for very small discrepancies caused by system calculation limitations.
In the above example, ROUND is set arbitrarily to 12 decimal digits for this purpose.

See Also
• SQL functions: LOG LOG10 POWER ROUND

• ObjectScript function: $ZEXP

490 InterSystems SQL Reference

SQL Functions

%EXTERNAL
A format-transformation function that returns an expression in DISPLAY format.

%EXTERNAL(expression)

%EXTERNAL expression

Arguments

The expression to be converted. A field name, an expression containing a field name,
or a function that returns a value in a convertible data type, such as DATE or %List.
Cannot be a stream field.

expression

Description
%EXTERNAL converts expression to DISPLAY format, regardless of the current select mode (display mode). The DIS-
PLAY format represents data in the VARCHAR data type with whatever data conversion the field or data type Logical-
ToDisplay method performs.

%EXTERNAL is commonly used on a SELECT list select-item. It can be used in a WHERE clause, but this use is dis-
couraged because using %EXTERNAL prevents the use of indexes on the specified field.

Applying %EXTERNAL changes the column header name to a value such as “Expression_1”; it is therefore usually
desirable to specify a column name alias, as shown in the examples below.

Whether %EXTERNAL converts a date depends on the data type returned by the date field or function. %EXTERNAL
converts CURDATE, CURRENT_DATE, CURTIME, and CURRENT_TIME values. It does not convert CURRENT_TIMES-
TAMP, GETDATE, GETUTCDATE, NOW, and $HOROLOG values.

When %EXTERNAL converts a %List structure to DISPLAY format, the displayed list elements appear to be separated
by a blank space. This “space” is actually the two non-display characters CHAR(13) and CHAR(10).

%EXTERNAL is an InterSystems SQL extension.

To convert an expression to LOGICAL format, regardless of the current select mode, use the %INTERNAL function. To
convert an expression to ODBC format, regardless of the current select mode, use the %ODBCOUT function.

For further details on display format options, refer to “Data Display Options” in the “ InterSystems IRIS SQL Basics”
chapter of Using InterSystems SQL.

Examples
The following Dynamic SQL example returns Date of Birth (DOB) data values in the current select mode format, and the
same data using the %EXTERNAL function. For the purpose of demonstration, in this program the %SelectMode value
is determined randomly for each invocation:

 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=$RANDOM(3)
 IF tStatement.%SelectMode=0 {WRITE "Select mode LOGICAL",! }
 ELSEIF tStatement.%SelectMode=1 {WRITE "Select mode ODBC",! }
 ELSEIF tStatement.%SelectMode=2 {WRITE "Select mode DISPLAY",! }
 SET myquery = 2
 SET myquery(1) = "SELECT TOP 5 DOB,%EXTERNAL(DOB) AS ExtDOB "
 SET myquery(2) = "FROM Sample.Person"
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

InterSystems SQL Reference 491

%EXTERNAL

The following examples show the two syntax forms for this function; they are otherwise identical. They specify the
%EXTERNAL (DISPLAY format), %INTERNAL (LOGICAL format), and %ODBCOUT (ODBC format) of a %List
field:

SELECT TOP 10 %EXTERNAL(FavoriteColors) AS ExtColors,
 %INTERNAL(FavoriteColors) AS IntColors,
 %ODBCOUT(FavoriteColors) AS ODBCColors
FROM Sample.Person

SELECT TOP 10 %EXTERNAL FavoriteColors AS ExtColors,
 %INTERNAL FavoriteColors AS IntColors,
 %ODBCOUT FavoriteColors AS ODBCColors
FROM Sample.Person

The following example converts date of birth (DOB) and rounded date of birth (DOB) values to %EXTERNAL (DISPLAY
format):

SELECT %EXTERNAL(DOB) AS DOB,
 %INTERNAL(ROUND(DOB,-3)) AS DOBGroup,
 %EXTERNAL(ROUND(DOB,-3)) AS RoundedDOB
FROM Sample.Person
GROUP BY (ROUND(DOB,-3))
ORDER BY DOBGroup

See Also
• %INTERNAL, %ODBCIN, %ODBCOUT

• SQL concepts: Data Types, Date and Time Constructs

492 InterSystems SQL Reference

SQL Functions

$EXTRACT
A string function that extracts characters from a string by position.

$EXTRACT(string[,from[,to]])

Arguments

The target string from which the substring is to be extracted.string

Optional — The position within the target string for a single character, or the beginning of a
range of characters (inclusive), to be extracted. Specified as a positive integer counting from
1.

from

Optional — The end position (inclusive) for a range of characters to be extracted. Specified as
a positive integer counting from 1.

to

Description
$EXTRACT returns a substring from a specified position in string. The nature of the substring returned depends on the
arguments used.

• $EXTRACT(string) extracts the first character in the string.

• $EXTRACT(string,from) extracts the character in the position specified by from. For example, if variable var1 contains
the string “ABCD”, the following command extracts “B” (the second character):

SELECT $EXTRACT('ABCD',2) AS Extracted

• $EXTRACT(string,from,to) extracts the range of characters starting with the from position and ending with the to
position. For example, the following command extracts the string “Alabama” (that is, all characters from position 5 to
position 11, inclusive) from the string “1234Alabama567”:

SELECT $EXTRACT('1234Alabama567',5,11) AS Extracted

This function returns data of type VARCHAR.

Arguments

string

The string value can be a variable name, a numeric value, a string literal, or any valid expression.

from

The from value must be a positive integer (however, see Note). If a fractional number, the fraction is truncated and only
the integer portion is used.

If the from value is greater than the number of characters in the string, $EXTRACT returns a null string.

If from is specified without the to argument, it extracts the single specified character.

If used with the to argument, it identifies the start of the range to be extracted and must be less than the value of to. If from
equals to, $EXTRACT returns the single character at the specified position. If from is greater than to, $EXTRACT returns
a null string.

InterSystems SQL Reference 493

$EXTRACT

to

The to argument must be used with the from argument. It must be a positive integer. If a fractional number, the fraction is
truncated and only the integer portion is used.

If the to value is greater than or equal to the from value, $EXTRACT returns the specified substring. If to is greater than
the length of the string, $EXTRACT returns the substring from the from position to the end of the string. If to is less than
from, $EXTRACT returns a null string.

Examples
The following example returns “S”, the fourth character in the string:

SELECT $EXTRACT('THIS IS A TEST',4) AS Extracted

The following example returns a substring “THIS IS” which is composed of the first through seventh characters.

SELECT $EXTRACT('THIS IS A TEST',1,7) AS Extracted

The following Embedded SQL example extracts the second character (“B”) from a and assigns this value to variable y.

 SET a="ABCD"
 &sql(SELECT $EXTRACT(:a,2) INTO :y)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The extract returns ",y }

The following Embedded SQL example shows that the one-argument format is equivalent to the two-argument format
when the from value is “1”. Both $EXTRACT functions return “H”.

 SET a="HELLO"
 &sql(SELECT $EXTRACT(:a),$EXTRACT(:a,1) INTO :b,:c)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The one-arg form returns ",b
 WRITE !,"The two-arg form returns ",c }

Notes

$EXTRACT Compared with $PIECE and $LIST

$EXTRACT returns a substring of characters by integer position from a string. $PIECE and $LIST both work on specially
formatted strings.

$PIECE returns a substring from a standard character string using delimiter characters within the string.

$LIST returns a sublist of elements from an encoded list by the integer position of elements (not characters). $LIST cannot
be used on ordinary strings, and $EXTRACT cannot be used on encoded lists.

The $EXTRACT, $FIND, $LENGTH, and $PIECE functions operate on standard character strings. The various $LIST
functions operate on encoded character strings, which are incompatible with standard character strings. The only exceptions
are the $LISTGET function and the one-argument and two-argument forms of $LIST, which take an encoded character
string as input, but output a single element value as a standard character string.

$EXTRACT and Unicode

The $EXTRACT function operates on characters, not bytes. Therefore, Unicode strings are handled the same as ASCII
strings, as shown in the following embedded SQL example using the Unicode character for “pi” ($CHAR(960)):

494 InterSystems SQL Reference

SQL Functions

 SET a="QT PIE"
 SET b=("QT "_$CHAR(960))
 &sql(SELECT
 $EXTRACT(:a,-33,4),
 $EXTRACT(:a,4,4),
 $EXTRACT(:a,4,99),
 $EXTRACT(:b,-33,4),
 $EXTRACT(:b,4,4),
 $EXTRACT(:b,4,99)
 INTO :a1,:a2,:a3,:b1,:b2,:b3)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"ASCII form returns ",!,a1,!,a2,!,a3
 WRITE !,"Unicode form returns ",!,b1,!,b2,!,b3 }

Null and Invalid Arguments

• When string is a null string, a null string is returned.

• When from is a number larger than the string length, a null string is returned.

• When from is zero or a negative number, and no to is specified, a null string is returned.

• When to is zero, a negative number, or a number smaller than from, a null string is returned.

• When to is a valid value, from can be zero or a negative number. $EXTRACT treats such from values as 1.

No SQLCODE error is generated for invalid argument values.

In following example, the negative from value is evaluated as 1; $EXTRACT returns the substring “THIS IS” composed
of the first through seventh characters.

SELECT $EXTRACT('THIS IS A TEST',-7,7)

In following embedded SQL example, all $EXTRACT function calls return the null string:

 SET a="THIS IS A TEST"
 SET b=""
 &sql(SELECT
 $EXTRACT(:a,33),
 $EXTRACT(:a,-7),
 $EXTRACT(:a,3,2),
 $EXTRACT(:a,-7,0),
 $EXTRACT(:a,-7,-10),
 $EXTRACT(:b,-33,4),
 $EXTRACT(:b,4,4),
 $EXTRACT(:b,4,99),
 $EXTRACT(NULL,-33,4),
 $EXTRACT(NULL,4,4),
 $EXTRACT(NULL,4,99)
 INTO :a1,:a2,:a3,:a4,:a5,:b1,:b2,:b3,:c1,:c2,:c3)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"FROM too big: ",a1
 WRITE !,"FROM negative, no TO: ",a2
 WRITE !,"TO smaller than FROM: ",a3
 WRITE !,"TO not a positive integer: ",a4,a5
 WRITE !,"LIST is null string: ",b1,b2,b3,c1,c2,c3 }

See Also
• SQL functions: $FIND $LENGTH $LIST $LISTGET $PIECE

• ObjectScript functions: $EXTRACT $FIND $LENGTH $LIST $LISTBUILD $LISTGET $PIECE

InterSystems SQL Reference 495

$EXTRACT

$FIND
A string function that returns the end position of a substring within a string, with optional search start point.

$FIND(string,substring[,start])

Arguments

The target string that is to be searched. It can be a variable name, a numeric value, a
string literal, or any valid expression.

string

The substring that is to be searched for. It can be a variable name, a numeric value, a
string literal, or any valid expression.

substring

Optional — The starting point for substring search, specified as a positive integer. A
character count from the beginning of string, counting from 1.To search from the beginning
of string, omit this argument or specify a start of 0 or 1. A negative number, the empty
string, or a nonnumeric value is treated as 0. Specifying start as NULL causes $FIND to
return <null>.

start

$FIND returns the SMALLINT data type.

Description
$FIND returns an integer specifying the end position of a substring within a string. $FIND searches string for substring.
If substring is found, $FIND returns the integer position of the first character following substring. If substring is not found,
$FIND returns a value of 0.

You can include the start option to specify a starting position for the search. If start is greater than the number of characters
in string, $FIND returns a value of 0. If start is omitted, string position 1 is the default. If start is zero, a negative number,
or a nonnumeric string, position 1 is the default.

$FIND is case-sensitive. Use one of the case-conversion functions to locate both uppercase and lowercase instances of a
letter or character string.

$FIND, POSITION, CHARINDEX, and INSTR

$FIND, POSITION, CHARINDEX, and INSTR all search a string for a specified substring and return an integer position
corresponding to the first match. $FIND returns the integer position of the first character after the end of the matching
substring. CHARINDEX, POSITION, and INSTR return the integer position of the first character of the matching substring.
CHARINDEX, $FIND, and INSTR support specifying a starting point for substring search. INSTR also support specifying
the substring occurrence from that starting point.

The following example demonstrates these four functions, specifying all optional arguments. Note that the positions of
string and substring differ in these functions:

SELECT POSITION('br' IN 'The broken brown briefcase') AS Position,
 CHARINDEX('br','The broken brown briefcase',6) AS Charindex,
 $FIND('The broken brown briefcase','br',6) AS Find,
 INSTR('The broken brown briefcase','br',6,2) AS Inst

For a list of functions that search for a substring, refer to String Manipulation.

Examples
In the following example, string contains the string “ABCDEFG” and substring contains the string “BCD”. The $FIND
function returns the value 5, indicating the position of the character (“E”) that follows “BCD”:

SELECT $FIND('ABCDEG','BCD') AS SubPoint

496 InterSystems SQL Reference

SQL Functions

The following example searches the numeric 987654321 for the number 7. It returns 4, the position following the substring:

SELECT $FIND(987654321,7) AS SubPoint

The following example returns 3, the position of the character that follow the first instance of the substring “AA”:

SELECT $FIND('AAAAAA','AA') AS SubPoint

In the following example, $FIND searches for a substring that is not in the string. It returns zero (0):

SELECT $FIND('AABBCCDD','AC') AS SubPoint

In the following example, $FIND begins its search with the seventh character. This example returns 14, the position of the
character that follows the next occurrence of “R”:

SELECT $FIND('EVERGREEN FOREST','R',7) AS SubPoint

In the following example, $FIND begins its search after the last character in string. It returns zero (0):

SELECT $FIND('ABCDEFG','G',10) AS SubPoint

The following Embedded SQL example shows that a start less than 1 is treated as 1:

 SET a="ABCDEFG"
 SET b="F"
 &sql(SELECT
 $FIND(:a,:b),
 $FIND(:a,:b,1),
 $FIND(:a,:b,0),
 $FIND(:a,:b,-35)
 INTO :a1,:a2,:a3,:a4)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The input string: ",a
 WRITE !,"Two-arg: ",a1
 WRITE !,"3rd arg 1: ",a2
 WRITE !,"3rd arg 0: ",a3
 WRITE !,"3rd arg negative: ",a4 }

The following Embedded SQL example uses $FIND to search a string containing the Unicode character for pi, $CHAR(960).
The first $FIND returns 5, the character following pi. The second $FIND also returns 5; it begins its search at character 4,
which happens to be pi, the character sought. The third $FIND begins its search at character 5; it returns 13, the position
following the next occurrence of pi. Note that position 13 is returned, even though position 12 is the last character in the
string:

 SET a="QT "_$CHAR(960)_" HONEY "_$CHAR(960)
 SET b=$CHAR(960)
 &sql(SELECT
 $FIND(:a,:b),
 $FIND(:a,:b,4),
 $FIND(:a,:b,5)
 INTO :a1,:a2,:a3)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The input string: ",a
 WRITE !,"From beginning: ",a1
 WRITE !,"From position 4: ",a2
 WRITE !,"From position 5: ",a3 }

See Also
• CHARINDEX function

• INSTR function

• POSITION function

• String Manipulation

InterSystems SQL Reference 497

$FIND

FLOOR
A numeric function that returns the largest integer less than or equal to a given numeric expression.

FLOOR(numeric-expression)
{fn FLOOR(numeric-expression)}

Arguments

A number whose floor is to be calculated.numeric-expression

FLOOR returns the same data type as numeric-expression.

Description
FLOOR returns the nearest integer value less than or equal to numeric-expression. The returned value has a scale of 0.
When numeric-expression is a NULL value, an empty string (''), or a nonnumeric string, FLOOR returns NULL.

Note that FLOOR can be invoked as an ODBC scalar function (with the curly brace syntax) or as an SQL general function.

This function can also be invoked from ObjectScript using the FLOOR() method call:

$SYSTEM.SQL.FLOOR(numeric-expression)

Examples
The following examples show how FLOOR converts a fraction to its floor integer:

SELECT FLOOR(167.111) AS FloorNum1,
 FLOOR(167.456) AS FloorNum2,
 FLOOR(167.999) AS FloorNum3

all return 167.

SELECT {fn FLOOR(167.00)} AS FloorNum1,
 {fn FLOOR(167)} AS FloorNum2

return 167.

SELECT FLOOR(-167.111) AS FloorNum1,
 FLOOR(-167.456) AS FloorNum2,
 FLOOR(-167.999) AS FloorNum3

all return -168.

SELECT FLOOR(-167.00) AS FloorNum

returns -167.

The following example uses a subquery to reduce a large table of US Zip Codes (postal codes) to one representative city
for each floor Latitude integer:

SELECT City,State,FLOOR(Latitude) AS FloorLatitude
FROM (SELECT City,State,Latitude,FLOOR(Latitude) AS FloorNum
 FROM Sample.USZipCode)
GROUP BY FloorNum
ORDER BY FloorNum DESC

See Also
• CEILING

• ROUND

498 InterSystems SQL Reference

SQL Functions

GETDATE
A date/time function that returns the current local date and time.

GETDATE([precision])

Arguments

Optional — A positive integer that specifies the time precision as the number of digits
of fractional seconds.The default is 0 (no fractional seconds); this default is configurable.
A precision value is optional, the parentheses are mandatory.

precision

Description
GETDATE returns the current local date and time for this timezone as a timestamp; it adjusts for local time variants, such
as Daylight Saving Time.

GETDATE can return a timestamp in either %TimeStamp data type format (yyyy-mm-dd hh:mm:ss.ffff) or %PosixTime
data type format (an encoded 64-bit signed integer). The following rules determine which timestamp format is returned:

1. If the current timestamp is being supplied to a field of data type %PosixTime, the current timestamp value is returned
in POSIXTIME data type format. For example, WHERE PosixField=GETDATE() or INSERT INTO MyTable
(PosixField) VALUES (GETDATE()).

2. If the current timestamp is being supplied to a field of data type %TimeStamp, the current timestamp value is returned
in TIMESTAMP data type format. Its ODBC type is TIMESTAMP, LENGTH is 16, and PRECISION is 19. For
example, WHERE TSField=GETDATE() or INSERT INTO MyTable (TSField) VALUES (GETDATE()).

3. If the current timestamp is being supplied without context, the current timestamp value is returned in TIMESTAMP
data type format. For example, SELECT GETDATE().

To change the default datetime string format, use the SET OPTION command with the various date and time options.

GETDATE can be used in a SELECT statement select list or in the WHERE clause of a query. In designing a report,
GETDATE can be used to print the current date and time each time the report is produced. GETDATE is also useful for
tracking activity, such as logging the time that a transaction occurred.

GETDATE can be used in CREATE TABLE to specify a field’s default value. GETDATE is a synonym for CUR-
RENT_TIMESTAMP and is provided for compatibility with Sybase and Microsoft SQL Server.

The CURRENT_TIMESTAMP and NOW functions can also be used to return the current local date and time as a timestamp
in either TIMESTAMP or POSIXTIME formats. CURRENT_TIMESTAMP supports precision, NOW does not support
precision.

To return just the current date, use CURDATE or CURRENT_DATE. To return just the current time, use CURRENT_TIME
or CURTIME. These functions use the DATE or TIME data type. None of these functions support precision.

A TIMESTAMP data type stores and displays its value in the same format. A POSIXTIME data type stores its value as an
encoded 64-bit signed integer. The TIME and DATE data types store their values as integers in $HOROLOG format. They
can be displayed in either Display format or Logical (storage) format. You can use the CAST or CONVERT function to
change the data type of dates and times.

Universal Time (UTC)

GETDATE returns the current local date and time. All InterSystems SQL timestamp, date, and time functions except
GETUTCDATE are specific to the local time zone setting. GETUTCDATE returns the current UTC (universal) date and

InterSystems SQL Reference 499

GETDATE

time as either a TIMESTAMP value or a POSIXTIME value. You can also use the ObjectScript $ZTIMESTAMP special
variable to get a current timestamp that is universal (independent of time zone).

Fractional Seconds Precision

GETDATE can return up to nine digits of precision. The number of digits of precision returned is set using the precision
argument. The default for the precision argument can be configured using the following:

• SET OPTION with the TIME_PRECISION option.

• The $SYSTEM.SQL.SetDefaultTimePrecision() method call.

• Go to the Management Portal, select System Administration, Configuration, SQL and Object Settings, SQL. View and
edit the current setting of Default time precision for GETDATE(), CURRENT_TIME, and CURRENT_TIMESTAMP.

Specify an integer 0 through 9 (inclusive) for the default number of decimal digits of precision to return. The default is 0.
The actual precision returned is platform dependent; precision digits in excess of the precision available on your system
are returned as zeroes.

Fractional seconds are always truncated, not rounded, to the specified precision.

Examples
The following example returns the current date and time in TIMESTAMP format:

SELECT GETDATE() AS DateTime

The following example returns the current date and time with two digits of precision:

SELECT GETDATE(2) AS DateTime

The following Embedded SQL example compares local (time zone specific) and universal (time zone independent) times-
tamps:

 &sql(SELECT GETDATE(),GETUTCDATE() INTO :a,:b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"Local timestamp is: ",a
 WRITE !,"UTC timestamp is: ",b
 WRITE !,"$ZTIMESTAMP is: ",$ZDATETIME($ZTIMESTAMP,3,,3)
 }

The following example sets the LastUpdate field in the selected row of the Orders table to the current system date and time.
If LastUpdate is data type %TimeStamp, GETDATE returns the current date and time as an ODBC timestamp; if LastUpdate
is data type %PosixTime, GETDATE returns the current date and time as an encoded 64-bit signed integer:

UPDATE Orders SET LastUpdate = GETDATE()
 WHERE Orders.OrderNumber=:ord

In the following example, the CREATE TABLE statement uses GETDATE to set a default value for the StartDate field:

CREATE TABLE Employees(
 EmpId INT NOT NULL,
 LastName CHAR(40) NOT NULL,
 FirstName CHAR(20) NOT NULL,
 StartDate TIMESTAMP DEFAULT GETDATE())

See Also
• SQL concepts: Data Type, Date and Time Constructs

• SQL timestamp functions: CAST, CONVERT, CURRENT_TIMESTAMP, GETUTCDATE, NOW, SYSDATE,
TIMESTAMPADD, TIMESTAMPDIFF, TO_POSIXTIME, TO_TIMESTAMP

500 InterSystems SQL Reference

SQL Functions

• SQL current date and time functions: CURDATE, CURRENT_DATE, CURRENT_TIME, CURTIME

• ObjectScript: $ZDATETIME function, $HOROLOG special variable, $ZTIMESTAMP special variable

InterSystems SQL Reference 501

GETDATE

GETUTCDATE
A date/time function that returns the current UTC date and time.

GETUTCDATE([precision])

Arguments

Optional — A positive integer that specifies the time precision as the number of digits
of fractional seconds.The default is 0 (no fractional seconds); this default is configurable.

precision

Description
GETUTCDATE returns Universal Time Constant (UTC) date and time as a timestamp. Because UTC time is the same
everywhere on the planet, does not depend on the local timezone and is not subject to local time variants (such as Daylight
Saving Time), this function is useful for applying consistent timestamps when users in different time zones access the same
database.

GETUTCDATE can return a timestamp in either %TimeStamp data type format (yyyy-mm-dd hh:mm:ss.ffff) or
%PosixTime data type format (an encoded 64-bit signed integer). The following rules determine which timestamp format
is returned:

1. If the current UTC timestamp is being supplied to a field of data type %PosixTime, this timestamp value is returned
in POSIXTIME data type format. For example, WHERE PosixField=GETUTCDATE() or INSERT INTO MyTable
(PosixField) VALUES (GETUTCDATE()).

2. If the current UTC timestamp is being supplied to a field of data type %TimeStamp, this timestamp value is returned
in TIMESTAMP data type format. Its ODBC type is TIMESTAMP, LENGTH is 16, and PRECISION is 19. For
example, WHERE TSField=GETUTCDATE() or INSERT INTO MyTable (TSField) VALUES
(GETUTCDATE()).

3. If the current UTC timestamp is being supplied without context, this timestamp value is returned in TIMESTAMP
data type format. For example, SELECT GETUTCDATE().

To change the default datetime string format, use the SET OPTION command with the various date and time options.

Typical uses for GETUTCDATE are in the SELECT statement select list or in the WHERE clause of a query. In
designing a report, GETUTCDATE can be used to print the current date and time each time the report is produced.
GETUTCDATE is also useful for tracking activity, such as logging the time that a transaction occurred.

GETUTCDATE can be used in CREATE TABLE to specify a field’s default value.

Other SQL Functions

GETUTCDATE returns the current UTC date and time as a timestamp in either TIMESTAMP or POSIXTIME format.

All other timestamp functions return the local date and time: GETDATE, CURRENT_TIMESTAMP, NOW, and SYSDATE
return the current local date and time as a timestamp in either TIMESTAMP or POSIXTIME format.

GETDATE and CURRENT_TIMESTAMP provide a precision argument.

NOW, argumentless CURRENT_TIMESTAMP, and SYSDATE do not provide a precision argument; they take the
system-wide default time precision.

CURDATE and CURRENT_DATE return the current local date. CURTIME and CURRENT_TIME return the current
local time. These functions use the DATE or TIME data type. None of these functions support precision.

502 InterSystems SQL Reference

SQL Functions

A TIMESTAMP data type stores and displays its value in the same format. A POSIXTIME data type stores its value as an
encoded 64-bit signed integer. The TIME and DATE data types store their values as integers in $HOROLOG format and
can be displayed in a variety of formats.

Note that all InterSystems SQL timestamp functions except GETUTCDATE are specific to the local time zone setting.
To get a current timestamp that is universal (independent of time zone) you can also use the ObjectScript $ZTIMESTAMP
special variable. Note that you can set the precision for GETUTCDATE; $ZTIMESTAMP always returns a precision of
3.

Fractional Seconds Precision

GETUTCDATE can return up to nine digits of precision. The number of digits of precision returned is set using the
precision argument. The default for the precision argument can be configured using the following:

• SET OPTION with the TIME_PRECISION option.

• The $SYSTEM.SQL.SetDefaultTimePrecision() method call.

• Go to the Management Portal, select System Administration, Configuration, SQL and Object Settings, SQL. View and
edit the current setting of Default time precision for GETDATE(), CURRENT_TIME, and CURRENT_TIMESTAMP.

Specify an integer 0 through 9 (inclusive) for the default number of decimal digits of precision to return. The default is 0.
The actual precision returned is platform dependent; precision digits in excess of the precision available on your system
are returned as zeroes.

Fractional seconds are always truncated, not rounded, to the specified precision.

Examples
The following example returns the current date and time as a UTC timestamp and as a local timestamp, both in TIMESTAMP
format:

SELECT GETUTCDATE() AS UTCDateTime,
 GETDATE() AS LocalDateTime

The following example returns the current UTC date and time with fractional seconds having two digits of precision:

SELECT GETUTCDATE(2) AS DateTime

The following Embedded SQL example compares local (time zone specific) and universal (time zone independent) times-
tamps:

 &sql(SELECT GETDATE(),GETUTCDATE() INTO :a,:b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"Local timestamp is: ",a
 WRITE !,"UTC timestamp is: ",b
 WRITE !,"$ZTIMESTAMP is: ",$ZDATETIME($ZTIMESTAMP,3,,3)
 }

The following example sets the LastUpdate field in the selected row of the Orders table to the current UTC date and time.
If LastUpdate is data type %TimeStamp, GETUTCDATE returns the current UTC date and time as an ODBC timestamp;
if LastUpdate is data type %PosixTime, GETUTCDATE returns the current UTC date and time as an encoded 64-bit
signed integer:

UPDATE Orders SET LastUpdate = GETUTCDATE()
 WHERE Orders.OrderNumber=:ord

In the following example, the CREATE TABLE statement uses GETUTCDATE to set a default value for the OrderRcvd
field:

InterSystems SQL Reference 503

GETUTCDATE

CREATE TABLE Orders(
 OrderId INT NOT NULL,
 ItemName CHAR(40) NOT NULL,
 Quantity INT NOT NULL,
 OrderRcvd TIMESTAMP DEFAULT GETUTCDATE())

See Also
• SQL concepts: Data Type, Date and Time Constructs

• SQL timestamp functions: CAST, CONVERT, CURRENT_TIMESTAMP, GETDATE, NOW, SYSDATE, TIMES-
TAMPADD, TIMESTAMPDIFF, TO_POSIXTIME, TO_TIMESTAMP

• SQL current date and time functions: CURDATE, CURRENT_DATE, CURRENT_TIME, CURTIME

• ObjectScript: $ZDATETIME function, $HOROLOG special variable, $ZTIMESTAMP special variable

504 InterSystems SQL Reference

SQL Functions

GREATEST
A function that returns the greatest value from a list of values.

GREATEST(expression,expression[,...])

Arguments

An expression that resolves to a number or a string. The values of
these expressions are compared to each other. An expression can
be a field name, a literal, an arithmetic expression, a host variable,
or an object reference.You can list up to 140 comma-separated
expressions.

expression

Description
GREATEST returns the greatest value from a comma-separated list of expression values. Expressions are evaluated in
left-to-right order. If only one expression is provided, GREATEST returns that value. If any expression is NULL,
GREATEST returns NULL.

If all of the expression values resolve to canonical numbers, they are compared in numeric order. If a quoted string contains
a number in canonical format, it is compared in numeric order. However, if a quoted string contains a number not in
canonical format (for example, '00', '0.4', or '+4'), it is compared as a string. String comparisons are performed character-
by-character in collation order. Any string value is greater than any numeric value.

The empty string is greater than any numeric value, but less than any other string value.

If the returned value is a number, GREATEST returns it in canonical format (leading and trailing zeros removed, etc.). If
the returned value is a string, GREATEST returns it unchanged, including any leading or trailing blanks.

The inverse function of GREATEST is LEAST.

Data Type of Returned Value

If the data types of the expression values are different, the data type returned is the type most compatible with all of the
possible return values, the data type with the highest data type precedence. For example, if one expression is an integer and
another expression is a fractional number, GREATEST returns a value with data type NUMERIC. This is because NUMERIC
is the data type with the highest precedence that is compatible with both. If, however, an expression is a literal number or
string, GREATEST returns data type VARCHAR.

Examples
In the following example, each GREATEST compares three canonical numbers:

SELECT GREATEST(22,2.2,-21) AS HighNum,
 GREATEST('2.2','22','-21') AS HighNumStr

In the following example, each GREATEST compare three numeric strings. However, each GREATEST contains one
string that is non-canonical; these non-canonical values are compared as character strings. A character string is always
greater than a number:

SELECT GREATEST('22','+2.2','-21'),
 GREATEST('0.2','22','-21')

In the following example, each GREATEST compare three strings and returns the value with the highest collation sequence:

InterSystems SQL Reference 505

GREATEST

SELECT GREATEST('A','a',''),
 GREATEST('a','ab','abc'),
 GREATEST('#','0','7'),
 GREATEST('##','00','77')

The following example compares two dates, treated as canonical numbers: the date of birth as a $HOROLOG integer, and
the integer 58073 converted to a date. It returns the date of birth for each person born in the 21st century. Anyone born
before January 1, 2000 is displayed with the default birth date of December 31, 1999:

SELECT Name,GREATEST(DOB,TO_DATE(58073)) AS NewMillenium
FROM Sample.Person

See Also
• SQL functions: LEAST CONVERT TO_NUMBER

506 InterSystems SQL Reference

SQL Functions

HOUR
A time function that returns the hour for a datetime expression.

{fn HOUR(time-expression)}

Arguments

An expression that is the name of a column, the result of another scalar
function, or a string or numeric literal. It must resolve either to a datetime
string or a time integer, where the underlying data type can be represented
as %Time, %TimeStamp, or %PosixTime.

time-expression

Description
HOUR returns an integer specifying the hour for a given time or datetime value. The hour is calculated for a $HOROLOG
or $ZTIMESTAMP value, an ODBC format date string, or a timestamp.

A time-expression timestamp can be either data type %Library.PosixTime (an encoded 64-bit signed integer), or data type
%Library.TimeStamp (yyyy-mm-dd hh:mm:ss.fff).

To change this default time format, use the SET OPTION command.

Note that you can supply a time integer (number of elapsed seconds), but not a time string (hh:mm:ss). You must supply
a datetime string (yyyy-mm-dd hh:mm:ss). You can omit the seconds (:ss) or minutes and seconds (mm:ss) portion of a
datetime string and still return the hour portion. The date portion of the datetime string is not validated; the year can be in
the range 0001 through 9999.

Hours are expressed in 24-hour time. The hours (hh) portion should be an integer in the range from 0 through 23. There is,
however, no range checking for user-supplied values. Numbers greater than 23, negative numbers, and fractions are returned
as specified. Leading zeros are optional on input; leading zeros are suppressed on output.

HOUR returns a value of 0 hours when the hours portion is '0', '00', or a nonnumeric value. Zero hours is also returned if
no time expression is supplied, or if the hours portion of the time expression is omitted (':mm:ss' or '::ss').

The same time information can be returned using DATEPART or DATENAME.

This function can also be invoked from ObjectScript using the HOUR() method call:

$SYSTEM.SQL.HOUR(time-expression)

Examples
The following examples both return the number 18 because the time-expression value is 18:45:38:

SELECT {fn HOUR('2017-02-16 18:45:38')} AS Hour_Given

SELECT {fn HOUR(67538)} AS Hour_Given

The following example also returns 18. The seconds (or minutes and seconds) portion of the time value can be omitted.

SELECT {fn HOUR('2017-02-16 18:45')} AS Hour_Given

The following example returns 0 hours, because the time portion of the datetime string has been omitted:

SELECT {fn HOUR('2017-02-16')} AS Hour_Given

The following examples all return the hours portion of the current time:

InterSystems SQL Reference 507

HOUR

SELECT {fn HOUR(CURRENT_TIME)} AS H_CurrentT,
 {fn HOUR({fn CURTIME()})} AS H_CurT,
 {fn HOUR({fn NOW()})} AS H_Now,
 {fn HOUR($HOROLOG)} AS H_Horolog,
 {fn HOUR($ZTIMESTAMP)} AS H_ZTS

Note that $ZTIMESTAMP returns Coordinated Universal Time (UTC). The other time-expression values return the local
time.

The following example shows that leading zeros are suppressed. The first HOUR function returns a length 2, the others
return a length of 1. An omitted time is considered to be 0 hours, which has a length of 1:

SELECT LENGTH({fn HOUR('2018-02-15 11:45')}),
 LENGTH({fn HOUR('2018-02-15 03:45')}),
 LENGTH({fn HOUR('2018-02-15 3:45')}),
 LENGTH({fn HOUR('2018-02-15')})

The following Embedded SQL example shows that the HOUR function recognizes the TimeSeparator character specified
for the locale:

 DO ##class(%SYS.NLS.Format).SetFormatItem("TimeSeparator",".")
 &sql(SELECT {fn HOUR('2018-02-16 18.45.38')} INTO :a)
 WRITE "hour=",a

See Also
• SQL concepts: Data Type, Date and Time Constructs

• SQL functions: MINUTE, SECOND, CURRENT_TIME, CURTIME, NOW, DATEPART, DATENAME

• ObjectScript function: $ZTIME

• ObjectScript special variables: $HOROLOG, $ZTIMESTAMP

508 InterSystems SQL Reference

SQL Functions

IFNULL
A function that tests for NULL and returns the appropriate expression.

IFNULL(expression-1,expression-2 [,expression-3])
{fn IFNULL(expression-1,expression-2)}

Arguments

The expression to be evaluated to determine if it is NULL or not.expression-1

An expression that is returned if expression-1 is NULL.expression-2

Optional — An expression that is returned if expression-1 is not NULL. If
expression-3 is not specified, a NULL value is returned when expression-1 is not
NULL.

expression-3

The returned data type is described below.

Description
InterSystems IRIS supports IFNULL as both an SQL general function and an ODBC scalar function. Note that while these
two perform very similar operations, they are functionally different. The SQL general function supports three arguments.
The ODBC scalar function supports two arguments. The two-argument forms of the SQL general function and the ODBC
scalar function are not the same; they return different values when expression-1 is not null.

The SQL general function evaluates whether expression-1 is NULL. It never returns expression-1:

• If expression-1 is NULL, expression-2 is returned.

• If expression-1 is not NULL, expression-3 is returned.

• If expression-1 is not NULL, and there is no expression-3, NULL is returned.

The ODBC scalar function evaluates whether expression-1 is NULL. It either returns expression-1 or expression-2:

• If expression-1 is NULL, expression-2 is returned.

• If expression-1 is not NULL, expression-1 is returned.

Refer to NULL section of the “Language Elements” chapter of Using InterSystems SQL for further details on NULL handling.

Data Type of Returned Value

• IFNULL(expression-1,expression-2): returns the data type of expression-2. If expression-2 is a numeric literal, a string
literal, or NULL returns data type VARCHAR.

• IFNULL(expression-1,expression-2,expression-3): if expression-2 and expression-3 have different data types, returns
the data type with the higher (more inclusive) data type precedence. If expression-2 or expression-3 is a numeric literal
or a string literal, returns data type VARCHAR. If expression-2 or expression-3 is NULL, returns the data type of the
non-NULL argument.

If expression-2 and expression-3 have different length, precision, or scale, IFNULL returns the greater length, precision,
or scale of the two expressions.

• {fn IFNULL(expression-1,expression-2)}: returns the data type of expression-1. If expression-1 is a numeric literal,
a string literal, or NULL, returns data type VARCHAR.

InterSystems SQL Reference 509

IFNULL

DATE and TIME Display Conversion

Some expression-1 data types require conversion from Logical mode (mode 0) to ODBC mode (mode 1) or Display mode
(mode 2). For example the DATE and TIME data types. If the expression-2 or expression-3 value is not the same data type,
this value cannot be converted in ODBC mode or Display mode, and an SQLCODE error is generated: -146 for DATE
data type; -147 for TIME data type. For example, IFNULL(DOB,'nodate',DOB) cannot be executed in ODBC mode
or Display mode; it issue an SQLCODE -146 error with the %msg Error: 'nodate' is an invalid ODBC/JDBC
Date value or Error: 'nodate' is an invalid DISPLAY Date value. To execute this statement in ODBC
mode or Display mode, you must CAST the value as the appropriate data type: IFNULL(DOB,CAST('nodate' as
DATE),DOB). This results in a date 0, which displays as 1840-12-31.

%List Display Conversion

A %List field is a string data type field with encoding. If expression-1 is a %List field, the appropriate expression-2 or
expression-3 value depends on the Select Mode:

• In Logical mode (mode 0) or Display mode (mode 2), a %List value is returned as string data type with the format
$lb("element1","element2",...). Therefore, an expression-2 or expression-3 value must be specified as a
%List, as shown in the following example:

 SET myquery=3
 SET myquery(1)="SELECT TOP 20 Name,"
 SET myquery(2)="IFNULL(FavoriteColors,$LISTBUILD('No Preference'),FavoriteColors) AS ColorChoice
 "
 SET myquery(3)="FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New(2) // 2=Display mode
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()

• In ODBC mode (mode 1), a %List value is returned as a string of comma-separated elements:
element1,element2,.... Therefore, an expression-2 or expression-3 value can be specified as a string as shown
in the following example:

 SET myquery=3
 SET myquery(1)="SELECT TOP 20 Name,"
 SET myquery(2)="IFNULL(FavoriteColors'No Preference',FavoriteColors) AS ColorChoice "
 SET myquery(3)="FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New(1) // 1=ODBC mode
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()

NULL Handling Functions Compared
The following table shows the various SQL comparison functions. Each function returns one value if the logical comparison
tests True (A same as B) and another value if the logical comparison tests False (A not same as B). These functions allow
you to perform NULL logical comparisons. You cannot specify NULL in an actual equality (or non-equality) condition
comparison.

510 InterSystems SQL Reference

SQL Functions

Return ValueComparison TestSQL Function

True returns ex2

False returns NULL

ex1 = NULLIFNULL(ex1,ex2) [two-argument
form]

True returns ex2

False returns ex3

ex1 = NULLIFNULL(ex1,ex2,ex3)
[three-argument form]

True returns ex2

False returns ex1

ex1 = NULL{fn IFNULL(ex1,ex2)}

True returns ex2

False returns ex1

ex1 = NULLISNULL(ex1,ex2)

True returns ex2

False returns ex1

ex1 = NULLNVL(ex1,ex2)

True returns NULL

False returns ex1

ex1 = ex2NULLIF(ex1,ex2)

True tests next ex argument. If all
ex arguments are True (NULL),
returns NULL.

False returns ex

ex = NULL for each argumentCOALESCE(ex1,ex2,...)

Examples
In the following example, the general function and the ODBC scalar function both returns the second expression (99)
because the first expression is NULL:

SELECT IFNULL(NULL,99) AS NullGen,{fn IFNULL(NULL,99)} AS NullODBC

In the following example, the general function and the ODBC scalar function examples return different values. The general
function returns <null> because the first expression is not NULL. The ODBC example returns the first expression (33)
because the first expression is not NULL:

SELECT IFNULL(33,99) AS NullGen,{fn IFNULL(33,99)} AS NullODBC

The following Dynamic SQL example returns the string 'No Preference' if FavoriteColors is NULL; otherwise, it returns
NULL:

 SET myquery=3
 SET myquery(1)="SELECT Name,"
 SET myquery(2)="IFNULL(FavoriteColors,'No Preference') AS ColorChoice "
 SET myquery(3)="FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

The following Dynamic SQL example returns the string 'No Preference' if FavoriteColors is NULL; otherwise, it returns
the value of FavoriteColors:

InterSystems SQL Reference 511

IFNULL

 SET myquery=3
 SET myquery(1)="SELECT Name,"
 SET myquery(2)="IFNULL(FavoriteColors,'No Preference',FavoriteColors) AS ColorChoice "
 SET myquery(3)="FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=2
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

The following example returns the string 'No Preference' if FavoriteColors is NULL; otherwise, it returns the string 'Pref-
erence':

SELECT Name,
IFNULL(FavoriteColors,'No Preference','Preference') AS ColorPref
FROM Sample.Person

The following ODBC syntax examples return the string 'No Preference' if FavoriteColors is NULL, otherwise they return
the FavoriteColors data value:

SELECT Name,
 {fn IFNULL(FavoriteColors,$LISTBUILD('No Preference'))} AS ColorPref
FROM Sample.Person

 SET myquery=3
 SET myquery(1)="SELECT Name,"
 SET myquery(2)="{fn IFNULL(FavoriteColors,'No Preference')} AS ColorChoice "
 SET myquery(3)="FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

The following example uses IFNULL in the WHERE clause. It selects people under the age of 21 who do not have favorite
color preferences. If FavoriteColors is NULL, IFNULL returns the Age field value, which is used for the condition test:

SELECT Name,FavoriteColors,Age
FROM Sample.Person
WHERE 21 > IFNULL(FavoriteColors,Age)
ORDER BY Age

Refer to the NULL predicate (IS NULL, IS NOT NULL) for similar functionality.

See Also
• CASE command

• COALESCE function

• ISNULL function

• NULLIF function

• NVL function

• NULL predicate

512 InterSystems SQL Reference

SQL Functions

INSTR
A string function that returns the position of a substring within a string, with optional search start point and occurrence
count.

INSTR(string,substring[,start[,occurrence]])

Arguments

The string expression within which to search for substring. It can be
the name of a column, a string literal, or the result of another scalar
function, where the underlying data type can be represented as any
character type (such as CHAR or VARCHAR2).

string

A substring that is believed to occur within string.substring

Optional — The starting point for substring search, specified as a
positive integer. A character count from the beginning of string,
counting from 1. To search from the beginning of string, omit this
argument or specify a start of 1. A start value of 0, the empty string,
NULL, or a nonnumeric value cause INSTR to return 0. Specifying
start as a negative number causes INSTR to return <null>.

start

Optional — A non-zero integer that specifies which occurrence of
substring to return when searching from the start position.The default
is to return the position of the first occurrence.

occurrence

INSTR returns the INTEGER data type.

Description
INSTR searches string for substring, and returns the position of the first character of substring. The position is returned
as an integer, counting from the beginning of string. If substring is not found, 0 (zero) is returned. INSTR returns NULL
if passed a NULL value for either argument.

INSTR supports specifying start as the starting point for substring search. INSTR also support specifying the substring
occurrence from that starting point.

INSTR is case-sensitive. Use one of the case-conversion functions to locate both uppercase and lowercase instances of a
letter or character string.

This function can also be invoked from ObjectScript using the INSTR() method call:

 WRITE $SYSTEM.SQL.INSTR("The broken brown briefcase","br",6,2)

INSTR, CHARINDEX, POSITION, and $FIND

INSTR, CHARINDEX, POSITION, and $FIND all search a string for a specified substring and return an integer position
corresponding to the first match. CHARINDEX, POSITION, and INSTR return the integer position of the first character
of the matching substring. $FIND returns the integer position of the first character after the end of the matching substring.
CHARINDEX, $FIND, and INSTR support specifying a starting point for substring search. INSTR also support specifying
the substring occurrence from that starting point.

The following example demonstrates these four functions, specifying all optional arguments. Note that the positions of
string and substring differ in these functions:

InterSystems SQL Reference 513

INSTR

SELECT POSITION('br' IN 'The broken brown briefcase') AS Position,
 CHARINDEX('br','The broken brown briefcase',6) AS Charindex,
 $FIND('The broken brown briefcase','br',6) AS Find,
 INSTR('The broken brown briefcase','br',6,2) AS Inst

For a list of functions that search for a substring, refer to String Manipulation.

Examples
The following example returns 11, because “b” is the 11th character in the string:

SELECT INSTR('The quick brown fox','b',1) AS PosInt

The following example returns the length of the last name (surname) for each name in the Sample.Person table. It locates
the comma used to separate the last name from the rest of the name field, then subtracts 1 from that position:

SELECT Name,
INSTR(Name,',',1)-1 AS LNameLen
FROM Sample.Person

The following example returns the position of the first instance of the letter “B” in each name in the Sample.Person table.
Because INSTR is case-sensitive, the %SQLUPPER function is used to convert all name values to uppercase before per-
forming the search. Because %SQLUPPER adds a blank space at the beginning of a string, this example subtracts 1 to
get the actual letter position. Searches that do not locate the specified string return zero (0); in this example, because of the
subtraction of 1, the value displayed for these searches is –1:

SELECT Name,
INSTR(%SQLUPPER(Name),'B',1)-1 AS BPos
FROM Sample.Person

See Also
• CHARINDEX function

• $FIND function

• POSITION function

• String Manipulation

514 InterSystems SQL Reference

SQL Functions

%INTERNAL
A format-transformation function that returns an expression in LOGICAL format.

%INTERNAL(expression)

%INTERNAL expression

Arguments

The expression to be converted. A field name, an expression containing a field name,
or a function that returns a value in a convertible data type, such as DATE or %List.

expression

Description
%INTERNAL converts expression to LOGICAL format, regardless of the current select mode (display mode). The
LOGICAL format is the in-memory format of data (the format upon which operations are performed). %INTERNAL is
commonly used on a SELECT list select-item.

%INTERNAL can be used in a WHERE clause, but this use is strongly discouraged because using %INTERNAL prevents
the use of indexes on the specified field, and %INTERNAL forces all comparisons to be case-sensitive, even if the field
has default collation.

Applying %INTERNAL changes the column header name to a value such as “Expression_1”; it is therefore usually
desirable to specify a column name alias, as shown in the examples below.

%INTERNAL converts a value of data type %Date to an INTEGER data type value. %INTERNAL converts a value of
data type %Time to a NUMERIC (15,9) data type value. This conversion is provided because an ODBC or JDBC client
does not recognize InterSystems IRIS logical %Date and %Time values.

Whether %INTERNAL converts a date depends on the data type returned by the date field or function. %INTERNAL
converts CURDATE, CURRENT_DATE, CURTIME, and CURRENT_TIME values. It does not convert CURRENT_TIMES-
TAMP, GETDATE, GETUTCDATE, NOW, and $HOROLOG values.

A stream field cannot be specified as an argument to ObjectScript unary functions, including all format-transformation
functions, with the exception of %INTERNAL. The %INTERNAL function permits a stream field as an expression value,
but performs no operation on that stream field.

%INTERNAL is an InterSystems SQL extension.

To convert an expression to DISPLAY format, regardless of the current select mode, use the %EXTERNAL function. To
convert an expression to ODBC format, regardless of the current select mode, use the %ODBCOUT function.

For further details on display format options, refer to “Data Display Options” in the “ InterSystems IRIS SQL Basics”
chapter of Using InterSystems SQL.

Examples
The following Dynamic SQL example returns Date of Birth (DOB) data values in the current select mode format, and the
same data using the %INTERNAL function. For the purpose of demonstration, in this program the %SelectMode value
is determined randomly for each invocation:

InterSystems SQL Reference 515

%INTERNAL

 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=$RANDOM(3)
 IF tStatement.%SelectMode=0 {WRITE "Select mode LOGICAL",! }
 ELSEIF tStatement.%SelectMode=1 {WRITE "Select mode ODBC",! }
 ELSEIF tStatement.%SelectMode=2 {WRITE "Select mode DISPLAY",! }
 SET myquery = 2
 SET myquery(1) = "SELECT TOP 5 DOB,%INTERNAL(DOB) AS IntDOB "
 SET myquery(2) = "FROM Sample.Person"
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

The following examples show the two syntax forms for this function; they are otherwise identical. They specify the
%EXTERNAL (DISPLAY format), %INTERNAL (LOGICAL format), and %ODBCOUT (ODBC format) of a %List
field:

SELECT TOP 10 %EXTERNAL(FavoriteColors) AS ExtColors,
 %INTERNAL(FavoriteColors) AS IntColors,
 %ODBCOUT(FavoriteColors) AS ODBCColors
FROM Sample.Person

SELECT TOP 10 %EXTERNAL FavoriteColors AS ExtColors,
 %INTERNAL FavoriteColors AS IntColors,
 %ODBCOUT FavoriteColors AS ODBCColors
FROM Sample.Person

See Also
• %EXTERNAL, %ODBCIN, %ODBCOUT

• SQL concepts: Data Types, Date and Time Constructs

516 InterSystems SQL Reference

SQL Functions

ISNULL
A function that tests for NULL and returns the appropriate expression.

ISNULL(check-expression,replace-expression)

Arguments

The expression to be evaluated.check-expression

An expression that is returned if check-expression is NULL.replace-expression

ISNULL returns the same data type as check-expression.

Description
ISNULL evaluates check-expression and returns one of two values:

• If check-expression is NULL, replace-expression is returned.

• If check-expression is not NULL, check-expression is returned.

The data type of replace-expression should be compatible with the data type of check-expression.

Note that the ISNULL function is the same as the NVL function, which is provided for Oracle compatibility.

Refer to NULL section of the “Language Elements” chapter of Using InterSystems SQL for further details on NULL handling.

DATE and TIME Display Conversion

Some check-expression data types require conversion from Logical mode to ODBC mode or Display mode. For example
the DATE and TIME data types. If the replace-expression value is not the same data type, this value cannot be converted
in ODBC mode or Display mode, and an SQLCODE error is generated: -146 for DATE data type; -147 for TIME data
type. For example, ISNULL(DOB,'nodate') cannot be executed in ODBC mode or Display mode; it issue an SQLCODE
-146 error with the %msg Error: 'nodate' is an invalid ODBC/JDBC Date value or Error: 'nodate'
is an invalid DISPLAY Date value. To execute this statement in ODBC mode or Display mode, you must CAST
the value as the appropriate data type: ISNULL(DOB,CAST('nodate' as DATE)). This results in a date 0, which
displays as 1840-12-31.

NULL Handling Functions Compared
The following table shows the various SQL comparison functions. Each function returns one value if the logical comparison
tests True (A same as B) and another value if the logical comparison tests False (A not same as B). These functions allow
you to perform NULL logical comparisons. You cannot specify NULL in an actual equality (or non-equality) condition
comparison.

InterSystems SQL Reference 517

ISNULL

Return ValueComparison TestSQL Function

True returns ex2

False returns ex1

ex1 = NULLISNULL(ex1,ex2)

True returns ex2

False returns NULL

ex1 = NULLIFNULL(ex1,ex2) [two-argument
form]

True returns ex2

False returns ex3

ex1 = NULLIFNULL(ex1,ex2,ex3)
[three-argument form]

True returns ex2

False returns ex1

ex1 = NULL{fn IFNULL(ex1,ex2)}

True returns ex2

False returns ex1

ex1 = NULLNVL(ex1,ex2)

True returns NULL

False returns ex1

ex1 = ex2NULLIF(ex1,ex2)

True tests next ex argument. If all
ex arguments are True (NULL),
returns NULL.

False returns ex

ex = NULL for each argumentCOALESCE(ex1,ex2,...)

Examples
In the following example, the first ISNULL returns the second expression (99) because the first expression is NULL. The
second ISNULL returns the first expression (33) because the first expression is not NULL:

SELECT ISNULL(NULL,99) AS IsNullT,ISNULL(33,99) AS IsNullF

The following Dynamic SQL example returns the string 'No Preference' if FavoriteColors is NULL; otherwise, it returns
the value of FavoriteColors:

 SET myquery=3
 SET myquery(1)="SELECT Name,"
 SET myquery(2)="ISNULL(FavoriteColors,'No Preference') AS ColorChoice "
 SET myquery(3)="FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

Compare the behavior of ISNULL with IFNULL:

 SET myquery=3
 SET myquery(1)="SELECT Name,"
 SET myquery(2)="IFNULL(FavoriteColors,'No Preference') AS ColorChoice "
 SET myquery(3)="FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

518 InterSystems SQL Reference

SQL Functions

See Also
• CASE command

• COALESCE function

• IFNULL function

• NULLIF function

• NVL function

InterSystems SQL Reference 519

ISNULL

ISNUMERIC
A numeric function that tests for a valid number.

ISNUMERIC(check-expression)

Arguments

The expression to be evaluated.check-expression

ISNUMERIC returns the SMALLINT data type.

Description
ISNUMERIC evaluates check-expression and returns one of the following values:

• Returns 1 if check-expression is a valid number. A valid number can either be a numeric expression or a string that
represents a valid number.

– A numeric expression is first converted to canonical form, resolving multiple leading signs; therefore, a numeric
expression such as +-+++34 is a valid number.

– A numeric string is not converted before evaluation. A numeric string must have at most one leading sign to
evaluate as a valid number. A numeric string with a trailing decimal point evaluates as a valid number.

• Returns 0 if check-expression is not a valid number. Any string that contains a non-numeric character is not a valid
number. A numeric string with more than one leading sign, such as '+-+++34', is not evaluated as a valid number.
An InterSystems IRIS encoded list always returns 0, even if its element(s) are valid numbers. An empty string
ISNUMERIC('') returns 0.

• Returns NULL if check-expression is NULL. ISNUMERIC(NULL) returns null.

ISNUMERIC generates an SQLCODE -7, exponent out of range error if a scientific notation exponent is greater than 308
(308 – (number of integers - 1)). For example, ISNUMERIC(1E309) and ISNUMERIC(111E307) both generate this
error code. If an exponent numeric string less than or equal to '1E145' returns 1; an exponent numeric string greater than
'1E145' returns 0.

The ISNUMERIC function is very similar to the ObjectScript $ISVALIDNUM function. However, these two functions
return different values when the input value is NULL.

Examples
In the following example, all of the ISNUMERIC functions return 1:

SELECT ISNUMERIC(99) AS MyInt,
 ISNUMERIC('-99') AS MyNegInt,
 ISNUMERIC('-0.99') AS MyNegFrac,
 ISNUMERIC('-0.00') AS MyNegZero,
 ISNUMERIC('-0.09'+7) AS MyAdd,
 ISNUMERIC('5E2') AS MyExponent

The following example returns NULL if FavoriteColors is NULL; otherwise, it returns 0, because FavoriteColors is not a
numeric field:

SELECT Name,
ISNUMERIC(FavoriteColors) AS ColorPref
FROM Sample.Person

520 InterSystems SQL Reference

SQL Functions

See Also
• IFNULL function

• ISNULL function

• NULLIF function

• ObjectScript function: $ISVALIDNUM

InterSystems SQL Reference 521

ISNUMERIC

JSON_ARRAY
A conversion function that returns data as a JSON array.

JSON_ARRAY(select-items [NULL ON NULL | ABSENT ON NULL])

Arguments

An expression or a comma-separated list of expressions. These expressions
can include column names, aggregate functions, arithmetic expressions, literals,
and the literal NULL.

select-items

Optional — A keyword phrase specifying how to represent NULL values in the
returned JSON array. NULL ON NULL (the default) represents NULL (absent)
data with the word null (not quoted). ABSENT ON NULL omits NULL data from
the JSON array; it does not leave a placeholder comma. This keyword phrase
has no effect on empty string values.

ABSENT ON NULL

NULL ON NULL

Description
JSON_ARRAY takes an expression or (more commonly) a comma-separated list of expressions and returns a JSON array
containing those values. JSON_ARRAY can be combined in a SELECT statement with other types of select-items.
JSON_ARRAY can be specified in other locations where an SQL function can be used, such as in a WHERE clause.

The returned JSON array has the following format:

[element1 , element2 , element3]

JSON_ARRAY returns each array element value as either a string (enclosed in double quotes), or a number. Numbers are
returned in canonical format. A numeric string is returned as a literal, enclosed in double quotes. All other data types (for
example, Date or $List) are returned as a string.

JSON_ARRAY does not support asterisk (*) syntax as a way to specify all fields in a table. It does support the COUNT(*)
aggregate function.

The returned JSON array column is labeled as an Expression (by default); you can specify a column alias for a
JSON_ARRAY.

Select Mode and Collation

The current %SelectMode property determines the format of the returned JSON array values. By changing the Select Mode,
all Date and %List elements are included in the JSON array as strings with that Select Mode format.

You can override the current Select Mode by applying a format-transformation function (%EXTERNAL, %INTERNAL,
%ODBCIN, %ODBCOUT) to individual field names within JSON_ARRAY. Applying a format-transformation function
to a JSON_ARRAY has no effect, because the elements of a JSON array are strings.

You can apply a collation function to individual field names within JSON_ARRAY or to an entire JSON_ARRAY:

• A collation function applied to a JSON_ARRAY applies the collation after JSON array formatting. Therefore,
%SQLUPPER(JSON_ARRAY(f1,f2)) converts all the JSON array element values to uppercase.
%SQLUPPER(JSON_ARRAY(f1,f2)) inserts a space before the JSON array, not before the elements of the array;
therefore it does not force numbers to be parsed as strings.

• A collation function applied to an element within a JSON_ARRAY applies that collation. Therefore
JSON_ARRAY('Abc',%SQLUPPER('Abc')) returns ["Abc"," ABC"] (note leading space); and
JSON_ARRAY(007,%SQLSTRING(007)) returns [7," 7"]. Because %SQLUPPER inserts a space before the

522 InterSystems SQL Reference

SQL Functions

value, it is generally preferable to specify a case transformation function such as LCASE or UCASE. You can apply
collation to both an element and to the whole array: %SQLUPPER(JSON_ARRAY('Abc',%SQLSTRING('Abc')))
returns ["ABC"," ABC"]

ABSENT ON NULL

If you specify the optional ABSENT ON NULL keyword phrase, a column value which is NULL (or the NULL literal) is
not included in the JSON array. No placeholder is included in the JSON array. This can result in JSON arrays with different
numbers of elements. For example, the following program returns JSON arrays where for some records the 3rd array element
is Age, and for other records the 3rd element is FavoriteColors:

SELECT JSON_ARRAY(%ID,Name,FavoriteColors,Age ABSENT ON NULL) FROM Sample.Person

If you specify no keyword phrase, the default is NULL ON NULL: NULL is represented by the word null (not delimited
by quotes) as a comma-separated array element. Thus all JSON arrays returned by a JSON_ARRAY function will have
the same number of array elements.

Examples
The following example applies JSON_ARRAY to format a JSON array containing a comma-separated list of field values:

SELECT TOP 3 JSON_ARRAY(%ID,Name,Age,Home_State) FROM Sample.Person

The following example applies JSON_ARRAY to format a JSON array with a single element containing the Name field
values:

SELECT TOP 3 JSON_ARRAY(Name) FROM Sample.Person

The following example applies JSON_ARRAY to format a JSON array containing literals and field values:

SELECT TOP 3 JSON_ARRAY('Employee from',%TABLENAME,Name,SSN) FROM Sample.Employee

The following example applies JSON_ARRAY to format a JSON array containing nulls and field values:

SELECT JSON_ARRAY(Name,FavoriteColors) FROM Sample.Person
WHERE Name %STARTSWITH 'S'

The following example applies JSON_ARRAY to format a JSON array containing field values from joined tables:

SELECT TOP 3 JSON_ARRAY(E.%TABLENAME,E.Name,C.%TABLENAME,C.Name)
FROM Sample.Employee AS E,Sample.Company AS C

The following Dynamic SQL example sets the ODBC %SelectMode, which determines how all fields, including JSON
array values are represented. The query overrides this Select Mode for specific JSON array elements by applying the
%EXTERNAL format-transformation function:

 SET myquery = 3
 SET myquery(1) = "SELECT TOP 8 DOB,JSON_ARRAY(Name,DOB,FavoriteColors) AS ODBCMode, "
 SET myquery(2) = "JSON_ARRAY(Name,DOB,%EXTERNAL(DOB),%EXTERNAL(FavoriteColors)) AS ExternalTrans
"
 SET myquery(3) = "FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 WRITE "SelectMode is ODBC",!
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 IF rset.%SQLCODE=0 { WRITE !,"Executed query",! }
 ELSE { SET badSQL=##class(%Exception.SQL).%New(,rset.%SQLCODE,,rset.%Message)}
 DO rset.%Display()
 WRITE !,"End of data"

The following example uses JSON_ARRAY in a WHERE clause to perform a Contains test on multiple columns without
using OR syntax:

InterSystems SQL Reference 523

JSON_ARRAY

SELECT Name,Home_City,Home_State FROM Sample.Person
WHERE JSON_ARRAY(Name,Home_City,Home_State) ['X'

See Also
• SELECT statement

• WHERE clause

• JSON_OBJECT function

• IS JSON predicate condition

• Overview of Predicates

• “Querying the Database” chapter in Using InterSystems SQL

524 InterSystems SQL Reference

SQL Functions

JSON_OBJECT
A conversion function that returns data as a JSON object.

JSON_OBJECT(select-items [NULL ON NULL | ABSENT ON NULL])

Arguments

A key:value pair or a comma-separated list of key:value pairs. A key is a
user-specified literal string delimited with single quotes. A value can be a column
name, an aggregate function, an arithmetic expression, a numeric or string literal,
or the literal NULL.

select-items

Optional — A keyword phrase specifying how to represent NULL values in the
returned JSON object. NULL ON NULL (the default) represents NULL (absent)
data with the word null (not quoted). ABSENT ON NULL omits NULL data from
the JSON object; it removes the key:value pair when value is NULL and does
not leave a placeholder comma. This keyword phrase has no effect on empty
string values.

ABSENT ON NULL

NULL ON NULL

Description
JSON_OBJECT takes a comma-separated list of key:value pairs (for example, 'mykey':colname) and returns a JSON
object containing those values. You can specify any single-quoted string as a key name; JSON_OBJECT does not enforce
any naming conventions or uniqueness check for key names. You can specify for value a column name or other expression.

JSON_OBJECT can be combined in a SELECT statement with other types of select-items. JSON_OBJECT can be
specified in other locations where an SQL function can be used, such as in a WHERE clause.

A returned JSON object has the following format:

{ "key1" : "value1" , "key2" : "value2" , "key3" : "value3" }

JSON_OBJECT returns object values as either a string (enclosed in double quotes), or a number. Numbers are returned
in canonical format. A numeric string is returned as a literal, enclosed in double quotes. All other data types (for example,
Date or $List) are returned as a string, with the current %SelectMode determining the format of the returned value.
JSON_OBJECT returns both key and value values in DISPLAY or ODBC mode if that is the select mode for the query.

JSON_OBJECT does not support asterisk (*) syntax as a way to specify all fields in a table.

The returned JSON object column is labeled as an Expression (by default); you can specify a column alias for a
JSON_OBJECT.

Select Mode and Collation

The current %SelectMode property determines the format of the returned JSON object values. By changing the Select
Mode, all Date and %List values are included in the JSON object as strings with that Select Mode format. You can override
the current Select Mode by applying a format-transformation function (%EXTERNAL, %INTERNAL, %ODBCIN,
%ODBCOUT) to individual field names within JSON_OBJECT. Applying a format-transformation function to a
JSON_OBJECT has no effect, because the key:value pairs of a JSON object are strings.

The default collation determines the collation of the returned JSON object values. You can apply a collation function to a
JSON_OBJECT, converting both keys and values. Generally, you should not apply a collation function to JSON_OBJECT
because keys are case-sensitive. InterSystems IRIS applies the collation after JSON object formatting. Therefore,
%SQLUPPER(JSON_OBJECT('k1':f1,'k2':f2)) converts all the JSON object key and value strings to uppercase.
%SQLUPPER inserts a space before the JSON object, not before the values within the object.

InterSystems SQL Reference 525

JSON_OBJECT

Within JSON_OBJECT, you can apply a collation function to the value portion of a key:value pair. Because %SQLUPPER
inserts a space before the value, it is generally preferable to specify a case transformation function such as LCASE or
UCASE.

ABSENT ON NULL

If you specify the optional ABSENT ON NULL keyword phrase, a column value which is NULL (or the NULL literal) is
not included in the JSON object. No placeholder is included in the JSON object. This can result in JSON objects with dif-
ferent numbers of key:value pairs. For example, the following program returns JSON objects where for some records the
3rd key:value pair is Age, and for other records the 3rd key:value pair is FavoriteColors:

SELECT JSON_OBJECT('id':%ID,'name':Name,'colors':FavoriteColors,'years':Age ABSENT ON NULL) FROM
Sample.Person

If you specify no keyword phrase, the default is NULL ON NULL: NULL is represented by the word null (not delimited
by quotes) as the value of the key:value pair. Thus all JSON objects returned by a JSON_OBJECT function will have the
same number of key:value pairs.

Examples
The following Dynamic SQL example applies JSON_OBJECT to format a JSON object containing field values:

 SET myquery = 2
 SET myquery(1) = "SELECT TOP 3 JSON_OBJECT('id':%ID,'name':Name,'birth':DOB,"
 SET myquery(2) = "'age':Age,'state':Home_State) FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WHILE rset.%Next() {DO rset.%Print(" ^ ")}
 WRITE !,"Total row count=",rset.%ROWCOUNT

The following Dynamic SQL example applies JSON_OBJECT to format a JSON object containing literals and field values:

 SET myquery = 2
 SET myquery(1) = "SELECT TOP 3 JSON_OBJECT('lit':'Employee from','t':%TABLENAME,"
 SET myquery(2) = "'name':Name,'num':SSN) FROM Sample.Employee"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WHILE rset.%Next() {DO rset.%Print(" ^ ")}
 WRITE !,"Total row count=",rset.%ROWCOUNT

The following Dynamic SQL example applies JSON_OBJECT to format a JSON object containing nulls and field values:

 SET myquery = 2
 SET myquery(1) = "SELECT JSON_OBJECT('name':Name,'colors':FavoriteColors) FROM Sample.Person"
 SET myquery(2) = " WHERE Name %STARTSWITH 'S'"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WHILE rset.%Next() {DO rset.%Print(" ^ ")}
 WRITE !,"Total row count=",rset.%ROWCOUNT

The following Dynamic SQL example sets the ODBC %SelectMode, which determines how all fields, including JSON
object values are represented. The query overrides this Select Mode for specific JSON_OBJECT values by applying the
%EXTERNAL format-transformation function:

526 InterSystems SQL Reference

SQL Functions

 SET myquery = 3
 SET myquery(1) = "SELECT TOP 8 JSON_OBJECT('ODBCBday':DOB,'DispBday':%EXTERNAL(DOB)),"
 SET myquery(2) = "JSON_OBJECT('ODBCcolors':FavoriteColors,'DispColors':%EXTERNAL(FavoriteColors))
 "
 SET myquery(3) = "FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=1
 WRITE "SelectMode is ODBC",!
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 IF rset.%SQLCODE=0 { WRITE !,"Executed query",! }
 ELSE { SET badSQL=##class(%Exception.SQL).%New(,rset.%SQLCODE,,rset.%Message)}
 DO rset.%Display()
 WRITE !,"End of data"

The following Dynamic SQL example applies JSON_OBJECT to format a JSON object containing field values from
joined tables:

 SET myquery = 2
 SET myquery(1) = "SELECT TOP 3 JSON_OBJECT('e.t':E.%TABLENAME,'e.name':E.Name,'c.t':C.%TABLENAME,"
 SET myquery(2) = "'c.name':C.Name) FROM Sample.Employee AS E,Sample.Company AS C"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WHILE rset.%Next() {DO rset.%Print(" ^ ")}
 WRITE !,"Total row count=",rset.%ROWCOUNT

The following Dynamic SQL example uses JSON_OBJECT in a WHERE clause to perform a Contains test on multiple
columns without using OR syntax:

 SET myquery = 2
 SET myquery(1) = "SELECT Name,Home_City,Home_State FROM Sample.Person"
 SET myquery(2) = " WHERE JSON_OBJECT('name':Name,'city':Home_City,'state':Home_State) ['X'"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WHILE rset.%Next() {DO rset.%Print(" ^ ")}
 WRITE !,"Total row count=",rset.%ROWCOUNT

See Also
• SELECT statement

• WHERE clause

• JSON_ARRAY function

• IS JSON predicate condition

• Overview of Predicates

• “Querying the Database” chapter in Using InterSystems SQL

InterSystems SQL Reference 527

JSON_OBJECT

$JUSTIFY
A function that right-aligns a value within a specified width, optionally rounding to a specified number of fractional digits.

$JUSTIFY(expression,width[,decimal])

Arguments

The value that is to be right-aligned. It can be a numeric value, a string literal, or an
expression that resolves to a numeric or string.

expression

The number of characters within which expression is to be right-aligned. A positive
integer or an expression that evaluates to a positive integer.

width

Optional — The number of fractional digits. A positive integer or an expression that
evaluates to a positive integer. InterSystems IRIS rounds or pads the number of
fractional digits in expression to this value. If you specify decimal, InterSystems
IRIS treats expression as a numeric.

decimal

Description
$JUSTIFY returns the value specified by expression right-aligned within the specified width. You can include the decimal
argument to decimal-align numbers within width.

• $JUSTIFY(expression,width): the 2-argument syntax right-justifies expression within width. It does not perform
any conversion of expression. The expression can be a numeric or a nonnumeric string.

• $JUSTIFY(expression,width,decimal): the 3-argument syntax converts expression to a canonical number,
rounds or zero pads fractional digits to decimal, then right-justifies the resulting numeric value within width. If expression
is a nonnumeric string or NULL, InterSystems IRIS converts it to 0, pads it, then right-justifies it.

$JUSTIFY recognizes the DecimalSeparator character for the current locale. It adds or deletes a DecimalSeparator character
as needed. The DecimalSeparator character depends upon the locale; commonly it is either a period (.) for American-format
locales, or a comma (,) for European-format locales. To determine the DecimalSeparator character for your locale, invoke
the following method:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("DecimalSeparator")

SQLCODE -380 is issued if you specify too few arguments. SQLCODE -381 is issued if you specify too many arguments.

$JUSTIFY, ROUND, and TRUNCATE

When rounding to a fixed number of fractional digits is important — for example, when representing monetary amounts
— use $JUSTIFY, which returns the specified number of trailing zeros following the rounding operation. When decimal
is larger than the number of fractional digits in expression, $JUSTIFY zero-pads. $JUSTIFY also right-aligns the numbers,
so that the DecimalSeparator characters align in a column of numbers.

ROUND also rounds to a specified number of fractional digits, but its return value is always normalized, removing trailing
zeros. For example, ROUND(10.004,2) returns 10, not 10.00. Unlike $JUSTIFY, ROUND allows you to specify either
rounding (the default), or truncation.

TRUNCATE truncates to a specified number of fractional digits. Unlike ROUND, if the truncation results in trailing zeros,
these trailing zeros are preserved. However, unlike $JUSTIFY, TRUNCATE does not zero-pad.

ROUND and TRUNCATE allow you to round (or truncate) to the left of the decimal separator. For example,
ROUND(128.5,-1) returns 130.

528 InterSystems SQL Reference

SQL Functions

$JUSTIFY and LPAD

The two-argument form of LPAD and the two-argument form of $JUSTIFY both right-align a string by padding it with
leading spaces. These two-argument forms differ in how they handle an output width that is shorter than the length of the
input expression: LPAD truncates the input string to fit the specified output length. $JUSTIFY expands the output length
to fit the input string. This is shown in the following example:

SELECT '>'||LPAD(12345,10)||'<' AS lpadplus,
 '>'||$JUSTIFY(12345,10)||'<' AS justifyplus,
 '>'||LPAD(12345,3)||'<' AS lpadminus,
 '>'||$JUSTIFY(12345,3)||'<' AS justifyminus

The three-argument form of LPAD allows you to left pad with characters other than spaces.

Arguments

expression

The value to be right-justified, and optionally expressed as a numeric with a specified number of fractional digits.

• If string justification is desired, do not specify decimal. The expression can contain any characters. $JUSTIFY right-
justifies expression, as described in width.

• If numeric justification is desired, specify decimal. If decimal is specified, InterSystems IRIS supplies expression to
$JUSTIFY as a canonical number. It resolves leading plus and minus signs and removes leading and trailing zeros. It
truncates expression at the first nonnumeric character. If expression begins with a nonnumeric character (such as a
currency symbol), InterSystems IRIS converts the expression value to 0. Canonical conversion does not recognize
NumericGroupSeparator characters, currency symbols, multiple DecimalSeparator characters, or trailing plus or minus
signs. For further details on how InterSystems IRIS converts a numeric to a canonical number, and InterSystems IRIS
handling of a numeric string containing nonnumeric characters, refer to the Numbers section of the “Data Types and
Values” chapter of Using ObjectScript.

After $JUSTIFY receives expression as a canonical number, $JUSTIFY performs its operation and either rounds or
zero-pads this canonical number to decimal number of fractional digits, then right-justifies the result, as described in
width.

width

The width in which to right-justify the converted expression. If width is greater than the length of expression (after numeric
and fractional digit conversion), InterSystems IRIS right-justifies to width, left-padding as needed with blank spaces. If
width is less than the length of expression (after numeric and fractional digit conversion), InterSystems IRIS sets width to
the length of the expression value.

Specify width as a positive integer. A width value of 0, the empty string (''), NULL, or a nonnumeric string is treated as a
width of 0, which means that InterSystems IRIS sets width to the length of the expression value.

decimal

The number of fractional digits. If expression contains more fractional digits, $JUSTIFY rounds the fractional portion to
this number of fractional digits. If expression contains fewer fractional digits, $JUSTIFY pads the fractional portion with
zeros to this number of fractional digits, adding a Decimal Separator character, if needed. If decimal=0, $JUSTIFY rounds
expression to an integer value and deletes the Decimal Separator character.

If the expression value is less than 1, $JUSTIFY inserts a leading zero before the DecimalSeparator character.

The $DOUBLE values INF, -INF, and NAN are returned unchanged by $JUSTIFY, regardless of the decimal value.

Examples
The following Dynamic SQL example performs right-justification on strings. No numeric conversion is performed:

InterSystems SQL Reference 529

$JUSTIFY

 SET myquery = "SELECT TOP 20 Age,$JUSTIFY(Name,18),DOB FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

The following Dynamic SQL example performs numeric right-justification with a specified number of fractional digits:

 SET myquery = 2
 SET myquery(1) = "SELECT TOP 20 $JUSTIFY(Salary,10,2) AS FullSalary,"
 SET myquery(2) = "$JUSTIFY(Salary/7,10,2) AS SeventhSalary FROM Sample.Employee"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

The following Dynamic SQL example performs numeric right-justification with a specified number of fractional digits,
and string right-justification of the same numeric value:

 SET myquery = 2
 SET myquery(1) = "SELECT $JUSTIFY({fn ACOS(-1)},8,3) AS ArcCos3,"
 SET myquery(2) = "$JUSTIFY({fn ACOS(-1)},8) AS ArcCosAll"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()

The following Dynamic SQL example performs numeric right-justification with the $DOUBLE values INF and NAN:

 DO ##class(%SYSTEM.Process).IEEEError(0)
 SET x=$DOUBLE(1.2e500)
 SET y=x-x
 SET myquery = 2
 SET myquery(1) = "SELECT $JUSTIFY(?,12,2) AS INFtest,"
 SET myquery(2) = "$JUSTIFY(?,12,2) AS NANtest"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute(x,y)
 DO rset.%Display()

See Also
• LPAD function

• ROUND function

• TRUNCATE function

530 InterSystems SQL Reference

SQL Functions

LAST_DAY
A date function that returns the date of the last day of the month for a date expression.

LAST_DAY(date-expression)

Arguments

An expression that is the name of a column, the result of another scalar
function, or a date or timestamp literal.

date-expression

Description
LAST_DAY returns the date of the last day of the specified month as an integer in $HOROLOG format. Leap years differ-
ences are calculated, including century day adjustments: 2000 is a leap year, 1900 and 2100 are not leap years.

The date-expression can be an InterSystems IRIS date integer, a $HOROLOG or $ZTIMESTAMP value, an ODBC format
date string, or a timestamp.

A date-expression timestamp can be either data type %Library.PosixTime (an encoded 64-bit signed integer), or data type
%Library.TimeStamp (yyyy-mm-dd hh:mm:ss.fff).

The time portion of a %TimeStamp string is optional.

LAST_DAY returns 0 (in Display mode 12/31/1840) when an invalid date is specified: the day or month as zero; the
month greater than 12; or the day larger than the number of days in that month on that year. The year must be in the range
0001 through 9999.

This function can also be invoked from ObjectScript using the LASTDAY() method call:

 WRITE $SYSTEM.SQL.LASTDAY("2018-02-22"),!
 WRITE $SYSTEM.SQL.LASTDAY(64701)

Examples
The following examples return the last day of the month as an InterSystems IRIS date integer. Whether this value is displayed
as an integer or as a date string depends on the current SQL Display Mode setting.

The following two examples both return the number 59594 (which corresponds to '2004–02–29') because the last day of
the month on the specified date is February 29 (2004 is a leap year):

SELECT LAST_DAY('2004-02-25')

SELECT LAST_DAY(59590)

The following examples all return the InterSystems IRIS date integer corresponding to the last day of the current month:

SELECT LAST_DAY({fn NOW()}) AS LD_Now,
 LAST_DAY(CURRENT_DATE) AS LD_CurrDate,
 LAST_DAY(CURRENT_TIMESTAMP) AS LD_CurrTstamp,
 LAST_DAY($ZTIMESTAMP) AS LD_ZTstamp,
 LAST_DAY($HOROLOG) AS LD_Horolog

See Also
• SQL functions: DATENAME, DATEPART, DAY, DAYOFYEAR, MONTH, YEAR, TO_DATE

• ObjectScript function: $ZDATE

• ObjectScript special variables: $HOROLOG, $ZTIMESTAMP

InterSystems SQL Reference 531

LAST_DAY

LAST_IDENTITY
A scalar function that returns the identity of the last row inserted, updated, deleted, or fetched.

LAST_IDENTITY()

Description
The LAST_IDENTITY function returns the %ROWID local variable value. The %ROWID local variable is set to a value
in Embedded SQL or ODBC. The %ROWID local variable is not set to a value by Dynamic SQL, the SQL Shell, or the
Management Portal SQL interface. Dynamic SQL instead sets a %ROWID object property.

The LAST_IDENTITY function takes no arguments. Note that the argument parentheses are required.

LAST_IDENTITY returns the IDENTITY field value of the last row affected by the current process. If the table has no
IDENTITY field, it returns the row ID (%ROWID) of the last row affected by the current process. The returned value is
data type INTEGER.

• For an Embedded SQL INSERT, UPDATE, DELETE or TRUNCATE TABLE statement, LAST_IDENTITY returns
the IDENTITY or %ROWID value of the last row modified.

• For an Embedded SQL cursor-based SELECT statement, LAST_IDENTITY returns the IDENTITY or %ROWID
value of the last row retrieved. However, if the cursor-based SELECT statement includes a DISTINCT keyword or a
GROUP BY clause, LAST_IDENTITY is not changed; it returns its prior value (if any).

• For an Embedded SQL single-row (non-cursor) SELECT statement, LAST_IDENTITY is not changed. The prior
value (if any) is returned.

At process initiation, LAST_IDENTITY returns NULL. Following a NEW %RowID, LAST_IDENTITY returns NULL.

If no rows were affected by an operation, LAST_IDENTITY is not changed; LAST_IDENTITY returns its prior value
(if any). Following a NEW %RowID, invoking LAST_IDENTITY returns NULL, but invoking %ROWID generates an
<UNDEFINED> error.

For further details on IDENTITY fields, see CREATE TABLE. For further details on %ROWID, see the “Embedded SQL”
chapter of Using InterSystems SQL.

Examples
The following example uses two Embedded SQL programs to return LAST_IDENTITY. The first example creates a new
table Sample.Students, The second example populates this table with data, then performs a cursor-based SELECT on the
data, returning LAST_IDENTITY for each operation.

Please run the two Embedded SQL programs in the order shown. (It is necessary to use two embedded SQL programs here
because embedded SQL cannot compile an INSERT statement unless the referenced table already exists.)

 WRITE !,"Creating table"
 &sql(CREATE TABLE Sample.Students (
 StudentName VARCHAR(30),
 StudentAge INTEGER,
 StudentID IDENTITY))
 IF SQLCODE=0 {
 WRITE !,"Created table, SQLCODE=",SQLCODE }
 ELSEIF SQLCODE=-201 {
 WRITE !,"Table already exists, SQLCODE=",SQLCODE }

 WRITE !,"Populating table"
 NEW %ROWCOUNT,%ROWID
 &sql(INSERT INTO Sample.Students (StudentName,StudentAge)
 SELECT Name,Age FROM Sample.Person WHERE Age <= '21')
 IF SQLCODE=0 {
 WRITE !,%ROWCOUNT," records added, last RowID is ",%ROWID,! }
 ELSE {
 WRITE !,"Insert failed, SQLCODE=",SQLCODE }

532 InterSystems SQL Reference

SQL Functions

 &sql(SELECT LAST_IDENTITY()
 INTO :insertID
 FROM Sample.Students)
 WRITE !,"INSERT Last Identity is: ",insertID,!!
 /* Cursor-based SELECT Query */
 &sql(DECLARE C1 CURSOR FOR
 SELECT StudentName INTO :name FROM Sample.Students
 WHERE StudentAge = '17')
 &sql(OPEN C1)
 QUIT:(SQLCODE'=0)
 &sql(FETCH C1)
 WHILE (SQLCODE = 0) {
 WRITE name," is seventeen",!
 &sql(FETCH C1) }
 &sql(CLOSE C1)
 WRITE !,%ROWCOUNT," records queried, last RowID is ",%ROWID,!
 &sql(SELECT LAST_IDENTITY()
 INTO :qId)
 WRITE !,"SELECT Last Identity is: ",qId,!
 &sql(DROP TABLE Sample.Students)

See Also
• INSERT, UPDATE, DELETE, TRUNCATE TABLE

• DECLARE, OPEN, FETCH, CLOSE

• Embedded SQL in Using InterSystems SQL

InterSystems SQL Reference 533

LAST_IDENTITY

LCASE
A case-transformation function that converts all uppercase letters in a string to lowercase letters.

LCASE(string-expression)
{fn LCASE(string-expression)}

Arguments

The string expression whose characters are to be converted to
lowercase. The expression can be the name of a column, a string
literal, or the result of another scalar function, where the underlying
data type can be represented as any character type (such as CHAR
or VARCHAR).

string-expression

Description
LCASE converts uppercase letters to lowercase for display purposes. It has no effects on non-alphabetic characters. It
leaves unchanged punctuation and leading and trailing blank spaces.

LCASE does not force numerics to be interpreted as a string. InterSystems SQL converts numerics to canonical form,
removing leading and trailing zeros. InterSystems SQL does not convert numeric strings to canonical form.

The LOWER function can also be used convert uppercase letters to lowercase.

LCASE does not affect collation. The %SQLUPPER function is the preferred way in SQL to convert a data value for not
case-sensitive collation. Refer to %SQLUPPER for further information on case transformation for collation.

Examples
The following example returns each person’s name in lowercase letters:

SELECT TOP 10 Name,{fn LCASE(Name)} AS LowName
 FROM Sample.Person

LCASE also works on Unicode (non-ASCII) alphabetic characters, as shown in the following Embedded SQL example,
which converts Greek letters from uppercase to lowercase:

 SET a=$CHAR(920,913,923,913,931,931,913)
 &sql(SELECT LCASE(:a) INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {WRITE !,a,!,b }

See Also
• SQL functions: LOWER, UCASE

• ObjectScript function: $ZCONVERT

534 InterSystems SQL Reference

SQL Functions

LEAST
A function that returns the least value from a list of values.

LEAST(expression,expression[,...])

Arguments

An expression that resolves to a number or a string. The values of
these expressions are compared to each other and the least value
returned. An expression can be a field name, a literal, an arithmetic
expression, a host variable, or an object reference.You can list up
to 140 comma-separated expressions.

expression

Description
LEAST returns the smallest (least) value from a comma-separated list of values. Expressions are evaluated in left-to-right
order. If only one expression is provided, LEAST returns that value. If any expression is NULL, LEAST returns NULL.

If all of the expression values resolve to canonical numbers, they are compared in numeric order. If a quoted string contains
a number in canonical format, it is compared in numeric order. However, if a quoted string contains a number not in
canonical format (for example, '00', '0.4', or '+4'), it is compared as a string. String comparisons are performed character-
by-character in collation order. Any string value is greater than any numeric value.

The empty string is greater than any numeric value, but less than any other string value.

If the returned value is a number, LEAST returns it in canonical format (leading and trailing zeros removed, etc.). If the
returned value is a string, LEAST returns it unchanged, including any leading or trailing blanks.

The inverse function of LEAST is GREATEST.

Data Type of Returned Value

If the data types of the expression values are different, the data type returned is the type most compatible with all of the
possible return values, the data type with the highest data type precedence. For example, if one expression is an integer and
another expression is a fractional number, LEAST returns a value with data type NUMERIC. This is because NUMERIC
is the data type with the highest precedence that is compatible with both. If, however, an expression is a literal number or
string, LEAST returns data type VARCHAR.

Examples
In the following example, each LEAST compares three canonical numbers:

SELECT LEAST(22,2.2,-21) AS HighNum,
 LEAST('2.2','22','-21') AS HighNumStr

In the following example, each LEAST compare three numeric strings. However, each LEAST contains one string that is
non-canonical; these non-canonical values are compared as character strings. A character string is always greater than a
number:

SELECT LEAST('22','+2.2','21'),
 LEAST('0.2','22','21')

In the following example, each LEAST compare three strings and returns the value with the lowest collation sequence:

SELECT LEAST('A','a',''),
 LEAST('a','aa','abc'),
 LEAST('#','0','7'),
 LEAST('##','00','77')

InterSystems SQL Reference 535

LEAST

The following example compares two dates, treated as canonical numbers: the date of birth as a $HOROLOG integer, and
the integer 58074 converted to a date. It returns the date of birth for each person born in the 20th century. Anyone born
after December 31, 1999 is displayed with the default birth date of January 1, 2000:

SELECT Name,LEAST(DOB,TO_DATE(58074)) AS NewMillenium
FROM Sample.Person

See Also
• SQL functions: GREATEST CONVERT TO_NUMBER

536 InterSystems SQL Reference

SQL Functions

LEFT
A scalar string function that returns a specified number of characters from the beginning (leftmost position) of a string
expression.

{fn LEFT(string-expression,count)}

Arguments

A string expression, which can be the name of a column, a string literal,
or the result of another scalar function, where the underlying data type
can be represented as any character type (such as CHAR or
VARCHAR).

string-expression

An integer that specifies the number of characters to return from the
starting position of string-expression.

count

Description
LEFT returns the specified number of characters from the beginning of a string. LEFT does not pad strings; if you specify
a larger number of characters than are in the string, LEFT returns the string. LEFT returns NULL if passed a NULL value
for either argument.

LEFT can only be used as an ODBC scalar function (with the curly brace syntax).

Examples
The following example returns the seven leftmost characters from each name in the Sample.Person table:

SELECT Name,{fn LEFT(Name,7)}AS ShortName
 FROM Sample.Person

The following embedded SQL example shows how LEFT handles a count that is longer than the string itself:

 &sql(SELECT Name,{fn LEFT(Name,40)}
 INTO :a,:b
 FROM Sample.Person)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,a,"=original",!,b,"=LEFT 40" }

No padding is performed.

See Also
LTRIM RIGHT RTRIM

InterSystems SQL Reference 537

LEFT

LEN
A string function that returns the number of characters in a string expression.

LEN(string-expression)

Arguments

A string expression, which can be the name of a column, a string literal,
or the result of another scalar function, where the underlying data type
can be represented as any character type (such as CHAR or VARCHAR).

string-expression

LEN returns the INTEGER data type.

Description

Note: The LEN function is an alias for the LENGTH function. LEN is provided for TSQL compatibility. Refer to
LENGTH for further details.

See Also
• LENGTH

538 InterSystems SQL Reference

SQL Functions

LENGTH
A string function that returns the number of characters in a string expression.

LENGTH(string-expression)

{fn LENGTH(string-expression)}

Arguments

A string expression, which can be the name of a column, a string literal,
or the result of another scalar function, where the underlying data type
can be represented as any character type (such as CHAR or VARCHAR).

string-expression

LENGTH returns the INTEGER data type.

Description
LENGTH returns an integer that denotes the number of characters, not the number of bytes, of the given string expression.
The string-expression can be a string (from which trailing blanks are removed), or a number (which InterSystems IRIS
converts to canonical form).

Note that LENGTH can be used as an ODBC scalar function (with the curly brace syntax) or as an SQL general function.

LENGTH and the other length functions ($LENGTH, CHARACTER_LENGTH, CHAR_LENGTH, and
DATALENGTH) all perform the following operations:

• LENGTH returns the length of the Logical (internal data storage) value of a field, not the display value, regardless of
the SelectMode setting. All SQL functions always use the internal storage value of a field.

• LENGTH returns the length of the canonical form of a number. A number in canonical form excludes leading and
trailing zeros, leading signs (except a single minus sign), and a trailing decimal separator character. LENGTH returns
the string length of a numeric string. A numeric string is not converted to canonical form.

• LENGTH does not exclude leading blanks from strings. You can remove leading blanks from a string using the LTRIM
function.

LENGTH differs from the other length functions ($LENGTH, CHARACTER_LENGTH, CHAR_LENGTH, and
DATALENGTH) when performing the following operations:

• LENGTH excludes trailing blanks and the string-termination character.

$LENGTH, CHARACTER_LENGTH, CHAR_LENGTH, and DATALENGTH do not exclude trailing blanks
and terminators.

• LENGTH returns NULL if passed a NULL value, and 0 if passed an empty string.

CHARACTER_LENGTH, CHAR_LENGTH, and DATALENGTH also return NULL if passed a NULL value,
and 0 if passed an empty string. $LENGTH returns 0 if passed a NULL value, and 0 if passed an empty string.

• LENGTH does not support data stream fields. Specifying a stream field for string-expression results in an SQLCODE
-37.

$LENGTH also does not support stream fields. CHARACTER_LENGTH, CHAR_LENGTH, and DATALENGTH
functions do support data stream fields.

InterSystems SQL Reference 539

LENGTH

Examples
In the following example, InterSystems IRIS first converts each number to canonical form (removing leading and trailing
zeros, resolving leading signs, and removing a trailing decimal separator character). Each LENGTH returns a length of 1:

SELECT {fn LENGTH(7.00)} AS CharCount,
 {fn LENGTH(+007)} AS CharCount,
 {fn LENGTH(007.)} AS CharCount,
 {fn LENGTH(00000.00)} AS CharCount,
 {fn LENGTH(-0)} AS CharCount

In the following example, the first LENGTH removes the leading zero, returning a length value of 2; the second LENGTH
treats the numeric value as a string, and does not remove the leading zero, returning a length value of 3:

SELECT LENGTH(0.7) AS CharCount,
 LENGTH('0.7') AS CharCount

The following example returns the value 12:

SELECT LENGTH('INTERSYSTEMS') AS CharCount

The following example shows how LENGTH handles leading and trailing blanks. The first LENGTH returns 15, because
LENGTH excludes trailing blanks, but not leading blanks. The second LENGTH returns 12, because LTRIM excludes
the leading blanks:

SELECT LENGTH(' INTERSYSTEMS ') AS CharCount,
 LENGTH(LTRIM(' INTERSYSTEMS ')) AS CharCount

The following example returns the number of characters in each Name value in the Sample.Person table:

SELECT Name,{fn LENGTH(Name)} AS CharCount
FROM Sample.Person
ORDER BY CharCount

The following example returns the number of characters in the DOB (date of birth) field. Note that the length returned (by
LENGTH, CHAR_LENGTH, and CHARACTER_LENGTH) is the internal ($HOROLOG) format of the date, not the
display format. The display length of DOB is ten characters; all three length functions return the internal length of 5:

SELECT DOB,{fn LENGTH(DOB)} AS LenCount,
CHAR_LENGTH(DOB) AS CCount,
CHARACTER_LENGTH(DOB) AS CtrCount
FROM Sample.Person

The following Embedded SQL example gives the length of a string of Unicode characters. The length returned is the
number of characters (7), not the number of bytes.

 SET a=$CHAR(920,913,923,913,931,931,913)
 &sql(SELECT LENGTH(:a) INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The Greek Sea: ",a,!,$LENGTH(a),!,b }

See Also
• SQL functions: CHAR_LENGTH, CHARACTER_LENGTH, DATALENGTH, LEN, $LENGTH

• ObjectScript function: $LENGTH

540 InterSystems SQL Reference

SQL Functions

$LENGTH
A string function that returns the number of characters or the number of delimited substrings in a string.

$LENGTH(expression[,delimiter])

Arguments

The target string. It can be a numeric value, a string literal, the name of any variable,
or any valid expression.

expression

Optional — A string that demarcates separate substrings in the target string. It must
be a string literal, but can be of any length.The enclosing quotation marks are required.

delimiter

$LENGTH returns the SMALLINT data type.

Description
$LENGTH returns the number of characters in a specified string or the number of substrings in a specified string,
depending on the arguments used.

• $LENGTH(expression) returns the number of characters in the string. If the expression is an empty string (''), $LENGTH
returns 0. If the expression is NULL, $LENGTH returns 0.

• $LENGTH(expression,delimiter) returns the number of substrings within the string. $LENGTH returns the number
of substrings separated from one another by the indicated delimiter. This number is always equal to the number of
delimiter instances found in the expression string, plus one.

$LENGTH(expression) and other Length Functions

$LENGTH(expression) and the other length functions (LENGTH, CHARACTER_LENGTH, CHAR_LENGTH, and
DATALENGTH) all perform the following operations:

• $LENGTH returns the length of the Logical (internal data storage) value of a field, not the display value, regardless
of the SelectMode setting. All SQL functions always use the internal storage value of a field.

• $LENGTH returns the length of the canonical form of a number. A number in canonical form excludes leading and
trailing zeros, leading signs (except a single minus sign), and a trailing decimal separator character. $LENGTH returns
the string length of a numeric string. A numeric string is not converted to canonical form.

• $LENGTH does not exclude leading blanks from strings. You can remove leading blanks from a string using the
LTRIM function.

$LENGTH differs from the other length functions (LENGTH, CHARACTER_LENGTH, CHAR_LENGTH, and
DATALENGTH) when performing the following operations:

• $LENGTH does not exclude trailing blanks and terminators.

CHARACTER_LENGTH, CHAR_LENGTH, and DATALENGTH also do not exclude trailing blanks and termi-
nators. LENGTH excludes trailing blanks and the string-termination character.

• $LENGTH returns 0 if passed a NULL value, and 0 if passed an empty string.

LENGTH, CHARACTER_LENGTH, CHAR_LENGTH, and DATALENGTH return NULL if passed a NULL
value, and 0 if passed an empty string.

• $LENGTH does not support data stream fields. Specifying a stream field for string-expression results in an SQLCODE
-37.

InterSystems SQL Reference 541

$LENGTH

LENGTH also does not support stream fields. CHARACTER_LENGTH, CHAR_LENGTH, and DATALENGTH
functions do support data stream fields.

• $LENGTH return data type SMALLINT. All the other length functions return data type INTEGER.

NULL and Empty String Arguments

$LENGTH(expression) does not distinguish between the empty string ('') and NULL (the absence of a value). It returns a
length of 0 for both an empty string ('') value and for NULL.

$LENGTH(expression,delimiter) with a non-null delimiter returns a delimited substring count of 1 if no match occurred.
The full string is a single substring containing no delimiters. This is true even when expression is the empty string (''), or
expression is NULL. However, an empty string does match itself, returning a value of 2.

The following table shows the possible combinations of a string ('abc'), empty string (''), or NULL expression value paired
with a non-matching string ('^'), empty string (''), or NULL delimiter value:

$LENGTH('abc') = 3$LENGTH('') = 0$LENGTH(NULL) = 0

$LENGTH(’abc‘,NULL) = 0$LENGTH('',NULL) = 0$LENGTH(NULL,NULL) = 0

$LENGTH(’abc‘,'') = 1$LENGTH('','') = 2$LENGTH(NULL,'') = 1

$LENGTH('abc','^') = 1$LENGTH(’‘,'^') = 1$LENGTH(NULL,'^') = 1

Examples
The following example returns 6, the length of the string:

SELECT $LENGTH('ABCDEG') AS StringLength

The following example returns 3, the number of substrings within the string, as delimited by the dollar sign ($) character.

SELECT $LENGTH('ABC$DEF$EFG','$') AS SubStrings

If the specified delimiter is not found in the string $LENGTH returns 1, because the only substring is the string itself:

SELECT $LENGTH('ABCDEG','$') AS SubStrings

In the following embedded SQL example, the first $LENGTH function returns 11, the number of characters in a (including,
of course, the space character). The second $LENGTH function returns 2, the number of substrings in a using b, the space
character, as the substring delimiter.

 SET a="HELLO WORLD"
 SET b=" "
 &sql(SELECT
 $LENGTH(:a),
 $LENGTH(:a,:b)
 INTO :a1,:a2)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The input string: ",a
 WRITE !,"Number of characters: ",a1
 WRITE !,"Number of substrings: ",a2 }

The following example returns 0 because the string tested is the null string:

SELECT $LENGTH(NULL) AS StringLength

The following example returns 1 because a delimiter is specified and not found. There is one substring, which is the null
string:

SELECT $LENGTH(NULL,'$') AS SubStrings

542 InterSystems SQL Reference

SQL Functions

The following example returns 0 because the delimiter is the null string:

SELECT $LENGTH('ABCDEFG',NULL) AS SubStrings

Notes

$LENGTH, $PIECE, and $LIST

• $LENGTH with one argument returns the number of characters in a string. This function can be used with the
$EXTRACT function, which locates a substring by position and returns the substring value.

• $LENGTH with two arguments returns the number of substrings in a string, based on a delimiter. This function can
be used with the $PIECE function, which locates a substring by a delimiter and returns the substring value.

• $LENGTH should not be used on encoded lists created using $LISTBUILD or $LIST. Use $LISTLENGTH to
determine the number of substrings (list elements) in an encoded list string.

The $LENGTH, $FIND, $EXTRACT, and $PIECE functions operate on standard character strings. The various $LIST
functions operate on encoded character strings, which are incompatible with standard character strings. The only exceptions
are the $LISTGET function and the one-argument and two-argument forms of $LIST, which take an encoded character
string as input, but output a single element value as a standard character string.

See Also
• SQL functions: CHAR_LENGTH, CHARACTER_LENGTH, DATALENGTH, $EXTRACT, $FIND, LENGTH,

$LIST, $LISTGET, $PIECE

• ObjectScript functions: $EXTRACT, $FIND, $LENGTH, $LIST, $LISTBUILD, $LISTGET, $PIECE

InterSystems SQL Reference 543

$LENGTH

$LIST
A list function that returns elements in a list.

$LIST(list[,position[,end]])

Arguments

An expression that evaluates to a valid list. A list is an encoded character string containing
one or more elements.You can create a list using the SQL or ObjectScript $LISTBUILD
or $LISTFROMSTRING functions.You can extract a list from an existing list using the SQL
or ObjectScript $LIST function.

list

Optional — The starting position in the specified list. An expression that evaluates to an
integer.

position

Optional — The ending position in the specified list. An expression that evaluates to an
integer.

end

Description
$LIST returns elements from a list. The elements returned depend on the arguments used.

• $LIST(list) returns the first element in the list as a text string.

• $LIST(list,position) returns the element indicated by the specified position as a text string. The position argument
must evaluate to an integer.

• $LIST(list,position,end) returns a “sublist” (an encoded list string) containing the elements of the list from the specified
start position through the specified end position.

This function returns data of type VARCHAR.

Arguments

list

An encoded character string containing one or more elements. You can create a list using the SQL $LISTBUILD function
or the ObjectScript $LISTBUILD function. You can convert a delimited string into a list using the SQL $LISTFROMSTRING
function or the ObjectScript $LISTFROMSTRING function. You can extract a list from an existing list using the SQL
$LIST function or the ObjectScript $LIST function.

A list can be supplied to the SQL $LIST function by using a host variable, or by specifying a $LISTBUILD within SQL.
Both are shown in the following Embedded SQL example:

 SET mylist=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LIST(:mylist,2),$LIST($LISTBUILD('Red','Blue','Green'),3)
 INTO :a,:b)
 IF SQLCODE'=0 {
 WRITE "Error code ",SQLCODE,! }
 ELSE {
 WRITE !,"The host varable list element is ",a,!
 WRITE !,"The SQL $LISTBUILD list element is ",b,! }

A list can be extracted from another list by using the $LIST function:

544 InterSystems SQL Reference

SQL Functions

 SET a=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LIST(:a,2,3)
 INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 &sql(SELECT $LIST(:b,1)
 INTO :c)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The element returned is ",c }
 }

In the following Embedded SQL example, subList is not a valid list argument, because it is a single element returned as an
ordinary string, not an encoded list string. Only the three-argument form of $LIST returns an encoded list string. In this
case, an SQLCODE -400 fatal error is generated:

 SET a=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LIST(:a,2)
 INTO :sublist)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 &sql(SELECT $LIST(:sublist,1)
 INTO :c)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The sublist is"
 ZZDUMP c ; Variable not set
 }
 }

position

The position of a list element to return. List elements are counted from 1. If position is omitted, the first element is returned.
If the value of position is 0 or greater than the number of elements in the list, InterSystems SQL does not return a value. If
the value of position is negative one (–1), $LIST returns the final element in the list.

 SET a=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LIST(:a,-1)
 INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The last element is ",b }

If the end argument is specified, position specifies the first element in a range of elements. Even when only one element
is returned (when position and end are the same number) this element is returned as an encoded list string. Thus, $LIST(x,2)
(which returns the element as an ordinary string) is not identical to $LIST(x,2,2) (which returns the element as an
encoded list string).

end

The position of the last element in a range of elements. You must specify position to specify end. When end is specified,
the value returned is an encoded list string. Because of this encoding, such strings should only be processed by other $LIST
functions.

If the value of end is:

• greater than position, an encoded string containing a list of elements is returned.

• equal to position, an encoded string containing the one element is returned.

• less than position, no value is returned.

• greater than the number of elements in list, it is equivalent to specifying the final element in the list.

• negative one (–1), it is equivalent to specifying the final element in the list.

InterSystems SQL Reference 545

$LIST

When specifying end, you can specify a position value of zero (0). In this case, 0 is equivalent to 1.

Examples
In the following Embedded SQL example, the two WRITE statements both return “Red”, the first element in the list. The
first writes the first element by default, the second writes the first element because the position argument is set to 1:

 SET a=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LIST(:a),$LIST(:a,1)
 INTO :b,:c)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The one-arg sublist is ",b
 WRITE !,"The two-arg sublist is ",c }

The following Embedded SQL example returns “Blue”, the second element in the list:

 SET a=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LIST(:a,2)
 INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The second element is ",b }

The following Embedded SQL example returns “Red Blue”, a two-element list string beginning with the first element and
ending with the second element in the list. ZZDUMP is used rather than WRITE, because a list string contains special
(non-printing) encoding characters:

 SET a=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LIST(:a,1,2)
 INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The encoded sublist is"
 ZZDUMP b ; Prints "Red Blue "
 }

The following Embedded SQL example returns the last element in a list of unknown length. Here, the last element is
returned first as an ordinary string, then as an encoded list string:

 SET a=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LISTLENGTH(:a),$LIST(:a,-1)
 INTO :b,:plain)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 &sql(SELECT $LIST(:a,:b,-1)
 INTO :encoded)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The final element as a string: ",plain
 WRITE !,"The final element as an encoded string: "
 ZZDUMP encoded }
 }

Notes

Invalid Argument Values

If the expression in the list argument does not evaluate to a valid list, an SQLCODE -400 fatal error is generated:

546 InterSystems SQL Reference

SQL Functions

 SET a="the quick brown fox"
 &sql(SELECT $LIST(:a,1)
 INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The sublist is"
 ZZDUMP b ; Variable not set
 }

If the value of the position argument or the end argument is less than -1, an SQLCODE -400 fatal error is generated:

 SET a=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LIST(:a,-2,3)
 INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The sublist is"
 ZZDUMP b ; Variable not set
 }

If the value of the position argument refers to a nonexistent list member and no end argument is used, an SQLCODE -400
fatal error is generated:

 SET a=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LIST(:a,7)
 INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The sublist is"
 ZZDUMP b ; Variable not set
 }

However, if an end argument is used, no error occurs, and the null string is returned.

 SET a=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LIST(:a,7,-1)
 INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"Error code ",SQLCODE
 WRITE !,"The sublist is"
 ZZDUMP b ; Prints a null string
 }

If the value of the position argument identifies an element with an undefined value, an SQLCODE –400 fatal error is gen-
erated:

 SET a=$LISTBUILD("Red",,"Green")
 &sql(SELECT $LIST(:a,2)
 INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The sublist is"
 ZZDUMP b ; Variable not set
 }

Two-Argument and Three-Argument $LIST

$LIST(list,1) is not equivalent to $LIST(list,1,1) because the former returns a string, while the latter returns a single-element
list string. If there are no elements to return, the two-argument form does not return a value; the three-argument form returns
a null string.

Unicode

If one Unicode character appears in a list element, that entire list element is represented as Unicode (wide) characters. Other
elements in the list are not affected.

InterSystems SQL Reference 547

$LIST

The following Embedded SQL example shows two lists. The a list consists of two elements which contain only ASCII
characters. The b list consists of two elements: the first element contains a Unicode character ($CHAR(960) = the pi
symbol); the second element contains only ASCII characters.

 SET a=$LISTBUILD("ABC"_$CHAR(68),"XYZ")
 SET b=$LISTBUILD("ABC"_$CHAR(960),"XYZ")
 &sql(SELECT $LIST(:a,1),$LIST(:a,2),$LIST(:b,1),$LIST(:b,2)
 INTO :a1,:a2,:b1,:b2)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The ASCII list a elements: "
 ZZDUMP a1
 ZZDUMP a2
 WRITE !,"The Unicode list b elements: "
 ZZDUMP b1
 ZZDUMP b2 }

Note that InterSystems IRIS encodes the first element of b entirely in wide Unicode characters. The second element of b
contains no Unicode characters, and thus InterSystems IRIS encodes it using narrow ASCII characters.

See Also
• SQL functions: $LISTBUILD, $LISTDATA, $LISTFIND, $LISTFROMSTRING, $LISTGET, $LISTLENGTH,

$LISTSAME, $LISTTOSTRING, $PIECE

• ObjectScript functions: $LIST, $LISTBUILD, $LISTDATA, $LISTFIND, $LISTFROMSTRING, $LISTGET,
$LISTLENGTH, $LISTNEXT, $LISTSAME, $LISTTOSTRING, $LISTVALID

548 InterSystems SQL Reference

SQL Functions

$LISTBUILD
A list function that builds a list from strings.

$LISTBUILD(element,...)

Argument

Any expression, or comma-separated list of expressions.element

Description
$LISTBUILD takes one or more expressions and returns a list with one element for each expression.

The following functions can be used to create a list:

• $LISTBUILD, which creates a list from multiple strings, one string per element.

• $LISTFROMSTRING, which creates a list from a single string containing multiple delimited elements.

• $LIST, which extracts a sublist from an existing list.

$LISTBUILD is used with the other InterSystems SQL list functions: $LIST, $LISTDATA, $LISTFIND,
$LISTFROMSTRING, $LISTGET, $LISTLENGTH, and $LISTTOSTRING.

Note: $LISTBUILD and the other $LIST functions use an optimized binary representation to store data elements. For
this reason, equivalency tests may not work as expected with some $LIST data. Data that might, in other contexts,
be considered equivalent, may have a different internal representation. For example, $LISTBUILD(1) is not
equal to $LISTBUILD('1').

For the same reason, a list string value returned by $LISTBUILD should not be used in character search and
parse functions that use a delimiter character, such as $PIECE and the two-argument form of $LENGTH. Elements
in a list created by $LISTBUILD are not marked by a character delimiter, and thus can contain any character.

Examples
The following Embedded SQL example takes three strings and produces a three-element list:

 SET x="Red"
 SET y="White"
 SET z="Blue"
 &sql(SELECT $LISTBUILD(:x,:y,:z)
 INTO :listout)
 IF SQLCODE=0 {WRITE listout," length ",$LISTLENGTH(listout)}
 ELSE {WRITE "Error code:",SQLCODE}

Notes

Omitting Arguments

Omitting an element expression yields an element whose value is NULL. For example, the following Embedded SQL
contains two $LISTBUILD statements that both produce a three-element list whose second element has an undefined
(NULL) value:

InterSystems SQL Reference 549

$LISTBUILD

 SET x="Red"
 SET y="White"
 SET z="Blue"
 &sql(SELECT $LISTBUILD(:x,,:z),
 $LISTBUILD(:x,'',:z)
 INTO :list1,list2)
 IF SQLCODE=0 {WRITE list1," length ",$LISTLENGTH(list1),!
 WRITE list2," length ",$LISTLENGTH(list2)}
 ELSE {WRITE "Error code:",SQLCODE}

Additionally, if a $LISTBUILD expression is undefined, the corresponding list element has an undefined value. The fol-
lowing Embedded SQL example produces a two-element list whose first element is "Red" and whose second element has
an undefined value:

 &sql(SELECT $LISTBUILD('Red',:z)
 INTO :list1)
 IF SQLCODE=0 {WRITE list1," length ",$LISTLENGTH(list1)}
 ELSE {WRITE "Error code:",SQLCODE}

The following Embedded SQL example produces a two-element list. The trailing comma indicates the second element has
an undefined value:

 &sql(SELECT $LISTBUILD('Red',)
 INTO :list1)
 IF SQLCODE=0 {WRITE list1," length ",$LISTLENGTH(list1)}
 ELSE {WRITE "Error code:",SQLCODE}

Providing No Arguments

Invoking the $LISTBUILD function with no arguments returns a list with one element whose data value is undefined. This
is not the same as NULL. The following are valid $LISTBUILD statements that create “empty” lists:

 &sql(SELECT $LISTBUILD(),
 $LISTBUILD(NULL)
 INTO :list1,:list2)
 IF SQLCODE=0 {
 ZZDUMP list1
 WRITE !,"length ",$LISTLENGTH(list1),!
 ZZDUMP list2
 WRITE !,"length ",$LISTLENGTH(list2),!
 }
 ELSE {WRITE "Error code:",SQLCODE}

The following are valid $LISTBUILD statements that create a list element that contains an empty string:

 &sql(SELECT $LISTBUILD(''),
 $LISTBUILD(CHAR(0))
 INTO :list1,:list2)
 IF SQLCODE=0 {
 ZZDUMP list1
 WRITE !,"length ",$LISTLENGTH(list1),!
 ZZDUMP list2
 WRITE !,"length ",$LISTLENGTH(list2),!
 }
 ELSE {WRITE "Error code:",SQLCODE}

Nesting Lists

An element of a list may itself be a list. For example, the following statement produces a three-element list whose third
element is the two-element list, "Walnut,Pecan":

SELECT $LISTBUILD('Apple','Pear',$LISTBUILD('Walnut','Pecan'))

Concatenating Lists

The result of concatenating two lists with the SQL Concatenate operator (||) is another list. For example, the following
SELECT items produce the same list, "A,B,C":

SELECT $LISTBUILD('A','B','C') AS List,
 $LISTBUILD('A','B')||$LISTBUILD('C') AS CatList

550 InterSystems SQL Reference

SQL Functions

In the following example, the first two select items result in the same two-element list; the third select item results in NULL
(because concatenating NULL to anything results in NULL); the fourth and fifth select items result in the same three-element
list:

SELECT
 $LISTBUILD('A','B') AS List,
 $LISTBUILD('A','B')||'' AS CatEStr,
 $LISTBUILD('A','B')||NULL AS CatNull,
 $LISTBUILD('A','B')||$LISTBUILD('') AS CatEList,
 $LISTBUILD('A','B')||$LISTBUILD(NULL) AS CatNList

Unicode

If one or more characters in a list element is a wide (Unicode) character, all characters in that element are represented as
wide characters. To ensure compatibility across systems, $LISTBUILD always stores these bytes in the same order,
regardless of the hardware platform. Wide characters are represented as byte strings. For further details, refer to the
ObjectScript $LISTBUILD function in the ObjectScript Reference.

See Also
• SQL functions: $LIST, $LISTDATA, $LISTFIND, $LISTFROMSTRING, $LISTGET, $LISTLENGTH, $LISTSAME,

$LISTTOSTRING, $PIECE

• ObjectScript functions: $LIST, $LISTBUILD, $LISTDATA, $LISTFIND, $LISTFROMSTRING, $LISTGET,
$LISTLENGTH, $LISTNEXT, $LISTSAME, $LISTTOSTRING, $LISTVALID

InterSystems SQL Reference 551

$LISTBUILD

$LISTDATA
A list function that indicates whether the specified element exists and has a data value.

$LISTDATA(list[,position])

Arguments

An expression that evaluates to a valid list. A list is an encoded character string containing
one or more elements.You can create a list using the SQL or ObjectScript $LISTBUILD
or $LISTFROMSTRING functions.You can extract a list from an existing list using the
SQL or ObjectScript $LIST function.

list

Optional — An integer expression specifying an element in list.position

Description
$LISTDATA checks for data in the requested element in a list. $LISTDATA returns a value of 1 if the element indicated
by the position argument is in the list and has a data value. $LISTDATA returns a value of a 0 if the element is not in the
list or does not have a data value.

This function returns data of type SMALLINT.

Arguments

list

An encoded character string containing one or more elements. You can create a list using the SQL $LISTBUILD function
or the ObjectScript $LISTBUILD function. You can convert a delimited string into a list using the SQL $LISTFROMSTRING
function or the ObjectScript $LISTFROMSTRING function. You can extract a list from an existing list using the SQL
$LIST function or the ObjectScript $LIST function.

position

If you omit the position argument, $LISTDATA evaluates the first element. If the value of the position argument is -1, it
is equivalent to specifying the final element of the list. If the value of the position argument refers to a nonexistent list
member, $LISTDATA returns 0.

Examples
The following Embedded SQL examples show the results of the various values of the position argument.

All of the following $LISTDATA statements return a value of 1:

 KILL Y
 SET a=$LISTBUILD("Red",,Y,"","Green")
 &sql(SELECT $LISTDATA(:a), $LISTDATA(:a,1),
 $LISTDATA(:a,4), $LISTDATA(:a,5), $LISTDATA(:a,-1)
 INTO :b,:c, :d, :e, :f)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"1st element status ",b ; 1st element default
 WRITE !,"1st element status ",c ; 1st element specified
 WRITE !,"4th element status ",d ; 4th element null string
 WRITE !,"5th element status ",e ; 5th element in 5-element list
 WRITE !,"last element status ",f ; last element in 5-element list
 }

The following $LISTDATA statements return a value of 0 for the same five-element list:

552 InterSystems SQL Reference

SQL Functions

 KILL Y
 SET a=$LISTBUILD("Red",,Y,"","Green")
 &sql(SELECT $LISTDATA(:a,2), $LISTDATA(:a,3),
 $LISTDATA(:a,0), $LISTDATA(:a,6)
 INTO :b,:c, :d, :e)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"2nd element status ",b ; 2nd element is undefined
 WRITE !,"3rd element status ",c ; 3rd element is killed variable
 WRITE !,"0th element status ",d ; zero position nonexistent
 WRITE !,"6th element status ",e ; 6th element in 5-element list
 }

Notes

Invalid Argument Values

If the expression in the list argument does not evaluate to a valid list, an SQLCODE -400 fatal error occurs:

 &sql(SELECT $LISTDATA('fred') INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The the element is ",b }

If the value of the position argument is less than -1, an SQLCODE -400 fatal error occurs:

 SET a=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LISTDATA(:a,-3) INTO :c)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"A neg-num position status ",c }

This does not occur when position is a nonnumeric value:

 SET a=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LISTDATA(:a,'g') INTO :c)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"Error code ",SQLCODE
 WRITE !,"A nonnumeric position status ",c }

See Also
• SQL functions: $LIST, $LISTBUILD, $LISTFIND, $LISTFROMSTRING, $LISTGET, $LISTLENGTH, $LISTSAME,

$LISTTOSTRING, $PIECE

• ObjectScript functions: $LIST, $LISTBUILD, $LISTDATA, $LISTFIND, $LISTFROMSTRING, $LISTGET,
$LISTLENGTH, $LISTNEXT, $LISTSAME, $LISTTOSTRING, $LISTVALID

InterSystems SQL Reference 553

$LISTDATA

$LISTFIND
A list function that searches a specified list for the requested value.

$LISTFIND(list,value[,startafter])

Arguments

An expression that evaluates to a valid list. A list is an encoded character string
containing one or more elements.You can create a list using the SQL or ObjectScript
$LISTBUILD or $LISTFROMSTRING functions.You can extract a list from an existing
list using the SQL or ObjectScript $LIST function.

list

An expression containing the search element. A character string.value

Optional — An integer expression interpreted as a list position.The search starts with
the element after this position. Zero and –1 are valid values; –1 never returns an
element. Zero is the default.

startafter

Description
$LISTFIND searches the specified list for the first instance of the requested value. The search begins with the element
after the position indicated by the startafter argument. If you omit the startafter argument, $LISTFIND assumes a startafter
value of 0 and starts the search with the first element (element 1). If the value is found, $LISTFIND returns the position
of the matching element. If the value is not found, $LISTFIND returns a 0. The $LISTFIND function will also return a 0
if the value of the startafter argument refers to a nonexistent list member.

This function returns data of type SMALLINT.

Examples
The following Embedded SQL example returns 2, the position of the first occurrence of the requested string:

 SET a=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LISTFIND(:a,'Blue') INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The position is ",b }

The following Embedded SQL example returns 0, indicating the requested string was not found:

 SET a=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LISTFIND(:a,'Orange') INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The position is ",b }

The following three Embedded SQL examples show the effect of using the startafter argument. The first example does not
find the requested string and returns 0 because the requested string occurs at the startafter position:

 SET a=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LISTFIND(:a,'Blue',2) INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The position is ",b }

The second example finds the requested string at the first position by setting startafter to zero (the default value):

554 InterSystems SQL Reference

SQL Functions

 SET a=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LISTFIND(:a,'Red',0) INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The position is ",b }

The third example finds the second occurrence of the requested string and returns 5, because the first occurs before the
startafter position:

 SET a=$LISTBUILD("Red","Blue","Green","Yellow","Blue")
 &sql(SELECT $LISTFIND(:a,'Blue',3) INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The position is ",b }

The $LISTFIND function only matches complete elements. Thus, the following example returns 0 because no element of
the list is equal to the string “B”, though all of the elements contain “B”:

 SET a=$LISTBUILD("ABC","BCD","BBB")
 &sql(SELECT $LISTFIND(:a,'B') INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The position is ",b }

Notes

Invalid Argument Values

If the expression in the list argument does not evaluate to a valid list, the $LISTFIND function generates an SQLCODE -
400 fatal error.

 SET a="Blue"
 &sql(SELECT $LISTFIND(:a,'Blue') INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The position is ",b }

If the value of the startafter argument is -1, $LISTFIND always returns zero (0).

 SET a=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LISTFIND(:a,'Blue',-1) INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The position is ",b }

If the value of the startafter argument is less than -1, invoking the $LISTFIND function generates an SQLCODE -400
fatal error.

 SET a=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LISTFIND(:a,'Blue',-3) INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The position is ",b }

See Also
• SQL functions: $LIST, $LISTBUILD, $LISTDATA, $LISTFROMSTRING, $LISTGET, $LISTLENGTH, $LISTSAME,

$LISTTOSTRING, $PIECE

• ObjectScript functions: $LIST, $LISTBUILD, $LISTDATA, $LISTFIND, $LISTFROMSTRING, $LISTGET,
$LISTLENGTH, $LISTNEXT, $LISTSAME, $LISTTOSTRING, $LISTVALID

InterSystems SQL Reference 555

$LISTFIND

$LISTFROMSTRING
A list function that creates a list from a string.

$LISTFROMSTRING(string[,delimiter])

Arguments

A string to be converted into an InterSystems IRIS list. This string contains one or more
elements, separated by a delimiter. The delimiter does not become part of the resulting
InterSystems IRIS list.

string

Optional — The delimiter used to separate substrings (elements) in string. Specify delimiter
as a quoted string. If no delimiter is specified, the default is the comma (,) character.

delimiter

Description
$LISTFROMSTRING takes a quoted string containing delimited elements and returns a list. A list represents data in an
encoded format which does not use delimiter characters. Thus a list can contain all possible characters, and is ideally suited
for bitstring data. Lists are handled using the ObjectScript and InterSystems SQL $LIST functions.

Arguments

string

A string literal (enclosed in single quotation marks), a numeric, or a variable or expression that evaluates to a string. This
string can contain one or more substrings (elements), separated by a delimiter. The string data elements must not contain
the delimiter character (or string), because the delimiter character is not included in the output list.

delimiter

A character (or string of characters) used to delimit substrings within the input string. It can be a numeric or string literal
(enclosed in single quotation marks), the name of a variable, or an expression that evaluates to a string.

Commonly, a delimiter is a designated character which is never used within string data, but is set aside solely for use as a
delimiter separating substrings. A delimiter can also be a multi-character string, the individual characters of which can be
used within string data. If you specify no delimiter, the default delimiter is the comma (,) character.

Examples
The following Embedded SQL example takes a string of names which are separated by a blank space, and creates a list:

 SET names="Deborah Noah Martha Bowie"
 &sql(SELECT $LISTFROMSTRING(:names,' ')
 INTO :namelist)
 IF SQLCODE=0 {
 FOR n=1:1:$LISTLENGTH(namelist) {WRITE !,"element ",n,": ",$LIST(namelist,n)}
 }
 ELSE {WRITE !,"Error code;",SQLCODE }

The following Embedded SQL example uses the default delimiter (the comma character), and creates a list:

 SET names="Deborah,Noah,Martha,Bowie"
 &sql(SELECT $LISTFROMSTRING(:names)
 INTO :namelist)
 IF SQLCODE=0 {
 FOR n=1:1:$LISTLENGTH(namelist) {WRITE !,"element ",n,": ",$LIST(namelist,n)}
 }
 ELSE {WRITE !,"Error code;",SQLCODE }

556 InterSystems SQL Reference

SQL Functions

See Also
• SQL functions: $LIST $LISTBUILD $LISTDATA $LISTFIND $LISTGET $LISTLENGTH $LISTSAME $LIST-

TOSTRING $PIECE

• ObjectScript functions: $LIST $LISTBUILD $LISTDATA $LISTFIND $LISTFROMSTRING $LISTGET
$LISTLENGTH $LISTNEXT $LISTSAME $LISTTOSTRING $LISTVALID

InterSystems SQL Reference 557

$LISTFROMSTRING

$LISTGET
A list function that returns an element in a list or a specified default value.

$LISTGET(list[,position[,default]])

Arguments

An expression that evaluates to a valid list. A list is an encoded character string containing
one or more elements.You can create a list using the SQL or ObjectScript $LISTBUILD
or $LISTFROMSTRING functions.You can extract a list from an existing list using the
SQL or ObjectScript $LIST function.

list

Optional — An expression interpreted as a position in the specified list.position

Optional — An expression that provides the value to return if the list element has an
undefined value.

default

Description
$LISTGET returns the requested element in the specified list as a standard character string. If the value of the position
argument refers to a nonexistent member or identifies an element with an undefined value, the specified default value is
returned.

The $LISTGET function is identical to the one- and two-argument forms of the $LIST function except that, under conditions
that would cause $LIST to return a null string, $LISTGET returns a default value.

This function returns data of type VARCHAR.

You can use $LISTGET to retrieve a field value from a serial container field. In the following example, Home is a serial
container field, the third element of which is Home_State:

SELECT Name,$LISTGET(Home,3) AS HomeState
FROM Sample.Person

Arguments

list

An encoded character string containing one or more elements. You can create a list using the SQL $LISTBUILD function
or the ObjectScript $LISTBUILD function. You can convert a delimited string into a list using the SQL $LISTFROMSTRING
function or the ObjectScript $LISTFROMSTRING function. You can extract a list from an existing list using the SQL
$LIST function or the ObjectScript $LIST function.

position

The position argument must evaluate to an integer. If it is omitted, by default, the function examines the first element of
the list. If the value of the position argument is -1, it is equivalent to specifying the last element of the list.

default

A character string. If you omit the default argument, a zero-length string is assumed for the default value.

Examples
The $LISTGET functions in the following Embedded SQL example both return “Red”, the first element in the list:

558 InterSystems SQL Reference

SQL Functions

 SET a=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LISTGET(:a),$LISTGET(:a,1)
 INTO :b,:c)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The one-arg element returned is ",b
 WRITE !,"The two-arg element returned is ",c }

The $LISTGET functions in the following Embedded SQL example both return “Green”, the third and last element in the
list:

 SET a=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LISTGET(:a,3),$LISTGET(:a,-1)
 INTO :b,:c)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The third element is ",b
 WRITE !,"The last element is ",c }

The $LISTGET functions in the following Embedded SQL example both return a value upon encountering the undefined
2nd element in the list. The first returns a question mark (?), which the user defined as the default value. The second returns
a null string because a default value is not specified:

 SET a=$LISTBUILD("Red",,"Green")
 &sql(SELECT $LISTGET(:a,2,'?'),$LISTGET(:a,2)
 INTO :b,:c)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The default value is ",b
 WRITE !,"The no-default value is ",c }

The $LISTGET functions in the following Embedded SQL example both specify a position greater than the last element
in the three-element list. The first returns a null string because the default value is not specified. The second returns the
user-specified default value, “ERR”:

 SET a=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LISTGET(:a,4),$LISTGET(:a,4,'ERR')
 INTO :b,:c)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The no-default 4th element is ",b
 WRITE !,"The default for 4th element is ",c }

The $LISTGET functions in the following Embedded SQL example both return a null string:

 SET a=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LISTGET(:a,0),$LISTGET(NULL)
 INTO :b,:c)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The zero element is ",b
 WRITE !,"The NULL element is ",c }

Notes

Invalid Argument Values

If the expression in the list argument does not evaluate to a valid list, an SQLCODE -400 fatal error occurs because the
$LISTGET return variable remains undefined. This occurs even when a default value is supplied, as in the following
Embedded SQL example:

 &sql(SELECT $LISTGET('fred',1,'failsafe') INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The non-list element is ",b ; Variable not set
 }

InterSystems SQL Reference 559

$LISTGET

If the value of the position argument is less than -1, an SQLCODE -400 fatal error occurs because the $LISTGET return
variable remains undefined. This occurs even when a default value is supplied, as in the following Embedded SQL example:

 SET a=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LISTGET(:a,-3,'failsafe') INTO :c)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"A neg-num position returns ",c ; Variable not set
 }

This does not occur when position is a nonnumeric value:

 SET a=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LISTGET(:a,'g','failsafe') INTO :c)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"A nonnumeric position returns ",c }

See Also
• SQL functions: $LIST $LISTBUILD $LISTDATA $LISTFIND $LISTFROMSTRING $LISTLENGTH $LISTSAME

$LISTTOSTRING $PIECE

• ObjectScript functions: $LIST $LISTBUILD $LISTDATA $LISTFIND $LISTFROMSTRING $LISTGET
$LISTLENGTH $LISTNEXT $LISTSAME $LISTTOSTRING $LISTVALID

560 InterSystems SQL Reference

SQL Functions

$LISTLENGTH
A list function that returns the number of elements in a specified list.

$LISTLENGTH(list)

Argument

An expression that evaluates to a valid list. A list is an encoded character string containing one
or more elements.You can create a list using the SQL or ObjectScript $LISTBUILD or
$LISTFROMSTRING functions.You can extract a list from an existing list using the SQL or
ObjectScript $LIST function.

list

Description
$LISTLENGTH returns the number of elements in list.

This function returns data of type SMALLINT.

Examples
The following Embedded SQL example returns 3, because there are 3 elements in the list:

 SET a=$LISTBUILD("Red","Blue","Green")
 &sql(SELECT $LISTLENGTH(:a) INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The number of elements is ",b }

The following SQL example also returns 3, because there are 3 elements in the list:

SELECT $LISTLENGTH($LISTBUILD('Red','Blue','Green'))

The following Embedded SQL example also returns 3. There are 3 elements in the list, though the second element contains
no data:

 SET a=$LISTBUILD("Red",,"Green")
 &sql(SELECT $LISTLENGTH(:a) INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The number of elements is ",b }

In the following SQL example, each $LISTLENGTH returns 3, because there are 3 elements in the list, though the second
element contains no data:

SELECT $LISTLENGTH($LISTBUILD('Red','','Green')),
 $LISTLENGTH($LISTBUILD('Red',NULL,'Green')),
 $LISTLENGTH($LISTBUILD('Red',,'Green'))

Notes

Invalid Lists

If list is not a valid list, an SQLCODE -400 fatal error is generated:

 SET a="fred"
 &sql(SELECT $LISTLENGTH(:a) INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The number of elements is ",b ; Variable not set
 }

InterSystems SQL Reference 561

$LISTLENGTH

If the ObjectScript $LISTBUILD function is used to build a list that contains only the null string, this is a valid list, con-
taining one element:

 SET a=$LISTBUILD("")
 &sql(SELECT $LISTLENGTH(:a) INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The number of elements is ",b }

Null Lists

The SQL $LISTLENGTH function and the ObjectScript $LISTLENGTH function differ in how they handle a null list
(a list containing no elements).

The following three Embedded SQL examples show how the $LISTLENGTH SQL function handles a null list. In the
first two examples, list is the null string, and a null string is returned:

 SET a=""
 &sql(SELECT $LISTLENGTH(:a)
 INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The number of elements is ",b }

 &sql(SELECT $LISTLENGTH(NULL)
 INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The number of elements is ",b }

In the third example, list is the value $CHAR(0), which is an invalid list; an SQLCODE -400 fatal error is generated:

 &sql(SELECT $LISTLENGTH('')
 INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The number of elements is ",b }

Note that this differs from how the ObjectScript $LISTLENGTH function handles a null list. In ObjectScript, the null
string ("") is used to represent a null list, a list containing no elements. Because it contains no list elements, it has a
$LISTLENGTH count of 0, as shown in the following example:

 WRITE $LISTLENGTH("")

$LISTLENGTH and Nested Lists

The following Embedded SQL example returns 3, because $LISTLENGTH does not recognize the individual elements
in nested lists:

 SET a=$LISTBUILD("Apple","Pear",$LISTBUILD("Walnut","Pecan"))
 &sql(SELECT $LISTLENGTH(:a)
 INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"The number of elements is ",b }

See Also
• SQL list functions: $LIST, $LISTBUILD, $LISTDATA, $LISTFIND, $LISTFROMSTRING, $LISTGET, $LISTSAME,

$LISTTOSTRING

• Other SQL functions: $PIECE

562 InterSystems SQL Reference

SQL Functions

• ObjectScript list functions: $LIST, $LISTBUILD, $LISTDATA, $LISTFIND, $LISTFROMSTRING, $LISTGET,
$LISTLENGTH, $LISTNEXT, $LISTSAME, $LISTTOSTRING, $LISTVALID

InterSystems SQL Reference 563

$LISTLENGTH

$LISTSAME
A list function that compares two lists and returns a boolean value.

$LISTSAME(list1,list2)

Arguments

An expression that evaluates to a valid list.list1

An expression that evaluates to a valid list.list2

Description
$LISTSAME compares the contents of two lists and returns 1 if the lists are the same. If the lists are not the same,
$LISTSAME returns 0. $LISTSAME compares the two lists element-by-element. For two lists to be the same, they must
contain the same number of elements and each element in list1 must match the corresponding element in list2.

$LISTSAME compares list elements using their string representations. $LISTSAME comparisons are case-sensitive.
$LISTSAME compares the two lists element-by-element in left-to-right order. Therefore $LISTSAME returns a value of
0 when it encounters the first non-matching pair of list elements; it does not check subsequent items to determine if they
are valid list elements.

This function returns data of type SMALLINT.

Arguments

list (list1 and list2)

A list is an encoded character string containing one or more elements. You can create a list using the SQL $LISTBUILD
function or the ObjectScript $LISTBUILD function. You can convert a delimited string into a list using the SQL $LIST-
FROMSTRING function or the ObjectScript $LISTFROMSTRING function. You can extract a list from an existing list
using the SQL $LIST function or the ObjectScript $LIST function.

The following are examples of valid lists:

• $LISTBUILD('a','b','c'): a three-element list.

• $LISTBUILD('a','','c'): a three-element list, the second element of which has a null string value.

• $LISTBUILD('a',,'c') or $LISTBUILD('a',NULL,'c'): a three-element list, the second element of which
has no value.

• $LISTBUILD(NULL,NULL) or $LISTBUILD(,NULL): a two-element list, the elements of which have no values.

• $LISTBUILD(NULL) or $LISTBUILD(): a one-element list, the element has no value.

If a list argument is NULL, $LISTSAME returns NULL. If a list argument is not a valid list (and is not NULL), InterSystems
SQL generates an SQLCODE -400 fatal error.

Examples
The following embedded SQL example uses $LISTSAME to compare two list arguments:

564 InterSystems SQL Reference

SQL Functions

 SET a=$LISTBUILD("Red",,"Yellow","Green","","Violet")
 SET b=$LISTBUILD("Red",,"Yellow","Green","","Violet")
 &sql(SELECT $LISTSAME(:a,:b)
 INTO :c)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSEIF c=1 { WRITE "lists a and b are the same",! }
 ELSE { WRITE "lists a and b are not the same",! }

The following SQL example compares lists with NULL, absent, or empty string elements:

 SELECT $LISTSAME($LISTBUILD('Red',NULL,'Blue'),$LISTBUILD('Red',,'Blue')) AS NullAbsent,
 $LISTSAME($LISTBUILD('Red',NULL,'Blue'),$LISTBUILD('Red','','Blue')) AS NullEmpty,
 $LISTSAME($LISTBUILD('Red',,'Blue'),$LISTBUILD('Red','','Blue')) AS AbsentEmpty

$LISTSAME comparison is not the same equivalence test as the one used by the ObjectScript equal sign. An equal sign
compares the two lists as encoded strings (character-by-character); $LISTSAME compares the two lists element-by-element.
This distinction is easily seen when comparing a number and a numeric string, as in the following example:

 SET a = $LISTBUILD("365")
 SET b = $LISTBUILD(365)
 IF a=b
 { WRITE "Equal sign: lists a and b are the same",! }
 ELSE { WRITE "Equal sign: lists a and b are not the same",! }
 &sql(SELECT $LISTSAME(:a,:b)
 INTO :c)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSEIF c=1 { WRITE "$LISTSAME: lists a and b are the same",! }
 ELSE { WRITE "$LISTSAME: lists a and b are not the same",! }

The following SQL example compares lists containing numbers and numeric strings in canonical and non-canonical forms.
When comparing a numeric list element and a string list element, the string list element must represent the numeric in
canonical form; this is because InterSystems IRIS always reduces numbers to canonical form before performing a compar-
ison. In the following example, $LISTSAME compares a string and a number. The first three $LISTSAME functions
return 1 (identical); the fourth $LISTSAME function returns 0 (not identical) because the string representation is not in
canonical form:

 SELECT $LISTSAME($LISTBUILD('365'),$LISTBUILD(365)),
 $LISTSAME($LISTBUILD('365'),$LISTBUILD(365.0)),
 $LISTSAME($LISTBUILD('365.5'),$LISTBUILD(365.5)),
 $LISTSAME($LISTBUILD('365.0'),$LISTBUILD(365.0))

See Also
• SQL functions: $LIST $LISTBUILD $LISTDATA $LISTFIND $LISTFROMSTRING $LISTGET $LISTLENGTH

$LISTTOSTRING $PIECE

• ObjectScript functions: $LIST $LISTBUILD $LISTDATA $LISTFIND $LISTFROMSTRING $LISTGET
$LISTLENGTH $LISTNEXT $LISTSAME $LISTTOSTRING $LISTVALID

InterSystems SQL Reference 565

$LISTSAME

$LISTTOSTRING
A list function that creates a string from a list.

$LISTTOSTRING(list[,delimiter])

Arguments

An expression that evaluates to a valid list. A list is an encoded character string containing
one or more elements.You can create a list using the SQL or ObjectScript $LISTBUILD
or $LISTFROMSTRING functions.You can extract a list from an existing list using the
SQL or ObjectScript $LIST function.

list

Optional — A delimiter inserted to separate substrings. A delimiter can be one or more
characters, specified as a quoted string. To concatenate the substrings with no delimiter,
specify the empty string (''). If you specify no delimiter, the default is the comma (,)
character.

delimiter

Description
$LISTTOSTRING takes an InterSystems IRIS list and converts it to a string. In the resulting string, the elements of the
list are separated by the delimiter.

A list represents data in an encoded format which does not use delimiter characters. Thus a list can contain all possible
characters, and is ideally suited for bitstring data. $LISTTOSTRING converts this list to a string with delimited elements.
It sets aside a specified character (or character string) to serve as a delimiter. These delimited elements can be handled
using the $PIECE function.

Note: The delimiter specified here must not occur in the source data. InterSystems IRIS makes no distinction between
a character serving as a delimiter and the same character as a data character.

You can use $LISTTOSTRING to retrieve field values from a serial container field as a delimited string. In the following
example, Home is a serial container field. It contains the list elements Home_Street, Home_City, Home_State, and Home_Zip:

SELECT Name,$LISTTOSTRING(Home,'^') AS HomeAddress
FROM Sample.Person

Arguments

list

An encoded character string containing one or more elements. You can create a list using the SQL $LISTBUILD function
or the ObjectScript $LISTBUILD function. You can convert a delimited string into a list using the SQL $LISTFROMSTRING
function or the ObjectScript $LISTFROMSTRING function. You can extract a list from an existing list using the SQL
$LIST function or the ObjectScript $LIST function.

If the expression in the list argument does not evaluate to a valid list, an SQLCODE -400 error occurs.

delimiter

A character (or string of characters) used to delimit substrings within the output string. It can be a numeric or string literal
(enclosed in single quotation marks), a host variable, or an expression that evaluates to a string.

Commonly, a delimiter is a designated character which is never used within string data, but is set aside solely for use as a
delimiter separating substrings. A delimiter can also be a multi-character string, the individual characters of which can be
used within string data.

566 InterSystems SQL Reference

SQL Functions

If you specify no delimiter, the default delimiter is the comma (,) character. You can specify a null string ('') as a delimiter;
in this case, substrings are concatenated with no delimiter. To specify the single quote character as the delimiter, duplicate
the quote character thus: '''' — four single quote characters.

Example
The following example converts the values of a list field to a string with the elements delimited by the colon (:) character:

SELECT
Name,
FavoriteColors AS ColorList,
$LISTTOSTRING(FavoriteColors,':') AS ColorStrings
FROM Sample.Person
WHERE FavoriteColors IS NOT NULL

See Also
• SQL functions: $LIST $LISTBUILD $LISTDATA $LISTFIND $LISTFROMSTRING $LISTGET $LISTLENGTH

$LISTSAME $PIECE

• ObjectScript functions: $LIST $LISTBUILD $LISTDATA $LISTFIND $LISTFROMSTRING $LISTGET
$LISTLENGTH $LISTNEXT $LISTSAME $LISTTOSTRING $LISTVALID

InterSystems SQL Reference 567

$LISTTOSTRING

LOG
A scalar numeric function that returns the natural logarithm of a given numeric expression.

{fn LOG(expression)}

Arguments

A numeric expression.expression

LOG returns either the NUMERIC or DOUBLE data type. If expression is data type DOUBLE, LOG returns DOUBLE;
otherwise, it returns NUMERIC.

Description
LOG returns the natural logarithm (base e) of expression. LOG returns a value with a precision of 21 and a scale of 18.

LOG can only be used as an ODBC scalar function (with the curly brace syntax).

Examples
The following example returns the natural logarithm of an integer:

SELECT {fn LOG(5)} AS Logarithm

returns 1.60943791...

The following Embedded SQL example shows the relationship between the LOG and EXP functions for the integers 1
through 10:

 SET a=1
 WHILE a<11 {
 &sql(SELECT {fn LOG(:a)} INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE
 QUIT }
 ELSE {
 WRITE !,"Logarithm of ",a," = ",b }
 &sql(SELECT ROUND({fn EXP(:b)},12) INTO :c)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE
 QUIT }
 ELSE {
 WRITE !,"Exponential of log ",b," = ",c
 SET a=a+1 }
 }

Note that the ROUND function is needed here to correct for very small discrepancies caused by system calculation limitations.
In the above example, ROUND is set arbitrarily to 12 decimal digits for this purpose.

See Also
• SQL functions: EXP, LOG10, ROUND

• ObjectScript function: $ZLN

568 InterSystems SQL Reference

SQL Functions

LOG10
A scalar numeric function that returns the base-10 logarithm of a given numeric expression.

{fn LOG10(expression)}

Arguments

A numeric expression.expression

LOG10 returns either the NUMERIC or DOUBLE data type. If expression is data type DOUBLE, LOG10 returns DOUBLE;
otherwise, it returns NUMERIC.

Description
LOG10 returns the base-10 logarithm value of expression.LOG10 returns a value with a precision of 21 and a scale of 18.

LOG10 can only be used as an ODBC scalar function (with the curly brace syntax).

Examples
The following example returns the base-10 logarithm of an integer:

SELECT {fn LOG10(5)} AS Log10

returns .69897000433...

The following Embedded SQL example returns the base-10 logarithm values for the integers 1 through 10:

 SET a=1
 WHILE a<11 {
 &sql(SELECT {fn LOG10(:a)} INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE
 QUIT }
 ELSE {
 WRITE !,"Log-10 of ",a," = ",b
 SET a=a+1 }
 }

See Also
• SQL functions: EXP, LOG, ROUND

• ObjectScript function: $ZLOG

InterSystems SQL Reference 569

LOG10

LOWER
A case-transformation function that converts all uppercase letters in a string expression to lowercase letters.

LOWER(string-expression)

Arguments

The string expression whose characters are to be converted to
lowercase.The expression can be the name of a column, a string literal,
or the result of another scalar function, where the underlying data type
can be represented as any character type (such as CHAR or
VARCHAR).

string-expression

Description
The LOWER function converts uppercase letters to lowercase for display purposes. This is the inverse of the UPPER
function. LOWER has no effects on non-alphabetic characters. It leave unchanged punctuation, numbers, and leading and
trailing blank spaces.

LOWER does not force a numeric to be interpreted as a string. InterSystems SQL converts numerics to canonical form,
removing leading and trailing zeros. A numeric specified as a string is not converted to canonical form, and retains leading
and trailing zeros.

The LCASE function can also be used convert uppercase letters to lowercase.

LOWER has no effect on collation. The %SQLUPPER function is the preferred way in SQL to convert a data value for
not case-sensitive collation. Refer to %SQLUPPER for further information on case transformation for collation.

Examples
The following example returns each person’s name in lowercase letters:

SELECT Name,LOWER(Name) AS LowName
 FROM Sample.Person

LOWER also works on Unicode (non-ASCII) alphabetic characters, as shown in the following Embedded SQL example,
which converts Greek letters from uppercase to lowercase:

 SET a=$CHAR(920,913,923,913,931,931,913)
 &sql(SELECT LOWER(:a)
 INTO :b
 FROM Sample.Person)
 IF SQLCODE'=0 {WRITE !,"Error code ",SQLCODE }
 ELSE {WRITE !,a,!,b }

See Also
• SQL functions: LCASE, UCASE

• ObjectScript function: $ZCONVERT

570 InterSystems SQL Reference

SQL Functions

LPAD
A string function that returns a string left-padded to a specified length.

LPAD(string-expression,length[,padstring])

Arguments

A string expression, which can be the name of a column, a string literal,
a host variable, or the result of another scalar function. Can be of any
data type convertible to a VARCHAR data type. string-expression cannot
be a stream.

string-expression

An integer specifying the number of characters in the returned string.length

Optional — A string consisting of a character or a string of characters
used to pad the input string-expression. The padstring character or
characters are appended to the left of string-expression to supply as
many characters as need to create an output string of length characters.
padstring may be a string literal, a column, a host variable, or the result
of another scalar function. If omitted, the default is a blank space
character.

padstring

Description
LPAD pads a string expression with leading pad characters. It returns a copy of the string padded to length number of
characters. If the string expression is longer than length number of characters, the return string is truncated to length number
of characters.

If string-expression is NULL, LPAD returns NULL. If string-expression is the empty string ('') LPAD returns a string
consisting entirely of pad characters. The returned string is type VARCHAR.

LPAD can be used in queries against a linked table.

LPAD does not remove leading or trailing blanks; it pads the string including any leading or trailing blanks. To remove
leading or trailing blanks before padding a string, use LTRIM, RTRIM, or TRIM.

LPAD and $JUSTIFY

The two-argument form of LPAD and the two-argument form of $JUSTIFY both right-align a string by padding it with
leading spaces. These two-argument forms differ in how they handle an output length that is shorter than the length of the
input string-expression: LPAD truncates the input string to fit the specified output length. $JUSTIFY expands the output
length to fit the input string. This is shown in the following example:

SELECT '>'||LPAD(12345,10)||'<' AS lpadplus,
 '>'||$JUSTIFY(12345,10)||'<' AS justifyplus,
 '>'||LPAD(12345,3)||'<' AS lpadminus,
 '>'||$JUSTIFY(12345,3)||'<' AS justifyminus

Examples
The following example left pads column values with ^ characters (when needed) to return strings of length 16. Note that
some Name strings are left padded, some Name strings are right truncated to return strings of length 16.

 SELECT TOP 15 Name,LPAD(Name,16,'^') AS Name16
 FROM Sample.Person

InterSystems SQL Reference 571

LPAD

The following example left pads column values with the ^=^ pad string (when needed) to return strings of length 20. Note
that the pad name string is repeated as many times as needed, and that some return strings contain partial pad strings:

 SELECT TOP 15 Name,LPAD(Name,20,'^=^') AS Name20
 FROM Sample.Person

See Also
• $JUSTIFY function

• RPAD function

• LTRIM function

• RTRIM function

• TRIM function

572 InterSystems SQL Reference

SQL Functions

LTRIM
A string function that returns a string with the leading blanks removed.

LTRIM(string-expression)

{fn LTRIM(string-expression)}

Arguments

A string expression, which can be the name of a column, a string literal,
or the result of another scalar function, where the underlying data type
can be represented as any character type (such as CHAR or VARCHAR).

string-expression

Description
LTRIM removes the leading blanks from a string expression, and returns the string as type VARCHAR. If string-expression
is NULL, LTRIM returns NULL. If string-expression is a string consisting entirely of blank spaces, LTRIM returns the
empty string ('').

LTRIM leave trailing blanks; to remove trailing blanks, use RTRIM. To remove leading and/or trailing characters of any
type, use TRIM. To pad a string with leading blanks or other characters, use LPAD. To create a string of blanks, use
SPACE.

Note that LTRIM can be used as an ODBC scalar function (with the curly brace syntax) or as an SQL general function.

Examples
The following Embedded SQL example removes the five leading blanks from the string. It leaves the five trailing blanks:

 SET a=" Test string with 5 leading and 5 trailing spaces. "
 &sql(SELECT {fn LTRIM(:a)} INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"Before LTRIM",!,"start:",a,":end"
 WRITE !,"After LTRIM",!,"start:",b,":end" }

Returns:

Before LTRIM
start: Test string with 5 leading and 5 trailing spaces. :end
After LTRIM
start:Test string with 5 leading and 5 trailing spaces. :end

See Also
RTRIM TRIM LPAD SPACE

InterSystems SQL Reference 573

LTRIM

%MINUS
A collation function that converts numbers to canonical collation format, then inverts the sign.

%MINUS(expression)

%MINUS expression

Arguments

An expression, which can be the name of a column, a number or a string literal, an
arithmetic expression, or the result of another function, where the underlying data type
can be represented as any character type.

expression

Description
%MINUS converts numbers or numeric strings to canonical form, inverts the sign, then returns these expression values
in numeric collation sequence.

%MINUS and %PLUS are functionally identical, except that %MINUS inverts the sign. It prefixes a minus sign to any
number that resolves to a positive number, and removes the minus sign from any number that resolves to a negative number.
Zero is never signed.

A number can contain leading and trailing zeros, multiple leading plus and minus signs, a single decimal point indicator
(.), and the E exponent indicator. In canonical form, all arithmetic operations are performed, exponents are expanded, signs
are resolved to either a single leading minus sign or no sign, and leading and trailing zeros are stripped.

A numeric literal can be specified with or without enclosing string delimiters. If a string contains non-numeric characters,
%MINUS truncates the number at the first non-numeric character, and returns the numeric part in canonical form. A non-
numeric string (any string that begins with a non-numeric character) is returned as 0. %MINUS also returns NULLs as 0.

%MINUS is an InterSystems SQL extension and is intended for SQL lookup queries.

You can perform the same collation conversion in ObjectScript using the Collation() method of the %SYSTEM.Util class:

 WRITE $SYSTEM.Util.Collation("++007.500",4)

Compare %MINUS to %MVR collation, which sorts a string based on the numeric substrings within the string.

Example
The following example uses %MINUS to return records in descending numeric order of the home street number:

SELECT Name,Home_Street
FROM Sample.Person
ORDER BY %MINUS(Home_Street)

Note that the above example orders the integer part of the street address in numerical order. Compare this with the following
ORDER BY DESC example, which orders records by street addresses in collation sequence:

SELECT Name,Home_Street
FROM Sample.Person
ORDER BY Home_Street DESC

See Also
• %EXACT collation function

• %PLUS collation function

574 InterSystems SQL Reference

SQL Functions

• Collation chapter in Using InterSystems SQL

InterSystems SQL Reference 575

%MINUS

MINUTE
A time function that returns the minute for a datetime expression.

{fn MINUTE(time-expression)}

Arguments

An expression that is the name of a column, the result of another scalar
function, or a string or numeric literal. It must resolve either to a datetime
string or a time integer, where the underlying data type can be represented
as %Time, %TimeStamp, or %PosixTime.

time-expression

Description
MINUTE returns an integer specifying the minutes for a given time or datetime value. Minutes are calculated for a
$HOROLOG or $ZTIMESTAMP value, an ODBC format date string, or a timestamp.

A time-expression timestamp can be either data type %Library.PosixTime (an encoded 64-bit signed integer), or data type
%Library.TimeStamp (yyyy-mm-dd hh:mm:ss.fff).

To change the default time format, use the SET OPTION command.

Note that you can supply a time integer (number of elapsed seconds), but not a time string (hh:mm:ss). You must supply
a datetime string (yyyy-mm-dd hh:mm:ss). The date portion of the datetime string is not validated; the year can be in the
range 0001 through 9999.

You can omit the seconds (:ss) portion of a datetime string and still return the minutes portion.

The minutes (mm) portion should be an integer in the range from 0 through 59. There is, however, no range checking for
user-supplied values. Numbers greater than 59, negative numbers and fractions are returned as specified. Leading zeros
are optional on input; leading zeros are suppressed on output.

MINUTE returns zero minutes when the minutes portion is '0', '00', or a nonnumeric value. Zero minutes is also returned
if no time expression is supplied, or the minutes portion of the time expression is omitted entirely ('hh', 'hh:', 'hh::', or
'hh::ss'), or if the time expression format is invalid.

The same time information can be returned using DATEPART or DATENAME.

This function can also be invoked from ObjectScript using the MINUTE() method call:

$SYSTEM.SQL.MINUTE(time-expression)

Examples
The following examples both return the number 45 because it is the forty-fifth minute of the time expression in the datetime
string:

SELECT {fn MINUTE('2018-02-16 18:45:38')} AS Minutes_Given

SELECT {fn MINUTE(67538)} AS Minutes_Given

The following example also returns 45. As shown here, the seconds portion of the time value can be omitted:

SELECT {fn MINUTE('2018-02-16 18:45')} AS Minutes_Given

The following example returns 0 minutes because the time expression has been omitted from the datetime string:

SELECT {fn MINUTE('2018-02-16')} AS Minutes_Given

576 InterSystems SQL Reference

SQL Functions

The following examples all return the minutes portion of the current time:

SELECT {fn MINUTE(CURRENT_TIME)} AS Min_CurrentT,
 {fn MINUTE({fn CURTIME()})} AS Min_CurT,
 {fn MINUTE({fn NOW()})} AS Min_Now,
 {fn MINUTE($HOROLOG)} AS Min_Horolog,
 {fn MINUTE($ZTIMESTAMP)} AS Min_ZTS

The following example shows that leading zeros are suppressed. The first MINUTE function returns a length 2, the others
return a length of 1. An omitted time is considered to be 0 minutes, which has a length of 1:

SELECT LENGTH({fn MINUTE('2018-02-22 11:45:00')}),
 LENGTH({fn MINUTE('2018-02-22 03:05:00')}),
 LENGTH({fn MINUTE('2018-02-22 3:5:0')}),
 LENGTH({fn MINUTE('2018-02-22')})

The following Embedded SQL example shows that the MINUTE function recognizes the TimeSeparator character specified
for the locale:

 DO ##class(%SYS.NLS.Format).SetFormatItem("TimeSeparator",".")
 &sql(SELECT {fn MINUTE('2018-02-22 18.45.38')}
 INTO :a)
 WRITE "minutes=",a

See Also
• SQL concepts: Data Type, Date and Time Constructs

• SQL functions: HOUR, SECOND, CURRENT_TIME, CURTIME, NOW, DATEPART, DATENAME

• ObjectScript function: $ZTIME

• ObjectScript special variables: $HOROLOG, $ZTIMESTAMP

InterSystems SQL Reference 577

MINUTE

MOD
A scalar numeric function that returns the modulus (remainder) of a number divided by another.

MOD(dividend,divisor)

{fn MOD(dividend,divisor)}

Arguments

A number that is the numerator (dividend) of the division.dividend

A number that is the denominator (divisor) of the division.divisor

MOD returns the NUMERIC data type unless the dividend is data type DOUBLE. If dividend is DOUBLE, MOD returns
DOUBLE.

Description
MOD returns the mathematical remainder (modulus) from the dividend by the divisor.

MOD can be specified as either a standard scalar function or an ODBC scalar function with curly brace syntax.

• If dividend and divisor are positive, it returns a positive modulo, or zero.

• If dividend and divisor are both negative, it returns a negative modulo, or zero.

• If dividend or divisor is NULL, it returns a NULL.

• If divisor is 0, it generates a SQLCODE -400 with a %msg <DIVIDE> error.

• If divisor is larger than dividend, it returns dividend.

The precision reported for MOD (either syntax form) is the same as the precision report for the arithmetic expression
dividend/divisor.

ANSI Operator Precedence

The behavior of the MOD function with a single negative operand depends on the Apply ANSI Operator Precedence config-
uration setting:

• If Apply ANSI Operator Precedence is not applied, the behavior of MOD with a negative operand is the same as the #
modulo operator. Both return the short count (the amount required to reach the next multiple), not the modulo. For
example, 12#7 returns a modulo of 5; –12#7 returns a short count of 2. If dividend is negative, the short count is a
positive value, or zero. If divisor is negative, the short count is a negative value, or zero.

• If Apply ANSI Operator Precedence is applied (the default at IRIS 2019.1 and subsequent), the behavior of MOD with
a negative operand is to always return a modulo. If dividend is negative, it returns a negative modulo, or zero. If divisor
is negative, it returns a positive modulo, or zero.

The behavior of the # modulo operator is not affected by the Apply ANSI Operator Precedence configuration setting.

Examples
The following example shows the remainder returned by MOD.

SELECT MOD(5,3) AS Remainder

returns 2.

578 InterSystems SQL Reference

SQL Functions

SELECT MOD(5.3,.5) AS Remainder

returns .3.

See Also
CEILING, FLOOR, ROUND, TRUNCATE

InterSystems SQL Reference 579

MOD

MONTH
A date function that returns the month as an integer for a date expression.

MONTH(date-expression)
{fn MONTH(date-expression)}

Arguments

An expression that is the name of a column, the result of another scalar
function, or a date or timestamp literal.

date-expression

Description
MONTH returns an integer specifying the month. The month integer is calculated for an InterSystems IRIS date integer,
a $HOROLOG or $ZTIMESTAMP value, an ODBC format date string, or a timestamp.

A date-expression timestamp can be either data type %Library.PosixTime (an encoded 64-bit signed integer), or data type
%Library.TimeStamp (yyyy-mm-dd hh:mm:ss.fff).

The time portion of the timestamp is not evaluated and can be omitted.

The month (mm) portion of a date string should be an integer in the range from 1 through 12. There is, however, no range
checking for user-supplied values. Numbers greater than 12, zero, and fractions are returned as specified. Because (–) is
used as a separator character, negative numbers are not supported. Leading zeros are optional on input. Leading and trailing
zeros are suppressed on output.

MONTH returns zero when the month portion is '0', '00', or a nonnumeric value. Zero is also returned if the month portion
of the date string is omitted entirely ('yyyy––dd'), or if no date expression is supplied.

MONTH interprets the second numeric string encountered in a date string as the month value, so omitting the year portion
of the date string ('mm-dd hh:mm:ss'), results in the second number encountered ('dd') being treated as the month value.
Thus, a leading hyphen or some placeholder should be supplied for an unknown year value; for compatibility with InterSys-
tems IRIS, 9999 is generally the preferred default year value.

Note that MONTH can be invoked as an ODBC scalar function (with the curly brace syntax) or as an SQL general function.

This function can also be invoked from ObjectScript using the MONTH() method call:

$SYSTEM.SQL.MONTH(date-expression)

The elements of a datetime string can be returned using the following SQL functions: YEAR, MONTH, DAY (or
DAYOFMONTH), HOUR, MINUTE, and SECOND. The same elements can be returned by using the DATEPART or
DATENAME function. Date elements can be returned using TO_DATE. DATEPART and DATENAME performs value
and range checking on month values.

The LAST_DAY function returns the date of the last day of the specified month.

Examples
The following examples both return the number 2 because February is the second month of the year:

SELECT MONTH('2018-02-22') AS Month_Given

SELECT {fn MONTH(64701)} AS Month_Given

The following example sorts records in birthday order by month and day, ignoring the year component of the DOB:

SELECT Name,DOB AS Birthdays
FROM Sample.Person
ORDER BY MONTH(DOB),DAY(DOB),Name

580 InterSystems SQL Reference

SQL Functions

The following examples returns zero because the month is omitted:

SELECT MONTH('2018--22') AS Month_Given

SELECT {fn MONTH('12:34:55')} AS Month_Given

SELECT MONTH('2018 12:34:55') AS Month_Given

The following example returns the number 2 because a placeholder character (-) has been supplied for the omitted year:

SELECT {fn MONTH('-02-22')} AS Month_Given

The following examples all return the current month:

SELECT {fn MONTH({fn NOW()})} AS MNow,
 MONTH(CURRENT_DATE) AS MCurrD,
 {fn MONTH(CURRENT_TIMESTAMP)} AS MCurrTS,
 MONTH($HOROLOG) AS MHorolog,
 {fn MONTH($ZTIMESTAMP)} AS MZTS

See Also
• SQL functions: DATEPART, DATENAME, DAYOFMONTH, LAST_DAY, MONTHNAME, TO_DATE

• ObjectScript function: $ZDATE

• ObjectScript special variables: $HOROLOG, $ZTIMESTAMP

InterSystems SQL Reference 581

MONTH

MONTHNAME
A date function that returns the name of the month for a date expression.

{fn MONTHNAME(date-expression)}

Arguments

An expression that evaluates to either an InterSystems IRIS date integer,
an ODBC date, or a timestamp. This expression can be the name of a
column, the result of another scalar function, or a date or timestamp literal.

date-expression

Description
MONTHNAME takes as input an InterSystems IRIS date integer, a $HOROLOG or $ZTIMESTAMP value, an ODBC
format date string, or a timestamp.

A date-expression timestamp can be either data type %Library.PosixTime (an encoded 64-bit signed integer), or data type
%Library.TimeStamp (yyyy-mm-dd hh:mm:ss.fff).

The time portion of the timestamp is not evaluated and can be omitted.

MONTHNAME returns the name of the corresponding calendar month, January through December. The returned value
is a character string with a maximum length of 15.

MONTHNAME checks that the date supplied is a valid date. The year must be between 0001 and 9999 (inclusive), the
month 01 through 12, and the day appropriate for that month (for example, 02/29 is only valid on leap years). If the date
is not valid, MONTHNAME issues an SQLCODE -400 <ILLEGAL VALUE> error.

The names of months default to the full-length American English month names. To change these month name values, use
the SET OPTION command with the MONTH_NAME option.

The same month name information can be returned by using the DATENAME function. You can use TO_DATE to retrieve
a month name or a month name abbreviation with other date elements. To return an integer corresponding to the month,
use MONTH DATEPART or TO_DATE.

This function can also be invoked from ObjectScript using the MONTHNAME() method call:

$SYSTEM.SQL.MONTHNAME(date-expression)

Examples
The following examples both return the character string "February" because it is the month of the date expression (February
22, 2018):

SELECT {fn MONTHNAME('2018-02-22')} AS NameOfMonth

SELECT {fn MONTHNAME(64701)} AS NameOfMonth

The following examples all return the current month:

SELECT {fn MONTHNAME({fn NOW()})} AS MnameNow,
 {fn MONTHNAME(CURRENT_DATE)} AS MNameCurrDate,
 {fn MONTHNAME(CURRENT_TIMESTAMP)} AS MNameCurrTS,
 {fn MONTHNAME($HOROLOG)} AS MNameHorolog,
 {fn MONTHNAME($ZTIMESTAMP)} AS MNameZTS

The following Embedded SQL example shows how MONTHNAME responds to an invalid date (the year 2017 was not
a leap year):

582 InterSystems SQL Reference

SQL Functions

 SET testdate="2017-02-29"
 &sql(SELECT {fn MONTHNAME(:testdate)} INTO :a)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE,!
 WRITE %msg,! }
 ELSE {
 WRITE !,"returns: ",a }
 QUIT

The SQLCODE -400 error code is issued with the %msg indicating <ILLEGAL VALUE>.

See Also
• SQL functions: DATEPART, DATENAME, DAYOFMONTH, MONTH, TO_DATE

• ObjectScript function: $ZDATE

• ObjectScript special variables: $HOROLOG, $ZTIMESTAMP

InterSystems SQL Reference 583

MONTHNAME

NOW
A date/time function that returns the current local date and time.

NOW()
{fn NOW}
{fn NOW()}

Description
NOW takes no arguments. The argument parentheses are optional for the ODBC scalar syntax; they are mandatory for the
SQL standard function syntax.

NOW returns the current local date and time for this timezone as a timestamp; it adjusts for local time variants, such as
Daylight Saving Time.

NOW can return a timestamp in either %TimeStamp data type format (yyyy-mm-dd hh:mm:ss.ffff) or %PosixTime data
type format (an encoded 64-bit signed integer). The following rules determine which timestamp format is returned:

1. If the current timestamp is being supplied to a field of data type %PosixTime, the current timestamp value is returned
in POSIXTIME data type format. For example, WHERE PosixField=NOW() or INSERT INTO MyTable
(PosixField) VALUES (NOW()).

2. If the current timestamp is being supplied to a field of data type %TimeStamp, the current timestamp value is returned
in TIMESTAMP data type format (yyyy-mm-dd hh:mm:ss). Its ODBC type is TIMESTAMP, LENGTH is 16, and
PRECISION is 19. Hours are represented in 24–hour format. Leading zeros are retained for all fields. For example,
WHERE TSField=NOW() or INSERT INTO MyTable (TSField) VALUES (NOW()).

3. If the current timestamp is being supplied without context, the current timestamp value is returned in TIMESTAMP
data type format. For example, SELECT NOW().

To change the default datetime string format, use the SET OPTION command with the various date and time options.

You can use the CAST or CONVERT function to change the data type of timestamps, dates, and times.

Fractional Seconds of Precision

By default, NOW does not return fractional seconds of precision. It does not support a precision argument. However, by
changing the system-wide default time precision, you can cause all NOW functions system-wide to return this configured
number of digits of fractional second precision. The initial configuration setting of the system-wide default time precision
is 0 (no fractional seconds); the highest setting is 9.

GETDATE is functionally identical to NOW, except that GETDATE provides a precision argument that allows you to
override the system-wide default time precision; if you omit the precision argument, GETDATE takes the configured
system-wide default time precision.

CURRENT_TIMESTAMP has two syntax forms: Without argument parentheses, CURRENT_TIMESTAMP is functionally
identical to NOW. With argument parentheses, CURRENT_TIMESTAMP(precision), is functionally identical to
GETDATE, except that the CURRENT_TIMESTAMP() precision argument is mandatory. CURRENT_TIMESTAMP()
always returns its specified precision and ignores the configured system-wide default time precision.

Fractional seconds are always truncated, not rounded, to the specified precision.

SYSDATE is functionally identical to the argumentless CURRENT_TIMESTAMP function.

Other Current Time and Date Functions

NOW, GETDATE, CURRENT_TIMESTAMP, and SYSDATE all return the current local date and time, based on the
local time zone setting.

584 InterSystems SQL Reference

SQL Functions

GETUTCDATE returns the current Universal Time Constant (UTC) date and time as a timestamp. Because UTC time does
not depend on the local timezone and is not subject to local time variants (such as Daylight Saving Time), this function is
useful for applying consistent timestamps when users in different time zones access the same database. GETUTCDATE
supports fractional seconds of precision. The current UTC timestamp is also provided by the ObjectScript $ZTIMESTAMP
special variable.

To return just the current date, use CURDATE or CURRENT_DATE. To return just the current time, use CURRENT_TIME
or CURTIME. The functions use the DATE or TIME data type. The TIME and DATE data types store their values as
integers in $HOROLOG format. None of these functions support precision.

Examples
The following example shows the three syntax forms are equivalent; all return the current local date and time as a timestamp:

SELECT NOW(),{fn NOW},{fn NOW()}

The following Embedded SQL example compares local (time zone specific) and universal (time zone independent) times-
tamps:

 &sql(SELECT NOW(),GETUTCDATE() INTO :a,:b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"Local timestamp is: ",a
 WRITE !,"UTC timestamp is: ",b
 WRITE !,"$ZTIMESTAMP is: ",$ZDATETIME($ZTIMESTAMP,3,,3)
 }

The following example sets the LastUpdate field in the selected row of the Orders table to the current system date and time:

UPDATE Orders SET LastUpdate = {fn NOW()}
 WHERE Orders.OrderNumber=:ord

See Also
• SQL concepts: Data Type, Date and Time Constructs

• SQL timestamp functions: CAST, CONVERT, CURRENT_TIMESTAMP, GETDATE, GETUTCDATE, SYSDATE,
TIMESTAMPADD, TIMESTAMPDIFF, TO_TIMESTAMP

• SQL current date and time functions: CURDATE, CURRENT_DATE, CURRENT_TIME, CURTIME

• ObjectScript: $ZDATETIME function, $HOROLOG special variable, $ZTIMESTAMP special variable

InterSystems SQL Reference 585

NOW

NULLIF
A function that returns NULL if an expression is true.

NULLIF(expression1,expression2)

Arguments

An SQL expression.expression1

An SQL expression.expression2

NULLIF returns the same data type as expression1.

Description
The NULLIF function returns NULL if expression1 is equal to expression2, otherwise it returns expression1.

NULLIF is equivalent to:

SELECT CASE
WHEN value1 = value2 THEN NULL
ELSE value1
END
FROM MyTable

NULL Handling Functions Compared
The following table shows the various SQL comparison functions. Each function returns one value if the logical comparison
tests True (A same as B) and another value if the logical comparison tests False (A not same as B). These functions allow
you to perform NULL logical comparisons. You cannot specify NULL in an actual equality (or non-equality) condition
comparison.

586 InterSystems SQL Reference

SQL Functions

Return ValueComparison TestSQL Function

True returns NULL

False returns ex1

ex1 = ex2NULLIF(ex1,ex2)

True returns ex2

False returns ex1

ex1 = NULLISNULL(ex1,ex2)

True returns ex2

False returns NULL

ex1 = NULLIFNULL(ex1,ex2) [two-argument
form]

True returns ex2

False returns ex3

ex1 = NULLIFNULL(ex1,ex2,ex3)
[three-argument form]

True returns ex2

False returns ex1

ex1 = NULL{fn IFNULL(ex1,ex2)}

True returns ex2

False returns ex1

ex1 = NULLNVL(ex1,ex2)

True tests next ex argument. If all
ex arguments are True (NULL),
returns NULL.

False returns ex

ex = NULL for each argumentCOALESCE(ex1,ex2,...)

Examples
The following example uses the NULLIF function to set to null the display field of all records with Age=20:

SELECT Name,Age,NULLIF(Age,20) AS Nulled20
FROM Sample.Person

See Also
• CASE command

• COALESCE function

• IFNULL function

• ISNULL function

• NVL function

InterSystems SQL Reference 587

NULLIF

NVL
A function that tests for NULL and returns the appropriate expression.

NVL(check-expression,replace-expression)

Arguments

The expression to be evaluated.check-expression

The expression that is returned if check-expression is NULL.replace-expression

NVL returns the same data type as check-expression.

Description
NVL evaluates check-expression and returns one of two values:

• If check-expression is NULL, replace-expression is returned.

• If check-expression is not NULL, check-expression is returned.

The arguments check-expression and replace-expression can have any data type. If their data types are different, SQL
converts replace-expression to the data type of check-expression before comparing them. The data type of the return value
is always the same as the data type of check-expression, unless check-expression is character data, in which case the return
value’s data type is VARCHAR2.

Note that NVL is supported for Oracle compatibility, and is the same as the ISNULL function.

Refer to NULL section of the “Language Elements” chapter of Using InterSystems SQL for further details on NULL handling.

DATE and TIME Display Conversion

Some check-expression data types require conversion from Logical mode to ODBC mode or Display mode. For example
the DATE and TIME data types. If the replace-expression value is not the same data type, this value cannot be converted
in ODBC mode or Display mode, and an SQLCODE error is generated: -146 for DATE data type; -147 for TIME data
type. For example, ISNULL(DOB,'nodate') cannot be executed in ODBC mode or Display mode; it issue an SQLCODE
-146 error with the %msg Error: 'nodate' is an invalid ODBC/JDBC Date value or Error: 'nodate'
is an invalid DISPLAY Date value. To execute this statement in ODBC mode or Display mode, you must CAST
the value as the appropriate data type: ISNULL(DOB,CAST('nodate' as DATE)). This results in a date 0, which
displays as 1840-12-31.

NULL Handling Functions Compared
The following table shows the various SQL comparison functions. Each function returns one value if the logical comparison
tests True (A same as B) and another value if the logical comparison tests False (A not same as B). These functions allow
you to perform NULL logical comparisons. You cannot specify NULL in an actual equality (or non-equality) condition
comparison.

588 InterSystems SQL Reference

SQL Functions

Return ValueComparison TestSQL Function

True returns ex2

False returns ex1

ex1 = NULLNVL(ex1,ex2)

True returns ex2

False returns NULL

ex1 = NULLIFNULL(ex1,ex2) [two-argument
form]

True returns ex2

False returns ex3

ex1 = NULLIFNULL(ex1,ex2,ex3)
[three-argument form]

True returns ex2

False returns ex1

ex1 = NULL{fn IFNULL(ex1,ex2)}

True returns ex2

False returns ex1

ex1 = NULLISNULL(ex1,ex2)

True returns NULL

False returns ex1

ex1 = ex2NULLIF(ex1,ex2)

True tests next ex argument. If all
ex arguments are True (NULL),
returns NULL.

False returns ex

ex = NULL for each argumentCOALESCE(ex1,ex2,...)

Examples
This following example returns the replace-expression (99) because the check-expression is NULL:

SELECT NVL(NULL,99) AS NullTest

This following example returns the check-expression (33) because check-expression is not NULL:

SELECT NVL(33,99) AS NullTest

The following Dynamic SQL example returns the string 'No Preference' if FavoriteColors is NULL; otherwise, it returns
the value of FavoriteColors:

 SET myquery=3
 SET myquery(1)="SELECT Name,"
 SET myquery(2)="NVL(FavoriteColors,'No Preference') AS ColorChoice "
 SET myquery(3)="FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(.myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()
 WRITE !,"End of data"

See Also
• CASE command

• COALESCE function

• IFNULL function

InterSystems SQL Reference 589

NVL

• ISNULL function

• NULLIF function

590 InterSystems SQL Reference

SQL Functions

%OBJECT
A scalar function that opens a stream object and returns the corresponding oref.

%OBJECT(stream)

Arguments

An expression that is the name of a stream field.stream

Description
%OBJECT is used to open a stream object and return the oref (object reference) of the stream field.

A SELECT on a stream field returns the fully formed oid (object ID) value of the stream field. A SELECT %OBJECT
on a stream field returns the oref (object reference) of the stream field. This is shown in the following example, in which
Notes and Picture are both stream fields:

 SET myquery = "SELECT TOP 3 Title,Notes,%OBJECT(Picture) AS Photo FROM Sample.Employee"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 WHILE rset.%Next() {
 WRITE "String field: ",rset.Title,!
 WRITE "Stream field oid: ",rset.Notes,!
 WRITE "Stream field oref: ",rset.Photo,!!
 }
 WRITE !,"End of data"

If stream is not a stream field, %OBJECT generates an SQLCODE -128 error.

%OBJECT can be used as an argument to the following functions:

• CHARACTER_LENGTH(%OBJECT(streamfield)), CHAR_LENGTH(%OBJECT(streamfield)), or
DATALENGTH(%OBJECT(streamfield)).

• SUBSTRING(%OBJECT(streamfield),start,length).

You can perform the same operation by issuing a SELECT on a stream field, then opening the stream oid by calling the
$Stream.Object.%Open() class method, which generates an oref from the oid:

SET oref = ##class(%Stream.Object).%Open(oid)

For information on orefs, see “OREF Basics” in Defining and Using Classes. For information on oids, see “ Identifiers
for Saved Objects: ID and OID” in the same book.

See Also
• SELECT

• Introduction to the Default SQL Projection in the “ Introduction to Persistent Objects”chapter of Defining and Using
Classes

• Using Streams with SQL in the “Streams” chapter of Defining and Using Classes

• Storing and Using BLOBs and CLOBs chapter of Using InterSystems SQL

InterSystems SQL Reference 591

%OBJECT

%ODBCIN
A format-transformation function that returns an expression in Logical format.

%ODBCIN(expression)

%ODBCIN expression

Arguments

The expression to be converted.expression

Description
%ODBCIN returns expression in the Logical format after passing the value through the field or data type’s OdbcToLogical
method. The Logical format is the in-memory format of data (the format upon which operations are performed).

%ODBCIN is an InterSystems SQL extension.

For further details on display format options, refer to “Data Display Options” in the “ InterSystems IRIS SQL Basics”
chapter of Using InterSystems SQL.

Examples
The following example shows the default display format, the %ODBCIN, and the %ODBCOUT formats for the same
field.

SELECT FavoriteColors,%ODBCIN(FavoriteColors) AS InVal,
%ODBCOUT(FavoriteColors) AS OutVal
FROM Sample.Person

The following example uses %ODBCIN in the WHERE clause:

SELECT Name,DOB,%ODBCOUT(DOB) AS Birthdate
FROM Sample.Person
WHERE DOB BETWEEN %ODBCIN('2000-01-01') AND %ODBCIN('2018-01-01')

See Also
%EXTERNAL, %INTERNAL, %ODBCOUT

592 InterSystems SQL Reference

SQL Functions

%ODBCOUT
A format-transformation function that returns an expression in ODBC format.

%ODBCOUT(expression)

%ODBCOUT expression

Arguments

The expression to be converted. A field name, an expression containing a field name,
or a function that returns a value in a convertible data type, such as DATE or %List.
Cannot be a stream field.

expression

Description
%ODBCOUT returns expression in the ODBC format after passing the value through the field or data type’s LogicalToOdbc
method. The ODBC format is the format in which data can be presented via ODBC. This format is used when data is
exposed to ODBC/SQL. The available formats correspond to those defined by ODBC.

%ODBCOUT is commonly used on a SELECT list select-item. It can be used in a WHERE clause, but this use is dis-
couraged because using %ODBCOUT prevents the use of indexes on the specified field.

Applying %ODBCOUT changes the column header name to a value such as “Expression_1”; it is therefore usually
desirable to specify a column name alias, as shown in the examples below.

Whether %ODBCOUT converts a date depends on the data type returned by the date field or function. %ODBCOUT
converts CURDATE, CURRENT_DATE, CURTIME, and CURRENT_TIME values. It does not convert CURRENT_TIMES-
TAMP, GETDATE, GETUTCDATE, NOW, and $HOROLOG values.

%ODBCOUT is an InterSystems SQL extension.

For further details on display format options, refer to “Data Display Options” in the “ InterSystems IRIS SQL Basics”
chapter of Using InterSystems SQL.

Examples
The following example shows the default display format, the %ODBCIN, and the %ODBCOUT formats for the same
field.

SELECT FavoriteColors,%ODBCIN(FavoriteColors) AS InVal,
%ODBCOUT(FavoriteColors) AS OutVal
FROM Sample.Person

See Also
• %EXTERNAL, %INTERNAL, %ODBCIN

• SQL concepts: Data Types, Date and Time Constructs

InterSystems SQL Reference 593

%ODBCOUT

%OID
A scalar function that returns OID of an ID field.

%OID(id_field)

Arguments

The field name of an ID field, or a reference field.id_field

Description
%OID takes a field name and returns the fully formed OID (object ID) for the object. The field must be either an ID field
or a reference field (a foreign key field). Specifying any other type of field in id_field generates an SQLCODE -1 error.

Examples
The following example shows %OID used with a reference field:

SELECT Name, Spouse, %OID(Spouse)
FROM Sample.Person
WHERE Spouse IS NOT NULL

The following Embedded SQL example shows %OID used with a reference field:

 &sql(SELECT Name, Spouse, %OID(Spouse)
 INTO :n,:s,:soid
 FROM Sample.Person)
 WRITE !,"Name is:",n
 WRITE !,"Spouse name is:",s
 WRITE !,"Spouse OID is:",soid

See Also
• SELECT

• %OBJECT

594 InterSystems SQL Reference

SQL Functions

PI
A scalar numeric function that returns the constant value of pi.

{fn PI()}
{fn PI}

Description
PI takes no arguments. It returns the mathematical constant pi as data type NUMERIC with a precision of 19 and a scale
of 18.

PI can only be invoked using ODBC scalar function (curly brace) syntax. Note that the argument parentheses are optional.

Examples
The following examples both return the value of pi:

SELECT {fn PI()} AS ExactPi

SELECT {fn PI} AS ExactPi

returns 3.141592653589793238.

See Also
• SQL functions: ROUND

• ObjectScript special variable: $ZPI

InterSystems SQL Reference 595

PI

$PIECE
A string function that returns a substring identified by a delimiter.

$PIECE(plist,delimiter[,from[,to]])

Arguments

The target string from which a substring is to be returned.plist

A delimiter used to identify substrings.delimiter

Optional — An integer that specifies the substring, or beginning of a range of substrings,
to return from the target string. Substrings are separated by a delimiter, and counted
from 1. If omitted, the first substring is returned.

from

Optional — An integer that specifies the ending substring for a range of substrings to
return from the target string. Must be used with from.

to

Description
$PIECE returns the specified substring (piece) from plist. The substring returned depends on the arguments used:

• $PIECE(plist,delimiter) returns the first substring in plist. If delimiter occurs in plist, this is the substring that precedes
the first occurrence of delimiter. If delimiter does not occur in plist, the returned substring is plist.

• $PIECE(plist,delimiter,from) returns the substring which is the nth piece of plist, where the integer n is specified by
the from argument, and pieces are separated by a delimiter. The delimiter is not returned.

• $PIECE(plist,delimiter,from,to) returns a range of substrings including the substring specified in from through the
substring specified in to. This four-argument form of $PIECE returns a string that includes any intermediate occurrences
of delimiter that occur between the from and to substrings. If to is greater than the number of substrings, the returned
substring includes all substrings to the end of the plist string.

Arguments

plist

The target string from which the substring is to be returned. It can be a string literal, a variable name, or any valid expression
that evaluates to a string.

A target string usually contains instances of a character (or character string) which are used as delimiters. This character
or string cannot also be used as a data value within plist.

If you specify the null string (NULL) as the target string, $PIECE returns <null>, the null string.

delimiter

The search string to be used to delimit substrings within plist. It can be a numeric or string literal (enclosed in quotation
marks), the name of a variable, or an expression that evaluates to a string.

Commonly, a delimiter is a designated character which is never used within string data, but is set aside solely for use as a
delimiter separating substrings. A delimiter can also be a multi-character search string, the individual characters of which
can be used within string data.

If you specify the null string (NULL) as the delimiter, $PIECE returns <null>, the null string.

596 InterSystems SQL Reference

SQL Functions

from

The number of a substring within plist, counting from 1. It must be a positive integer, the name of an integer variable, or
an expression that evaluates to a positive integer. Substrings are separated by delimiters.

• If the from argument is omitted or set to 1, $PIECE returns the first substring of plist. If plist does not contain the
specified delimiter, a from value of 1 returns plist.

• If the from argument identifies by count the last substring in plist, this substring is returned, regardless of whether it
is followed by a delimiter.

• If the value of from is NULL, the empty string, zero, or a negative number, and no to argument is specified, $PIECE
returns a null string. However, if a to argument is specified, $PIECE treats these from values the same as from=1.

• If the value of from is greater than the number of substrings in plist, $PIECE returns a null string.

If the from argument is used with the to argument, it identifies the start of a range of substrings to be returned as a string,
and should be less than the value of to.

to

The number of the substring within plist that ends the range initiated by the from argument. The returned string includes
both the from and to substrings, as well as any intermediate substrings and the delimiters separating them. The to argument
must be a positive integer, the name of an integer variable, or an expression that evaluates to a positive integer. The to
argument must be used with from and should be greater than the value of from.

• If from is less than to, $PIECE returns a string consisting of all of the delimited substrings within this range, including
the from and to substrings. This returned string contains the substrings and the delimiters within this range.

• If to is greater than the number of delimited substrings, the returned string contains all the string data (substrings and
delimiters) beginning with the from substring and continuing to the end of the plist string.

• If from is equal to to, the from substring is returned.

• If from is greater than to, $PIECE returns a null string.

• If to is the null string (NULL), $PIECE returns a null string.

Examples
The following example returns 'Red', the first substring as identified by the "," delimiter:

SELECT $PIECE('Red,Green,Blue,Yellow,Orange,Black',',')

The following example returns 'Blue', the third substring as identified by the "," delimiters:

SELECT $PIECE('Red,Green,Blue,Yellow,Orange,Black',',',3)

The following example returns 'Blue,Yellow,Orange', the third through fifth elements in colorlist, as delimited by ",":

SELECT $PIECE('Red,Green,Blue,Yellow,Orange,Black',',',3,5)

The following $PIECE functions both return '123', showing that the two-argument form is equivalent to the three-argument
form when from is 1:

SELECT $PIECE('123#456#789','#') AS TwoArg

SELECT $PIECE('123#456#789','#',1) AS ThreeArg

The following example uses the multi-character delimiter string '#-#' to return the third substring '789'. Here, the component
characters of the delimiter string, '#' and '-', can be used as data values; only the specified sequence of characters (#-#) is
set aside:

InterSystems SQL Reference 597

$PIECE

SELECT $PIECE('1#2-3#-#45##6#-#789','#-#',3)

The following example returns 'MAR;APR;MAY'. These comprise the third through the fifth substrings, as identified by
the ';' delimiter:

SELECT $PIECE('JAN;FEB;MAR;APR;MAY;JUN',';',3,5)

The following example uses $PIECE to extract the surname from employee names and vendor contact names, and then
perform a JOIN which return instances where an employee has the same surname as a vendor contact:

SELECT E.Name,V.Contact
FROM Sample.Employee AS E INNER JOIN Sample.Vendor AS V
ON $PIECE(E.Name,',')=$PIECE(V.Contact,',')

Notes

Using $PIECE to Unpack Data Values

$PIECE is typically used to "unpack" data values that contain multiple fields delimited by a separator character. Typical
delimiter characters include the slash (/), the comma (,), the space (), and the semicolon (;). The following sample values
are good candidates for use with $PIECE:

'John Jones/29 River St./Boston MA, 02095'
'Mumps;Measles;Chicken Pox;Diptheria'
'45.23,52.76,89.05,48.27'

$PIECE and $LENGTH

The two-argument form of $LENGTH returns the number of substrings in a string, based on a delimiter. Use $LENGTH
to determine the number of substrings in a string, and then use $PIECE to extract individual substrings.

$PIECE and $LIST

The data storage techniques used by $PIECE and the $LIST functions are incompatible and should not be combined. For
example, attempted to use $PIECE on a list created using $LISTBUILD yields unpredictable results and should be avoided.
This is true for both SQL functions and the corresponding ObjectScript functions.

The $LIST functions specify substrings without using a designated delimiter. If setting aside a delimiter character or
character sequence is not appropriate to the type of data (for example, bitstring data), you should use the $LISTBUILD
and $LIST SQL functions to store and retrieve substrings.

Null Values

$PIECE does not distinguish between a delimited substring with a null string value (NULL), and a nonexistent substring.
Both return <null>, the null string value. For example, the following examples both return the null string for a from value
of 7:

SELECT $PIECE('Red,Green,Blue,Yellow,Orange,Black',',',7)

SELECT $PIECE('Red,Green,Blue,Yellow,Orange,Black,',',',7)

In the first case, there is no seventh substring; a null string is returned. In the second case there is a seventh substring, as
indicted by the delimiter at the end of the plist string; the value of this seventh substring is the null string.

The following example shows null values within a plist. It extracts substrings 3. This substring exists, but contains a null
string:

SELECT $PIECE('Red,Green,,Blue,Yellow,Orange,Black,',',',3)

The following examples also returns a null string, because the specified substrings do not exist:

SELECT $PIECE('Red,Green,,Blue,Yellow,Orange,Black,',',',0)

598 InterSystems SQL Reference

SQL Functions

SELECT $PIECE('Red,Green,,Blue,Yellow,Orange,Black,',',',8,20)

In the following example, the $PIECE function returns the entire plist string, because there are no occurrences of delimiter
in the plist string:

SELECT $PIECE('Red,Green,Blue,Yellow,Orange,Black,','#')

Nested $PIECE Operations

To perform complex extractions, you can nest $PIECE references within each other. The inner $PIECE returns a substring
that is operated on by the outer $PIECE. Each $PIECE uses its own delimiter. For example, the following returns the state
abbreviation 'MA':

SELECT $PIECE($PIECE('John Jones/29 River St./Boston MA 02095','/',3),' ',2)

The following is another example of nested $PIECE operations, using a hierarchy of delimiters. First, the inner $PIECE
uses the caret (^) delimiter to find the second piece, 'A,B,C', of the string. Then the outer $PIECE uses the comma (,)
delimiter to return the first and second pieces ('A,B') of the substring 'A,B,C':

SELECT $PIECE($PIECE('1,2,3^A,B,C^@#!','^',2),',',1,2)

See Also
• SQL functions: $EXTRACT $FIND $LENGTH $LIST

• ObjectScript functions: $EXTRACT $FIND $LENGTH $LIST $PIECE

InterSystems SQL Reference 599

$PIECE

%PLUS
A collation function that converts numbers to canonical collation format.

%PLUS(expression)

%PLUS expression

Arguments

An expression, which can be the name of a column, a number or a string literal, an
arithmetic expression, or the result of another function, where the underlying data type
can be represented as any character type.

expression

Description
%PLUS converts numbers or numeric strings to canonical form, then returns these expression values in numeric collation
sequence.

A number can contain leading and trailing zeros, multiple leading plus and minus signs, a single decimal point indicator
(.), and the E exponent indicator. In canonical form, all arithmetic operations are performed, exponents are expanded, signs
are resolved to either a single leading minus sign or no sign, and leading and trailing zeros are stripped.

A numeric literal can be specified with or without enclosing string delimiters. If a string contains non-numeric characters,
%PLUS truncates the number at the first non-numeric character, and returns the numeric part in canonical form. A non-
numeric string (any string that begins with a non-numeric character) is returned as 0. %PLUS also returns NULLs as 0.

%PLUS is an InterSystems SQL extension and is intended for SQL lookup queries.

You can perform the same collation conversion in ObjectScript using the Collation() method of the %SYSTEM.Util class:

 WRITE $SYSTEM.Util.Collation("++007.500",3)

Compare %PLUS to %MVR collation, which sorts a string based on the numeric substrings within the string.

Examples
The following examples uses %PLUS to return Home_Street addresses in numeric order:

SELECT Name,Home_Street
FROM Sample.Person
ORDER BY %PLUS(Home_Street)

Note that the above example orders the integer part of the street address in ascending numerical order. Compare this with
the following ORDER BY example, which orders records by street addresses in collation sequence:

SELECT Name,Home_Street
FROM Sample.Person
ORDER BY Home_Street

See Also
• %EXACT collation function

• %MINUS collation function

• Collation chapter in Using InterSystems SQL

600 InterSystems SQL Reference

SQL Functions

POSITION
A string function that returns the position of a substring within a string.

POSITION(substring IN string)

Arguments

The substring to search for. It can be the name of a column, a string
literal, or the result of another scalar function, where the underlying
data type can be represented as any character type (such as CHAR
or VARCHAR2).

substring

The string expression within which to search for substring.string

POSITION returns the INTEGER data type.

Description
POSITION returns the position of the first location of substring within string. The position is returned as an integer. If
substring is not found, 0 (zero) is returned. POSITION returns NULL if passed a NULL value for either argument.

POSITION is case-sensitive. Use one of the case-conversion functions to locate both uppercase and lowercase instances
of a letter or character string.

POSITION, INSTR, CHARINDEX, and $FIND

POSITION, INSTR, CHARINDEX, and $FIND all search a string for a specified substring and return an integer position
corresponding to the first match. CHARINDEX, POSITION, and INSTR return the integer position of the first character
of the matching substring. $FIND returns the integer position of the first character after the end of the matching substring.
CHARINDEX, $FIND, and INSTR support specifying a starting point for substring search. INSTR also support specifying
the substring occurrence from that starting point.

The following example demonstrates these four functions, specifying all optional arguments. Note that the positions of
string and substring differ in these functions:

SELECT POSITION('br' IN 'The broken brown briefcase') AS Position,
 CHARINDEX('br','The broken brown briefcase',6) AS Charindex,
 $FIND('The broken brown briefcase','br',6) AS Find,
 INSTR('The broken brown briefcase','br',6,2) AS Inst

For a list of functions that search for a substring, refer to String Manipulation.

Examples
The following example returns 11, because “b” is the 11th character in the string:

SELECT POSITION('b' IN 'The quick brown fox') AS PosInt

The following example returns the length of the last name (surname) for each name in the Sample.Person table. It locates
the comma used to separate the last name from the rest of the name field, then subtracts 1 from that position:

SELECT Name,
POSITION(',' IN Name)-1 AS LNameLen
FROM Sample.Person

The following example returns the position of the first instance of the letter “B” in each name in the Sample.Person table.
Because POSITION is case-sensitive, the %SQLUPPER function is used to convert all name values to uppercase before
performing the search. Because %SQLUPPER adds a blank space at the beginning of a string, this example subtracts 1

InterSystems SQL Reference 601

POSITION

to get the actual letter position. Searches that do not locate the specified string return zero (0); in this example, because of
the subtraction of 1, the value displayed for these searches is –1:

SELECT Name,
POSITION('B' IN %SQLUPPER(Name))-1 AS BPos
FROM Sample.Person

See Also
• CHARINDEX function

• $FIND function

• INSTR function

• String Manipulation

602 InterSystems SQL Reference

SQL Functions

POWER
A numeric function that returns the value of a given expression raised to the specified power.

POWER(numeric-expression,power)
{fn POWER(numeric-expression,power)}

Arguments

The base number. Can be a positive or negative integer or fractional
number.

numeric-expression

The exponent, which is the power to which to raise
numeric-expression. Can be a positive or negative integer or fractional
number.

power

POWER returns either the NUMERIC or DOUBLE data type. If numeric-expression is data type DOUBLE, POWER
returns DOUBLE; otherwise, it returns NUMERIC.

Description
POWER calculates one number raised to the power of another. It returns a value with a precision of 36 and a scale of 18.

Note that POWER can be invoked as an ODBC scalar function (with the curly brace syntax) or as an SQL general scalar
function.

POWER interprets a non-numeric string as 0 for either argument. For further details, refer to Strings as Numbers. POWER
returns NULL if passed a NULL value for either argument.

All combinations of numeric-expression and power are valid except:

• POWER(0,-m): a 0 numeric-expression and a negative power results in an SQLCODE -400 error.

• POWER(-n,.m): a negative numeric-expression and a fractional power results in an SQLCODE -400 error.

Examples
The following example raises 5 to the 3rd power:

SELECT POWER(5,3) AS Cubed

returns 125.

The following embedded SQL example returns the first 16 powers of 2:

 SET a=1
 WHILE a<17 {
 &sql(SELECT {fn POWER(2,:a)}
 INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE
 QUIT }
 ELSE {
 WRITE !,"2 to the ",a," = ",b
 SET a=a+1 }
 }

See Also
• SQL functions: EXP LOG10 SQRT SQUARE

• ObjectScript function: $ZPOWER

InterSystems SQL Reference 603

POWER

• ObjectScript Exponentiation Operator (**)

604 InterSystems SQL Reference

SQL Functions

QUARTER
A date function that returns the quarter of the year as an integer for a date expression.

{fn QUARTER(date-expression)}

Arguments

An expression that is the name of a column, the result
of another scalar function, or a date or timestamp
literal.

date-expression

Description
QUARTER returns an integer from 1 to 4. The quarter is calculated for an InterSystems IRIS date integer, a $HOROLOG
or $ZTIMESTAMP value, an ODBC format date string, or a timestamp.

A date-expression timestamp can be either data type %Library.PosixTime (an encoded 64-bit signed integer), or data type
%Library.TimeStamp (yyyy-mm-dd hh:mm:ss.fff).

The time portion of the timestamp is not evaluated and can be omitted.

The time periods for the four quarters are as follows:

Period (inclusive)Quarter

January 1 to March 31 (90 or 91 days)1

April 1 to June 30 (91 days)2

July 1 to September 30 (92 days)3

October 1 to December 31 (92 days)4

QUARTER evaluates only the month portion of a datetime string. QUARTER does not perform value or range checking
for user-supplied values. Invalid month values are returned as follows: month=0 returns 1; month > 12 returns 4.

The same quarter information can be returned by using the DATEPART or DATENAME function. DATEPART and
DATENAME performs value and range checking on the full date string. You can use the DATEADD or TIMESTAMPADD
function to increment a date by a specified number of quarters.

This function can also be invoked from ObjectScript using the QUARTER() method call:

$SYSTEM.SQL.QUARTER(date-expression)

Examples
The following examples both return the number 1 because the date (February 22) is in the first quarter of the year:

SELECT {fn QUARTER('2018-02-22')} AS Q_Given

SELECT {fn QUARTER(64701)} AS Q_Given

The following examples all return the current quarter:

SELECT {fn QUARTER({fn NOW()})} AS Q_Now,
 {fn QUARTER(CURRENT_DATE)} AS Q_CurrD,
 {fn QUARTER(CURRENT_TIMESTAMP)} AS Q_CurrTstamp,
 {fn QUARTER($ZTIMESTAMP)} AS Q_ZTstamp,
 {fn QUARTER($HOROLOG)} AS Q_Horolog

InterSystems SQL Reference 605

QUARTER

See Also
• SQL functions: DATENAME, DATEPART, DATEADD, MONTH, TO_DATE

• ObjectScript function: $ZDATE

• ObjectScript special variables: $HOROLOG, $ZTIMESTAMP

606 InterSystems SQL Reference

SQL Functions

RADIANS
A numeric function that converts degrees to radians.

RADIANS(numeric-expression)

{fn RADIANS(numeric-expression)}

Arguments

The measure of an angle in degrees. An expression that resolves to a
numeric value.

numeric-expression

RADIANS returns either the NUMERIC or DOUBLE data type. If numeric-expression is data type DOUBLE, RADIANS
returns DOUBLE; otherwise, it returns NUMERIC.

RADIANS can be specified as either a standard scalar function or an ODBC scalar function with curly brace syntax.

Description
RADIANS takes an angle measurement in degrees and returns the corresponding angle measurement in radians. RADIANS
returns NULL if passed a NULL value.

The returned value has a default precision of 36 and a default scale of 18.

You can use the DEGREES function to convert radians to degrees.

Example
The following Embedded SQL example returns the radians equivalents corresponding to the degree values from 0 through
365 in 30-degree increments:

 SET a=0
 WHILE a<366 {
 &sql(SELECT RADIANS(:a) INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE
 QUIT }
 ELSE {
 WRITE !,"degrees ",a," = radians ",b
 SET a=a+30 }
 }

See Also
• SQL functions: CONVERT, DEGREES, TO_NUMBER

InterSystems SQL Reference 607

RADIANS

REPEAT
A string function that repeats a string a specified number of times.

REPEAT(expression,repeat-count)
{fn REPEAT(expression,repeat-count)}

Arguments

The string expression to be repeated.expression

The number of times to repeat, expressed as an integer.repeat-count

Description
REPEAT returns a string of repeat-count instances of expression, concatenated together.

If expression is NULL, REPEAT returns NULL. If expression is the empty string, REPEAT returns an empty string.

If repeat-count is a fractional number, only the integer part is used. If repeat-count is 0, REPEAT returns an empty string.
If repeat-count is a negative number, NULL, or a non-numeric string, REPEAT returns NULL.

Examples
The following examples show the two forms of REPEAT. Both examples return the string 'BANGBANGBANG':

SELECT REPEAT('BANG',3) AS Tripled

SELECT {fn REPEAT('BANG',3)} AS Tripled

See Also
• REPLICATE

608 InterSystems SQL Reference

SQL Functions

REPLACE
A string function that replaces a substring within a string.

REPLACE(string,oldsubstring,newsubstring)

Arguments

A string expression that is the target for the substring search.string

The substring to match within string.oldsubstring

The substring used to replace oldsubstring.newsubstring

Description
REPLACE searches a string for a substring and replaces all matches. Matching is case-sensitive. If a match is found, it
replaces every instance of oldsubstring with newsubstring. The replacement substring may be longer or shorter than the
substring it replaces. If the substring cannot be found, REPLACE returns the original string unchanged.

The value returned by REPLACE is always of data type VARCHAR, regardless of the data type of string. This allows for
replacement operations such as REPLACE(12.3,'.','_').

The empty string is a string value. You can, therefore, use the empty string for any argument value. However, note that the
ObjectScript empty string is passed to InterSystems SQL as NULL.

NULL is not a data value in InterSystems SQL. For this reason, specifying NULL for any of the REPLACE arguments
returns NULL, regardless of whether or not a match occurs.

This function provides compatibility with Transact-SQL implementations.

REPLACE, STUFF, and $TRANSLATE

Both REPLACE and STUFF perform substring replacement. REPLACE searches for a substring by data value. STUFF
searches for a substring by string position and length.

REPLACE performs a single string-for-string matching and replacement. $TRANSLATE performs character-for-character
matching and replacement; it can replace all instances of one or more specified single characters with corresponding spec-
ified replacement single characters. It can also remove all instances of one or more specified single characters from a string.

By default, all three functions are case-sensitive and replace all matching instances.

For a list of functions that search for a substring, refer to String Manipulation in the Concepts section of this manual.

Examples
The following example searches for every instance of the substring 'K' and replaces it with the substring 'P':

SELECT REPLACE('KING KONG','K','P')

The following embedded SQL example searches for every instance of the substring 'KANSAS' and replaces it with the
substring 'NEBRASKA':

 SET str="KANSAS, ARKANSAS, NEBRASKA"
 &sql(SELECT REPLACE(:str,'KANSAS','NEBRASKA') INTO :x)
 WRITE !,"SQLCODE=",SQLCODE
 WRITE !,"Output string=",x

The following example show that REPLACE handles the empty string ('') just like any other string value:

InterSystems SQL Reference 609

REPLACE

SELECT REPLACE('','','Nothing'),
 REPLACE('KING KONG','','P'),
 REPLACE('KING KONG','K','')

The following example shows that REPLACE handles any NULL argument by returning NULL. All of the following
REPLACE functions return NULL, including the last, in which no match occurs:

SELECT REPLACE(NULL,'K','P'),
 REPLACE(NULL,NULL,'P'),
 REPLACE('KING KONG',NULL,'P'),
 REPLACE('KING KONG','K',NULL),
 REPLACE('KING KONG','Z',NULL)

The following Embedded SQL example is identical to the previous NULLs example. It shows how the ObjectScript empty
string host variable is treated as NULL within SQL:

 SET a=""
 &sql(SELECT
 REPLACE(:a,'K','P'),
 REPLACE(:a,:a,'P'),
 REPLACE('KING KONG',:a,'P'),
 REPLACE('KING KONG','K',:a),
 REPLACE('KING KONG','Z',:a)
 INTO :v,:w,:x,:y,:z)
 WRITE !,"SQLCODE=",SQLCODE
 WRITE !,"Output string=",v
 WRITE !,"Output string=",w
 WRITE !,"Output string=",x
 WRITE !,"Output string=",y
 WRITE !,"Output string=",z

See Also
• CHARINDEX function

• $FIND function

• STUFF function

• $TRANSLATE function

• String Manipulation

610 InterSystems SQL Reference

SQL Functions

REPLICATE
A string function that repeats a string a specified number of times.

REPLICATE(expression,repeat-count)

Arguments

The string expression to be repeated.expression

The number of times to repeat, expressed as an integer.repeat-count

Description

Note: The REPLICATE function is an alias for the REPEAT function. REPLICATE is provided for TSQL compati-
bility. Refer to REPEAT for further details.

See Also
• REPEAT

InterSystems SQL Reference 611

REPLICATE

REVERSE
A scalar string function that returns a character string in reverse character order.

REVERSE(string-expression)

Arguments

The string expression to be reversed. The expression can be the
name of a column, a string literal, a numeric, or the result of another
scalar function, where the underlying data type can be represented
as any character type (such as CHAR or VARCHAR).

string-expression

Description
REVERSE returns string-expression with its character order reversed. For example, 'Hello World!' is returned as '!dlroW
olleH'. This is a simple string-order reversal, with no additional processing.

The string returned is data type VARCHAR, regardless of the data type of the input value. Numbers are converted to
canonical form, numeric strings are not converted to canonical form before reversing.

Leading and trailing blanks are unaffected by reversing.

Reversing a NULL value results in a NULL.

Note: Because REVERSE always returns a VARCHAR string, some types of data become invalid when reversed:

• A reversed list is no longer a valid list and cannot be converted from storage format to display format.

• A reversed date is no longer a valid date, and cannot be converted from storage format to display format.

Examples
The following example reverses the Name field values. In this case, this results in names sorted by middle initial:

SELECT Name,REVERSE(Name) AS RevName
FROM Sample.Person
ORDER BY RevName

Note that because Name and RevName are just different representations of the same field, ORDER BY RevName and
ORDER BY RevName,Name perform the same ordering.

The following example reverses a number and a numeric string:

SELECT REVERSE(+007.10) AS RevNum,
 REVERSE('+007.10') AS RevNumStr

The following Embedded SQL example reverses a $DOUBLE number:

 SET dnum=$DOUBLE(1.1)
 &sql(SELECT REVERSE(:dnum) INTO :drevnum)
 WRITE dnum,!
 WRITE drevnum,!

The following example shows what happens when you reverse a list:

SELECT FavoriteColors,REVERSE(FavoriteColors) AS RevColors
FROM Sample.Person

The following example shows what happens when you reverse a date:

612 InterSystems SQL Reference

SQL Functions

SELECT DOB,%INTERNAL(DOB) AS IntDOB,REVERSE(DOB) AS RevDOB
FROM Sample.Person

See Also
• CHAR

• STRING

• SUBSTRING

InterSystems SQL Reference 613

REVERSE

RIGHT
A scalar string function that returns a specified number of characters from the end (rightmost position) of a string expression.

{fn RIGHT(string-expression,count)}

Arguments

A string expression, which can be the name of a column, a string literal,
or the result of another scalar function, where the underlying data type
can be represented as any character type (such as CHAR or VARCHAR).

string-expression

An integer that specifies the number of characters to return from the
ending (rightmost) position of string-expression.

count

Description
RIGHT returns count number of characters from the end (rightmost position) of string-expression. RIGHT returns NULL
if passed a NULL value for either argument.

RIGHT can only be used as an ODBC scalar function (with the curly brace syntax).

Examples
The following example returns the two rightmost characters of each name in the Sample.Person table:

SELECT Name,{fn RIGHT(Name,2)}AS MiddleInitial
 FROM Sample.Person

The following embedded SQL example shows how RIGHT handles a count that is longer than the string itself:

 &sql(SELECT Name,{fn RIGHT(Name,40)}
 INTO :a,:b
 FROM Sample.Person)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,a,"=original",!,b,"=RIGHT 40" }

No padding is performed.

See Also
LEFT LTRIM RTRIM

614 InterSystems SQL Reference

SQL Functions

ROUND
A numeric function that rounds or truncates a number at a specified number of digits.

ROUND(numeric-expr,scale[,flag])

{fn ROUND(numeric-expr,scale[,flag])}

Arguments

The number to be rounded. A numeric expression.numeric-expr

An expression that evaluates to an integer that specifies the number of places to
round to, counting from the decimal point. Can be zero, a positive integer, or a
negative integer. If scale is a fractional number, InterSystems IRIS rounds it to
the nearest integer.

scale

Optional — A boolean flag that specifies whether to round or truncate the
numeric-expr: 0=round, 1=truncate. The default is 0.

flag

ROUND returns the same data type as numeric-expr. See $DOUBLE Numbers below.

Description
This function can be used to either round or truncate a number to the specified number of decimal digits.

ROUND rounds or truncates numeric-expr to scale places, counting from the decimal point. When rounding, the number
5 is always rounded up. Trailing zeroes are removed after a ROUND round or truncate operation. Leading zeros are not
returned.

• If scale is a positive number, rounding is performed at that number of digits to the right of the decimal point. If scale
is equal to or larger than the number of decimal digits, no rounding or zero filling occurs.

• If scale is zero, rounding is to the closest whole integer. In other words, rounding is performed at zero digits to the
right of the decimal point; all decimal digits and the decimal point itself are removed.

• If scale is a negative number, rounding is performed at that number of digits to the left of the decimal point. If scale
is equal to or larger than the number of integer digits in the rounded result, zero is returned.

• If numeric-expr is zero (however expressed: 00.00, -0, etc.) ROUND returns 0 (zero) with no decimal digits, regardless
of the scale value.

• If numeric-expr or scale is NULL, ROUND returns NULL.

Note that the ROUND return value is always normalized, removing trailing zeros.

ROUND,TRUNCATE, and $JUSTIFY

ROUND and TRUNCATE are numeric functions that perform similar operations; they both can be used to decrease the
number of significant decimal or integer digits of a number. ROUND allows you to specify either rounding (the default),
or truncation; TRUNCATE does not perform rounding. ROUND returns the same data type as numeric-expr; TRUNCATE
returns numeric-expr as data type NUMERIC, unless numeric-expr is data type DOUBLE, in which case it returns data
type DOUBLE.

ROUND rounds (or truncates) to a specified number of fractional digits, but its return value is always normalized, removing
trailing zeros. For example, ROUND(10.004,2) returns 10, not 10.00.

InterSystems SQL Reference 615

ROUND

TRUNCATE truncates to a specified number of fractional digits. If the truncation results in trailing zeros, these trailing
zeros are preserved. However, if scale is larger than the number of fractional decimal digits in the canonical form of
numeric-expr, TRUNCATE does not zero-pad.

Use $JUSTIFY when rounding to a fixed number of fractional digits is important — for example, when representing
monetary amounts. $JUSTIFY returns the specified number of trailing zeros following the rounding operation. When the
number of digits to round is larger than the number of fractional digits, $JUSTIFY zero-pads. $JUSTIFY also right-aligns
the numbers, so that the DecimalSeparator characters align in a column of numbers. $JUSTIFY does not truncate.

$DOUBLE Numbers

$DOUBLE IEEE floating point numbers are encoded using binary notation. Most decimal fractions cannot be exactly
represented in this binary notation. When a $DOUBLE value is input to ROUND with a scale value and the rounding flag
(flag=0, the default), the return value frequently contains more fractional digits than specified in scale because the fractional
decimal result is not representable in binary, so the return value must be rounded to the nearest representable $DOUBLE
value, as shown in the following example:

 SET x=1234.5678
 SET y=$DOUBLE(1234.5678)
 &sql(SELECT ROUND(:x,2),ROUND(:y,2) INTO :decnum,:dblnum)
 WRITE "Decimal: ",x," rounded ",decnum,!
 WRITE "Double: ",y," rounded ",dblnum

If you are using ROUND to truncate a $DOUBLE value (flag=1), the return value for the $DOUBLE is truncated to the
number of fractional digits specified by scale. The TRUNCATE function also truncates a $DOUBLE to the number of
fractional digits specified by scale.

If you are using ROUND to round a $DOUBLE value and wish to return a specific scale, you should convert the $DOUBLE
value to decimal representation before rounding the result.

ROUND with flag=0 (round, the default) returns $DOUBLE("INF") and $DOUBLE("NAN") as the empty string.

ROUND with flag=1 (truncate) returns $DOUBLE("INF") and $DOUBLE("NAN") as INF and NAN.

Examples
The following example uses a scale of 0 (zero) to round several fractions to integers. It shows that 5 is always rounded up:

SELECT ROUND(5.99,0) AS RoundUp,
 ROUND(5.5,0) AS Round5,
 {fn ROUND(5.329,0)} AS Roundoff

The following example truncates the same fractional numbers as the previous example:

SELECT ROUND(5.99,0,1) AS Trunc1,
 ROUND(5.5,0,1) AS Trunc2,
 {fn ROUND(5.329,0,1)} AS Trunc3

The following ROUND functions round and truncate a negative fractional number:

SELECT ROUND(-0.987,2,0) AS Round1,
 ROUND(-0.987,2,1) AS Trunc1

The following example rounds off pi to four decimal digits:

SELECT {fn PI()} AS ExactPi, ROUND({fn PI()},4) AS ApproxPi

The following example specifies a scale larger than the number of decimal digits:

SELECT {fn ROUND(654.98700,9)} AS Rounded

it returns 654.987 (InterSystems IRIS removed the trailing zeroes before the rounding operation; no rounding or zero
padding occurred).

616 InterSystems SQL Reference

SQL Functions

The following example rounds off the value of Salary to the nearest thousand dollars:

SELECT Salary,ROUND(Salary, -3) AS PayBracket
FROM Sample.Employee
ORDER BY Salary

Note that if Salary is less than five hundred dollars, it is rounded to 0 (zero).

In the following example each ROUND specifies a negative scale as large or larger than the number to be rounded:

SELECT {fn ROUND(987,-3)} AS Round1,
 {fn ROUND(487,-3)} AS Round2,
 {fn ROUND(987,-4)} AS Round3,
 {fn ROUND(987,-5)} AS Round4

The first ROUND function returns 1000, because the rounded result has more digits than the scale. The other three ROUND
functions return 0 (zero).

See Also
• $JUSTIFY function

• TRUNCATE function

• CEILING function

• FLOOR function

• MOD function

• ObjectScript functions: $DOUBLE, $NORMALIZE, $NUMBER

InterSystems SQL Reference 617

ROUND

RPAD
A string function that returns a string right-padded to a specified length.

RPAD(string-expression,length[,padstring])

Arguments

A string expression, which can be the name of a column, a string literal,
a host variable, or the result of another scalar function. Can be of any
data type convertible to a VARCHAR data type. string-expression cannot
be a stream.

string-expression

An integer specifying the number of characters in the returned string.length

Optional — A string consisting of a character or a string of characters
used to pad the input string-expression. The padstring character or
characters are appended to the right of string-expression to supply as
many characters as need to create an output string of length characters.
padstring may be a string literal, a column, a host variable, or the result
of another scalar function. If omitted, the default is a blank space
character.

padstring

Description
RPAD pads a string expression with trailing pad characters. It returns a copy of the string padded to length number of
characters. If the string expression is longer than length number of characters, the return string is truncated to length number
of characters.

If string-expression is NULL, RPAD returns NULL. If string-expression is the empty string ('') RPAD returns a string
consisting entirely of pad characters. The returned string is type VARCHAR.

RPAD can be used in queries against a linked table.

RPAD does not remove leading or trailing blanks; it pads the string including any leading or trailing blanks. To remove
leading or trailing blanks before padding a string, use LTRIM, RTRIM, or TRIM.

Examples
The following example right pads column values with ^ characters (when needed) to return strings of length 16. Note that
some Name strings are right padded, some Name strings are right truncated to return strings of length 16.

 SELECT TOP 15 Name,RPAD(Name,16,'^') AS Name16
 FROM Sample.Person

The following example right pads column values with the ^=^ pad string (when needed) to return strings of length 20. Note
that the pad name string is repeated as many times as needed, and that some return strings contain partial pad strings:

 SELECT TOP 15 Name,RPAD(Name,20,'^=^') AS Name20
 FROM Sample.Person

See Also
• $JUSTIFY function

• LPAD function

• LTRIM function

618 InterSystems SQL Reference

SQL Functions

• RTRIM function

• TRIM function

InterSystems SQL Reference 619

RPAD

RTRIM
A string function that returns a string with the trailing blanks removed.

RTRIM(string-expression)

{fn RTRIM(string-expression)}

Arguments

A string expression, which can be the name of a column, a string literal,
or the result of another scalar function, where the underlying data type
can be represented as any character type (such as CHAR or VARCHAR).

string-expression

Description
RTRIM removes the trailing blanks from a string expression, and returns the string as type VARCHAR. If string-expression
is NULL, RTRIM returns NULL. If string-expression is a string consisting entirely of blank spaces, RTRIM returns the
empty string ('').

RTRIM leave leading blanks; to remove leading blanks, use LTRIM. To remove leading and/or trailing characters of any
type, use TRIM. To pad a string with trailing blanks or other characters, use RPAD. To create a string of blanks, use
SPACE.

Note that RTRIM can be used as an ODBC scalar function (with the curly brace syntax) or as an SQL general function.

Example
The following Embedded SQL example removes the five trailing blanks from the string. It leaves the five leading blanks:

 SET a=" Test string with 5 leading and 5 trailing spaces. "
 &sql(SELECT {fn RTRIM(:a)} INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"Before RTRIM",!,"start:",a,":end"
 WRITE !,"After RTRIM",!,"start:",b,":end" }

Returns:

Before RTRIM
start: Test string with 5 leading and 5 trailing spaces. :end
After RTRIM
start: Test string with 5 leading and 5 trailing spaces.:end

See Also
LTRIM TRIM RPAD SPACE

620 InterSystems SQL Reference

SQL Functions

SEARCH_INDEX
A function that returns a set of values from the index’s Find() method.

SEARCH_INDEX([[schema-name.]table-name.]index-name[,findparam[,...])

Arguments

Optional — The name of an existing table for which index-name is
defined. Cannot be a view. The table’s schema_name is optional. If
omitted, all tables specified in the FROM clause are searched.

table-name

The index to be searched. The SqlName of the index map of an
existing index.

index-name

Optional — An parameter or a comma-separated list of parameters
to be passed to the index’s Find() method.

findparam

Description
SEARCH_INDEX invokes the index-nameFind() method and returns a set of values. You can optionally pass parameters
to this Find() method. For example, SEARCH_INDEX(Sample.Person.NameIDX) invokes the
Sample.Person.NameIDXFind() method.

SEARCH_INDEX can be used with the %FIND predicate in a WHERE clause to supply the oref of an object that provides
an abstract representation encapsulating a set of values. These values are commonly row IDs returned by a method called
at query run time. SEARCH_INDEX invokes the index’s Find() method to return this oref. This usage is shown in the
following example:

SELECT Name FROM Sample.Person AS P
WHERE P.Name %FIND SEARCH_INDEX(Sample.Person.NameIDX)

The index must be found within the tables referenced by the SQL statement. An SQLCODE -151 error is generated if the
specified index-name does not exist within the tables used by the SQL statement. An SQLCODE -152 error is generated
if the specified index-name is not fully qualified, and is therefore ambiguous (could refer to more than one existing index)
within the tables used by the SQL statement.

If the index exists, but it has no corresponding Find() method, a runtime SQLCODE -149 error is generated “SQL Function
encountered an error” , the error being <METHOD DOES NOT EXIST>.

For further details on the use of SEARCH_INDEX, refer to the SQL Search text search tool.

See Also
• CREATE INDEX

• %FIND predicate

• %INSET predicate

• “Defining and Building Indices” chapter in SQL Optimization Guide

• “Using Indices” in the “Optimizing Query Performance” chapter in SQL Optimization Guide

InterSystems SQL Reference 621

SEARCH_INDEX

SECOND
A time function that returns the second for a datetime expression.

{fn SECOND(time-expression)}

Arguments

An expression that is the name of a column, the result of another scalar
function, or a string or numeric literal. It must resolve either to a timestamp
string or a $HOROLOG string, where the underlying data type can be
represented as %Time, %TimeStamp, or %PosixTime.

time-expression

Description
SECOND returns an integer from 0 to 59, and may return fractional seconds as well. The seconds are calculated for a
$HOROLOG or $ZTIMESTAMP value, an ODBC format date string (with no time value), or a timestamp.

A time-expression timestamp can be either data type %Library.PosixTime (an encoded 64-bit signed integer), or data type
%Library.TimeStamp (yyyy-mm-dd hh:mm:ss.fff).

To change the default time format, use the SET OPTION command.

You must supply either a timestamp string (yyyy-mm-dd hh:mm:ss) or a $HOROLOG string. A $HOROLOG string may
be a full datetime string (63274,37279) or only the time integer portion of $HOROLOG (37279). You cannot supply a
time string (hh:mm:ss); this always returns 0, regardless of the actual number of seconds.

The date portion of the timestamp string is not validated; the year can be in the range 0001 through 9999.

The seconds (ss) portion should be an integer in the range from 0 through 59. There is, however, no range checking for
user-supplied values. Numbers greater than 59, negative numbers, and fractions are returned as specified. Leading zeros
are optional on input. Leading and trailing zeros are suppressed on output.

SECOND returns 0 seconds when the seconds portion is '0', '00', or a nonnumeric value. Zero seconds is also returned if
an ODBC date with no time expression is supplied, if the seconds portion of the time expression is omitted entirely ('hh',
'hh:mm', 'hh:mm:', or 'hh::'), or the time expression is invalid.

The same time information can be returned using DATEPART or DATENAME.

This function can also be invoked from ObjectScript using the SECOND() method call:

$SYSTEM.SQL.SECOND(time-expression)

Fractional Seconds

SECOND returns fractions of a second if supplied in time-expression. Trailing zeros are truncated. If no fractional seconds
are specified (for example: 38.00) the decimal separator is also truncated.

The standard InterSystems IRIS internal representation of time values ($HOROLOG) does not support fractional seconds.
Timestamps do support fractional seconds.

The following SQL functions support fractional seconds: SECOND, CURRENT_TIMESTAMP, DATENAME,
DATEPART, and GETDATE. CURTIME, CURRENT_TIME, and NOW do not support fractional seconds.

The SQL SET OPTION statement permits you to set the default precision (number of decimal digits) for fractional seconds.

The ObjectScript $ZTIMESTAMP special variable can be used to represent fractional seconds. The ObjectScript functions
$ZDATETIME, $ZDATETIMEH, $ZTIME, and $ZTIMEH support fractional seconds.

622 InterSystems SQL Reference

SQL Functions

Examples
The following examples both return the number 38 because it is the thirty-eighth second of the time expression:

SELECT {fn SECOND('2018-02-16 18:45:38')} AS Seconds_Given

SELECT {fn SECOND(67538)} AS Seconds_Given

The following example returns .9 seconds. The leading and trailing zeros are truncated:

SELECT {fn SECOND('2018-02-16 18:45:00.9000')} AS Seconds_Given

The following example returns 0 seconds because the seconds portion of the datetime string has been omitted:

SELECT {fn SECOND('2018-02-16 18:45')} AS Seconds_Given

The following example returns 0 seconds because the time expression has been omitted from the datetime string:

SELECT {fn SECOND('2018-02-16')} AS Seconds_Given

The following examples all return the seconds portion of the current time, in whole seconds:

SELECT {fn SECOND(CURRENT_TIME)} AS Sec_CurrentT,
 {fn SECOND({fn CURTIME()})} AS Sec_CurT,
 {fn SECOND({fn NOW()})} AS Sec_Now,
 {fn SECOND($HOROLOG)} AS Sec_Horolog,
 {fn SECOND($ZTIMESTAMP)} AS Sec_ZTS

The following example shows that leading zeros are suppressed. The first SECOND function returns a length 2, the others
return a length of 1. An omitted time is considered to be 0 seconds, which has a length of 1:

SELECT LENGTH({fn SECOND('2018-02-15 11:45:22')}),
 LENGTH({fn SECOND('2018-02-15 03:05:06')}),
 LENGTH({fn SECOND('2018-02-15 3:5:6')}),
 LENGTH({fn SECOND('2018-02-15')})

The following Embedded SQL example shows that the SECOND function recognizes the TimeSeparator character specified
for the locale:

 DO ##class(%SYS.NLS.Format).SetFormatItem("TimeSeparator",".")
 &sql(SELECT {fn SECOND('2018-02-16 18.45.38')} INTO :a)
 WRITE "seconds=",a

See Also
• SQL concepts: Data Type, Date and Time Constructs

• SQL functions: HOUR, MINUTE, CURRENT_TIME, CURTIME, NOW, DATEPART, DATENAME

• ObjectScript function: $ZTIME

• ObjectScript special variables: $HOROLOG, $ZTIMESTAMP

InterSystems SQL Reference 623

SECOND

SIGN
A numeric function that returns the sign of a given numeric expression.

SIGN(numeric-expression)

{fn SIGN(numeric-expression)}

Arguments

A number for which the sign is to be returned.numeric-expression

SIGN returns the SMALLINT data type.

Description
SIGN returns the following:

• -1 if numeric-expression is less than zero.

• 0 (zero) if numeric-expression is zero: 0, +0, or -0.

• 1 if numeric-expression is greater than zero.

• NULL if numeric-expression is NULL, or if it is a non-numeric string.

SIGN can be used as either an ODBC scalar function (with the curly brace syntax) or as an SQL general function.

SIGN converts numeric-expression to canonical form before determining its value. For example, SIGN(-+-+3) and
SIGN(-3+5) both return 1, indicating a positive number.

Note: In InterSystems SQL, two negative signs (hyphens) are the in-line comment indicator. For this reason, a SIGN
argument specifying two successive negative signs must be presented as a numeric string enclosed in quotes.

Examples
The following examples shows the effects of SIGN:

SELECT SIGN(-49) AS PosNeg

returns -1.

SELECT {fn SIGN(-0.0)} AS PosNeg

returns 0.

SELECT SIGN(-+-16.748) AS PosNeg

returns 1.

SELECT {fn SIGN(NULL)} AS PosNeg

returns <null>.

See Also
• + (Positive) and – (Negative) unary operators

• ABS function

624 InterSystems SQL Reference

SQL Functions

• ISNUMERIC function

• %PLUS and %MINUS collation functions

InterSystems SQL Reference 625

SIGN

SIN
A scalar numeric function that returns the sine, in radians, of an angle.

{fn SIN(numeric-expression)}

Arguments

A numeric expression. This is an angle expressed in radians.numeric-expression

SIN returns either the NUMERIC or DOUBLE data type. If numeric-expression is data type DOUBLE, SIN returns
DOUBLE; otherwise, it returns NUMERIC.

Description
SIN takes any numeric value and returns its sine as a floating point number. SIN returns NULL if passed a NULL value.
SIN treats nonnumeric strings as the numeric value 0.

SIN returns a value with a precision of 19 and a scale of 18.

SIN can only be used as an ODBC scalar function (with the curly brace syntax).

You can use the DEGREES function to convert radians to degrees. You can use the RADIANS function to convert degrees
to radians.

Example
The following example shows the effect of SIN:

SELECT {fn SIN(0.52)} AS Sine

returns 0.496880.

See Also
• SQL functions: ACOS, ASIN, ATAN, COS, COT, TAN

• ObjectScript function: $ZSIN

626 InterSystems SQL Reference

SQL Functions

SPACE
A string function that returns a string of spaces.

SPACE(count)
{fn SPACE(count)}

Arguments

An integer expression specifying the number of blank spaces to return.count

Description
SPACE returns a string of blank spaces count spaces long. If count is a numeric string, a decimal number, or a mixed
numeric string, InterSystems IRIS resolves it to its integer portion. If count is a negative number or a nonnumeric string,
InterSystems IRIS resolves it to 0.

To remove blank spaces from a string, use LTRIM (leading blanks) or RTRIM (trailing blanks).

Note: The SPACE function should not be confused with the SPACE collation type. SPACE collation appends a single
space to a value, forcing it to be evaluated as a string. To establish SPACE collation, CREATE TABLE provides
a %SPACE collation keyword, and ObjectScript provides the Collation() method of the %SYSTEM.Util class.

Examples
The following embedded SQL example returns a string of spaces the length of the name field:

 &sql(SELECT SPACE(LENGTH(name))
 INTO :a
 FROM Sample.Person)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"Leave this much space:",a,"for names" }

See Also
LTRIM RTRIM TRIM

InterSystems SQL Reference 627

SPACE

%SQLSTRING
A collation function that sorts values as strings.

%SQLSTRING(expression[,maxlen])

%SQLSTRING expression

Arguments

A string expression, which can be the name of a column, a string literal, or the result
of another function, where the underlying data type can be represented as any character
type (such as CHAR or VARCHAR2). expression can be a subquery.

expression

Optional — A positive integer, which specifies that the collated value will be truncated
to the value of maxlen. Note that maxlen includes the appended leading blank space.
You can enclose maxlen with double parentheses to suppress literal substitution:
((maxlen)).

maxlen

Description
%SQLSTRING converts expression to format that is sorted as a (case-sensitive) string. %SQLSTRING strips trailing
whitespace (spaces, tabs, and so on) from the string, then adds one leading blank space to the beginning of the string. This
appended blank space forces NULL and numeric values to be collated as strings. Leading and trailing zeros are removed
from numbers.

Because %SQLSTRING appends a blank space to all values, it collates a NULL value as a blank space, with a string
length of 1. %SQLSTRING collates any value containing only whitespace (spaces, tabs, and so on) as the SQL empty
string (''). When %SQLSTRING appends a blank space to an empty (zero-length) string, it collates as a blank space plus
the internal representation of an empty string, $CHAR(0), resulting in a string length of 2.

The optional maxlen argument truncates the expression string to the specified number of characters when indexing or col-
lating. For example, if you insert a string with maxlen truncation, the full string is inserted and can be retrieved by a SELECT
statement; the index global for this string is truncated to the specified length. This means that ORDER BY and comparison
operations only evaluate the truncated index string. Such truncation is especially useful for indexing on strings that exceed
the 255-character limit for InterSystems IRIS subscripts. When converting from non-InterSystems IRIS systems, some
users encountered problems when they indexed on a VARCHAR(255) field and then tried to insert data into the table. With
the maxlen argument, if you need to index on a long field, you can use the truncation length parameter.

%SQLSTRING performs maxlen truncation after converting expression; if maxlen exceeds the length of the converted
expression no padding is added. The maximum string length is 3,641,144 characters; no maximum is enforced for maxlen.

You can perform the same collation conversion in ObjectScript using the Collation() method of the %SYSTEM.Util class:

 WRITE $SYSTEM.Util.Collation("The quick, BROWN fox.",8)

This function can also be invoked from ObjectScript using the SQLSTRING() method call:

 WRITE $SYSTEM.SQL.SQLSTRING("The quick, BROWN fox.")

Both of these methods support truncation after SQLSTRING conversion. Note that the truncation length must include the
appended blank:

 WRITE $SYSTEM.Util.Collation("The quick, BROWN fox.",8,6),!
 WRITE $SYSTEM.SQL.SQLSTRING("The quick, BROWN fox.",6)

For a not case-sensitive string conversion, refer to %SQLUPPER.

628 InterSystems SQL Reference

SQL Functions

Note: To change the system-wide default collation from %SQLUPPER (which is not case-sensitive) to %SQLSTRING
(which is case-sensitive), use the following command:

 WRITE $$SetEnvironment^%apiOBJ("collation","%Library.String","SQLSTRING")

After issuing this command, you must purge indexes, recompile all classes, then rebuild indexes. Do not rebuild
indices while the table’s data is being accessed by other users. Doing so may result in inaccurate query results.

Examples
The following query uses %SQLSTRING in the WHERE clause to perform a case-sensitive select:

SELECT Name FROM Sample.Person
WHERE %SQLSTRING Name %STARTSWITH %SQLSTRING 'Al'
ORDER BY Name

By default, %STARTSWITH string comparisons are not case-sensitive. This example uses the %SQLSTRING format
to make this comparison case-sensitive. It returns all names that begin with “Al” (such as Allen, Alton, etc.). Note when
using %STARTSWITH, you should apply %SQLSTRING collation to both sides of the statement.

The following example uses %SQLSTRING with a string truncation to return the first two characters of each name. Note
that the string truncation is 3 (not 2) because of the leading blank added by %SQLSTRING. The ORDER BY clause uses
this two-character field to put the rows in a rough collation sequence:

SELECT Name, %SQLSTRING(Name,3) AS FirstTwo
FROM Sample.Person
ORDER BY FirstTwo

This example returns the truncated values without changing the case of letters.

The following example applies %SQLSTRING to a subquery:

SELECT TOP 5 Name, %SQLSTRING((SELECT Name FROM Sample.Company),10) AS Company
FROM Sample.Person

See Also
• CREATE TABLE

• %STARTSWITH predicate

• %SQLUPPER collation function

• %TRUNCATE collation function

• Collation chapter in Using InterSystems SQL

InterSystems SQL Reference 629

%SQLSTRING

%SQLUPPER
A collation function that sorts values as uppercase strings.

%SQLUPPER(expression[,maxlen])
%SQLUPPER expression

Arguments

A string expression, which can be the name of a column, a string literal, or the result
of another function, where the underlying data type can be represented as any character
type (such as CHAR or VARCHAR2). expression can be a subquery.

expression

Optional — An integer, which specifies that the collated value will be truncated to the
value of maxlen. Note that maxlen includes the appended leading blank space.You
can enclose maxlen with double parentheses to suppress literal substitution: ((maxlen)).

maxlen

Description
SQLUPPER is the default collation.

%SQLUPPER converts expression to a format that is sorted as a (not case-sensitive) uppercase string. %SQLUPPER
converts all alphabetic characters to uppercase, strips trailing whitespace (spaces, tabs, and so on) from the string, then
adds one leading blank space to the beginning of the string. This appended blank space causes NULL and numeric values
to be collated as strings.

SQL converts numeric values to canonical form (removing leading and trailing zeros, expanding exponents, etc.) before
passing the number to the function. SQL does not convert numeric strings to canonical form.

Because %SQLUPPER appends a blank space to all values, it collates a NULL value as a blank space, with a string length
of 1. %SQLUPPER collates any value containing only whitespace (spaces, tabs, and so on) as the SQL empty string ('').
When %SQLUPPER appends a blank space to an empty (zero-length) string, it collates as a blank space plus the internal
representation of an empty string, $CHAR(0), resulting in a string length of 2.

The optional maxlen argument truncates the converted expression string to the specified number of characters when
indexing or collating. For example, if you insert a string with maxlen truncation, the full string is inserted and can be
retrieved by a SELECT statement; the index global for this string is truncated to the specified length. This means that
ORDER BY and comparison operations only evaluate the truncated index string. Such truncation is especially useful for
indexing on strings that exceed the 255-character limit for InterSystems IRIS subscripts. When converting from non-
InterSystems IRIS systems, some users encountered problems when they indexed on a VARCHAR(255) field and then
tried to insert data into the table. With the maxlen argument, if you need to index on a long field, you can use the truncation
length parameter.

%SQLUPPER performs maxlen truncation after converting expression; if maxlen exceeds the length of the converted
expression no padding is added. The maximum string length is 3,641,144 characters; no maximum is enforced for maxlen.

You can perform the same collation conversion in ObjectScript using the Collation() method of the %SYSTEM.Util class:

 WRITE $SYSTEM.Util.Collation("The quick, BROWN fox.",7)

This function can also be invoked from ObjectScript using the SQLUPPER() method call:

 WRITE $SYSTEM.SQL.SQLUPPER("The quick, BROWN fox.")

Both of these methods support truncation after SQLUPPER conversion. Note that the truncation length must include the
appended blank:

630 InterSystems SQL Reference

SQL Functions

 WRITE $SYSTEM.Util.Collation("The quick, BROWN fox.",7,6),!
 WRITE $SYSTEM.SQL.SQLUPPER("The quick, BROWN fox.",6)

For a case-sensitive string conversion, refer to %SQLSTRING.

Note: To change the system-wide default collation from %SQLUPPER (which is not case-sensitive) to %SQLSTRING
(which is case-sensitive), use the following command:

 WRITE $$SetEnvironment^%apiOBJ("collation","%Library.String","SQLSTRING")

After issuing this command, you must purge indexes, recompile all classes, then rebuild indexes. Do not rebuild
indices while the table’s data is being accessed by other users. Doing so may result in inaccurate query results.

Other Case Conversion Functions

The %SQLUPPER function is the preferred way in SQL to convert a data value for not case-sensitive comparison or
collation. %SQLUPPER adds a leading blank space to the beginning of the data, which forces numeric data and the NULL
value to be interpreted as strings.

The following are other functions for converting the case of a data value:

• UPPER and UCASE: converts letters to uppercase, has no effect on number characters, punctuation characters,
embedded spaces, and leading and trailing blank spaces. Does not force numerics to be interpreted as a string.

• LOWER and LCASE: converts letters to lowercase, has no effect on number characters, punctuation characters,
embedded spaces, and leading and trailing blank spaces. Does not force numerics to be interpreted as a string.

• %SQLSTRING: does not convert letter case. However, it adds a leading blank space to the beginning of the data,
which forces numeric data and the NULL value to be interpreted as strings.

Alphanumeric Collation Order

The case conversion functions collate data values that begin with a number using different algorithms, as follows:

%SQLUPPER, %SQLSTRING, and all other case
conversion functions

%MVR

5988 Clinton Avenue,
6 Oak Avenue,
6023 Washington Court,
6090 Elm Court,
6185 Clinton Drive,
6209 Clinton Street,
6284 Oak Drive,
6310 Franklin Street,
6406 Maple Place,
641 First Place,
6572 First Avenue,
66 Main Street,
66 Oak Street,
6643 First Street,
665 Ash Drive,
672 Main Court,
6754 Oak Court,
6986 Madison Blvd,
7000 Ash Court,
709 Oak Avenue,

6 Oak Avenue,
66 Main Street,
66 Oak Street,
641 First Place,
665 Ash Drive,
672 Main Court,
709 Oak Avenue,
5988 Clinton Avenue,
6023 Washington Court,
6090 Elm Court,
6185 Clinton Drive,
6209 Clinton Street,
6284 Oak Drive,
6310 Franklin Street,
6406 Maple Place,
6572 First Avenue,
6643 First Street,
6754 Oak Court,
6986 Madison Blvd,
7000 Ash Court,

Examples
The following query uses %SQLUPPER with a string truncation to return the first two characters of each name in uppercase.
Note that the string truncation is 3 (not 2) because of the leading blank added by %SQLUPPER. The ORDER BY clause
uses this two-character field to put the rows in a rough collation sequence:

InterSystems SQL Reference 631

%SQLUPPER

SELECT Name, %SQLUPPER(Name,3) AS FirstTwo
FROM Sample.Person
ORDER BY FirstTwo

The following example applies %SQLUPPER to a subquery:

SELECT TOP 5 Name, %SQLUPPER((SELECT Name FROM Sample.Company),10) AS Company
FROM Sample.Person

See Also
• CREATE TABLE

• %STARTSWITH predicate

• %SQLSTRING collation function

• %TRUNCATE collation function

• Collation chapter in Using InterSystems SQL

632 InterSystems SQL Reference

SQL Functions

SQRT
A numeric function that returns the square root of a given numeric expression.

SQRT(numeric-expression)

{fn SQRT(numeric-expression)}

Arguments

An expression that resolves to a positive number from which the square
root is calculated.

numeric-expression

SQRT returns either the NUMERIC or DOUBLE data type. If numeric-expression is data type DOUBLE, SQRT returns
DOUBLE; otherwise, it returns NUMERIC.

Description
SQRT returns the square root of numeric-expression. The numeric-expression must be a positive number. A negative
numeric-expression (other than -0) generates an SQLCODE -400 error. SQRT returns NULL if passed a NULL value.

SQRT returns a value with a precision of 36 and a scale of 18.

SQRT can be specified as a regular scalar function or as an ODBC scalar function (with the curly brace syntax).

Examples
The following example shows the two SQRT syntax forms. Both return the square root of 49:

SELECT SQRT(49) AS SRoot,{fn SQRT(49)} AS ODBCSRoot

The following embedded SQL example returns the square roots of the integers 0 through 10:

 SET a=0
 WHILE a<11 {
 &sql(SELECT SQRT(:a) INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE
 QUIT }
 ELSE {
 WRITE !,"The square root of ",a," = ",b
 SET a=a+1 }
 }

See Also
• SQL functions: POWER ROUND SQUARE

• ObjectScript function: $ZSQR

InterSystems SQL Reference 633

SQRT

SQUARE
A scalar numeric function that returns the square of a number.

SQUARE(numeric-expression)

Arguments

An expression that resolves to a numeric value.numeric-expression

SQUARE returns either the NUMERIC or DOUBLE data type. If numeric-expression is data type DOUBLE, SQUARE
returns DOUBLE; otherwise, it returns NUMERIC.

Description
SQUARE returns the square of numeric-expression. SQUARE returns NULL if passed a NULL value.

The precision and scale returned by SQUARE are the same as those returned by the SQL multiplication operator.

Examples
The following Embedded SQL example returns the squares of the integers 0 through 10:

 SET a=0
 WHILE a<11 {
 &sql(SELECT SQUARE(:a) INTO :b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE
 QUIT }
 ELSE {
 WRITE !,"The square of ",a," = ",b
 SET a=a+1 }
 }

See Also
• SQL functions: POWER, ROUND, SQRT

• ObjectScript function: $ZPOWER

634 InterSystems SQL Reference

SQL Functions

STR
A function that converts a numeric to a string.

STR(number[,length[,decimals]])

Arguments

An expression that resolves to a numeric. It can be a field name, a numeric, or the
result of another function. If a field name is specified, the logical value is used.

number

Optional — An integer specifying the total length of the desired output string, including
all characters (digits, decimal point, sign, blank spaces). The default is 10.

length

Optional — An integer specifying the number of places to the right of the decimal point
to include. The default is 0.

decimals

Description
STR converts a numeric to the STRING format, truncating the numeric based on the values of length and decimals. The
length argument must be large enough to include the entire integer portion of the number, and, if decimals is specified, that
number of decimal digits plus 1 (for the decimal point). If length is not large enough, STR returns a string of asterisks (*)
equal to length.

STR converts numerics to their canonical form before string conversion. It therefore performs arithmetic operations,
removes leading and trailing zeros and leading plus signs from numbers.

If the number argument is NULL, STR returns NULL. If the number argument is the empty string (''), STR returns the
empty string. STRING retains whitespace.

Example
In the following Embedded SQL example, STR converts numerics into a string:

 &sql(SELECT STR(123),
 STR(123,4),
 STR(+00123.45,3),
 STR(+00123.45,3,1),
 STR(+00123.45,5,1)
 INTO :v,:w,:x,:y,:z)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"Resulting STR:",v," string"
 WRITE !,"Resulting STR:",w," string"
 WRITE !,"Resulting STR:",x," string"
 WRITE !,"Resulting STR:",y," string"
 WRITE !,"Resulting STR:",z," string" }

The first STR function returns a string consisting of 7 leading blanks and the number 123; the seven leading blanks are
because the default string length is 10. The second STR function returns the string “ 123”; note the leading blank needed
to return a string of length 4. The third STR function returns the string “123”; the numeric is put into canonical form, and
decimals defaults to 0. The fourth STR function returns “***” because the string length is not long enough to encompass
the entire number as specified; the number of asterisks indicates the string length. The fifth STR function returns “123.4”;
note that the length must be 5 to include the decimal digit.

See Also
STRING, %SQLUPPER, %SQLSTRING

InterSystems SQL Reference 635

STR

STRING
A function that converts and concatenates expressions into a string.

STRING(string1[,string2][,...][,stringn])

Arguments

An expression, which can be a field name, a string literal, a numeric, or the result of
another function, where the underlying data type can be represented as any character
type (such as CHAR or VARCHAR2). If a field name is specified, the logical value is
used.

string

Description
STRING converts one or more strings to the STRING format, and then concatenates these strings into a single string. No
case transformation is performed.

STRING converts numerics to their canonical form before string conversion. It therefore performs arithmetic operations,
removes leading and trailing zeros and leading plus signs from numbers.

If one of the string arguments is NULL, STRING returns NULL. If one of the string arguments is the empty string (''),
STRING concatenates the other arguments. STRING retains whitespace.

You can use the %SQLSTRING function to convert a data value for case-sensitive string comparison, or the %SQLUPPER
function to convert a data value for not case-sensitive string comparison.

Examples
In the following Embedded SQL example, STRING concatenates three substrings into a single string. The example shows
the handling of blank spaces, the empty string, and NULL:

 &sql(SELECT STRING('a','b','c'),
 STRING('a',' ','c'),
 STRING('a','','c'),
 STRING('a',NULL,'c')
 INTO :w,:x,:y,:z)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"Resulting string is:",w
 WRITE !,"Resulting string is:",x
 WRITE !,"Resulting string is:",y
 WRITE !,"Resulting string is:",z }

In the following Embedded SQL example, STRING converts numerics into a string. All of these STRING functions return
the string '123':

 &sql(SELECT STRING(123),
 STRING(+00123.00),
 STRING('1',23),
 STRING(1,(10*2)+3)
 INTO :w,:x,:y,:z)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"Resulting string is:",w
 WRITE !,"Resulting string is:",x
 WRITE !,"Resulting string is:",y
 WRITE !,"Resulting string is:",z }

In the following Embedded SQL example, STRING retrieves sample data from fields and concatenates it into a string:

636 InterSystems SQL Reference

SQL Functions

 &sql(SELECT STRING(Name,Age)
 INTO :x
 FROM Sample.Person)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"Resulting string is:",x }

See Also
%SQLUPPER, %SQLSTRING, STR

InterSystems SQL Reference 637

STRING

STUFF
A string function that replaces a substring within a string.

STUFF(string,start,length,substring)

Arguments

A string expression that is the target for the substring replacement.string

The starting point for replacement, specified as a positive integer. A character count
from the beginning of string, counting from 1. Permitted values are 0 through the length
of string. To append characters, specify a start of 0 and a length of 0. The empty string
or a nonnumeric value is treated as 0.

start

The number of characters to replace, specified as a positive integer.To insert characters,
specify a length of 0. To replace all characters after start, specify a length greater than
the number of existing characters. The empty string or a nonnumeric value is treated
as 0.

length

A string expression used to replace the substring identified by its starting point and
length. Can be longer or shorter than the substring it replaces. Can be the empty string.

substring

Description
STUFF replaces a substring with another substring. It identifies the substring to be replaced by location and length, and
replaces it with substring.

This function provides compatibility with Transact-SQL implementations.

The replacement substring may be longer or shorter than the original value. To delete the original value, substring can be
the empty string ('').

The start value must be within the current length of string. You can append a substring to the beginning of string by spec-
ifying a start value of 0. The empty string or a nonnumeric value is treated as 0.

Specifying NULL for the start, length, or substring argument returns NULL.

REPLACE and STUFF

Both REPLACE and STUFF perform substring replacement. REPLACE searches for a substring by data value. STUFF
searches for a substring by string position and length.

For a list of functions that search for a substring, refer to String Manipulation in the Concepts section of this manual.

Examples
The following example shows a single-character substitution, turning KING into KONG:

SELECT STUFF('KING',2,1,'O')

The following examples replace an 8-character substring (Kentucky) with a longer 12-character substring and a shorter 2-
character substring:

SELECT STUFF('In my old Kentucky home',11,8,'Rhode Island'),
 STUFF('In my old Kentucky home',11,8,'KY')

The following example inserts a substring:

SELECT STUFF('In my old Kentucky home',19,0,' (KY)')

638 InterSystems SQL Reference

SQL Functions

The following example appends a substring to the beginning of the string:

SELECT STUFF('In my old Kentucky home',0,0,'The sun shines bright ')

The following example deletes an 8-character substring by replacing it with the empty string:

SELECT STUFF('In my old Kentucky home',11,8,'')

See Also
• REPLACE function

• $EXTRACT function

• SUBSTRING function

• SUBSTR function

• String Manipulation

InterSystems SQL Reference 639

STUFF

SUBSTR
A string function that returns a substring that is derived from a specified string expression.

SUBSTR(string-expression,start[,length])

Arguments

The string expression from which the substring is to be derived. The
expression can be the name of a column, a string literal, or the result of
another scalar function, where the underlying data type can be
represented as any character type (such as CHAR or VARCHAR).

string-expression

An integer that specifies where in string-expression the substring will
begin. A positive starting position specifies the number of characters
from the beginning of the string.The first character in string-expression1
is at position 1. A negative starting position specifies the number of
characters from the end of the string. If start is 0 (zero), it is treated as
1.

start

Optional — A positive integer that specifies the length of the substring
to return. This value specifies that the substring ends length characters
to the right of the starting position. If omitted, substring goes from start
to the end of string-expression. If length is 0 or a negative number,
InterSystems IRIS returns NULL.

length

Description
Because start can be negative, you can obtain a substring from either the beginning or end of the original string.

Floating-point numbers passed as arguments to SUBSTR are converted to integers by truncating the fractional portion.

• If start is 0, –0, or 1, the returned substring begins with the first character of the string.

• If start is a negative number the returned substring begins that number of characters from the end of the string, with -
1 representing the last character of the string. If the negative number is so large that its value counted backwards from
the end of the string would position before the beginning of the string, the returned substring begins with the first
character of the string.

• If start is past the end of the string, NULL is returned.

• If length larger than the remaining characters in the string, the substring from start to the end of the string is returned.

• If length is less that 1, NULL is returned.

• If either start or length is NULL, NULL is returned.

SUBSTR cannot be used with stream data. If string-expression is a stream field, SUBSTR generates an SQLCODE -37.
Use SUBSTRING to extract a substring from stream data.

SUBSTR is supported for Oracle compatibility.

Examples
The following example returns the substring CDEFG because it specifies that the substring begin at the third character (C)
and continue to the end of the string:

SELECT SUBSTR('ABCDEFG',3) AS Sub

640 InterSystems SQL Reference

SQL Functions

The following example returns the substring CDEF because it specifies that the substring begin at the third character (C)
and continue for four characters (until F):

SELECT SUBSTR('ABCDEFG',3,4) AS Sub

The following example returns the substring CDEF because it specifies that InterSystems IRIS should first count five
characters backwards from the end of the original string, and then return the next four characters:

SELECT SUBSTR('ABCDEFG',-5,4) AS Sub

See Also
• SQL function: SUBSTRING

• ObjectScript functions: $EXTRACT $PIECE

InterSystems SQL Reference 641

SUBSTR

SUBSTRING
A string function that returns a substring from a larger character string.

SUBSTRING(string-expression,start[,length])

SUBSTRING(string-expression FROM start [FOR length])

{fn SUBSTRING(string-expression,start[,length])}

Arguments

The string expression from which the substring is to be derived. An
expression, which can be the name of a column, a string literal, or the
result of another scalar function. The underlying data type can be a
character type (such as CHAR or VARCHAR), a numeric, or a data
stream.

string-expression

An integer that specifies the position in string-expression to begin the
substring. The first character in string-expression is at position 1. If the
start position is higher than the length of the string, SUBSTRING returns
an empty string (''). If the start position is lower than 1 (zero, or a negative
number) the substring begins at position 1, but the length of the substring
is reduced by the start position.

start

Optional — An integer that specifies the length of the substring to return.
If length is not specified, the default is to return the rest of the string.

length

Description
The value of start controls the starting point of the substring:

• If start is less than 1, the value of length is decremented by a corresponding amount. Thus, if start is 0, the value of
length is diminished by 1; if start is –1, the value of length is diminished by 2.

The value of length controls the size of the substring:

• If length is a positive value (1 or greater), the substring ends length number of characters to the right of the starting
position. (This effective length may be diminished if the start number is less than 1.)

• If length is larger than the number of character remaining in the string, all characters to the right of the starting position
through the end of string-expression are returned.

• If length is zero, NULL is returned.

• If length is a negative number, InterSystems IRIS issues an SQLCODE –140 error.

Floating-point numbers passed as arguments to SUBSTRING are converted to integers by truncating the fractional portion.

SUBSTRING extracts a substring from the beginning of a string. SUBSTR can extract a substring from either the beginning
or the end of a string. Note that these two SQL functions handle argument values differently. SUBSTRING can be used
with character stream data; SUBSTR cannot be used with stream data.

SUBSTRING can be used as an ODBC scalar function (with the curly brace syntax) or as an SQL general function.

Return Value

If any SUBSTRING argument value is NULL, SUBSTRING returns NULL.

642 InterSystems SQL Reference

SQL Functions

If string-expression is any %String data type, the SUBSTRING return value is the same data type as the string-expression
data type. This allows SUBSTRING to handle user-defined string data types with special encoding.

If string-expression is not a %String data type (for example, %Integer), the SUBSTRING return value is %String.

Examples
This example returns the string “forward”:

SELECT {fn SUBSTRING('forward pass',1,7)} AS SubText

This example returns the string “pass”:

SELECT {fn SUBSTRING('forward pass',9,4)} AS SubText

The following example returns the first four characters of each name:

SELECT Name,SUBSTRING(Name,1,4) AS FirstFour
FROM Sample.Person

The following example demonstrates another syntactical form of SUBSTRING. This example is functionally the same as
the previous example:

SELECT Name,SUBSTRING(Name FROM 1 FOR 4) AS FirstFour
FROM Sample.Person

The following example shows how the length is reduced by a start value of less than 1. (A start value of 0 reduces length
by 1, a start value of -1 reduces length by 2, and so forth.) In this case, length is reduced by 3, so only one character (“A”)
is returned:

SELECT {fn SUBSTRING('ABCDEFG',-2,4)} AS SubText

See Also
• SQL function: SUBSTR

• ObjectScript functions: $EXTRACT $PIECE

InterSystems SQL Reference 643

SUBSTRING

SYSDATE
A date/time function that returns the current local date and time.

SYSDATE

Description
SYSDATE takes no arguments and returns the current local date and time as a timestamp in either %TimeStamp data type
format (yyyy-mm-dd hh:mm:ss.ffff) or %PosixTime data type format (an encoded 64-bit signed integer). SYSDATE returns
the current local date and time for this timezone; it adjusts for local time variants, such as Daylight Saving Time.

By default, SYSDATE returns time in whole second increments. This default can be configured.

Note: SYSDATE is a synonym for the argumentless CURRENT_TIMESTAMP function. The
CURRENT_TIMESTAMP function is preferred for use in InterSystems SQL. The SYSDATE function is provided
for compatibility with other versions of SQL.

See Also
• CURRENT_TIMESTAMP

644 InterSystems SQL Reference

SQL Functions

TAN
A scalar numeric function that returns the tangent, in radians, of an angle.

{fn TAN(numeric-expression)}

Arguments

A numeric expression. This is an angle expressed in radians.numeric-expression

TAN returns either the NUMERIC or DOUBLE data type. If numeric-expression is data type DOUBLE, TAN returns
DOUBLE; otherwise, it returns NUMERIC.

Description
TAN takes any numeric value and returns its tangent. TAN returns NULL if passed a NULL value. TAN treats nonnumeric
strings as the numeric value 0.

TAN returns a value with a precision of 36 and a scale of 18.

TAN can only be used as an ODBC scalar function (with the curly brace syntax).

You can use the DEGREES function to convert radians to degrees. You can use the RADIANS function to convert degrees
to radians.

Example
The following example shows the effect of TAN.

SELECT {fn TAN(0.52)} AS Tangent

returns 0.572561.

See Also
• SQL functions: ACOS, ASIN, ATAN, COS, COT, SIN

• ObjectScript function: $ZTAN

InterSystems SQL Reference 645

TAN

TIMESTAMPADD
A scalar date/time function that returns a new timestamp calculated by adding a number of intervals of a specified date part
to a timestamp.

{fn TIMESTAMPADD(interval-type,integer-exp,timestamp-exp)}

Arguments

The type of time/date interval that integer-exp represents, specified as a keyword.interval-type

An integer value expression that is to be added to timestamp-exp.integer-exp

A timestamp value expression, which will be increased by the value of integer-exp.timestamp-exp

Description
The TIMESTAMPADD function modifies a date/time expression by incrementing the specified date part by the specified
number of units. For example, if interval-type is SQL_TSI_MONTH and integer-exp is 5, TIMESTAMPADD increments
timestamp-exp by five months. You can also decrement a date part by specifying a negative integer for integer-exp.

TIMESTAMPADD returns a timestamp of the same data type as the input timestamp-exp. This timestamp can be in either
%Library.TimeStamp data type format (yyyy-mm-dd hh:mm:ss.ffff) or %Library.PosixTime data type format (an encoded
64-bit signed integer).

Note that TIMESTAMPADD can only be used as an ODBC scalar function (with the curly brace syntax).

Similar time/date modification operations can be performed on a timestamp using the DATEADD general function.

Interval Types

The interval-type argument can be one of the following timestamp intervals:

• SQL_TSI_FRAC_SECOND

• SQL_TSI_SECOND

• SQL_TSI_MINUTE

• SQL_TSI_HOUR

• SQL_TSI_DAY

• SQL_TSI_WEEK

• SQL_TSI_MONTH

• SQL_TSI_QUARTER

• SQL_TSI_YEAR

These timestamp intervals may be specified with or without enclosing quotation marks, using single quotes or double
quotes. They are not case-sensitive.

Incrementing or decrementing a timestamp interval causes other intervals to be modified appropriately. For example,
incrementing the hour past midnight automatically increments the day, which may in turn increment the month, and so
forth. TIMESTAMPADD always returns a valid date, taking into account the number of days in a month, and calculating
for leap year. For example, incrementing January 31 by one month returns February 28 (the highest valid date in the month),
unless the specified year is a leap year, in which case it returns February 29.

646 InterSystems SQL Reference

SQL Functions

You can increment or decrement by fractional seconds of three digits of precision. Specify fractional seconds as an integer
count of thousandths of a second (001 through 999).

DATEADD and TIMESTAMPADD handle quarters (3-month intervals); DATEDIFF and TIMESTAMPDIFF do not
handle quarters.

%TimeStamp Format

If the timestamp-exp argument is in %Library.TimeStamp data type format (yyyy-mm-dd hh:mm:ss.ffff) the following rules
apply:

• If timestamp-exp specifies only a time value, the date portion of timestamp-exp is set to '1900–01–01' before calculating
the resulting timestamp.

• If timestamp-exp specifies only a date value, the time portion of timestamp-exp is set to '00:00:00' before calculating
the resulting timestamp.

• The timestamp-exp can include or omit fractional seconds. The timestamp-exp can include any number of digits of
precision, but interval-type SQL_TSI_FRAC_SECOND specifies exactly three digits of precision. Attempting to
specify a SQL_TSI_FRAC_SECOND of less than or more than three digits can have unpredictable results.

Range and Value Checking

TIMESTAMPADD performs the following checks on %Library.TimeStamp input values:

• All specified parts of the timestamp-exp must be valid before any TIMESTAMPADD operation can be performed.

• A date string must be complete and properly formatted with the appropriate number of elements and digits for each
element, and the appropriate separator character. Years must be specified as four digits. An invalid date value results
in an SQLCODE -400 error.

• Date values must be within a valid range. Years: 0001 through 9999. Months: 1 through 12. Days: 1 through 31. Hours:
00 through 23. Minutes: 0 through 59. Seconds: 0 through 59. The number of days in a month must match the month
and year. For example, the date '02–29' is only valid if the specified year is a leap year. An invalid date value results
in an SQLCODE -400 error.

• The incremented (or decremented) year value returned must be within the range 0001 through 9999. Incrementing or
decrementing beyond this range returns <null>.

• Date values less than 10 may include or omit a leading zero. Other non-canonical integer values are not permitted.
Therefore, a Day value of '07' or '7' is valid, but '007', '7.0' or '7a' are not valid. Date values less than 10 are always
returned with a leading zero.

• Time values may be wholly or partially omitted. If timestamp-exp specifies an incomplete time, zeros are supplied for
the unspecified parts.

• An hour value less than 10 must include a leading zero. Omitting this leading zero results in an SQLCODE -400 error.

Examples
The following example adds 1 week to the original timestamp:

SELECT {fn TIMESTAMPADD(SQL_TSI_WEEK,1,'2017-12-20 12:00:00')}

it returns 2017-12-27 12:00:00, because adding 1 week adds 7 days.

The following example adds 5 months to the original timestamp:

SELECT {fn TIMESTAMPADD(SQL_TSI_MONTH,5,'2017-12-20 12:00:00')}

returns 2018-05-20 12:00:00 because in this case adding 5 months also increments the year.

InterSystems SQL Reference 647

TIMESTAMPADD

The following example also adds 5 months to the original timestamp:

SELECT {fn TIMESTAMPADD(SQL_TSI_MONTH,5,'2018-01-31 12:00:00')}

it returns 2018-06-30 12:00:00. Here TIMESTAMPADD modified the day value as well as the month, because simply
incrementing the month would result in June 31, which is an invalid date.

The following example increments the original timestamp by 45 minutes:

SELECT {fn TIMESTAMPADD(SQL_TSI_MINUTE,45,'2017-12-20 00:00:00')}

returns 2017-12-20 00:45:00.

The following example decrements the original timestamp by 45 minutes:

SELECT {fn TIMESTAMPADD(SQL_TSI_MINUTE,-45,'2017-12-20 00:00:00')}

it returns 2017-12-19 23:15:00. Note that in this case decrementing the time also decremented the day.

See Also
• TIMESTAMPDIFF, DATEADD, DATENAME, DATEPART, TO_POSIXTIME, TO_TIMESTAMP

648 InterSystems SQL Reference

SQL Functions

TIMESTAMPDIFF
A scalar date/time function that returns an integer count of the difference between two timestamps for a specified date part.

{fn TIMESTAMPDIFF(interval-type,startdate,enddate)}

Arguments

The type of time/date interval that the returned value will represent.interval-type

A timestamp value expression.startdate

A timestamp value expression that will be compared to startdate.enddate

Description
The TIMESTAMPDIFF function returns the difference between two given timestamps (that is, one timestamp is subtracted
from the other) for the specified date part interval (seconds, days, weeks, etc.). The value returned is an INTEGER, the
number of these intervals between the two timestamps. (If enddate is earlier than startdate, TIMESTAMPDIFF returns
a negative INTEGER value.)

The startdate and enddate are timestamps. These timestamps can be in either %Library.TimeStamp data type format (yyyy-
mm-dd hh:mm:ss.ffff) or %Library.PosixTime data type format (an encoded 64-bit signed integer).

The interval-type argument can be one of the following timestamp intervals:

• SQL_TSI_FRAC_SECOND

• SQL_TSI_SECOND

• SQL_TSI_MINUTE

• SQL_TSI_HOUR

• SQL_TSI_DAY

• SQL_TSI_WEEK

• SQL_TSI_MONTH

• SQL_TSI_YEAR

These timestamp intervals may be specified with or without enclosing quotation marks, using single quotes or double
quotes. They are not case-sensitive.

TIMESTAMPDIFF and DATEDIFF do not handle quarters (3-month intervals).

Note that TIMESTAMPDIFF can only be used as an ODBC scalar function (with the curly brace syntax). Similar time/date
comparison operations can be performed on a timestamp using the DATEDIFF general function.

%TimeStamp Format

If the startdate or enddate argument is in %Library.TimeStamp data type format (yyyy-mm-dd hh:mm:ss.ffff) the following
rules apply:

• If either timestamp expression specifies only a time value and interval-type specifies a date interval (days, weeks,
months, or years), the missing date portion of the timestamp defaults to '1900–01–01' before calculating the resulting
interval count.

InterSystems SQL Reference 649

TIMESTAMPDIFF

• If either timestamp expression specifies only a date value and interval-type specifies a time interval (hours, minutes,
seconds, fractional seconds), the missing time portion of the timestamp defaults to '00:00:00.000' before calculating
the resulting interval count.

• You can include or omit fractional seconds of any number of digits of precision. SQL_TSI_FRAC_SECOND returns
a difference of fractional seconds as an integer count of thousandths of a second (three digits of precision). %PosixTime
values always includes six digits of precision.

Range and Value Checking

TIMESTAMPDIFF performs the following checks on input values.

• All specified parts of the startdate and enddate must be valid before any TIMESTAMPDIFF operation can be per-
formed.

• A date string must be complete and properly formatted with the appropriate number of elements and digits for each
element, and the appropriate separator character. Years must be specified as four digits. An invalid date value results
in an SQLCODE -8 error.

• Date values must be within a valid range. Years: 0001 through 9999. Months: 1 through 12. Days: 1 through 31. Hours:
00 through 23. Minutes: 0 through 59. Seconds: 0 through 59. The number of days in a month must match the month
and year. For example, the date '02–29' is only valid if the specified year is a leap year. An invalid date value results
in an SQLCODE -8 error.

• Date values less than 10 (month and day) may include or omit a leading zero. Other non-canonical integer values are
not permitted. Therefore, a Day value of '07' or '7' is valid, but '007', '7.0' or '7a' are not valid.

• Time values may be wholly or partially omitted. If startdate or enddate specifies an incomplete time, zeros are supplied
for the unspecified parts.

• An hour value less than 10 must include a leading zero. Omitting this leading zero results in an SQLCODE -8 error.

Examples
The following example returns 7 because the second timestamp (2017-12-20 12:00:00) is 7 months greater than the first
one:

SELECT {fn TIMESTAMPDIFF(SQL_TSI_MONTH,
 '2017-5-19 00:00:00','2017-12-20 12:00:00')}

The following example returns 566 because the second timestamp ('12:00:00') is 566 minutes greater than the first one
(02:34:12):

SELECT {fn TIMESTAMPDIFF(SQL_TSI_MINUTE,'02:34:12','12:00:00')}

The following example returns -1440 because the second timestamp is one day (1440 minutes) lesser than the first one:

SELECT {fn TIMESTAMPDIFF(SQL_TSI_MINUTE,'2017-12-06','2017-12-05')}

See Also
• TIMESTAMPADD, DATEDIFF, TO_POSIXTIME, TO_TIMESTAMP

650 InterSystems SQL Reference

SQL Functions

TO_CHAR
A string function that converts a date, timestamp, or number to a formatted character string.

TO_CHAR(tochar-expression[,format])

TOCHAR(tochar-expression[,format])

Arguments

A logical date, timestamp, or number expression to be converted.tochar-expression

Optional — A character code that specifies a date, timestamp, or number
format for the tochar-expression conversion. If omitted, TO_CHAR returns
tochar-expression as a canonical number.

format

Description
The names TO_CHAR and TOCHAR are interchangeable and are supported for Oracle compatibility.

The TO_CHAR function with format has five uses:

• To convert a date integer to a formatted date string.

• To convert a date before 1840 to a Julian date integer.

• To convert a time integer to a formatted time string.

• To convert a date and time to a formatted datetime string.

• To convert a number to a formatted numeric string.

This function can also be invoked from ObjectScript using the TOCHAR() method call:

$SYSTEM.SQL.TOCHAR(tochar-expression,format)

Valid and Invalid Arguments

• For tochar-expression to be interpreted as a timestamp, it must be of the format YYYY-MM-DD HH:MI:SS, or one
of the following valid variants: Month and date values that are less than 10 may include or omit a leading zero; if the
leading zero is omitted, it is also omitted in the returned date. The seconds value may be omitted, though the colon
indicating its place must be specified (HH:MI:); in the returned time the seconds default to 00. The seconds value may
include fractional seconds (HH:MM:SS.nnn); in the returned time these fractional seconds are truncated. A timestamp
must include a time portion, even if format does not specify time formatting.

• If tochar-expression is not a valid timestamp format, TO_CHAR interprets it as an integer, ending interpretation when
it encounters the first non-integer character. If format is a date or timestamp format, TO_CHAR interprets
tochar-expression as a $HOROLOG date integer. Thus 2010-03-23 12-15:23 (note erroneous hyphen in time
value) is interpreted as the $HOROLOG date 2010 (1846-07-03 12:00:00 AM).

• If a tochar-expression date or time is not a valid date or time value, InterSystems IRIS issues an SQLCODE -400 error.
This can occur with a nonexistent date, such as February 30, or a date before 12/31/1840.

• If you specify a format with an invalid date, time, or timestamp code element (for example, YYYYY, MIN, HH48),
TO_CHAR returns the format code literal for the invalid code element; it returns date, time, or timestamp conversion
values for valid code elements, if any.

InterSystems SQL Reference 651

TO_CHAR

• If TO_CHAR cannot recognize any format code elements (for example, format is an empty string) or if a number
format has fewer digits than the tochar-expression value, TO_CHAR returns pound sign (#) characters. (This is true
when tochar-expression begins with at least two integer digits; otherwise TO_CHAR returns NULL.)

• If you omit format, TO_CHAR returns the numeric portion of tochar-expression as a canonical number, truncating
when it encounters a nonnumeric character. If tochar-expression is nonnumeric, TO_CHAR returns 0. If
tochar-expression is null, TO_CHAR returns null.

TO_CHAR and TO_DATE

• TO_CHAR converts a date integer to a formatted date string, or a time integer to a formatted time string. If you erro-
neously supply TO_CHAR with a formatted date or time string, it returns erroneous data.

• TO_DATE converts a formatted date string to the corresponding date integer. If you erroneously supply TO_DATE
with a date integer, it returns this integer unmodified.

• Note that for Julian dates these operations are reversed.

These correct and erroneous uses of TO_DATE and TO_CHAR are shown in the following examples.

The following Embedded SQL example uses TO_DATE to perform a date conversion. TO_DATE takes a date string and
returns the corresponding date integer (59832). The $ZDATE function is used to display this date integer as the formatted
date 02/22/2018. In this example, TO_DATE is also erroneously supplied a date integer; it simply returns this integer.

 &sql(SELECT
 TO_DATE('2018-02-22','YYYY-MM-DD'), /* correct */
 TO_DATE(64701,'YYYY-MM-DD') /* ERROR! */
 INTO :a,:b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,a
 WRITE !,$ZDATE(a)
 WRITE !,b
 }

The following Embedded SQL example shows date conversions using TO_CHAR. The first TO_CHAR converts a date
integer to the corresponding formatted date string, as expected. However, the second TO_CHAR gives unexpected results.
Since TO_CHAR expects a numeric input, it treats the date separators in the input as minus signs and performs the sub-
tractions. It therefore formats a date corresponding to the date integer 1970 (2004 minus 10 minus 24): 1846–5–24. Obviously,
this was not the programmer’s intent.

 &sql(SELECT
 TO_CHAR(59832,'YYYY-MM-DD'), /* correct */
 TO_CHAR(2004-10-24,'YYYY-MM-DD') /* ERROR! */
 INTO :a,:b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,a
 WRITE !,b }

Related SQL Functions

• TO_CHAR converts a date integer, a timestamp, or a number to a string.

• TO_DATE performs the reverse operation for dates; it converts a formatted date string to a date integer.

• TO_TIMESTAMP performs the reverse operation for timestamps; it converts a formatted date and time string to a
standard timestamp.

• TO_NUMBER performs the reverse operation for numbers; it converts a numeric string to a number.

• CAST and CONVERT perform DATE, TIMESTAMP, and NUMBER data type conversions.

652 InterSystems SQL Reference

SQL Functions

Date-to-String Conversion
$HOROLOG format is the InterSystems SQL Logical format for representing dates and times. It is a string containing two
comma-separated integers: the first is the number of days since December 31, 1840; the second is the number of seconds
since midnight of the current day.

You can use TO_CHAR to convert a $HOROLOG date integer or a $HOROLOG string of two comma-separated integers
to a formatted date string, or a formatted date and time string. The value for tochar-expression must be a valid $HOROLOG
value.

The following table lists the valid date format codes for this version of TO_CHAR.

MeaningFormat Code

Day of week (1-7). By default, 1 is Sunday (the first day of the week), but this
designation is configurable; refer to the DAYOFWEEK function.

D

Two-digit day of month (01-31).DD

Abbreviated name of the day, as specified by the WeekdayAbbr property of the
current locale. The defaults are: Sun Mon Tue Wed Thu Fri Sat

DY

Name of day, as specified by the WeekdayName property in the current locale. The
defaults are: Sunday Monday Tuesday Wednesday Thursday Friday Saturday

DAY

Two-digit month number (01-12; 01 = JAN).MM

Abbreviated name of month, as specified by the MonthAbbr property in the current
locale. The defaults are: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec. Not
case-sensitive.

MON

Full name of the month, as specified by the MonthName property in the current locale.
The defaults are: January February March April May June July August September
October November December. Not case-sensitive.

MONTH

Four-digit year.YYYY

Last 3 digits of the year.YYY

Last 2 digits of the year.YY

Last digit of the year.Y

Four-digit year.RRRR

Last 2 digits of the year.RR

Day of the Year (see below).DDD

Julian date (number of days since January 1, 4712 BC (BCE)).J

Separator characters are required between the date format elements, with the exception of the following format strings:
YYYYMMDD, DDMMYYYY, and YYYYMM. The last of these returns the year and month values and ignores the day of the month.

Note that locales mentioned in the format code definitions refer to the same locales described in the ObjectScript $ZDATE
and $ZDATEH documentation.

Date Conversion Examples

The following are all valid uses of TO_CHAR with a $HOROLOG date integer or a full $HOROLOG string value to
return a formatted date string or a date and time string:

InterSystems SQL Reference 653

TO_CHAR

SELECT TO_CHAR(64701,'YYYY-MM-DD') AS DateFD,
 TO_CHAR(64701,'YYYY-MM-DD HH24:MI:SS') AS DateFDT,
 TO_CHAR('64701,50278','YYYY-MM-DD') AS DateTimeFD,
 TO_CHAR('64701,50278','YYYY-MM-DD HH24:MI:SS') AS DateTimeFDT

In the following example each TO_CHAR takes a date integer and returns a date string formatted according to the format
string argument:

SELECT TO_CHAR(64701,'MM/DD/YYYY'), /* returns 02/22/2018 */
 TO_CHAR(64701,'DAY MONTH DD, YYYY') /* returns Thursday February 22, 2018 */

The following example takes a date integer and returns a formatted date string. Characters that are not format characters
are passed through to the output string as literals:

SELECT TO_CHAR(64701,'The date MM/DD/YYYY should be noted')

returns the string: The date 02/22/2018 should be noted

Day of the Year

You can use DDD to convert a date expression to the day of the year (number of days elapsed since January 1) and the
year. The format string DDD,YYYY must be paired with a date expression in $HOROLOG format. (The $HOROLOG
time value, if specified, is ignored.) The DDD and YYYY (or YY) format elements can be specified in any order; a separator
character between them is mandatory and is returned as a literal. The following examples show this use of Day of the Year:

SELECT TO_CHAR('64701','YYYY:DDD')

SELECT TO_CHAR('64701,12345','DDD YY')

TO_CHAR permits you to return the day of the year corresponding to a date expression. TO_DATE permits you to return
a date expression corresponding to a day of the year.

Julian Date Conversion

The “Julian” date format is provided to allow for dates before the year 1841. TO_CHAR converts a date value for data
type %Date or %TimeStamp to a seven-digit Julian date integer.

Note: By default, the %Date data type does not represent dates prior to December 31, 1840. However, you can redefine
the MINVAL parameter for this data type to permit representation of earlier dates as negative integers, with the
limit of January 1, Year 1. This representation of dates as negative integers is not compatible with the “Julian”
date format described here. For further details refer to the Data Types reference page in this manual.

If you specify a format that consists of a string containing the letter 'J', the date value returned will be a “Julian” date—that
is, a count of days from January 1, 4712BCE. Only the letter 'J' may be specified in the format string; the inclusion of any
other characters causes 'J' to be treated as a literal, and the date to be translated as a standard date.

The maximum tochar-expression value for Julian dates is '9999-12-31' which corresponds to Julian day count 5373484.
The minimum value is '-4712-01-01' which corresponds to Julian day count 0000001. A Julian day count is always represented
as a seven-digit integer, with leading zeros when necessary.

The following example returns 2369916 (signing of the Declaration of Independence of the United States) and 1709980
(battle of Actium marks beginning of Roman Empire under Augustus Caesar):

SELECT TO_CHAR('1776-07-04','J') AS UnitedStatesStart,
 TO_CHAR('-0031-09-02','J') AS RomanEmpireStart

654 InterSystems SQL Reference

SQL Functions

Note: The following consideration should not affect the interconversion of dates and Julian day counts using TO_CHAR
and TO_DATE. It may affect some calculations made using Julian day counts.

Julian day counts prior to 1721424 (1/1/1) are compatible with other software implementations, such as Oracle.
They are not identical to BCE dates in ordinary usage. In ordinary usage, there is no Year 0; dates go from 12/31/-
1 to 1/1/1. In Oracle usage, the Julian dates 1721058 through 1721423 are simply invalid, and return an error. In
InterSystems IRIS, these Julian dates return the non-existent Year 0 as a place holder. Thus calculations involving
BCE dates must be adjusted by one year to correspond to common usage.

Also be aware that these date counts do not take into account changes in date caused by the Gregorian calendar
reform (enacted October 15, 1582, but not adopted in Britain and its colonies until 1752).

TO_CHAR permits you to return a Julian day count corresponding to a date expression. TO_DATE permits you to return
a date expression corresponding to a Julian day count, as shown in the following example:

SELECT TO_CHAR('1776-07-04','J') AS JulianCount,
 TO_DATE(2369916,'J') AS JulianDate

For further details on using Julian dates, see the TO_DATE function.

Time-to-String Conversion
You can use TO_CHAR to convert the following tochar-expression time values to a formatted time string:

• A $HOROLOG time integer (the time component of $HOROLOG). The value for tochar-expression must be a valid
Logical time (an integer in the range 0 through 86399). Do not supply a full $HOROLOG value with both date and
time components (such as 64701,42152); TO_CHAR time conversion would incorrectly convert the first (date)
component of $HOROLOG to a formatted time string, and ignore the second (time) component.

• A Logical timestamp value. The value for tochar-expression must be of the %TimeStamp data type (not a string data
type) in the format YYYY-MM-DD hh:mm:ss. The date component of the timestamp is ignored and the time component
converted. For example, SYSDATE is a Logical timestamp.

• A time value in standard ODBC time format. The value for tochar-expression must be in the format hh:mm:ss and can
be a string.

• A time value in local time format (using the current NLS locale settings). For example, if the NLS TimeSeparator is
set to “^”, the value for tochar-expression can be in the format hh^mm^ss and can be a string.

In all of these cases, the value for format must be a string that contains only time format codes:

MeaningFormat Code

Hour of Day (1 through 12)HH

Hour of Day (1 through 12)HH12

Hour of Day (0 through 23)HH24

Minute (0 through 59)MI

Second (0 through 59)SS

Seconds since midnight (0 through 86388)SSSSS

Meridian Indicator (AM = before noon, PM = after noon). Converts a time value to
12–hour format with the appropriate AM or PM suffix. The returned AM or PM suffix
is derived from the time value, not from which format code you specified. In the format
you can use either AM or PM; they are functionally identical.

AM / PM

Inclusion of any other format code values causes the tochar-expression integer to be interpreted as a date.

InterSystems SQL Reference 655

TO_CHAR

The following example causes '64701' to be interpreted as the time value 05:58:21 PM:

SELECT TO_CHAR('64701','HH12:MI:SS PM')

The following example converts the time portions of two Logical timestamps to formatted time strings. Note that format
does not support fractional seconds; fractional seconds in tochar-expression are truncated.

SELECT TO_CHAR(SYSDATE,'HH12:MI:SS PM'),
 TO_CHAR(CURRENT_TIMESTAMP(6),'HH12:MI:SS PM')

The following Embedded SQL example converts time values specified in both ODBC standard format and current NLS
locale format:

 SET restore=##class(%SYS.NLS.Format).GetFormatItem("TimeSeparator")
 WRITE "Time Separator is = ",restore,!
 DO ##class(%SYS.NLS.Format).SetFormatItem("TimeSeparator","^")
 WRITE "Time Separator is now = ",##class(%SYS.NLS.Format).GetFormatItem("TimeSeparator"),!
 &sql(SELECT TO_CHAR('15:35:43.99','HH12:MI:SS PM'),
 TO_CHAR('15^35^43.99','HH12:MI:SS PM')
 INTO :standard,:local)
 WRITE "Converted standard-format time: ",standard,!
 WRITE "Converted locale-format time: ",local,!
 DO ##class(%SYS.NLS.Format).SetFormatItem("TimeSeparator",restore)
 WRITE "Time Separator is = ",##class(%SYS.NLS.Format).GetFormatItem("TimeSeparator")

Timestamp to Formatted Datetime String Conversion
You can use TO_CHAR to convert a timestamp to a formatted datetime string. The value for tochar-expression must be
a valid Logical timestamp value.

The date portion of the timestamp is formatted using the date-to-string conversion format codes. The following table lists
additional format codes for the time portion of the timestamp.

MeaningFormat Code

Hour of Day (1 through 12)HH

Hour of Day (1 through 12)HH12

Hour of Day (0 through 23)HH24

Minute (0 through 59)MI

Second (0 through 59)SS

Seconds since midnight (0 through 86388)SSSSS

Meridian Indicator (before noon)AM

Meridian Indicator (after noon)PM

The following example returns the current system date (a timestamp), and the current system date converted for display
with two different formats:

SELECT SYSDATE,
 TO_CHAR(SYSDATE,'MM/DD/YYYY HH:MI:SS'),
 TO_CHAR(SYSDATE,'DD MONTH YYYY at SSSSS seconds')

Note that any characters used in the format string which are not format codes are just returned in place in the resulting
string.

Number-to-String Conversion
You can use TO_CHAR to convert a number to a formatted numeric string. The following table lists the valid format codes
for the format argument for this use of TO_CHAR.

656 InterSystems SQL Reference

SQL Functions

If you omit the format argument, the input numeric value is evaluated as an integer: leading zeros and a leading plus sign
are deleted, a leading minus sign is retained, and the numeric value is truncated at the first nonnumeric character, such as
a comma or period. No leading blanks or other formatting is provided.

DescriptionExampleFormat
Code

Return value with the specified number of digits, with a leading space if
positive or with a minus sign if negative. Leading zeros are blank, except for
a zero value, which returns a zero for the integer part of the fixed-point
number.

99999

Return leading zeros.

Return trailing zeros.

09999

99990

0

Return value with a leading dollar sign. Note that the dollar sign is preceded
by a blank for positive numbers.

9999

Return blanks for the integer part of a fixed-point number when the integer
part is zero (regardless of 0’ in the format argument).

B9999B

Return negative value with a leading minus sign "-". Return positive value
with a leading plus sign "+".

Return negative value with a trailing minus sign "-". Return positive value with
a trailing plus sign "+".

S9999

9999S

S

Return a decimal separator character in the specified position. The
DecimalSeparator used is the one defined for the locale. The default is a
period ".". Only one "D" is allowed in the format argument.

99D99D

Return a numeric group separator character in the specified position(s). The
NumericGroupSeparator used is the one defined for the locale. The default
is a comma ",". No numeric group separators may appear to the right of the
decimal separator.

9G999G

Return a value with no leading or trailing blanks.FM90.9FM

Return a comma in the specified position. No comma may appear to the right
of the decimal. The format argument may not begin with a comma.

9,999,

Return a decimal point (that is, a period “.”) in the specified position. Only
one "." is allowed in the format argument.

99.99.

Your format can specify the decimal separator and the numeric group separator either as a literal character, or as the current
value of the locale’s DecimalSeparator and NumericGroupSeparator. You can determine the current locale values as follows:

 WRITE ##class(%SYS.NLS.Format).GetFormatItem("DecimalSeparator"),!
 WRITE ##class(%SYS.NLS.Format).GetFormatItem("NumericGroupSeparator")

If the format argument contains fewer integer digits than the input numeric expression, TO_CHAR does not return a
number; instead, it returns a string of two or more pound signs (##). The number of pound signs represents the length of
the current format argument, plus one.

If the format argument contains fewer decimal digits than the input numeric expression, TO_CHAR rounds the number
to the specified number of decimal digits, or to an integer, if no decimal format is provided.

If tochar-expression is null, TO_CHAR returns null.

InterSystems SQL Reference 657

TO_CHAR

Number-to-String Examples

The following embedded SQL example shows basic number-to-string conversions:

 &sql(SELECT
 TO_CHAR(1000,'9999'),
 TO_CHAR(10,'9999')
 INTO :numfull,:numshort)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"Formatted number:",numfull
 WRITE !,"Formatted number:",numshort
 WRITE !,"Note leading blanks" }

Returns the specified number with the appropriate number of leading blanks. An unsigned positive number is always preceded
by a blank character. Additional leading blanks are provided if the specified number has fewer digits than the format
argument.

The following embedded SQL example shows the use of separator characters:

 &sql(SELECT
 TO_CHAR(1000,'9,999.99'),
 TO_CHAR(1000,'9G999D99')
 INTO :comma,:groupsep)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"Formatted number:",comma
 WRITE !,"Formatted number:",groupsep
 WRITE !,"Note leading blank" }

The first TO_CHAR returns the string: ' 1,000.00'. The second TO_CHAR may also return this value, but the separator
characters displayed depend upon the locale setting.

The following embedded SQL example shows the use of positive and negative signs:

 &sql(SELECT
 TO_CHAR(10,'99.99'),
 TO_CHAR(-10,'99.99'),
 TO_CHAR(10,'S99.99'),
 TO_CHAR(-10,'S99.99'),
 TO_CHAR(10,'99.99S'),
 TO_CHAR(-10,'99.99S')
 INTO :pos,:neg,:poslead,:neglead,:postrail,:negtrail)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"Formatted number:",pos
 WRITE !,"Formatted number:",neg
 WRITE !,"Formatted number:",poslead
 WRITE !,"Formatted number:",neglead
 WRITE !,"Formatted number:",postrail
 WRITE !,"Formatted number:",negtrail
 WRITE !,"Note use of leading blank" }

Note that a leading blank only appears before a positive number with no sign formatting. No leading blank appears before
a negative number, or before any signed number, regardless of the placement of the sign.

The following embedded SQL example show the use of the “FM” format to override the default leading blank for unsigned
positive numbers:

 &sql(SELECT
 TO_CHAR(12345678.90,'99,999,999.99'),
 TO_CHAR(12345678.90,'FM99,999,999.99')
 INTO :num,:fmnum)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"Formatted number:",num
 WRITE !,"Formatted number:",fmnum
 WRITE !,"Note leading blank" }

658 InterSystems SQL Reference

SQL Functions

The first TO_CHAR returns the string: ' 12,345,678.90'. The second TO_CHAR returns the string: '12,345,678.90' (with
no leading blank).

The following embedded SQL example show the use of the leading dollar sign:

 &sql(SELECT
 TO_CHAR(1234567890,'$9G999G999G999'),
 TO_CHAR(1234567890,'S$9G999G999G999'),
 TO_CHAR(12345678.90,'$99G999G999D99')
 INTO :d,:sd,:dD)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"Formatted number:",d
 WRITE !,"Formatted number:",sd
 WRITE !,"Formatted number:",dD
 WRITE !,"Note leading blanks" }

The dollar sign is always preceded either by a sign or by a blank character.

The following embedded SQL example shows what happens when the format argument contain fewer integer digits than
the input numeric value:

 &sql(SELECT
 TO_CHAR(1234567.89,'9'),
 TO_CHAR(1234567.89,'99'),
 TO_CHAR(1234567.89,'99D99')
 INTO :a,:b,:c)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"Formatted number:",a
 WRITE !,"Formatted number:",b
 WRITE !,"Formatted number:",c }

Each TO_CHAR returns a string of pound signs: “##”, “###”, and “######”, respectively.

The following embedded SQL example shows what happens when the format argument contains fewer decimal (fractional)
digits than the input numeric expression:

 &sql(SELECT
 TO_CHAR(1234567.4999,'9999999.9'),
 TO_CHAR(1234567.91,'9999999')
 INTO :a,:b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"Formatted number:",a
 WRITE !,"Formatted number:",b }

The returned numbers are rounded to “1234567.5” and “1234568”, respectively.

See Also
• SQL functions: CONVERT, TO_DATE, TO_NUMBER

• ObjectScript functions: $FNUMBER, $ZDATE

InterSystems SQL Reference 659

TO_CHAR

TO_DATE
A date function that converts a formatted string to a date.

TO_DATE(date_string[,format])

TODATE(date_string[,format])

Arguments

The string to be converted to a date. A string date expression where the underlying
data type is CHAR or VARCHAR2.

date_string

Optional — A date format string corresponding to date_string. If format is omitted,
'DD MON YYYY' is the default value; this default is configurable.

format

Description
The names TO_DATE and TODATE are interchangeable and are supported for Oracle compatibility.

The TO_DATE function converts date strings in various formats to a date integer value, with data type DATE. It is used
to input dates in various string formats, storing them in a standard internal representation. TO_DATE returns a date with
the following format:

nnnnn

Where nnnnn is a positive integer between 0 (December 31, 1840) and 2980013 (December 31, 9999), inclusive. This
represents a count of days. Time values are ignored.

The default earliest date is December 31, 1840. You can change the DATE data type MINVAL parameter to permit negative
integers representing dates prior to December 31, 1840, as described in the Data Types reference page in this manual. Dates
before December 31, 1840 can also be represented using Julian dates, as described below.

This function can also be invoked from ObjectScript using the TODATE() method call:

$SYSTEM.SQL.TODATE(date_string,format)

The TO_DATE function can be used in data definition when supplying a default value to a field. For example:

CREATE TABLE mytest
(ID NUMBER(12,0) NOT NULL,
End_Year DATE DEFAULT TO_DATE('12-31-2018','MM-DD-YYYY') NOT NULL)

For further details on this use of TO_DATE, refer to the CREATE TABLE command.

Related SQL Functions

• TO_DATE converts a formatted date string to a date integer.

• TO_CHAR performs the reverse operation; it converts a date integer to a formatted date string.

• TO_TIMESTAMP converts a formatted date and time string to a standard timestamp.

• CAST and CONVERT perform DATE data type conversion.

Date String
The first argument specifies a date string literal. You can supply a date string of any kind for the input date_string. Each
character must correspond to the format string, with the following exceptions:

660 InterSystems SQL Reference

SQL Functions

• Leading zeros may be included or omitted (with the exception of a date_string without separator characters).

• Years may be specified with two digits or four digits.

• Month names may be specified in full or as the first three letters of the name. Only the first three letters must be correct.
Month names are not case-sensitive.

• Time values appended to a date are ignored.

Format
The second argument specifies a date format as a string of code characters.

Default Date Format

If you specify no format, TO_DATE parses the date string using the default format. The default format is DD MON YYYY.
For example, '22 Feb 2018'.

This default format is configurable system-wide, using either:

• The $SYSTEM.SQL.SetToDateDefaultFormat() class method.

• The Management Portal TO_DATE default format configuration option. From System Administration, select Configuration,
then SQL and Object Settings, then SQL. You can view and set the TO_DATE default format option.

To determine the current setting, call $SYSTEM.SQL.CurrentSettings(), which displays the TO_DATE() Default
Format setting.

Format Elements

A format is a string of one or more format elements specified according to the following rules:

• Format elements are not case-sensitive.

• Almost any sequence or number of format elements is permitted.

• Format strings separate their elements with non-alphanumeric separator characters (for example, a space, slash, or
hyphen) that match the separator characters in the date_string. This use of specified date separator characters does not
depend on the DateSeparator defined for your NLS locale.

• The following date format strings do not require separator characters: MMDDYYYY, DDMMYYYY, YYYYMMDD, and
YYYYDDMM. The incomplete date format YYYYMM is also supported, and assume a DD value of 01. Note that in these
cases leading zeros must be provided for MM and DD values.

The following table lists the valid date format elements for the format argument:

MeaningElement

Two-digit day of month (01-31). Leading zeros are not required, unless format contains
no date separator characters.

DD

Two-digit month number (01-12; 01 = January). Leading zeros are not required, unless
format contains no date separator characters.

In Japanese and Chinese, a month number consists of a numeric value followed by the
ideogram for “month”.

MM

Abbreviated name of month, as specified by the MonthAbbr property in the current locale.
By default, in English this is the first three letters of the month name. In other locales,
month abbreviations may be more than three letters long and/or may not consist of the
first letters of the month name. A period character is not permitted. Not case-sensitive.

MON

InterSystems SQL Reference 661

TO_DATE

MeaningElement

Full name of the month, as specified by the MonthName property in the current locale. Not
case-sensitive.

MONTH

Four-digit year.YYYY

Last two digits of the year. The first 2 digits of a 2-digit year default to 19.YY

Two-digit year to four-digit year conversion. (See below.)RR / RRRR

Day of the year. The count of days since January 1. (See below.)DDD

Julian date. (See below.)J

A TO_DATE format can also include a D (day of week number), DY (day of week abbreviation), or DAY (day of week
name) element. However, these format elements are not validated or used to determine the return value. For further details
on these format elements, refer to TO_CHAR.

Date Formats for Single Date Elements

You can specify DD, DDD, MM, or YYYY as a complete date format. Because these format strings omit the month, year,
or both the month and year, InterSystems IRIS interprets them as referring to the current month and year:

• DD returns the date for the specified day in the current month of the current year.

• DDD returns the date for the specified day of the year in the current year.

• MM returns the date for the first day of the specified month in the current year.

• YYYY - returns the date for the first day of the current month of the specified year.

The following Embedded SQL examples show these formats:

 NEW SQLCODE
 &sql(SELECT
 TO_DATE('300','DDD'),
 TO_DATE('24','DD')
 INTO :a,:b)
 IF SQLCODE=0 {
 WRITE "DDD format: ",a," = ",$ZDATE(a,1,,4),!
 WRITE "DD format: ",b," = ",$ZDATE(b,1,,4) }
 ELSE { WRITE "error:",SQLCODE }

 NEW SQLCODE
 &sql(SELECT
 TO_DATE('8','MM'),
 TO_DATE('2018','YYYY')
 INTO :a,:b)
 IF SQLCODE=0 {
 WRITE "MM format: ",a," = ",$ZDATE(a,1,,4),!
 WRITE "YYYY format: ",b," = ",$ZDATE(b,1,,4),!
 WRITE "done" }
 ELSE { WRITE "error:",SQLCODE }

Two-Digit Year Conversion (RR and RRRR formats)

The YY format converts a two-digit year value to four digits by simply appending 19. Thus 07 becomes 1907 and 93
becomes 1993.

The RR format provides more flexible two-digit to four-digit year conversion. This conversion is based on the current year.
If the current year is in the first half of a century (for example, 2000 through 2050), two-digit years from 00 through 49 are
expanded to a four-digit year in the current century, and two-digit years from 50 through 99 are expanded to a four-digit
year in the previous century. If the current year is in the second half of a century (for example, 2050 through 2099), all
two-digit years are expanded to a four-digit year in the current century. This expansion of two-digit years to four-digit years
is shown in the following Embedded SQL example:

662 InterSystems SQL Reference

SQL Functions

 NEW SQLCODE
 &sql(SELECT
 TO_DATE('29 September 00','DD MONTH RR'),
 TO_DATE('29 September 18','DD MONTH RR'),
 TO_DATE('29 September 49','DD MONTH RR'),
 TO_DATE('29 September 50','DD MONTH RR'),
 TO_DATE('29 September 77','DD MONTH RR')
 INTO :a,:b,:c,:d,:e)
 IF SQLCODE=0 {
 WRITE a," = ",$ZDATE(a,1,,4),!
 WRITE b," = ",$ZDATE(b,1,,4),!
 WRITE c," = ",$ZDATE(c,1,,4),!
 WRITE d," = ",$ZDATE(d,1,,4),!
 WRITE e," = ",$ZDATE(e,1,,4) }
 ELSE { WRITE "error:",SQLCODE }

The RRRR format permits you to input a mix of two–digit and four-digit years. Four-digit years are passed through
unchanged (the same as YYYY). Two-digit years are converted to four-digit years, using the RR format algorithm. This
is shown in the following Embedded SQL example:

 NEW SQLCODE
 &sql(SELECT
 TO_DATE('29 September 2018','DD MONTH RRRR'),
 TO_DATE('29 September 18','DD MONTH RRRR'),
 TO_DATE('29 September 1949','DD MONTH RRRR'),
 TO_DATE('29 September 49','DD MONTH RRRR'),
 TO_DATE('29 September 1950','DD MONTH RRRR'),
 TO_DATE('29 September 50','DD MONTH RRRR')
 INTO :a,:b,:c,:d,:e,:f)
 IF SQLCODE=0 {
 WRITE a," 4-digit = ",$ZDATE(a,1,,4),!
 WRITE b," 2-digit = ",$ZDATE(b,1,,4),!
 WRITE c," 4-digit = ",$ZDATE(c,1,,4),!
 WRITE d," 2-digit = ",$ZDATE(d,1,,4),!
 WRITE e," 4-digit = ",$ZDATE(e,1,,4),!
 WRITE f," 2-digit = ",$ZDATE(f,1,,4) }
 ELSE { WRITE "error:",SQLCODE }

Day of the Year (DDD format)

You can use DDD to convert the day of the year (number of days elapsed since January 1) to an actual date. The format
string DDD YYYY must be paired with a corresponding date_string consisting of an integer number of days and a four-digit
year. (Two-digit years must be specified as RR (not YY) when used with DDD.) The format string DDD defaults to the
current year. The number of elapsed days must be a positive integer in the range 1 through 365 (366 if YYYY is a leap
year). The four-digit year must be within the standard InterSystems IRIS date range: 1841 through 9999. The DDD and
YYYY format elements can be specified in any order; a separator character between them is mandatory. The following
example shows this use of Day of the Year:

 NEW SQLCODE
 &sql(SELECT TO_DATE('2018:60','YYYY:DDD')
 INTO :a)
 IF SQLCODE=0 {WRITE a," = ",$ZDATE(a,1,,4) }
 ELSE { WRITE "error:",SQLCODE }

If a format string contains both a DD and a DDD element, the DDD element is dominant. This is shown in the following
example, which returns 2/29/2020 (not 12/31/2020):

 NEW SQLCODE
 &sql(SELECT TO_DATE('2020-12-31-60','YYYY-MM-DD-DDD')
 INTO :a)
 IF SQLCODE=0 {WRITE a," = ",$ZDATE(a,1,,4) }
 ELSE { WRITE "error:",SQLCODE }

TO_DATE permits you to return a date expression corresponding to a day of the year. TO_CHAR permits you to return
the day of the year corresponding to a date expression.

Julian Dates (J format)

In InterSystems SQL, a Julian date can be used for any date before December 31, 1840. Because InterSystems IRIS represents
this date internally as 0, special syntax is needed to represent earlier dates. TO_DATE provides a format of 'J' (or 'j') for

InterSystems SQL Reference 663

TO_DATE

this purpose. Julian date conversion converts a seven-digit internal numeric value (a Julian day count) to a display-format
or ODBC-format date. For example:

 NEW SQLCODE
 &sql(SELECT TO_DATE(2300000,'J')
 INTO :a)
 IF SQLCODE=0 {WRITE a }
 ELSE { WRITE "error:",SQLCODE }

returns the following date: 1585–01–31 (ODBC format) or 01/31/1585 (display format). Julian day count 1721424
returns January 1st of the Year 1 (1–01–01). Julian day counts such as 1709980 (battle of Actium marks beginning of
Roman Empire under Augustus Caesar) return BCE (BC) dates, which are displayed with the year preceded by a minus
sign.

Note: By default, the %Date data type does not represent dates prior to December 31, 1840. However, you can redefine
the MINVAL parameter for this data type to permit representation of earlier dates as negative integers, with the
limit of January 1, Year 1. This representation of dates as negative integers is not compatible with the “Julian”
date format described here. For further details refer to the Data Types reference page in this manual.

A Julian day count is always represented internally as a seven-digit number, with leading zeros when necessary. TO_DATE
allows you to input a Julian day count without the leading zeros. The highest permitted Julian date is 5373484, it returns
12/31/9999. The lowest permitted Julian date is 0000001, it returns 01/01/-4712 (which is BCE date 01/01/-4713).
Any value outside this range generates an SQLCODE -400 error, with a %msg value of “ Invalid Julian Date value. Julian
date must be between 1 and 5373484” .

Note: The following consideration should not affect the interconversion of dates and Julian day counts using TO_CHAR
and TO_DATE. It may affect some calculations made using Julian day counts.

Julian day counts prior to 1721424 (1/1/1) are compatible with other software implementations, such as Oracle.
They are not identical to BCE dates in ordinary usage. In ordinary usage, there is no Year 0; dates go from 12/31/-
1 to 1/1/1. In Oracle usage, the Julian dates 1721058 through 1721423 are simply invalid, and return an error. In
InterSystems IRIS, these Julian dates return the non-existent Year 0 as a place holder. Thus calculations involving
BCE dates must be adjusted by one year to correspond to common usage.

Also be aware that these date counts do not take into account changes in date caused by the Gregorian calendar
reform (enacted October 15, 1582, but not adopted in Britain and its colonies until 1752).

TO_DATE permits you to return a date expression corresponding to a Julian day count. TO_CHAR permits you to return
a Julian day count corresponding to a date expression, as shown in the following example:

SELECT
 TO_CHAR('1776-07-04','J') AS JulianCount,
 TO_DATE(2369916,'J') AS JulianDate

Examples

Default Date Format Examples

The following embedded SQL example specifies date strings that are parsed using the default date format. Both of these
are converted to the DATE data type internal value of 60537:

 NEW SQLCODE
 &sql(SELECT
 TO_DATE('29 September 2018'),
 TO_DATE('29 SEP 2018')
 INTO :a,:b)
 IF SQLCODE=0 {WRITE a,!,b }
 ELSE { WRITE "error:",SQLCODE }

The following embedded SQL example specifies date strings with two-digit years with format default. Note that two-digit
years default to 1900 through 1999. Thus, the internal DATE value is 24012:

664 InterSystems SQL Reference

SQL Functions

 NEW SQLCODE
 &sql(SELECT
 TO_DATE('29 September 06'),
 TO_DATE('29 SEP 06')
 INTO :a,:b)
 IF SQLCODE=0 {WRITE a,!,b }
 ELSE { WRITE "error:",SQLCODE }

Specified Date Format Examples

The following embedded SQL example specifies date strings in various formats. All of these are converted to the DATE
data type internal value of 64701.

 NEW SQLCODE
 &sql(SELECT
 TO_DATE('2018 Feb 22','YYYY MON DD'),
 TO_DATE('FEBRUARY 22, 2018','month dd, YYYY'),
 TO_DATE('2018***02***22','YYYY***MM***DD'),
 TO_DATE('02/22/2018','MM/DD/YYYY')
 INTO :a,:b,:c,:d)
 IF SQLCODE=0 {WRITE !,a,!,b,!,c,!,d }
 ELSE { WRITE "error:",SQLCODE }

The following embedded SQL example specifies date formats that do not require element separators. They return the date
internal value of 64701:

 NEW SQLCODE
 &sql(SELECT
 TO_DATE('02222018','MMDDYYYY'),
 TO_DATE('22022018','DDMMYYYY'),
 TO_DATE('20182202','YYYYDDMM'),
 TO_DATE('20180222','YYYYMMDD')
 INTO :a,:b,:c,:d)
 IF SQLCODE=0 {WRITE !,a,!,b,!,c,!,d }
 ELSE { WRITE "error:",SQLCODE }

The following example specifies the YYYYMM date format. It does not require element separators. It supplies 01 for the
missing day element, returning the date 64800 (June 1, 2018):

 NEW SQLCODE
 &sql(SELECT TO_DATE('201806','YYYYMM')
 INTO :a)
 IF SQLCODE=0 {WRITE a," = ",$ZDATE(a,1,,4) }
 ELSE { WRITE "error:",SQLCODE }

See Also
• SQL functions: CAST, CONVERT, TO_CHAR, TO_TIMESTAMP

• ObjectScript functions: $ZDATE, $ZDATEH

InterSystems SQL Reference 665

TO_DATE

TO_NUMBER
A string function that converts a string expression to a value of NUMERIC data type.

TO_NUMBER(string-expression)

TONUMBER(string-expression)

Arguments

The string expression to be converted. The expression can be the name of a
column, a string literal, or the result of another function, where the underlying
data type is of type CHAR or VARCHAR2.

string-expression

Description
The names TO_NUMBER and TONUMBER are interchangeable. They are supported for Oracle compatibility.

TO_NUMBER converts string-expression to a number of data type NUMERIC. However, if string-expression is of data
type DOUBLE, TO_NUMBER returns a number of data type DOUBLE.

TO_NUMBER conversion takes a numeric string and converts it to a canonical number by resolving plus and minus signs,
expanding exponential notation ("E" or "e"), and removing leading zeros. TO_NUMBER halts conversion when it
encounters a nonnumeric character (such as a letter or a numeric group separator). Thus the string '7dwarves' converts to
7. If the first character of string-expression is a nonnumeric string, TO_NUMBER returns 0. If string-expression is an
empty string (''), TO_NUMBER returns 0. TO_NUMBER resolves -0 to 0. TO_NUMBER does not resolve arithmetic
operations. Thus the string '2+4' converts to 2. If NULL is specified for string-expression, TO_NUMBER returns null.

The NUMERIC data type has a default SCALE of 2. Therefore, when selecting this value in DISPLAY mode, TO_NUMBER
always displays the return value with 2 decimal places. Additional fractional digits are rounded to two decimal places;
trailing zeros are resolved to two decimal places. When TO_NUMBER is used via xDBC, it also returns the type as
NUMERIC with a SCALE of 2. In LOGICAL mode or ODBC mode, the returned value is a canonical number; no scale
is imposed on fractional digits and trailing zeros are omitted.

Related SQL Functions

• TO_NUMBER converts a string to a number of data type NUMERIC.

• TO_CHAR performs the reverse operation; it converts a number to a string.

• CAST and CONVERT can be used to convert a string to a number of any data type. For example, you can convert a
string to a number of data type INTEGER.

• TO_DATE converts a formatted date string to a date integer.

• TO_TIMESTAMP converts a formatted date and time string to a standard timestamp.

Examples
The following two examples show how TO_NUMBER converts a string to a number, then returns it as data type NUMERIC
with appropriate SCALE. The first example returns the number in Display mode, the second example returns the number
in Logical mode:

 SET myquery = "SELECT TO_NUMBER('+-+-0123.0093degrees')"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=2
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display() // Display mode value: 123.01

666 InterSystems SQL Reference

SQL Functions

 SET myquery = "SELECT TO_NUMBER('+-+-0123.0093degrees')"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=0
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display() // Logical mode value: 123.0093

The following examples show that when string-expression is of data type DOUBLE, TO_NUMBER returns the value as
data type DOUBLE:

 SET myquery = "SELECT TO_NUMBER(CAST('+-+-0123.0093degrees' AS DOUBLE))"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=2
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display() // Display mode value

 SET myquery = "SELECT TO_NUMBER(CAST('+-+-0123.0093degrees' AS DOUBLE))"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=0
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display() // Logical mode value

The following example shows how to use TO_NUMBER to list street addresses ordered in ascending numerical order:

SELECT Home_Street,Name
FROM Sample.Person
ORDER BY TO_NUMBER(Home_Street)

Compare the results with the same data ordered in ascending string order:

SELECT Home_Street,Name
FROM Sample.Person
ORDER BY Home_Street

See Also
• TO_CHAR

• TO_DATE

InterSystems SQL Reference 667

TO_NUMBER

TO_POSIXTIME
A date/time function that converts a formatted date string to a %PosixTime timestamp.

TO_POSIXTIME(date_string[,format])

Arguments

A string expression to be converted to a %PosixTime timestamp. This expression
may contain a date value, a time value, or a date and time value.

date_string

Optional — A date and time format string corresponding to date_string. If omitted,
defaults to DD MON YYYY HH:MI:SS.

format

Description
The TO_POSIXTIME function converts date and time strings in various formats to a %PosixTime timestamp, with data
type %Library.PosixTime. TO_POSIXTIME returns a %PosixTime timestamp as a calculated value based on the number
of elapsed seconds from the arbitrary starting point of 1970-01-01 00:00:00, encoded as a 64-bit signed integer. The actual
number of elapsed seconds (and fractional seconds) from this date is the Unix®timestamp, a numeric value. InterSystems
IRIS encodes the Unix® timestamp to generate the %PosixTime timestamp. Because a %PosixTime timestamp value is
encoded, 1970-01-01 00:00:00 is represented as 1152921504606846976. Dates prior to 1970-01-01 00:00:00 have a negative
integer value. Refer to the %PosixTime data type for further details.

TO_POSIXTIME does not convert timezones; a local date and time is converted to a local %PosixTime timestamp; a
UTC date and time is converted to a UTC %PosixTime timestamp.

The earliest date supported by %PosixTime is 0001-01-01 00:00:00, which has a logical value of -6979664624441081856.
The last date supported is 9999-12-31 23:59:59.999999, which has a logical value of 1406323805406846975. These limits
correspond to the ODBC date format display limits. These values can be further limited using the %Library.PosixTime

MINVAL and MAXVAL parameters. You can use the IsValid() method to determine if a numeric value is a valid
%PosixTime value.

A %PosixTime value always encodes a precision of 6 decimal digits of fractional seconds. A date_string with fewer digits
of precision is zero-padded to 6 digits before %PosixTime conversion; a date_string with more than 6 digits of precision
is truncated to 6 digits before %PosixTime conversion.

If date_string omits components of the timestamp, TO_POSIXTIME supplies the missing components. If both date_string
and format omit the year, yyyy defaults to the current year; if only date_string omits the year, it defaults to 00, which is
expanded to a four-digit year according to the year format element. If a day or month value is omitted, dd defaults to 01;
mm-dd defaults to 01-01. A missing time component defaults to 00. Fractional seconds are supported, but must be explicitly
specified; no fractional seconds are provided by default.

TO_POSIXTIME supports conversion of two-digit years to four digits. TO_POSIXTIME supports conversion of 12-
hour clock time to 24-hour clock time. It provides range validation of date and time element values, including leap year
validation. Range validation violations generate an SQLCODE -400 error.

This function can also be invoked from ObjectScript using the TOPOSIXTIME() method call:

$SYSTEM.SQL.TOPOSIXTIME(date_string,format)

The TO_POSIXTIME function can be used in data definition when supplying a default value to a field. For example:

CREATE TABLE mytest
(ID NUMBER(12,0) NOT NULL,
End_Year DATE DEFAULT TO_POSIXTIME('12-31-2018','MM-DD-YYYY') NOT NULL)

668 InterSystems SQL Reference

SQL Functions

TO_POSIXTIME can be used with the CREATE TABLE or ALTER TABLE ADD COLUMN statements. Only a literal
value for date_string can be used in this context. For further details, refer to the CREATE TABLE command.

%PosixTime Representation

%PosixTime encodes 6 digits of precision for fractional seconds, regardless of the precision of the date_string. The ODBC
and Display modes truncate trailing zeros of precision.

• Logical Mode: an encoded 64-bit (19 characters) signed integer.

• ODBC Mode: YYYY–MM–DD HH:MM:SS.FFFFFF. Refer to the %PosixTime LogicalToOdbc() method.

• Display Mode: uses the default date/time formats (dformat -1 and tformat -1) for the current locale, as described in
$ZDATETIME. Refer to the %PosixTime LogicalToDisplay() method.

Related SQL Functions

• TO_POSIXTIME converts a formatted date and time string to a %PosixTime timestamp.

• TO_CHAR performs the reverse operation; it converts a %PosixTime timestamp to a formatted date and time string.

• UNIX_TIMESTAMP converts a formatted date and time string to a Unix® timestamp.

• TO_DATE converts a formatted date string to a date integer.

• CAST and CONVERT perform %PosixTime data type conversion.

Date and Time String
The date_string argument specifies a date and time string literal. If you supply a date string with no time component,
TO_POSIXTIME supplies the time value 00:00:00. If you supply a time string with no date component, TO_POSIXTIME
supplies the date of 01–01 (January 1) of the current year.

You can supply a date and time string of any kind for the input date_string. Each date_string character must correspond
to the format string, with the following exceptions:

• Leading zeros may be included or omitted (with the exception a date_string without separator characters).

• Years may be specified with two digits or four digits.

• Month abbreviations (with format MON) must match the month abbreviation for that locale. For some locales, a month
abbreviation may not be the initial sequential characters of the month name. Month abbreviations are not case-sensitive.

• Month names (with format MONTH) should be specified as full month names. However, TO_POSIXTIME does not
require full month names with format MONTH; it accepts the initial character(s) of the full month name and selects
the first month in the month list that corresponds to that initial letter sequence. Therefore, in English, “J” = “January”,
“Ju” = “June”, “Jul” = “July”. All characters specified must match the sequential characters of the full month name;
characters beyond the full month name are not checked. For example, “Fe”, “Febru”, and “FebruaryLeap” are all valid
values; “Febs” is not a valid value. Month names are not case-sensitive.

• Time values can be input with the time separator characters defined for the locale. The output timestamp always repre-
sents the time value with the ODBC standard time separator characters: colon (:) and period (.)). An omitted time element
defaults to zeroes.

Format
A format is a string of one or more format elements specified according to the following rules:

• Format elements are not case-sensitive.

• Almost any sequence or number of format elements is permitted.

InterSystems SQL Reference 669

TO_POSIXTIME

• Format strings separate their elements with non-alphanumeric separator characters (for example, a space, slash, or
hyphen) that match the separator characters in the date_string. These separator characters do not appear in the output
string, which uses standard timestamp separators: hyphens for date values, colons for time values, and a period (when
required) for fractional seconds. This use of separator characters does not depend on the DateSeparator defined for
your NLS locale.

• The following date format strings do not require separator characters: MMDDYYYY, DDMMYYYY, YYYYMMDDHHMISS,
YYYYMMDDHHMI, YYYYMMDDHH, YYYYMMDD, YYYYDDMM, HHMISS, and HHMI. The incomplete date format YYYYMM
is also supported, and assume a DD value of 01. Note that in these cases leading zeros must be provided for all elements
(such as MM and DD), with the exception of the final element.

• Characters in format that are not valid format elements are ignored.

Format Elements

The following table lists the valid date format elements for the format argument:

MeaningElement

Two-digit day of month (01-31). Leading zeros are not required, unless format contains
no date separator characters.

DD

Two-digit month number (01-12; 01 = January). Leading zeros are not required, unless
format contains no date separator characters.

In Japanese and Chinese, a month number consists of a numeric value followed by the
ideogram for “month”.

MM

Abbreviated name of month, as specified by the MonthAbbr property in the current locale.
By default, in English this is the first three letters of the month name. In other locales,
month abbreviations may be more than three letters long and/or may not consist of the
first letters of the month name. A period character is not permitted. Not case-sensitive.

MON

Full name of the month, as specified by the MonthName property in the current locale. Not
case-sensitive.

MONTH

Four-digit year.YYYY

Last two digits of the year. The first 2 digits of a YY 2-digit year default to 19.YY

Two-digit year to four-digit year conversion. (See below.)RR / RRRR

Day of the year. The number of days since January 1. (See below.)DDD

Hour, specified as either 01–12 or 00–23, depending on whether a meridian indicator (AM
or PM) is specified. Can be specified as HH12 or HH24.

HH

Minute, specified as 00–59.MI

Second, specified as 00–59.SS

Fractions of a second. FF indicates that one or more fractional digits are provided;
date_string can specify any number of fractional digits. TO_POSIXTIME returns exactly
six digits of precision, regardless of the precision supplied in date_string.

FF

Meridian indicator, specifies a 12–hour clock. (See below.)AM / PM

Meridian indicator (with periods), specifies a 12–hour clock. (See below.)A.M. / P.M.

670 InterSystems SQL Reference

SQL Functions

A TO_POSIXTIME format can also include a D (day of week number), DY (day of week abbreviation), or DAY (day of
week name) element to match the input date_string. However, these format elements are not validated or used to determine
the return value. For further details on these format elements, refer to TO_CHAR.

Two-Digit Year Conversion (RR and RRRR formats)

The RR format provides two-digit to four-digit year conversion. TO_POSIXTIME performs this conversion using the
default date format (dformat -1), which uses the YearOption property of current locale, as described in $ZDATETIME.

Day of the Year (DDD format)

You can use DDD to convert the day of the year (number of days elapsed since January 1) to an actual date. The format
string DDD YYYY must be paired with a corresponding date_string consisting of an integer number of days and a four-digit
year. (Two-digit years must be specified as RR (not YY) when used with DDD.) The format string DDD defaults to the
current year. The number of elapsed days must be a positive integer in the range 1 through 365 (366 if YYYY is a leap
year). The four-digit year must be within the standard InterSystems IRIS date range: 1841 through 9999. (If you omit the
year, it defaults to the current year.) The DDD and year (YYYY, RRRR, or RR) format elements can be specified in any
order; a separator character between them is mandatory; this separator can be a blank space. The following example shows
this use of Day of the Year:

SELECT TO_POSIXTIME('2018:160','YYYY:DDD')

If a format string contains both a DD and a DDD element, the DDD element is dominant. This is shown in the following
example, which returns 2008-02-29 00:00:00 (not 2008-12-31 00:00:00):

SELECT TO_POSIXTIME('2018-12-31-60','YYYY-MM-DD-DDD')

TO_POSIXTIME permits you to return a date expression corresponding to a day of the year. TO_CHAR permits you to
return the day of the year corresponding to a date expression.

Dates Before 1970

TO_POSIXTIME represents a date before January 1, 1970 as a negative number. %PosixTime cannot represent dates
before January 1, 0001 or after December 31, 9999. Attempted to input such a date results in an SQLCODE -400 error.
The TO_DATE function provides a Julian date format to represent BCE dates before January 1, 0001. Julian date conversion
converts a seven-digit internal positive integer value (a Julian day count) to a display-format or ODBC-format date. Time
values are not supported for Julian dates.

12-Hour Clock Time

A %PosixTime timestamp always represents time using a 24-hour clock. A date_string may represent time using a 12-hour
clock or a 24-hour clock. TO_POSIXTIME assumes a 24-hour clock, unless one of the following applies:

• The date_string time value is followed by 'am' or 'pm' (with no periods). These meridian indicators are not case-sensitive,
and may be appended to the time value, or be separated from it by one or more spaces.

• The format follows the time format with an 'a.m.' or 'p.m.' element (either one), separated from the time format by one
or more spaces. For example: DD MON YYYY HH:MI:SS.FF P.M. This format supports 12-hour clock date_string
values such as 2:23pm, 2:23:54.6pm, 2:23:54 pm, 2:23:54 p.m., and 2:23:54 (assumed to be AM).
Meridian indicators are not case-sensitive. When using a meridian indicator with periods, it must be separated from
the time value by one or more spaces.

Examples
The following Embedded SQL example converts the current local datetime to a %PosixTime value. (Note that format uses
“ff” to represent any number of fractional digits; in this case, 3 digits of precision. %PosixTime encodes this as 6 digits of
precision, supplying three trailing zeroes.) This example then uses the %Posix LogicalToOdbc() method to display this
value as an ODBC timestamp, trimming trailing zeroes of precision:

InterSystems SQL Reference 671

TO_POSIXTIME

 SET tstime=$ZDATETIME($ZTIMESTAMP,3,1,3)
 WRITE "local datetime in : ",tstime,!
 &sql(SELECT
 TO_POSIXTIME(:tstime,'yyyy-mm-dd hh:mi:ss.ff')
 INTO :ptime)
 IF SQLCODE=0 {
 WRITE "Posix encoded datetime: ",ptime,!
 SET ODBCout=##class(%PosixTime).LogicalToOdbc(ptime)
 WRITE "local datetime out: ",ODBCout }
 ELSE { WRITE "SQLCODE error:",SQLCODE }

The following Embedded SQL example specifies date strings in various formats. The first one uses the default format, the
others specify a format. All of these convert date_string to the timestamp value of 2018–06–29 00:00:00:

 &sql(SELECT
 TO_POSIXTIME('29 JUN 2018'),
 TO_POSIXTIME('2018 Jun 29','YYYY MON DD'),
 TO_POSIXTIME('JUNE 29, 2018','month dd, YYYY'),
 TO_POSIXTIME('2018***06***29','YYYY***MM***DD'),
 TO_POSIXTIME('06/29/2018','MM/DD/YYYY'),
 TO_POSIXTIME('29/6/2018','DD/MM/YYYY')
 INTO :a,:b,:c,:d,:e,:f)
 IF SQLCODE=0 { WRITE !,a,!,b,!,c,!,d,!,e,!,f }
 ELSE { WRITE "SQLCODE error:",SQLCODE }

The following example specifies the YYYYMM date format. It does not require element separators. TO_POSIXTIME
supplies the missing day and time values:

 SELECT TO_POSIXTIME('201806','YYYYMM')

This example returns the timestamp 2018–06–01 00:00:00.

The following example specifies just the HH:MI:SS.FF time format. TO_POSIXTIME supplies the missing date value.
In each case, this example returns the date of 2018–01–01 (where 2018 is the current year):

SELECT TO_POSIXTIME('11:34','HH:MI:SS.FF'),
 TO_POSIXTIME('11:34:22','HH:MI:SS.FF'),
 TO_POSIXTIME('11:34:22.00','HH:MI:SS.FF'),
 TO_POSIXTIME('11:34:22.7','HH:MI:SS.FF'),
 TO_POSIXTIME('11:34:22.7000000','HH:MI:SS.FF')

Note that fractional seconds are passed through exactly as specified, with no padding or truncation.

See Also
• SQL commands: CREATE TABLE, ALTER TABLE

• SQL functions: CAST, CONVERT, TO_CHAR, TO_DATE, TO_NUMBER, TO_TIMESTAMP, UNIX_TIMESTAMP

• ObjectScript functions: $ZDATETIME, $ZDATETIMEH

• ObjectScript special variable: $ZTIMESTAMP

672 InterSystems SQL Reference

SQL Functions

TO_TIMESTAMP
A date function that converts a formatted string to a timestamp.

TO_TIMESTAMP(date_string[,format])

Arguments

A string expression to be converted to a timestamp. This expression may contain a
date value, a time value, or a date and time value.

date_string

Optional — A date and time format string corresponding to date_string. If omitted,
defaults to DD MON YYYY HH:MI:SS.

format

Description
The TO_TIMESTAMP function converts date and time strings in various formats to a standard timestamp, with data type
TIMESTAMP. TO_TIMESTAMP returns a timestamp with the following format:

yyyy-mm-dd hh:mm:ss

with leading zeroes always included. Time is specified using a 24–hour clock. By default, a returned timestamp does not
include fractional seconds.

Note: TO_TIMESTAMP returns a standard timestamp in ODBC format. TO_POSIXTIME returns an encoded 64–bit
timestamp. TO_POSIXTIME is the recommended timestamp format for new programming.

You must specify a matching date_string and format. If you omit format, the date_string must match DD MON YYYY
HH:MI:SS.

If date_string omits components of the timestamp, TO_TIMESTAMP supplies the missing components. If both date_string
and format omit the year, yyyy defaults to the current year; if only date_string omits the year, it defaults to 00, which is
expanded to a four-digit year according to the year format element. If a day or month value is omitted, dd defaults to 01;
mm-dd defaults to 01-01. Therefore, if both date_string and format omit if the date component of a timestamp,
TO_TIMESTAMP defaults to January 1 of the current year, in ODBC format: yyyy-01-01.

A missing time component defaults to 00. Fractional seconds are supported, but must be explicitly specified; no fractional
seconds are provided by default.

TO_TIMESTAMP supports conversion of two-digit years to four digits. TO_TIMESTAMP supports conversion of 12-
hour clock time to 24-hour clock time. It provides range validation of date and time element values, including leap year
validation. Range validation violations generate an SQLCODE -400 error.

This function can also be invoked from ObjectScript using the TOTIMESTAMP() method call:

$SYSTEM.SQL.TOTIMESTAMP(date_string,format)

The TO_TIMESTAMP function can be used in data definition when supplying a default value to a timestamp field. For
example:

CREATE TABLE Sample.MyEmpReviews
(EmpNum INTEGER UNIQUE NOT NULL,
 ReviewDate TIMESTAMP DEFAULT TO_TIMESTAMP(365,'DDD'))

In this example, the user inserting a record can either suppler a ReviewDate value, supply no ReviewDate value and get
the default timestamp of the 365th day of the current year, or supply a ReviewDate of NULL and get NULL.

InterSystems SQL Reference 673

TO_TIMESTAMP

TO_TIMESTAMP can be used with the CREATE TABLE or ALTER TABLE ADD COLUMN statements. Only a
literal value for date_string can be used in this context. For further details, refer to the CREATE TABLE command.

Related SQL Functions

• TO_TIMESTAMP converts a formatted date and time string to a standard timestamp.

• TO_CHAR performs the reverse operation; it converts a standard timestamp to a formatted date and time string.

• TO_DATE converts a formatted date string to a date integer.

• CAST and CONVERT perform TIMESTAMP data type conversion.

Date and Time String
The date_string argument specifies a date and time string literal. If you supply a date string with no time component,
TO_TIMESTAMP supplies the time value 00:00:00. If you supply a time string with no date component, TO_TIMESTAMP
supplies the date of 01–01 (January 1) of the current year.

You can supply a date and time string of any kind for the input date_string. Each date_string character must correspond
to the format string, with the following exceptions:

• Leading zeros may be included or omitted (with the exception of a date_string without separator characters).

• Years may be specified with two digits or four digits.

• Month abbreviations (with format MON) must match the month abbreviation for that locale. For some locales, a month
abbreviation may not be the initial sequential characters of the month name. Month abbreviations are not case-sensitive.

• Month names (with format MONTH) should be specified as full month names. However, TO_TIMESTAMP does
not require full month names with format MONTH; it accepts the initial character(s) of the full month name and selects
the first month in the month list that corresponds to that initial letter sequence. Therefore, in English, “J” = “January”,
“Ju” = “June”, “Jul” = “July”. All characters specified must match the sequential characters of the full month name;
characters beyond the full month name are not checked. For example, “Fe”, “Febru”, and “FebruaryLeap” are all valid
values; “Febs” is not a valid value. Month names are not case-sensitive.

• Time values can be input with the time separator characters defined for the locale. The output timestamp always repre-
sents the time value with the ODBC standard time separator characters: colon (:) for hours, minutes, and seconds, and
period (.) for fractional seconds. An omitted time element defaults to zeroes. By default, a timestamp is returned
without fractional seconds.

Format
A format is a string of one or more format elements specified according to the following rules:

• Format elements are not case-sensitive.

• Almost any sequence or number of format elements is permitted.

• Format strings separate their elements with non-alphanumeric separator characters (for example, a space, slash, or
hyphen) that match the separator characters in the date_string. These separator characters do not appear in the output
string, which uses standard timestamp separators: hyphens for date values, colons for time values, and a period (when
required) for fractional seconds. This use of separator characters does not depend on the DateSeparator defined for
your NLS locale.

• The following date format strings do not require separator characters: MMDDYYYY, DDMMYYYY, YYYYMMDDHHMISS,
YYYYMMDDHHMI, YYYYMMDDHH, YYYYMMDD, YYYYDDMM, HHMISS, and HHMI. The incomplete date format YYYYMM
is also supported, and assume a DD value of 01. Note that in these cases leading zeros must be provided for all elements
(such as MM and DD), with the exception of the final element.

• Characters in format that are not valid format elements are ignored.

674 InterSystems SQL Reference

SQL Functions

Format Elements

The following table lists the valid date format elements for the format argument:

MeaningElement

Two-digit day of month (01-31). Leading zeros are not required, unless format contains
no date separator characters.

DD

Two-digit month number (01-12; 01 = January). Leading zeros are not required, unless
format contains no date separator characters.

In Japanese and Chinese, a month number consists of a numeric value followed by the
ideogram for “month”.

MM

Abbreviated name of month, as specified by the MonthAbbr property in the current locale.
By default, in English this is the first three letters of the month name. In other locales,
month abbreviations may be more than three letters long and/or may not consist of the
first letters of the month name. A period character is not permitted. Not case-sensitive.

MON

Full name of the month, as specified by the MonthName property in the current locale. Not
case-sensitive.

MONTH

Four-digit year.YYYY

Last two digits of the year. The first 2 digits of a YY 2-digit year default to 19.YY

Two-digit year to four-digit year conversion. (See below.)RR / RRRR

Day of the year. The number of days since January 1. (See below.)DDD

Hour, specified as either 01–12 or 00–23, depending on whether a meridian indicator (AM
or PM) is specified. Can be specified as HH12 or HH24.

HH

Minute, specified as 00–59.MI

Second, specified as 00–59.SS

Fractions of a second. The two-letter element FF indicates that one or more fractional
digits are returned.The actual number of fractional digits returned is specified in date_string,
which can specify any number of fractional digits. TO_TIMESTAMP returns exactly the
fractional value explicitly supplied in date_string; trailing zeroes are neither padded nor
truncated.You must provide a decimal separator format character. Fractional seconds are
ignored if this format element is not the two-letter element FF. By default, an InterSystems
IRIS timestamp does not include fractional seconds.

FF

Meridian indicator, specifies a 12–hour clock. (See below.)AM / PM

Meridian indicator (with periods), specifies a 12–hour clock. (See below.)A.M. / P.M.

A TO_TIMESTAMP format can also include a D (day of week number), DY (day of week abbreviation), or DAY (day
of week name) element to match the input date_string. However, these format elements are not validated or used to determine
the return value. For further details on these format elements, refer to TO_CHAR.

Two-Digit Year Conversion (RR and RRRR formats)

The RR format provides two-digit to four-digit year conversion. This conversion is based on the current year. If the current
year is in the first half of a century (for example, 2000 through 2050), two-digit years from 00 through 49 are expanded to
a four-digit year in the current century, and two-digit years from 50 through 99 are expanded to a four-digit year in the
previous century. If the current year is in the second half of a century (for example, 2050 through 2099), all two-digit years

InterSystems SQL Reference 675

TO_TIMESTAMP

are expanded to a four-digit year in the current century. This expansion of two-digit years to four-digit years is shown in
the following example:

SELECT TO_TIMESTAMP('29 September 00','DD MONTH RR'),
 TO_TIMESTAMP('29 September 18','DD MONTH RR'),
 TO_TIMESTAMP('29 September 49','DD MONTH RR'),
 TO_TIMESTAMP('29 September 50','DD MONTH RR'),
 TO_TIMESTAMP('29 September 77','DD MONTH RR')

The RRRR format permits you to input a mix of two–digit and four-digit years. Four-digit years are passed through
unchanged (the same as YYYY). Two-digit years are converted to four-digit years, using the RR format algorithm. This
is shown in the following example:

SELECT TO_TIMESTAMP('29 September 2018','DD MONTH RRRR')AS FourDigit,
 TO_TIMESTAMP('29 September 18','DD MONTH RRRR') AS TwoDigit,
 TO_TIMESTAMP('29 September 1949','DD MONTH RRRR') AS FourDigit,
 TO_TIMESTAMP('29 September 49','DD MONTH RRRR') AS TwoDigit,
 TO_TIMESTAMP('29 September 1950','DD MONTH RRRR') AS FourDigit,
 TO_TIMESTAMP('29 September 50','DD MONTH RRRR') AS TwoDigit

Day of the Year (DDD format)

You can use DDD to convert the day of the year (number of days elapsed since January 1) to an actual date. The format
string DDD YYYY must be paired with a corresponding date_string consisting of an integer number of days and a four-digit
year. (Two-digit years must be specified as RR (not YY) when used with DDD.) The format string DDD defaults to the
current year. The number of elapsed days must be a positive integer in the range 1 through 365 (366 if YYYY is a leap
year). The four-digit year must be within the year date range: 0001 through 9999. (If you omit the year, it defaults to the
current year.) The DDD and year (YYYY, RRRR, or RR) format elements can be specified in any order; a separator char-
acter between them is mandatory; this separator can be a blank space. The following example shows this use of Day of the
Year:

SELECT TO_TIMESTAMP('2018:160','YYYY:DDD')

If a format string contains both a DD and a DDD element, the DDD element is dominant. This is shown in the following
example, which returns 2008-02-29 00:00:00 (not 2008-12-31 00:00:00):

SELECT TO_TIMESTAMP('2018-12-31-60','YYYY-MM-DD-DDD')

TO_TIMESTAMP permits you to return a date expression corresponding to a day of the year. TO_CHAR permits you
to return the day of the year corresponding to a date expression.

Dates Before Year 1

TO_TIMESTAMP and TO_POSIXTIME can represent dates back to January 1, 0001.

TO_DATE provides a Julian date format than can represent dates back to January 1, 4712 BCE. Julian date conversion
converts a seven-digit internal positive integer value (a Julian day count) to a display-format or ODBC-format date. Time
values are not supported for Julian dates.

12-Hour Clock Time

A TIMESTAMP always represents time using a 24-hour clock. A date_string may represent time using a 12-hour clock
or a 24-hour clock. TO_TIMESTAMP assumes a 24-hour clock, unless one of the following applies:

• The date_string time value is followed by 'am' or 'pm' (with no periods). These meridian indicators are not case-sensitive,
and may be appended to the time value, or be separated from it by one or more spaces.

• The format follows the time format with an 'a.m.' or 'p.m.' element (either one), separated from the time format by one
or more spaces. For example: DD MON YYYY HH:MI:SS.FF P.M. This format supports 12-hour clock date_string
values such as 2:23pm, 2:23:54.6pm, 2:23:54 pm, 2:23:54 p.m., and 2:23:54 (assumed to be AM).
Meridian indicators are not case-sensitive. When using a meridian indicator with periods, it must be separated from
the time value by one or more spaces.

676 InterSystems SQL Reference

SQL Functions

Examples
The following embedded SQL example specifies date strings in various formats. The first one uses the default format, the
others specify a format. All of these convert date_string to the timestamp value of 2018–06–29 00:00:00:

 &sql(SELECT
 TO_TIMESTAMP('29 JUN 2018'),
 TO_TIMESTAMP('2018 Jun 29','YYYY MON DD'),
 TO_TIMESTAMP('JUNE 29, 2018','month dd, YYYY'),
 TO_TIMESTAMP('2018***06***29','YYYY***MM***DD'),
 TO_TIMESTAMP('06/29/2018','MM/DD/YYYY'),
 TO_TIMESTAMP('29/6/2018','DD/MM/YYYY')
 INTO :a,:b,:c,:d,:e,:f)
 IF SQLCODE=0 { WRITE !,a,!,b,!,c,!,d,!,e,!,f }
 ELSE { WRITE "SQLCODE error:",SQLCODE }

The following example specifies the YYYYMM date format. It does not require element separators. TO_TIMESTAMP
supplies the missing day and time values:

 SELECT TO_TIMESTAMP('201806','YYYYMM')

This example returns the timestamp 2018–06–01 00:00:00.

The following example specifies just the HH:MI:SS.FF time format. TO_TIMESTAMP supplies the missing date value.
In each case, this example returns the date of 2018–01–01 (where 2018 is the current year):

SELECT TO_TIMESTAMP('11:34','HH:MI:SS.FF'),
 TO_TIMESTAMP('11:34:22','HH:MI:SS.FF'),
 TO_TIMESTAMP('11:34:22.00','HH:MI:SS.FF'),
 TO_TIMESTAMP('11:34:22.7','HH:MI:SS.FF'),
 TO_TIMESTAMP('11:34:22.7000000','HH:MI:SS.FF')

Note that fractional seconds are passed through exactly as specified, with no padding or truncation.

The following example shows some other ways to specify a time format with fractional seconds:

SELECT TO_TIMESTAMP('113422.9678','HHMISS.FF'),
 TO_TIMESTAMP('9678.113422','FF.HHMISS'),
 TO_TIMESTAMP('9678.20170804113422','FF.YYYYMMDDHHMISS')

All three invocations of TO_TIMESTAMP return an ODBC-format timestamp with the time portion value as
11:34:22.9678. For the first two, the omitted date portion defaults to January 1 of the current year; the third supplies a
date portion value.

See Also
• SQL commands: CREATE TABLE, ALTER TABLE

• SQL functions: CAST, CONVERT, TO_CHAR, TO_DATE, TO_NUMBER, TO_POSIXTIME

• ObjectScript functions: $ZDATE $ZDATEH

InterSystems SQL Reference 677

TO_TIMESTAMP

$TRANSLATE
A string function that performs character-for-character replacement.

$TRANSLATE(string,identifier[,associator])

Arguments

The target string. It can be a field name, a literal, a host variable, or an SQL
expression.

string

The character(s) to search for in string. It can be a string or numeric literal, a host
variable, or an SQL expression.

identifier

Optional — The replacement character(s) corresponding to each character in the
identifier. It can be a string or numeric literal, a host variable, or an SQL expression.

associator

Description
The $TRANSLATE function performs character-for-character replacement within a return value string. It processes the
string argument one character at a time. It compares each character in string with each character in the identifier argument.
If $TRANSLATE finds a match, it makes note of the position of that character.

• The two-argument form of $TRANSLATE removes all instances of the characters in the identifier argument from the
output string.

• The three-argument form of $TRANSLATE replaces all instances of each identifier character found in the string with
the positionally corresponding associator character. Replacement is performed on a character, not a string, basis. If
the identifier argument contains more characters than the associator argument, the excess characters in the identifier
argument are deleted from the output string. If the identifier argument contains fewer characters than the associator
argument, the excess character(s) in the associator argument are ignored.

$TRANSLATE is case-sensitive.

$TRANSLATE cannot be used to replace NULL with a character.

SQLCODE -380 is issued if you specify too few arguments. SQLCODE -381 is issued if you specify too many arguments.

$TRANSLATE and REPLACE

$TRANSLATE performs character-for-character matching and replacement. REPLACE performs string-for-string
matching and replacement. REPLACE can replace a single specified substring of one or more characters with another
substring, or remove multiple instances of a specified substring. $TRANSLATE can replace multiple specified characters
with corresponding specified replacement characters.

By default, both functions are case-sensitive, start at the beginning of string, and replace all matching instances. REPLACE
has arguments that can be used to change these defaults.

Examples
In the following example, a two-argument $TRANSLATE modifies Name values by removing punctuation (commas,
spaces, periods, apostrophes, hyphens), returning names that consist of only alphabetic characters. Note that the identifier
doubles the apostrophe to escape it as a literal character, rather than a string delimiter:

SELECT TOP 20 Name,$TRANSLATE(Name,', .''-') AS AlphaName
FROM Sample.Person
WHERE Name %STARTSWITH 'O'

678 InterSystems SQL Reference

SQL Functions

In the following example, a three-argument $TRANSLATE modifies Name values by replacing commas and spaces with
caret (^) characters, returning names delimited in three pieces (surname, first name, middle initial). Note that the associator
must specify “^” as many times as the number of characters in identifier:

SELECT TOP 20 Name,$TRANSLATE(Name,', ','^^') AS PiecesNamePunc
FROM Sample.Person
WHERE Name %STARTSWITH 'O'

In the following example, a three-argument $TRANSLATE modifies Name values by both replacing commas and spaces
with caret (^) characters (specified in the identifier and associator) and removing periods, apostrophes, and hyphens
(specified in the identifier, omitted from the associator):

SELECT TOP 20 Name,$TRANSLATE(Name,', .''-','^^') AS PiecesNameNoPunc
FROM Sample.Person
WHERE Name %STARTSWITH 'O'

See Also
• REPLACE function

• STUFF function

• String Manipulation

InterSystems SQL Reference 679

$TRANSLATE

TRIM
A string function that returns a character string with specified leading and/or trailing characters removed.

TRIM([end_keyword] [characters FROM] string)

Arguments

Optional — A keyword specifying the which end of string to strip.
Available values are LEADING, TRAILING, or BOTH. The default
is BOTH.

end_keyword

Optional — A string expression specifying the characters to strip
from string. Every instance of the specified character(s) is stripped
from the specified end(s) until a character not specified here is
encountered.Thus TRIM(BOTH 'ab' FROM 'bbbaacaaa') returns
‘c’.

If characters is not specified, TRIM strips blank spaces.

The FROM keyword is required if characters is specified.The FROM
keyword is permitted (but not required) if end_keyword is specified
and characters is not specified. If neither of these arguments are
specified, the FROM keyword is not permitted.

characters

The string expression to be stripped. A string can be the name of
a column, a string literal, or the result of another function, where
the underlying data type can be represented as any character type
(such as CHAR or VARCHAR2).

The FROM keyword is omitted if both characters and end_keyword
are omitted.

string

Description
TRIM strips the specified characters from the beginning and/or end of a supplied value. By default, stripping of letters is
case-sensitive. Character stripping from either end stops when a character not specified in characters is encountered. The
default is to strip blank spaces from both ends of string.

The optional end_keyword argument can take the following values:

A keyword that specifies that the characters in characters are to be removed from the
beginning of string.

LEADING

A keyword that specifies that the characters in characters are to be removed from the
end of string.

TRAILING

A keyword that specifies that the characters in characters are to be removed from both
the beginning and end of string. BOTH is the default and is used if no end_keyword is
specified.

BOTH

Alternatively, you can use LTRIM to trim leading blanks, or RTRIM to trim trailing blanks.

To pad a string with leading or trailing blanks or other characters, use LPAD or RPAD.

680 InterSystems SQL Reference

SQL Functions

Characters to Strip

• All characters: TRIM returns an empty string if characters contains all the characters in string.

• Single quote characters: TRIM can trim single-quote characters if these characters are doubled in both characters and
string. Thus, TRIM(BOTH 'a''b' FROM 'bb''ba''acaaa''') returns ‘c’.

• Blank spaces: TRIM trims blank spaces if characters is omitted. If characters is specified, it must include the blank
space character to strip blank spaces.

• %List: If string is a %List, TRIM can only trim trailing characters, not leading characters. This is because a %List
contains leading encoding characters. You must convert a %List to a string to apply TRIM to leading characters.

• NULL: TRIM returns NULL if either string expression is NULL.

Examples
The following example uses the end_keyword and characters defaults; it removes leading and trailing blanks from "abc":

SELECT TRIM(' abc ') AS Trimmed

The following examples are all valid syntax to strip leading blank spaces from string:

SELECT TRIM(LEADING ' abc '),TRIM(LEADING FROM ' def '),TRIM(LEADING ' ' FROM ' ghi ')

The following example removes the character "x" from the beginning of the string "xxxabcxxx", resulting in "abcxxx":

SELECT TRIM(LEADING 'x' FROM 'xxxabcxxx') AS Trimmed

The following example removes the character "x" from the beginning and end of "xxxabcxxx", resulting in "abc":

SELECT TRIM(BOTH 'x' FROM 'xxxabcxxx') AS Trimmed

The following example removes all instances of the characters "xyz" from the end of "abcxxyz", resulting in "abc":

SELECT TRIM(TRAILING 'xyz' FROM 'abcxzzxyyyyz') AS Trimmed

The following example removes the leading letters "B" or "R" from the FavoriteColors values. Note that you must convert
a list to a string in order to apply TRIM to leading characters:

SELECT TOP 15 Name,FavoriteColors,
 TRIM(LEADING 'BR' FROM $LISTTOSTRING(FavoriteColors)) AS Trimmed
 FROM Sample.Person WHERE FavoriteColors IS NOT NULL

See Also
• SQL functions: LTRIM, RTRIM, LPAD, RPAD

• ObjectScript function: $ZSTRIP

InterSystems SQL Reference 681

TRIM

TRUNCATE
A scalar numeric function that truncates a number at a specified number of digits.

{fn TRUNCATE(numeric-expr,scale)}

Arguments

The number to be truncated. A number or numeric expression.numeric-expr

An expression that evaluates to an integer that specifies the number
of places to truncate, counting from the decimal point. Can be zero,
a positive integer, or a negative integer. If scale is a fractional number,
InterSystems IRIS rounds it to the nearest integer.

scale

TRUNCATE returns either the NUMERIC or DOUBLE data type. If numeric-expr is data type DOUBLE, TRUNCATE
returns DOUBLE; otherwise, it returns NUMERIC.

Description
TRUNCATE truncates numeric-expr by truncating at the scale number of digits from the decimal point. It does not round
numbers or add padding zeroes. Leading and trailing zeroes are removed before the TRUNCATE operation.

• If scale is a positive number, truncation is performed at that number of digits to the right of the decimal point. If scale
is equal to or larger than the number of decimal digits, no truncation or zero filling occurs.

• If scale is zero, the number is truncated to a whole integer. In other words, truncation is performed at zero digits to the
right of the decimal point; all decimal digits and the decimal point itself are truncated.

• If scale is a negative number, truncation is performed at that number of digits to the left of the decimal point. If scale
is equal to or larger than the number of integer digits in the number, zero is returned.

• If numeric-expr is zero (however expressed: 00.00, -0, etc.) TRUNCATE returns 0 (zero) with no decimal digits,
regardless of the scale value.

• If numeric-expr or scale is NULL, TRUNCATE returns NULL.

TRUNCATE can only be used as an ODBC scalar function (with the curly brace syntax).

ROUND can be used to perform a similar truncation operation on numbers. TRIM can be used to perform a similar trun-
cation operation on strings.

TRUNCATE, ROUND, and $JUSTIFY

TRUNCATE and ROUND are numeric functions that perform similar operations; they both can be used to decrease the
number of significant decimal or integer digits of a number. ROUND allows you to specify either rounding (the default),
or truncation; TRUNCATE does not perform rounding. ROUND returns the same data type as numeric-expr; TRUNCATE
returns numeric-expr as data type NUMERIC, unless numeric-expr is data type DOUBLE, in which case it returns data
type DOUBLE.

TRUNCATE truncates to a specified number of fractional digits. If the truncation results in trailing zeros, these trailing
zeros are preserved. However, if scale is larger than the number of fractional decimal digits in the canonical form of
numeric-expr, TRUNCATE does not zero-pad.

ROUND rounds (or truncates) to a specified number of fractional digits, but its return value is always normalized, removing
trailing zeros. For example, ROUND(10.004,2) returns 10, not 10.00.

682 InterSystems SQL Reference

SQL Functions

Use $JUSTIFY when rounding to a fixed number of fractional digits is important — for example, when representing
monetary amounts. $JUSTIFY returns the specified number of trailing zeros following the rounding operation. When the
number of digits to round is larger than the number of fractional digits, $JUSTIFY zero-pads. $JUSTIFY also right-aligns
the numbers, so that the DecimalSeparator characters align in a column of numbers. $JUSTIFY does not truncate.

Examples
The following two examples both truncate a number to two decimal digits. The first (using Dynamic SQL) specifies scale
as an integer; the second (using Embedded SQL) specifies scale as a host variable that resolves to an integer:

 SET myquery = "SELECT {fn TRUNCATE(654.321888,2)} AS trunc"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()

 SET x=2
 &sql(SELECT {fn TRUNCATE(654.321888,:x)}
 INTO :a)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"truncated value is: ",a }

both examples return 654.32 (truncation to two decimal places).

The following Dynamic SQL example specifies a scale larger than the number of decimal digits:

 SET myquery = "SELECT {fn TRUNCATE(654.321000,9)} AS trunc"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()

it returns 654.321 (InterSystems IRIS removed the trailing zeroes before the truncation operation; no truncation or zero
padding occurred).

The following Dynamic SQL example specifies a scale of zero:

 SET myquery = "SELECT {fn TRUNCATE(654.321888,0)} AS trunc"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()

it returns 654 (all decimal digits and the decimal point are truncated).

The following Dynamic SQL example specifies a negative scale:

 SET myquery = "SELECT {fn TRUNCATE(654.321888,-2)} AS trunc"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()

it returns 600 (two integer digits have been truncated and replaced by zeroes; note that no rounding has been done).

The following Dynamic SQL example specifies a negative scale as large as the integer portion of the number:

 SET myquery = "SELECT {fn TRUNCATE(654.321888,-3)} AS trunc"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute()
 DO rset.%Display()

it returns 0.

InterSystems SQL Reference 683

TRUNCATE

See Also
• SQL functions: $JUSTIFY, ROUND, RTRIM, TRIM,

• ObjectScript function: $NORMALIZE

684 InterSystems SQL Reference

SQL Functions

%TRUNCATE
A collation function that truncates a string to the specified length and applies EXACT collation.

%TRUNCATE(expression[,length])

Arguments

A string expression, which can be the name of a column, a string literal, or the result
of another function, where the underlying data type can be represented as any character
type (such as CHAR or VARCHAR2). expression can be a subquery.

expression

Optional — The truncation length, specified as an integer. The initial length characters
of expression are returned. If you omit length, %TRUNCATE collation is identical to
%EXACT collation.You can enclose length with double parentheses to suppress literal
substitution: ((length)).

length

Description
%TRUNCATE truncates expression to the specified length, then returns it in the EXACT collation sequence.

EXACT collation orders pure numeric values (values for which x=+x) in numeric order first, followed by all other characters
in string collation sequence. The EXACT string collation sequence is the same as the ANSI-standard ASCII collation
sequence: digits are collated before uppercase alphabetic characters and uppercase alphabetic characters are collated before
lowercase alphabetic characters. Punctuation characters occur at several places in the sequence.

%TRUNCATE passes through NULLs unchanged.

%TRUNCATE is an InterSystems SQL extension and is intended for SQL lookup queries.

Examples
The following example uses %TRUNCATE to return the first four characters of Name values:

SELECT TOP 5 Name,%TRUNCATE(Name,4) AS ShortName
FROM Sample.Person

The following example applies %TRUNCATE to a subquery:

SELECT TOP 5 Name, %TRUNCATE((SELECT Name FROM Sample.Company),10) AS Company
FROM Sample.Person

The following example uses %TRUNCATE in the GROUP BY clause to create an alphabet list that returns the number
of names that begin with each letter:

SELECT Name AS FirstLetter,COUNT(Name) AS NameCount
FROM Sample.Person GROUP BY %TRUNCATE(Name,1) ORDER BY Name

The following two examples show how %TRUNCATE performs EXACT collation. The ORDER BY in the first example
truncates Home_Street to two characters. Because the first two characters of a street address are almost always numbers,
the Home_Street fields are ordered in the numeric sequence of their first two numbers.

SELECT Name,Home_Street
FROM Sample.Person
ORDER BY %TRUNCATE(Home_Street,2)

The ORDER BY in the second example truncates Home_Street to four characters. Because the fourth character of some
street addresses is not a number (a blank space, for example), the Home_Street values that begin with four (or more) numbers

InterSystems SQL Reference 685

%TRUNCATE

are ordered first in numeric sequence, then the Home_Street values that contain a non-numeric character within the first
four characters are ordered in string sequence:

SELECT Name,Home_Street
FROM Sample.Person
ORDER BY %TRUNCATE(Home_Street,4)

See Also
• CREATE TABLE

• %STARTSWITH predicate

• %EXACT collation function

• %SQLSTRING collation function

• %TRUNCATE collation function

• Collation chapter in Using InterSystems SQL

686 InterSystems SQL Reference

SQL Functions

$TSQL_NEWID
A function that returns a globally unique ID.

$TSQL_NEWID()

Description
$TSQL_NEWID returns a globally unique ID (GUID). A GUID is used to synchronize databases on occasionally connected
systems. A GUID is a 36-character string consisting of 32 hexadecimal digits separated into five groups by hyphens. Its
data type is %Library.UniqueIdentifier.

$TSQL_NEWID is provided in InterSystems SQL to support InterSystems Transact-SQL (TSQL). The corresponding
TSQL function is NEWID.

The $TSQL_NEWID function takes no arguments. Note that the argument parentheses are required.

The %Library.GUID abstract class provides support for globally unique IDs, including the AssignGUID() method, which
can be used to assign a globally unique ID to a class. To generate a GUID value, use the %SYSTEM.Util.CreateGUID()
method.

Examples
The following example returns a GUID:

SELECT $TSQL_NEWID()

See Also
• TSQL: NEWID function

InterSystems SQL Reference 687

$TSQL_NEWID

UCASE
A case-transformation function that converts all lowercase letters in a string to uppercase letters.

UCASE(string-expression)
{fn UCASE(string-expression)}

Arguments

The string whose characters are to be converted to uppercase. The
expression can be the name of a column, a string literal, or the result of
another scalar function, where the underlying data type can be
represented as any character type (such as CHAR or VARCHAR).

string-expression

Description
UCASE converts lowercase letters to uppercase for display purposes. It has no effects on non-alphabetic characters; it
leaves unchanged numbers, punctuation, and leading or trailing blank spaces.

Note that UCASE can be used as an ODBC scalar function (with the curly brace syntax) or as an SQL general function.

UCASE does not force a numeric to be interpreted as a string. InterSystems SQL removes leading and trailing zeros from
numerics. A numeric specified as a string retains leading and trailing zeros.

UCASE does not affect collation. The %SQLUPPER function is the preferred way in SQL to convert a data value for not
case-sensitive collation. Refer to %SQLUPPER for further information on case transformation for collation.

This function can also be invoked from ObjectScript using the UPPER() method call:

$SYSTEM.SQL.UPPER(expression)

Examples
The following example returns each person’s name in uppercase letters:

SELECT Name,{fn UCASE(Name)} AS CapName
 FROM Sample.Person

UCASE also works on Unicode (non-ASCII) alphabetic characters, as shown in the following Embedded SQL example,
which converts Greek letters from lowercase to uppercase:

 SET a=$CHAR(950,949,965,963)
 &sql(SELECT UCASE(:a)
 INTO :b
 FROM Sample.Person)
 IF SQLCODE'=0 {WRITE !,"Error code ",SQLCODE }
 ELSE {WRITE !,a,!,b }

See Also
• SQL functions: LCASE, %SQLUPPER, UPPER

• ObjectScript function: $ZCONVERT

688 InterSystems SQL Reference

SQL Functions

UNIX_TIMESTAMP
A date/time function that converts a date expression to a UNIX timestamp.

UNIX_TIMESTAMP([date-expression])

Arguments

Optional — An expression that is the name of a column, the result of another scalar
function, or a date or timestamp literal. UNIX_TIMESTAMP does not convert from one
timezone to another. If date-expression is omitted, defaults to the current UTC timestamp.

date-expression

Description
UNIX_TIMESTAMP returns a UNIX® timestamp, the count of seconds (and fractional seconds) since '1970-01-01
00:00:00'.

If you do not specify date-expression, date-expression defaults to the current UTC timestamp. Therefore,
UNIX_TIMESTAMP() is equivalent to UNIX_TIMESTAMP(GETUTCDATE(3)), assuming the system-wide default precision
of 3.

If you specify date-expression, UNIX_TIMESTAMP converts the specified date-expression value to a UNIX timestamp,
calculating the count of seconds to that timestamp. UNIX_TIMESTAMP can return a positive or negative count of seconds.

UNIX_TIMESTAMP returns its value as data type %Library.Numeric. It can return fractional seconds of precision. If
you do not specify date-expression, it takes the currently configured system-wide precision. If you specify date-expression
it takes its precision from date-expression.

date-expression Values

The optional date-expression can be specified as:

• An ODBC timestamp value (data type %Library.TimeStamp): YYYY-MM-DD HH:MI:SS.FFF

• A PosixTime timestamp value (data type %Library.PosixTime): an encoded 64-bit signed integer.

• A $HOROLOG date value (data type %Library.Date): a count of the number of days since December 31, 1840, where
day 1 is January 1, 1841.

• A $HOROLOG timestamp, with or without fractional seconds: 64412,54736.

UNIX_TIMESTAMP does not perform timezone conversion: if date-expression is in UTC time, UTC UnixTime is
returned; if date-expression is local time, a local UnixTime value is returned.

Fractional Seconds Precision

Fractional seconds are always truncated, not rounded, to the specified precision.

• A date-expression in %Library.TimeStamp data type format can have a maximum precision of nine. The actual number
of digits supported is determined by the date-expression precision argument, the configured default time precision,
and the system capabilities. If you specify a precision larger than the configured default time precision, the additional
digits of precision are returned as trailing zeros.

• A date-expression in %Library.PosixTime data type format has a maximum precision of six. Every POSIXTIME value
is computed using six digits of precision; these fractional digits default to zeros unless supplied.

Configuring Precision

The default precision can be configured using the following:

InterSystems SQL Reference 689

UNIX_TIMESTAMP

• SET OPTION with the TIME_PRECISION option.

• The $SYSTEM.SQL.SetDefaultTimePrecision() method call.

• Go to the Management Portal, select System Administration, Configuration, SQL and Object Settings, SQL. View and
edit the current setting of Default time precision for GETDATE(), CURRENT_TIME, and CURRENT_TIMESTAMP.

Specify an integer 0 through 9 (inclusive) for the default number of decimal digits of precision to return. The default is 0.
The actual precision returned is platform dependent; precision digits in excess of the precision available on your system
are returned as zeroes.

Date and Time Functions Compared

UNIX_TIMESTAMP returns date and time expressed as a number of elapsed seconds from an arbitrary date.

TO_POSIXTIME returns an encoded 64-bit signed (a %PosixTime timestamp) that is calculated from the UNIX timestamp.

GETUTCDATE returns a universal (independent of time zone) date and time as either a %TimeStamp (ODBC timestamp)
data type or a %PosixTime (encoded 64-bit signed integer) data type value. A %PosixTime value is calculated from the
corresponding UNIX timestamp value. The %PosixTime encoding facilitates rapid timestamp comparisons and calculations.
The %Library.PosixTime class provides a UnixTimeToLogical() method to convert a UNIX timestamp to a PosixTime
timestamp, and a LogicalToUnixTime() method to convert a PosixTime timestamp to a UNIX timestamp. Neither of these
methods perform timezone conversion.

You can also use the ObjectScript $ZTIMESTAMP special variable to return a universal (time zone independent) timestamp.

The ObjectScript $ZDATETIME function dformat -2 takes an InterSystems IRIS $HOROLOG date and returns a UNIX
timestamp; $ZDATETIMEH dformat -2 takes a UNIX timestamp and returns an InterSystems IRIS %HOROLOG date.
These ObjectScript functions convert local time to UTC time. UNIX_TIMESTAMP does not convert local time to UTC
time.

Examples
The following example returns a UTC UNIX timestamp. The first select-item takes the date-expression default, the second
specifies an explicit UTC timestamp:

SELECT
 UNIX_TIMESTAMP() AS DefaultUTC,
 UNIX_TIMESTAMP(GETUTCDATE(3)) AS ExplicitUTC

The following example returns a local UNIX timestamp for the current local date and time, and a UTC UNIX timestamp
for a UTC date and time value. The first select-item specifies the local CURRENT_TIMESTAMP, the second specifies
$HOROLOG (local date and time), the third specifies the current UTC date and time:

SELECT
 UNIX_TIMESTAMP(CURRENT_TIMESTAMP(2)) AS CurrTSLocal,
 UNIX_TIMESTAMP($HOROLOG) AS HorologLocal,
 UNIX_TIMESTAMP(GETUTCDATE(3)) AS ExplicitUTC

The following example compares UNIX_TIMESTAMP (which does not convert local time) and $ZDATETIME (which
does convert local time):

 SET unixutc=$ZDATETIME($HOROLOG,-2)
 SET myquery = "SELECT UNIX_TIMESTAMP($HOROLOG) AS UnixLocal,? AS UnixUTC"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)
 IF qStatus'=1 {WRITE "%Prepare failed:" DO $System.Status.DisplayError(qStatus) QUIT}
 SET rset = tStatement.%Execute(unixutc)
 DO rset.%Display()

See Also
• SQL concepts: Data Type, Date and Time Constructs

690 InterSystems SQL Reference

SQL Functions

• SQL timestamp functions: CAST, CONVERT, GETDATE, GETUTCDATE, NOW, SYSDATE, TIMESTAMPADD,
TIMESTAMPDIFF, TO_POSIXTIME, TO_TIMESTAMP

• ObjectScript: $ZDATETIME and $ZDATETIMEH functions, $HOROLOG special variable, $ZTIMESTAMP special
variable

InterSystems SQL Reference 691

UNIX_TIMESTAMP

UPPER
A case-transformation function that converts all lowercase letters in a string expression to uppercase letters.

UPPER(expression)
UPPER expression

Arguments

A string expression, which can be the name of a column, a string literal, or the result
of another function, where the underlying data type can be represented as any character
type (such as CHAR or VARCHAR2).

expression

Description
The UPPER function converts all alphabetic characters to uppercase letters. This is the inverse of the LOWER function.
UPPER leaves unchanged numbers, punctuation, and leading or trailing blank spaces.

UPPER does not force a numeric to be interpreted as a string. InterSystems SQL removes leading and trailing zeros from
numerics. A numeric specified as a string retains leading and trailing zeros.

This function can also be invoked from ObjectScript using the UPPER() method call:

$SYSTEM.SQL.UPPER(expression)

UPPER is a standard function for alphabetic case conversion, not for collation. For uppercase collation use %SQLUPPER,
which provides superior collation of numerics, NULL values and empty strings.

Examples
The following example returns all names, selecting those where the uppercase form of the name starts with “JO”:

SELECT Name
FROM Sample.Person
WHERE UPPER(Name) %STARTSWITH UPPER('JO')

The following example returns all names in uppercase, selecting those where the name starts with “JO”:

SELECT UPPER(Name) AS CapName
FROM Sample.Person
WHERE Name %STARTSWITH UPPER('JO')

The following Embedded SQL example converts the lowercase Greek letter Delta to uppercase. This example uses the
UPPER syntax that uses a space, rather than parentheses, to separate keyword from argument:

 &sql(SELECT UPPER {fn CHAR(948)},{fn CHAR(948)}
 INTO :a,:b
 FROM Sample.Person)
 IF SQLCODE'=0 {WRITE !,"Error code ",SQLCODE }
 ELSE {WRITE !,a,!,b }

See Also
• %SQLUPPER collation function

• %STARTSWITH predicate condition

• LOWER function

• UCASE function

• Collation chapter in Using InterSystems SQL

692 InterSystems SQL Reference

SQL Functions

USER
A function that returns the user name of the current user.

USER

{fn USER}
{fn USER()}

Description
USER takes no arguments and returns the user name (also referred to as the authorization ID) of the current user. The
general function does not allow parentheses; the ODBC scalar function can specify or omit the empty parentheses.

A user name is defined with the CREATE USER command.

Typical uses for USER are in the SELECT statement select list or in the WHERE clause of a query. In designing a report,
USER can be used to print the current user for whom the report is being produced.

Examples
The following example returns the current user name:

SELECT USER AS CurrentUser

The following example selects those records where the last name ($PIECE(Name,',',1) or the first name (without the middle
initial) matches the current user name:

SELECT Name FROM Sample.Person
WHERE %SQLUPPER(USER)=%SQLUPPER($PIECE(Name,',',1))
OR %SQLUPPER(USER)=%SQLUPPER($PIECE($PIECE(Name,',',2),' ',1))

See Also
CREATE USER, GRANT

InterSystems SQL Reference 693

USER

WEEK
A date function that returns the week of the year as an integer for a date expression.

{fn WEEK(date-expression)}

Arguments

An expression that is the name of a column, the result of another scalar
function, or a date or timestamp literal.

date-expression

Description
WEEK takes a date-expression, and returns the number of weeks from the beginning of the year for that date.

By default, weeks are calculated using the $HOROLOG date (positive or negative integer number of days from Dec. 31,
1840). Therefore, weeks are counted from year to year, such that Week 1 is the days that complete the seven-day period
begun by the last week of the previous year. A week always begins with a Sunday; therefore, the first Sunday of the calendar
year marks the changing from Week 1 to Week 2. If the first Sunday of the year is January 1, then that Sunday is in Week
1; if the first Sunday of the year is later than January 1, then that Sunday is the first day of Week 2. For this reason, Week
1 is commonly less than seven days in length. You can determine the day of the week by using the DAYOFWEEK function.
The total number of weeks in a year is commonly 53, and can be 54 in leap years.

InterSystems IRIS also supports the ISO 8601 standard for determining the week of the year. This standard is principally
used in European countries. When InterSystems IRIS is configured for ISO 8601, WEEK begins counting a week with
Monday, and assigns the week to the year that contains that week’s Thursday. For example, Week 1 of 2004 ran from
Monday 29 December 2003 to Sunday 4 January 2004, because this week’s Thursday was 1 January 2004, which was the
first Thursday of 2004. Week 1 of 2005 ran from Monday 3 January 2005 to Sunday 9 January 2005, because its Thursday
was 6 January 2005, which was the first Thursday of 2005. The total number of weeks in a year is commonly 52, but can
occasionally be 53. To activate ISO 8601 counting, SET ^%SYS("sql","sys","week ISO8601")=1.

The date-expression can be an InterSystems IRIS date integer, a $HOROLOG or $ZTIMESTAMP value, an ODBC format
date string, or a timestamp.

A date-expression timestamp can be either data type %Library.PosixTime (an encoded 64-bit signed integer), or data type
%Library.TimeStamp (yyyy-mm-dd hh:mm:ss.fff).

The time portion of the timestamp is not evaluated and can be omitted.

The same week information can be returned by using the DATEPART or DATENAME function.

This function can also be invoked from ObjectScript using the WEEK() method call:

$SYSTEM.SQL.WEEK(date-expression)

Date Validation

WEEK performs the following checks on input values. If a value fails a check, the null string is returned.

• A date string must be complete and properly formatted with the appropriate number of elements and digits for each
element, and the appropriate separator character. Years must be specified as four digits.

• Date values must be within a valid range. Years: 0001 through 9999. Months: 1 through 12. Days: 1 through 31.

• The number of days in a month must match the month and year. For example, the date '02–29' is only valid if the
specified year is a leap year.

• Date values less than 10 may include or omit a leading zero. Other non-canonical integer values are not permitted.
Therefore, a Day value of '07' or '7' is valid, but '007', '7.0' or '7a' are not valid.

694 InterSystems SQL Reference

SQL Functions

Examples
The following Embedded SQL example returns the day of week and week of year for January 2, 2005 (which is a Sunday)
and January 1, 2006 (which is a Sunday).

 SET x="2005-1-2"
 SET y="2006-1-1"
 &sql(SELECT {fn DAYOFWEEK(:x)},{fn WEEK(:x)},
 {fn DAYOFWEEK(:y)},{fn WEEK(:y)}
 INTO :a,:b,:c,:d)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"2005 Day of Week is: ",a," (Sunday=1)"
 WRITE " Week of Year is: ",b
 WRITE !,"2006 Day of Week is: ",c," (Sunday=1)"
 WRITE " Week of Year is: ",d }

The following examples return the number 9 because the date is the ninth week of the year 2004:

SELECT {fn WEEK('2004-02-25')} AS Wk_Date,
 {fn WEEK('2004-02-25 08:35:22')} AS Wk_Tstamp,
 {fn WEEK(59590)} AS Wk_DInt

The following example returns the number 54 because this particular date is in a leap year that began with Week 2 starting
on the second day, as demonstrated by the example immediately following it:

SELECT {fn WEEK('2000-12-31')} AS Week

SELECT {fn WEEK('2000-01-01')}||{fn DAYNAME('2000-01-01')} AS WeekofDay1,
 {fn WEEK('2000-01-02')}||{fn DAYNAME('2000-01-02')} AS WeekofDay2

The following examples all return the current week:

SELECT {fn WEEK({fn NOW()})} AS Wk_Now,
 {fn WEEK(CURRENT_DATE)} AS Wk_CurrD,
 {fn WEEK(CURRENT_TIMESTAMP)} AS Wk_CurrTS,
 {fn WEEK($HOROLOG)} AS Wk_Horolog,
 {fn WEEK($ZTIMESTAMP)} AS Wk_ZTS

The following Embedded SQL example shows the InterSystems IRIS default week of the year and the week of the year
with the ISO 8601 standard applied:

TestISO
 SET def=$DATA(^%SYS("sql","sys","week ISO8601"))
 IF def=0 {SET ^%SYS("sql","sys","week ISO8601")=0}
 ELSE {SET isoval=^%SYS("sql","sys","week ISO8601")}
 IF isoval=1 {GOTO UnsetISO }
 ELSE {SET isoval=0 GOTO WeekOfYear }
UnsetISO
 SET ^%SYS("sql","sys","week ISO8601")=0
WeekOfYear
 &sql(SELECT {fn WEEK($HOROLOG)} INTO :a)
 WRITE "For Today:",!
 WRITE "default week of year is ",a,!
 SET ^%SYS("sql","sys","week ISO8601")=1
 &sql(SELECT {fn WEEK($HOROLOG)} INTO :b)
 WRITE "ISO8601 week of year is ",b,!
ResetISO
 SET ^%SYS("sql","sys","week ISO8601")=isoval

See Also
• SQL functions: DATENAME, DATEPART, DAYOFWEEK, MONTH, QUARTER, TO_DATE, YEAR

• ObjectScript special variables: $HOROLOG, $ZTIMESTAMP

InterSystems SQL Reference 695

WEEK

XMLCONCAT
A function that concatenates XML elements.

XMLCONCAT(XmlElement1,XmlElement2[,XmlElementN])

Arguments

An XMLELEMENT function. Specify two or more XmlElement to concatenate.XmlElement

Description
The XMLCONCAT function returns the values from several XMLELEMENT functions as a single string. XMLCONCAT
can be used in a SELECT query or subquery that references either a table or a view. XMLCONCAT can appear in a
SELECT list alongside ordinary field values.

Examples
The following query concatenates the values from two XMLELEMENT functions:

SELECT Name,XMLCONCAT(XMLELEMENT("Para",Name),
 XMLELEMENT("Para",Home_City)) AS ExportString
 FROM Sample.Person

A sample row of the data returned would appear as follows:

ExportString
<Para>Emerson,Molly N.</Para><Para>Boston</Para>

The following query nests an XMLCONCAT within an XMLELEMENT function:

SELECT XMLELEMENT("Item",Name,
 XMLCONCAT(
 XMLELEMENT("Para",Home_City,' ',Home_State),
 XMLELEMENT("Para",'is residence')))
 AS ExportString
FROM Sample.Person

A sample row of the data returned would appear as follows:

ExportString
<Item>Emerson,Molly N.<Para>Boston MA</Para><Para>is residence</Para></Item>

See Also
SELECT statement

XMLAGG function

XMLELEMENT function

696 InterSystems SQL Reference

SQL Functions

XMLELEMENT
A function that formats an XML markup tag to enclose one or more expression values.

XMLELEMENT([NAME] tag,expression[,expression])

XMLELEMENT([NAME] tag,XMLATTRIBUTES(expression [AS alias]),expression[,expression])

Arguments

The name of an XML markup tag. The NAME keyword is optional. This argument has
three syntactical forms: NAME "tag", "tag", and NAME. The first two are functionally
identical. If specified, tag must be enclosed in double quotes. The case of letters in
tag is preserved.

XMLELEMENT performs no validation of tag values. However, the XML standard
requires that a valid tag name cannot contain any of the characters
!"#$%&'()*+,/;<=>?@[\]^`{|}~, nor a space character, and cannot begin with "-
", ".", or a numeric digit.

If you specify the NAME keyword without a tag value, InterSystems IRIS supplies the
default tag value: <Name> ... </Name>.

NAME tag

Any valid expression. Usually the name of a column that contains the data values to
be tagged.You can specify a comma-separated list of columns or other expressions,
all of which will be enclosed within the same tag. The first comma-separated element
can be an XMLATTRIBUTES function. Only one XMLATTRIBUTES element can be
specified.

expression

Description
The XMLELEMENT function returns the values of expression tagged with the XML (or HTML) markup start-tag and
end-tag specified in tag. For example, XMLELEMENT(NAME "Para",Home_City) returns values such as the following:
<Para>Chicago</Para>. XMLELEMENT cannot be used to generate an empty-element tag.

XMLELEMENT can be used in a SELECT query or subquery that references either a table or a view. XMLELEMENT
can appear in a SELECT list alongside ordinary field values.

The tag argument uses double quotes to enclose a literal string. In nearly all other contexts, InterSystems SQL uses single
quotes to enclose a literal string; it uses double quotes to specify a delimited identifier. Therefore, delimited identifier
support must be enabled to use this feature; delimited identifiers are enabled by default.

When SQL code is specified as a string delimited by double quotes, such as in a Dynamic SQL %Prepare() method, you
must escape the tag double quotes by specifying two double quotes, as follows:

 SET myquery = "SELECT XMLELEMENT(""Para"",Name) FROM Sample.Person"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET qStatus = tStatement.%Prepare(myquery)

InterSystems SQL Reference 697

XMLELEMENT

Commonly, expression is the name of a field, (or an expression containing one or more field names) in the multiple rows
returned by a query. An expression can be a field of any type. The specified expression value is returned enclosed by a start
tag and an end tag, as shown in the following format:

<tag>value</tag>

If the value to be tagged is either the empty string ('') value or a NULL, the following is returned:

<tag></tag>

If the expression contains multiple comma-separated elements, the results are concatenated, as shown in the following
format:

<tag>value1value2</tag>

If the expression is a data stream field, the stream value is escaped within the resulting XML value using <![CDATA[...]]>:

<tag><![CDATA[value]]></tag>

XMLELEMENT functions can be nested. XMLELEMENT and XMLFOREST functions may be nested in any combi-
nation. XMLELEMENT functions can be concatenated using XMLCONCAT. However, XMLELEMENT does not do
XML type resolution of entire expressions. For example, XMLELEMENT cannot perform character conversion within a
clause of a CASE statement (see example below).

XMLATTRIBUTES Function

The XMLATTRIBUTES function can only be used within an XMLELEMENT function. If an element of expression is
an XMLATTRIBUTES function, the specified expression becomes an attribute of the tag, as shown in the following format:

<tag ID='63' >value</tag>

You can only specify one XMLATTRIBUTES function within an XMLELEMENT function. By convention it is the
first expression element, though it can be any element in expression. InterSystems IRIS encloses attribute values with single
quotes and inserts a space between the attribute value and the closing angle bracket (>) for the tag.

XMLELEMENT and XMLFOREST Compared

• XMLELEMENT concatenates the values of its expression list within a single tag. XMLFOREST assigns a separate
tag for each expression item.

• XMLELEMENT requires that you specify a tag value. XMLFOREST allows you to either take default tag values
or specify individual tag values. XMLELEMENT cannot specify an empty (nameless) tag: <>value</>; XMLFOREST
can.

• XMLELEMENT allows you to specify a tag attribute using XMLATTRIBUTES. XMLFOREST does not allow
you to specify a tag attribute.

• XMLELEMENT returns a tag string for NULL. XMLFOREST does not return a tag string for NULL.

Punctuation Character Values

If a data value contains a punctuation character that XML/HTML might interpret as a tag or other coding, XMLELEMENT
and XMLFOREST convert this character to the corresponding encoded form:

ampersand (&) becomes &

apostrophe (') becomes '

quotation mark (") becomes "

698 InterSystems SQL Reference

SQL Functions

open angle bracket (<) becomes <

close angle bracket (>) becomes >

To represent an apostrophe in a supplied text string, specify two apostrophes, as in the following example: 'can''t'.
Doubling apostrophes is not necessary for column data.

Examples
The following example returns each person’s Name field value in Sample.Person as ordinary data and as xml tagged data:

SELECT Name,
 XMLELEMENT("Para",Name) AS ExportName
 FROM Sample.Person

A sample row of the data returned would appear as follows:

Name ExportName
Emerson,Molly N. <Para>Emerson,Molly N.</Para>

The following example returns every distinct Home_City and Home_State pair value in Sample.Person as xml tagged data
with the tag <Address> ... </Address>. A blank space expression is specified to prevent concatenation of the city name and
the state name:

SELECT DISTINCT
 XMLELEMENT(NAME "Address",Home_City,' ',Home_State) AS CityState
 FROM Sample.Person
 ORDER BY Home_City

Note that in the above example the optional NAME keyword is supplied. In the next example, the NAME keyword is provided
without the tag value:

SELECT DISTINCT
 XMLELEMENT(NAME,Home_City,' ',Home_State) AS CityState
 FROM Sample.Person
 ORDER BY Home_City

In this case the same data is returned, but is tagged with the default tag: <Name> ... </Name>.

The following example returns character stream data:

SELECT XMLELEMENT("Para",Name) AS XMLNotes,XMLELEMENT("Para",Notes) AS XMLText
 FROM Sample.Employee

A sample row of the data returned would appear as follows:

XMLName XMLText
<Para>Emerson,Molly N.</Para> <Para><![CDATA[Molly worked at DynaMatix Holdings Inc. as a Marketing
 Manager]]></Para>

The following example shows that XMLELEMENT functions can be nested:

SELECT XMLELEMENT("Para",Home_State,
 XMLELEMENT("Emphasis",Name),Age)
FROM Sample.Person

A sample row of the data returned would appear as follows:

<Para>CA<Emphasis>Emerson,Molly N.</Emphasis>24</Para>

The following example shows XMLELEMENT functions using a subquery value:

SELECT XMLELEMENT("Para",Name,DOB, XMLELEMENT("Emphasis",%ID),Age,
 (SELECT XMLELEMENT("NameSub",Name) FROM Sample.Person WHERE %ID=2)) AS ExportName
FROM Sample.Person WHERE %ID=1

A sample row of the data returned would appear as follows:

InterSystems SQL Reference 699

XMLELEMENT

<Para>Zucherro,Rob F.38405<Emphasis>1</Emphasis>71<NameSub>Quixote,Mark N.</NameSub></Para>

The following example shows that XMLELEMENT can not tag a value within a CASE statement clause:

SELECT XMLELEMENT("Para",Home_State,
 XMLELEMENT("Para",Name),
 CASE WHEN Age < 21 THEN NULL
 ELSE XMLELEMENT("Para",Age) END)
FROM Sample.Person

A sample row of the data returned would appear as follows:

<Para>CA<Para>Emerson,Molly N.</Para><Para>24</Para></Para>

The following query returns the Name field values in Sample.Person as XML-tagged data in a tag that uses the ID field as
a tag attribute:

SELECT XMLELEMENT("Para",XMLATTRIBUTES(%ID),Name) AS ExportName
 FROM Sample.Person

A sample row of the data returned would appear as follows:

ExportName
<Para ID='101' >Emerson,Molly N.</Para>

You can specify an alias for an attribute, as shown in the following example:

SELECT XMLELEMENT("Para",XMLATTRIBUTES(%ID AS ItemKey),Name)
 FROM Sample.Person

A sample row of the data returned would appear as follows:

<Para ItemKey='101' >Emerson,Molly N.</Para>

See Also
XMLAGG function

XMLCONCAT function

XMLFOREST function

SELECT statement

700 InterSystems SQL Reference

SQL Functions

XMLFOREST
A function that formats multiple XML markup tags to enclose expression values.

XMLFOREST(expression [AS tag][,expression [AS tag]])

Arguments

Any valid expression. Usually the name of a column that contains the data values to
be tagged. When specified as a comma-separated list, each expression in the list will
be enclosed in its own XML markup tag.

expression

Optional — The name of an XML markup tag. The AS keyword is mandatory if tag is
specified. The case of letters in tag is preserved.

Enclosing tag with double quotes is optional. If you omit the double quotes, tag must
follow XML naming standards. Enclosing tag with double quotes removes these naming
restrictions.

XMLFOREST enforces XML naming standards for a valid tag name. It cannot contain
any of the characters !"#$%&'()*+,/;<=>?@[\]^`{|}~, nor a space character, and
cannot begin with "-", ".", or a numeric digit.

If you specify an expression without the AS tag clause, the tag value is the name of
the expression column (in capital letters): <HOME_CITY>Chicago</HOME_CITY>.

AS tag

Description
The XMLFOREST function returns the values of each expression tagged with its own XML markup start-tag and end-tag,
as specified in tag. For example, XMLFOREST(Home_City AS City,Home_State AS State) returns values such
as the following: <City>Chicago</City><State>IL</State>. XMLFOREST cannot be used to generate an
empty-element tag.

XMLFOREST can be used in a SELECT query or subquery that references either a table or a view. XMLFOREST can
appear in a SELECT list alongside ordinary column values.

The specified expression value is returned enclosed by a start tag and an end tag, as shown in the following format:

<tag>value</tag>

Commonly, expression is the name of a column, or an expression containing one or more column names. An expression
can be a field of any type, including a data stream field. XMLFOREST tags each expression as follows:

• If AS tag is specified, XMLFOREST tags the resulting values with the specified tag. The tag value is case-sensitive.

• If AS tag is omitted, and expression is a column name, XMLFOREST tags the resulting values with the column name.
Column name default tags are always uppercase.

• If expression is not a column name (for example, an aggregate function, a literal, or a concatenation of two columns)
the AS tag clause is required.

• If expression is a stream field, the stream value is escaped within the resulting XML value using <![CDATA[...]]>:

<tag><![CDATA[value]]></tag>

XMLFOREST provides a separate tag for each item in a comma-separated list. XMLELEMENT concatenates all of the
items in a comma-separated list within a single tag.

InterSystems SQL Reference 701

XMLFOREST

XMLFOREST functions can be nested. Any combination of nested XMLFOREST and XMLELEMENT functions is
permitted. XMLFOREST functions can be concatenated using XMLCONCAT.

NULL Values

The XMLFOREST function only returns a tag for actual data values. It does not return a tag when the expression value
is NULL. The empty string ('') is considered a data value. If the value to be tagged is the empty string (''), XMLFOREST
returns:

<tag></tag>

XMLFOREST differs from XMLELEMENT in the handling of NULL. XMLELEMENT always returns a tag value,
even when the field value is NULL.

Punctuation Character Values

If a data value contains a punctuation character that XML/HTML might interpret as a tag or other coding, XMLFOREST
and XMLELEMENT convert this character to the corresponding encoded form:

ampersand (&) becomes &

apostrophe (') becomes '

quotation mark (") becomes "

open angle bracket (<) becomes <

close angle bracket (>) becomes >

To represent an apostrophe in a supplied text string, specify two apostrophes, as in the following example: 'can''t'.
Doubling apostrophes is not necessary for column data.

Examples
The following query returns the Name column values in Sample.Person as ordinary data and as xml tagged data:

SELECT Name,XMLFOREST(Name) AS ExportName
 FROM Sample.Person

A sample row of the data returned would appear as follows. Here the tag defaults to the name of the column:

Name ExportName
Emerson,Molly N. <NAME>Emerson,Molly N.</NAME>

The following example specifies multiple columns:

SELECT XMLFOREST(Home_City,
 Home_State AS Home_State,
 AVG(Age) AS AvAge) AS ExportData
FROM Sample.Person

The Home_City field specifies no tag; the tag is generated from the column name in all capital letters: <HOME_CITY>.
The Home_State field’s AS clause is optional. It is specified here because specifying the tag name allows you to control
the case of the tag: <Home_State>, rather than <HOME_STATE>. The AVG(Age) AS clause is mandatory, because the
value is an aggregate, not a column value, and thus has no column name. A sample row of the data returned would appear
as follows.

ExportData
<HOME_CITY>Chicago</HOME_CITY><Home_State>IL</Home_State>
<AvAge>48.0198019801980198</AvAge>

The following example returns character stream data:

SELECT XMLFOREST(name AS Para,Notes AS Para) AS XMLJobHistory
 FROM Sample.Employee

702 InterSystems SQL Reference

SQL Functions

A sample row of the data returned would appear as follows:

XMLJobHistory
<Para>Emerson,Molly N.</Para><Para><![CDATA[Molly worked at DynaMatix Holdings Inc. as a Marketing
Manager]]></Para>

The following example shows XMLFOREST functions using a subquery value:

SELECT XMLFOREST(Name,DOB,Age,
 (SELECT XMLFOREST(Name,DOB) FROM Sample.Person WHERE %ID=2) AS ExportName)
FROM Sample.Person where %ID=1

A sample row of the data returned would appear as follows:

<NAME>Zucherro,Rob F.</NAME><DOB>38405</DOB><AGE>71</AGE><ExportName><NAME>Quixote,Mark
N.</NAME><DOB>30999</DOB></ExportName>

See Also
XMLAGG function

XMLELEMENT function

XMLCONCAT function

SELECT statement

InterSystems SQL Reference 703

XMLFOREST

YEAR
A date function that returns the year for a date expression.

YEAR(date-expression)
{fn YEAR(date-expression)}

Arguments

An expression that evaluates to either an InterSystems IRIS date integer,
an ODBC date, or a timestamp. This expression can be the name of a
column, the result of another scalar function, or a date or timestamp literal.

date-expression

Description
YEAR takes as input an InterSystems IRIS date integer, an ODBC format date string, or a timestamp.

A date-expression timestamp can be either data type %Library.PosixTime (an encoded 64-bit signed integer), or data type
%Library.TimeStamp (yyyy-mm-dd hh:mm:ss.fff).

The year (yyyy) portion should be a four-digit integer in the range 0001 through 9999. There is, however, no validation or
range checking for user-supplied dates. YEAR returns the year portion of invalid dates (such as 2018–02–31). Year values
outside the range 0001 through 9999, negative numbers, and fractions are returned as specified. Two digit years are not
expanded to four digits.

YEAR returns the corresponding year as a four-digit integer.

Note: For compatibility with InterSystems IRIS internal representation of dates, it is strongly recommended that all year
values be expressed as four-digit integers within the range of 0001 through 9999.

The TO_DATE and TO_CHAR SQL functions support “Julian dates,” which can be used to represent years
before 0001. ObjectScript provides method calls that support such Julian dates.

YEAR returns zero when the year portion is a string of one or more zeroes (for example '0' or '0000'), or a nonnumeric
value. YEAR interprets the initial numeric string encountered as the year value, so omitting the year portion of the date
string ('-mm-dd hh:mm:ss'), or omitting the date portion ('hh:mm:ss') results in the first number encountered ('-mm' or 'hh')
being treated as the year value. Thus, some placeholder should be supplied for an unknown year value; for compatibility
with InterSystems IRIS, 9999 is generally the preferred value.

The year format default is four-digit years. To change this year display default, use the SET OPTION command with the
YEAR_OPTION option.

The elements of a datetime string can be returned using the following SQL scalar functions: YEAR, MONTH, DAY,
DAYOFMONTH, HOUR, MINUTE, SECOND. The same elements can be returned by using the DATEPART or
DATENAME function. DATEPART and DATENAME perform value and range checking on year values.

This function can also be invoked from ObjectScript using the YEAR() method call:

$SYSTEM.SQL.YEAR(date-expression)

Examples
The following examples return the integer 2018. No validation is performed:

SELECT YEAR('2018-02-22 12:45:37') AS Year_Given

SELECT {fn YEAR(64701)} AS Year_Given

704 InterSystems SQL Reference

SQL Functions

The following examples return the year as 0 because the year field contains a nonnumeric placeholder. The separator
character (–) must be preceded by a some character(s); otherwise the month is returned as the year value:

Asterisk as year placeholder:

SELECT {fn YEAR('*-02-16')} AS Year_Given

Space character as year placeholder:

SELECT YEAR(' -02-16') AS Year_Given

The following example returns the current year:

SELECT YEAR(GETDATE()) AS Year_Now

The following Embedded SQL example returns the current year from two functions. The CURRENT_DATE function
returns data type DATE; the NOW function returns data type TIMESTAMP. YEAR returns a four-digit year integer for
both input data types:

 &sql(SELECT {fn YEAR(CURRENT_DATE)},
 {fn YEAR({fn NOW()})} INTO :a,:b)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"CURRENT_DATE year is: ",a
 WRITE !,"NOW year is: ",b }

The following Embedded SQL example shows that YEAR returns the year portion of an invalid date (the year 2017 was
not a leap year):

 SET testdate="2017-02-29"
 &sql(SELECT YEAR(:testdate)
 INTO :a)
 IF SQLCODE'=0 {
 WRITE !,"Error code ",SQLCODE }
 ELSE {
 WRITE !,"invalid date returns: ",a }
 QUIT

See Also
• SQL functions: DATENAME, DATEPART, DAYOFYEAR, QUARTER, WEEK, TO_DATE

• ObjectScript function: $ZDATE

InterSystems SQL Reference 705

YEAR

SQL Unary Operators

InterSystems SQL Reference 707

- (Negative)
A unary operator that returns an expression as a negative, numeric value.

-expression

Arguments

A numeric expression.expression

Description
Unary operators perform an operation on only one expression of any of the data types of the numeric data type category.

– (Negative) is an InterSystems SQL extension.

Examples
The following example returns three numeric fields: the Age column from Sample.Person; the – (Negative) value of the
average of Age; and the Age minus the average age:

SELECT Age,
 -(AVG(age)) AS NegAvg,
 Age-AVG(Age) AS AgeRelAvg
FROM Sample.Person

See Also
+ (Positive)

708 InterSystems SQL Reference

SQL Unary Operators

+ (Positive)
A unary operator that returns an expression as a positive, numeric value.

+expression

Arguments

A numeric expression.expression

Description
Unary operators perform an operation on only one expression. This expression can be any of the data types of the numeric
data type category.

+ (Positive) is an InterSystems SQL extension.

See Also
- (Negative)

InterSystems SQL Reference 709

+ (Positive)

SQL Reference Material

InterSystems SQL Reference 711

Data Types
Specifies the kind of data that an SQL entity (such as a column) can contain.

Description
The following topics are described here:

• A table of the supported DDL data types and their class property mappings

• Data type precedence used to select the most inclusive data type from data values having different data types

• Date, Time, PosixTime, and TimeStamp data types

– Usage in SqlCategory of standard and user-defined logical values

– Configurable support for dates prior to December 31, 1840

• Support for string data types, the List data type, and stream data types

• Support for the ROWVERSION data type

• Data types exposed by InterSystems IRIS® data platform ODBC / JDBC

• Determining a column's data type using query metadata methods and data type integer codes

• Creating user-defined data types

• Handling of undefined data types

• Data type conversion functions

A data type specifies the kind of value that a column can hold. You specify the data type when defining a field with CREATE
TABLE or ALTER TABLE. When defining an SQL field, you can specify the DDL data types listed in the following
table (left-hand column). When you specify one of these DDL data types, it maps to the InterSystems IRIS data type class
listed in the right-hand column. In InterSystems IRIS when defining a field you can specify either a DDL data type or a
data type class. DDL data type names are not case-sensitive. Data type class names are case-sensitive. %Library data type
classes can be specified either by full name (for example, %Library.String) or by short name (%String).

To view the current system data type mappings, go to the Management Portal, select System Administration, Configuration,
SQL and Object Settings, System-defined DDL Mappings.

You can also define additional user data types. To create or view the user data type mappings, go to the Management Portal,
select System Administration, Configuration, SQL and Object Settings, User-defined DDL Mappings.

Table of DDL Data Types

Corresponding InterSystems IRIS Data Type ClassDDL Data Type

%Library.BigInt (MAXVAL=9223372036854775807,
MINVAL=-9223372036854775807)

If a BIGINT column can contain both NULLs and
extremely small negative numbers, you may need to
redefine the index null marker to support standard
index collation. For further details refer to “ Indexing
a NULL ” in the SQL Optimization Guide.

BIGINT

712 InterSystems SQL Reference

SQL Reference Material

Corresponding InterSystems IRIS Data Type ClassDDL Data Type

%Library.BigInt The %1 is ignored.

Equivalent to BIGINT. Provided for MySQL compati-
bility.

BIGINT(%1)

%Library.Binary(MAXLEN=1)BINARY

%Library.Binary(MAXLEN=%1)BINARY(%1)

%Library.Binary(MAXLEN=1)BINARY VARYING

%Library.Binary(MAXLEN=%1)BINARY VARYING(%1)

%Library.Boolean SeeBIT Data Type.BIT

%Library.String(MAXLEN=1)CHAR

%Library.String(MAXLEN=%1)CHAR(%1)

%Library.String(MAXLEN=1)CHAR VARYING

%Library.String(MAXLEN=%1)CHAR VARYING(%1)

%Library.String(MAXLEN=1)CHARACTER

%Library.String(MAXLEN=1)CHARACTER VARYING

%Library.String(MAXLEN=%1)CHARACTER VARYING(%1)

%Library.String(MAXLEN=%1)CHARACTER(%1)

%Library.DateDATE

%Library.DateTimeDATETIME

%Library.DateTimeDATETIME2

%Library.Numeric MAXVAL=999999999999999,
MINVAL=-999999999999999, SCALE=0.

DEC

%Library.Numeric A 64–bit signed integer. If %1 is less
than 19, MAXVAL and MINVAL are the %1 number
of digits. For example, DEC(8) MAXVAL=99999999,
MINVAL=-99999999, SCALE=0. The largest
meaningful value for %1 is 19; %1 values larger than
19 do not issue an error, but default to 19. If %1 is 19
or greater: MAXVAL=9223372036854775807,
MINVAL=-9223372036854775808, SCALE=0.

DEC(%1)

%Library.Numeric

(MAXVAL=<|'$$maxval^%apiSQL(%1,%2)'|>,
MINVAL=<|'$$minval^%apiSQL(%1,%2)'|>,
SCALE=%2)

DEC(%1,%2)

%Library.Numeric MAXVAL=999999999999999,
MINVAL=-999999999999999, SCALE=0.

DECIMAL

InterSystems SQL Reference 713

Data Types

Corresponding InterSystems IRIS Data Type ClassDDL Data Type

%Library.Numeric A 64–bit signed integer. If %1 is less
than 19, MAXVAL and MINVAL are the %1 number
of digits. For example, DECIMAL(8)
MAXVAL=99999999, MINVAL=-99999999, SCALE=0.
The largest meaningful value for %1 is 19; %1 values
larger than 19 do not issue an error, but default to 19.
If %1 is 19 or greater:
MAXVAL=9223372036854775807,
MINVAL=-9223372036854775808, SCALE=0.

DECIMAL(%1)

%Library.Numeric

(MAXVAL=<|'$$maxval^%apiSQL(%1,%2)'|>,
MINVAL=<|'$$minval^%apiSQL(%1,%2)'|>,
SCALE=%2)

DECIMAL(%1,%2)

%Library.Double This is the IEEE floating point
standard. An SQL column with this data type returns
a default precision of 20. For further details (including
important max/min value limits), refer to the $DOUBLE
function in the ObjectScript Reference.

DOUBLE

%Library.Double This is the IEEE floating point
standard. An SQL column with this data type returns
a default precision of 20. For further details (including
important max/min value limits), refer to the $DOUBLE
function in the ObjectScript Reference.

DOUBLE PRECISION

Deprecated — %Library.Double This is the IEEE floating
point standard. An SQL column with this data type
returns a default precision of 20.

FLOAT

Deprecated — %Library.Double This is the IEEE floating
point standard. An SQL column with this data type
returns a default precision of 20.

FLOAT(%1)

%Stream.GlobalBinaryIMAGE

%Library.Integer (MAXVAL=2147483647,
MINVAL=-2147483648)

INT

%Library.Integer (MAXVAL=2147483647, MINVAL=-
2147483648). The %1 is ignored.

Equivalent to INT. Provided for MySQL compatibility.

INT(%1)

%Library.Integer (MAXVAL=2147483647,
MINVAL=-2147483648)

INTEGER

%Stream.GlobalCharacterLONG

%Stream.GlobalBinaryLONG BINARY

%Stream.GlobalBinaryLONG RAW

714 InterSystems SQL Reference

SQL Reference Material

Corresponding InterSystems IRIS Data Type ClassDDL Data Type

%Stream.GlobalCharacter

Equivalent to LONG. Provided for MySQL compatibil-
ity.

LONGTEXT

%Stream.GlobalCharacterLONG VARCHAR

%Stream.GlobalCharacter The %1 is ignored.LONG VARCHAR(%1)

%Stream.GlobalBinaryLONGVARBINARY

%Stream.GlobalBinary The %1 is ignored.LONGVARBINARY(%1)

%Stream.GlobalCharacterLONGVARCHAR

%Stream.GlobalCharacter The %1 is ignored.LONGVARCHAR(%1)

%Library.Integer(MAXVAL=8388607,MINVAL=-
8388608)

Provided for MySQL compatibility.

MEDIUMINT

%Library.Integer(MAXVAL=8388607,MINVAL=-
8388608) The %1 is ignored.

Provided for MySQL compatibility.

MEDIUMINT(%1)

%Stream.GlobalCharacterMEDIUMTEXT

%Library.Currency(MAXVAL=922337203685477.5807,
MINVAL=-922337203685477.5808, SCALE=4)

MONEY

%Library.String(MAXLEN=1)NATIONAL CHAR

%Library.String(MAXLEN=%1)NATIONAL CHAR(%1)

%Library.String(MAXLEN=1)NATIONAL CHAR VARYING

%Library.String(MAXLEN=%1)NATIONAL CHAR VARYING(%1)

%Library.String(MAXLEN=1)NATIONAL CHARACTER

%Library.String(MAXLEN=%1)NATIONAL CHARACTER(%1)

%Library.String(MAXLEN=1)NATIONAL CHARACTER VARYING

%Library.String(MAXLEN=%1)NATIONAL CHARACTER VARYING(%1)

%Library.String(MAXLEN=1)NATIONAL VARCHAR

%Library.String(MAXLEN=%1)NATIONAL VARCHAR(%1)

%Library.String(MAXLEN=1)NCHAR

%Library.String(MAXLEN=%1)NCHAR(%1)

%Stream.GlobalCharacterNTEXT

%Library.Numeric A 64–bit signed integer.
(MAXVAL=9223372036854775807,
MINVAL=-9223372036854775808, SCALE=0)

NUMBER

InterSystems SQL Reference 715

Data Types

Corresponding InterSystems IRIS Data Type ClassDDL Data Type

%Library.Numeric A 64–bit signed integer. If %1 is less
than 19, MAXVAL and MINVAL are the %1 number
of digits. For example, NUMBER(8)
MAXVAL=99999999, MINVAL=-99999999, SCALE=0.
The largest meaningful value for %1 is 19; %1 values
larger than 19 do not issue an error, but default to 19.
If %1 is 19 or greater:
MAXVAL=9223372036854775807,
MINVAL=-9223372036854775808, SCALE=0.

NUMBER(%1)

%Library.Numeric

(MAXVAL=<|'$$maxval^%apiSQL(%1,%2)'|>,
MINVAL=<|'$$minval^%apiSQL(%1,%2)'|>,
SCALE=%2)

NUMBER(%1,%2)

%Library.Numeric MAXVAL=999999999999999,
MINVAL=-999999999999999, SCALE=0.

NUMERIC

%Library.Numeric A 64–bit signed integer. If %1 is less
than 19, MAXVAL and MINVAL are the %1 number
of digits. For example, NUMERIC(8)
MAXVAL=99999999, MINVAL=-99999999, SCALE=0.
The largest meaningful value for %1 is 19; %1 values
larger than 19 do not issue an error, but default to 19.
If %1 is 19 or greater:
MAXVAL=9223372036854775807,
MINVAL=-9223372036854775808, SCALE=0.

NUMERIC(%1)

%Library.Numeric

(MAXVAL=<|'$$maxval^%apiSQL(%1,%2)'|>,
MINVAL=<|'$$minval^%apiSQL(%1,%2)'|>,
SCALE=%2)

NUMERIC(%1,%2)

%Library.String(MAXLEN=1)NVARCHAR

%Library.String(MAXLEN=%1)NVARCHAR(%1)

%Library.String(MAXLEN=%1)NVARCHAR(%1,%2)

%Stream.GlobalCharacter

Equivalent to LONGVARCHAR. Provided for TSQL
compatibility.

NVARCHAR(MAX)

%Library.PosixTime MAXVAL=1406323805406846975,
MINVAL=-6979664624441081856, SCALE=0.

POSIXTIME

%Library.Binary(MAXLEN=%1)RAW(%1)

Deprecated — %Library.Double This is the IEEE floating
point standard. An SQL column with this data type
returns a default precision of 20.

REAL

716 InterSystems SQL Reference

SQL Reference Material

Corresponding InterSystems IRIS Data Type ClassDDL Data Type

%Library.RowVersion(MAX-
VAL=9223372036854775807, MINVAL=1)

A system-assigned sequential integer. See
ROWVERSION Data Type for details.

ROWVERSION

%Library.Counter System-generated:
(MAXVAL=9223372036854775807, MINVAL=1).
User-supplied: (MAXVAL=9223372036854775807,
MINVAL=-9223372036854775807)

SERIAL

%Library.DateTime MAXVAL=’2079-06- 06-23:59:59’;
MINVAL=’1900-01-01 00:00:00’)

SMALLDATETIME

%Library.SmallInt (MAXVAL=32767, MINVAL=-32768)SMALLINT

%Library.SmallInt The %1 is ignored.

Equivalent to SMALLINT. Provided for MySQL com-
patibility.

SMALLINT(%1)

%Library.Currency SCALE=4SMALLMONEY

%Library.String(MAXLEN=128)SYSNAME

%Stream.GlobalCharacterTEXT

%Library.TimeTIME

%Library.Time(PRECISION=%1). PRECISION is the
number of fractional second digits, an integer value
in the range 0 through 9.

TIME(%1)

%Library.TimeStamp

You can re-map TIMESTAMP=%Library.PosixTime in
the system configuration file (CPF). %Library.PosixTime

is a more efficient timestamp representation than
%Library.TimeStamp. For further details, refer to Date,
Time, PosixTime, and TimeStamp Data Types.

TIMESTAMP

%Library.TinyInt (MAXVAL=127, MINVAL=-128)TINYINT

%Library.TinyInt The %1 is ignored.

Equivalent to TINYINT. Provided for MySQL compat-
ibility.

TINYINT(%1)

%Library.UniqueIdentifierUNIQUEIDENTIFIER

%Library.Binary(MAXLEN=1)VARBINARY

%Library.Binary(MAXLEN=%1)VARBINARY(%1)

%Library.String(MAXLEN=1)VARCHAR

%Library.String(MAXLEN=%1)VARCHAR(%1)

%Library.String(MAXLEN=%1)VARCHAR(%1,%2)

InterSystems SQL Reference 717

Data Types

Corresponding InterSystems IRIS Data Type ClassDDL Data Type

%Library.String(MAXLEN=%1)VARCHAR2(%1)

%Stream.GlobalCharacter

Equivalent to LONGVARCHAR. Provided for TSQL
compatibility only.

VARCHAR(MAX)

Important: Each of the DDL or InterSystems IRIS data type expressions shown above is actually one continuous
string. These strings may contain space characters, but generally do not contain white space of any kind.
Some white space appears in this table for readability.

Specifying MAXLEN

• No MAXLEN: A field with no MAXLEN value can take a value of any length, up to the maximum string length. To
define a string field of maximum length, specify VARCHAR(''), which create a property with data type
%Library.String(MAXLEN=""). VARCHAR() creates a property with data type %Library.String(MAXLEN=1). To
define a binary field with no MAXLEN value, specify VARBINARY(''), which create a property with data type
%Library.Binary(MAXLEN=""). VARBINARY() creates a property with data type %Library.Binary(MAXLEN=1).

• Large MAXLEN: A field with a large MAXLEN value allocates only as much space as is needed for the actual data
value. When specifying a %Library.String data type, the MAXLEN value you specify does not have to correspond
closely to the actual size of the data. If the field value is "ABC", InterSystems IRIS only uses that much space on disk,
in the global buffers, and in private process memory. Even if the field is declared with MAXLEN=1000, the private
process memory does not allocate that much space for the field. InterSystems IRIS only allocates memory for the actual
size of the field value, regardless of the declared length.

ODBC applications may be affected by an overly large MAXLEN value. ODBC applications try to make decisions
about the size of a field needed based on metadata from the server, so the application may allocate more buffer space
than is actually needed. For this reason, InterSystems IRIS supplies a system-wide default ODBC VARCHAR maximum
length of 4096; this system-wide default is configurable using the Management Portal: from System Administration,
select Configuration, then SQL and Object Settings, then SQL. View or set the Default length for VARCHAR option. To
determine the current setting, call $SYSTEM.SQL.CurrentSettings(). The InterSystems ODBC driver takes the data
from the TCP buffer and converts it into the applications buffer, so MAXLEN size does not affect our ODBC client.

JDBC applications should not be affected by an overly large MAXLEN value. Java and .Net do not have the application
allocate buffers. The clients only allocated what is needed to hold the data as a native type.

Precision and Scale

Numeric data types such as NUMERIC(6,2) have two integer values (p,s) precision and scale. These are mapped to
ObjectScript %Library class data types, as described in “Understanding DDL Data Type Mappings” . When specified in
an SQL data type, the following apply on Windows systems (maximums may differ on other systems):

• Precision: an integer between 0 and 19+s (inclusive). This value determines the maximum and minimum permitted
value. This is, commonly, the total number of digits in the number; however, its exact value is determined by the
%Library class data type mapping. The maximum integer value is 9223372036854775807. A precision larger than
19+s defaults to 19+s.

• Scale: an integer that specifies the maximum number of decimal (fractional) digits permitted. Can be a positive integer,
0, or a negative integer. If s is larger than or equal to p, only a fractional value is permitted, the actual p value is ignored.
The largest permitted scale is 18, which corresponds to .999999999999999999. A scale larger than 18 defaults to 18.

The following example shows the maximum values for different combinations of precision and scale:

718 InterSystems SQL Reference

SQL Reference Material

 FOR i=0:1:6 {
 WRITE "Max for (",i,",2)=",$$maxval^%apiSQL(i,2),!}

SQL System Data Type Mappings

The syntax shown for DDL and InterSystems IRIS data type expressions in the above table are the default mappings con-
figured for the SQL.SystemDataTypes. There are separate mapping tables available for supplied system data types, and
user data types.

To view and modify the current data type mappings, Go to the Management Portal, select System Administration, Configu-

ration, SQL and Object Settings, System-defined DDL Mappings.

Understanding DDL Data Type Mappings

When mapping data types from DDL to InterSystems IRIS, regular parameters and function parameters follow these rules:

• Regular Parameters — These are identified in the DDL data type and the InterSystems IRIS data type in the format
%#. For example:

 VARCHAR(%1)

maps to:

 %String(MAXLEN=%1)

Hence, a DDL data type of:

 VARCHAR(10)

maps to:

 %String(MAXLEN=10)

• Function Parameters — These are used when a parameter in the DDL data type has to undergo some transformation
before it can be put into the InterSystems IRIS data type. An example of this is the transformation of a DDL data type’s
numeric precision and scale parameters into an InterSystems IRIS data type’s MAXVAL, MINVAL, and SCALE
parameters. For example:

 DECIMAL(%1,%2)

maps to:

 %Numeric(MAXVAL=<|'$$maxval^%apiSQL(%1,%2)'|>,
 MINVAL=<|'$$minval^%apiSQL(%1,%2)'|>,
 SCALE=%2)

The DDL data type DECIMAL takes parameters Precision (%1) and Scale (%2), but the InterSystems IRIS data type
%Numeric does not have a precision parameter. Therefore, to convert DECIMAL to %Numeric, the Precision param-
eter must be converted to appropriate %Numeric parameters, in this case by applying the InterSystems IRIS functions
format, maxval, and minval to the parameters supplied by DECIMAL. The special <|'xxx'|> syntax (as shown above)
signals the DDL processor to do parameter replacement and then call the function with the values supplied. The
<|'xxx'|> expression is then replaced with the value returned from the function call.

Considering this example with actual values, there might be a DECIMAL data type with a precision of 4 digits and a
scale of 2:

 DECIMAL(4,2)

This maps to:

 %Numeric(MAXVAL=<|'$$maxval^%apiSQL(4,2)'|>,
 MINVAL=<|'$$minval^%apiSQL(4,2)'|>,
 SCALE=2)

InterSystems SQL Reference 719

Data Types

which evaluates to:

 %Numeric(MAXVAL=99.99,MINVAL=-99.99,SCALE=2)

For information about numeric formatting, refer to the $FNUMBER function in the ObjectScript Reference. For more
information about the maxval and minval functions, see the next topic.

Data Type Precedence

When an operation can return several different values, and these values may have different data types, InterSystems IRIS
assigns the return value whichever data type has the highest precedence. For example, a NUMERIC data type can contain
all possible INTEGER data type values, but an INTEGER data type cannot contain all possible NUMERIC data type values.
Thus NUMERIC has the higher precedence (is more inclusive).

For example, if a CASE statement has a possible result value of data type INTEGER, and a possible result value of data
type NUMERIC, the actual result is always of type NUMERIC, regardless of which of these two cases are taken.

The precedence for data types is as follows, from highest (most inclusive) to lowest:

LONGVARBINARY
LONGVARCHAR
VARBINARY
VARCHAR
GUID
TIMESTAMP
DOUBLE
NUMERIC
BIGINT
INTEGER
DATE
TIME
SMALLINT
TINYINT
BIT

Normalize and Validate

The %Library.DataType superclass contains classes for the specific data types. These data type classes provide a Normalize()
method to normalize an input value to the data type format and an IsValid() method to determine if an input value is valid
for that data type, as well as various mode conversion methods such as LogicalToDisplay() and DisplayToLogical().

The following examples show the Normalize() method for the %TimeStamp data type:

 SET indate=64701
 SET tsdate=##class(%Library.TimeStamp).Normalize(indate)
 WRITE "%TimeStamp date: ",tsdate

 SET indate="2018-2-22"
 SET tsdate=##class(%Library.TimeStamp).Normalize(indate)
 WRITE "%TimeStamp date: ",tsdate

The following examples show the IsValid() method for the %TimeStamp data type:

 SET datestr="July 4, 2018"
 SET stat=##class(%Library.TimeStamp).IsValid(datestr)
 IF stat=1 {WRITE datestr," is a valid %TimeStamp",! }
 ELSE {WRITE datestr," is not a valid %TimeStamp",!}

 SET leapdate="2016-02-29 00:00:00"
 SET noleap="2018-02-29 00:00:00"
 SET stat=##class(%Library.TimeStamp).IsValid(leapdate)
 IF stat=1 {WRITE leapdate," is a valid %TimeStamp",! }
 ELSE {WRITE leapdate," is not a valid %TimeStamp",!}
 SET stat=##class(%Library.TimeStamp).IsValid(noleap)
 IF stat=1 {WRITE noleap," is a valid %TimeStamp",! }
 ELSE {WRITE noleap," is not a valid %TimeStamp",!}

720 InterSystems SQL Reference

SQL Reference Material

Date,Time, PosixTime, and TimeStamp Data Types

You can define date, time, and timestamp data types, and interconvert dates and timestamps through standard InterSystems
SQL date and time functions. For example, you can use CURRENT_DATE or CURRENT_TIMESTAMP as input to a
field defined with that data type, or use DATEADD, DATEDIFF, DATENAME, or DATEPART to manipulate date
values stored with this data type.

The data type classes %Library.Date, %Library.Time, %Library.PosixTime, %Library.TimeStamp, and %MV.Date are treated
as follows with regard to SqlCategory:

1. %Library.Date classes, and any user-defined data type class that has a logical value of +$HOROLOG (the date portion
of $HOROLOG) should use DATE as the SqlCategory.

2. %Library.Time classes, and any user-defined data type class that has a logical value of $PIECE($HOROLOG,”,”,2)
(the time portion of $HOROLOG) should use TIME as the SqlCategory. TIME supports fractional seconds, so this
data type can also be used for HH:MI:SS.FF to a user-specified number of fractional digits of precision (F), up to a
maximum of 9. To support fractional seconds set the PRECISION parameter. For example, TIME(0)
(%Time(PRECISION=0)) rounds to the nearest second; TIME(2) (%Time(PRECISION=2)) rounds (or zero-fills)
to two fractional digits of precision.

If the supplied data also specifies a precision (for example, CURRENT_TIME(3)), the fractional digits stored are as
follows:

• If TIME specifies no precision and the data specifies a precision, use the precision of the data.

• If TIME specifies no precision and the data specifies no precision, use the system-wide configured time precision.

• If TIME specifies a precision and the data specifies no precision, use the system-wide configured time precision
as the data precision.

• If TIME specifies a precision and the data precision is less than the TIME precision, use the data precision.

• If TIME specifies a precision and the data precision is greater than the TIME precision, use the TIME precision.

SQL metadata reports fractional digits of time precision as “scale” ; it uses the word “precision” for the overall length
of the data. A field using the TIME data type reports precision and scale metadata as follows: TIME(0)
(%Time(PRECISION=0)) has a metadata precision of 8 (nn:nn:nn) and a scale of 0. TIME(2) (%Time(PRECISION=2))
has a metadata precision of 11 (nn:nn:nn.ff) and a scale of 2. TIME (%Time or %Time(PRECISION="") take their
fractional seconds of precision from the supplied data, and therefore have a metadata precision of 18 and an undefined
scale. For details on returning data type, precision and scale metadata, refer to Select-item Metadata.

3. %Library.PosixTime classes, and any user-defined data type class that has an encoded signed 64-bit integer logical value
should use POSIXTIME as the SqlCategory. %PosixTime is an encoded timestamp calculated from the number of
seconds (and fractional seconds) since 1970–01–01 00:00:00. Timestamps after that date are represented by a positive
%PosixTime value, timestamps before that date are represented by a negative %PosixTime value. %PosixTime supports
a maximum of 6 digits of precision for fractional seconds. The earliest date supported by %PosixTime is 0001-01-01
00:00:00, which has a logical value of -6979664624441081856. The last date supported is 9999-12-31 23:59:59.999999,
which has a logical value of 1406323805406846975.

Because a %PosixTime value is always represented by a encoded 64-bit integer, it can always be unambiguously dif-
ferentiated from a %Date or %TimeStamp value. For example, the %PosixTime value for 1970–01–01 00:00:00 is
1152921504606846976, the %PosixTime value for 2017–01–01 00:00:00 is 1154404733406846976, and the
%PosixTime value for 1969–12–01 00:00:00 is -6917531706041081856.

%PosixTime is preferable to %TimeStamp, because it takes up less disk space and memory than the %TimeStamp
data type and provides better performance than %TimeStamp.

You can integrate %PosixTime and %TimeStamp values by using the ODBC display mode:

InterSystems SQL Reference 721

Data Types

• Logical mode values for %PosixTime and %TimeStamp data types are completely different: %PosixTime is a
signed integer, %TimeStamp is a string containing an ODBC-format timestamp.

• Display mode: %PosixTime display uses the current locale time and date format parameters (for example, 02/22/2018
08:14:11); %TimeStamp displays as an ODBC-format timestamp.

• ODBC mode: both %PosixTime and %TimeStamp display as an ODBC-format timestamp. The number of fractional
digits of precision may differ.

You can convert %TimeStamp values to %PosixTime using the TO_POSIXTIME function or the TOPOSIXTIME()
method. You can use the IsValid() method to determine if a numeric value is a valid %PosixTime value.

4. %Library.TimeStamp classes, and any user-defined data type class that has a logical value of YYYY-MM-DD
HH:MI:SS.FF should use TIMESTAMP as the SqlCategory. Note that %Library.TimeStamp derives its maximum
precision from the system platform’s precision, while %Library.PosixTime has a maximum precision of 6 digits.
Therefore, %Library.TimeStamp may be more precise than %Library.PosixTime on some platforms.

5. %Library.DateTime is a subclass of %Library.TimeStamp. It defines a type parameter named DATEFORMAT and it
overrides the DisplayToLogical() and OdbcToLogical() methods to handle imprecise datetime input that TSQL
applications are accustomed to.

6. %MV.Date classes, or any user-defined data type class that has a logical date value of $HOROLOG-46385, should use
MVDATE as the SqlCategory.

7. A user-defined date data type that does not fit into any of the preceding logical values should define the SqlCategory
of the data type as DATE and provide in the data type class a LogicalToDate() method to convert a user-defined log-
ical date value to a %Library.Date logical value, and a DateToLogical() method to convert a %Library.Date logical
value to the user-defined logical date value.

8. A user-defined time data type that does not fit into any of the preceding logical values should define the SqlCategory
of the data type as TIME and provide in the data type class a LogicalToTime() method to convert a user-defined log-
ical time value to a %Library.Time logical value, and a TimeToLogical() method to convert a %Library.Time logical
value to the user-defined logical time value.

9. A user-defined timestamp data type that does not fit into any of the preceding logical values should define the SqlCat-
egory of the data type as TIMESTAMP and provide in the data type class a LogicalToTimeStamp() method to convert
a user-defined logical timestamp value to a %Library.TimeStamp logical value, and a TimeStampToLogical() method
to convert a %Library.TimeStamp logical value to the user-defined logical timestamp value.

You can compare POSIXTIME to DATE or TIMESTAMP values using =, <>, >, or < operators. Refer to Overview of
Predicates for further details.

When comparing FMTIMESTAMP category values with DATE category values, InterSystems IRIS does not strip the time
from the FMTIMESTAMP value before comparing it to the DATE. This is identical behavior to comparing TIMESTAMP
with DATE values, and comparing TIMESTAMP with MVDATE values. It is also compatible with how other SQL vendors
compare timestamps and dates. This means a comparison of a FMTIMESTAMP 320110202.12 and DATE 62124 are equal
when compared using the SQL equality (=) operator. Applications must convert the FMTIMESTAMP value to a DATE
or FMDATE value to compare only the date portions of the values.

Dates Prior to December 31, 1840

A date is commonly represented by the DATE data type or the TIMESTAMP data type.

The DATE data type stores a date in $HOROLOG format, as a positive integer count of days from the arbitrary starting
date of December 31, 1840. By default, dates can only be represented by a positive integer (MINVAL=0), which corresponds
to the date December 31, 1840. However, you can change the MINVAL type parameter to enable storage of dates prior to
December 31, 1840. By setting MINVAL to a negative number, you can store dates prior to December 31, 1840 as negative
integers. The earliest allowed MINVAL value is -672045. This corresponds to January 1 of Year 1 (CE). DATE data type
cannot represent BCE (also known as BC) dates.

722 InterSystems SQL Reference

SQL Reference Material

The TIMESTAMP data type defaults to 1840–12–31 00:00:00 as the earliest allowed timestamp. However, you can change
the MINVAL parameter to define a field or property that can store dates prior to December 31, 1840. For example, MyTS
%Library.TimeStamp(MINVAL='1492-01-01 00:00:00'). The earliest allowed MINVAL value is 0001–01–01
00:00:00. This corresponds to January 1 of Year 1 (CE). The %TimeStamp data type cannot represent BCE (also known
as BC) dates.

Note: Be aware that these date counts do not take into account changes in date caused by the Gregorian calendar reform
(enacted October 15, 1582, but not adopted in Britain and its colonies until 1752).

You can redefine the minimum date for your locale as follows:

 SET oldMinDate = ##class(%SYS.NLS.Format).GetFormatItem("DATEMINIMUM")
 IF oldMinDate=0 {
 DO ##class(%SYS.NLS.Format).SetFormatItem("DATEMINIMUM",-672045)
 SET newMinDate = ##class(%SYS.NLS.Format).GetFormatItem("DATEMINIMUM")
 WRITE "Changed earliest date to ",newMinDate
 }
 ELSE { WRITE "Earliest date was already reset to ",oldMinDate}

The above example sets the MINVAL for your locale to the earliest permitted date (1/1/01).

Note: InterSystems IRIS does not support using Julian dates with negative logical DATE values (%Library.Date values
with MINVAL<0). Thus, these MINVAL<0 values are not compatible with the Julian date format returned by
the TO_CHAR function.

Strings

The %Library.String data type supports a maximum string length of 3,641,144 characters. Commonly, extremely long strings
should be assigned one of the %Stream.GlobalCharacter data types. For further details, refer to Maximum String Length in
the “Data Types and Values” chapter of Using ObjectScript.

Because IRIS supports xDBC Protocol 50 and higher, no ODBC or JDBC string length limit is enforced. If the InterSystems
IRIS instance and the ODBC driver facilities support different protocols, the lower of the two protocols is used. The protocol
that was actually used is recorded in the InterSystems ODBC log.

Note that, by default, InterSystems IRIS establishes a system-wide ODBC VARCHAR maximum length of 4096; this
ODBC maximum length is configurable.

List Structures

InterSystems IRIS supports the list structure data type %List (data type class %Library.List). This is a compressed binary
format, which does not map to a corresponding native data type for InterSystems SQL. In its internal representation it cor-
responds to data type VARBINARY with a default MAXLEN of 32749.

For this reason, Dynamic SQL cannot use %List data in a WHERE clause comparison. You also cannot use INSERT or
UPDATE to set a property value of type %List.

Dynamic SQL returns the data type of list structured data as VARCHAR.

If you use an ODBC or JDBC client, %List data is projected to VARCHAR string data, using LogicalToOdbc conversion.
A list is projected as a string with its elements delimited by commas. Data of this type can be used in a WHERE clause,
and in INSERT and UPDATE statements. Note that, by default, InterSystems IRIS establishes a system-wide ODBC
VARCHAR maximum length of 4096; this ODBC maximum length is configurable.

For further details on data type class %Library.List, refer to the InterSystems Class Reference. For further details on using
lists in a WHERE clause, see the %INLIST predicate and the FOR SOME %ELEMENT predicate. For further details on
handling list data as a string, see the %EXTERNAL function.

InterSystems SQL supports eight list functions: $LIST, $LISTBUILD, $LISTDATA, $LISTFIND, $LISTFROMSTRING,
$LISTGET, $LISTLENGTH, and $LISTTOSTRING. ObjectScript supports three additional list functions: $LISTVALID

InterSystems SQL Reference 723

Data Types

to determine if an expression is a list, $LISTSAME to compare two lists, and $LISTNEXT to sequentially retrieve elements
from a list.

BIT Data Type

The BIT (%Library.Boolean) data type is intended to take data values 0 and 1, specified as a number or a numeric string.
Other data values are handled as follows:

• Non-zero numbers or numeric strings = 1. For example, 3, '0.1', '-1', '7dwarves'.

• Non-numeric strings = 0. For example, 'true' or 'false'.

• Empty string = 0. For example, ''.

• NULL keyword = 0. For example, NULL.

Stream Data Types

The Stream data types correspond to the InterSystems IRIS class property data types %Stream.GlobalCharacter (for CLOBs)
and %Stream.GlobalBinary (for BLOBs). These data type classes can define a stream field with a specified LOCATION
parameter, or omit this parameter and default to a system-defined storage location.

A field with a Stream data type cannot be used as an argument to most SQL scalar, aggregate, or unary functions.
Attempting to do so generates an SQLCODE -37 error code. The few functions that are exceptions are listed in the Storing
and Using Stream Data (BLOBs and CLOBs) chapter of Using InterSystems SQL.

A field with a Stream data type cannot be used as an argument to most SQL predicate conditions. Attempting to do so
generates an SQLCODE -313 error code. The predicates that accept a stream field are listed in the Storing and Using Stream
Data (BLOBs and CLOBs) chapter of Using InterSystems SQL.

A sharded table cannot contain stream data type fields.

The use of Stream data types in indices, and when performing inserts and updates are also restricted. For further details on
Stream restrictions, refer to the Storing and Using Stream Data (BLOBs and CLOBs) chapter of Using InterSystems SQL.

SERIAL Data Type

A field with a SERIAL (%Library.Counter) data type can take a user-specified positive integer value, or InterSystems IRIS
can assign it a sequential positive integer value. %Library.Counter extends %Library.BigInt.

An INSERT operation specifies one of the following values for a SERIAL field:

• No value, 0 (zero), or a nonnumeric value: InterSystems IRIS ignores the specified value, and instead increments this
field's current serial counter value by 1, and inserts the resulting integer into the field.

• A positive integer value: InterSystems IRIS inserts the user-specified value into the field, and changes the serial counter
value for this field to this integer value.

Thus a SERIAL field contains a series incremental integer values. These values are not necessarily continuous or unique.
For example, the following is a valid series of values for a SERIAL field: 1, 2, 3, 17, 18, 25, 25, 26, 27. Sequential integers
are either InterSystems IRIS-generated or user-supplied; nonsequential integers are user-supplied. If you wish SERIAL
field values to be unique, you must apply a UNIQUE constraint on the field.

An UPDATE operation has no effect on automatically-assigned SERIAL counter field values. However, an update performed
using INSERT OR UPDATE causes a skip in integer sequence for subsequent insert operations for a SERIAL field.

An UPDATE operation can only change a serial field value if the field currently has no value (NULL), or its value is 0.
Otherwise, an SQLCODE -105 error is generated.

InterSystems IRIS imposes no restriction on the number of SERIAL fields in a table.

724 InterSystems SQL Reference

SQL Reference Material

ROWVERSION Data Type

The ROWVERSION data type defines a read-only field that contains a unique system-assigned positive integer, beginning
with 1. InterSystems IRIS assigns sequential integers as part of each insert, update, or %Save operation. These values are
not user-modifiable.

InterSystems IRIS maintains a single row version counter namespace-wide. All tables in a namespace that contain a
ROWVERSION field share the same row version counter. Thus, the ROWVERSION field provides row-level version
control, allowing you to determine the order in which changes were made to rows in one or more tables in a namespace.

You can only specify one field of ROWVERSION data type per table.

The ROWVERSION field should not be included in a unique key or primary key. The ROWVERSION field cannot be
part of an IDKey index.

For details on using ROWVERSION, refer to RowVersion Field section of the “Defining Tables” chapter of Using
InterSystems SQL.

ROWVERSION and SERIAL Counters

Both ROWVERSION and SERIAL (%Library.Counter) data type fields receive a sequential integer from an internal counter
as part of an INSERT operation. But these two counters are significantly different and are used for different purposes:

• The ROWVERSION counter is at the namespace level. The SERIAL counter is at the table level. These two counters
are completely independent of each other and independent of the RowID counter.

• The ROWVERSION counter is incremented by insert, update, or %Save operations. The SERIAL counter is only
incremented by insert operations. An update performed using INSERT OR UPDATE can cause a gap in the SERIAL
counter sequence.

• A ROWVERSION field value cannot be user-specified; the value is always supplied from the ROWVERSION counter.
A SERIAL field value is supplied from the table’s internal counter during an insert if you do not specify a value for
this field. If an insert supplies a SERIAL integer value, that value is inserted rather than the current counter value:

– If an insert supplies a SERIAL field value greater than the current internal counter value, InterSystems IRIS inserts
that value into the field and resets the internal counter to that value.

– If an insert supplies a SERIAL field value lesser than the current counter value, InterSystems IRIS does not reset
the internal counter.

– An insert can supply a SERIAL field value as a negative integer or a fractional number. InterSystems IRIS truncates
a fractional number to its integer component. If the supplied SERIAL field value is 0 or NULL, InterSystems IRIS
ignores the user-supplied value and inserts the current internal counter value.

You cannot update an existing SERIAL field value.

• A ROWVERSION field value is always unique. Because you can insert a user-specified SERIAL field value, you must
specify a UNIQUE field constraint to guarantee unique SERIAL field values.

• The ROWVERSION counter cannot be reset. A TRUNCATE TABLE resets the SERIAL counter; performing a
DELETE on all rows does not reset the SERIAL counter.

• Only one ROWVERSION field is allowed per table. You can specify multiple SERIAL fields in a table.

DDL Data Types Exposed by InterSystems ODBC / JDBC

InterSystems ODBC exposes a subset of the DDL data types, and maps other data types to this subset of data types. These
mappings are not reversible. For example, the statement CREATE TABLE mytable (f1 BINARY) creates an InterSystems
IRIS class that is projected to ODBC as mytable (f1 VARBINARY). An InterSystems IRIS list data type is projected
to ODBC as a VARCHAR string.

InterSystems SQL Reference 725

Data Types

ODBC exposes the following data types: BIGINT, BIT, DATE, DOUBLE, GUID, INTEGER, LONGVARBINARY,
LONGVARCHAR, NUMERIC, OREF, POSIXTIME, SMALLINT, TIME, TIMESTAMP, TINYINT, VARBINARY,
VARCHAR. Note that, by default, InterSystems IRIS establishes a system-wide ODBC VARCHAR maximum length of
4096; this ODBC maximum length is configurable.

When one of these ODBC/JDBC data type values is mapped to InterSystems SQL, the following operations occur: DOUBLE
data is cast using $DOUBLE. NUMERIC data is cast using $DECIMAL.

The GUID data type corresponds to InterSystems SQL UNIQUEIDENTIFIER data type. Failing to specify a valid value
to a GUID / UNIQUEIDENTIFIER field generates a #7212 General Error. To generate a GUID value, use the
%SYSTEM.Util.CreateGUID() method.

Query Metadata Returns Data Type

You can use Dynamic SQL to return metadata about a query, including the data type of a specified column in the query.

The following Dynamic SQL examples return the column name and the integer code for the ODBC data type for each of
the columns in Sample.Person and Sample.Employee:

 SET myquery="SELECT * FROM Sample.Person"
 SET rset = ##class(%SQL.Statement).%New()
 SET tStatus = rset.%Prepare(myquery)
 SET x=rset.%Metadata.columns.Count()
 WHILE x>0 {
 SET column=rset.%Metadata.columns.GetAt(x)
 WRITE !,x," ",column.colName," ",column.ODBCType
 SET x=x-1 }
 WRITE !,"end of columns"

 SET myquery="SELECT * FROM Sample.Employee"
 SET rset = ##class(%SQL.Statement).%New()
 SET tStatus = rset.%Prepare(myquery)
 SET x=rset.%Metadata.columns.Count()
 WHILE x>0 {
 SET column=rset.%Metadata.columns.GetAt(x)
 WRITE !,x," ",column.colName," ",column.ODBCType
 SET x=x-1 }
 WRITE !,"end of columns"

List structured data, such as the FavoriteColors column in Sample.Person, returns a data type of 12 (VARCHAR) because
ODBC represents an ObjectScript %List data type value as a string of comma-separated values.

Steams data, such as the Notes and Picture columns in Sample.Employee, return the data types -1 (LONGVARCHAR) or
-4 (LONGVARBINARY).

A ROWVERSION field returns data type -5 because %Library.RowVersion is a subclass of %Library.BigInt.

For further details, refer to the Dynamic SQL chapter of Using InterSystems SQL and the %SQL.Statement class in the
InterSystems Class Reference.

Integer Codes for Data Types

In query metadata and other contexts, the defined data type for a column may be returned as an integer code. xDBC data
type codes (SQLType) are used by ODBC and JDBC. ODBC data type codes are returned by
%SQL.Statement.%Metadata.columns.GetAt() method, as shown in the example above. SQL Shell metadata also returns
ODBC data type codes. The JDBC codes are the same as the ODBC codes, except in the representation of time and date
data types. These ODBC and JDBC values are listed below:

Data TypeJDBCODBC

GUID-11-11

BIT-7-7

TINYINT-6-6

726 InterSystems SQL Reference

SQL Reference Material

BIGINT-5-5

LONGVARBINARY-4-4

VARBINARY-3-3

BINARY-2-2

LONGVARCHAR-1-1

Unknown type00

CHAR11

NUMERIC22

DECIMAL33

INTEGER44

SMALLINT55

FLOAT66

REAL77

DOUBLE88

DATE919

TIME9210

TIMESTAMP9311

VARCHAR1212

For further details, refer to the Dynamic SQL chapter of Using InterSystems SQL.

InterSystems IRIS also supports Unicode SQL types for ODBC applications working with multibyte character sets, such
as in Chinese, Hebrew, Japanese, or Korean locales.

Data TypeODBC

WLONGVARCHAR-10

WVARCHAR-9

To activate this functionality, refer to “Using an InterSystems Database as an ODBC Data Source on Windows” in Using
the InterSystems ODBC Driver.

Creating User-Defined DDL Data Types
You can modify the set of data types either by overriding the data type mapping for a system data type parameter value,
or by defining a new user data type. You can modify system data types to override the InterSystems default mappings. You
can create user-defined data types to provide additional data type mappings that InterSystems does not supply.

To view and modify or add to the current user data type mappings, Go to the Management Portal, select System Adminis-

tration, Configuration, SQL and Object Settings, User-defined DDL Mappings. To add a user data type, select Create New

User-defined DDL Mapping. In the displayed box, input a Name, for example VARCHAR(100) and a Datatype, for example
MyString100(MAXLEN=100).

The result will be an entry in the list of user-defined DDL data types.

As shown in previous examples, there are several useful routines for entering user-defined DDL data types:

InterSystems SQL Reference 727

Data Types

• maxval^%apiSQL() — Given a precision and scale, returns the maximum valid value (MAXVAL) for each of the
InterSystems IRIS numeric data types. The syntax is:

 maxval^%apiSQL(precision,scale)

where both precision and scale are required.

• minval^%apiSQL() — Given a precision and scale, returns the minimum valid value (MINVAL) for each of the
InterSystems IRIS numeric data types. The syntax is:

 minval^%apiSQL(precision,scale)

where both precision and scale are required.

If you need to map a DDL data type to an InterSystems IRIS property with a collection type of Stream, specify
%Stream.GlobalCharacter for Character Stream data and %Stream.GlobalBinary for Binary Stream data.

Pass-through if No DDL Mapping is Found

If DDL encounters a data type not in the DDL data type column of the SystemDataTypes table, it next examines the User-

DataTypes table. If no mapping appears for the data type in either table, no conversion of the data type occurs, and the data
type passes directly to the class definition as specified in DDL.

For example, the following field definitions could appears in a DDL statement:

 CREATE TABLE TestTable (
 Field1 %String,
 Field2 %String(MAXLEN=45)
)

Given the above definitions, if DDL finds no mappings for %String or %String(MAXLEN=%1) or %String(MAXLEN=45)
in SystemDataTypes or UserDataTypes, then the %String and %String(MAXLEN=45) types are passed directly to the
appropriate class definition.

Converting Data Types
To convert data from one data type to another, use the CAST or CONVERT function.

CAST supports conversion to several character string and numeric data types, as well as to DATE, TIME, and the
TIMESTAMP and POSIXTIME timestamp data types.

CONVERT has two syntactical forms. Both forms support conversion to and from DATE, TIME, and the TIMESTAMP
and POSIXTIME timestamp data types, as well as conversion between other data types.

CAST and CONVERT Handling of VARCHAR

The VARCHAR data type (with no specified size) is mapped to a MAXLEN of 1 character, as shown in the above table.
However, when you CAST or CONVERT a value to VARCHAR, the default size mapping is 30 characters. This default
size of 30 characters is provided for compatibility with non-InterSystems IRIS software requirements.

See Also
• CAST, CONVERT

• TO_CHAR, TO_DATE, TO_NUMBER

728 InterSystems SQL Reference

SQL Reference Material

Date and Time Constructs
Validates and converts an ODBC date, time, or timestamp.

{d 'yyyy-mm-dd'}
{d nnnnnn}

{t 'hh:mm:ss[.fff]'}
{t nnnnn.nnn}

{ts 'yyyy-mm-dd [hh:mm:ss.fff]'}
{ts 'mm/dd/yyyy [hh:mm:ss.fff]'}
{ts nnnnnn}

Description
These constructs take either an integer or a string in ODBC date, time, or timestamp format and convert it to the corresponding
InterSystems IRIS date, time, or timestamp format. They perform data typing and value and range checking.

{d 'string'}

The {d 'string'} date construct validates a date in ODBC format. If the date is valid, it stores it (logical mode) in InterSystems
IRIS $HOROLOG date format as an integer count value from 1840-12-31. InterSystems IRIS does not append a default
time value.

If you supply:

• An integer less than -672045 (0001-01-01) or greater than 2980013 (9999-12-31) generates an SQLCODE -400
<VALUE OUT OF RANGE> error.

• An invalid date (such as a date not in ODBC format or the date 02-29 in a non-leap year): InterSystems IRIS generates
an SQLCODE -146 error: “yyyy-mm-dd' is an invalid ODBC/JDBC Date value” .

• An ODBC timestamp value: InterSystems IRIS validates both the date and time portions of the timestamp. If both are
valid, it converts the date portion only. If either date or time are invalid, the system generates an SQLCODE -146 error.

{t 'string'}

The {t 'string'} time construct validates a time in ODBC format. If the time is valid, it stores it (logical mode) in InterSystems
IRIS $HOROLOG time format as an integer count of seconds from midnight, with the specified fractional seconds. Inter-
Systems IRIS Display mode and ODBC mode do not display the fractional seconds; the fractional seconds are truncated
from these display formats.

If you supply:

• An integer less than 0 (00:00:00) or greater than 86399.99 (23:59:59.99) generates an SQLCODE -400 <ILLEGAL
VALUE> error.

• An invalid time (such as a time not in ODBC format or a time with hour >23): InterSystems IRIS generates an SQLCODE
-147 error: “hh:mi:ss.fff' is an invalid ODBC/JDBC Time value” .

• An ODBC timestamp value: InterSystems IRIS generates an SQLCODE -147 error.

{ts 'string'}

The {ts 'string'} timestamp construct validates a date/time and returns it in ODBC timestamp format; specified fractional
seconds are always preserved and displayed. The {ts 'string'} timestamp construct also validates a date and returns it in
ODBC timestamp format with a suppled time value of 00:00:00.

If you supply:

InterSystems SQL Reference 729

Date and Time Constructs

• A positive or negative integer date (-672045 through 2980013): InterSystems IRIS appends a time value of 00:00:00,
then stores the resulting timestamp in ODBC format. For example, 64701 returns 2018-02-22 00:00:00. This is a valid
$HOROLOG date integer. $HOROLOG 0 is 1840-12-31.

• A valid timestamp in ODBC format: InterSystems IRIS stores the supplied value unchanged This is because InterSystems
IRIS timestamp format is the same as ODBC timestamp format.

• A valid timestamp using the locale default date and time formats (for example, 2/29/2016 12:23:46.77): InterSystems
IRIS stores and displays the supplied value in ODBC format.

• An invalid timestamp (such as a timestamp with the date portion specifying 02-29 in a non-leap year, or with the time
portion specifying hour >23): InterSystems IRIS returns the string “error” as the value.

• A valid date (in ODBC or locale format) with no time value: InterSystems IRIS appends a time value of 00:00:00, then
stores the resulting timestamp in ODBC format. It supplies leading zeros where necessary. For example, 2/29/2016
returns 2016-02-29 00:00:00.

• A correctly formatted, but invalid, date (in ODBC or locale format) with no time value: InterSystems IRIS appends a
time value of 00:00:00. It then stores the date portion as supplied. For example, 02/29/2019 returns 02/29/2019
00:00:00.

• An incorrectly formatted and invalid, date (in ODBC, locale, or $HOROLOG format) with no time value: InterSystems
IRIS returns the string “error” . For example, 2/29/2019 (no leading zero and invalid date value) returns “error” .
00234 ($HOROLOG with leading zeros) returns “error”

See the $HOROLOG special variable in the ObjectScript Reference for further information.

Examples
The following Dynamic SQL example validates dates supplied in ODBC format (with or without leading zeros) and stores
them as the equivalent $HOROLOG value 64701. This example displays %SelectMode 0 (logical) values:

 SET myquery = 2
 SET myquery(1) = "SELECT {d '2018-02-22'} AS date1,"
 SET myquery(2) = "{d '2018-2-22'} AS date2"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=0
 SET tStatus = tStatement.%Prepare(.myquery)
 SET rset = tStatement.%Execute()
 DO rset.%Display()

The following Dynamic SQL example validates times supplied in ODBC format (with or without leading zeros) and stores
them as the equivalent $HOROLOG value 43469. This example displays %SelectMode 0 (logical) values:

 SET myquery = 3
 SET myquery(1) = "SELECT {t '12:04:29'} AS time1,"
 SET myquery(2) = "{t '12:4:29'} AS time2,"
 SET myquery(3) = "{t '12:04:29.00000'} AS time3"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=0
 SET tStatus = tStatement.%Prepare(.myquery)
 SET rset = tStatement.%Execute()
 DO rset.%Display()

The following Dynamic SQL example validates times supplied in ODBC format with fractional seconds, and stores them
as the equivalent $HOROLOG value 43469 with the fractional seconds appended. Trailing zeros are truncated. This
example displays %SelectMode 0 (logical) values:

 SET myquery = 3
 SET myquery(1) = "SELECT {t '12:04:29.987'} AS time1,"
 SET myquery(2) = "{t '12:4:29.987'} AS time2,"
 SET myquery(3) = "{t '12:04:29.987000'} AS time3"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=0
 SET tStatus = tStatement.%Prepare(.myquery)
 SET rset = tStatement.%Execute()
 DO rset.%Display()

730 InterSystems SQL Reference

SQL Reference Material

The following Dynamic SQL example validates time and date values in several formats and stores them as the equivalent
ODBC timestamp. A time value of 00:00:00 is supplied when necessary. This example displays %SelectMode 0 (logical)
values:

 SET myquery = 6
 SET myquery(1) = "SELECT {ts '2018-02-22 01:43:38'} AS ts1,"
 SET myquery(2) = "{ts '2018-02-22'} AS ts2,"
 SET myquery(3) = "{ts '02/22/2018 01:43:38.999'} AS ts3,"
 SET myquery(4) = "{ts '2/22/2018 01:43:38'} AS ts4,"
 SET myquery(5) = "{ts '02/22/2018'} AS ts5,"
 SET myquery(6) = "{ts '64701'} AS ts6"
 SET tStatement = ##class(%SQL.Statement).%New()
 SET tStatement.%SelectMode=0
 SET tStatus = tStatement.%Prepare(.myquery)
 SET rset = tStatement.%Execute()
 IF rset.%Next() {
 WRITE rset.ts1,!
 WRITE rset.ts2,!
 WRITE rset.ts3,!
 WRITE rset.ts4,!
 WRITE rset.ts5,!
 WRITE rset.ts6
 }

InterSystems SQL Reference 731

Date and Time Constructs

Default user name and password
Provides default login identity.

Description
The default user name and password for InterSystems IRIS® data platform provide a basic way to log in to the database
and get started. The default user name is “_SYSTEM” (uppercase) and “SYS” is its password.

732 InterSystems SQL Reference

SQL Reference Material

Field constraint
Specifies rules about a field’s contents.

Description
A field constraint specifies rules governing the data values permitted for a field. A field may have the following constraints:

• NOT NULL: You must specify a value for this field in every record (empty strings acceptable).

• UNIQUE: If you specify a value for this field in a record, it must be a unique value (one empty string acceptable). You
can, however, create multiple records with no value (NULL) for the field.

• DEFAULT: You must either specify a value or InterSystems IRIS provides a default for this field in every record
(empty strings acceptable). The default may be NULL, an empty string, or any other value appropriate for the data
type.

• UNIQUE NOT NULL: You must specify a unique value for this field in every record (one empty string acceptable).
Can be used as a primary key.

• DEFAULT NOT NULL: You must either specify a value or InterSystems IRIS provides a default value for this field
in every record (empty strings acceptable).

• UNIQUE DEFAULT: Not Recommended — You must either specify a unique value or InterSystems IRIS provides a
default value for this field in every record (one empty string acceptable). The default may be NULL, an empty string,
or any other value appropriate for the data type. Use only if the default is a unique generated value (for example,
CURRENT_TIMESTAMP), or if the default is intended to be used only once.

• UNIQUE DEFAULT NOT NULL: Not Recommended — You must either specify a unique value or InterSystems
IRIS provides a default value for this field in every record (one empty string acceptable). The default may be an empty
string or any other value appropriate for the data type; it cannot be NULL. Use only if the default is a unique generated
value (for example, CURRENT_TIMESTAMP), or if the default is intended to be used only once. Can be used as a
primary key.

• IDENTITY: InterSystems IRIS provides a unique, system-generated, non-modifiable integer value for this field in
every record. Other field constraint keywords are ignored. Can be used as a primary key.

Data values must be appropriate for the field’s data type. An empty string is not an acceptable value for a numeric field.

These field constraints are further described in the page for the CREATE TABLE command.

InterSystems SQL Reference 733

Field constraint

Reserved words
A list of SQL reserved words for InterSystems IRIS® data platform.

%AFTERHAVING | %ALLINDEX | %ALPHAUP | %ALTER | %BEGTRANS |
%CHECKPRIV | %CLASSNAME | %CLASSPARAMETER | %DBUGFULL | %DELDATA |
%DESCRIPTION | %EXACT | %EXTERNAL | %FILE | %FIRSTTABLE | %FLATTEN |
%FOREACH | %FULL | %ID | %IDADDED | %IGNOREINDEX | %IGNOREINDICES |
%INLIST | %INORDER | %INTERNAL | %INTEXT | %INTRANS | %INTRANSACTION |
%KEY | %MATCHES | %MCODE | %MERGE | %MINUS | %MVR | %NOCHECK |
%NODELDATA | %NOFLATTEN | %NOFPLAN | %NOINDEX | %NOLOCK |
%NOMERGE | %NOPARALLEL | %NOREDUCE | %NORUNTIME | %NOSVSO | %NOTOPOPT |
%NOTRIGGER | %NOUNIONOROPT | %NUMROWS | %ODBCIN | %ODBCOUT |
%PARALLEL | %PLUS | %PROFILE | %PROFILE_ALL | %PUBLICROWID | %ROUTINE |
%ROWCOUNT | %RUNTIMEIN | %RUNTIMEOUT | %STARTSWITH |
%STARTTABLE | %SQLSTRING | %SQLUPPER | %STRING | %TABLENAME |
%TRUNCATE | %UPPER | %VALUE | %VID
ABSOLUTE | ADD | ALL | ALLOCATE | ALTER | AND | ANY | ARE | AS |
ASC | ASSERTION | AT | AUTHORIZATION | AVG | BEGIN | BETWEEN |
BIT | BIT_LENGTH | BOTH | BY | CASCADE | CASE | CAST |
CHAR | CHARACTER | CHARACTER_LENGTH | CHAR_LENGTH |
CHECK | CLOSE | COALESCE | COLLATE | COMMIT | CONNECT |
CONNECTION | CONSTRAINT | CONSTRAINTS | CONTINUE | CONVERT |
CORRESPONDING | COUNT | CREATE | CROSS | CURRENT |
CURRENT_DATE | CURRENT_TIME | CURRENT_TIMESTAMP |
CURRENT_USER | CURSOR | DATE | DEALLOCATE | DEC | DECIMAL |
DECLARE | DEFAULT | DEFERRABLE | DEFERRED | DELETE | DESC |
DESCRIBE | DESCRIPTOR | DIAGNOSTICS | DISCONNECT | DISTINCT |
DOMAIN | DOUBLE | DROP | ELSE | END | ENDEXEC | ESCAPE | EXCEPT |
EXCEPTION | EXEC | EXECUTE | EXISTS | EXTERNAL | EXTRACT |
FALSE | FETCH | FIRST | FLOAT | FOR | FOREIGN | FOUND | FROM | FULL |
GET | GLOBAL | GO | GOTO | GRANT | GROUP | HAVING | HOUR |
IDENTITY | IMMEDIATE | IN | INDICATOR | INITIALLY |
INNER | INPUT | INSENSITIVE | INSERT | INT | INTEGER | INTERSECT |
INTERVAL | INTO | IS | ISOLATION | JOIN | LANGUAGE | LAST |
LEADING | LEFT | LEVEL | LIKE | LOCAL | LOWER | MATCH | MAX | MIN |
MINUTE | MODULE | NAMES | NATIONAL | NATURAL | NCHAR |
NEXT | NO | NOT | NULL | NULLIF | NUMERIC | OCTET_LENGTH | OF | ON |
ONLY | OPEN | OPTION | OR | OUTER | OUTPUT | OVERLAPS |
PAD | PARTIAL | PREPARE | PRESERVE | PRIMARY | PRIOR | PRIVILEGES |
PROCEDURE | PUBLIC | READ | REAL | REFERENCES | RELATIVE |
RESTRICT | REVOKE | RIGHT | ROLE | ROLLBACK | ROWS |
SCHEMA | SCROLL | SECOND | SECTION | SELECT | SESSION_USER |
SET | SHARD | SMALLINT | SOME | SPACE | SQLERROR | SQLSTATE |
STATISTICS | SUBSTRING | SUM | SYSDATE | SYSTEM_USER | TABLE |
TEMPORARY | THEN | TIME | TIMEZONE_HOUR | TIMEZONE_MINUTE |
TO | TOP | TRAILING | TRANSACTION | TRIM | TRUE | UNION | UNIQUE |
UPDATE | UPPER | USER | USING | VALUES | VARCHAR | VARYING | WHEN |
WHENEVER | WHERE | WITH | WORK | WRITE

Description
Within SQL certain words are reserved. You cannot use an SQL reserved word as an SQL identifier (such as the name for
a table, a column, an AS alias, or other entity), unless:

• The word is delimited with double quotes ("word"), and

• Delimited identifiers are supported. For further details, refer to the Identifiers in Using InterSystems SQL.

This list contains only those words that are reserved in this sense; it does not contain all SQL keywords. Several of the
words listed above start with the "%" character, indicating that they are InterSystems SQL proprietary extension keywords.
In general, it is not recommended to use words that begin with "%" as identifiers such as table and column names, because
new InterSystems SQL extension keywords may be added in the future.

734 InterSystems SQL Reference

SQL Reference Material

You can check if a word is an SQL reserved word by invoking the IsReservedWord() method, as shown in the following
example. Specify the reserved word as a quoted string; reserved words are not case-sensitive.
$SYSTEM.SQL.IsReservedWord() returns a boolean value.

 WRITE !,"Reserved?: ",$SYSTEM.SQL.IsReservedWord("VARCHAR")
 WRITE !,"Reserved?: ",$SYSTEM.SQL.IsReservedWord("varchar")
 WRITE !,"Reserved?: ",$SYSTEM.SQL.IsReservedWord("VarChar")
 WRITE !,"Reserved?: ",$SYSTEM.SQL.IsReservedWord("FRED")

This method can also be called as a stored procedure from ODBC or JDBC: %SYSTEM.SQL_IsReservedWord("nnnn").

InterSystems SQL Reference 735

Reserved words

Special Variables
System-supplied variables.

$HOROLOG
$JOB
$NAMESPACE
$TLEVEL
$USERNAME
$ZHOROLOG
$ZJOB
$ZPI
$ZTIMESTAMP
$ZTIMEZONE
$ZVERSION

Description
InterSystems SQL directly supports a number of the ObjectScript special variables. These variables contain system-supplied
values. They can be used wherever a literal value can be specified in InterSystems SQL.

SQL special variable names are not case-sensitive. Most can be specified using an abbreviation.

UseData Type ReturnedAbbreviationVariable Name

Local date and time for the
current process

%String/VARCHARHHOROLOG

Job ID of the current process%String/VARCHARJJOB

Current namespace name%String/VARCHARnone$NAMESPACE

Current transaction nesting
level

%Integer/INTEGERTLTLEVEL

User name for the current
process

%String/VARCHARnone$USERNAME

Number of elapsed seconds
since InterSystems IRIS startup

%Numeric/NUMERIC(21,6)ZHZHOROLOG

Job status for the current
process

%Integer/INTEGERZJZJOB

The numeric constant PI%Numeric/NUMERIC(21,18)none$ZPI

Current date and time in
Coordinated Universal Time
format

%String/VARCHARZTSZTIMESTAMP

Local time zone offset from
GMT

%Integer/INTEGERZTZZTIMEZONE

The current version of
InterSystems IRIS

%String/VARCHARZVZVERSION

For further details, refer to the corresponding ObjectScript special variable, as described in the ObjectScript Reference.

Examples
The following example returns a result set that includes the current date and time:

736 InterSystems SQL Reference

SQL Reference Material

SELECT TOP 5 Name,$H
FROM Sample.Person

The following example only returns a result set if the time zone is within the continental United States:

SELECT TOP 5 Name,Home_State
FROM Sample.Person
WHERE $ZTIMEZONE BETWEEN 300 AND 480

InterSystems SQL Reference 737

Special Variables

String Manipulation
String manipulation functions and operators.

Description
InterSystems SQL provides support for several types of string manipulation:

• Strings can be manipulated by length, character position, or substring value.

• Strings can be manipulated by a designated delimiter character or delimiter string.

• Strings can tested by pattern matching and word-aware searches.

• Specially encoded strings, called lists, contain embedded substring identifiers without using a delimiter character. The
various $LIST functions operate on these encoded character strings, which are incompatible with standard character
strings. The only exceptions are the $LISTGET function and the one-argument and two-argument forms of $LIST,
which take an encoded character string as input, but output a single element value as a standard character string.

InterSystems SQL supports string functions, string condition expressions, and string operators.

ObjectScript string manipulation is case-sensitive. Letters in strings can be converted to uppercase, to lowercase, or retained
as mixed case. String collation can be case-sensitive, or not case-sensitive; by default, SQL string collation is SQLUPPER
which is not case-sensitive. InterSystems SQL provides numerous letter case and collation functions and operators.

When a string is specified for a numeric argument, most InterSystems SQL functions perform the following string-to-
number conversions: a nonnumeric string is converted to the number 0; a numeric string is converted to a canonical number;
and a mixed-numeric string is truncated at the first nonnumeric character and then converted to a canonical number.

String Concatenation

The following functions concatenate substrings into a string:

• CONCAT: concatenates two substrings, returns a single string.

• STRING: concatenates two or more substrings, returns a single string.

• XMLAGG: concatenates all of the values of a column, returns a single string. For further details, see Aggregate
Functions.

• LIST: concatenates all of the values of a column, including a comma delimiter, returns a single string. For further
details, see Aggregate Functions.

The concatenate operator (||) can also be used to concatenate two strings.

String Length

The following functions can be used to determine the length of a string:

• CHARACTER_LENGTH and CHAR_LENGTH: return the number of characters in a string, including trailing blanks.
NULL returns NULL.

• LENGTH: returns the number of characters in a string, excluding trailing blanks. NULL returns NULL.

• $LENGTH: returns the number of characters in a string, including trailing blanks. NULL is returned as 0.

Truncation and Trimming

The following functions can be used to truncate or trim a string. Truncation limits the length of the string, deleting all
characters beyond the specified length. Trimming deletes leading and/or trailing blank spaces from a string.

• Truncation: CONVERT, %SQLSTRING, and %SQLUPPER.

738 InterSystems SQL Reference

SQL Reference Material

• Trimming: TRIM, LTRIM, and RTRIM.

Substring Search

The following functions search for a substring within a string and return a string position:

• POSITION: searches by substring value, finds first match, returns position of beginning of substring.

• CHARINDEX: searches by substring value, finds first match, returns position of beginning of substring. Starting point
can be specified.

• $FIND: searches by substring value, finds first match, returns position of end of substring. Starting point can be spec-
ified.

• INSTR: searches by substring value, finds first match, returns position of beginning of substring. Both starting point
and substring occurrence can be specified.

The following functions search for a substring by position or delimiter within a string and return the substring:

• $EXTRACT: searches by string position, returns substring specified by start position, or start and end positions.
Searches from beginning of string.

• SUBSTRING: searches by string position, returns substring specified by start position, or start and length. Searches
from beginning of string.

• SUBSTR: searches by string position, returns substring specified by start position, or start and length. Searches from
beginning or end of string.

• $PIECE: searches by delimiter character, returns first delimited substring. Starting point can be specified or defaults
to beginning of string.

• $LENGTH: searches by delimiter character, returns the number of delimited substrings. Searches from beginning of
string.

• $LIST: searches by substring count on a specially encoded list string. It locates a substring by substring count and
returns the substring value. Searches from beginning of string.

The contains operator ([) can also be used to determine if a substring appears in a string.

The %STARTSWITH comparison operator matches the specified character(s) against the beginning of a string.

Substring Search–and–Replace

The following functions search for a substring within a string and replace it with another substring.

• REPLACE: searches by string value, replaces substring with new substring. Searches from beginning of string.

• STUFF: searches by string position and length, replaces substring with new substring. Searches from beginning of
string.

Character-Type and Word-Aware Comparisons

The %PATTERN comparison operator matches a string to a specified pattern of character types.

You can perform a word-aware search of a string for specified words or phrases, including wildcard searching. For further
details refer to Using InterSystems SQL Search.

InterSystems SQL Reference 739

String Manipulation

	Table of Contents
	About This Book
	Symbols and Syntax Conventions
	Symbols Used in InterSystems SQL
	Syntax Conventions Used in this Manual

	SQL Commands
	ALTER TABLE
	ALTER USER
	ALTER VIEW
	CALL
	CASE
	%CHECKPRIV
	CLOSE
	COMMIT
	CREATE DATABASE
	CREATE FUNCTION
	CREATE INDEX
	CREATE METHOD
	CREATE PROCEDURE
	CREATE QUERY
	CREATE ROLE
	CREATE TABLE
	CREATE TRIGGER
	CREATE USER
	CREATE VIEW
	DECLARE
	DELETE
	DISTINCT
	DROP DATABASE
	DROP FUNCTION
	DROP INDEX
	DROP METHOD
	DROP PROCEDURE
	DROP QUERY
	DROP ROLE
	DROP TABLE
	DROP TRIGGER
	DROP USER
	DROP VIEW
	EXPLAIN
	FETCH
	FROM
	GRANT
	GROUP BY
	HAVING
	INSERT
	INSERT OR UPDATE
	INTO
	%INTRANSACTION
	JOIN
	LOCK
	OPEN
	ORDER BY
	REVOKE
	ROLLBACK
	SAVEPOINT
	SELECT
	SET OPTION
	SET TRANSACTION
	START TRANSACTION
	TOP
	TRUNCATE TABLE
	TUNE TABLE
	UNION
	UNLOCK
	UPDATE
	USE DATABASE
	VALUES
	WHERE
	WHERE CURRENT OF

	SQL Predicate Conditions
	Overview of Predicates
	ALL
	ANY
	BETWEEN
	EXISTS
	%FIND
	FOR SOME
	FOR SOME %ELEMENT
	IN
	%INLIST
	%INSET
	IS JSON
	IS NULL
	LIKE
	%MATCHES
	%PATTERN
	SOME
	%STARTSWITH

	SQL Aggregate Functions
	Overview of Aggregate Functions
	AVG
	COUNT
	%DLIST
	JSON_ARRAYAGG
	LIST
	MAX
	MIN
	STDDEV, STDDEV_SAMP, STDDEV_POP
	SUM
	VARIANCE, VAR_SAMP, VAR_POP
	XMLAGG

	SQL Functions
	ABS
	ACOS
	ASCII
	ASIN
	ATAN
	ATAN2
	CAST
	CEILING
	CHAR
	CHARACTER_LENGTH
	CHARINDEX
	CHAR_LENGTH
	COALESCE
	CONCAT
	CONVERT
	COS
	COT
	CURDATE
	CURRENT_DATE
	CURRENT_TIME
	CURRENT_TIMESTAMP
	CURTIME
	DATABASE
	DATALENGTH
	DATE
	DATEADD
	DATEDIFF
	DATENAME
	DATEPART
	DAY
	DAYNAME
	DAYOFMONTH
	DAYOFWEEK
	DAYOFYEAR
	DECODE
	DEGREES
	%EXACT
	EXP
	%EXTERNAL
	$EXTRACT
	$FIND
	FLOOR
	GETDATE
	GETUTCDATE
	GREATEST
	HOUR
	IFNULL
	INSTR
	%INTERNAL
	ISNULL
	ISNUMERIC
	JSON_ARRAY
	JSON_OBJECT
	$JUSTIFY
	LAST_DAY
	LAST_IDENTITY
	LCASE
	LEAST
	LEFT
	LEN
	LENGTH
	$LENGTH
	$LIST
	$LISTBUILD
	$LISTDATA
	$LISTFIND
	$LISTFROMSTRING
	$LISTGET
	$LISTLENGTH
	$LISTSAME
	$LISTTOSTRING
	LOG
	LOG10
	LOWER
	LPAD
	LTRIM
	%MINUS
	MINUTE
	MOD
	MONTH
	MONTHNAME
	NOW
	NULLIF
	NVL
	%OBJECT
	%ODBCIN
	%ODBCOUT
	%OID
	PI
	$PIECE
	%PLUS
	POSITION
	POWER
	QUARTER
	RADIANS
	REPEAT
	REPLACE
	REPLICATE
	REVERSE
	RIGHT
	ROUND
	RPAD
	RTRIM
	SEARCH_INDEX
	SECOND
	SIGN
	SIN
	SPACE
	%SQLSTRING
	%SQLUPPER
	SQRT
	SQUARE
	STR
	STRING
	STUFF
	SUBSTR
	SUBSTRING
	SYSDATE
	TAN
	TIMESTAMPADD
	TIMESTAMPDIFF
	TO_CHAR
	TO_DATE
	TO_NUMBER
	TO_POSIXTIME
	TO_TIMESTAMP
	$TRANSLATE
	TRIM
	TRUNCATE
	%TRUNCATE
	$TSQL_NEWID
	UCASE
	UNIX_TIMESTAMP
	UPPER
	USER
	WEEK
	XMLCONCAT
	XMLELEMENT
	XMLFOREST
	YEAR

	SQL Unary Operators
	- (Negative)
	+ (Positive)

	SQL Reference Material
	Data Types
	Date and Time Constructs
	Default user name and password
	Field constraint
	Reserved words
	Special Variables
	String Manipulation

